ba02d7c86fb388a04d80dde0c5539bb0c851d202
[linux-2.6-microblaze.git] / fs / ext4 / super.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/super.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  Big-endian to little-endian byte-swapping/bitmaps by
17  *        David S. Miller (davem@caip.rutgers.edu), 1995
18  */
19
20 #include <linux/module.h>
21 #include <linux/string.h>
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/vmalloc.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/parser.h>
30 #include <linux/buffer_head.h>
31 #include <linux/exportfs.h>
32 #include <linux/vfs.h>
33 #include <linux/random.h>
34 #include <linux/mount.h>
35 #include <linux/namei.h>
36 #include <linux/quotaops.h>
37 #include <linux/seq_file.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/dax.h>
42 #include <linux/cleancache.h>
43 #include <linux/uaccess.h>
44 #include <linux/iversion.h>
45 #include <linux/unicode.h>
46 #include <linux/part_stat.h>
47 #include <linux/kthread.h>
48 #include <linux/freezer.h>
49
50 #include "ext4.h"
51 #include "ext4_extents.h"       /* Needed for trace points definition */
52 #include "ext4_jbd2.h"
53 #include "xattr.h"
54 #include "acl.h"
55 #include "mballoc.h"
56 #include "fsmap.h"
57
58 #define CREATE_TRACE_POINTS
59 #include <trace/events/ext4.h>
60
61 static struct ext4_lazy_init *ext4_li_info;
62 static struct mutex ext4_li_mtx;
63 static struct ratelimit_state ext4_mount_msg_ratelimit;
64
65 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
66                              unsigned long journal_devnum);
67 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
68 static int ext4_commit_super(struct super_block *sb, int sync);
69 static int ext4_mark_recovery_complete(struct super_block *sb,
70                                         struct ext4_super_block *es);
71 static int ext4_clear_journal_err(struct super_block *sb,
72                                   struct ext4_super_block *es);
73 static int ext4_sync_fs(struct super_block *sb, int wait);
74 static int ext4_remount(struct super_block *sb, int *flags, char *data);
75 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
76 static int ext4_unfreeze(struct super_block *sb);
77 static int ext4_freeze(struct super_block *sb);
78 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
79                        const char *dev_name, void *data);
80 static inline int ext2_feature_set_ok(struct super_block *sb);
81 static inline int ext3_feature_set_ok(struct super_block *sb);
82 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
83 static void ext4_destroy_lazyinit_thread(void);
84 static void ext4_unregister_li_request(struct super_block *sb);
85 static void ext4_clear_request_list(void);
86 static struct inode *ext4_get_journal_inode(struct super_block *sb,
87                                             unsigned int journal_inum);
88
89 /*
90  * Lock ordering
91  *
92  * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and
93  * i_mmap_rwsem (inode->i_mmap_rwsem)!
94  *
95  * page fault path:
96  * mmap_lock -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start ->
97  *   page lock -> i_data_sem (rw)
98  *
99  * buffered write path:
100  * sb_start_write -> i_mutex -> mmap_lock
101  * sb_start_write -> i_mutex -> transaction start -> page lock ->
102  *   i_data_sem (rw)
103  *
104  * truncate:
105  * sb_start_write -> i_mutex -> i_mmap_sem (w) -> i_mmap_rwsem (w) -> page lock
106  * sb_start_write -> i_mutex -> i_mmap_sem (w) -> transaction start ->
107  *   i_data_sem (rw)
108  *
109  * direct IO:
110  * sb_start_write -> i_mutex -> mmap_lock
111  * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
112  *
113  * writepages:
114  * transaction start -> page lock(s) -> i_data_sem (rw)
115  */
116
117 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
118 static struct file_system_type ext2_fs_type = {
119         .owner          = THIS_MODULE,
120         .name           = "ext2",
121         .mount          = ext4_mount,
122         .kill_sb        = kill_block_super,
123         .fs_flags       = FS_REQUIRES_DEV,
124 };
125 MODULE_ALIAS_FS("ext2");
126 MODULE_ALIAS("ext2");
127 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
128 #else
129 #define IS_EXT2_SB(sb) (0)
130 #endif
131
132
133 static struct file_system_type ext3_fs_type = {
134         .owner          = THIS_MODULE,
135         .name           = "ext3",
136         .mount          = ext4_mount,
137         .kill_sb        = kill_block_super,
138         .fs_flags       = FS_REQUIRES_DEV,
139 };
140 MODULE_ALIAS_FS("ext3");
141 MODULE_ALIAS("ext3");
142 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
143
144
145 static inline void __ext4_read_bh(struct buffer_head *bh, int op_flags,
146                                   bh_end_io_t *end_io)
147 {
148         /*
149          * buffer's verified bit is no longer valid after reading from
150          * disk again due to write out error, clear it to make sure we
151          * recheck the buffer contents.
152          */
153         clear_buffer_verified(bh);
154
155         bh->b_end_io = end_io ? end_io : end_buffer_read_sync;
156         get_bh(bh);
157         submit_bh(REQ_OP_READ, op_flags, bh);
158 }
159
160 void ext4_read_bh_nowait(struct buffer_head *bh, int op_flags,
161                          bh_end_io_t *end_io)
162 {
163         BUG_ON(!buffer_locked(bh));
164
165         if (ext4_buffer_uptodate(bh)) {
166                 unlock_buffer(bh);
167                 return;
168         }
169         __ext4_read_bh(bh, op_flags, end_io);
170 }
171
172 int ext4_read_bh(struct buffer_head *bh, int op_flags, bh_end_io_t *end_io)
173 {
174         BUG_ON(!buffer_locked(bh));
175
176         if (ext4_buffer_uptodate(bh)) {
177                 unlock_buffer(bh);
178                 return 0;
179         }
180
181         __ext4_read_bh(bh, op_flags, end_io);
182
183         wait_on_buffer(bh);
184         if (buffer_uptodate(bh))
185                 return 0;
186         return -EIO;
187 }
188
189 int ext4_read_bh_lock(struct buffer_head *bh, int op_flags, bool wait)
190 {
191         if (trylock_buffer(bh)) {
192                 if (wait)
193                         return ext4_read_bh(bh, op_flags, NULL);
194                 ext4_read_bh_nowait(bh, op_flags, NULL);
195                 return 0;
196         }
197         if (wait) {
198                 wait_on_buffer(bh);
199                 if (buffer_uptodate(bh))
200                         return 0;
201                 return -EIO;
202         }
203         return 0;
204 }
205
206 /*
207  * This works like __bread_gfp() except it uses ERR_PTR for error
208  * returns.  Currently with sb_bread it's impossible to distinguish
209  * between ENOMEM and EIO situations (since both result in a NULL
210  * return.
211  */
212 static struct buffer_head *__ext4_sb_bread_gfp(struct super_block *sb,
213                                                sector_t block, int op_flags,
214                                                gfp_t gfp)
215 {
216         struct buffer_head *bh;
217         int ret;
218
219         bh = sb_getblk_gfp(sb, block, gfp);
220         if (bh == NULL)
221                 return ERR_PTR(-ENOMEM);
222         if (ext4_buffer_uptodate(bh))
223                 return bh;
224
225         ret = ext4_read_bh_lock(bh, REQ_META | op_flags, true);
226         if (ret) {
227                 put_bh(bh);
228                 return ERR_PTR(ret);
229         }
230         return bh;
231 }
232
233 struct buffer_head *ext4_sb_bread(struct super_block *sb, sector_t block,
234                                    int op_flags)
235 {
236         return __ext4_sb_bread_gfp(sb, block, op_flags, __GFP_MOVABLE);
237 }
238
239 struct buffer_head *ext4_sb_bread_unmovable(struct super_block *sb,
240                                             sector_t block)
241 {
242         return __ext4_sb_bread_gfp(sb, block, 0, 0);
243 }
244
245 void ext4_sb_breadahead_unmovable(struct super_block *sb, sector_t block)
246 {
247         struct buffer_head *bh = sb_getblk_gfp(sb, block, 0);
248
249         if (likely(bh)) {
250                 ext4_read_bh_lock(bh, REQ_RAHEAD, false);
251                 brelse(bh);
252         }
253 }
254
255 static int ext4_verify_csum_type(struct super_block *sb,
256                                  struct ext4_super_block *es)
257 {
258         if (!ext4_has_feature_metadata_csum(sb))
259                 return 1;
260
261         return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
262 }
263
264 static __le32 ext4_superblock_csum(struct super_block *sb,
265                                    struct ext4_super_block *es)
266 {
267         struct ext4_sb_info *sbi = EXT4_SB(sb);
268         int offset = offsetof(struct ext4_super_block, s_checksum);
269         __u32 csum;
270
271         csum = ext4_chksum(sbi, ~0, (char *)es, offset);
272
273         return cpu_to_le32(csum);
274 }
275
276 static int ext4_superblock_csum_verify(struct super_block *sb,
277                                        struct ext4_super_block *es)
278 {
279         if (!ext4_has_metadata_csum(sb))
280                 return 1;
281
282         return es->s_checksum == ext4_superblock_csum(sb, es);
283 }
284
285 void ext4_superblock_csum_set(struct super_block *sb)
286 {
287         struct ext4_super_block *es = EXT4_SB(sb)->s_es;
288
289         if (!ext4_has_metadata_csum(sb))
290                 return;
291
292         /*
293          * Locking the superblock prevents the scenario
294          * where:
295          *  1) a first thread pauses during checksum calculation.
296          *  2) a second thread updates the superblock, recalculates
297          *     the checksum, and updates s_checksum
298          *  3) the first thread resumes and finishes its checksum calculation
299          *     and updates s_checksum with a potentially stale or torn value.
300          */
301         lock_buffer(EXT4_SB(sb)->s_sbh);
302         es->s_checksum = ext4_superblock_csum(sb, es);
303         unlock_buffer(EXT4_SB(sb)->s_sbh);
304 }
305
306 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
307                                struct ext4_group_desc *bg)
308 {
309         return le32_to_cpu(bg->bg_block_bitmap_lo) |
310                 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
311                  (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
312 }
313
314 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
315                                struct ext4_group_desc *bg)
316 {
317         return le32_to_cpu(bg->bg_inode_bitmap_lo) |
318                 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
319                  (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
320 }
321
322 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
323                               struct ext4_group_desc *bg)
324 {
325         return le32_to_cpu(bg->bg_inode_table_lo) |
326                 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
327                  (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
328 }
329
330 __u32 ext4_free_group_clusters(struct super_block *sb,
331                                struct ext4_group_desc *bg)
332 {
333         return le16_to_cpu(bg->bg_free_blocks_count_lo) |
334                 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
335                  (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
336 }
337
338 __u32 ext4_free_inodes_count(struct super_block *sb,
339                               struct ext4_group_desc *bg)
340 {
341         return le16_to_cpu(bg->bg_free_inodes_count_lo) |
342                 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
343                  (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
344 }
345
346 __u32 ext4_used_dirs_count(struct super_block *sb,
347                               struct ext4_group_desc *bg)
348 {
349         return le16_to_cpu(bg->bg_used_dirs_count_lo) |
350                 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
351                  (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
352 }
353
354 __u32 ext4_itable_unused_count(struct super_block *sb,
355                               struct ext4_group_desc *bg)
356 {
357         return le16_to_cpu(bg->bg_itable_unused_lo) |
358                 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
359                  (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
360 }
361
362 void ext4_block_bitmap_set(struct super_block *sb,
363                            struct ext4_group_desc *bg, ext4_fsblk_t blk)
364 {
365         bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
366         if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
367                 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
368 }
369
370 void ext4_inode_bitmap_set(struct super_block *sb,
371                            struct ext4_group_desc *bg, ext4_fsblk_t blk)
372 {
373         bg->bg_inode_bitmap_lo  = cpu_to_le32((u32)blk);
374         if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
375                 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
376 }
377
378 void ext4_inode_table_set(struct super_block *sb,
379                           struct ext4_group_desc *bg, ext4_fsblk_t blk)
380 {
381         bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
382         if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
383                 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
384 }
385
386 void ext4_free_group_clusters_set(struct super_block *sb,
387                                   struct ext4_group_desc *bg, __u32 count)
388 {
389         bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
390         if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
391                 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
392 }
393
394 void ext4_free_inodes_set(struct super_block *sb,
395                           struct ext4_group_desc *bg, __u32 count)
396 {
397         bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
398         if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
399                 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
400 }
401
402 void ext4_used_dirs_set(struct super_block *sb,
403                           struct ext4_group_desc *bg, __u32 count)
404 {
405         bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
406         if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
407                 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
408 }
409
410 void ext4_itable_unused_set(struct super_block *sb,
411                           struct ext4_group_desc *bg, __u32 count)
412 {
413         bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
414         if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
415                 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
416 }
417
418 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi)
419 {
420         time64_t now = ktime_get_real_seconds();
421
422         now = clamp_val(now, 0, (1ull << 40) - 1);
423
424         *lo = cpu_to_le32(lower_32_bits(now));
425         *hi = upper_32_bits(now);
426 }
427
428 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi)
429 {
430         return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo);
431 }
432 #define ext4_update_tstamp(es, tstamp) \
433         __ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
434 #define ext4_get_tstamp(es, tstamp) \
435         __ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
436
437 static void __save_error_info(struct super_block *sb, int error,
438                               __u32 ino, __u64 block,
439                               const char *func, unsigned int line)
440 {
441         struct ext4_super_block *es = EXT4_SB(sb)->s_es;
442         int err;
443
444         EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
445         if (bdev_read_only(sb->s_bdev))
446                 return;
447         es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
448         ext4_update_tstamp(es, s_last_error_time);
449         strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
450         es->s_last_error_line = cpu_to_le32(line);
451         es->s_last_error_ino = cpu_to_le32(ino);
452         es->s_last_error_block = cpu_to_le64(block);
453         switch (error) {
454         case EIO:
455                 err = EXT4_ERR_EIO;
456                 break;
457         case ENOMEM:
458                 err = EXT4_ERR_ENOMEM;
459                 break;
460         case EFSBADCRC:
461                 err = EXT4_ERR_EFSBADCRC;
462                 break;
463         case 0:
464         case EFSCORRUPTED:
465                 err = EXT4_ERR_EFSCORRUPTED;
466                 break;
467         case ENOSPC:
468                 err = EXT4_ERR_ENOSPC;
469                 break;
470         case ENOKEY:
471                 err = EXT4_ERR_ENOKEY;
472                 break;
473         case EROFS:
474                 err = EXT4_ERR_EROFS;
475                 break;
476         case EFBIG:
477                 err = EXT4_ERR_EFBIG;
478                 break;
479         case EEXIST:
480                 err = EXT4_ERR_EEXIST;
481                 break;
482         case ERANGE:
483                 err = EXT4_ERR_ERANGE;
484                 break;
485         case EOVERFLOW:
486                 err = EXT4_ERR_EOVERFLOW;
487                 break;
488         case EBUSY:
489                 err = EXT4_ERR_EBUSY;
490                 break;
491         case ENOTDIR:
492                 err = EXT4_ERR_ENOTDIR;
493                 break;
494         case ENOTEMPTY:
495                 err = EXT4_ERR_ENOTEMPTY;
496                 break;
497         case ESHUTDOWN:
498                 err = EXT4_ERR_ESHUTDOWN;
499                 break;
500         case EFAULT:
501                 err = EXT4_ERR_EFAULT;
502                 break;
503         default:
504                 err = EXT4_ERR_UNKNOWN;
505         }
506         es->s_last_error_errcode = err;
507         if (!es->s_first_error_time) {
508                 es->s_first_error_time = es->s_last_error_time;
509                 es->s_first_error_time_hi = es->s_last_error_time_hi;
510                 strncpy(es->s_first_error_func, func,
511                         sizeof(es->s_first_error_func));
512                 es->s_first_error_line = cpu_to_le32(line);
513                 es->s_first_error_ino = es->s_last_error_ino;
514                 es->s_first_error_block = es->s_last_error_block;
515                 es->s_first_error_errcode = es->s_last_error_errcode;
516         }
517         /*
518          * Start the daily error reporting function if it hasn't been
519          * started already
520          */
521         if (!es->s_error_count)
522                 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
523         le32_add_cpu(&es->s_error_count, 1);
524 }
525
526 static void save_error_info(struct super_block *sb, int error,
527                             __u32 ino, __u64 block,
528                             const char *func, unsigned int line)
529 {
530         __save_error_info(sb, error, ino, block, func, line);
531         if (!bdev_read_only(sb->s_bdev))
532                 ext4_commit_super(sb, 1);
533 }
534
535 /*
536  * The del_gendisk() function uninitializes the disk-specific data
537  * structures, including the bdi structure, without telling anyone
538  * else.  Once this happens, any attempt to call mark_buffer_dirty()
539  * (for example, by ext4_commit_super), will cause a kernel OOPS.
540  * This is a kludge to prevent these oops until we can put in a proper
541  * hook in del_gendisk() to inform the VFS and file system layers.
542  */
543 static int block_device_ejected(struct super_block *sb)
544 {
545         struct inode *bd_inode = sb->s_bdev->bd_inode;
546         struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
547
548         return bdi->dev == NULL;
549 }
550
551 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
552 {
553         struct super_block              *sb = journal->j_private;
554         struct ext4_sb_info             *sbi = EXT4_SB(sb);
555         int                             error = is_journal_aborted(journal);
556         struct ext4_journal_cb_entry    *jce;
557
558         BUG_ON(txn->t_state == T_FINISHED);
559
560         ext4_process_freed_data(sb, txn->t_tid);
561
562         spin_lock(&sbi->s_md_lock);
563         while (!list_empty(&txn->t_private_list)) {
564                 jce = list_entry(txn->t_private_list.next,
565                                  struct ext4_journal_cb_entry, jce_list);
566                 list_del_init(&jce->jce_list);
567                 spin_unlock(&sbi->s_md_lock);
568                 jce->jce_func(sb, jce, error);
569                 spin_lock(&sbi->s_md_lock);
570         }
571         spin_unlock(&sbi->s_md_lock);
572 }
573
574 /*
575  * This writepage callback for write_cache_pages()
576  * takes care of a few cases after page cleaning.
577  *
578  * write_cache_pages() already checks for dirty pages
579  * and calls clear_page_dirty_for_io(), which we want,
580  * to write protect the pages.
581  *
582  * However, we may have to redirty a page (see below.)
583  */
584 static int ext4_journalled_writepage_callback(struct page *page,
585                                               struct writeback_control *wbc,
586                                               void *data)
587 {
588         transaction_t *transaction = (transaction_t *) data;
589         struct buffer_head *bh, *head;
590         struct journal_head *jh;
591
592         bh = head = page_buffers(page);
593         do {
594                 /*
595                  * We have to redirty a page in these cases:
596                  * 1) If buffer is dirty, it means the page was dirty because it
597                  * contains a buffer that needs checkpointing. So the dirty bit
598                  * needs to be preserved so that checkpointing writes the buffer
599                  * properly.
600                  * 2) If buffer is not part of the committing transaction
601                  * (we may have just accidentally come across this buffer because
602                  * inode range tracking is not exact) or if the currently running
603                  * transaction already contains this buffer as well, dirty bit
604                  * needs to be preserved so that the buffer gets writeprotected
605                  * properly on running transaction's commit.
606                  */
607                 jh = bh2jh(bh);
608                 if (buffer_dirty(bh) ||
609                     (jh && (jh->b_transaction != transaction ||
610                             jh->b_next_transaction))) {
611                         redirty_page_for_writepage(wbc, page);
612                         goto out;
613                 }
614         } while ((bh = bh->b_this_page) != head);
615
616 out:
617         return AOP_WRITEPAGE_ACTIVATE;
618 }
619
620 static int ext4_journalled_submit_inode_data_buffers(struct jbd2_inode *jinode)
621 {
622         struct address_space *mapping = jinode->i_vfs_inode->i_mapping;
623         struct writeback_control wbc = {
624                 .sync_mode =  WB_SYNC_ALL,
625                 .nr_to_write = LONG_MAX,
626                 .range_start = jinode->i_dirty_start,
627                 .range_end = jinode->i_dirty_end,
628         };
629
630         return write_cache_pages(mapping, &wbc,
631                                  ext4_journalled_writepage_callback,
632                                  jinode->i_transaction);
633 }
634
635 static int ext4_journal_submit_inode_data_buffers(struct jbd2_inode *jinode)
636 {
637         int ret;
638
639         if (ext4_should_journal_data(jinode->i_vfs_inode))
640                 ret = ext4_journalled_submit_inode_data_buffers(jinode);
641         else
642                 ret = jbd2_journal_submit_inode_data_buffers(jinode);
643
644         return ret;
645 }
646
647 static int ext4_journal_finish_inode_data_buffers(struct jbd2_inode *jinode)
648 {
649         int ret = 0;
650
651         if (!ext4_should_journal_data(jinode->i_vfs_inode))
652                 ret = jbd2_journal_finish_inode_data_buffers(jinode);
653
654         return ret;
655 }
656
657 static bool system_going_down(void)
658 {
659         return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
660                 || system_state == SYSTEM_RESTART;
661 }
662
663 /* Deal with the reporting of failure conditions on a filesystem such as
664  * inconsistencies detected or read IO failures.
665  *
666  * On ext2, we can store the error state of the filesystem in the
667  * superblock.  That is not possible on ext4, because we may have other
668  * write ordering constraints on the superblock which prevent us from
669  * writing it out straight away; and given that the journal is about to
670  * be aborted, we can't rely on the current, or future, transactions to
671  * write out the superblock safely.
672  *
673  * We'll just use the jbd2_journal_abort() error code to record an error in
674  * the journal instead.  On recovery, the journal will complain about
675  * that error until we've noted it down and cleared it.
676  */
677
678 static void ext4_handle_error(struct super_block *sb)
679 {
680         if (test_opt(sb, WARN_ON_ERROR))
681                 WARN_ON_ONCE(1);
682
683         if (sb_rdonly(sb))
684                 return;
685
686         if (!test_opt(sb, ERRORS_CONT)) {
687                 journal_t *journal = EXT4_SB(sb)->s_journal;
688
689                 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
690                 if (journal)
691                         jbd2_journal_abort(journal, -EIO);
692         }
693         /*
694          * We force ERRORS_RO behavior when system is rebooting. Otherwise we
695          * could panic during 'reboot -f' as the underlying device got already
696          * disabled.
697          */
698         if (test_opt(sb, ERRORS_RO) || system_going_down()) {
699                 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
700                 /*
701                  * Make sure updated value of ->s_mount_flags will be visible
702                  * before ->s_flags update
703                  */
704                 smp_wmb();
705                 sb->s_flags |= SB_RDONLY;
706         } else if (test_opt(sb, ERRORS_PANIC)) {
707                 panic("EXT4-fs (device %s): panic forced after error\n",
708                         sb->s_id);
709         }
710 }
711
712 #define ext4_error_ratelimit(sb)                                        \
713                 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state),     \
714                              "EXT4-fs error")
715
716 void __ext4_error(struct super_block *sb, const char *function,
717                   unsigned int line, int error, __u64 block,
718                   const char *fmt, ...)
719 {
720         struct va_format vaf;
721         va_list args;
722
723         if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
724                 return;
725
726         trace_ext4_error(sb, function, line);
727         if (ext4_error_ratelimit(sb)) {
728                 va_start(args, fmt);
729                 vaf.fmt = fmt;
730                 vaf.va = &args;
731                 printk(KERN_CRIT
732                        "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
733                        sb->s_id, function, line, current->comm, &vaf);
734                 va_end(args);
735         }
736         save_error_info(sb, error, 0, block, function, line);
737         ext4_handle_error(sb);
738 }
739
740 void __ext4_error_inode(struct inode *inode, const char *function,
741                         unsigned int line, ext4_fsblk_t block, int error,
742                         const char *fmt, ...)
743 {
744         va_list args;
745         struct va_format vaf;
746
747         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
748                 return;
749
750         trace_ext4_error(inode->i_sb, function, line);
751         if (ext4_error_ratelimit(inode->i_sb)) {
752                 va_start(args, fmt);
753                 vaf.fmt = fmt;
754                 vaf.va = &args;
755                 if (block)
756                         printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
757                                "inode #%lu: block %llu: comm %s: %pV\n",
758                                inode->i_sb->s_id, function, line, inode->i_ino,
759                                block, current->comm, &vaf);
760                 else
761                         printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
762                                "inode #%lu: comm %s: %pV\n",
763                                inode->i_sb->s_id, function, line, inode->i_ino,
764                                current->comm, &vaf);
765                 va_end(args);
766         }
767         save_error_info(inode->i_sb, error, inode->i_ino, block,
768                         function, line);
769         ext4_handle_error(inode->i_sb);
770 }
771
772 void __ext4_error_file(struct file *file, const char *function,
773                        unsigned int line, ext4_fsblk_t block,
774                        const char *fmt, ...)
775 {
776         va_list args;
777         struct va_format vaf;
778         struct inode *inode = file_inode(file);
779         char pathname[80], *path;
780
781         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
782                 return;
783
784         trace_ext4_error(inode->i_sb, function, line);
785         if (ext4_error_ratelimit(inode->i_sb)) {
786                 path = file_path(file, pathname, sizeof(pathname));
787                 if (IS_ERR(path))
788                         path = "(unknown)";
789                 va_start(args, fmt);
790                 vaf.fmt = fmt;
791                 vaf.va = &args;
792                 if (block)
793                         printk(KERN_CRIT
794                                "EXT4-fs error (device %s): %s:%d: inode #%lu: "
795                                "block %llu: comm %s: path %s: %pV\n",
796                                inode->i_sb->s_id, function, line, inode->i_ino,
797                                block, current->comm, path, &vaf);
798                 else
799                         printk(KERN_CRIT
800                                "EXT4-fs error (device %s): %s:%d: inode #%lu: "
801                                "comm %s: path %s: %pV\n",
802                                inode->i_sb->s_id, function, line, inode->i_ino,
803                                current->comm, path, &vaf);
804                 va_end(args);
805         }
806         save_error_info(inode->i_sb, EFSCORRUPTED, inode->i_ino, block,
807                         function, line);
808         ext4_handle_error(inode->i_sb);
809 }
810
811 const char *ext4_decode_error(struct super_block *sb, int errno,
812                               char nbuf[16])
813 {
814         char *errstr = NULL;
815
816         switch (errno) {
817         case -EFSCORRUPTED:
818                 errstr = "Corrupt filesystem";
819                 break;
820         case -EFSBADCRC:
821                 errstr = "Filesystem failed CRC";
822                 break;
823         case -EIO:
824                 errstr = "IO failure";
825                 break;
826         case -ENOMEM:
827                 errstr = "Out of memory";
828                 break;
829         case -EROFS:
830                 if (!sb || (EXT4_SB(sb)->s_journal &&
831                             EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
832                         errstr = "Journal has aborted";
833                 else
834                         errstr = "Readonly filesystem";
835                 break;
836         default:
837                 /* If the caller passed in an extra buffer for unknown
838                  * errors, textualise them now.  Else we just return
839                  * NULL. */
840                 if (nbuf) {
841                         /* Check for truncated error codes... */
842                         if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
843                                 errstr = nbuf;
844                 }
845                 break;
846         }
847
848         return errstr;
849 }
850
851 /* __ext4_std_error decodes expected errors from journaling functions
852  * automatically and invokes the appropriate error response.  */
853
854 void __ext4_std_error(struct super_block *sb, const char *function,
855                       unsigned int line, int errno)
856 {
857         char nbuf[16];
858         const char *errstr;
859
860         if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
861                 return;
862
863         /* Special case: if the error is EROFS, and we're not already
864          * inside a transaction, then there's really no point in logging
865          * an error. */
866         if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
867                 return;
868
869         if (ext4_error_ratelimit(sb)) {
870                 errstr = ext4_decode_error(sb, errno, nbuf);
871                 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
872                        sb->s_id, function, line, errstr);
873         }
874
875         save_error_info(sb, -errno, 0, 0, function, line);
876         ext4_handle_error(sb);
877 }
878
879 /*
880  * ext4_abort is a much stronger failure handler than ext4_error.  The
881  * abort function may be used to deal with unrecoverable failures such
882  * as journal IO errors or ENOMEM at a critical moment in log management.
883  *
884  * We unconditionally force the filesystem into an ABORT|READONLY state,
885  * unless the error response on the fs has been set to panic in which
886  * case we take the easy way out and panic immediately.
887  */
888
889 void __ext4_abort(struct super_block *sb, const char *function,
890                   unsigned int line, int error, const char *fmt, ...)
891 {
892         struct va_format vaf;
893         va_list args;
894
895         if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
896                 return;
897
898         save_error_info(sb, error, 0, 0, function, line);
899         va_start(args, fmt);
900         vaf.fmt = fmt;
901         vaf.va = &args;
902         printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: %pV\n",
903                sb->s_id, function, line, &vaf);
904         va_end(args);
905
906         if (sb_rdonly(sb) == 0) {
907                 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
908                 if (EXT4_SB(sb)->s_journal)
909                         jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
910
911                 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
912                 /*
913                  * Make sure updated value of ->s_mount_flags will be visible
914                  * before ->s_flags update
915                  */
916                 smp_wmb();
917                 sb->s_flags |= SB_RDONLY;
918         }
919         if (test_opt(sb, ERRORS_PANIC) && !system_going_down())
920                 panic("EXT4-fs panic from previous error\n");
921 }
922
923 void __ext4_msg(struct super_block *sb,
924                 const char *prefix, const char *fmt, ...)
