Merge drm-misc/drm-misc-next-fixes into drm-misc-fixes
[linux-2.6-microblaze.git] / fs / ext4 / readpage.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/fs/ext4/readpage.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  * Copyright (C) 2015, Google, Inc.
7  *
8  * This was originally taken from fs/mpage.c
9  *
10  * The ext4_mpage_readpages() function here is intended to
11  * replace mpage_readahead() in the general case, not just for
12  * encrypted files.  It has some limitations (see below), where it
13  * will fall back to read_block_full_page(), but these limitations
14  * should only be hit when page_size != block_size.
15  *
16  * This will allow us to attach a callback function to support ext4
17  * encryption.
18  *
19  * If anything unusual happens, such as:
20  *
21  * - encountering a page which has buffers
22  * - encountering a page which has a non-hole after a hole
23  * - encountering a page with non-contiguous blocks
24  *
25  * then this code just gives up and calls the buffer_head-based read function.
26  * It does handle a page which has holes at the end - that is a common case:
27  * the end-of-file on blocksize < PAGE_SIZE setups.
28  *
29  */
30
31 #include <linux/kernel.h>
32 #include <linux/export.h>
33 #include <linux/mm.h>
34 #include <linux/kdev_t.h>
35 #include <linux/gfp.h>
36 #include <linux/bio.h>
37 #include <linux/fs.h>
38 #include <linux/buffer_head.h>
39 #include <linux/blkdev.h>
40 #include <linux/highmem.h>
41 #include <linux/prefetch.h>
42 #include <linux/mpage.h>
43 #include <linux/writeback.h>
44 #include <linux/backing-dev.h>
45 #include <linux/pagevec.h>
46
47 #include "ext4.h"
48
49 #define NUM_PREALLOC_POST_READ_CTXS     128
50
51 static struct kmem_cache *bio_post_read_ctx_cache;
52 static mempool_t *bio_post_read_ctx_pool;
53
54 /* postprocessing steps for read bios */
55 enum bio_post_read_step {
56         STEP_INITIAL = 0,
57         STEP_DECRYPT,
58         STEP_VERITY,
59         STEP_MAX,
60 };
61
62 struct bio_post_read_ctx {
63         struct bio *bio;
64         struct work_struct work;
65         unsigned int cur_step;
66         unsigned int enabled_steps;
67 };
68
69 static void __read_end_io(struct bio *bio)
70 {
71         struct page *page;
72         struct bio_vec *bv;
73         struct bvec_iter_all iter_all;
74
75         bio_for_each_segment_all(bv, bio, iter_all) {
76                 page = bv->bv_page;
77
78                 /* PG_error was set if any post_read step failed */
79                 if (bio->bi_status || PageError(page)) {
80                         ClearPageUptodate(page);
81                         /* will re-read again later */
82                         ClearPageError(page);
83                 } else {
84                         SetPageUptodate(page);
85                 }
86                 unlock_page(page);
87         }
88         if (bio->bi_private)
89                 mempool_free(bio->bi_private, bio_post_read_ctx_pool);
90         bio_put(bio);
91 }
92
93 static void bio_post_read_processing(struct bio_post_read_ctx *ctx);
94
95 static void decrypt_work(struct work_struct *work)
96 {
97         struct bio_post_read_ctx *ctx =
98                 container_of(work, struct bio_post_read_ctx, work);
99
100         fscrypt_decrypt_bio(ctx->bio);
101
102         bio_post_read_processing(ctx);
103 }
104
105 static void verity_work(struct work_struct *work)
106 {
107         struct bio_post_read_ctx *ctx =
108                 container_of(work, struct bio_post_read_ctx, work);
109         struct bio *bio = ctx->bio;
110
111         /*
112          * fsverity_verify_bio() may call readahead() again, and although verity
113          * will be disabled for that, decryption may still be needed, causing
114          * another bio_post_read_ctx to be allocated.  So to guarantee that
115          * mempool_alloc() never deadlocks we must free the current ctx first.
