Merge drm/drm-fixes into drm-misc-fixes
[linux-2.6-microblaze.git] / fs / ext4 / readpage.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/fs/ext4/readpage.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  * Copyright (C) 2015, Google, Inc.
7  *
8  * This was originally taken from fs/mpage.c
9  *
10  * The ext4_mpage_readpages() function here is intended to
11  * replace mpage_readahead() in the general case, not just for
12  * encrypted files.  It has some limitations (see below), where it
13  * will fall back to read_block_full_page(), but these limitations
14  * should only be hit when page_size != block_size.
15  *
16  * This will allow us to attach a callback function to support ext4
17  * encryption.
18  *
19  * If anything unusual happens, such as:
20  *
21  * - encountering a page which has buffers
22  * - encountering a page which has a non-hole after a hole
23  * - encountering a page with non-contiguous blocks
24  *
25  * then this code just gives up and calls the buffer_head-based read function.
26  * It does handle a page which has holes at the end - that is a common case:
27  * the end-of-file on blocksize < PAGE_SIZE setups.
28  *
29  */
30
31 #include <linux/kernel.h>
32 #include <linux/export.h>
33 #include <linux/mm.h>
34 #include <linux/kdev_t.h>
35 #include <linux/gfp.h>
36 #include <linux/bio.h>
37 #include <linux/fs.h>
38 #include <linux/buffer_head.h>
39 #include <linux/blkdev.h>
40 #include <linux/highmem.h>
41 #include <linux/prefetch.h>
42 #include <linux/mpage.h>
43 #include <linux/writeback.h>
44 #include <linux/backing-dev.h>
45 #include <linux/pagevec.h>
46
47 #include "ext4.h"
48
49 #define NUM_PREALLOC_POST_READ_CTXS     128
50
51 static struct kmem_cache *bio_post_read_ctx_cache;
52 static mempool_t *bio_post_read_ctx_pool;
53
54 /* postprocessing steps for read bios */
55 enum bio_post_read_step {
56         STEP_INITIAL = 0,
57         STEP_DECRYPT,
58         STEP_VERITY,
59         STEP_MAX,
60 };
61
62 struct bio_post_read_ctx {
63         struct bio *bio;
64         struct work_struct work;
65         unsigned int cur_step;
66         unsigned int enabled_steps;
67 };
68
69 static void __read_end_io(struct bio *bio)
70 {
71         struct page *page;
72         struct bio_vec *bv;
73         struct bvec_iter_all iter_all;
74
75         bio_for_each_segment_all(bv, bio, iter_all) {
76                 page = bv->bv_page;
77
78                 if (bio->bi_status)
79                         ClearPageUptodate(page);
80                 else
81                         SetPageUptodate(page);
82                 unlock_page(page);
83         }
84         if (bio->bi_private)
85                 mempool_free(bio->bi_private, bio_post_read_ctx_pool);
86         bio_put(bio);
87 }
88
89 static void bio_post_read_processing(struct bio_post_read_ctx *ctx);
90
91 static void decrypt_work(struct work_struct *work)
92 {
93         struct bio_post_read_ctx *ctx =
94                 container_of(work, struct bio_post_read_ctx, work);
95         struct bio *bio = ctx->bio;
96
97         if (fscrypt_decrypt_bio(bio))
98                 bio_post_read_processing(ctx);
99         else
100                 __read_end_io(bio);
101 }
102
103 static void verity_work(struct work_struct *work)
104 {
105         struct bio_post_read_ctx *ctx =
106                 container_of(work, struct bio_post_read_ctx, work);
107         struct bio *bio = ctx->bio;
108
109         /*
110          * fsverity_verify_bio() may call readahead() again, and although verity
111          * will be disabled for that, decryption may still be needed, causing
112          * another bio_post_read_ctx to be allocated.  So to guarantee that
113          * mempool_alloc() never deadlocks we must free the current ctx first.
114          * This is safe because verity is the last post-read step.
115          */
116         BUILD_BUG_ON(STEP_VERITY + 1 != STEP_MAX);
117         mempool_free(ctx, bio_post_read_ctx_pool);
118         bio->bi_private = NULL;
119
120         fsverity_verify_bio(bio);
121
122         __read_end_io(bio);
123 }
124
125 static void bio_post_read_processing(struct bio_post_read_ctx *ctx)
126 {
127         /*
128          * We use different work queues for decryption and for verity because
129          * verity may require reading metadata pages that need decryption, and
130          * we shouldn't recurse to the same workqueue.
131          */
132         switch (++ctx->cur_step) {
133         case STEP_DECRYPT:
134                 if (ctx->enabled_steps & (1 << STEP_DECRYPT)) {
135                         INIT_WORK(&ctx->work, decrypt_work);
136                         fscrypt_enqueue_decrypt_work(&ctx->work);
137                         return;
138                 }
139                 ctx->cur_step++;
140                 fallthrough;
141         case STEP_VERITY:
142                 if (ctx->enabled_steps & (1 << STEP_VERITY)) {
143                         INIT_WORK(&ctx->work, verity_work);
144                         fsverity_enqueue_verify_work(&ctx->work);
145                         return;
146                 }
147                 ctx->cur_step++;
148                 fallthrough;
149         default:
150                 __read_end_io(ctx->bio);
151         }
152 }
153
154 static bool bio_post_read_required(struct bio *bio)
155 {
156         return bio->bi_private && !bio->bi_status;
157 }
158
159 /*
160  * I/O completion handler for multipage BIOs.