925 {
926         struct va_format vaf;
927         va_list args;
928
929         atomic_inc(&EXT4_SB(sb)->s_msg_count);
930         if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
931                 return;
932
933         va_start(args, fmt);
934         vaf.fmt = fmt;
935         vaf.va = &args;
936         printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
937         va_end(args);
938 }
939
940 static int ext4_warning_ratelimit(struct super_block *sb)
941 {
942         atomic_inc(&EXT4_SB(sb)->s_warning_count);
943         return ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),
944                             "EXT4-fs warning");
945 }
946
947 void __ext4_warning(struct super_block *sb, const char *function,
948                     unsigned int line, const char *fmt, ...)
949 {
950         struct va_format vaf;
951         va_list args;
952
953         if (!ext4_warning_ratelimit(sb))
954                 return;
955
956         va_start(args, fmt);
957         vaf.fmt = fmt;
958         vaf.va = &args;
959         printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
960                sb->s_id, function, line, &vaf);
961         va_end(args);
962 }
963
964 void __ext4_warning_inode(const struct inode *inode, const char *function,
965                           unsigned int line, const char *fmt, ...)
966 {
967         struct va_format vaf;
968         va_list args;
969
970         if (!ext4_warning_ratelimit(inode->i_sb))
971                 return;
972
973         va_start(args, fmt);
974         vaf.fmt = fmt;
975         vaf.va = &args;
976         printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
977                "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
978                function, line, inode->i_ino, current->comm, &vaf);
979         va_end(args);
980 }
981
982 void __ext4_grp_locked_error(const char *function, unsigned int line,
983                              struct super_block *sb, ext4_group_t grp,
984                              unsigned long ino, ext4_fsblk_t block,
985                              const char *fmt, ...)
986 __releases(bitlock)
987 __acquires(bitlock)
988 {
989         struct va_format vaf;
990         va_list args;
991
992         if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
993                 return;
994
995         trace_ext4_error(sb, function, line);
996         __save_error_info(sb, EFSCORRUPTED, ino, block, function, line);
997
998         if (ext4_error_ratelimit(sb)) {
999                 va_start(args, fmt);
1000                 vaf.fmt = fmt;
1001                 vaf.va = &args;
1002                 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
1003                        sb->s_id, function, line, grp);
1004                 if (ino)
1005                         printk(KERN_CONT "inode %lu: ", ino);
1006                 if (block)
1007                         printk(KERN_CONT "block %llu:",
1008                                (unsigned long long) block);
1009                 printk(KERN_CONT "%pV\n", &vaf);
1010                 va_end(args);
1011         }
1012
1013         if (test_opt(sb, WARN_ON_ERROR))
1014                 WARN_ON_ONCE(1);
1015
1016         if (test_opt(sb, ERRORS_CONT)) {
1017                 ext4_commit_super(sb, 0);
1018                 return;
1019         }
1020
1021         ext4_unlock_group(sb, grp);
1022         ext4_commit_super(sb, 1);
1023         ext4_handle_error(sb);
1024         /*
1025          * We only get here in the ERRORS_RO case; relocking the group
1026          * may be dangerous, but nothing bad will happen since the
1027          * filesystem will have already been marked read/only and the
1028          * journal has been aborted.  We return 1 as a hint to callers
1029          * who might what to use the return value from
1030          * ext4_grp_locked_error() to distinguish between the
1031          * ERRORS_CONT and ERRORS_RO case, and perhaps return more
1032          * aggressively from the ext4 function in question, with a
1033          * more appropriate error code.
1034          */
1035         ext4_lock_group(sb, grp);
1036         return;
1037 }
1038
1039 void ext4_mark_group_bitmap_corrupted(struct super_block *sb,
1040                                      ext4_group_t group,
1041                                      unsigned int flags)
1042 {
1043         struct ext4_sb_info *sbi = EXT4_SB(sb);
1044         struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1045         struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
1046         int ret;
1047
1048         if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) {
1049                 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
1050                                             &grp->bb_state);
1051                 if (!ret)
1052                         percpu_counter_sub(&sbi->s_freeclusters_counter,
1053                                            grp->bb_free);
1054         }
1055
1056         if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) {
1057                 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT,
1058                                             &grp->bb_state);
1059                 if (!ret && gdp) {
1060                         int count;
1061
1062                         count = ext4_free_inodes_count(sb, gdp);
1063                         percpu_counter_sub(&sbi->s_freeinodes_counter,
1064                                            count);
1065                 }
1066         }
1067 }
1068
1069 void ext4_update_dynamic_rev(struct super_block *sb)
1070 {
1071         struct ext4_super_block *es = EXT4_SB(sb)->s_es;
1072
1073         if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
1074                 return;
1075
1076         ext4_warning(sb,
1077                      "updating to rev %d because of new feature flag, "
1078                      "running e2fsck is recommended",
1079                      EXT4_DYNAMIC_REV);
1080
1081         es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
1082         es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
1083         es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
1084         /* leave es->s_feature_*compat flags alone */
1085         /* es->s_uuid will be set by e2fsck if empty */
1086
1087         /*
1088          * The rest of the superblock fields should be zero, and if not it
1089          * means they are likely already in use, so leave them alone.  We
1090          * can leave it up to e2fsck to clean up any inconsistencies there.
1091          */
1092 }
1093
1094 /*
1095  * Open the external journal device
1096  */
1097 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
1098 {
1099         struct block_device *bdev;
1100
1101         bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
1102         if (IS_ERR(bdev))
1103                 goto fail;
1104         return bdev;
1105
1106 fail:
1107         ext4_msg(sb, KERN_ERR,
1108                  "failed to open journal device unknown-block(%u,%u) %ld",
1109                  MAJOR(dev), MINOR(dev), PTR_ERR(bdev));
1110         return NULL;
1111 }
1112
1113 /*
1114  * Release the journal device
1115  */
1116 static void ext4_blkdev_put(struct block_device *bdev)
1117 {
1118         blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1119 }
1120
1121 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
1122 {
1123         struct block_device *bdev;
1124         bdev = sbi->s_journal_bdev;
1125         if (bdev) {
1126                 ext4_blkdev_put(bdev);
1127                 sbi->s_journal_bdev = NULL;
1128         }
1129 }
1130
1131 static inline struct inode *orphan_list_entry(struct list_head *l)
1132 {
1133         return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
1134 }
1135
1136 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
1137 {
1138         struct list_head *l;
1139
1140         ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
1141                  le32_to_cpu(sbi->s_es->s_last_orphan));
1142
1143         printk(KERN_ERR "sb_info orphan list:\n");
1144         list_for_each(l, &sbi->s_orphan) {
1145                 struct inode *inode = orphan_list_entry(l);
1146                 printk(KERN_ERR "  "
1147                        "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
1148                        inode->i_sb->s_id, inode->i_ino, inode,
1149                        inode->i_mode, inode->i_nlink,
1150                        NEXT_ORPHAN(inode));
1151         }
1152 }
1153
1154 #ifdef CONFIG_QUOTA
1155 static int ext4_quota_off(struct super_block *sb, int type);
1156
1157 static inline void ext4_quota_off_umount(struct super_block *sb)
1158 {
1159         int type;
1160
1161         /* Use our quota_off function to clear inode flags etc. */
1162         for (type = 0; type < EXT4_MAXQUOTAS; type++)
1163                 ext4_quota_off(sb, type);
1164 }
1165
1166 /*
1167  * This is a helper function which is used in the mount/remount
1168  * codepaths (which holds s_umount) to fetch the quota file name.
1169  */
1170 static inline char *get_qf_name(struct super_block *sb,
1171                                 struct ext4_sb_info *sbi,
1172                                 int type)
1173 {
1174         return rcu_dereference_protected(sbi->s_qf_names[type],
1175                                          lockdep_is_held(&sb->s_umount));
1176 }
1177 #else
1178 static inline void ext4_quota_off_umount(struct super_block *sb)
1179 {
1180 }
1181 #endif
1182
1183 static void ext4_put_super(struct super_block *sb)
1184 {
1185         struct ext4_sb_info *sbi = EXT4_SB(sb);
1186         struct ext4_super_block *es = sbi->s_es;
1187         struct buffer_head **group_desc;
1188         struct flex_groups **flex_groups;
1189         int aborted = 0;
1190         int i, err;
1191
1192         ext4_unregister_li_request(sb);
1193         ext4_quota_off_umount(sb);
1194
1195         destroy_workqueue(sbi->rsv_conversion_wq);
1196
1197         /*
1198          * Unregister sysfs before destroying jbd2 journal.
1199          * Since we could still access attr_journal_task attribute via sysfs
1200          * path which could have sbi->s_journal->j_task as NULL
1201          */
1202         ext4_unregister_sysfs(sb);
1203
1204         if (sbi->s_journal) {
1205                 aborted = is_journal_aborted(sbi->s_journal);
1206                 err = jbd2_journal_destroy(sbi->s_journal);
1207                 sbi->s_journal = NULL;
1208                 if ((err < 0) && !aborted) {
1209                         ext4_abort(sb, -err, "Couldn't clean up the journal");
1210                 }
1211         }
1212
1213         ext4_es_unregister_shrinker(sbi);
1214         del_timer_sync(&sbi->s_err_report);
1215         ext4_release_system_zone(sb);
1216         ext4_mb_release(sb);
1217         ext4_ext_release(sb);
1218
1219         if (!sb_rdonly(sb) && !aborted) {
1220                 ext4_clear_feature_journal_needs_recovery(sb);
1221                 es->s_state = cpu_to_le16(sbi->s_mount_state);
1222         }
1223         if (!sb_rdonly(sb))
1224                 ext4_commit_super(sb, 1);
1225
1226         rcu_read_lock();
1227         group_desc = rcu_dereference(sbi->s_group_desc);
1228         for (i = 0; i < sbi->s_gdb_count; i++)
1229                 brelse(group_desc[i]);
1230         kvfree(group_desc);
1231         flex_groups = rcu_dereference(sbi->s_flex_groups);
1232         if (flex_groups) {
1233                 for (i = 0; i < sbi->s_flex_groups_allocated; i++)
1234                         kvfree(flex_groups[i]);
1235                 kvfree(flex_groups);
1236         }
1237         rcu_read_unlock();
1238         percpu_counter_destroy(&sbi->s_freeclusters_counter);
1239         percpu_counter_destroy(&sbi->s_freeinodes_counter);
1240         percpu_counter_destroy(&sbi->s_dirs_counter);
1241         percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
1242         percpu_free_rwsem(&sbi->s_writepages_rwsem);
1243 #ifdef CONFIG_QUOTA
1244         for (i = 0; i < EXT4_MAXQUOTAS; i++)
1245                 kfree(get_qf_name(sb, sbi, i));
1246 #endif
1247
1248         /* Debugging code just in case the in-memory inode orphan list
1249          * isn't empty.  The on-disk one can be non-empty if we've
1250          * detected an error and taken the fs readonly, but the
1251          * in-memory list had better be clean by this point. */
1252         if (!list_empty(&sbi->s_orphan))
1253                 dump_orphan_list(sb, sbi);
1254         J_ASSERT(list_empty(&sbi->s_orphan));
1255
1256         sync_blockdev(sb->s_bdev);
1257         invalidate_bdev(sb->s_bdev);
1258         if (sbi->s_journal_bdev && sbi->s_journal_bdev != sb->s_bdev) {
1259                 /*
1260                  * Invalidate the journal device's buffers.  We don't want them
1261                  * floating about in memory - the physical journal device may
1262                  * hotswapped, and it breaks the `ro-after' testing code.
1263                  */
1264                 sync_blockdev(sbi->s_journal_bdev);
1265                 invalidate_bdev(sbi->s_journal_bdev);
1266                 ext4_blkdev_remove(sbi);
1267         }
1268
1269         ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
1270         sbi->s_ea_inode_cache = NULL;
1271
1272         ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
1273         sbi->s_ea_block_cache = NULL;
1274
1275         if (sbi->s_mmp_tsk)
1276                 kthread_stop(sbi->s_mmp_tsk);
1277         brelse(sbi->s_sbh);
1278         sb->s_fs_info = NULL;
1279         /*
1280          * Now that we are completely done shutting down the
1281          * superblock, we need to actually destroy the kobject.
1282          */
1283         kobject_put(&sbi->s_kobj);
1284         wait_for_completion(&sbi->s_kobj_unregister);
1285         if (sbi->s_chksum_driver)
1286                 crypto_free_shash(sbi->s_chksum_driver);
1287         kfree(sbi->s_blockgroup_lock);
1288         fs_put_dax(sbi->s_daxdev);
1289         fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
1290 #ifdef CONFIG_UNICODE
1291         utf8_unload(sb->s_encoding);
1292 #endif
1293         kfree(sbi);
1294 }
1295
1296 static struct kmem_cache *ext4_inode_cachep;
1297
1298 /*
1299  * Called inside transaction, so use GFP_NOFS
1300  */
1301 static struct inode *ext4_alloc_inode(struct super_block *sb)
1302 {
1303         struct ext4_inode_info *ei;
1304
1305         ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
1306         if (!ei)
1307                 return NULL;
1308
1309         inode_set_iversion(&ei->vfs_inode, 1);
1310         spin_lock_init(&ei->i_raw_lock);
1311         INIT_LIST_HEAD(&ei->i_prealloc_list);
1312         atomic_set(&ei->i_prealloc_active, 0);
1313         spin_lock_init(&ei->i_prealloc_lock);
1314         ext4_es_init_tree(&ei->i_es_tree);
1315         rwlock_init(&ei->i_es_lock);
1316         INIT_LIST_HEAD(&ei->i_es_list);
1317         ei->i_es_all_nr = 0;
1318         ei->i_es_shk_nr = 0;
1319         ei->i_es_shrink_lblk = 0;
1320         ei->i_reserved_data_blocks = 0;
1321         spin_lock_init(&(ei->i_block_reservation_lock));
1322         ext4_init_pending_tree(&ei->i_pending_tree);
1323 #ifdef CONFIG_QUOTA
1324         ei->i_reserved_quota = 0;
1325         memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
1326 #endif
1327         ei->jinode = NULL;
1328         INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
1329         spin_lock_init(&ei->i_completed_io_lock);
1330         ei->i_sync_tid = 0;
1331         ei->i_datasync_tid = 0;
1332         atomic_set(&ei->i_unwritten, 0);
1333         INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
1334         ext4_fc_init_inode(&ei->vfs_inode);
1335         mutex_init(&ei->i_fc_lock);
1336         return &ei->vfs_inode;
1337 }
1338
1339 static int ext4_drop_inode(struct inode *inode)
1340 {
1341         int drop = generic_drop_inode(inode);
1342
1343         if (!drop)
1344                 drop = fscrypt_drop_inode(inode);
1345
1346         trace_ext4_drop_inode(inode, drop);
1347         return drop;
1348 }
1349
1350 static void ext4_free_in_core_inode(struct inode *inode)
1351 {
1352         fscrypt_free_inode(inode);
1353         if (!list_empty(&(EXT4_I(inode)->i_fc_list))) {
1354                 pr_warn("%s: inode %ld still in fc list",
1355                         __func__, inode->i_ino);
1356         }
1357         kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1358 }
1359
1360 static void ext4_destroy_inode(struct inode *inode)
1361 {
1362         if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1363                 ext4_msg(inode->i_sb, KERN_ERR,
1364                          "Inode %lu (%p): orphan list check failed!",
1365                          inode->i_ino, EXT4_I(inode));
1366                 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1367                                 EXT4_I(inode), sizeof(struct ext4_inode_info),
1368                                 true);
1369                 dump_stack();
1370         }
1371 }
1372
1373 static void init_once(void *foo)
1374 {
1375         struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
1376
1377         INIT_LIST_HEAD(&ei->i_orphan);
1378         init_rwsem(&ei->xattr_sem);
1379         init_rwsem(&ei->i_data_sem);
1380         init_rwsem(&ei->i_mmap_sem);
1381         inode_init_once(&ei->vfs_inode);
1382         ext4_fc_init_inode(&ei->vfs_inode);
1383 }
1384
1385 static int __init init_inodecache(void)
1386 {
1387         ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1388                                 sizeof(struct ext4_inode_info), 0,
1389                                 (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD|
1390                                         SLAB_ACCOUNT),
1391                                 offsetof(struct ext4_inode_info, i_data),
1392                                 sizeof_field(struct ext4_inode_info, i_data),
1393                                 init_once);
1394         if (ext4_inode_cachep == NULL)
1395                 return -ENOMEM;
1396         return 0;
1397 }
1398
1399 static void destroy_inodecache(void)
1400 {
1401         /*
1402          * Make sure all delayed rcu free inodes are flushed before we
1403          * destroy cache.
1404          */
1405         rcu_barrier();
1406         kmem_cache_destroy(ext4_inode_cachep);
1407 }
1408
1409 void ext4_clear_inode(struct inode *inode)
1410 {
1411         ext4_fc_del(inode);
1412         invalidate_inode_buffers(inode);
1413         clear_inode(inode);
1414         ext4_discard_preallocations(inode, 0);
1415         ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1416         dquot_drop(inode);
1417         if (EXT4_I(inode)->jinode) {
1418                 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1419                                                EXT4_I(inode)->jinode);
1420                 jbd2_free_inode(EXT4_I(inode)->jinode);
1421                 EXT4_I(inode)->jinode = NULL;
1422         }
1423         fscrypt_put_encryption_info(inode);
1424         fsverity_cleanup_inode(inode);
1425 }
1426
1427 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1428                                         u64 ino, u32 generation)
1429 {
1430         struct inode *inode;
1431
1432         /*
1433          * Currently we don't know the generation for parent directory, so
1434          * a generation of 0 means "accept any"
1435          */
1436         inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE);
1437         if (IS_ERR(inode))
1438                 return ERR_CAST(inode);
1439         if (generation && inode->i_generation != generation) {
1440                 iput(inode);
1441                 return ERR_PTR(-ESTALE);
1442         }
1443
1444         return inode;
1445 }
1446
1447 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1448                                         int fh_len, int fh_type)
1449 {
1450         return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1451                                     ext4_nfs_get_inode);
1452 }
1453
1454 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1455                                         int fh_len, int fh_type)
1456 {
1457         return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1458                                     ext4_nfs_get_inode);
1459 }
1460
1461 static int ext4_nfs_commit_metadata(struct inode *inode)
1462 {
1463         struct writeback_control wbc = {
1464                 .sync_mode = WB_SYNC_ALL
1465         };
1466
1467         trace_ext4_nfs_commit_metadata(inode);
1468         return ext4_write_inode(inode, &wbc);
1469 }
1470
1471 /*
1472  * Try to release metadata pages (indirect blocks, directories) which are
1473  * mapped via the block device.  Since these pages could have journal heads
1474  * which would prevent try_to_free_buffers() from freeing them, we must use
1475  * jbd2 layer's try_to_free_buffers() function to release them.
1476  */
1477 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1478                                  gfp_t wait)
1479 {
1480         journal_t *journal = EXT4_SB(sb)->s_journal;
1481
1482         WARN_ON(PageChecked(page));
1483         if (!page_has_buffers(page))
1484                 return 0;
1485         if (journal)
1486                 return jbd2_journal_try_to_free_buffers(journal, page);
1487
1488         return try_to_free_buffers(page);
1489 }
1490
1491 #ifdef CONFIG_FS_ENCRYPTION
1492 static int ext4_get_context(struct inode *inode, void *ctx, size_t len)
1493 {
1494         return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION,
1495                                  EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len);
1496 }
1497
1498 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len,
1499                                                         void *fs_data)
1500 {
1501         handle_t *handle = fs_data;
1502         int res, res2, credits, retries = 0;
1503
1504         /*
1505          * Encrypting the root directory is not allowed because e2fsck expects
1506          * lost+found to exist and be unencrypted, and encrypting the root
1507          * directory would imply encrypting the lost+found directory as well as
1508          * the filename "lost+found" itself.
1509          */
1510         if (inode->i_ino == EXT4_ROOT_INO)
1511                 return -EPERM;
1512
1513         if (WARN_ON_ONCE(IS_DAX(inode) && i_size_read(inode)))
1514                 return -EINVAL;
1515
1516         if (ext4_test_inode_flag(inode, EXT4_INODE_DAX))
1517                 return -EOPNOTSUPP;
1518
1519         res = ext4_convert_inline_data(inode);
1520         if (res)
1521                 return res;
1522
1523         /*
1524          * If a journal handle was specified, then the encryption context is
1525          * being set on a new inode via inheritance and is part of a larger
1526          * transaction to create the inode.  Otherwise the encryption context is
1527          * being set on an existing inode in its own transaction.  Only in the
1528          * latter case should the "retry on ENOSPC" logic be used.
1529          */
1530
1531         if (handle) {
1532                 res = ext4_xattr_set_handle(handle, inode,
1533                                             EXT4_XATTR_INDEX_ENCRYPTION,
1534                                             EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1535                                             ctx, len, 0);
1536                 if (!res) {
1537                         ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1538                         ext4_clear_inode_state(inode,
1539                                         EXT4_STATE_MAY_INLINE_DATA);
1540                         /*
1541                          * Update inode->i_flags - S_ENCRYPTED will be enabled,
1542                          * S_DAX may be disabled
1543                          */
1544                         ext4_set_inode_flags(inode, false);
1545                 }
1546                 return res;
1547         }
1548
1549         res = dquot_initialize(inode);
1550         if (res)
1551                 return res;
1552 retry:
1553         res = ext4_xattr_set_credits(inode, len, false /* is_create */,
1554                                      &credits);
1555         if (res)
1556                 return res;
1557
1558         handle = ext4_journal_start(inode, EXT4_HT_MISC, credits);
1559         if (IS_ERR(handle))
1560                 return PTR_ERR(handle);
1561
1562         res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION,
1563                                     EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1564                                     ctx, len, 0);
1565         if (!res) {
1566                 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1567                 /*
1568                  * Update inode->i_flags - S_ENCRYPTED will be enabled,
1569                  * S_DAX may be disabled
1570                  */
1571                 ext4_set_inode_flags(inode, false);
1572                 res = ext4_mark_inode_dirty(handle, inode);
1573                 if (res)
1574                         EXT4_ERROR_INODE(inode, "Failed to mark inode dirty");
1575         }
1576         res2 = ext4_journal_stop(handle);
1577
1578         if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1579                 goto retry;
1580         if (!res)
1581                 res = res2;
1582         return res;
1583 }
1584
1585 static const union fscrypt_policy *ext4_get_dummy_policy(struct super_block *sb)
1586 {
1587         return EXT4_SB(sb)->s_dummy_enc_policy.policy;
1588 }
1589
1590 static bool ext4_has_stable_inodes(struct super_block *sb)
1591 {
1592         return ext4_has_feature_stable_inodes(sb);
1593 }
1594
1595 static void ext4_get_ino_and_lblk_bits(struct super_block *sb,
1596                                        int *ino_bits_ret, int *lblk_bits_ret)
1597 {
1598         *ino_bits_ret = 8 * sizeof(EXT4_SB(sb)->s_es->s_inodes_count);
1599         *lblk_bits_ret = 8 * sizeof(ext4_lblk_t);
1600 }
1601
1602 static const struct fscrypt_operations ext4_cryptops = {
1603         .key_prefix             = "ext4:",
1604         .get_context            = ext4_get_context,
1605         .set_context            = ext4_set_context,
1606         .get_dummy_policy       = ext4_get_dummy_policy,
1607         .empty_dir              = ext4_empty_dir,
1608         .max_namelen            = EXT4_NAME_LEN,
1609         .has_stable_inodes      = ext4_has_stable_inodes,
1610         .get_ino_and_lblk_bits  = ext4_get_ino_and_lblk_bits,
1611 };
1612 #endif
1613
1614 #ifdef CONFIG_QUOTA
1615 static const char * const quotatypes[] = INITQFNAMES;
1616 #define QTYPE2NAME(t) (quotatypes[t])
1617
1618 static int ext4_write_dquot(struct dquot *dquot);
1619 static int ext4_acquire_dquot(struct dquot *dquot);
1620 static int ext4_release_dquot(struct dquot *dquot);
1621 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1622 static int ext4_write_info(struct super_block *sb, int type);
1623 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1624                          const struct path *path);
1625 static int ext4_quota_on_mount(struct super_block *sb, int type);
1626 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1627                                size_t len, loff_t off);
1628 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1629                                 const char *data, size_t len, loff_t off);
1630 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1631                              unsigned int flags);
1632 static int ext4_enable_quotas(struct super_block *sb);
1633
1634 static struct dquot **ext4_get_dquots(struct inode *inode)
1635 {
1636         return EXT4_I(inode)->i_dquot;
1637 }
1638
1639 static const struct dquot_operations ext4_quota_operations = {
1640         .get_reserved_space     = ext4_get_reserved_space,
1641         .write_dquot            = ext4_write_dquot,
1642         .acquire_dquot          = ext4_acquire_dquot,
1643         .release_dquot          = ext4_release_dquot,
1644         .mark_dirty             = ext4_mark_dquot_dirty,
1645         .write_info             = ext4_write_info,
1646         .alloc_dquot            = dquot_alloc,
1647         .destroy_dquot          = dquot_destroy,
1648         .get_projid             = ext4_get_projid,
1649         .get_inode_usage        = ext4_get_inode_usage,
1650         .get_next_id            = dquot_get_next_id,
1651 };
1652
1653 static const struct quotactl_ops ext4_qctl_operations = {
1654         .quota_on       = ext4_quota_on,
1655         .quota_off      = ext4_quota_off,
1656         .quota_sync     = dquot_quota_sync,
1657         .get_state      = dquot_get_state,
1658         .set_info       = dquot_set_dqinfo,
1659         .get_dqblk      = dquot_get_dqblk,
1660         .set_dqblk      = dquot_set_dqblk,
1661         .get_nextdqblk  = dquot_get_next_dqblk,
1662 };
1663 #endif
1664
1665 static const struct super_operations ext4_sops = {
1666         .alloc_inode    = ext4_alloc_inode,
1667         .free_inode     = ext4_free_in_core_inode,
1668         .destroy_inode  = ext4_destroy_inode,
1669         .write_inode    = ext4_write_inode,
1670         .dirty_inode    = ext4_dirty_inode,
1671         .drop_inode     = ext4_drop_inode,
1672         .evict_inode    = ext4_evict_inode,
1673         .put_super      = ext4_put_super,
1674         .sync_fs        = ext4_sync_fs,
1675         .freeze_fs      = ext4_freeze,
1676         .unfreeze_fs    = ext4_unfreeze,
1677         .statfs         = ext4_statfs,
1678         .remount_fs     = ext4_remount,
1679         .show_options   = ext4_show_options,
1680 #ifdef CONFIG_QUOTA
1681         .quota_read     = ext4_quota_read,
1682         .quota_write    = ext4_quota_write,
1683         .get_dquots     = ext4_get_dquots,
1684 #endif
1685         .bdev_try_to_free_page = bdev_try_to_free_page,
1686 };
1687
1688 static const struct export_operations ext4_export_ops = {
1689         .fh_to_dentry = ext4_fh_to_dentry,
1690         .fh_to_parent = ext4_fh_to_parent,
1691         .get_parent = ext4_get_parent,
1692         .commit_metadata = ext4_nfs_commit_metadata,
1693 };
1694
1695 enum {
1696         Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1697         Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1698         Opt_nouid32, Opt_debug, Opt_removed,
1699         Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1700         Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1701         Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1702         Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1703         Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1704         Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1705         Opt_inlinecrypt,
1706         Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1707         Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1708         Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1709         Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version,
1710         Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never,
1711         Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error,
1712         Opt_nowarn_on_error, Opt_mblk_io_submit,
1713         Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize,
1714         Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1715         Opt_inode_readahead_blks, Opt_journal_ioprio,
1716         Opt_dioread_nolock, Opt_dioread_lock,
1717         Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1718         Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1719         Opt_prefetch_block_bitmaps, Opt_no_fc,
1720 #ifdef CONFIG_EXT4_DEBUG
1721         Opt_fc_debug_max_replay,
1722 #endif
1723         Opt_fc_debug_force
1724 };
1725
1726 static const match_table_t tokens = {
1727         {Opt_bsd_df, "bsddf"},
1728         {Opt_minix_df, "minixdf"},
1729         {Opt_grpid, "grpid"},
1730         {Opt_grpid, "bsdgroups"},
1731         {Opt_nogrpid, "nogrpid"},
1732         {Opt_nogrpid, "sysvgroups"},
1733         {Opt_resgid, "resgid=%u"},
1734         {Opt_resuid, "resuid=%u"},
1735         {Opt_sb, "sb=%u"},
1736         {Opt_err_cont, "errors=continue"},
1737         {Opt_err_panic, "errors=panic"},
1738         {Opt_err_ro, "errors=remount-ro"},
1739         {Opt_nouid32, "nouid32"},
1740         {Opt_debug, "debug"},
1741         {Opt_removed, "oldalloc"},
1742         {Opt_removed, "orlov"},
1743         {Opt_user_xattr, "user_xattr"},
1744         {Opt_nouser_xattr, "nouser_xattr"},
1745         {Opt_acl, "acl"},
1746         {Opt_noacl, "noacl"},
1747         {Opt_noload, "norecovery"},
1748         {Opt_noload, "noload"},
1749         {Opt_removed, "nobh"},
1750         {Opt_removed, "bh"},
1751         {Opt_commit, "commit=%u"},
1752         {Opt_min_batch_time, "min_batch_time=%u"},
1753         {Opt_max_batch_time, "max_batch_time=%u"},
1754         {Opt_journal_dev, "journal_dev=%u"},
1755         {Opt_journal_path, "journal_path=%s"},
1756         {Opt_journal_checksum, "journal_checksum"},
1757         {Opt_nojournal_checksum, "nojournal_checksum"},
1758         {Opt_journal_async_commit, "journal_async_commit"},
1759         {Opt_abort, "abort"},
1760         {Opt_data_journal, "data=journal"},
1761         {Opt_data_ordered, "data=ordered"},
1762         {Opt_data_writeback, "data=writeback"},
1763         {Opt_data_err_abort, "data_err=abort"},