116          * This is safe because verity is the last post-read step.
117          */
118         BUILD_BUG_ON(STEP_VERITY + 1 != STEP_MAX);
119         mempool_free(ctx, bio_post_read_ctx_pool);
120         bio->bi_private = NULL;
121
122         fsverity_verify_bio(bio);
123
124         __read_end_io(bio);
125 }
126
127 static void bio_post_read_processing(struct bio_post_read_ctx *ctx)
128 {
129         /*
130          * We use different work queues for decryption and for verity because
131          * verity may require reading metadata pages that need decryption, and
132          * we shouldn't recurse to the same workqueue.
133          */
134         switch (++ctx->cur_step) {
135         case STEP_DECRYPT:
136                 if (ctx->enabled_steps & (1 << STEP_DECRYPT)) {
137                         INIT_WORK(&ctx->work, decrypt_work);
138                         fscrypt_enqueue_decrypt_work(&ctx->work);
139                         return;
140                 }
141                 ctx->cur_step++;
142                 fallthrough;
143         case STEP_VERITY:
144                 if (ctx->enabled_steps & (1 << STEP_VERITY)) {
145                         INIT_WORK(&ctx->work, verity_work);
146                         fsverity_enqueue_verify_work(&ctx->work);
147                         return;
148                 }
149                 ctx->cur_step++;
150                 fallthrough;
151         default:
152                 __read_end_io(ctx->bio);
153         }
154 }
155
156 static bool bio_post_read_required(struct bio *bio)
157 {
158         return bio->bi_private && !bio->bi_status;
159 }
160
161 /*
162  * I/O completion handler for multipage BIOs.
163  *
164  * The mpage code never puts partial pages into a BIO (except for end-of-file).
165  * If a page does not map to a contiguous run of blocks then it simply falls
166  * back to block_read_full_page().
167  *
168  * Why is this?  If a page's completion depends on a number of different BIOs
169  * which can complete in any order (or at the same time) then determining the
170  * status of that page is hard.  See end_buffer_async_read() for the details.
171  * There is no point in duplicating all that complexity.
172  */
173 static void mpage_end_io(struct bio *bio)
174 {
175         if (bio_post_read_required(bio)) {
176                 struct bio_post_read_ctx *ctx = bio->bi_private;
177
178                 ctx->cur_step = STEP_INITIAL;
179                 bio_post_read_processing(ctx);
180                 return;
181         }
182         __read_end_io(bio);
183 }
184
185 static inline bool ext4_need_verity(const struct inode *inode, pgoff_t idx)
186 {
187         return fsverity_active(inode) &&
188                idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
189 }
190
191 static void ext4_set_bio_post_read_ctx(struct bio *bio,
192                                        const struct inode *inode,
193                                        pgoff_t first_idx)
194 {
195         unsigned int post_read_steps = 0;
196
197         if (fscrypt_inode_uses_fs_layer_crypto(inode))
198                 post_read_steps |= 1 << STEP_DECRYPT;
199
200         if (ext4_need_verity(inode, first_idx))
201                 post_read_steps |= 1 << STEP_VERITY;
202
203         if (post_read_steps) {
204                 /* Due to the mempool, this never fails. */
205                 struct bio_post_read_ctx *ctx =
206                         mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
207
208                 ctx->bio = bio;
209                 ctx->enabled_steps = post_read_steps;
210                 bio->bi_private = ctx;
211         }
212 }
213
214 static inline loff_t ext4_readpage_limit(struct inode *inode)
215 {
216         if (IS_ENABLED(CONFIG_FS_VERITY) &&
217             (IS_VERITY(inode) || ext4_verity_in_progress(inode)))
218                 return inode->i_sb->s_maxbytes;
219
220         return i_size_read(inode);
221 }
222
223 int ext4_mpage_readpages(struct inode *inode,
224                 struct readahead_control *rac, struct page *page)
225 {
226         struct bio *bio = NULL;
227         sector_t last_block_in_bio = 0;
228
229         const unsigned blkbits = inode->i_blkbits;
230         const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
231         const unsigned blocksize = 1 << blkbits;
232         sector_t next_block;
233         sector_t block_in_file;
234         sector_t last_block;
235         sector_t last_block_in_file;
236         sector_t blocks[MAX_BUF_PER_PAGE];
237         unsigned page_block;
238         struct block_device *bdev = inode->i_sb->s_bdev;
239         int length;
240         unsigned relative_block = 0;
241         struct ext4_map_blocks map;
242         unsigned int nr_pages = rac ? readahead_count(rac) : 1;
243
244         map.m_pblk = 0;
245         map.m_lblk = 0;
246         map.m_len = 0;
247         map.m_flags = 0;
248
249         for (; nr_pages; nr_pages--) {
250                 int fully_mapped = 1;
251                 unsigned first_hole = blocks_per_page;
252
253                 if (rac) {
254                         page = readahead_page(rac);
255                         prefetchw(&page->flags);