161  *
162  * The mpage code never puts partial pages into a BIO (except for end-of-file).
163  * If a page does not map to a contiguous run of blocks then it simply falls
164  * back to block_read_full_folio().
165  *
166  * Why is this?  If a page's completion depends on a number of different BIOs
167  * which can complete in any order (or at the same time) then determining the
168  * status of that page is hard.  See end_buffer_async_read() for the details.
169  * There is no point in duplicating all that complexity.
170  */
171 static void mpage_end_io(struct bio *bio)
172 {
173         if (bio_post_read_required(bio)) {
174                 struct bio_post_read_ctx *ctx = bio->bi_private;
175
176                 ctx->cur_step = STEP_INITIAL;
177                 bio_post_read_processing(ctx);
178                 return;
179         }
180         __read_end_io(bio);
181 }
182
183 static inline bool ext4_need_verity(const struct inode *inode, pgoff_t idx)
184 {
185         return fsverity_active(inode) &&
186                idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
187 }
188
189 static void ext4_set_bio_post_read_ctx(struct bio *bio,
190                                        const struct inode *inode,
191                                        pgoff_t first_idx)
192 {
193         unsigned int post_read_steps = 0;
194
195         if (fscrypt_inode_uses_fs_layer_crypto(inode))
196                 post_read_steps |= 1 << STEP_DECRYPT;
197
198         if (ext4_need_verity(inode, first_idx))
199                 post_read_steps |= 1 << STEP_VERITY;
200
201         if (post_read_steps) {
202                 /* Due to the mempool, this never fails. */
203                 struct bio_post_read_ctx *ctx =
204                         mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
205
206                 ctx->bio = bio;
207                 ctx->enabled_steps = post_read_steps;
208                 bio->bi_private = ctx;
209         }
210 }
211
212 static inline loff_t ext4_readpage_limit(struct inode *inode)
213 {
214         if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode))
215                 return inode->i_sb->s_maxbytes;
216
217         return i_size_read(inode);
218 }
219
220 int ext4_mpage_readpages(struct inode *inode,
221                 struct readahead_control *rac, struct page *page)
222 {
223         struct bio *bio = NULL;
224         sector_t last_block_in_bio = 0;
225
226         const unsigned blkbits = inode->i_blkbits;
227         const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
228         const unsigned blocksize = 1 << blkbits;
229         sector_t next_block;
230         sector_t block_in_file;
231         sector_t last_block;
232         sector_t last_block_in_file;
233         sector_t blocks[MAX_BUF_PER_PAGE];
234         unsigned page_block;
235         struct block_device *bdev = inode->i_sb->s_bdev;
236         int length;
237         unsigned relative_block = 0;
238         struct ext4_map_blocks map;
239         unsigned int nr_pages = rac ? readahead_count(rac) : 1;
240
241         map.m_pblk = 0;
242         map.m_lblk = 0;
243         map.m_len = 0;
244         map.m_flags = 0;
245
246         for (; nr_pages; nr_pages--) {
247                 int fully_mapped = 1;
248                 unsigned first_hole = blocks_per_page;
249
250                 if (rac) {
251                         page = readahead_page(rac);
252                         prefetchw(&page->flags);
253                 }
254
255                 if (page_has_buffers(page))
256                         goto confused;
257
258                 block_in_file = next_block =
259                         (sector_t)page->index << (PAGE_SHIFT - blkbits);
260                 last_block = block_in_file + nr_pages * blocks_per_page;
261                 last_block_in_file = (ext4_readpage_limit(inode) +
262                                       blocksize - 1) >> blkbits;
263                 if (last_block > last_block_in_file)
264                         last_block = last_block_in_file;
265                 page_block = 0;
266
267                 /*
268                  * Map blocks using the previous result first.
269                  */
270                 if ((map.m_flags & EXT4_MAP_MAPPED) &&
271                     block_in_file > map.m_lblk &&
272                     block_in_file < (map.m_lblk + map.m_len)) {
273                         unsigned map_offset = block_in_file - map.m_lblk;
274                         unsigned last = map.m_len - map_offset;
275
276                         for (relative_block = 0; ; relative_block++) {
277                                 if (relative_block == last) {
278                                         /* needed? */
279                                         map.m_flags &= ~EXT4_MAP_MAPPED;
280                                         break;
281                                 }
282                                 if (page_block == blocks_per_page)
283                                         break;
284                                 blocks[page_block] = map.m_pblk + map_offset +
285                                         relative_block;
286                                 page_block++;
287                                 block_in_file++;
288                         }
289                 }
290
291                 /*
292                  * Then do more ext4_map_blocks() calls until we are
293                  * done with this page.