1764         {Opt_data_err_ignore, "data_err=ignore"},
1765         {Opt_offusrjquota, "usrjquota="},
1766         {Opt_usrjquota, "usrjquota=%s"},
1767         {Opt_offgrpjquota, "grpjquota="},
1768         {Opt_grpjquota, "grpjquota=%s"},
1769         {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1770         {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1771         {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1772         {Opt_grpquota, "grpquota"},
1773         {Opt_noquota, "noquota"},
1774         {Opt_quota, "quota"},
1775         {Opt_usrquota, "usrquota"},
1776         {Opt_prjquota, "prjquota"},
1777         {Opt_barrier, "barrier=%u"},
1778         {Opt_barrier, "barrier"},
1779         {Opt_nobarrier, "nobarrier"},
1780         {Opt_i_version, "i_version"},
1781         {Opt_dax, "dax"},
1782         {Opt_dax_always, "dax=always"},
1783         {Opt_dax_inode, "dax=inode"},
1784         {Opt_dax_never, "dax=never"},
1785         {Opt_stripe, "stripe=%u"},
1786         {Opt_delalloc, "delalloc"},
1787         {Opt_warn_on_error, "warn_on_error"},
1788         {Opt_nowarn_on_error, "nowarn_on_error"},
1789         {Opt_lazytime, "lazytime"},
1790         {Opt_nolazytime, "nolazytime"},
1791         {Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"},
1792         {Opt_nodelalloc, "nodelalloc"},
1793         {Opt_removed, "mblk_io_submit"},
1794         {Opt_removed, "nomblk_io_submit"},
1795         {Opt_block_validity, "block_validity"},
1796         {Opt_noblock_validity, "noblock_validity"},
1797         {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1798         {Opt_journal_ioprio, "journal_ioprio=%u"},
1799         {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1800         {Opt_auto_da_alloc, "auto_da_alloc"},
1801         {Opt_noauto_da_alloc, "noauto_da_alloc"},
1802         {Opt_dioread_nolock, "dioread_nolock"},
1803         {Opt_dioread_lock, "nodioread_nolock"},
1804         {Opt_dioread_lock, "dioread_lock"},
1805         {Opt_discard, "discard"},
1806         {Opt_nodiscard, "nodiscard"},
1807         {Opt_init_itable, "init_itable=%u"},
1808         {Opt_init_itable, "init_itable"},
1809         {Opt_noinit_itable, "noinit_itable"},
1810         {Opt_no_fc, "no_fc"},
1811         {Opt_fc_debug_force, "fc_debug_force"},
1812 #ifdef CONFIG_EXT4_DEBUG
1813         {Opt_fc_debug_max_replay, "fc_debug_max_replay=%u"},
1814 #endif
1815         {Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1816         {Opt_test_dummy_encryption, "test_dummy_encryption=%s"},
1817         {Opt_test_dummy_encryption, "test_dummy_encryption"},
1818         {Opt_inlinecrypt, "inlinecrypt"},
1819         {Opt_nombcache, "nombcache"},
1820         {Opt_nombcache, "no_mbcache"},  /* for backward compatibility */
1821         {Opt_prefetch_block_bitmaps, "prefetch_block_bitmaps"},
1822         {Opt_removed, "check=none"},    /* mount option from ext2/3 */
1823         {Opt_removed, "nocheck"},       /* mount option from ext2/3 */
1824         {Opt_removed, "reservation"},   /* mount option from ext2/3 */
1825         {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1826         {Opt_removed, "journal=%u"},    /* mount option from ext2/3 */
1827         {Opt_err, NULL},
1828 };
1829
1830 static ext4_fsblk_t get_sb_block(void **data)
1831 {
1832         ext4_fsblk_t    sb_block;
1833         char            *options = (char *) *data;
1834
1835         if (!options || strncmp(options, "sb=", 3) != 0)
1836                 return 1;       /* Default location */
1837
1838         options += 3;
1839         /* TODO: use simple_strtoll with >32bit ext4 */
1840         sb_block = simple_strtoul(options, &options, 0);
1841         if (*options && *options != ',') {
1842                 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1843                        (char *) *data);
1844                 return 1;
1845         }
1846         if (*options == ',')
1847                 options++;
1848         *data = (void *) options;
1849
1850         return sb_block;
1851 }
1852
1853 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1854 static const char deprecated_msg[] =
1855         "Mount option \"%s\" will be removed by %s\n"
1856         "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1857
1858 #ifdef CONFIG_QUOTA
1859 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1860 {
1861         struct ext4_sb_info *sbi = EXT4_SB(sb);
1862         char *qname, *old_qname = get_qf_name(sb, sbi, qtype);
1863         int ret = -1;
1864
1865         if (sb_any_quota_loaded(sb) && !old_qname) {
1866                 ext4_msg(sb, KERN_ERR,
1867                         "Cannot change journaled "
1868                         "quota options when quota turned on");
1869                 return -1;
1870         }
1871         if (ext4_has_feature_quota(sb)) {
1872                 ext4_msg(sb, KERN_INFO, "Journaled quota options "
1873                          "ignored when QUOTA feature is enabled");
1874                 return 1;
1875         }
1876         qname = match_strdup(args);
1877         if (!qname) {
1878                 ext4_msg(sb, KERN_ERR,
1879                         "Not enough memory for storing quotafile name");
1880                 return -1;
1881         }
1882         if (old_qname) {
1883                 if (strcmp(old_qname, qname) == 0)
1884                         ret = 1;
1885                 else
1886                         ext4_msg(sb, KERN_ERR,
1887                                  "%s quota file already specified",
1888                                  QTYPE2NAME(qtype));
1889                 goto errout;
1890         }
1891         if (strchr(qname, '/')) {
1892                 ext4_msg(sb, KERN_ERR,
1893                         "quotafile must be on filesystem root");
1894                 goto errout;
1895         }
1896         rcu_assign_pointer(sbi->s_qf_names[qtype], qname);
1897         set_opt(sb, QUOTA);
1898         return 1;
1899 errout:
1900         kfree(qname);
1901         return ret;
1902 }
1903
1904 static int clear_qf_name(struct super_block *sb, int qtype)
1905 {
1906
1907         struct ext4_sb_info *sbi = EXT4_SB(sb);
1908         char *old_qname = get_qf_name(sb, sbi, qtype);
1909
1910         if (sb_any_quota_loaded(sb) && old_qname) {
1911                 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1912                         " when quota turned on");
1913                 return -1;
1914         }
1915         rcu_assign_pointer(sbi->s_qf_names[qtype], NULL);
1916         synchronize_rcu();
1917         kfree(old_qname);
1918         return 1;
1919 }
1920 #endif
1921
1922 #define MOPT_SET        0x0001
1923 #define MOPT_CLEAR      0x0002
1924 #define MOPT_NOSUPPORT  0x0004
1925 #define MOPT_EXPLICIT   0x0008
1926 #define MOPT_CLEAR_ERR  0x0010
1927 #define MOPT_GTE0       0x0020
1928 #ifdef CONFIG_QUOTA
1929 #define MOPT_Q          0
1930 #define MOPT_QFMT       0x0040
1931 #else
1932 #define MOPT_Q          MOPT_NOSUPPORT
1933 #define MOPT_QFMT       MOPT_NOSUPPORT
1934 #endif
1935 #define MOPT_DATAJ      0x0080
1936 #define MOPT_NO_EXT2    0x0100
1937 #define MOPT_NO_EXT3    0x0200
1938 #define MOPT_EXT4_ONLY  (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1939 #define MOPT_STRING     0x0400
1940 #define MOPT_SKIP       0x0800
1941 #define MOPT_2          0x1000
1942
1943 static const struct mount_opts {
1944         int     token;
1945         int     mount_opt;
1946         int     flags;
1947 } ext4_mount_opts[] = {
1948         {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1949         {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1950         {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1951         {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1952         {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1953         {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1954         {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1955          MOPT_EXT4_ONLY | MOPT_SET},
1956         {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1957          MOPT_EXT4_ONLY | MOPT_CLEAR},
1958         {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1959         {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1960         {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1961          MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1962         {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1963          MOPT_EXT4_ONLY | MOPT_CLEAR},
1964         {Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET},
1965         {Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR},
1966         {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1967          MOPT_EXT4_ONLY | MOPT_CLEAR},
1968         {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1969          MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1970         {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1971                                     EXT4_MOUNT_JOURNAL_CHECKSUM),
1972          MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1973         {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1974         {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1975         {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1976         {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1977         {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1978          MOPT_NO_EXT2},
1979         {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1980          MOPT_NO_EXT2},
1981         {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1982         {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1983         {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1984         {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1985         {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1986         {Opt_commit, 0, MOPT_GTE0},
1987         {Opt_max_batch_time, 0, MOPT_GTE0},
1988         {Opt_min_batch_time, 0, MOPT_GTE0},
1989         {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1990         {Opt_init_itable, 0, MOPT_GTE0},
1991         {Opt_dax, EXT4_MOUNT_DAX_ALWAYS, MOPT_SET | MOPT_SKIP},
1992         {Opt_dax_always, EXT4_MOUNT_DAX_ALWAYS,
1993                 MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP},
1994         {Opt_dax_inode, EXT4_MOUNT2_DAX_INODE,
1995                 MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP},
1996         {Opt_dax_never, EXT4_MOUNT2_DAX_NEVER,
1997                 MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP},
1998         {Opt_stripe, 0, MOPT_GTE0},
1999         {Opt_resuid, 0, MOPT_GTE0},
2000         {Opt_resgid, 0, MOPT_GTE0},
2001         {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0},
2002         {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING},
2003         {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0},
2004         {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
2005         {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
2006         {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
2007          MOPT_NO_EXT2 | MOPT_DATAJ},
2008         {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
2009         {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
2010 #ifdef CONFIG_EXT4_FS_POSIX_ACL
2011         {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
2012         {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
2013 #else
2014         {Opt_acl, 0, MOPT_NOSUPPORT},
2015         {Opt_noacl, 0, MOPT_NOSUPPORT},
2016 #endif
2017         {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
2018         {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
2019         {Opt_debug_want_extra_isize, 0, MOPT_GTE0},
2020         {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
2021         {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
2022                                                         MOPT_SET | MOPT_Q},
2023         {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
2024                                                         MOPT_SET | MOPT_Q},
2025         {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
2026                                                         MOPT_SET | MOPT_Q},
2027         {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
2028                        EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
2029                                                         MOPT_CLEAR | MOPT_Q},
2030         {Opt_usrjquota, 0, MOPT_Q | MOPT_STRING},
2031         {Opt_grpjquota, 0, MOPT_Q | MOPT_STRING},
2032         {Opt_offusrjquota, 0, MOPT_Q},
2033         {Opt_offgrpjquota, 0, MOPT_Q},
2034         {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
2035         {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
2036         {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
2037         {Opt_max_dir_size_kb, 0, MOPT_GTE0},
2038         {Opt_test_dummy_encryption, 0, MOPT_STRING},
2039         {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
2040         {Opt_prefetch_block_bitmaps, EXT4_MOUNT_PREFETCH_BLOCK_BITMAPS,
2041          MOPT_SET},
2042         {Opt_no_fc, EXT4_MOUNT2_JOURNAL_FAST_COMMIT,
2043          MOPT_CLEAR | MOPT_2 | MOPT_EXT4_ONLY},
2044         {Opt_fc_debug_force, EXT4_MOUNT2_JOURNAL_FAST_COMMIT,
2045          MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY},
2046 #ifdef CONFIG_EXT4_DEBUG
2047         {Opt_fc_debug_max_replay, 0, MOPT_GTE0},
2048 #endif
2049         {Opt_err, 0, 0}
2050 };
2051
2052 #ifdef CONFIG_UNICODE
2053 static const struct ext4_sb_encodings {
2054         __u16 magic;
2055         char *name;
2056         char *version;
2057 } ext4_sb_encoding_map[] = {
2058         {EXT4_ENC_UTF8_12_1, "utf8", "12.1.0"},
2059 };
2060
2061 static int ext4_sb_read_encoding(const struct ext4_super_block *es,
2062                                  const struct ext4_sb_encodings **encoding,
2063                                  __u16 *flags)
2064 {
2065         __u16 magic = le16_to_cpu(es->s_encoding);
2066         int i;
2067
2068         for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++)
2069                 if (magic == ext4_sb_encoding_map[i].magic)
2070                         break;
2071
2072         if (i >= ARRAY_SIZE(ext4_sb_encoding_map))
2073                 return -EINVAL;
2074
2075         *encoding = &ext4_sb_encoding_map[i];
2076         *flags = le16_to_cpu(es->s_encoding_flags);
2077
2078         return 0;
2079 }
2080 #endif
2081
2082 static int ext4_set_test_dummy_encryption(struct super_block *sb,
2083                                           const char *opt,
2084                                           const substring_t *arg,
2085                                           bool is_remount)
2086 {
2087 #ifdef CONFIG_FS_ENCRYPTION
2088         struct ext4_sb_info *sbi = EXT4_SB(sb);
2089         int err;
2090
2091         /*
2092          * This mount option is just for testing, and it's not worthwhile to
2093          * implement the extra complexity (e.g. RCU protection) that would be
2094          * needed to allow it to be set or changed during remount.  We do allow
2095          * it to be specified during remount, but only if there is no change.
2096          */
2097         if (is_remount && !sbi->s_dummy_enc_policy.policy) {
2098                 ext4_msg(sb, KERN_WARNING,
2099                          "Can't set test_dummy_encryption on remount");
2100                 return -1;
2101         }
2102         err = fscrypt_set_test_dummy_encryption(sb, arg->from,
2103                                                 &sbi->s_dummy_enc_policy);
2104         if (err) {
2105                 if (err == -EEXIST)
2106                         ext4_msg(sb, KERN_WARNING,
2107                                  "Can't change test_dummy_encryption on remount");
2108                 else if (err == -EINVAL)
2109                         ext4_msg(sb, KERN_WARNING,
2110                                  "Value of option \"%s\" is unrecognized", opt);
2111                 else
2112                         ext4_msg(sb, KERN_WARNING,
2113                                  "Error processing option \"%s\" [%d]",
2114                                  opt, err);
2115                 return -1;
2116         }
2117         ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled");
2118 #else
2119         ext4_msg(sb, KERN_WARNING,
2120                  "Test dummy encryption mount option ignored");
2121 #endif
2122         return 1;
2123 }
2124
2125 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
2126                             substring_t *args, unsigned long *journal_devnum,
2127                             unsigned int *journal_ioprio, int is_remount)
2128 {
2129         struct ext4_sb_info *sbi = EXT4_SB(sb);
2130         const struct mount_opts *m;
2131         kuid_t uid;
2132         kgid_t gid;
2133         int arg = 0;
2134
2135 #ifdef CONFIG_QUOTA
2136         if (token == Opt_usrjquota)
2137                 return set_qf_name(sb, USRQUOTA, &args[0]);
2138         else if (token == Opt_grpjquota)
2139                 return set_qf_name(sb, GRPQUOTA, &args[0]);
2140         else if (token == Opt_offusrjquota)
2141                 return clear_qf_name(sb, USRQUOTA);
2142         else if (token == Opt_offgrpjquota)
2143                 return clear_qf_name(sb, GRPQUOTA);
2144 #endif
2145         switch (token) {
2146         case Opt_noacl:
2147         case Opt_nouser_xattr:
2148                 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
2149                 break;
2150         case Opt_sb:
2151                 return 1;       /* handled by get_sb_block() */
2152         case Opt_removed:
2153                 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
2154                 return 1;
2155         case Opt_abort:
2156                 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
2157                 return 1;
2158         case Opt_i_version:
2159                 sb->s_flags |= SB_I_VERSION;
2160                 return 1;
2161         case Opt_lazytime:
2162                 sb->s_flags |= SB_LAZYTIME;
2163                 return 1;
2164         case Opt_nolazytime:
2165                 sb->s_flags &= ~SB_LAZYTIME;
2166                 return 1;
2167         case Opt_inlinecrypt:
2168 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
2169                 sb->s_flags |= SB_INLINECRYPT;
2170 #else
2171                 ext4_msg(sb, KERN_ERR, "inline encryption not supported");
2172 #endif
2173                 return 1;
2174         }
2175
2176         for (m = ext4_mount_opts; m->token != Opt_err; m++)
2177                 if (token == m->token)
2178                         break;
2179
2180         if (m->token == Opt_err) {
2181                 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
2182                          "or missing value", opt);
2183                 return -1;
2184         }
2185
2186         if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
2187                 ext4_msg(sb, KERN_ERR,
2188                          "Mount option \"%s\" incompatible with ext2", opt);
2189                 return -1;
2190         }
2191         if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
2192                 ext4_msg(sb, KERN_ERR,
2193                          "Mount option \"%s\" incompatible with ext3", opt);
2194                 return -1;
2195         }
2196
2197         if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
2198                 return -1;
2199         if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
2200                 return -1;
2201         if (m->flags & MOPT_EXPLICIT) {
2202                 if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
2203                         set_opt2(sb, EXPLICIT_DELALLOC);
2204                 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
2205                         set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM);
2206                 } else
2207                         return -1;
2208         }
2209         if (m->flags & MOPT_CLEAR_ERR)
2210                 clear_opt(sb, ERRORS_MASK);
2211         if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
2212                 ext4_msg(sb, KERN_ERR, "Cannot change quota "
2213                          "options when quota turned on");
2214                 return -1;
2215         }
2216
2217         if (m->flags & MOPT_NOSUPPORT) {
2218                 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
2219         } else if (token == Opt_commit) {
2220                 if (arg == 0)
2221                         arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
2222                 else if (arg > INT_MAX / HZ) {
2223                         ext4_msg(sb, KERN_ERR,
2224                                  "Invalid commit interval %d, "
2225                                  "must be smaller than %d",
2226                                  arg, INT_MAX / HZ);
2227                         return -1;
2228                 }
2229                 sbi->s_commit_interval = HZ * arg;
2230         } else if (token == Opt_debug_want_extra_isize) {
2231                 if ((arg & 1) ||
2232                     (arg < 4) ||
2233                     (arg > (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE))) {
2234                         ext4_msg(sb, KERN_ERR,
2235                                  "Invalid want_extra_isize %d", arg);
2236                         return -1;
2237                 }
2238                 sbi->s_want_extra_isize = arg;
2239         } else if (token == Opt_max_batch_time) {
2240                 sbi->s_max_batch_time = arg;
2241         } else if (token == Opt_min_batch_time) {
2242                 sbi->s_min_batch_time = arg;
2243         } else if (token == Opt_inode_readahead_blks) {
2244                 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
2245                         ext4_msg(sb, KERN_ERR,
2246                                  "EXT4-fs: inode_readahead_blks must be "
2247                                  "0 or a power of 2 smaller than 2^31");
2248                         return -1;
2249                 }
2250                 sbi->s_inode_readahead_blks = arg;
2251         } else if (token == Opt_init_itable) {
2252                 set_opt(sb, INIT_INODE_TABLE);
2253                 if (!args->from)
2254                         arg = EXT4_DEF_LI_WAIT_MULT;
2255                 sbi->s_li_wait_mult = arg;
2256         } else if (token == Opt_max_dir_size_kb) {
2257                 sbi->s_max_dir_size_kb = arg;
2258 #ifdef CONFIG_EXT4_DEBUG
2259         } else if (token == Opt_fc_debug_max_replay) {
2260                 sbi->s_fc_debug_max_replay = arg;
2261 #endif
2262         } else if (token == Opt_stripe) {
2263                 sbi->s_stripe = arg;
2264         } else if (token == Opt_resuid) {
2265                 uid = make_kuid(current_user_ns(), arg);
2266                 if (!uid_valid(uid)) {
2267                         ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
2268                         return -1;
2269                 }
2270                 sbi->s_resuid = uid;
2271         } else if (token == Opt_resgid) {
2272                 gid = make_kgid(current_user_ns(), arg);
2273                 if (!gid_valid(gid)) {
2274                         ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
2275                         return -1;
2276                 }
2277                 sbi->s_resgid = gid;
2278         } else if (token == Opt_journal_dev) {
2279                 if (is_remount) {
2280                         ext4_msg(sb, KERN_ERR,
2281                                  "Cannot specify journal on remount");
2282                         return -1;
2283                 }
2284                 *journal_devnum = arg;
2285         } else if (token == Opt_journal_path) {
2286                 char *journal_path;
2287                 struct inode *journal_inode;
2288                 struct path path;
2289                 int error;
2290
2291                 if (is_remount) {
2292                         ext4_msg(sb, KERN_ERR,
2293                                  "Cannot specify journal on remount");
2294                         return -1;
2295                 }
2296                 journal_path = match_strdup(&args[0]);
2297                 if (!journal_path) {
2298                         ext4_msg(sb, KERN_ERR, "error: could not dup "
2299                                 "journal device string");
2300                         return -1;
2301                 }
2302
2303                 error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
2304                 if (error) {
2305                         ext4_msg(sb, KERN_ERR, "error: could not find "
2306                                 "journal device path: error %d", error);
2307                         kfree(journal_path);
2308                         return -1;
2309                 }
2310
2311                 journal_inode = d_inode(path.dentry);
2312                 if (!S_ISBLK(journal_inode->i_mode)) {
2313                         ext4_msg(sb, KERN_ERR, "error: journal path %s "
2314                                 "is not a block device", journal_path);
2315                         path_put(&path);
2316                         kfree(journal_path);
2317                         return -1;
2318                 }
2319
2320                 *journal_devnum = new_encode_dev(journal_inode->i_rdev);
2321                 path_put(&path);
2322                 kfree(journal_path);
2323         } else if (token == Opt_journal_ioprio) {
2324                 if (arg > 7) {
2325                         ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
2326                                  " (must be 0-7)");
2327                         return -1;
2328                 }
2329                 *journal_ioprio =
2330                         IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
2331         } else if (token == Opt_test_dummy_encryption) {
2332                 return ext4_set_test_dummy_encryption(sb, opt, &args[0],
2333                                                       is_remount);
2334         } else if (m->flags & MOPT_DATAJ) {
2335                 if (is_remount) {
2336                         if (!sbi->s_journal)
2337                                 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
2338                         else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
2339                                 ext4_msg(sb, KERN_ERR,
2340                                          "Cannot change data mode on remount");
2341                                 return -1;
2342                         }
2343                 } else {
2344                         clear_opt(sb, DATA_FLAGS);
2345                         sbi->s_mount_opt |= m->mount_opt;
2346                 }
2347 #ifdef CONFIG_QUOTA
2348         } else if (m->flags & MOPT_QFMT) {
2349                 if (sb_any_quota_loaded(sb) &&
2350                     sbi->s_jquota_fmt != m->mount_opt) {
2351                         ext4_msg(sb, KERN_ERR, "Cannot change journaled "
2352                                  "quota options when quota turned on");
2353                         return -1;
2354                 }
2355                 if (ext4_has_feature_quota(sb)) {
2356                         ext4_msg(sb, KERN_INFO,
2357                                  "Quota format mount options ignored "
2358                                  "when QUOTA feature is enabled");
2359                         return 1;
2360                 }
2361                 sbi->s_jquota_fmt = m->mount_opt;
2362 #endif
2363         } else if (token == Opt_dax || token == Opt_dax_always ||
2364                    token == Opt_dax_inode || token == Opt_dax_never) {
2365 #ifdef CONFIG_FS_DAX
2366                 switch (token) {
2367                 case Opt_dax:
2368                 case Opt_dax_always:
2369                         if (is_remount &&
2370                             (!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2371                              (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) {
2372                         fail_dax_change_remount:
2373                                 ext4_msg(sb, KERN_ERR, "can't change "
2374                                          "dax mount option while remounting");
2375                                 return -1;
2376                         }
2377                         if (is_remount &&
2378                             (test_opt(sb, DATA_FLAGS) ==
2379                              EXT4_MOUNT_JOURNAL_DATA)) {
2380                                     ext4_msg(sb, KERN_ERR, "can't mount with "
2381                                              "both data=journal and dax");
2382                                     return -1;
2383                         }
2384                         ext4_msg(sb, KERN_WARNING,
2385                                 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk");
2386                         sbi->s_mount_opt |= EXT4_MOUNT_DAX_ALWAYS;
2387                         sbi->s_mount_opt2 &= ~EXT4_MOUNT2_DAX_NEVER;
2388                         break;
2389                 case Opt_dax_never:
2390                         if (is_remount &&
2391                             (!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2392                              (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS)))
2393                                 goto fail_dax_change_remount;
2394                         sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_NEVER;
2395                         sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS;
2396                         break;
2397                 case Opt_dax_inode:
2398                         if (is_remount &&
2399                             ((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2400                              (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2401                              !(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE)))
2402                                 goto fail_dax_change_remount;
2403                         sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS;
2404                         sbi->s_mount_opt2 &= ~EXT4_MOUNT2_DAX_NEVER;
2405                         /* Strictly for printing options */
2406                         sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_INODE;
2407                         break;
2408                 }
2409 #else
2410                 ext4_msg(sb, KERN_INFO, "dax option not supported");
2411                 sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_NEVER;
2412                 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS;
2413                 return -1;
2414 #endif
2415         } else if (token == Opt_data_err_abort) {
2416                 sbi->s_mount_opt |= m->mount_opt;
2417         } else if (token == Opt_data_err_ignore) {
2418                 sbi->s_mount_opt &= ~m->mount_opt;
2419         } else {
2420                 if (!args->from)
2421                         arg = 1;
2422                 if (m->flags & MOPT_CLEAR)
2423                         arg = !arg;
2424                 else if (unlikely(!(m->flags & MOPT_SET))) {
2425                         ext4_msg(sb, KERN_WARNING,
2426                                  "buggy handling of option %s", opt);
2427                         WARN_ON(1);
2428                         return -1;
2429                 }
2430                 if (m->flags & MOPT_2) {
2431                         if (arg != 0)
2432                                 sbi->s_mount_opt2 |= m->mount_opt;
2433                         else
2434                                 sbi->s_mount_opt2 &= ~m->mount_opt;
2435                 } else {
2436                         if (arg != 0)
2437                                 sbi->s_mount_opt |= m->mount_opt;
2438                         else
2439                                 sbi->s_mount_opt &= ~m->mount_opt;
2440                 }
2441         }
2442         return 1;
2443 }
2444
2445 static int parse_options(char *options, struct super_block *sb,
2446                          unsigned long *journal_devnum,
2447                          unsigned int *journal_ioprio,
2448                          int is_remount)
2449 {
2450         struct ext4_sb_info __maybe_unused *sbi = EXT4_SB(sb);
2451         char *p, __maybe_unused *usr_qf_name, __maybe_unused *grp_qf_name;
2452         substring_t args[MAX_OPT_ARGS];
2453         int token;
2454
2455         if (!options)
2456                 return 1;
2457
2458         while ((p = strsep(&options, ",")) != NULL) {
2459                 if (!*p)
2460                         continue;
2461                 /*
2462                  * Initialize args struct so we know whether arg was
2463                  * found; some options take optional arguments.
2464                  */
2465                 args[0].to = args[0].from = NULL;
2466                 token = match_token(p, tokens, args);
2467                 if (handle_mount_opt(sb, p, token, args, journal_devnum,
2468                                      journal_ioprio, is_remount) < 0)
2469                         return 0;
2470         }
2471 #ifdef CONFIG_QUOTA
2472         /*
2473          * We do the test below only for project quotas. 'usrquota' and
2474          * 'grpquota' mount options are allowed even without quota feature
2475          * to support legacy quotas in quota files.