256                 }
257
258                 if (page_has_buffers(page))
259                         goto confused;
260
261                 block_in_file = next_block =
262                         (sector_t)page->index << (PAGE_SHIFT - blkbits);
263                 last_block = block_in_file + nr_pages * blocks_per_page;
264                 last_block_in_file = (ext4_readpage_limit(inode) +
265                                       blocksize - 1) >> blkbits;
266                 if (last_block > last_block_in_file)
267                         last_block = last_block_in_file;
268                 page_block = 0;
269
270                 /*
271                  * Map blocks using the previous result first.
272                  */
273                 if ((map.m_flags & EXT4_MAP_MAPPED) &&
274                     block_in_file > map.m_lblk &&
275                     block_in_file < (map.m_lblk + map.m_len)) {
276                         unsigned map_offset = block_in_file - map.m_lblk;
277                         unsigned last = map.m_len - map_offset;
278
279                         for (relative_block = 0; ; relative_block++) {
280                                 if (relative_block == last) {
281                                         /* needed? */
282                                         map.m_flags &= ~EXT4_MAP_MAPPED;
283                                         break;
284                                 }
285                                 if (page_block == blocks_per_page)
286                                         break;
287                                 blocks[page_block] = map.m_pblk + map_offset +
288                                         relative_block;
289                                 page_block++;
290                                 block_in_file++;
291                         }
292                 }
293
294                 /*
295                  * Then do more ext4_map_blocks() calls until we are
296                  * done with this page.
297                  */
298                 while (page_block < blocks_per_page) {
299                         if (block_in_file < last_block) {
300                                 map.m_lblk = block_in_file;
301                                 map.m_len = last_block - block_in_file;
302
303                                 if (ext4_map_blocks(NULL, inode, &map, 0) < 0) {
304                                 set_error_page:
305                                         SetPageError(page);
306                                         zero_user_segment(page, 0,
307                                                           PAGE_SIZE);
308                                         unlock_page(page);
309                                         goto next_page;
310                                 }
311                         }
312                         if ((map.m_flags & EXT4_MAP_MAPPED) == 0) {
313                                 fully_mapped = 0;
314                                 if (first_hole == blocks_per_page)
315                                         first_hole = page_block;
316                                 page_block++;
317                                 block_in_file++;
318                                 continue;
319                         }
320                         if (first_hole != blocks_per_page)
321                                 goto confused;          /* hole -> non-hole */
322
323                         /* Contiguous blocks? */
324                         if (page_block && blocks[page_block-1] != map.m_pblk-1)
325                                 goto confused;
326                         for (relative_block = 0; ; relative_block++) {
327                                 if (relative_block == map.m_len) {
328                                         /* needed? */
329                                         map.m_flags &= ~EXT4_MAP_MAPPED;
330                                         break;
331                                 } else if (page_block == blocks_per_page)
332                                         break;
333                                 blocks[page_block] = map.m_pblk+relative_block;
334                                 page_block++;
335                                 block_in_file++;
336                         }
337                 }
338                 if (first_hole != blocks_per_page) {
339                         zero_user_segment(page, first_hole << blkbits,
340                                           PAGE_SIZE);
341                         if (first_hole == 0) {
342                                 if (ext4_need_verity(inode, page->index) &&
343                                     !fsverity_verify_page(page))
344                                         goto set_error_page;
345                                 SetPageUptodate(page);
346                                 unlock_page(page);
347                                 goto next_page;
348                         }
349                 } else if (fully_mapped) {
350                         SetPageMappedToDisk(page);
351                 }
352
353                 /*
354                  * This page will go to BIO.  Do we need to send this
355                  * BIO off first?