294                  */
295                 while (page_block < blocks_per_page) {
296                         if (block_in_file < last_block) {
297                                 map.m_lblk = block_in_file;
298                                 map.m_len = last_block - block_in_file;
299
300                                 if (ext4_map_blocks(NULL, inode, &map, 0) < 0) {
301                                 set_error_page:
302                                         SetPageError(page);
303                                         zero_user_segment(page, 0,
304                                                           PAGE_SIZE);
305                                         unlock_page(page);
306                                         goto next_page;
307                                 }
308                         }
309                         if ((map.m_flags & EXT4_MAP_MAPPED) == 0) {
310                                 fully_mapped = 0;
311                                 if (first_hole == blocks_per_page)
312                                         first_hole = page_block;
313                                 page_block++;
314                                 block_in_file++;
315                                 continue;
316                         }
317                         if (first_hole != blocks_per_page)
318                                 goto confused;          /* hole -> non-hole */
319
320                         /* Contiguous blocks? */
321                         if (page_block && blocks[page_block-1] != map.m_pblk-1)
322                                 goto confused;
323                         for (relative_block = 0; ; relative_block++) {
324                                 if (relative_block == map.m_len) {
325                                         /* needed? */
326                                         map.m_flags &= ~EXT4_MAP_MAPPED;
327                                         break;
328                                 } else if (page_block == blocks_per_page)
329                                         break;
330                                 blocks[page_block] = map.m_pblk+relative_block;
331                                 page_block++;
332                                 block_in_file++;
333                         }
334                 }
335                 if (first_hole != blocks_per_page) {
336                         zero_user_segment(page, first_hole << blkbits,
337                                           PAGE_SIZE);
338                         if (first_hole == 0) {
339                                 if (ext4_need_verity(inode, page->index) &&
340                                     !fsverity_verify_page(page))
341                                         goto set_error_page;
342                                 SetPageUptodate(page);
343                                 unlock_page(page);
344                                 goto next_page;
345                         }
346                 } else if (fully_mapped) {
347                         SetPageMappedToDisk(page);
348                 }
349
350                 /*
351                  * This page will go to BIO.  Do we need to send this
352                  * BIO off first?
353                  */
354                 if (bio && (last_block_in_bio != blocks[0] - 1 ||
355                             !fscrypt_mergeable_bio(bio, inode, next_block))) {
356                 submit_and_realloc:
357                         submit_bio(bio);
358                         bio = NULL;
359                 }
360                 if (bio == NULL) {
361                         /*
362                          * bio_alloc will _always_ be able to allocate a bio if
363                          * __GFP_DIRECT_RECLAIM is set, see bio_alloc_bioset().
364                          */
365                         bio = bio_alloc(bdev, bio_max_segs(nr_pages),
366                                         REQ_OP_READ, GFP_KERNEL);
367                         fscrypt_set_bio_crypt_ctx(bio, inode, next_block,
368                                                   GFP_KERNEL);
369                         ext4_set_bio_post_read_ctx(bio, inode, page->index);
370                         bio->bi_iter.bi_sector = blocks[0] << (blkbits - 9);
371                         bio->bi_end_io = mpage_end_io;
372                         if (rac)
373                                 bio->bi_opf |= REQ_RAHEAD;
374                 }
375
376                 length = first_hole << blkbits;
377                 if (bio_add_page(bio, page, length, 0) < length)
378                         goto submit_and_realloc;
379
380                 if (((map.m_flags & EXT4_MAP_BOUNDARY) &&
381                      (relative_block == map.m_len)) ||
382                     (first_hole != blocks_per_page)) {
383                         submit_bio(bio);
384                         bio = NULL;
385                 } else
386                         last_block_in_bio = blocks[blocks_per_page - 1];
387                 goto next_page;
388         confused:
389                 if (bio) {
390                         submit_bio(bio);
391                         bio = NULL;
392                 }
393                 if (!PageUptodate(page))
394                         block_read_full_folio(page_folio(page), ext4_get_block);
395                 else
396                         unlock_page(page);
397         next_page:
398                 if (rac)
399                         put_page(page);
400         }
401         if (bio)
402                 submit_bio(bio);
403         return 0;
404 }
405
406 int __init ext4_init_post_read_processing(void)
407 {
408         bio_post_read_ctx_cache = KMEM_CACHE(bio_post_read_ctx, SLAB_RECLAIM_ACCOUNT);
409
410         if (!bio_post_read_ctx_cache)
411                 goto fail;
412         bio_post_read_ctx_pool =
413                 mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
414                                          bio_post_read_ctx_cache);
415         if (!bio_post_read_ctx_pool)
416                 goto fail_free_cache;
417         return 0;
418
419 fail_free_cache:
420         kmem_cache_destroy(bio_post_read_ctx_cache);
421 fail:
422         return -ENOMEM;
423 }
424
425 void ext4_exit_post_read_processing(void)
426 {
427         mempool_destroy(bio_post_read_ctx_pool);
428         kmem_cache_destroy(bio_post_read_ctx_cache);
429 }