2476          */
2477         if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) {
2478                 ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. "
2479                          "Cannot enable project quota enforcement.");
2480                 return 0;
2481         }
2482         usr_qf_name = get_qf_name(sb, sbi, USRQUOTA);
2483         grp_qf_name = get_qf_name(sb, sbi, GRPQUOTA);
2484         if (usr_qf_name || grp_qf_name) {
2485                 if (test_opt(sb, USRQUOTA) && usr_qf_name)
2486                         clear_opt(sb, USRQUOTA);
2487
2488                 if (test_opt(sb, GRPQUOTA) && grp_qf_name)
2489                         clear_opt(sb, GRPQUOTA);
2490
2491                 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
2492                         ext4_msg(sb, KERN_ERR, "old and new quota "
2493                                         "format mixing");
2494                         return 0;
2495                 }
2496
2497                 if (!sbi->s_jquota_fmt) {
2498                         ext4_msg(sb, KERN_ERR, "journaled quota format "
2499                                         "not specified");
2500                         return 0;
2501                 }
2502         }
2503 #endif
2504         if (test_opt(sb, DIOREAD_NOLOCK)) {
2505                 int blocksize =
2506                         BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
2507                 if (blocksize < PAGE_SIZE)
2508                         ext4_msg(sb, KERN_WARNING, "Warning: mounting with an "
2509                                  "experimental mount option 'dioread_nolock' "
2510                                  "for blocksize < PAGE_SIZE");
2511         }
2512         return 1;
2513 }
2514
2515 static inline void ext4_show_quota_options(struct seq_file *seq,
2516                                            struct super_block *sb)
2517 {
2518 #if defined(CONFIG_QUOTA)
2519         struct ext4_sb_info *sbi = EXT4_SB(sb);
2520         char *usr_qf_name, *grp_qf_name;
2521
2522         if (sbi->s_jquota_fmt) {
2523                 char *fmtname = "";
2524
2525                 switch (sbi->s_jquota_fmt) {
2526                 case QFMT_VFS_OLD:
2527                         fmtname = "vfsold";
2528                         break;
2529                 case QFMT_VFS_V0:
2530                         fmtname = "vfsv0";
2531                         break;
2532                 case QFMT_VFS_V1:
2533                         fmtname = "vfsv1";
2534                         break;
2535                 }
2536                 seq_printf(seq, ",jqfmt=%s", fmtname);
2537         }
2538
2539         rcu_read_lock();
2540         usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]);
2541         grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]);
2542         if (usr_qf_name)
2543                 seq_show_option(seq, "usrjquota", usr_qf_name);
2544         if (grp_qf_name)
2545                 seq_show_option(seq, "grpjquota", grp_qf_name);
2546         rcu_read_unlock();
2547 #endif
2548 }
2549
2550 static const char *token2str(int token)
2551 {
2552         const struct match_token *t;
2553
2554         for (t = tokens; t->token != Opt_err; t++)
2555                 if (t->token == token && !strchr(t->pattern, '='))
2556                         break;
2557         return t->pattern;
2558 }
2559
2560 /*
2561  * Show an option if
2562  *  - it's set to a non-default value OR
2563  *  - if the per-sb default is different from the global default
2564  */
2565 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2566                               int nodefs)
2567 {
2568         struct ext4_sb_info *sbi = EXT4_SB(sb);
2569         struct ext4_super_block *es = sbi->s_es;
2570         int def_errors, def_mount_opt = sbi->s_def_mount_opt;
2571         const struct mount_opts *m;
2572         char sep = nodefs ? '\n' : ',';
2573
2574 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2575 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2576
2577         if (sbi->s_sb_block != 1)
2578                 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2579
2580         for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2581                 int want_set = m->flags & MOPT_SET;
2582                 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2583                     (m->flags & MOPT_CLEAR_ERR) || m->flags & MOPT_SKIP)
2584                         continue;
2585                 if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
2586                         continue; /* skip if same as the default */
2587                 if ((want_set &&
2588                      (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
2589                     (!want_set && (sbi->s_mount_opt & m->mount_opt)))
2590                         continue; /* select Opt_noFoo vs Opt_Foo */
2591                 SEQ_OPTS_PRINT("%s", token2str(m->token));
2592         }
2593
2594         if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2595             le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2596                 SEQ_OPTS_PRINT("resuid=%u",
2597                                 from_kuid_munged(&init_user_ns, sbi->s_resuid));
2598         if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
2599             le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
2600                 SEQ_OPTS_PRINT("resgid=%u",
2601                                 from_kgid_munged(&init_user_ns, sbi->s_resgid));
2602         def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
2603         if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
2604                 SEQ_OPTS_PUTS("errors=remount-ro");
2605         if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
2606                 SEQ_OPTS_PUTS("errors=continue");
2607         if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
2608                 SEQ_OPTS_PUTS("errors=panic");
2609         if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
2610                 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2611         if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2612                 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2613         if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2614                 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
2615         if (sb->s_flags & SB_I_VERSION)
2616                 SEQ_OPTS_PUTS("i_version");
2617         if (nodefs || sbi->s_stripe)
2618                 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2619         if (nodefs || EXT4_MOUNT_DATA_FLAGS &
2620                         (sbi->s_mount_opt ^ def_mount_opt)) {
2621                 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2622                         SEQ_OPTS_PUTS("data=journal");
2623                 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2624                         SEQ_OPTS_PUTS("data=ordered");
2625                 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
2626                         SEQ_OPTS_PUTS("data=writeback");
2627         }
2628         if (nodefs ||
2629             sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
2630                 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
2631                                sbi->s_inode_readahead_blks);
2632
2633         if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
2634                        (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
2635                 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
2636         if (nodefs || sbi->s_max_dir_size_kb)
2637                 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
2638         if (test_opt(sb, DATA_ERR_ABORT))
2639                 SEQ_OPTS_PUTS("data_err=abort");
2640
2641         fscrypt_show_test_dummy_encryption(seq, sep, sb);
2642
2643         if (sb->s_flags & SB_INLINECRYPT)
2644                 SEQ_OPTS_PUTS("inlinecrypt");
2645
2646         if (test_opt(sb, DAX_ALWAYS)) {
2647                 if (IS_EXT2_SB(sb))
2648                         SEQ_OPTS_PUTS("dax");
2649                 else
2650                         SEQ_OPTS_PUTS("dax=always");
2651         } else if (test_opt2(sb, DAX_NEVER)) {
2652                 SEQ_OPTS_PUTS("dax=never");
2653         } else if (test_opt2(sb, DAX_INODE)) {
2654                 SEQ_OPTS_PUTS("dax=inode");
2655         }
2656
2657         if (test_opt2(sb, JOURNAL_FAST_COMMIT))
2658                 SEQ_OPTS_PUTS("fast_commit");
2659
2660         ext4_show_quota_options(seq, sb);
2661         return 0;
2662 }
2663
2664 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
2665 {
2666         return _ext4_show_options(seq, root->d_sb, 0);
2667 }
2668
2669 int ext4_seq_options_show(struct seq_file *seq, void *offset)
2670 {
2671         struct super_block *sb = seq->private;
2672         int rc;
2673
2674         seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
2675         rc = _ext4_show_options(seq, sb, 1);
2676         seq_puts(seq, "\n");
2677         return rc;
2678 }
2679
2680 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
2681                             int read_only)
2682 {
2683         struct ext4_sb_info *sbi = EXT4_SB(sb);
2684         int err = 0;
2685
2686         if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
2687                 ext4_msg(sb, KERN_ERR, "revision level too high, "
2688                          "forcing read-only mode");
2689                 err = -EROFS;
2690                 goto done;
2691         }
2692         if (read_only)
2693                 goto done;
2694         if (!(sbi->s_mount_state & EXT4_VALID_FS))
2695                 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
2696                          "running e2fsck is recommended");
2697         else if (sbi->s_mount_state & EXT4_ERROR_FS)
2698                 ext4_msg(sb, KERN_WARNING,
2699                          "warning: mounting fs with errors, "
2700                          "running e2fsck is recommended");
2701         else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
2702                  le16_to_cpu(es->s_mnt_count) >=
2703                  (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
2704                 ext4_msg(sb, KERN_WARNING,
2705                          "warning: maximal mount count reached, "
2706                          "running e2fsck is recommended");
2707         else if (le32_to_cpu(es->s_checkinterval) &&
2708                  (ext4_get_tstamp(es, s_lastcheck) +
2709                   le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds()))
2710                 ext4_msg(sb, KERN_WARNING,
2711                          "warning: checktime reached, "
2712                          "running e2fsck is recommended");
2713         if (!sbi->s_journal)
2714                 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
2715         if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
2716                 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
2717         le16_add_cpu(&es->s_mnt_count, 1);
2718         ext4_update_tstamp(es, s_mtime);
2719         if (sbi->s_journal)
2720                 ext4_set_feature_journal_needs_recovery(sb);
2721
2722         err = ext4_commit_super(sb, 1);
2723 done:
2724         if (test_opt(sb, DEBUG))
2725                 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
2726                                 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
2727                         sb->s_blocksize,
2728                         sbi->s_groups_count,
2729                         EXT4_BLOCKS_PER_GROUP(sb),
2730                         EXT4_INODES_PER_GROUP(sb),
2731                         sbi->s_mount_opt, sbi->s_mount_opt2);
2732
2733         cleancache_init_fs(sb);
2734         return err;
2735 }
2736
2737 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
2738 {
2739         struct ext4_sb_info *sbi = EXT4_SB(sb);
2740         struct flex_groups **old_groups, **new_groups;
2741         int size, i, j;
2742
2743         if (!sbi->s_log_groups_per_flex)
2744                 return 0;
2745
2746         size = ext4_flex_group(sbi, ngroup - 1) + 1;
2747         if (size <= sbi->s_flex_groups_allocated)
2748                 return 0;
2749
2750         new_groups = kvzalloc(roundup_pow_of_two(size *
2751                               sizeof(*sbi->s_flex_groups)), GFP_KERNEL);
2752         if (!new_groups) {
2753                 ext4_msg(sb, KERN_ERR,
2754                          "not enough memory for %d flex group pointers", size);
2755                 return -ENOMEM;
2756         }
2757         for (i = sbi->s_flex_groups_allocated; i < size; i++) {
2758                 new_groups[i] = kvzalloc(roundup_pow_of_two(
2759                                          sizeof(struct flex_groups)),
2760                                          GFP_KERNEL);
2761                 if (!new_groups[i]) {
2762                         for (j = sbi->s_flex_groups_allocated; j < i; j++)
2763                                 kvfree(new_groups[j]);
2764                         kvfree(new_groups);
2765                         ext4_msg(sb, KERN_ERR,
2766                                  "not enough memory for %d flex groups", size);
2767                         return -ENOMEM;
2768                 }
2769         }
2770         rcu_read_lock();
2771         old_groups = rcu_dereference(sbi->s_flex_groups);
2772         if (old_groups)
2773                 memcpy(new_groups, old_groups,
2774                        (sbi->s_flex_groups_allocated *
2775                         sizeof(struct flex_groups *)));
2776         rcu_read_unlock();
2777         rcu_assign_pointer(sbi->s_flex_groups, new_groups);
2778         sbi->s_flex_groups_allocated = size;
2779         if (old_groups)
2780                 ext4_kvfree_array_rcu(old_groups);
2781         return 0;
2782 }
2783
2784 static int ext4_fill_flex_info(struct super_block *sb)
2785 {
2786         struct ext4_sb_info *sbi = EXT4_SB(sb);
2787         struct ext4_group_desc *gdp = NULL;
2788         struct flex_groups *fg;
2789         ext4_group_t flex_group;
2790         int i, err;
2791
2792         sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
2793         if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
2794                 sbi->s_log_groups_per_flex = 0;
2795                 return 1;
2796         }
2797
2798         err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
2799         if (err)
2800                 goto failed;
2801
2802         for (i = 0; i < sbi->s_groups_count; i++) {
2803                 gdp = ext4_get_group_desc(sb, i, NULL);
2804
2805                 flex_group = ext4_flex_group(sbi, i);
2806                 fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group);
2807                 atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes);
2808                 atomic64_add(ext4_free_group_clusters(sb, gdp),
2809                              &fg->free_clusters);
2810                 atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs);
2811         }
2812
2813         return 1;
2814 failed:
2815         return 0;
2816 }
2817
2818 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
2819                                    struct ext4_group_desc *gdp)
2820 {
2821         int offset = offsetof(struct ext4_group_desc, bg_checksum);
2822         __u16 crc = 0;
2823         __le32 le_group = cpu_to_le32(block_group);
2824         struct ext4_sb_info *sbi = EXT4_SB(sb);
2825
2826         if (ext4_has_metadata_csum(sbi->s_sb)) {
2827                 /* Use new metadata_csum algorithm */
2828                 __u32 csum32;
2829                 __u16 dummy_csum = 0;
2830
2831                 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2832                                      sizeof(le_group));
2833                 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
2834                 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
2835                                      sizeof(dummy_csum));
2836                 offset += sizeof(dummy_csum);
2837                 if (offset < sbi->s_desc_size)
2838                         csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
2839                                              sbi->s_desc_size - offset);
2840
2841                 crc = csum32 & 0xFFFF;
2842                 goto out;
2843         }
2844
2845         /* old crc16 code */
2846         if (!ext4_has_feature_gdt_csum(sb))
2847                 return 0;
2848
2849         crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2850         crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2851         crc = crc16(crc, (__u8 *)gdp, offset);
2852         offset += sizeof(gdp->bg_checksum); /* skip checksum */
2853         /* for checksum of struct ext4_group_desc do the rest...*/
2854         if (ext4_has_feature_64bit(sb) &&
2855             offset < le16_to_cpu(sbi->s_es->s_desc_size))
2856                 crc = crc16(crc, (__u8 *)gdp + offset,
2857                             le16_to_cpu(sbi->s_es->s_desc_size) -
2858                                 offset);
2859
2860 out:
2861         return cpu_to_le16(crc);
2862 }
2863
2864 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2865                                 struct ext4_group_desc *gdp)
2866 {
2867         if (ext4_has_group_desc_csum(sb) &&
2868             (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
2869                 return 0;
2870
2871         return 1;
2872 }
2873
2874 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2875                               struct ext4_group_desc *gdp)
2876 {
2877         if (!ext4_has_group_desc_csum(sb))
2878                 return;
2879         gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
2880 }
2881
2882 /* Called at mount-time, super-block is locked */
2883 static int ext4_check_descriptors(struct super_block *sb,
2884                                   ext4_fsblk_t sb_block,
2885                                   ext4_group_t *first_not_zeroed)
2886 {
2887         struct ext4_sb_info *sbi = EXT4_SB(sb);
2888         ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2889         ext4_fsblk_t last_block;
2890         ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0);
2891         ext4_fsblk_t block_bitmap;
2892         ext4_fsblk_t inode_bitmap;
2893         ext4_fsblk_t inode_table;
2894         int flexbg_flag = 0;
2895         ext4_group_t i, grp = sbi->s_groups_count;
2896
2897         if (ext4_has_feature_flex_bg(sb))
2898                 flexbg_flag = 1;
2899
2900         ext4_debug("Checking group descriptors");
2901
2902         for (i = 0; i < sbi->s_groups_count; i++) {
2903                 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2904
2905                 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2906                         last_block = ext4_blocks_count(sbi->s_es) - 1;
2907                 else
2908                         last_block = first_block +
2909                                 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2910
2911                 if ((grp == sbi->s_groups_count) &&
2912                    !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2913                         grp = i;
2914
2915                 block_bitmap = ext4_block_bitmap(sb, gdp);
2916                 if (block_bitmap == sb_block) {
2917                         ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2918                                  "Block bitmap for group %u overlaps "
2919                                  "superblock", i);
2920                         if (!sb_rdonly(sb))
2921                                 return 0;
2922                 }
2923                 if (block_bitmap >= sb_block + 1 &&
2924                     block_bitmap <= last_bg_block) {
2925                         ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2926                                  "Block bitmap for group %u overlaps "
2927                                  "block group descriptors", i);
2928                         if (!sb_rdonly(sb))
2929                                 return 0;
2930                 }
2931                 if (block_bitmap < first_block || block_bitmap > last_block) {
2932                         ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2933                                "Block bitmap for group %u not in group "
2934                                "(block %llu)!", i, block_bitmap);
2935                         return 0;
2936                 }
2937                 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2938                 if (inode_bitmap == sb_block) {
2939                         ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2940                                  "Inode bitmap for group %u overlaps "
2941                                  "superblock", i);
2942                         if (!sb_rdonly(sb))
2943                                 return 0;
2944                 }
2945                 if (inode_bitmap >= sb_block + 1 &&
2946                     inode_bitmap <= last_bg_block) {
2947                         ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2948                                  "Inode bitmap for group %u overlaps "
2949                                  "block group descriptors", i);
2950                         if (!sb_rdonly(sb))
2951                                 return 0;
2952                 }
2953                 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2954                         ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2955                                "Inode bitmap for group %u not in group "
2956                                "(block %llu)!", i, inode_bitmap);
2957                         return 0;
2958                 }
2959                 inode_table = ext4_inode_table(sb, gdp);
2960                 if (inode_table == sb_block) {
2961                         ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2962                                  "Inode table for group %u overlaps "
2963                                  "superblock", i);
2964                         if (!sb_rdonly(sb))
2965                                 return 0;
2966                 }
2967                 if (inode_table >= sb_block + 1 &&
2968                     inode_table <= last_bg_block) {
2969                         ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2970                                  "Inode table for group %u overlaps "
2971                                  "block group descriptors", i);
2972                         if (!sb_rdonly(sb))
2973                                 return 0;
2974                 }
2975                 if (inode_table < first_block ||
2976                     inode_table + sbi->s_itb_per_group - 1 > last_block) {
2977                         ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2978                                "Inode table for group %u not in group "
2979                                "(block %llu)!", i, inode_table);
2980                         return 0;
2981                 }
2982                 ext4_lock_group(sb, i);
2983                 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2984                         ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2985                                  "Checksum for group %u failed (%u!=%u)",
2986                                  i, le16_to_cpu(ext4_group_desc_csum(sb, i,
2987                                      gdp)), le16_to_cpu(gdp->bg_checksum));
2988                         if (!sb_rdonly(sb)) {
2989                                 ext4_unlock_group(sb, i);
2990                                 return 0;
2991                         }
2992                 }
2993                 ext4_unlock_group(sb, i);
2994                 if (!flexbg_flag)
2995                         first_block += EXT4_BLOCKS_PER_GROUP(sb);
2996         }
2997         if (NULL != first_not_zeroed)
2998                 *first_not_zeroed = grp;
2999         return 1;
3000 }
3001
3002 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
3003  * the superblock) which were deleted from all directories, but held open by
3004  * a process at the time of a crash.  We walk the list and try to delete these
3005  * inodes at recovery time (only with a read-write filesystem).
3006  *
3007  * In order to keep the orphan inode chain consistent during traversal (in
3008  * case of crash during recovery), we link each inode into the superblock
3009  * orphan list_head and handle it the same way as an inode deletion during
3010  * normal operation (which journals the operations for us).
3011  *
3012  * We only do an iget() and an iput() on each inode, which is very safe if we
3013  * accidentally point at an in-use or already deleted inode.  The worst that
3014  * can happen in this case is that we get a "bit already cleared" message from
3015  * ext4_free_inode().  The only reason we would point at a wrong inode is if
3016  * e2fsck was run on this filesystem, and it must have already done the orphan
3017  * inode cleanup for us, so we can safely abort without any further action.
3018  */
3019 static void ext4_orphan_cleanup(struct super_block *sb,
3020                                 struct ext4_super_block *es)
3021 {
3022         unsigned int s_flags = sb->s_flags;
3023         int ret, nr_orphans = 0, nr_truncates = 0;
3024 #ifdef CONFIG_QUOTA
3025         int quota_update = 0;
3026         int i;
3027 #endif
3028         if (!es->s_last_orphan) {
3029                 jbd_debug(4, "no orphan inodes to clean up\n");
3030                 return;
3031         }
3032
3033         if (bdev_read_only(sb->s_bdev)) {
3034                 ext4_msg(sb, KERN_ERR, "write access "
3035                         "unavailable, skipping orphan cleanup");
3036                 return;
3037         }
3038
3039         /* Check if feature set would not allow a r/w mount */
3040         if (!ext4_feature_set_ok(sb, 0)) {
3041                 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
3042                          "unknown ROCOMPAT features");
3043                 return;
3044         }
3045
3046         if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
3047                 /* don't clear list on RO mount w/ errors */
3048                 if (es->s_last_orphan && !(s_flags & SB_RDONLY)) {
3049                         ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
3050                                   "clearing orphan list.\n");
3051                         es->s_last_orphan = 0;
3052                 }
3053                 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
3054                 return;
3055         }
3056
3057         if (s_flags & SB_RDONLY) {
3058                 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
3059                 sb->s_flags &= ~SB_RDONLY;
3060         }
3061 #ifdef CONFIG_QUOTA
3062         /* Needed for iput() to work correctly and not trash data */
3063         sb->s_flags |= SB_ACTIVE;
3064
3065         /*
3066          * Turn on quotas which were not enabled for read-only mounts if
3067          * filesystem has quota feature, so that they are updated correctly.
3068          */
3069         if (ext4_has_feature_quota(sb) && (s_flags & SB_RDONLY)) {
3070                 int ret = ext4_enable_quotas(sb);
3071
3072                 if (!ret)
3073                         quota_update = 1;
3074                 else
3075                         ext4_msg(sb, KERN_ERR,
3076                                 "Cannot turn on quotas: error %d", ret);
3077         }
3078
3079         /* Turn on journaled quotas used for old sytle */
3080         for (i = 0; i < EXT4_MAXQUOTAS; i++) {
3081                 if (EXT4_SB(sb)->s_qf_names[i]) {
3082                         int ret = ext4_quota_on_mount(sb, i);
3083
3084                         if (!ret)
3085                                 quota_update = 1;
3086                         else
3087                                 ext4_msg(sb, KERN_ERR,
3088                                         "Cannot turn on journaled "
3089                                         "quota: type %d: error %d", i, ret);
3090                 }
3091         }
3092 #endif
3093
3094         while (es->s_last_orphan) {
3095                 struct inode *inode;
3096
3097                 /*
3098                  * We may have encountered an error during cleanup; if
3099                  * so, skip the rest.
3100                  */
3101                 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
3102                         jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
3103                         es->s_last_orphan = 0;
3104                         break;
3105                 }
3106
3107                 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
3108                 if (IS_ERR(inode)) {
3109                         es->s_last_orphan = 0;
3110                         break;
3111                 }
3112
3113                 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
3114                 dquot_initialize(inode);
3115                 if (inode->i_nlink) {
3116                         if (test_opt(sb, DEBUG))
3117                                 ext4_msg(sb, KERN_DEBUG,
3118                                         "%s: truncating inode %lu to %lld bytes",
3119                                         __func__, inode->i_ino, inode->i_size);
3120                         jbd_debug(2, "truncating inode %lu to %lld bytes\n",
3121                                   inode->i_ino, inode->i_size);
3122                         inode_lock(inode);
3123                         truncate_inode_pages(inode->i_mapping, inode->i_size);
3124                         ret = ext4_truncate(inode);
3125                         if (ret)
3126                                 ext4_std_error(inode->i_sb, ret);
3127                         inode_unlock(inode);
3128                         nr_truncates++;
3129                 } else {
3130                         if (test_opt(sb, DEBUG))
3131                                 ext4_msg(sb, KERN_DEBUG,
3132                                         "%s: deleting unreferenced inode %lu",
3133                                         __func__, inode->i_ino);
3134                         jbd_debug(2, "deleting unreferenced inode %lu\n",
3135                                   inode->i_ino);
3136                         nr_orphans++;
3137                 }
3138                 iput(inode);  /* The delete magic happens here! */
3139         }
3140
3141 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
3142
3143         if (nr_orphans)
3144                 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
3145                        PLURAL(nr_orphans));
3146         if (nr_truncates)
3147                 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
3148                        PLURAL(nr_truncates));
3149 #ifdef CONFIG_QUOTA
3150         /* Turn off quotas if they were enabled for orphan cleanup */
3151         if (quota_update) {
3152                 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
3153                         if (sb_dqopt(sb)->files[i])
3154                                 dquot_quota_off(sb, i);
3155                 }
3156         }
3157 #endif
3158         sb->s_flags = s_flags; /* Restore SB_RDONLY status */
3159 }
3160
3161 /*
3162  * Maximal extent format file size.
3163  * Resulting logical blkno at s_maxbytes must fit in our on-disk
3164  * extent format containers, within a sector_t, and within i_blocks
3165  * in the vfs.  ext4 inode has 48 bits of i_block in fsblock units,
3166  * so that won't be a limiting factor.
3167  *
3168  * However there is other limiting factor. We do store extents in the form
3169  * of starting block and length, hence the resulting length of the extent
3170  * covering maximum file size must fit into on-disk format containers as
3171  * well. Given that length is always by 1 unit bigger than max unit (because
3172  * we count 0 as well) we have to lower the s_maxbytes by one fs block.
3173  *
3174  * Note, this does *not* consider any metadata overhead for vfs i_blocks.
3175  */
3176 static loff_t ext4_max_size(int blkbits, int has_huge_files)
3177 {
3178         loff_t res;
3179         loff_t upper_limit = MAX_LFS_FILESIZE;
3180
3181         BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64));
3182
3183         if (!has_huge_files) {
3184                 upper_limit = (1LL << 32) - 1;
3185
3186                 /* total blocks in file system block size */
3187                 upper_limit >>= (blkbits - 9);
3188                 upper_limit <<= blkbits;
3189         }
3190
3191         /*
3192          * 32-bit extent-start container, ee_block. We lower the maxbytes
3193          * by one fs block, so ee_len can cover the extent of maximum file
3194          * size
3195          */
3196         res = (1LL << 32) - 1;
3197         res <<= blkbits;
3198
3199         /* Sanity check against vm- & vfs- imposed limits */
3200         if (res > upper_limit)
3201                 res = upper_limit;
3202
3203         return res;
3204 }
3205
3206 /*
3207  * Maximal bitmap file size.  There is a direct, and {,double-,triple-}indirect
3208  * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
3209  * We need to be 1 filesystem block less than the 2^48 sector limit.
3210  */
3211 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
3212 {
3213         loff_t res = EXT4_NDIR_BLOCKS;
3214         int meta_blocks;
3215         loff_t upper_limit;
3216         /* This is calculated to be the largest file size for a dense, block
3217          * mapped file such that the file's total number of 512-byte sectors,
3218          * including data and all indirect blocks, does not exceed (2^48 - 1).
3219          *
3220          * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
3221          * number of 512-byte sectors of the file.
3222          */
3223
3224         if (!has_huge_files) {
3225                 /*
3226                  * !has_huge_files or implies that the inode i_block field
3227                  * represents total file blocks in 2^32 512-byte sectors ==
3228                  * size of vfs inode i_blocks * 8
3229                  */
3230                 upper_limit = (1LL << 32) - 1;
3231
3232                 /* total blocks in file system block size */
3233                 upper_limit >>= (bits - 9);
3234
3235         } else {
3236                 /*
3237                  * We use 48 bit ext4_inode i_blocks
3238                  * With EXT4_HUGE_FILE_FL set the i_blocks
3239                  * represent total number of blocks in
3240                  * file system block size
3241                  */
3242                 upper_limit = (1LL << 48) - 1;
3243
3244         }
3245
3246         /* indirect blocks */
3247         meta_blocks = 1;
3248         /* double indirect blocks */
3249         meta_blocks += 1 + (1LL << (bits-2));
3250         /* tripple indirect blocks */
3251         meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
3252
3253         upper_limit -= meta_blocks;
3254         upper_limit <<= bits;
3255
3256         res += 1LL << (bits-2);
3257         res += 1LL << (2*(bits-2));
3258         res += 1LL << (3*(bits-2));
3259         res <<= bits;
3260         if (res > upper_limit)
3261                 res = upper_limit;
3262
3263         if (res > MAX_LFS_FILESIZE)
3264                 res = MAX_LFS_FILESIZE;
3265
3266         return res;
3267 }
3268
3269 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
3270                                    ext4_fsblk_t logical_sb_block, int nr)
3271 {
3272         struct ext4_sb_info *sbi = EXT4_SB(sb);
3273         ext4_group_t bg, first_meta_bg;
3274         int has_super = 0;
3275
3276         first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
3277
3278         if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
3279                 return logical_sb_block + nr + 1;
3280         bg = sbi->s_desc_per_block * nr;
3281         if (ext4_bg_has_super(sb, bg))
3282                 has_super = 1;
3283
3284         /*
3285          * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
3286          * block 2, not 1.  If s_first_data_block == 0 (bigalloc is enabled
3287          * on modern mke2fs or blksize > 1k on older mke2fs) then we must
3288          * compensate.
3289          */
3290         if (sb->s_blocksize == 1024 && nr == 0 &&
3291             le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
3292                 has_super++;
3293
3294         return (has_super + ext4_group_first_block_no(sb, bg));
3295 }
3296
3297 /**
3298  * ext4_get_stripe_size: Get the stripe size.
3299  * @sbi: In memory super block info
3300  *
3301  * If we have specified it via mount option, then
3302  * use the mount option value. If the value specified at mount time is
3303  * greater than the blocks per group use the super block value.
3304  * If the super block value is greater than blocks per group return 0.
3305  * Allocator needs it be less than blocks per group.
3306  *
3307  */
3308 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
3309 {
3310         unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
3311         unsigned long stripe_width =
3312                         le32_to_cpu(sbi->s_es->s_raid_stripe_width);
3313         int ret;
3314
3315         if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
3316                 ret = sbi->s_stripe;
3317         else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
3318                 ret = stripe_width;
3319         else if (stride && stride <= sbi->s_blocks_per_group)
3320                 ret = stride;
3321         else
3322                 ret = 0;
3323
3324         /*
3325          * If the stripe width is 1, this makes no sense and
3326          * we set it to 0 to turn off stripe handling code.
3327          */
3328         if (ret <= 1)
3329                 ret = 0;
3330
3331         return ret;
3332 }
3333
3334 /*
3335  * Check whether this filesystem can be mounted based on
3336  * the features present and the RDONLY/RDWR mount requested.
3337  * Returns 1 if this filesystem can be mounted as requested,
3338  * 0 if it cannot be.