356                  */
357                 if (bio && (last_block_in_bio != blocks[0] - 1 ||
358                             !fscrypt_mergeable_bio(bio, inode, next_block))) {
359                 submit_and_realloc:
360                         submit_bio(bio);
361                         bio = NULL;
362                 }
363                 if (bio == NULL) {
364                         /*
365                          * bio_alloc will _always_ be able to allocate a bio if
366                          * __GFP_DIRECT_RECLAIM is set, see bio_alloc_bioset().
367                          */
368                         bio = bio_alloc(bdev, bio_max_segs(nr_pages),
369                                         REQ_OP_READ, GFP_KERNEL);
370                         fscrypt_set_bio_crypt_ctx(bio, inode, next_block,
371                                                   GFP_KERNEL);
372                         ext4_set_bio_post_read_ctx(bio, inode, page->index);
373                         bio->bi_iter.bi_sector = blocks[0] << (blkbits - 9);
374                         bio->bi_end_io = mpage_end_io;
375                         if (rac)
376                                 bio->bi_opf |= REQ_RAHEAD;
377                 }
378
379                 length = first_hole << blkbits;
380                 if (bio_add_page(bio, page, length, 0) < length)
381                         goto submit_and_realloc;
382
383                 if (((map.m_flags & EXT4_MAP_BOUNDARY) &&
384                      (relative_block == map.m_len)) ||
385                     (first_hole != blocks_per_page)) {
386                         submit_bio(bio);
387                         bio = NULL;
388                 } else
389                         last_block_in_bio = blocks[blocks_per_page - 1];
390                 goto next_page;
391         confused:
392                 if (bio) {
393                         submit_bio(bio);
394                         bio = NULL;
395                 }
396                 if (!PageUptodate(page))
397                         block_read_full_page(page, ext4_get_block);
398                 else
399                         unlock_page(page);
400         next_page:
401                 if (rac)
402                         put_page(page);
403         }
404         if (bio)
405                 submit_bio(bio);
406         return 0;
407 }
408
409 int __init ext4_init_post_read_processing(void)
410 {
411         bio_post_read_ctx_cache =
412                 kmem_cache_create("ext4_bio_post_read_ctx",
413                                   sizeof(struct bio_post_read_ctx), 0, 0, NULL);
414         if (!bio_post_read_ctx_cache)
415                 goto fail;
416         bio_post_read_ctx_pool =
417                 mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
418                                          bio_post_read_ctx_cache);
419         if (!bio_post_read_ctx_pool)
420                 goto fail_free_cache;
421         return 0;
422
423 fail_free_cache:
424         kmem_cache_destroy(bio_post_read_ctx_cache);
425 fail:
426         return -ENOMEM;
427 }
428
429 void ext4_exit_post_read_processing(void)
430 {
431         mempool_destroy(bio_post_read_ctx_pool);
432         kmem_cache_destroy(bio_post_read_ctx_cache);
433 }