3339  */
3340 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
3341 {
3342         if (ext4_has_unknown_ext4_incompat_features(sb)) {
3343                 ext4_msg(sb, KERN_ERR,
3344                         "Couldn't mount because of "
3345                         "unsupported optional features (%x)",
3346                         (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
3347                         ~EXT4_FEATURE_INCOMPAT_SUPP));
3348                 return 0;
3349         }
3350
3351 #ifndef CONFIG_UNICODE
3352         if (ext4_has_feature_casefold(sb)) {
3353                 ext4_msg(sb, KERN_ERR,
3354                          "Filesystem with casefold feature cannot be "
3355                          "mounted without CONFIG_UNICODE");
3356                 return 0;
3357         }
3358 #endif
3359
3360         if (readonly)
3361                 return 1;
3362
3363         if (ext4_has_feature_readonly(sb)) {
3364                 ext4_msg(sb, KERN_INFO, "filesystem is read-only");
3365                 sb->s_flags |= SB_RDONLY;
3366                 return 1;
3367         }
3368
3369         /* Check that feature set is OK for a read-write mount */
3370         if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
3371                 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
3372                          "unsupported optional features (%x)",
3373                          (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
3374                                 ~EXT4_FEATURE_RO_COMPAT_SUPP));
3375                 return 0;
3376         }
3377         if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
3378                 ext4_msg(sb, KERN_ERR,
3379                          "Can't support bigalloc feature without "
3380                          "extents feature\n");
3381                 return 0;
3382         }
3383
3384 #if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2)
3385         if (!readonly && (ext4_has_feature_quota(sb) ||
3386                           ext4_has_feature_project(sb))) {
3387                 ext4_msg(sb, KERN_ERR,
3388                          "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2");
3389                 return 0;
3390         }
3391 #endif  /* CONFIG_QUOTA */
3392         return 1;
3393 }
3394
3395 /*
3396  * This function is called once a day if we have errors logged
3397  * on the file system
3398  */
3399 static void print_daily_error_info(struct timer_list *t)
3400 {
3401         struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report);
3402         struct super_block *sb = sbi->s_sb;
3403         struct ext4_super_block *es = sbi->s_es;
3404
3405         if (es->s_error_count)
3406                 /* fsck newer than v1.41.13 is needed to clean this condition. */
3407                 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
3408                          le32_to_cpu(es->s_error_count));
3409         if (es->s_first_error_time) {
3410                 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d",
3411                        sb->s_id,
3412                        ext4_get_tstamp(es, s_first_error_time),
3413                        (int) sizeof(es->s_first_error_func),
3414                        es->s_first_error_func,
3415                        le32_to_cpu(es->s_first_error_line));
3416                 if (es->s_first_error_ino)
3417                         printk(KERN_CONT ": inode %u",
3418                                le32_to_cpu(es->s_first_error_ino));
3419                 if (es->s_first_error_block)
3420                         printk(KERN_CONT ": block %llu", (unsigned long long)
3421                                le64_to_cpu(es->s_first_error_block));
3422                 printk(KERN_CONT "\n");
3423         }
3424         if (es->s_last_error_time) {
3425                 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d",
3426                        sb->s_id,
3427                        ext4_get_tstamp(es, s_last_error_time),
3428                        (int) sizeof(es->s_last_error_func),
3429                        es->s_last_error_func,
3430                        le32_to_cpu(es->s_last_error_line));
3431                 if (es->s_last_error_ino)
3432                         printk(KERN_CONT ": inode %u",
3433                                le32_to_cpu(es->s_last_error_ino));
3434                 if (es->s_last_error_block)
3435                         printk(KERN_CONT ": block %llu", (unsigned long long)
3436                                le64_to_cpu(es->s_last_error_block));
3437                 printk(KERN_CONT "\n");
3438         }
3439         mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);  /* Once a day */
3440 }
3441
3442 /* Find next suitable group and run ext4_init_inode_table */
3443 static int ext4_run_li_request(struct ext4_li_request *elr)
3444 {
3445         struct ext4_group_desc *gdp = NULL;
3446         struct super_block *sb = elr->lr_super;
3447         ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3448         ext4_group_t group = elr->lr_next_group;
3449         unsigned long timeout = 0;
3450         unsigned int prefetch_ios = 0;
3451         int ret = 0;
3452
3453         if (elr->lr_mode == EXT4_LI_MODE_PREFETCH_BBITMAP) {
3454                 elr->lr_next_group = ext4_mb_prefetch(sb, group,
3455                                 EXT4_SB(sb)->s_mb_prefetch, &prefetch_ios);
3456                 if (prefetch_ios)
3457                         ext4_mb_prefetch_fini(sb, elr->lr_next_group,
3458                                               prefetch_ios);
3459                 trace_ext4_prefetch_bitmaps(sb, group, elr->lr_next_group,
3460                                             prefetch_ios);
3461                 if (group >= elr->lr_next_group) {
3462                         ret = 1;
3463                         if (elr->lr_first_not_zeroed != ngroups &&
3464                             !sb_rdonly(sb) && test_opt(sb, INIT_INODE_TABLE)) {
3465                                 elr->lr_next_group = elr->lr_first_not_zeroed;
3466                                 elr->lr_mode = EXT4_LI_MODE_ITABLE;
3467                                 ret = 0;
3468                         }
3469                 }
3470                 return ret;
3471         }
3472
3473         for (; group < ngroups; group++) {
3474                 gdp = ext4_get_group_desc(sb, group, NULL);
3475                 if (!gdp) {
3476                         ret = 1;
3477                         break;
3478                 }
3479
3480                 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3481                         break;
3482         }
3483
3484         if (group >= ngroups)
3485                 ret = 1;
3486
3487         if (!ret) {
3488                 timeout = jiffies;
3489                 ret = ext4_init_inode_table(sb, group,
3490                                             elr->lr_timeout ? 0 : 1);
3491                 trace_ext4_lazy_itable_init(sb, group);
3492                 if (elr->lr_timeout == 0) {
3493                         timeout = (jiffies - timeout) *
3494                                 EXT4_SB(elr->lr_super)->s_li_wait_mult;
3495                         elr->lr_timeout = timeout;
3496                 }
3497                 elr->lr_next_sched = jiffies + elr->lr_timeout;
3498                 elr->lr_next_group = group + 1;
3499         }
3500         return ret;
3501 }
3502
3503 /*
3504  * Remove lr_request from the list_request and free the
3505  * request structure. Should be called with li_list_mtx held
3506  */
3507 static void ext4_remove_li_request(struct ext4_li_request *elr)
3508 {
3509         if (!elr)
3510                 return;
3511
3512         list_del(&elr->lr_request);
3513         EXT4_SB(elr->lr_super)->s_li_request = NULL;
3514         kfree(elr);
3515 }
3516
3517 static void ext4_unregister_li_request(struct super_block *sb)
3518 {
3519         mutex_lock(&ext4_li_mtx);
3520         if (!ext4_li_info) {
3521                 mutex_unlock(&ext4_li_mtx);
3522                 return;
3523         }
3524
3525         mutex_lock(&ext4_li_info->li_list_mtx);
3526         ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
3527         mutex_unlock(&ext4_li_info->li_list_mtx);
3528         mutex_unlock(&ext4_li_mtx);
3529 }
3530
3531 static struct task_struct *ext4_lazyinit_task;
3532
3533 /*
3534  * This is the function where ext4lazyinit thread lives. It walks
3535  * through the request list searching for next scheduled filesystem.
3536  * When such a fs is found, run the lazy initialization request
3537  * (ext4_rn_li_request) and keep track of the time spend in this
3538  * function. Based on that time we compute next schedule time of
3539  * the request. When walking through the list is complete, compute
3540  * next waking time and put itself into sleep.
3541  */
3542 static int ext4_lazyinit_thread(void *arg)
3543 {
3544         struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
3545         struct list_head *pos, *n;
3546         struct ext4_li_request *elr;
3547         unsigned long next_wakeup, cur;
3548
3549         BUG_ON(NULL == eli);
3550
3551 cont_thread:
3552         while (true) {
3553                 next_wakeup = MAX_JIFFY_OFFSET;
3554
3555                 mutex_lock(&eli->li_list_mtx);
3556                 if (list_empty(&eli->li_request_list)) {
3557                         mutex_unlock(&eli->li_list_mtx);
3558                         goto exit_thread;
3559                 }
3560                 list_for_each_safe(pos, n, &eli->li_request_list) {
3561                         int err = 0;
3562                         int progress = 0;
3563                         elr = list_entry(pos, struct ext4_li_request,
3564                                          lr_request);
3565
3566                         if (time_before(jiffies, elr->lr_next_sched)) {
3567                                 if (time_before(elr->lr_next_sched, next_wakeup))
3568                                         next_wakeup = elr->lr_next_sched;
3569                                 continue;
3570                         }
3571                         if (down_read_trylock(&elr->lr_super->s_umount)) {
3572                                 if (sb_start_write_trylock(elr->lr_super)) {
3573                                         progress = 1;
3574                                         /*
3575                                          * We hold sb->s_umount, sb can not
3576                                          * be removed from the list, it is
3577                                          * now safe to drop li_list_mtx
3578                                          */
3579                                         mutex_unlock(&eli->li_list_mtx);
3580                                         err = ext4_run_li_request(elr);
3581                                         sb_end_write(elr->lr_super);
3582                                         mutex_lock(&eli->li_list_mtx);
3583                                         n = pos->next;
3584                                 }
3585                                 up_read((&elr->lr_super->s_umount));
3586                         }
3587                         /* error, remove the lazy_init job */
3588                         if (err) {
3589                                 ext4_remove_li_request(elr);
3590                                 continue;
3591                         }
3592                         if (!progress) {
3593                                 elr->lr_next_sched = jiffies +
3594                                         (prandom_u32()
3595                                          % (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3596                         }
3597                         if (time_before(elr->lr_next_sched, next_wakeup))
3598                                 next_wakeup = elr->lr_next_sched;
3599                 }
3600                 mutex_unlock(&eli->li_list_mtx);
3601
3602                 try_to_freeze();
3603
3604                 cur = jiffies;
3605                 if ((time_after_eq(cur, next_wakeup)) ||
3606                     (MAX_JIFFY_OFFSET == next_wakeup)) {
3607                         cond_resched();
3608                         continue;
3609                 }
3610
3611                 schedule_timeout_interruptible(next_wakeup - cur);
3612
3613                 if (kthread_should_stop()) {
3614                         ext4_clear_request_list();
3615                         goto exit_thread;
3616                 }
3617         }
3618
3619 exit_thread:
3620         /*
3621          * It looks like the request list is empty, but we need
3622          * to check it under the li_list_mtx lock, to prevent any
3623          * additions into it, and of course we should lock ext4_li_mtx
3624          * to atomically free the list and ext4_li_info, because at
3625          * this point another ext4 filesystem could be registering
3626          * new one.
3627          */
3628         mutex_lock(&ext4_li_mtx);
3629         mutex_lock(&eli->li_list_mtx);
3630         if (!list_empty(&eli->li_request_list)) {
3631                 mutex_unlock(&eli->li_list_mtx);
3632                 mutex_unlock(&ext4_li_mtx);
3633                 goto cont_thread;
3634         }
3635         mutex_unlock(&eli->li_list_mtx);
3636         kfree(ext4_li_info);
3637         ext4_li_info = NULL;
3638         mutex_unlock(&ext4_li_mtx);
3639
3640         return 0;
3641 }
3642
3643 static void ext4_clear_request_list(void)
3644 {
3645         struct list_head *pos, *n;
3646         struct ext4_li_request *elr;
3647
3648         mutex_lock(&ext4_li_info->li_list_mtx);
3649         list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3650                 elr = list_entry(pos, struct ext4_li_request,
3651                                  lr_request);
3652                 ext4_remove_li_request(elr);
3653         }
3654         mutex_unlock(&ext4_li_info->li_list_mtx);
3655 }
3656
3657 static int ext4_run_lazyinit_thread(void)
3658 {
3659         ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3660                                          ext4_li_info, "ext4lazyinit");
3661         if (IS_ERR(ext4_lazyinit_task)) {
3662                 int err = PTR_ERR(ext4_lazyinit_task);
3663                 ext4_clear_request_list();
3664                 kfree(ext4_li_info);
3665                 ext4_li_info = NULL;
3666                 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3667                                  "initialization thread\n",
3668                                  err);
3669                 return err;
3670         }
3671         ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3672         return 0;
3673 }
3674
3675 /*
3676  * Check whether it make sense to run itable init. thread or not.
3677  * If there is at least one uninitialized inode table, return
3678  * corresponding group number, else the loop goes through all
3679  * groups and return total number of groups.
3680  */
3681 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3682 {
3683         ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3684         struct ext4_group_desc *gdp = NULL;
3685
3686         if (!ext4_has_group_desc_csum(sb))
3687                 return ngroups;
3688
3689         for (group = 0; group < ngroups; group++) {
3690                 gdp = ext4_get_group_desc(sb, group, NULL);
3691                 if (!gdp)
3692                         continue;
3693
3694                 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3695                         break;
3696         }
3697
3698         return group;
3699 }
3700
3701 static int ext4_li_info_new(void)
3702 {
3703         struct ext4_lazy_init *eli = NULL;
3704
3705         eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3706         if (!eli)
3707                 return -ENOMEM;
3708
3709         INIT_LIST_HEAD(&eli->li_request_list);
3710         mutex_init(&eli->li_list_mtx);
3711
3712         eli->li_state |= EXT4_LAZYINIT_QUIT;
3713
3714         ext4_li_info = eli;
3715
3716         return 0;
3717 }
3718
3719 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3720                                             ext4_group_t start)
3721 {
3722         struct ext4_li_request *elr;
3723
3724         elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3725         if (!elr)
3726                 return NULL;
3727
3728         elr->lr_super = sb;
3729         elr->lr_first_not_zeroed = start;
3730         if (test_opt(sb, PREFETCH_BLOCK_BITMAPS))
3731                 elr->lr_mode = EXT4_LI_MODE_PREFETCH_BBITMAP;
3732         else {
3733                 elr->lr_mode = EXT4_LI_MODE_ITABLE;
3734                 elr->lr_next_group = start;
3735         }
3736
3737         /*
3738          * Randomize first schedule time of the request to
3739          * spread the inode table initialization requests
3740          * better.
3741          */
3742         elr->lr_next_sched = jiffies + (prandom_u32() %
3743                                 (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3744         return elr;
3745 }
3746
3747 int ext4_register_li_request(struct super_block *sb,
3748                              ext4_group_t first_not_zeroed)
3749 {
3750         struct ext4_sb_info *sbi = EXT4_SB(sb);
3751         struct ext4_li_request *elr = NULL;
3752         ext4_group_t ngroups = sbi->s_groups_count;
3753         int ret = 0;
3754
3755         mutex_lock(&ext4_li_mtx);
3756         if (sbi->s_li_request != NULL) {
3757                 /*
3758                  * Reset timeout so it can be computed again, because
3759                  * s_li_wait_mult might have changed.
3760                  */
3761                 sbi->s_li_request->lr_timeout = 0;
3762                 goto out;
3763         }
3764
3765         if (!test_opt(sb, PREFETCH_BLOCK_BITMAPS) &&
3766             (first_not_zeroed == ngroups || sb_rdonly(sb) ||
3767              !test_opt(sb, INIT_INODE_TABLE)))
3768                 goto out;
3769
3770         elr = ext4_li_request_new(sb, first_not_zeroed);
3771         if (!elr) {
3772                 ret = -ENOMEM;
3773                 goto out;
3774         }
3775
3776         if (NULL == ext4_li_info) {
3777                 ret = ext4_li_info_new();
3778                 if (ret)
3779                         goto out;
3780         }
3781
3782         mutex_lock(&ext4_li_info->li_list_mtx);
3783         list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3784         mutex_unlock(&ext4_li_info->li_list_mtx);
3785
3786         sbi->s_li_request = elr;
3787         /*
3788          * set elr to NULL here since it has been inserted to
3789          * the request_list and the removal and free of it is
3790          * handled by ext4_clear_request_list from now on.
3791          */
3792         elr = NULL;
3793
3794         if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3795                 ret = ext4_run_lazyinit_thread();
3796                 if (ret)
3797                         goto out;
3798         }
3799 out:
3800         mutex_unlock(&ext4_li_mtx);
3801         if (ret)
3802                 kfree(elr);
3803         return ret;
3804 }
3805
3806 /*
3807  * We do not need to lock anything since this is called on
3808  * module unload.
3809  */
3810 static void ext4_destroy_lazyinit_thread(void)
3811 {
3812         /*
3813          * If thread exited earlier
3814          * there's nothing to be done.
3815          */
3816         if (!ext4_li_info || !ext4_lazyinit_task)
3817                 return;
3818
3819         kthread_stop(ext4_lazyinit_task);
3820 }
3821
3822 static int set_journal_csum_feature_set(struct super_block *sb)
3823 {
3824         int ret = 1;
3825         int compat, incompat;
3826         struct ext4_sb_info *sbi = EXT4_SB(sb);
3827
3828         if (ext4_has_metadata_csum(sb)) {
3829                 /* journal checksum v3 */
3830                 compat = 0;
3831                 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
3832         } else {
3833                 /* journal checksum v1 */
3834                 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3835                 incompat = 0;
3836         }
3837
3838         jbd2_journal_clear_features(sbi->s_journal,
3839                         JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3840                         JBD2_FEATURE_INCOMPAT_CSUM_V3 |
3841                         JBD2_FEATURE_INCOMPAT_CSUM_V2);
3842         if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3843                 ret = jbd2_journal_set_features(sbi->s_journal,
3844                                 compat, 0,
3845                                 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3846                                 incompat);
3847         } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3848                 ret = jbd2_journal_set_features(sbi->s_journal,
3849                                 compat, 0,
3850                                 incompat);
3851                 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3852                                 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3853         } else {
3854                 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3855                                 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3856         }
3857
3858         return ret;
3859 }
3860
3861 /*
3862  * Note: calculating the overhead so we can be compatible with
3863  * historical BSD practice is quite difficult in the face of
3864  * clusters/bigalloc.  This is because multiple metadata blocks from
3865  * different block group can end up in the same allocation cluster.
3866  * Calculating the exact overhead in the face of clustered allocation
3867  * requires either O(all block bitmaps) in memory or O(number of block
3868  * groups**2) in time.  We will still calculate the superblock for
3869  * older file systems --- and if we come across with a bigalloc file
3870  * system with zero in s_overhead_clusters the estimate will be close to
3871  * correct especially for very large cluster sizes --- but for newer
3872  * file systems, it's better to calculate this figure once at mkfs
3873  * time, and store it in the superblock.  If the superblock value is
3874  * present (even for non-bigalloc file systems), we will use it.
3875  */
3876 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3877                           char *buf)
3878 {
3879         struct ext4_sb_info     *sbi = EXT4_SB(sb);
3880         struct ext4_group_desc  *gdp;
3881         ext4_fsblk_t            first_block, last_block, b;
3882         ext4_group_t            i, ngroups = ext4_get_groups_count(sb);
3883         int                     s, j, count = 0;
3884
3885         if (!ext4_has_feature_bigalloc(sb))
3886                 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3887                         sbi->s_itb_per_group + 2);
3888
3889         first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3890                 (grp * EXT4_BLOCKS_PER_GROUP(sb));
3891         last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3892         for (i = 0; i < ngroups; i++) {
3893                 gdp = ext4_get_group_desc(sb, i, NULL);
3894                 b = ext4_block_bitmap(sb, gdp);
3895                 if (b >= first_block && b <= last_block) {
3896                         ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3897                         count++;
3898                 }
3899                 b = ext4_inode_bitmap(sb, gdp);
3900                 if (b >= first_block && b <= last_block) {
3901                         ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3902                         count++;
3903                 }
3904                 b = ext4_inode_table(sb, gdp);
3905                 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3906                         for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3907                                 int c = EXT4_B2C(sbi, b - first_block);
3908                                 ext4_set_bit(c, buf);
3909                                 count++;
3910                         }
3911                 if (i != grp)
3912                         continue;
3913                 s = 0;
3914                 if (ext4_bg_has_super(sb, grp)) {
3915                         ext4_set_bit(s++, buf);
3916                         count++;
3917                 }
3918                 j = ext4_bg_num_gdb(sb, grp);
3919                 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
3920                         ext4_error(sb, "Invalid number of block group "
3921                                    "descriptor blocks: %d", j);
3922                         j = EXT4_BLOCKS_PER_GROUP(sb) - s;
3923                 }
3924                 count += j;
3925                 for (; j > 0; j--)
3926                         ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3927         }
3928         if (!count)
3929                 return 0;
3930         return EXT4_CLUSTERS_PER_GROUP(sb) -
3931                 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3932 }
3933
3934 /*
3935  * Compute the overhead and stash it in sbi->s_overhead
3936  */
3937 int ext4_calculate_overhead(struct super_block *sb)
3938 {
3939         struct ext4_sb_info *sbi = EXT4_SB(sb);
3940         struct ext4_super_block *es = sbi->s_es;
3941         struct inode *j_inode;
3942         unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
3943         ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3944         ext4_fsblk_t overhead = 0;
3945         char *buf = (char *) get_zeroed_page(GFP_NOFS);
3946
3947         if (!buf)
3948                 return -ENOMEM;
3949
3950         /*
3951          * Compute the overhead (FS structures).  This is constant
3952          * for a given filesystem unless the number of block groups
3953          * changes so we cache the previous value until it does.
3954          */
3955
3956         /*
3957          * All of the blocks before first_data_block are overhead
3958          */
3959         overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3960
3961         /*
3962          * Add the overhead found in each block group
3963          */
3964         for (i = 0; i < ngroups; i++) {
3965                 int blks;
3966
3967                 blks = count_overhead(sb, i, buf);
3968                 overhead += blks;
3969                 if (blks)
3970                         memset(buf, 0, PAGE_SIZE);
3971                 cond_resched();
3972         }
3973
3974         /*
3975          * Add the internal journal blocks whether the journal has been
3976          * loaded or not
3977          */
3978         if (sbi->s_journal && !sbi->s_journal_bdev)
3979                 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_total_len);
3980         else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) {
3981                 /* j_inum for internal journal is non-zero */
3982                 j_inode = ext4_get_journal_inode(sb, j_inum);
3983                 if (j_inode) {
3984                         j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
3985                         overhead += EXT4_NUM_B2C(sbi, j_blocks);
3986                         iput(j_inode);
3987                 } else {
3988                         ext4_msg(sb, KERN_ERR, "can't get journal size");
3989                 }
3990         }
3991         sbi->s_overhead = overhead;
3992         smp_wmb();
3993         free_page((unsigned long) buf);
3994         return 0;
3995 }
3996
3997 static void ext4_set_resv_clusters(struct super_block *sb)
3998 {
3999         ext4_fsblk_t resv_clusters;
4000         struct ext4_sb_info *sbi = EXT4_SB(sb);
4001
4002         /*
4003          * There's no need to reserve anything when we aren't using extents.
4004          * The space estimates are exact, there are no unwritten extents,
4005          * hole punching doesn't need new metadata... This is needed especially
4006          * to keep ext2/3 backward compatibility.
4007          */
4008         if (!ext4_has_feature_extents(sb))
4009                 return;
4010         /*
4011          * By default we reserve 2% or 4096 clusters, whichever is smaller.
4012          * This should cover the situations where we can not afford to run
4013          * out of space like for example punch hole, or converting
4014          * unwritten extents in delalloc path. In most cases such
4015          * allocation would require 1, or 2 blocks, higher numbers are
4016          * very rare.
4017          */
4018         resv_clusters = (ext4_blocks_count(sbi->s_es) >>
4019                          sbi->s_cluster_bits);
4020
4021         do_div(resv_clusters, 50);
4022         resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
4023
4024         atomic64_set(&sbi->s_resv_clusters, resv_clusters);
4025 }
4026
4027 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
4028 {
4029         struct dax_device *dax_dev = fs_dax_get_by_bdev(sb->s_bdev);
4030         char *orig_data = kstrdup(data, GFP_KERNEL);
4031         struct buffer_head *bh, **group_desc;
4032         struct ext4_super_block *es = NULL;
4033         struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
4034         struct flex_groups **flex_groups;
4035         ext4_fsblk_t block;
4036         ext4_fsblk_t sb_block = get_sb_block(&data);
4037         ext4_fsblk_t logical_sb_block;
4038         unsigned long offset = 0;
4039         unsigned long journal_devnum = 0;
4040         unsigned long def_mount_opts;
4041         struct inode *root;
4042         const char *descr;
4043         int ret = -ENOMEM;
4044         int blocksize, clustersize;
4045         unsigned int db_count;
4046         unsigned int i;
4047         int needs_recovery, has_huge_files;
4048         __u64 blocks_count;
4049         int err = 0;
4050         unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4051         ext4_group_t first_not_zeroed;
4052
4053         if ((data && !orig_data) || !sbi)
4054                 goto out_free_base;
4055
4056         sbi->s_daxdev = dax_dev;
4057         sbi->s_blockgroup_lock =
4058                 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
4059         if (!sbi->s_blockgroup_lock)
4060                 goto out_free_base;
4061
4062         sb->s_fs_info = sbi;
4063         sbi->s_sb = sb;
4064         sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
4065         sbi->s_sb_block = sb_block;
4066         if (sb->s_bdev->bd_part)
4067                 sbi->s_sectors_written_start =
4068                         part_stat_read(sb->s_bdev->bd_part, sectors[STAT_WRITE]);
4069
4070         /* Cleanup superblock name */
4071         strreplace(sb->s_id, '/', '!');
4072
4073         /* -EINVAL is default */
4074         ret = -EINVAL;
4075         blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
4076         if (!blocksize) {
4077                 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
4078                 goto out_fail;
4079         }
4080
4081         /*
4082          * The ext4 superblock will not be buffer aligned for other than 1kB
4083          * block sizes.  We need to calculate the offset from buffer start.
4084          */
4085         if (blocksize != EXT4_MIN_BLOCK_SIZE) {
4086                 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
4087                 offset = do_div(logical_sb_block, blocksize);
4088         } else {
4089                 logical_sb_block = sb_block;
4090         }
4091
4092         bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
4093         if (IS_ERR(bh)) {
4094                 ext4_msg(sb, KERN_ERR, "unable to read superblock");
4095                 ret = PTR_ERR(bh);
4096                 bh = NULL;
4097                 goto out_fail;
4098         }
4099         /*
4100          * Note: s_es must be initialized as soon as possible because
4101          *       some ext4 macro-instructions depend on its value
4102          */
4103         es = (struct ext4_super_block *) (bh->b_data + offset);
4104         sbi->s_es = es;
4105         sb->s_magic = le16_to_cpu(es->s_magic);
4106         if (sb->s_magic != EXT4_SUPER_MAGIC)
4107                 goto cantfind_ext4;
4108         sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
4109
4110         /* Warn if metadata_csum and gdt_csum are both set. */
4111         if (ext4_has_feature_metadata_csum(sb) &&
4112             ext4_has_feature_gdt_csum(sb))
4113                 ext4_warning(sb, "metadata_csum and uninit_bg are "
4114                              "redundant flags; please run fsck.");
4115
4116         /* Check for a known checksum algorithm */
4117         if (!ext4_verify_csum_type(sb, es)) {
4118                 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4119                          "unknown checksum algorithm.");
4120                 silent = 1;
4121                 goto cantfind_ext4;
4122         }
4123
4124         /* Load the checksum driver */
4125         sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
4126         if (IS_ERR(sbi->s_chksum_driver)) {
4127                 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
4128                 ret = PTR_ERR(sbi->s_chksum_driver);
4129                 sbi->s_chksum_driver = NULL;
4130                 goto failed_mount;
4131         }
4132
4133         /* Check superblock checksum */
4134         if (!ext4_superblock_csum_verify(sb, es)) {
4135                 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4136                          "invalid superblock checksum.  Run e2fsck?");
4137                 silent = 1;
4138                 ret = -EFSBADCRC;
4139                 goto cantfind_ext4;
4140         }
4141
4142         /* Precompute checksum seed for all metadata */
4143         if (ext4_has_feature_csum_seed(sb))
4144                 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
4145         else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
4146                 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
4147                                                sizeof(es->s_uuid));
4148
4149         /* Set defaults before we parse the mount options */
4150         def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
4151         set_opt(sb, INIT_INODE_TABLE);
4152         if (def_mount_opts & EXT4_DEFM_DEBUG)
4153                 set_opt(sb, DEBUG);
4154         if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
4155                 set_opt(sb, GRPID);
4156         if (def_mount_opts & EXT4_DEFM_UID16)
4157                 set_opt(sb, NO_UID32);
4158         /* xattr user namespace & acls are now defaulted on */
4159         set_opt(sb, XATTR_USER);
4160 #ifdef CONFIG_EXT4_FS_POSIX_ACL
4161         set_opt(sb, POSIX_ACL);
4162 #endif
4163         if (ext4_has_feature_fast_commit(sb))
4164                 set_opt2(sb, JOURNAL_FAST_COMMIT);
4165         /* don't forget to enable journal_csum when metadata_csum is enabled. */
4166         if (ext4_has_metadata_csum(sb))
4167                 set_opt(sb, JOURNAL_CHECKSUM);
4168
4169         if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
4170                 set_opt(sb, JOURNAL_DATA);
4171         else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
4172                 set_opt(sb, ORDERED_DATA);
4173         else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
4174                 set_opt(sb, WRITEBACK_DATA);
4175
4176         if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
4177                 set_opt(sb, ERRORS_PANIC);
4178         else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
4179                 set_opt(sb, ERRORS_CONT);
4180         else
4181                 set_opt(sb, ERRORS_RO);
4182         /* block_validity enabled by default; disable with noblock_validity */
4183         set_opt(sb, BLOCK_VALIDITY);
4184         if (def_mount_opts & EXT4_DEFM_DISCARD)
4185                 set_opt(sb, DISCARD);
4186
4187         sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
4188         sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
4189         sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
4190         sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
4191         sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
4192
4193         if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
4194                 set_opt(sb, BARRIER);
4195
4196         /*
4197          * enable delayed allocation by default
4198          * Use -o nodelalloc to turn it off
4199          */
4200         if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
4201             ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
4202                 set_opt(sb, DELALLOC);
4203
4204         /*
4205          * set default s_li_wait_mult for lazyinit, for the case there is
4206          * no mount option specified.
4207          */
4208         sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
4209
4210         blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
4211
4212         if (blocksize == PAGE_SIZE)
4213                 set_opt(sb, DIOREAD_NOLOCK);
4214
4215         if (blocksize < EXT4_MIN_BLOCK_SIZE ||
4216             blocksize > EXT4_MAX_BLOCK_SIZE) {
4217                 ext4_msg(sb, KERN_ERR,
4218                        "Unsupported filesystem blocksize %d (%d log_block_size)",
4219                          blocksize, le32_to_cpu(es->s_log_block_size));
4220                 goto failed_mount;
4221         }
4222
4223         if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
4224                 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
4225                 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
4226         } else {
4227                 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
4228                 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
4229                 if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) {
4230                         ext4_msg(sb, KERN_ERR, "invalid first ino: %u",
4231                                  sbi->s_first_ino);
4232                         goto failed_mount;
4233                 }
4234                 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
4235                     (!is_power_of_2(sbi->s_inode_size)) ||
4236                     (sbi->s_inode_size > blocksize)) {
4237                         ext4_msg(sb, KERN_ERR,
4238                                "unsupported inode size: %d",
4239                                sbi->s_inode_size);
4240                         ext4_msg(sb, KERN_ERR, "blocksize: %d", blocksize);
4241                         goto failed_mount;
4242                 }
4243                 /*
4244                  * i_atime_extra is the last extra field available for
4245                  * [acm]times in struct ext4_inode. Checking for that
4246                  * field should suffice to ensure we have extra space
4247                  * for all three.
4248                  */
4249                 if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) +
4250                         sizeof(((struct ext4_inode *)0)->i_atime_extra)) {
4251                         sb->s_time_gran = 1;
4252                         sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX;
4253                 } else {
4254                         sb->s_time_gran = NSEC_PER_SEC;
4255                         sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX;
4256                 }
4257                 sb->s_time_min = EXT4_TIMESTAMP_MIN;
4258         }
4259         if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
4260                 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4261                         EXT4_GOOD_OLD_INODE_SIZE;
4262                 if (ext4_has_feature_extra_isize(sb)) {
4263                         unsigned v, max = (sbi->s_inode_size -
4264                                            EXT4_GOOD_OLD_INODE_SIZE);
4265
4266                         v = le16_to_cpu(es->s_want_extra_isize);
4267                         if (v > max) {
4268                                 ext4_msg(sb, KERN_ERR,
4269                                          "bad s_want_extra_isize: %d", v);
4270                                 goto failed_mount;
4271                         }
4272                         if (sbi->s_want_extra_isize < v)
4273                                 sbi->s_want_extra_isize = v;
4274
4275                         v = le16_to_cpu(es->s_min_extra_isize);
4276                         if (v > max) {
4277                                 ext4_msg(sb, KERN_ERR,
4278                                          "bad s_min_extra_isize: %d", v);
4279                                 goto failed_mount;
4280                         }
4281                         if (sbi->s_want_extra_isize < v)
4282                                 sbi->s_want_extra_isize = v;
4283                 }
4284         }
4285
4286         if (sbi->s_es->s_mount_opts[0]) {
4287                 char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
4288                                               sizeof(sbi->s_es->s_mount_opts),
4289                                               GFP_KERNEL);
4290                 if (!s_mount_opts)
4291                         goto failed_mount;
4292                 if (!parse_options(s_mount_opts, sb, &journal_devnum,
4293                                    &journal_ioprio, 0)) {
4294                         ext4_msg(sb, KERN_WARNING,
4295                                  "failed to parse options in superblock: %s",
4296                                  s_mount_opts);
4297                 }
4298                 kfree(s_mount_opts);
4299         }
4300         sbi->s_def_mount_opt = sbi->s_mount_opt;
4301         if (!parse_options((char *) data, sb, &journal_devnum,
4302                            &journal_ioprio, 0))
4303                 goto failed_mount;
4304
4305 #ifdef CONFIG_UNICODE
4306         if (ext4_has_feature_casefold(sb) && !sb->s_encoding) {
4307                 const struct ext4_sb_encodings *encoding_info;
4308                 struct unicode_map *encoding;
4309                 __u16 encoding_flags;
4310
4311                 if (ext4_has_feature_encrypt(sb)) {
4312                         ext4_msg(sb, KERN_ERR,
4313                                  "Can't mount with encoding and encryption");
4314                         goto failed_mount;
4315                 }
4316
4317                 if (ext4_sb_read_encoding(es, &encoding_info,
4318                                           &encoding_flags)) {
4319                         ext4_msg(sb, KERN_ERR,
4320                                  "Encoding requested by superblock is unknown");
4321                         goto failed_mount;
4322                 }
4323
4324                 encoding = utf8_load(encoding_info->version);
4325                 if (IS_ERR(encoding)) {
4326                         ext4_msg(sb, KERN_ERR,
4327                                  "can't mount with superblock charset: %s-%s "
4328                                  "not supported by the kernel. flags: 0x%x.",
4329                                  encoding_info->name, encoding_info->version,
4330                                  encoding_flags);
4331                         goto failed_mount;
4332                 }
4333                 ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: "
4334                          "%s-%s with flags 0x%hx", encoding_info->name,
4335                          encoding_info->version?:"\b", encoding_flags);
4336
4337                 sb->s_encoding = encoding;
4338                 sb->s_encoding_flags = encoding_flags;
4339         }
4340 #endif
4341
4342         if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4343                 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with data=journal disables delayed allocation, dioread_nolock, and O_DIRECT support!\n");
4344                 /* can't mount with both data=journal and dioread_nolock. */
4345                 clear_opt(sb, DIOREAD_NOLOCK);
4346                 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4347                         ext4_msg(sb, KERN_ERR, "can't mount with "
4348                                  "both data=journal and delalloc");
4349                         goto failed_mount;
4350                 }
4351                 if (test_opt(sb, DAX_ALWAYS)) {
4352                         ext4_msg(sb, KERN_ERR, "can't mount with "
4353                                  "both data=journal and dax");
4354                         goto failed_mount;
4355                 }
4356                 if (ext4_has_feature_encrypt(sb)) {
4357                         ext4_msg(sb, KERN_WARNING,
4358                                  "encrypted files will use data=ordered "
4359                                  "instead of data journaling mode");
4360                 }
4361                 if (test_opt(sb, DELALLOC))
4362                         clear_opt(sb, DELALLOC);
4363         } else {
4364                 sb->s_iflags |= SB_I_CGROUPWB;
4365         }
4366
4367         sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
4368                 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
4369
4370         if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
4371             (ext4_has_compat_features(sb) ||
4372              ext4_has_ro_compat_features(sb) ||
4373              ext4_has_incompat_features(sb)))
4374                 ext4_msg(sb, KERN_WARNING,
4375                        "feature flags set on rev 0 fs, "
4376                        "running e2fsck is recommended");
4377
4378         if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
4379                 set_opt2(sb, HURD_COMPAT);
4380                 if (ext4_has_feature_64bit(sb)) {
4381                         ext4_msg(sb, KERN_ERR,
4382                                  "The Hurd can't support 64-bit file systems");
4383                         goto failed_mount;
4384                 }
4385
4386                 /*
4387                  * ea_inode feature uses l_i_version field which is not
4388                  * available in HURD_COMPAT mode.
4389                  */
4390                 if (ext4_has_feature_ea_inode(sb)) {
4391                         ext4_msg(sb, KERN_ERR,
4392                                  "ea_inode feature is not supported for Hurd");
4393                         goto failed_mount;
4394                 }
4395         }
4396
4397         if (IS_EXT2_SB(sb)) {
4398                 if (ext2_feature_set_ok(sb))
4399                         ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
4400                                  "using the ext4 subsystem");
4401                 else {
4402                         /*
4403                          * If we're probing be silent, if this looks like
4404                          * it's actually an ext[34] filesystem.
4405                          */
4406                         if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4407                                 goto failed_mount;
4408                         ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
4409                                  "to feature incompatibilities");
4410                         goto failed_mount;
4411                 }
4412         }
4413
4414         if (IS_EXT3_SB(sb)) {
4415                 if (ext3_feature_set_ok(sb))
4416                         ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
4417                                  "using the ext4 subsystem");
4418                 else {
4419                         /*
4420                          * If we're probing be silent, if this looks like
4421                          * it's actually an ext4 filesystem.
4422                          */
4423                         if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4424                                 goto failed_mount;
4425                         ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
4426                                  "to feature incompatibilities");
4427                         goto failed_mount;
4428                 }
4429         }
4430
4431         /*
4432          * Check feature flags regardless of the revision level, since we
4433          * previously didn't change the revision level when setting the flags,
4434          * so there is a chance incompat flags are set on a rev 0 filesystem.
4435          */
4436         if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
4437                 goto failed_mount;
4438
4439         if (le32_to_cpu(es->s_log_block_size) >
4440             (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
4441                 ext4_msg(sb, KERN_ERR,
4442                          "Invalid log block size: %u",
4443                          le32_to_cpu(es->s_log_block_size));
4444                 goto failed_mount;
4445         }
4446         if (le32_to_cpu(es->s_log_cluster_size) >
4447             (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
4448                 ext4_msg(sb, KERN_ERR,
4449                          "Invalid log cluster size: %u",
4450                          le32_to_cpu(es->s_log_cluster_size));
4451                 goto failed_mount;
4452         }
4453
4454         if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) {
4455                 ext4_msg(sb, KERN_ERR,
4456                          "Number of reserved GDT blocks insanely large: %d",
4457                          le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
4458                 goto failed_mount;
4459         }
4460
4461         if (bdev_dax_supported(sb->s_bdev, blocksize))
4462                 set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags);
4463
4464         if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) {
4465                 if (ext4_has_feature_inline_data(sb)) {
4466                         ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
4467                                         " that may contain inline data");
4468                         goto failed_mount;
4469                 }
4470                 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) {
4471                         ext4_msg(sb, KERN_ERR,
4472                                 "DAX unsupported by block device.");
4473                         goto failed_mount;
4474                 }
4475         }
4476
4477         if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
4478                 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
4479                          es->s_encryption_level);
4480                 goto failed_mount;
4481         }
4482
4483         if (sb->s_blocksize != blocksize) {
4484                 /* Validate the filesystem blocksize */
4485                 if (!sb_set_blocksize(sb, blocksize)) {
4486                         ext4_msg(sb, KERN_ERR, "bad block size %d",
4487                                         blocksize);
4488                         goto failed_mount;
4489                 }
4490
4491                 brelse(bh);
4492                 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
4493                 offset = do_div(logical_sb_block, blocksize);
4494                 bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
4495                 if (IS_ERR(bh)) {
4496                         ext4_msg(sb, KERN_ERR,
4497                                "Can't read superblock on 2nd try");
4498                         ret = PTR_ERR(bh);
4499                         bh = NULL;
4500                         goto failed_mount;
4501                 }
4502                 es = (struct ext4_super_block *)(bh->b_data + offset);
4503                 sbi->s_es = es;
4504                 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
4505                         ext4_msg(sb, KERN_ERR,
4506                                "Magic mismatch, very weird!");
4507                         goto failed_mount;
4508                 }
4509         }
4510
4511         has_huge_files = ext4_has_feature_huge_file(sb);
4512         sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
4513                                                       has_huge_files);
4514         sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
4515
4516         sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
4517         if (ext4_has_feature_64bit(sb)) {
4518                 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
4519                     sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
4520                     !is_power_of_2(sbi->s_desc_size)) {
4521                         ext4_msg(sb, KERN_ERR,
4522                                "unsupported descriptor size %lu",
4523                                sbi->s_desc_size);
4524                         goto failed_mount;
4525                 }
4526         } else
4527                 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
4528
4529         sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
4530         sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
4531
4532         sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
4533         if (sbi->s_inodes_per_block == 0)
4534                 goto cantfind_ext4;
4535         if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
4536             sbi->s_inodes_per_group > blocksize * 8) {
4537                 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
4538                          sbi->s_inodes_per_group);
4539                 goto failed_mount;
4540         }
4541         sbi->s_itb_per_group = sbi->s_inodes_per_group /
4542                                         sbi->s_inodes_per_block;
4543         sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
4544         sbi->s_sbh = bh;
4545         sbi->s_mount_state = le16_to_cpu(es->s_state);
4546         sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
4547         sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
4548
4549         for (i = 0; i < 4; i++)
4550                 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
4551         sbi->s_def_hash_version = es->s_def_hash_version;
4552         if (ext4_has_feature_dir_index(sb)) {
4553                 i = le32_to_cpu(es->s_flags);
4554                 if (i & EXT2_FLAGS_UNSIGNED_HASH)
4555                         sbi->s_hash_unsigned = 3;
4556                 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
4557 #ifdef __CHAR_UNSIGNED__
4558                         if (!sb_rdonly(sb))
4559                                 es->s_flags |=
4560                                         cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
4561                         sbi->s_hash_unsigned = 3;
4562 #else
4563                         if (!sb_rdonly(sb))
4564                                 es->s_flags |=
4565                                         cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
4566 #endif
4567                 }
4568         }
4569
4570         /* Handle clustersize */
4571         clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
4572         if (ext4_has_feature_bigalloc(sb)) {
4573                 if (clustersize < blocksize) {
4574                         ext4_msg(sb, KERN_ERR,
4575                                  "cluster size (%d) smaller than "
4576                                  "block size (%d)", clustersize, blocksize);
4577                         goto failed_mount;
4578                 }
4579                 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
4580                         le32_to_cpu(es->s_log_block_size);
4581                 sbi->s_clusters_per_group =
4582                         le32_to_cpu(es->s_clusters_per_group);
4583                 if (sbi->s_clusters_per_group > blocksize * 8) {
4584                         ext4_msg(sb, KERN_ERR,
4585                                  "#clusters per group too big: %lu",
4586                                  sbi->s_clusters_per_group);
4587                         goto failed_mount;
4588                 }
4589                 if (sbi->s_blocks_per_group !=
4590                     (sbi->s_clusters_per_group * (clustersize / blocksize))) {
4591                         ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
4592                                  "clusters per group (%lu) inconsistent",
4593                                  sbi->s_blocks_per_group,
4594                                  sbi->s_clusters_per_group);
4595                         goto failed_mount;
4596                 }
4597         } else {
4598                 if (clustersize != blocksize) {
4599                         ext4_msg(sb, KERN_ERR,
4600                                  "fragment/cluster size (%d) != "
4601                                  "block size (%d)", clustersize, blocksize);
4602                         goto failed_mount;
4603                 }
4604                 if (sbi->s_blocks_per_group > blocksize * 8) {
4605                         ext4_msg(sb, KERN_ERR,
4606                                  "#blocks per group too big: %lu",
4607                                  sbi->s_blocks_per_group);
4608                         goto failed_mount;
4609                 }
4610                 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
4611                 sbi->s_cluster_bits = 0;
4612         }
4613         sbi->s_cluster_ratio = clustersize / blocksize;
4614
4615         /* Do we have standard group size of clustersize * 8 blocks ? */
4616         if (sbi->s_blocks_per_group == clustersize << 3)
4617                 set_opt2(sb, STD_GROUP_SIZE);
4618
4619         /*
4620          * Test whether we have more sectors than will fit in sector_t,
4621          * and whether the max offset is addressable by the page cache.
4622          */
4623         err = generic_check_addressable(sb->s_blocksize_bits,
4624                                         ext4_blocks_count(es));
4625         if (err) {
4626                 ext4_msg(sb, KERN_ERR, "filesystem"
4627                          " too large to mount safely on this system");
4628                 goto failed_mount;
4629         }
4630
4631         if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
4632                 goto cantfind_ext4;
4633
4634         /* check blocks count against device size */
4635         blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
4636         if (blocks_count && ext4_blocks_count(es) > blocks_count) {
4637                 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
4638                        "exceeds size of device (%llu blocks)",
4639                        ext4_blocks_count(es), blocks_count);
4640                 goto failed_mount;
4641         }
4642
4643         /*
4644          * It makes no sense for the first data block to be beyond the end
4645          * of the filesystem.
4646          */
4647         if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
4648                 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4649                          "block %u is beyond end of filesystem (%llu)",
4650                          le32_to_cpu(es->s_first_data_block),
4651                          ext4_blocks_count(es));
4652                 goto failed_mount;
4653         }
4654         if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) &&
4655             (sbi->s_cluster_ratio == 1)) {
4656                 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4657                          "block is 0 with a 1k block and cluster size");
4658                 goto failed_mount;
4659         }
4660
4661         blocks_count = (ext4_blocks_count(es) -
4662                         le32_to_cpu(es->s_first_data_block) +
4663                         EXT4_BLOCKS_PER_GROUP(sb) - 1);
4664         do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
4665         if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
4666                 ext4_msg(sb, KERN_WARNING, "groups count too large: %llu "
4667                        "(block count %llu, first data block %u, "
4668                        "blocks per group %lu)", blocks_count,
4669                        ext4_blocks_count(es),
4670                        le32_to_cpu(es->s_first_data_block),
4671                        EXT4_BLOCKS_PER_GROUP(sb));
4672                 goto failed_mount;
4673         }
4674         sbi->s_groups_count = blocks_count;
4675         sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
4676                         (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
4677         if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) !=
4678             le32_to_cpu(es->s_inodes_count)) {
4679                 ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu",
4680                          le32_to_cpu(es->s_inodes_count),
4681                          ((u64)sbi->s_groups_count * sbi->s_inodes_per_group));
4682                 ret = -EINVAL;
4683                 goto failed_mount;
4684         }
4685         db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
4686                    EXT4_DESC_PER_BLOCK(sb);
4687         if (ext4_has_feature_meta_bg(sb)) {
4688                 if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
4689                         ext4_msg(sb, KERN_WARNING,
4690                                  "first meta block group too large: %u "
4691                                  "(group descriptor block count %u)",
4692                                  le32_to_cpu(es->s_first_meta_bg), db_count);
4693                         goto failed_mount;
4694                 }
4695         }
4696         rcu_assign_pointer(sbi->s_group_desc,
4697                            kvmalloc_array(db_count,
4698                                           sizeof(struct buffer_head *),
4699                                           GFP_KERNEL));
4700         if (sbi->s_group_desc == NULL) {
4701                 ext4_msg(sb, KERN_ERR, "not enough memory");
4702                 ret = -ENOMEM;
4703                 goto failed_mount;
4704         }
4705
4706         bgl_lock_init(sbi->s_blockgroup_lock);
4707
4708         /* Pre-read the descriptors into the buffer cache */
4709         for (i = 0; i < db_count; i++) {
4710                 block = descriptor_loc(sb, logical_sb_block, i);
4711                 ext4_sb_breadahead_unmovable(sb, block);
4712         }
4713
4714         for (i = 0; i < db_count; i++) {
4715                 struct buffer_head *bh;
4716
4717                 block = descriptor_loc(sb, logical_sb_block, i);
4718                 bh = ext4_sb_bread_unmovable(sb, block);
4719                 if (IS_ERR(bh)) {
4720                         ext4_msg(sb, KERN_ERR,
4721                                "can't read group descriptor %d", i);
4722                         db_count = i;
4723                         ret = PTR_ERR(bh);
4724                         bh = NULL;
4725                         goto failed_mount2;
4726                 }
4727                 rcu_read_lock();
4728                 rcu_dereference(sbi->s_group_desc)[i] = bh;
4729                 rcu_read_unlock();
4730         }
4731         sbi->s_gdb_count = db_count;
4732         if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) {
4733                 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
4734                 ret = -EFSCORRUPTED;
4735                 goto failed_mount2;
4736         }
4737
4738         timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
4739
4740         /* Register extent status tree shrinker */
4741         if (ext4_es_register_shrinker(sbi))
4742                 goto failed_mount3;
4743
4744         sbi->s_stripe = ext4_get_stripe_size(sbi);
4745         sbi->s_extent_max_zeroout_kb = 32;
4746
4747         /*
4748          * set up enough so that it can read an inode
4749          */
4750         sb->s_op = &ext4_sops;
4751         sb->s_export_op = &ext4_export_ops;
4752         sb->s_xattr = ext4_xattr_handlers;
4753 #ifdef CONFIG_FS_ENCRYPTION
4754         sb->s_cop = &ext4_cryptops;
4755 #endif
4756 #ifdef CONFIG_FS_VERITY
4757         sb->s_vop = &ext4_verityops;
4758 #endif
4759 #ifdef CONFIG_QUOTA
4760         sb->dq_op = &ext4_quota_operations;
4761         if (ext4_has_feature_quota(sb))
4762                 sb->s_qcop = &dquot_quotactl_sysfile_ops;
4763         else
4764                 sb->s_qcop = &ext4_qctl_operations;
4765         sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
4766 #endif
4767         memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
4768
4769         INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
4770         mutex_init(&sbi->s_orphan_lock);
4771
4772         /* Initialize fast commit stuff */
4773         atomic_set(&sbi->s_fc_subtid, 0);
4774         atomic_set(&sbi->s_fc_ineligible_updates, 0);
4775         INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_MAIN]);
4776         INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_STAGING]);
4777         INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_MAIN]);
4778         INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_STAGING]);
4779         sbi->s_fc_bytes = 0;
4780         sbi->s_mount_flags &= ~EXT4_MF_FC_INELIGIBLE;
4781         sbi->s_mount_flags &= ~EXT4_MF_FC_COMMITTING;
4782         spin_lock_init(&sbi->s_fc_lock);
4783         memset(&sbi->s_fc_stats, 0, sizeof(sbi->s_fc_stats));
4784         sbi->s_fc_replay_state.fc_regions = NULL;
4785         sbi->s_fc_replay_state.fc_regions_size = 0;
4786         sbi->s_fc_replay_state.fc_regions_used = 0;
4787         sbi->s_fc_replay_state.fc_regions_valid = 0;
4788         sbi->s_fc_replay_state.fc_modified_inodes = NULL;
4789         sbi->s_fc_replay_state.fc_modified_inodes_size = 0;
4790         sbi->s_fc_replay_state.fc_modified_inodes_used = 0;
4791
4792         sb->s_root = NULL;
4793
4794         needs_recovery = (es->s_last_orphan != 0 ||
4795                           ext4_has_feature_journal_needs_recovery(sb));
4796
4797         if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb))
4798                 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
4799                         goto failed_mount3a;
4800
4801         /*
4802          * The first inode we look at is the journal inode.  Don't try
4803          * root first: it may be modified in the journal!
4804          */
4805         if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
4806                 err = ext4_load_journal(sb, es, journal_devnum);
4807                 if (err)
4808                         goto failed_mount3a;
4809         } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
4810                    ext4_has_feature_journal_needs_recovery(sb)) {
4811                 ext4_msg(sb, KERN_ERR, "required journal recovery "
4812                        "suppressed and not mounted read-only");
4813                 goto failed_mount_wq;
4814         } else {
4815                 /* Nojournal mode, all journal mount options are illegal */
4816                 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
4817                         ext4_msg(sb, KERN_ERR, "can't mount with "
4818                                  "journal_checksum, fs mounted w/o journal");
4819                         goto failed_mount_wq;
4820                 }
4821                 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4822                         ext4_msg(sb, KERN_ERR, "can't mount with "
4823                                  "journal_async_commit, fs mounted w/o journal");
4824                         goto failed_mount_wq;
4825                 }
4826                 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
4827                         ext4_msg(sb, KERN_ERR, "can't mount with "
4828                                  "commit=%lu, fs mounted w/o journal",
4829                                  sbi->s_commit_interval / HZ);
4830                         goto failed_mount_wq;
4831                 }
4832                 if (EXT4_MOUNT_DATA_FLAGS &
4833                     (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
4834                         ext4_msg(sb, KERN_ERR, "can't mount with "
4835                                  "data=, fs mounted w/o journal");
4836                         goto failed_mount_wq;
4837                 }
4838                 sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM;
4839                 clear_opt(sb, JOURNAL_CHECKSUM);
4840                 clear_opt(sb, DATA_FLAGS);
4841                 clear_opt2(sb, JOURNAL_FAST_COMMIT);
4842                 sbi->s_journal = NULL;
4843                 needs_recovery = 0;
4844                 goto no_journal;
4845         }
4846
4847         if (ext4_has_feature_64bit(sb) &&
4848             !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4849                                        JBD2_FEATURE_INCOMPAT_64BIT)) {
4850                 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4851                 goto failed_mount_wq;
4852         }
4853
4854         if (!set_journal_csum_feature_set(sb)) {
4855                 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4856                          "feature set");
4857                 goto failed_mount_wq;
4858         }
4859
4860         if (test_opt2(sb, JOURNAL_FAST_COMMIT) &&
4861                 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4862                                           JBD2_FEATURE_INCOMPAT_FAST_COMMIT)) {
4863                 ext4_msg(sb, KERN_ERR,
4864                         "Failed to set fast commit journal feature");
4865                 goto failed_mount_wq;
4866         }
4867
4868         /* We have now updated the journal if required, so we can
4869          * validate the data journaling mode. */
4870         switch (test_opt(sb, DATA_FLAGS)) {
4871         case 0:
4872                 /* No mode set, assume a default based on the journal
4873                  * capabilities: ORDERED_DATA if the journal can
4874                  * cope, else JOURNAL_DATA
4875                  */
4876                 if (jbd2_journal_check_available_features
4877                     (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4878                         set_opt(sb, ORDERED_DATA);
4879                         sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
4880                 } else {
4881                         set_opt(sb, JOURNAL_DATA);
4882                         sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
4883                 }
4884                 break;
4885
4886         case EXT4_MOUNT_ORDERED_DATA:
4887         case EXT4_MOUNT_WRITEBACK_DATA:
4888                 if (!jbd2_journal_check_available_features
4889                     (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4890                         ext4_msg(sb, KERN_ERR, "Journal does not support "
4891                                "requested data journaling mode");
4892                         goto failed_mount_wq;
4893                 }
4894         default:
4895                 break;
4896         }
4897
4898         if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4899             test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4900                 ext4_msg(sb, KERN_ERR, "can't mount with "
4901                         "journal_async_commit in data=ordered mode");
4902                 goto failed_mount_wq;
4903         }
4904
4905         set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4906
4907         sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
4908         sbi->s_journal->j_submit_inode_data_buffers =
4909                 ext4_journal_submit_inode_data_buffers;
4910         sbi->s_journal->j_finish_inode_data_buffers =
4911                 ext4_journal_finish_inode_data_buffers;
4912
4913 no_journal:
4914         if (!test_opt(sb, NO_MBCACHE)) {
4915                 sbi->s_ea_block_cache = ext4_xattr_create_cache();
4916                 if (!sbi->s_ea_block_cache) {
4917                         ext4_msg(sb, KERN_ERR,
4918                                  "Failed to create ea_block_cache");
4919                         goto failed_mount_wq;
4920                 }
4921
4922                 if (ext4_has_feature_ea_inode(sb)) {
4923                         sbi->s_ea_inode_cache = ext4_xattr_create_cache();
4924                         if (!sbi->s_ea_inode_cache) {
4925                                 ext4_msg(sb, KERN_ERR,
4926                                          "Failed to create ea_inode_cache");
4927                                 goto failed_mount_wq;
4928                         }
4929                 }
4930         }
4931
4932         if (ext4_has_feature_verity(sb) && blocksize != PAGE_SIZE) {
4933                 ext4_msg(sb, KERN_ERR, "Unsupported blocksize for fs-verity");
4934                 goto failed_mount_wq;
4935         }
4936
4937         if (DUMMY_ENCRYPTION_ENABLED(sbi) && !sb_rdonly(sb) &&
4938             !ext4_has_feature_encrypt(sb)) {
4939                 ext4_set_feature_encrypt(sb);
4940                 ext4_commit_super(sb, 1);
4941         }
4942
4943         /*
4944          * Get the # of file system overhead blocks from the
4945          * superblock if present.
4946          */
4947         if (es->s_overhead_clusters)
4948                 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
4949         else {
4950                 err = ext4_calculate_overhead(sb);
4951                 if (err)
4952                         goto failed_mount_wq;
4953         }
4954
4955         /*
4956          * The maximum number of concurrent works can be high and
4957          * concurrency isn't really necessary.  Limit it to 1.
4958          */
4959         EXT4_SB(sb)->rsv_conversion_wq =
4960                 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4961         if (!EXT4_SB(sb)->rsv_conversion_wq) {
4962                 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
4963                 ret = -ENOMEM;
4964                 goto failed_mount4;
4965         }
4966
4967         /*
4968          * The jbd2_journal_load will have done any necessary log recovery,
4969          * so we can safely mount the rest of the filesystem now.
4970          */
4971
4972         root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL);
4973         if (IS_ERR(root)) {
4974                 ext4_msg(sb, KERN_ERR, "get root inode failed");
4975                 ret = PTR_ERR(root);
4976                 root = NULL;
4977                 goto failed_mount4;
4978         }
4979         if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
4980                 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
4981                 iput(root);
4982                 goto failed_mount4;
4983         }
4984
4985 #ifdef CONFIG_UNICODE
4986         if (sb->s_encoding)
4987                 sb->s_d_op = &ext4_dentry_ops;
4988 #endif
4989
4990         sb->s_root = d_make_root(root);
4991         if (!sb->s_root) {
4992                 ext4_msg(sb, KERN_ERR, "get root dentry failed");
4993                 ret = -ENOMEM;
4994                 goto failed_mount4;
4995         }
4996
4997         ret = ext4_setup_super(sb, es, sb_rdonly(sb));
4998         if (ret == -EROFS) {
4999                 sb->s_flags |= SB_RDONLY;
5000                 ret = 0;
5001         } else if (ret)
5002                 goto failed_mount4a;
5003
5004         ext4_set_resv_clusters(sb);
5005
5006         if (test_opt(sb, BLOCK_VALIDITY)) {
5007                 err = ext4_setup_system_zone(sb);
5008                 if (err) {
5009                         ext4_msg(sb, KERN_ERR, "failed to initialize system "
5010                                  "zone (%d)", err);
5011                         goto failed_mount4a;
5012                 }
5013         }
5014         ext4_fc_replay_cleanup(sb);
5015
5016         ext4_ext_init(sb);
5017         err = ext4_mb_init(sb);
5018         if (err) {
5019                 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
5020                          err);
5021                 goto failed_mount5;
5022         }
5023
5024         block = ext4_count_free_clusters(sb);
5025         ext4_free_blocks_count_set(sbi->s_es, 
5026                                    EXT4_C2B(sbi, block));
5027         ext4_superblock_csum_set(sb);
5028         err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
5029                                   GFP_KERNEL);
5030         if (!err) {
5031                 unsigned long freei = ext4_count_free_inodes(sb);
5032                 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
5033                 ext4_superblock_csum_set(sb);
5034                 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
5035                                           GFP_KERNEL);
5036         }
5037         if (!err)
5038                 err = percpu_counter_init(&sbi->s_dirs_counter,
5039                                           ext4_count_dirs(sb), GFP_KERNEL);
5040         if (!err)
5041                 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
5042                                           GFP_KERNEL);
5043         if (!err)
5044                 err = percpu_init_rwsem(&sbi->s_writepages_rwsem);
5045
5046         if (err) {
5047                 ext4_msg(sb, KERN_ERR, "insufficient memory");
5048                 goto failed_mount6;
5049         }
5050
5051         if (ext4_has_feature_flex_bg(sb))
5052                 if (!ext4_fill_flex_info(sb)) {
5053                         ext4_msg(sb, KERN_ERR,
5054                                "unable to initialize "
5055                                "flex_bg meta info!");
5056                         goto failed_mount6;
5057                 }
5058
5059         err = ext4_register_li_request(sb, first_not_zeroed);
5060         if (err)
5061                 goto failed_mount6;
5062
5063         err = ext4_register_sysfs(sb);
5064         if (err)
5065                 goto failed_mount7;
5066
5067 #ifdef CONFIG_QUOTA
5068         /* Enable quota usage during mount. */
5069         if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
5070                 err = ext4_enable_quotas(sb);
5071                 if (err)
5072                         goto failed_mount8;
5073         }
5074 #endif  /* CONFIG_QUOTA */
5075
5076         /*
5077          * Save the original bdev mapping's wb_err value which could be
5078          * used to detect the metadata async write error.
5079          */
5080         spin_lock_init(&sbi->s_bdev_wb_lock);
5081         errseq_check_and_advance(&sb->s_bdev->bd_inode->i_mapping->wb_err,
5082                                  &sbi->s_bdev_wb_err);
5083         sb->s_bdev->bd_super = sb;
5084         EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
5085         ext4_orphan_cleanup(sb, es);
5086         EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
5087         if (needs_recovery) {
5088                 ext4_msg(sb, KERN_INFO, "recovery complete");
5089                 err = ext4_mark_recovery_complete(sb, es);
5090                 if (err)
5091                         goto failed_mount8;
5092         }
5093         if (EXT4_SB(sb)->s_journal) {
5094                 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
5095                         descr = " journalled data mode";
5096                 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
5097                         descr = " ordered data mode";
5098                 else
5099                         descr = " writeback data mode";
5100         } else
5101                 descr = "out journal";
5102
5103         if (test_opt(sb, DISCARD)) {
5104                 struct request_queue *q = bdev_get_queue(sb->s_bdev);
5105                 if (!blk_queue_discard(q))
5106                         ext4_msg(sb, KERN_WARNING,
5107                                  "mounting with \"discard\" option, but "
5108                                  "the device does not support discard");
5109         }
5110
5111         if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
5112                 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
5113                          "Opts: %.*s%s%s", descr,
5114                          (int) sizeof(sbi->s_es->s_mount_opts),
5115                          sbi->s_es->s_mount_opts,
5116                          *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
5117
5118         if (es->s_error_count)
5119                 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
5120
5121         /* Enable message ratelimiting. Default is 10 messages per 5 secs. */
5122         ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
5123         ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
5124         ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
5125         atomic_set(&sbi->s_warning_count, 0);
5126         atomic_set(&sbi->s_msg_count, 0);
5127
5128         kfree(orig_data);
5129         return 0;
5130
5131 cantfind_ext4:
5132         if (!silent)
5133                 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
5134         goto failed_mount;
5135
5136 failed_mount8:
5137         ext4_unregister_sysfs(sb);
5138         kobject_put(&sbi->s_kobj);
5139 failed_mount7:
5140         ext4_unregister_li_request(sb);
5141 failed_mount6:
5142         ext4_mb_release(sb);
5143         rcu_read_lock();
5144         flex_groups = rcu_dereference(sbi->s_flex_groups);
5145         if (flex_groups) {
5146                 for (i = 0; i < sbi->s_flex_groups_allocated; i++)
5147                         kvfree(flex_groups[i]);
5148                 kvfree(flex_groups);
5149         }
5150         rcu_read_unlock();
5151         percpu_counter_destroy(&sbi->s_freeclusters_counter);
5152         percpu_counter_destroy(&sbi->s_freeinodes_counter);
5153         percpu_counter_destroy(&sbi->s_dirs_counter);
5154         percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
5155         percpu_free_rwsem(&sbi->s_writepages_rwsem);
5156 failed_mount5:
5157         ext4_ext_release(sb);
5158         ext4_release_system_zone(sb);
5159 failed_mount4a:
5160         dput(sb->s_root);
5161         sb->s_root = NULL;
5162 failed_mount4:
5163         ext4_msg(sb, KERN_ERR, "mount failed");
5164         if (EXT4_SB(sb)->rsv_conversion_wq)
5165                 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
5166 failed_mount_wq:
5167         ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
5168         sbi->s_ea_inode_cache = NULL;
5169
5170         ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
5171         sbi->s_ea_block_cache = NULL;
5172
5173         if (sbi->s_journal) {
5174                 jbd2_journal_destroy(sbi->s_journal);
5175                 sbi->s_journal = NULL;
5176         }
5177 failed_mount3a:
5178         ext4_es_unregister_shrinker(sbi);
5179 failed_mount3:
5180         del_timer_sync(&sbi->s_err_report);
5181         if (sbi->s_mmp_tsk)
5182                 kthread_stop(sbi->s_mmp_tsk);
5183 failed_mount2:
5184         rcu_read_lock();
5185         group_desc = rcu_dereference(sbi->s_group_desc);
5186         for (i = 0; i < db_count; i++)
5187                 brelse(group_desc[i]);
5188         kvfree(group_desc);
5189         rcu_read_unlock();
5190 failed_mount:
5191         if (sbi->s_chksum_driver)
5192                 crypto_free_shash(sbi->s_chksum_driver);
5193
5194 #ifdef CONFIG_UNICODE
5195         utf8_unload(sb->s_encoding);
5196 #endif
5197
5198 #ifdef CONFIG_QUOTA
5199         for (i = 0; i < EXT4_MAXQUOTAS; i++)
5200                 kfree(get_qf_name(sb, sbi, i));
5201 #endif
5202         fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
5203         ext4_blkdev_remove(sbi);
5204         brelse(bh);
5205 out_fail:
5206         sb->s_fs_info = NULL;
5207         kfree(sbi->s_blockgroup_lock);
5208 out_free_base:
5209         kfree(sbi);
5210         kfree(orig_data);
5211         fs_put_dax(dax_dev);
5212         return err ? err : ret;
5213 }
5214
5215 /*
5216  * Setup any per-fs journal parameters now.  We'll do this both on
5217  * initial mount, once the journal has been initialised but before we've
5218  * done any recovery; and again on any subsequent remount.
5219  */
5220 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
5221 {
5222         struct ext4_sb_info *sbi = EXT4_SB(sb);
5223
5224         journal->j_commit_interval = sbi->s_commit_interval;
5225         journal->j_min_batch_time = sbi->s_min_batch_time;
5226         journal->j_max_batch_time = sbi->s_max_batch_time;
5227         ext4_fc_init(sb, journal);
5228
5229         write_lock(&journal->j_state_lock);
5230         if (test_opt(sb, BARRIER))
5231                 journal->j_flags |= JBD2_BARRIER;
5232         else
5233                 journal->j_flags &= ~JBD2_BARRIER;
5234         if (test_opt(sb, DATA_ERR_ABORT))
5235                 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
5236         else
5237                 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
5238         write_unlock(&journal->j_state_lock);
5239 }
5240
5241 static struct inode *ext4_get_journal_inode(struct super_block *sb,
5242                                              unsigned int journal_inum)
5243 {
5244         struct inode *journal_inode;
5245
5246         /*
5247          * Test for the existence of a valid inode on disk.  Bad things
5248          * happen if we iget() an unused inode, as the subsequent iput()
5249          * will try to delete it.
5250          */
5251         journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL);
5252         if (IS_ERR(journal_inode)) {
5253                 ext4_msg(sb, KERN_ERR, "no journal found");
5254                 return NULL;
5255         }
5256         if (!journal_inode->i_nlink) {
5257                 make_bad_inode(journal_inode);
5258                 iput(journal_inode);
5259                 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
5260                 return NULL;
5261         }
5262
5263         jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
5264                   journal_inode, journal_inode->i_size);
5265         if (!S_ISREG(journal_inode->i_mode)) {
5266                 ext4_msg(sb, KERN_ERR, "invalid journal inode");
5267                 iput(journal_inode);
5268                 return NULL;
5269         }
5270         return journal_inode;
5271 }
5272
5273 static journal_t *ext4_get_journal(struct super_block *sb,
5274                                    unsigned int journal_inum)
5275 {
5276         struct inode *journal_inode;
5277         journal_t *journal;
5278
5279         if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5280                 return NULL;
5281
5282         journal_inode = ext4_get_journal_inode(sb, journal_inum);
5283         if (!journal_inode)
5284                 return NULL;
5285
5286         journal = jbd2_journal_init_inode(journal_inode);
5287         if (!journal) {
5288                 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
5289                 iput(journal_inode);
5290                 return NULL;
5291         }
5292         journal->j_private = sb;
5293         ext4_init_journal_params(sb, journal);
5294         return journal;
5295 }
5296
5297 static journal_t *ext4_get_dev_journal(struct super_block *sb,
5298                                        dev_t j_dev)
5299 {
5300         struct buffer_head *bh;
5301         journal_t *journal;
5302         ext4_fsblk_t start;
5303         ext4_fsblk_t len;
5304         int hblock, blocksize;
5305         ext4_fsblk_t sb_block;
5306         unsigned long offset;
5307         struct ext4_super_block *es;
5308         struct block_device *bdev;
5309
5310         if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5311                 return NULL;
5312
5313         bdev = ext4_blkdev_get(j_dev, sb);
5314         if (bdev == NULL)
5315                 return NULL;
5316
5317         blocksize = sb->s_blocksize;
5318         hblock = bdev_logical_block_size(bdev);
5319         if (blocksize < hblock) {
5320                 ext4_msg(sb, KERN_ERR,
5321                         "blocksize too small for journal device");
5322                 goto out_bdev;
5323         }
5324
5325         sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
5326         offset = EXT4_MIN_BLOCK_SIZE % blocksize;
5327         set_blocksize(bdev, blocksize);
5328         if (!(bh = __bread(bdev, sb_block, blocksize))) {
5329                 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
5330                        "external journal");
5331                 goto out_bdev;
5332         }
5333
5334         es = (struct ext4_super_block *) (bh->b_data + offset);
5335         if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
5336             !(le32_to_cpu(es->s_feature_incompat) &
5337               EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
5338                 ext4_msg(sb, KERN_ERR, "external journal has "
5339                                         "bad superblock");
5340                 brelse(bh);
5341                 goto out_bdev;
5342         }
5343
5344         if ((le32_to_cpu(es->s_feature_ro_compat) &
5345              EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
5346             es->s_checksum != ext4_superblock_csum(sb, es)) {
5347                 ext4_msg(sb, KERN_ERR, "external journal has "
5348                                        "corrupt superblock");
5349                 brelse(bh);
5350                 goto out_bdev;
5351         }
5352
5353         if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
5354                 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
5355                 brelse(bh);
5356                 goto out_bdev;
5357         }
5358
5359         len = ext4_blocks_count(es);
5360         start = sb_block + 1;
5361         brelse(bh);     /* we're done with the superblock */
5362
5363         journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
5364                                         start, len, blocksize);
5365         if (!journal) {
5366                 ext4_msg(sb, KERN_ERR, "failed to create device journal");
5367                 goto out_bdev;
5368         }
5369         journal->j_private = sb;
5370         if (ext4_read_bh_lock(journal->j_sb_buffer, REQ_META | REQ_PRIO, true)) {
5371                 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
5372                 goto out_journal;
5373         }
5374         if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
5375                 ext4_msg(sb, KERN_ERR, "External journal has more than one "
5376                                         "user (unsupported) - %d",
5377                         be32_to_cpu(journal->j_superblock->s_nr_users));
5378                 goto out_journal;
5379         }
5380         EXT4_SB(sb)->s_journal_bdev = bdev;
5381         ext4_init_journal_params(sb, journal);
5382         return journal;
5383
5384 out_journal:
5385         jbd2_journal_destroy(journal);
5386 out_bdev:
5387         ext4_blkdev_put(bdev);
5388         return NULL;
5389 }
5390
5391 static int ext4_load_journal(struct super_block *sb,
5392                              struct ext4_super_block *es,
5393                              unsigned long journal_devnum)
5394 {
5395         journal_t *journal;
5396         unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
5397         dev_t journal_dev;
5398         int err = 0;
5399         int really_read_only;
5400         int journal_dev_ro;
5401
5402         if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5403                 return -EFSCORRUPTED;
5404
5405         if (journal_devnum &&
5406             journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5407                 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
5408                         "numbers have changed");
5409                 journal_dev = new_decode_dev(journal_devnum);
5410         } else
5411                 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
5412
5413         if (journal_inum && journal_dev) {
5414                 ext4_msg(sb, KERN_ERR,
5415                          "filesystem has both journal inode and journal device!");
5416                 return -EINVAL;
5417         }
5418
5419         if (journal_inum) {
5420                 journal = ext4_get_journal(sb, journal_inum);
5421                 if (!journal)
5422                         return -EINVAL;
5423         } else {
5424                 journal = ext4_get_dev_journal(sb, journal_dev);
5425                 if (!journal)
5426                         return -EINVAL;
5427         }
5428
5429         journal_dev_ro = bdev_read_only(journal->j_dev);
5430         really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro;
5431
5432         if (journal_dev_ro && !sb_rdonly(sb)) {
5433                 ext4_msg(sb, KERN_ERR,
5434                          "journal device read-only, try mounting with '-o ro'");
5435                 err = -EROFS;
5436                 goto err_out;
5437         }
5438
5439         /*
5440          * Are we loading a blank journal or performing recovery after a
5441          * crash?  For recovery, we need to check in advance whether we
5442          * can get read-write access to the device.
5443          */
5444         if (ext4_has_feature_journal_needs_recovery(sb)) {
5445                 if (sb_rdonly(sb)) {
5446                         ext4_msg(sb, KERN_INFO, "INFO: recovery "
5447                                         "required on readonly filesystem");
5448                         if (really_read_only) {
5449                                 ext4_msg(sb, KERN_ERR, "write access "
5450                                         "unavailable, cannot proceed "
5451                                         "(try mounting with noload)");
5452                                 err = -EROFS;
5453                                 goto err_out;
5454                         }
5455                         ext4_msg(sb, KERN_INFO, "write access will "
5456                                "be enabled during recovery");
5457                 }
5458         }
5459
5460         if (!(journal->j_flags & JBD2_BARRIER))
5461                 ext4_msg(sb, KERN_INFO, "barriers disabled");
5462
5463         if (!ext4_has_feature_journal_needs_recovery(sb))
5464                 err = jbd2_journal_wipe(journal, !really_read_only);
5465         if (!err) {
5466                 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
5467                 if (save)
5468                         memcpy(save, ((char *) es) +
5469                                EXT4_S_ERR_START, EXT4_S_ERR_LEN);
5470                 err = jbd2_journal_load(journal);
5471                 if (save)
5472                         memcpy(((char *) es) + EXT4_S_ERR_START,
5473                                save, EXT4_S_ERR_LEN);
5474                 kfree(save);
5475         }
5476
5477         if (err) {
5478                 ext4_msg(sb, KERN_ERR, "error loading journal");
5479                 goto err_out;
5480         }
5481
5482         EXT4_SB(sb)->s_journal = journal;
5483         err = ext4_clear_journal_err(sb, es);
5484         if (err) {
5485                 EXT4_SB(sb)->s_journal = NULL;
5486                 jbd2_journal_destroy(journal);
5487                 return err;
5488         }
5489
5490         if (!really_read_only && journal_devnum &&
5491             journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5492                 es->s_journal_dev = cpu_to_le32(journal_devnum);
5493
5494                 /* Make sure we flush the recovery flag to disk. */
5495                 ext4_commit_super(sb, 1);
5496         }
5497
5498         return 0;
5499
5500 err_out:
5501         jbd2_journal_destroy(journal);
5502         return err;
5503 }
5504
5505 static int ext4_commit_super(struct super_block *sb, int sync)
5506 {
5507         struct ext4_super_block *es = EXT4_SB(sb)->s_es;
5508         struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
5509         int error = 0;
5510
5511         if (!sbh || block_device_ejected(sb))
5512                 return error;
5513
5514         /*
5515          * If the file system is mounted read-only, don't update the
5516          * superblock write time.  This avoids updating the superblock
5517          * write time when we are mounting the root file system
5518          * read/only but we need to replay the journal; at that point,
5519          * for people who are east of GMT and who make their clock
5520          * tick in localtime for Windows bug-for-bug compatibility,
5521          * the clock is set in the future, and this will cause e2fsck
5522          * to complain and force a full file system check.
5523          */
5524         if (!(sb->s_flags & SB_RDONLY))
5525                 ext4_update_tstamp(es, s_wtime);
5526         if (sb->s_bdev->bd_part)
5527                 es->s_kbytes_written =
5528                         cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
5529                             ((part_stat_read(sb->s_bdev->bd_part,
5530                                              sectors[STAT_WRITE]) -
5531                               EXT4_SB(sb)->s_sectors_written_start) >> 1));
5532         else
5533                 es->s_kbytes_written =
5534                         cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
5535         if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter))
5536                 ext4_free_blocks_count_set(es,
5537                         EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
5538                                 &EXT4_SB(sb)->s_freeclusters_counter)));
5539         if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter))
5540                 es->s_free_inodes_count =
5541                         cpu_to_le32(percpu_counter_sum_positive(
5542                                 &EXT4_SB(sb)->s_freeinodes_counter));
5543         BUFFER_TRACE(sbh, "marking dirty");
5544         ext4_superblock_csum_set(sb);
5545         if (sync)
5546                 lock_buffer(sbh);
5547         if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
5548                 /*
5549                  * Oh, dear.  A previous attempt to write the
5550                  * superblock failed.  This could happen because the
5551                  * USB device was yanked out.  Or it could happen to
5552                  * be a transient write error and maybe the block will
5553                  * be remapped.  Nothing we can do but to retry the
5554                  * write and hope for the best.
5555                  */
5556                 ext4_msg(sb, KERN_ERR, "previous I/O error to "
5557                        "superblock detected");
5558                 clear_buffer_write_io_error(sbh);
5559                 set_buffer_uptodate(sbh);
5560         }
5561         mark_buffer_dirty(sbh);
5562         if (sync) {
5563                 unlock_buffer(sbh);
5564                 error = __sync_dirty_buffer(sbh,
5565                         REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0));
5566                 if (buffer_write_io_error(sbh)) {
5567                         ext4_msg(sb, KERN_ERR, "I/O error while writing "
5568                                "superblock");
5569                         clear_buffer_write_io_error(sbh);
5570                         set_buffer_uptodate(sbh);
5571                 }
5572         }
5573         return error;
5574 }
5575
5576 /*
5577  * Have we just finished recovery?  If so, and if we are mounting (or
5578  * remounting) the filesystem readonly, then we will end up with a
5579  * consistent fs on disk.  Record that fact.
5580  */
5581 static int ext4_mark_recovery_complete(struct super_block *sb,
5582                                        struct ext4_super_block *es)
5583 {
5584         int err;
5585         journal_t *journal = EXT4_SB(sb)->s_journal;
5586
5587         if (!ext4_has_feature_journal(sb)) {
5588                 if (journal != NULL) {
5589                         ext4_error(sb, "Journal got removed while the fs was "
5590                                    "mounted!");
5591                         return -EFSCORRUPTED;
5592                 }
5593                 return 0;
5594         }
5595         jbd2_journal_lock_updates(journal);
5596         err = jbd2_journal_flush(journal);
5597         if (err < 0)
5598                 goto out;
5599
5600         if (ext4_has_feature_journal_needs_recovery(sb) && sb_rdonly(sb)) {
5601                 ext4_clear_feature_journal_needs_recovery(sb);
5602                 ext4_commit_super(sb, 1);
5603         }
5604 out:
5605         jbd2_journal_unlock_updates(journal);
5606         return err;
5607 }
5608
5609 /*
5610  * If we are mounting (or read-write remounting) a filesystem whose journal
5611  * has recorded an error from a previous lifetime, move that error to the
5612  * main filesystem now.
5613  */
5614 static int ext4_clear_journal_err(struct super_block *sb,
5615                                    struct ext4_super_block *es)
5616 {
5617         journal_t *journal;
5618         int j_errno;
5619         const char *errstr;
5620
5621         if (!ext4_has_feature_journal(sb)) {
5622                 ext4_error(sb, "Journal got removed while the fs was mounted!");
5623                 return -EFSCORRUPTED;
5624         }
5625
5626         journal = EXT4_SB(sb)->s_journal;
5627
5628         /*
5629          * Now check for any error status which may have been recorded in the
5630          * journal by a prior ext4_error() or ext4_abort()
5631          */
5632
5633         j_errno = jbd2_journal_errno(journal);
5634         if (j_errno) {
5635                 char nbuf[16];
5636
5637                 errstr = ext4_decode_error(sb, j_errno, nbuf);
5638                 ext4_warning(sb, "Filesystem error recorded "
5639                              "from previous mount: %s", errstr);
5640                 ext4_warning(sb, "Marking fs in need of filesystem check.");
5641
5642                 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
5643                 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
5644                 ext4_commit_super(sb, 1);
5645
5646                 jbd2_journal_clear_err(journal);
5647                 jbd2_journal_update_sb_errno(journal);
5648         }
5649         return 0;
5650 }
5651
5652 /*
5653  * Force the running and committing transactions to commit,
5654  * and wait on the commit.
5655  */
5656 int ext4_force_commit(struct super_block *sb)
5657 {
5658         journal_t *journal;
5659
5660         if (sb_rdonly(sb))
5661                 return 0;
5662
5663         journal = EXT4_SB(sb)->s_journal;
5664         return ext4_journal_force_commit(journal);
5665 }
5666
5667 static int ext4_sync_fs(struct super_block *sb, int wait)
5668 {
5669         int ret = 0;
5670         tid_t target;
5671         bool needs_barrier = false;
5672         struct ext4_sb_info *sbi = EXT4_SB(sb);
5673
5674         if (unlikely(ext4_forced_shutdown(sbi)))
5675                 return 0;
5676
5677         trace_ext4_sync_fs(sb, wait);
5678         flush_workqueue(sbi->rsv_conversion_wq);
5679         /*
5680          * Writeback quota in non-journalled quota case - journalled quota has
5681          * no dirty dquots
5682          */
5683         dquot_writeback_dquots(sb, -1);
5684         /*
5685          * Data writeback is possible w/o journal transaction, so barrier must
5686          * being sent at the end of the function. But we can skip it if
5687          * transaction_commit will do it for us.
5688          */
5689         if (sbi->s_journal) {
5690                 target = jbd2_get_latest_transaction(sbi->s_journal);
5691                 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
5692                     !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
5693                         needs_barrier = true;
5694
5695                 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
5696                         if (wait)
5697                                 ret = jbd2_log_wait_commit(sbi->s_journal,
5698                                                            target);
5699                 }
5700         } else if (wait && test_opt(sb, BARRIER))
5701                 needs_barrier = true;
5702         if (needs_barrier) {
5703                 int err;
5704                 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL);
5705                 if (!ret)
5706                         ret = err;
5707         }
5708
5709         return ret;
5710 }
5711
5712 /*
5713  * LVM calls this function before a (read-only) snapshot is created.  This
5714  * gives us a chance to flush the journal completely and mark the fs clean.
5715  *
5716  * Note that only this function cannot bring a filesystem to be in a clean
5717  * state independently. It relies on upper layer to stop all data & metadata
5718  * modifications.
5719  */
5720 static int ext4_freeze(struct super_block *sb)
5721 {
5722         int error = 0;
5723         journal_t *journal;
5724
5725         if (sb_rdonly(sb))
5726                 return 0;
5727
5728         journal = EXT4_SB(sb)->s_journal;
5729
5730         if (journal) {
5731                 /* Now we set up the journal barrier. */
5732                 jbd2_journal_lock_updates(journal);
5733
5734                 /*
5735                  * Don't clear the needs_recovery flag if we failed to
5736                  * flush the journal.
5737                  */
5738                 error = jbd2_journal_flush(journal);
5739                 if (error < 0)
5740                         goto out;
5741
5742                 /* Journal blocked and flushed, clear needs_recovery flag. */
5743                 ext4_clear_feature_journal_needs_recovery(sb);
5744         }
5745
5746         error = ext4_commit_super(sb, 1);
5747 out:
5748         if (journal)
5749                 /* we rely on upper layer to stop further updates */
5750                 jbd2_journal_unlock_updates(journal);
5751         return error;
5752 }
5753
5754 /*
5755  * Called by LVM after the snapshot is done.  We need to reset the RECOVER
5756  * flag here, even though the filesystem is not technically dirty yet.
5757  */
5758 static int ext4_unfreeze(struct super_block *sb)
5759 {
5760         if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb)))
5761                 return 0;
5762
5763         if (EXT4_SB(sb)->s_journal) {
5764                 /* Reset the needs_recovery flag before the fs is unlocked. */
5765                 ext4_set_feature_journal_needs_recovery(sb);
5766         }
5767
5768         ext4_commit_super(sb, 1);
5769         return 0;
5770 }
5771
5772 /*
5773  * Structure to save mount options for ext4_remount's benefit
5774  */
5775 struct ext4_mount_options {
5776         unsigned long s_mount_opt;
5777         unsigned long s_mount_opt2;
5778         kuid_t s_resuid;
5779         kgid_t s_resgid;
5780         unsigned long s_commit_interval;
5781         u32 s_min_batch_time, s_max_batch_time;
5782 #ifdef CONFIG_QUOTA
5783         int s_jquota_fmt;
5784         char *s_qf_names[EXT4_MAXQUOTAS];
5785 #endif
5786 };
5787
5788 static int ext4_remount(struct super_block *sb, int *flags, char *data)
5789 {
5790         struct ext4_super_block *es;
5791         struct ext4_sb_info *sbi = EXT4_SB(sb);
5792         unsigned long old_sb_flags, vfs_flags;
5793         struct ext4_mount_options old_opts;
5794         int enable_quota = 0;
5795         ext4_group_t g;
5796         unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
5797         int err = 0;
5798 #ifdef CONFIG_QUOTA
5799         int i, j;
5800         char *to_free[EXT4_MAXQUOTAS];
5801 #endif
5802         char *orig_data = kstrdup(data, GFP_KERNEL);
5803
5804         if (data && !orig_data)
5805                 return -ENOMEM;
5806
5807         /* Store the original options */
5808         old_sb_flags = sb->s_flags;
5809         old_opts.s_mount_opt = sbi->s_mount_opt;
5810         old_opts.s_mount_opt2 = sbi->s_mount_opt2;
5811         old_opts.s_resuid = sbi->s_resuid;
5812         old_opts.s_resgid = sbi->s_resgid;
5813         old_opts.s_commit_interval = sbi->s_commit_interval;
5814         old_opts.s_min_batch_time = sbi->s_min_batch_time;
5815         old_opts.s_max_batch_time = sbi->s_max_batch_time;
5816 #ifdef CONFIG_QUOTA
5817         old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
5818         for (i = 0; i < EXT4_MAXQUOTAS; i++)
5819                 if (sbi->s_qf_names[i]) {
5820                         char *qf_name = get_qf_name(sb, sbi, i);
5821
5822                         old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL);
5823                         if (!old_opts.s_qf_names[i]) {
5824                                 for (j = 0; j < i; j++)
5825                                         kfree(old_opts.s_qf_names[j]);
5826                                 kfree(orig_data);
5827                                 return -ENOMEM;
5828                         }
5829                 } else
5830                         old_opts.s_qf_names[i] = NULL;
5831 #endif
5832         if (sbi->s_journal && sbi->s_journal->j_task->io_context)
5833                 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
5834
5835         /*
5836          * Some options can be enabled by ext4 and/or by VFS mount flag
5837          * either way we need to make sure it matches in both *flags and
5838          * s_flags. Copy those selected flags from *flags to s_flags
5839          */
5840         vfs_flags = SB_LAZYTIME | SB_I_VERSION;
5841         sb->s_flags = (sb->s_flags & ~vfs_flags) | (*flags & vfs_flags);
5842
5843         if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
5844                 err = -EINVAL;
5845                 goto restore_opts;
5846         }
5847
5848         if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
5849             test_opt(sb, JOURNAL_CHECKSUM)) {
5850                 ext4_msg(sb, KERN_ERR, "changing journal_checksum "
5851                          "during remount not supported; ignoring");
5852                 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
5853         }
5854
5855         if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
5856                 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
5857                         ext4_msg(sb, KERN_ERR, "can't mount with "
5858                                  "both data=journal and delalloc");
5859                         err = -EINVAL;
5860                         goto restore_opts;
5861                 }
5862                 if (test_opt(sb, DIOREAD_NOLOCK)) {
5863                         ext4_msg(sb, KERN_ERR, "can't mount with "
5864                                  "both data=journal and dioread_nolock");
5865                         err = -EINVAL;
5866                         goto restore_opts;
5867                 }
5868         } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
5869                 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5870                         ext4_msg(sb, KERN_ERR, "can't mount with "
5871                                 "journal_async_commit in data=ordered mode");
5872                         err = -EINVAL;
5873                         goto restore_opts;
5874                 }
5875         }
5876
5877         if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
5878                 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
5879                 err = -EINVAL;
5880                 goto restore_opts;
5881         }
5882
5883         if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
5884                 ext4_abort(sb, EXT4_ERR_ESHUTDOWN, "Abort forced by user");
5885
5886         sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
5887                 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
5888
5889         es = sbi->s_es;
5890
5891         if (sbi->s_journal) {
5892                 ext4_init_journal_params(sb, sbi->s_journal);
5893                 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
5894         }
5895
5896         if ((bool)(*flags & SB_RDONLY) != sb_rdonly(sb)) {
5897                 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
5898                         err = -EROFS;
5899                         goto restore_opts;
5900                 }
5901
5902                 if (*flags & SB_RDONLY) {
5903                         err = sync_filesystem(sb);
5904                         if (err < 0)
5905                                 goto restore_opts;
5906                         err = dquot_suspend(sb, -1);
5907                         if (err < 0)
5908                                 goto restore_opts;
5909
5910                         /*
5911                          * First of all, the unconditional stuff we have to do
5912                          * to disable replay of the journal when we next remount
5913                          */
5914                         sb->s_flags |= SB_RDONLY;
5915
5916                         /*
5917                          * OK, test if we are remounting a valid rw partition
5918                          * readonly, and if so set the rdonly flag and then
5919                          * mark the partition as valid again.
5920                          */
5921                         if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
5922                             (sbi->s_mount_state & EXT4_VALID_FS))
5923                                 es->s_state = cpu_to_le16(sbi->s_mount_state);
5924
5925                         if (sbi->s_journal) {
5926                                 /*
5927                                  * We let remount-ro finish even if marking fs
5928                                  * as clean failed...
5929                                  */
5930                                 ext4_mark_recovery_complete(sb, es);
5931                         }
5932                         if (sbi->s_mmp_tsk)
5933                                 kthread_stop(sbi->s_mmp_tsk);
5934                 } else {
5935                         /* Make sure we can mount this feature set readwrite */
5936                         if (ext4_has_feature_readonly(sb) ||
5937                             !ext4_feature_set_ok(sb, 0)) {
5938                                 err = -EROFS;
5939                                 goto restore_opts;
5940                         }
5941                         /*
5942                          * Make sure the group descriptor checksums
5943                          * are sane.  If they aren't, refuse to remount r/w.
5944                          */
5945                         for (g = 0; g < sbi->s_groups_count; g++) {
5946                                 struct ext4_group_desc *gdp =
5947                                         ext4_get_group_desc(sb, g, NULL);
5948
5949                                 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
5950                                         ext4_msg(sb, KERN_ERR,
5951                "ext4_remount: Checksum for group %u failed (%u!=%u)",
5952                 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
5953                                                le16_to_cpu(gdp->bg_checksum));
5954                                         err = -EFSBADCRC;
5955                                         goto restore_opts;
5956                                 }
5957                         }
5958
5959                         /*
5960                          * If we have an unprocessed orphan list hanging
5961                          * around from a previously readonly bdev mount,
5962                          * require a full umount/remount for now.
5963                          */
5964                         if (es->s_last_orphan) {
5965                                 ext4_msg(sb, KERN_WARNING, "Couldn't "
5966                                        "remount RDWR because of unprocessed "
5967                                        "orphan inode list.  Please "
5968                                        "umount/remount instead");
5969                                 err = -EINVAL;
5970                                 goto restore_opts;
5971                         }
5972
5973                         /*
5974                          * Mounting a RDONLY partition read-write, so reread
5975                          * and store the current valid flag.  (It may have
5976                          * been changed by e2fsck since we originally mounted
5977                          * the partition.)
5978                          */
5979                         if (sbi->s_journal) {
5980                                 err = ext4_clear_journal_err(sb, es);
5981                                 if (err)
5982                                         goto restore_opts;
5983                         }
5984                         sbi->s_mount_state = le16_to_cpu(es->s_state);
5985
5986                         err = ext4_setup_super(sb, es, 0);
5987                         if (err)
5988                                 goto restore_opts;
5989
5990                         sb->s_flags &= ~SB_RDONLY;
5991                         if (ext4_has_feature_mmp(sb))
5992                                 if (ext4_multi_mount_protect(sb,
5993                                                 le64_to_cpu(es->s_mmp_block))) {
5994                                         err = -EROFS;
5995                                         goto restore_opts;
5996                                 }
5997                         enable_quota = 1;
5998                 }
5999         }
6000
6001         /*
6002          * Reinitialize lazy itable initialization thread based on
6003          * current settings
6004          */
6005         if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
6006                 ext4_unregister_li_request(sb);
6007         else {
6008                 ext4_group_t first_not_zeroed;
6009                 first_not_zeroed = ext4_has_uninit_itable(sb);
6010                 ext4_register_li_request(sb, first_not_zeroed);
6011         }
6012
6013         /*
6014          * Handle creation of system zone data early because it can fail.
6015          * Releasing of existing data is done when we are sure remount will
6016          * succeed.
6017          */
6018         if (test_opt(sb, BLOCK_VALIDITY) && !sbi->s_system_blks) {
6019                 err = ext4_setup_system_zone(sb);
6020                 if (err)
6021                         goto restore_opts;
6022         }
6023
6024         if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) {
6025                 err = ext4_commit_super(sb, 1);
6026                 if (err)
6027                         goto restore_opts;
6028         }
6029
6030 #ifdef CONFIG_QUOTA
6031         /* Release old quota file names */
6032         for (i = 0; i < EXT4_MAXQUOTAS; i++)
6033                 kfree(old_opts.s_qf_names[i]);
6034         if (enable_quota) {
6035                 if (sb_any_quota_suspended(sb))
6036                         dquot_resume(sb, -1);
6037                 else if (ext4_has_feature_quota(sb)) {
6038                         err = ext4_enable_quotas(sb);
6039                         if (err)
6040                                 goto restore_opts;
6041                 }
6042         }
6043 #endif
6044         if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6045                 ext4_release_system_zone(sb);
6046
6047         /*
6048          * Some options can be enabled by ext4 and/or by VFS mount flag
6049          * either way we need to make sure it matches in both *flags and
6050          * s_flags. Copy those selected flags from s_flags to *flags
6051          */
6052         *flags = (*flags & ~vfs_flags) | (sb->s_flags & vfs_flags);
6053
6054         ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
6055         kfree(orig_data);
6056         return 0;
6057
6058 restore_opts:
6059         sb->s_flags = old_sb_flags;
6060         sbi->s_mount_opt = old_opts.s_mount_opt;
6061         sbi->s_mount_opt2 = old_opts.s_mount_opt2;
6062         sbi->s_resuid = old_opts.s_resuid;
6063         sbi->s_resgid = old_opts.s_resgid;
6064         sbi->s_commit_interval = old_opts.s_commit_interval;
6065         sbi->s_min_batch_time = old_opts.s_min_batch_time;
6066         sbi->s_max_batch_time = old_opts.s_max_batch_time;
6067         if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6068                 ext4_release_system_zone(sb);
6069 #ifdef CONFIG_QUOTA
6070         sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
6071         for (i = 0; i < EXT4_MAXQUOTAS; i++) {
6072                 to_free[i] = get_qf_name(sb, sbi, i);
6073                 rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]);
6074         }
6075         synchronize_rcu();
6076         for (i = 0; i < EXT4_MAXQUOTAS; i++)
6077                 kfree(to_free[i]);
6078 #endif
6079         kfree(orig_data);
6080         return err;
6081 }
6082
6083 #ifdef CONFIG_QUOTA
6084 static int ext4_statfs_project(struct super_block *sb,
6085                                kprojid_t projid, struct kstatfs *buf)
6086 {
6087         struct kqid qid;
6088         struct dquot *dquot;
6089         u64 limit;
6090         u64 curblock;
6091
6092         qid = make_kqid_projid(projid);
6093         dquot = dqget(sb, qid);
6094         if (IS_ERR(dquot))
6095                 return PTR_ERR(dquot);
6096         spin_lock(&dquot->dq_dqb_lock);
6097
6098         limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
6099                              dquot->dq_dqb.dqb_bhardlimit);
6100         limit >>= sb->s_blocksize_bits;
6101
6102         if (limit && buf->f_blocks > limit) {
6103                 curblock = (dquot->dq_dqb.dqb_curspace +
6104                             dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
6105                 buf->f_blocks = limit;
6106                 buf->f_bfree = buf->f_bavail =
6107                         (buf->f_blocks > curblock) ?
6108                          (buf->f_blocks - curblock) : 0;
6109         }
6110
6111         limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
6112                              dquot->dq_dqb.dqb_ihardlimit);
6113         if (limit && buf->f_files > limit) {
6114                 buf->f_files = limit;
6115                 buf->f_ffree =
6116                         (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
6117                          (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
6118         }
6119
6120         spin_unlock(&dquot->dq_dqb_lock);
6121         dqput(dquot);
6122         return 0;
6123 }
6124 #endif
6125
6126 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
6127 {
6128         struct super_block *sb = dentry->d_sb;
6129         struct ext4_sb_info *sbi = EXT4_SB(sb);
6130         struct ext4_super_block *es = sbi->s_es;
6131         ext4_fsblk_t overhead = 0, resv_blocks;
6132         u64 fsid;
6133         s64 bfree;
6134         resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
6135
6136         if (!test_opt(sb, MINIX_DF))
6137                 overhead = sbi->s_overhead;
6138
6139         buf->f_type = EXT4_SUPER_MAGIC;
6140         buf->f_bsize = sb->s_blocksize;
6141         buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
6142         bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
6143                 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
6144         /* prevent underflow in case that few free space is available */
6145         buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
6146         buf->f_bavail = buf->f_bfree -
6147                         (ext4_r_blocks_count(es) + resv_blocks);
6148         if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
6149                 buf->f_bavail = 0;
6150         buf->f_files = le32_to_cpu(es->s_inodes_count);
6151         buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
6152         buf->f_namelen = EXT4_NAME_LEN;
6153         fsid = le64_to_cpup((void *)es->s_uuid) ^
6154                le64_to_cpup((void *)es->s_uuid + sizeof(u64));
6155         buf->f_fsid = u64_to_fsid(fsid);
6156
6157 #ifdef CONFIG_QUOTA
6158         if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
6159             sb_has_quota_limits_enabled(sb, PRJQUOTA))
6160                 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
6161 #endif
6162         return 0;
6163 }
6164
6165
6166 #ifdef CONFIG_QUOTA
6167
6168 /*
6169  * Helper functions so that transaction is started before we acquire dqio_sem
6170  * to keep correct lock ordering of transaction > dqio_sem
6171  */
6172 static inline struct inode *dquot_to_inode(struct dquot *dquot)
6173 {
6174         return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
6175 }
6176
6177 static int ext4_write_dquot(struct dquot *dquot)
6178 {
6179         int ret, err;
6180         handle_t *handle;
6181         struct inode *inode;
6182
6183         inode = dquot_to_inode(dquot);
6184         handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
6185                                     EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
6186         if (IS_ERR(handle))
6187                 return PTR_ERR(handle);
6188         ret = dquot_commit(dquot);
6189         err = ext4_journal_stop(handle);
6190         if (!ret)
6191                 ret = err;
6192         return ret;
6193 }
6194
6195 static int ext4_acquire_dquot(struct dquot *dquot)
6196 {
6197         int ret, err;
6198         handle_t *handle;
6199
6200         handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6201                                     EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
6202         if (IS_ERR(handle))
6203                 return PTR_ERR(handle);
6204         ret = dquot_acquire(dquot);
6205         err = ext4_journal_stop(handle);
6206         if (!ret)
6207                 ret = err;
6208         return ret;
6209 }
6210
6211 static int ext4_release_dquot(struct dquot *dquot)
6212 {
6213         int ret, err;
6214         handle_t *handle;
6215
6216         handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6217                                     EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
6218         if (IS_ERR(handle)) {
6219                 /* Release dquot anyway to avoid endless cycle in dqput() */
6220                 dquot_release(dquot);
6221                 return PTR_ERR(handle);
6222         }
6223         ret = dquot_release(dquot);
6224         err = ext4_journal_stop(handle);
6225         if (!ret)
6226                 ret = err;
6227         return ret;
6228 }
6229
6230 static int ext4_mark_dquot_dirty(struct dquot *dquot)
6231 {
6232         struct super_block *sb = dquot->dq_sb;
6233         struct ext4_sb_info *sbi = EXT4_SB(sb);
6234
6235         /* Are we journaling quotas? */
6236         if (ext4_has_feature_quota(sb) ||
6237             sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
6238                 dquot_mark_dquot_dirty(dquot);
6239                 return ext4_write_dquot(dquot);
6240         } else {
6241                 return dquot_mark_dquot_dirty(dquot);
6242         }
6243 }
6244
6245 static int ext4_write_info(struct super_block *sb, int type)
6246 {
6247         int ret, err;
6248         handle_t *handle;
6249
6250         /* Data block + inode block */
6251         handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2);
6252         if (IS_ERR(handle))
6253                 return PTR_ERR(handle);
6254         ret = dquot_commit_info(sb, type);
6255         err = ext4_journal_stop(handle);
6256         if (!ret)
6257                 ret = err;
6258         return ret;
6259 }
6260
6261 /*
6262  * Turn on quotas during mount time - we need to find
6263  * the quota file and such...
6264  */
6265 static int ext4_quota_on_mount(struct super_block *sb, int type)
6266 {
6267         return dquot_quota_on_mount(sb, get_qf_name(sb, EXT4_SB(sb), type),
6268                                         EXT4_SB(sb)->s_jquota_fmt, type);
6269 }
6270
6271 static void lockdep_set_quota_inode(struct inode *inode, int subclass)
6272 {
6273         struct ext4_inode_info *ei = EXT4_I(inode);
6274
6275         /* The first argument of lockdep_set_subclass has to be
6276          * *exactly* the same as the argument to init_rwsem() --- in
6277          * this case, in init_once() --- or lockdep gets unhappy
6278          * because the name of the lock is set using the
6279          * stringification of the argument to init_rwsem().
6280          */
6281         (void) ei;      /* shut up clang warning if !CONFIG_LOCKDEP */
6282         lockdep_set_subclass(&ei->i_data_sem, subclass);
6283 }
6284
6285 /*
6286  * Standard function to be called on quota_on
6287  */
6288 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
6289                          const struct path *path)
6290 {
6291         int err;
6292
6293         if (!test_opt(sb, QUOTA))
6294                 return -EINVAL;
6295
6296         /* Quotafile not on the same filesystem? */
6297         if (path->dentry->d_sb != sb)
6298                 return -EXDEV;
6299
6300         /* Quota already enabled for this file? */
6301         if (IS_NOQUOTA(d_inode(path->dentry)))
6302                 return -EBUSY;
6303
6304         /* Journaling quota? */
6305         if (EXT4_SB(sb)->s_qf_names[type]) {
6306                 /* Quotafile not in fs root? */
6307                 if (path->dentry->d_parent != sb->s_root)
6308                         ext4_msg(sb, KERN_WARNING,
6309                                 "Quota file not on filesystem root. "
6310                                 "Journaled quota will not work");
6311                 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
6312         } else {
6313                 /*
6314                  * Clear the flag just in case mount options changed since
6315                  * last time.
6316                  */
6317                 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
6318         }
6319
6320         /*
6321          * When we journal data on quota file, we have to flush journal to see
6322          * all updates to the file when we bypass pagecache...
6323          */
6324         if (EXT4_SB(sb)->s_journal &&
6325             ext4_should_journal_data(d_inode(path->dentry))) {
6326                 /*
6327                  * We don't need to lock updates but journal_flush() could
6328                  * otherwise be livelocked...
6329                  */
6330                 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
6331                 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
6332                 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
6333                 if (err)
6334                         return err;
6335         }
6336
6337         lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
6338         err = dquot_quota_on(sb, type, format_id, path);
6339         if (err) {
6340                 lockdep_set_quota_inode(path->dentry->d_inode,
6341                                              I_DATA_SEM_NORMAL);
6342         } else {
6343                 struct inode *inode = d_inode(path->dentry);
6344                 handle_t *handle;
6345
6346                 /*
6347                  * Set inode flags to prevent userspace from messing with quota
6348                  * files. If this fails, we return success anyway since quotas
6349                  * are already enabled and this is not a hard failure.
6350                  */
6351                 inode_lock(inode);
6352                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
6353                 if (IS_ERR(handle))
6354                         goto unlock_inode;
6355                 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
6356                 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
6357                                 S_NOATIME | S_IMMUTABLE);
6358                 err = ext4_mark_inode_dirty(handle, inode);
6359                 ext4_journal_stop(handle);
6360         unlock_inode:
6361                 inode_unlock(inode);
6362         }
6363         return err;
6364 }
6365
6366 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
6367                              unsigned int flags)
6368 {
6369         int err;
6370         struct inode *qf_inode;
6371         unsigned long qf_inums[EXT4_MAXQUOTAS] = {
6372                 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
6373                 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
6374                 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
6375         };
6376
6377         BUG_ON(!ext4_has_feature_quota(sb));
6378
6379         if (!qf_inums[type])
6380                 return -EPERM;
6381
6382         qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL);
6383         if (IS_ERR(qf_inode)) {
6384                 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
6385                 return PTR_ERR(qf_inode);
6386         }
6387
6388         /* Don't account quota for quota files to avoid recursion */
6389         qf_inode->i_flags |= S_NOQUOTA;
6390         lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
6391         err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
6392         if (err)
6393                 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
6394         iput(qf_inode);
6395
6396         return err;
6397 }
6398
6399 /* Enable usage tracking for all quota types. */
6400 static int ext4_enable_quotas(struct super_block *sb)
6401 {
6402         int type, err = 0;
6403         unsigned long qf_inums[EXT4_MAXQUOTAS] = {
6404                 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
6405                 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
6406                 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
6407         };
6408         bool quota_mopt[EXT4_MAXQUOTAS] = {
6409                 test_opt(sb, USRQUOTA),
6410                 test_opt(sb, GRPQUOTA),
6411                 test_opt(sb, PRJQUOTA),
6412         };
6413
6414         sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
6415         for (type = 0; type < EXT4_MAXQUOTAS; type++) {
6416                 if (qf_inums[type]) {
6417                         err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
6418                                 DQUOT_USAGE_ENABLED |
6419                                 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
6420                         if (err) {
6421                                 ext4_warning(sb,
6422                                         "Failed to enable quota tracking "
6423                                         "(type=%d, err=%d). Please run "
6424                                         "e2fsck to fix.", type, err);
6425                                 for (type--; type >= 0; type--)
6426                                         dquot_quota_off(sb, type);
6427
6428                                 return err;
6429                         }
6430                 }
6431         }
6432         return 0;
6433 }
6434
6435 static int ext4_quota_off(struct super_block *sb, int type)
6436 {
6437         struct inode *inode = sb_dqopt(sb)->files[type];
6438         handle_t *handle;
6439         int err;
6440
6441         /* Force all delayed allocation blocks to be allocated.
6442          * Caller already holds s_umount sem */
6443         if (test_opt(sb, DELALLOC))
6444                 sync_filesystem(sb);
6445
6446         if (!inode || !igrab(inode))
6447                 goto out;
6448
6449         err = dquot_quota_off(sb, type);
6450         if (err || ext4_has_feature_quota(sb))
6451                 goto out_put;
6452
6453         inode_lock(inode);
6454         /*
6455          * Update modification times of quota files when userspace can
6456          * start looking at them. If we fail, we return success anyway since
6457          * this is not a hard failure and quotas are already disabled.
6458          */
6459         handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
6460         if (IS_ERR(handle)) {
6461                 err = PTR_ERR(handle);
6462                 goto out_unlock;
6463         }
6464         EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
6465         inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
6466         inode->i_mtime = inode->i_ctime = current_time(inode);
6467         err = ext4_mark_inode_dirty(handle, inode);
6468         ext4_journal_stop(handle);
6469 out_unlock:
6470         inode_unlock(inode);
6471 out_put:
6472         lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
6473         iput(inode);
6474         return err;
6475 out:
6476         return dquot_quota_off(sb, type);
6477 }
6478
6479 /* Read data from quotafile - avoid pagecache and such because we cannot afford
6480  * acquiring the locks... As quota files are never truncated and quota code
6481  * itself serializes the operations (and no one else should touch the files)
6482  * we don't have to be afraid of races */
6483 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
6484                                size_t len, loff_t off)
6485 {
6486         struct inode *inode = sb_dqopt(sb)->files[type];
6487         ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
6488         int offset = off & (sb->s_blocksize - 1);
6489         int tocopy;
6490         size_t toread;
6491         struct buffer_head *bh;
6492         loff_t i_size = i_size_read(inode);
6493
6494         if (off > i_size)
6495                 return 0;
6496         if (off+len > i_size)
6497                 len = i_size-off;
6498         toread = len;
6499         while (toread > 0) {
6500                 tocopy = sb->s_blocksize - offset < toread ?
6501                                 sb->s_blocksize - offset : toread;
6502                 bh = ext4_bread(NULL, inode, blk, 0);
6503                 if (IS_ERR(bh))
6504                         return PTR_ERR(bh);
6505                 if (!bh)        /* A hole? */
6506                         memset(data, 0, tocopy);
6507                 else
6508                         memcpy(data, bh->b_data+offset, tocopy);
6509                 brelse(bh);
6510                 offset = 0;
6511                 toread -= tocopy;
6512                 data += tocopy;
6513                 blk++;
6514         }
6515         return len;
6516 }
6517
6518 /* Write to quotafile (we know the transaction is already started and has
6519  * enough credits) */
6520 static ssize_t ext4_quota_write(struct super_block *sb, int type,
6521                                 const char *data, size_t len, loff_t off)
6522 {
6523         struct inode *inode = sb_dqopt(sb)->files[type];
6524         ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
6525         int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1);
6526         int retries = 0;
6527         struct buffer_head *bh;
6528         handle_t *handle = journal_current_handle();
6529
6530         if (EXT4_SB(sb)->s_journal && !handle) {
6531                 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
6532                         " cancelled because transaction is not started",
6533                         (unsigned long long)off, (unsigned long long)len);
6534                 return -EIO;
6535         }
6536         /*
6537          * Since we account only one data block in transaction credits,
6538          * then it is impossible to cross a block boundary.
6539          */
6540         if (sb->s_blocksize - offset < len) {
6541                 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
6542                         " cancelled because not block aligned",
6543                         (unsigned long long)off, (unsigned long long)len);
6544                 return -EIO;
6545         }
6546
6547         do {
6548                 bh = ext4_bread(handle, inode, blk,
6549                                 EXT4_GET_BLOCKS_CREATE |
6550                                 EXT4_GET_BLOCKS_METADATA_NOFAIL);
6551         } while (PTR_ERR(bh) == -ENOSPC &&
6552                  ext4_should_retry_alloc(inode->i_sb, &retries));
6553         if (IS_ERR(bh))
6554                 return PTR_ERR(bh);
6555         if (!bh)
6556                 goto out;
6557         BUFFER_TRACE(bh, "get write access");
6558         err = ext4_journal_get_write_access(handle, bh);
6559         if (err) {
6560                 brelse(bh);
6561                 return err;
6562         }
6563         lock_buffer(bh);
6564         memcpy(bh->b_data+offset, data, len);
6565         flush_dcache_page(bh->b_page);
6566         unlock_buffer(bh);
6567         err = ext4_handle_dirty_metadata(handle, NULL, bh);
6568         brelse(bh);
6569 out:
6570         if (inode->i_size < off + len) {
6571                 i_size_write(inode, off + len);
6572                 EXT4_I(inode)->i_disksize = inode->i_size;
6573                 err2 = ext4_mark_inode_dirty(handle, inode);
6574                 if (unlikely(err2 && !err))
6575                         err = err2;
6576         }
6577         return err ? err : len;
6578 }
6579 #endif
6580
6581 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
6582                        const char *dev_name, void *data)
6583 {
6584         return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
6585 }
6586
6587 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
6588 static inline void register_as_ext2(void)
6589 {
6590         int err = register_filesystem(&ext2_fs_type);
6591         if (err)
6592                 printk(KERN_WARNING
6593                        "EXT4-fs: Unable to register as ext2 (%d)\n", err);
6594 }
6595
6596 static inline void unregister_as_ext2(void)
6597 {
6598         unregister_filesystem(&ext2_fs_type);
6599 }
6600
6601 static inline int ext2_feature_set_ok(struct super_block *sb)
6602 {
6603         if (ext4_has_unknown_ext2_incompat_features(sb))
6604                 return 0;
6605         if (sb_rdonly(sb))
6606                 return 1;
6607         if (ext4_has_unknown_ext2_ro_compat_features(sb))
6608                 return 0;
6609         return 1;
6610 }
6611 #else
6612 static inline void register_as_ext2(void) { }
6613 static inline void unregister_as_ext2(void) { }
6614 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
6615 #endif
6616
6617 static inline void register_as_ext3(void)
6618 {
6619         int err = register_filesystem(&ext3_fs_type);
6620         if (err)
6621                 printk(KERN_WARNING
6622                        "EXT4-fs: Unable to register as ext3 (%d)\n", err);
6623 }
6624
6625 static inline void unregister_as_ext3(void)
6626 {
6627         unregister_filesystem(&ext3_fs_type);
6628 }
6629
6630 static inline int ext3_feature_set_ok(struct super_block *sb)
6631 {
6632         if (ext4_has_unknown_ext3_incompat_features(sb))
6633                 return 0;
6634         if (!ext4_has_feature_journal(sb))
6635                 return 0;
6636         if (sb_rdonly(sb))
6637                 return 1;
6638         if (ext4_has_unknown_ext3_ro_compat_features(sb))
6639                 return 0;
6640         return 1;
6641 }
6642
6643 static struct file_system_type ext4_fs_type = {
6644         .owner          = THIS_MODULE,
6645         .name           = "ext4",
6646         .mount          = ext4_mount,
6647         .kill_sb        = kill_block_super,
6648         .fs_flags       = FS_REQUIRES_DEV,
6649 };
6650 MODULE_ALIAS_FS("ext4");
6651
6652 /* Shared across all ext4 file systems */
6653 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
6654
6655 static int __init ext4_init_fs(void)
6656 {
6657         int i, err;
6658
6659         ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
6660         ext4_li_info = NULL;
6661         mutex_init(&ext4_li_mtx);
6662
6663         /* Build-time check for flags consistency */
6664         ext4_check_flag_values();
6665
6666         for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
6667                 init_waitqueue_head(&ext4__ioend_wq[i]);
6668
6669         err = ext4_init_es();
6670         if (err)
6671                 return err;
6672
6673         err = ext4_init_pending();
6674         if (err)
6675                 goto out7;
6676
6677         err = ext4_init_post_read_processing();
6678         if (err)
6679                 goto out6;
6680
6681         err = ext4_init_pageio();
6682         if (err)
6683                 goto out5;
6684
6685         err = ext4_init_system_zone();
6686         if (err)
6687                 goto out4;
6688
6689         err = ext4_init_sysfs();
6690         if (err)
6691                 goto out3;
6692
6693         err = ext4_init_mballoc();
6694         if (err)
6695                 goto out2;
6696         err = init_inodecache();
6697         if (err)
6698                 goto out1;
6699
6700         err = ext4_fc_init_dentry_cache();
6701         if (err)
6702                 goto out05;
6703
6704         register_as_ext3();
6705         register_as_ext2();
6706         err = register_filesystem(&ext4_fs_type);
6707         if (err)
6708                 goto out;
6709
6710         return 0;
6711 out:
6712         unregister_as_ext2();
6713         unregister_as_ext3();
6714 out05:
6715         destroy_inodecache();
6716 out1:
6717         ext4_exit_mballoc();
6718 out2:
6719         ext4_exit_sysfs();
6720 out3:
6721         ext4_exit_system_zone();
6722 out4:
6723         ext4_exit_pageio();
6724 out5:
6725         ext4_exit_post_read_processing();
6726 out6:
6727         ext4_exit_pending();
6728 out7:
6729         ext4_exit_es();
6730
6731         return err;
6732 }
6733
6734 static void __exit ext4_exit_fs(void)
6735 {
6736         ext4_destroy_lazyinit_thread();
6737         unregister_as_ext2();
6738         unregister_as_ext3();
6739         unregister_filesystem(&ext4_fs_type);
6740         destroy_inodecache();
6741         ext4_exit_mballoc();
6742         ext4_exit_sysfs();
6743         ext4_exit_system_zone();
6744         ext4_exit_pageio();
6745         ext4_exit_post_read_processing();
6746         ext4_exit_es();
6747         ext4_exit_pending();
6748 }
6749
6750 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
6751 MODULE_DESCRIPTION("Fourth Extended Filesystem");
6752 MODULE_LICENSE("GPL");
6753 MODULE_SOFTDEP("pre: crc32c");
6754 module_init(ext4_init_fs)
6755 module_exit(ext4_exit_fs)