Merge tag 'socfpga_dts_updates_for_v6.9' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-microblaze.git] / fs / ext4 / mballoc.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
4  * Written by Alex Tomas <alex@clusterfs.com>
5  */
6
7
8 /*
9  * mballoc.c contains the multiblocks allocation routines
10  */
11
12 #include "ext4_jbd2.h"
13 #include "mballoc.h"
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/nospec.h>
18 #include <linux/backing-dev.h>
19 #include <linux/freezer.h>
20 #include <trace/events/ext4.h>
21 #include <kunit/static_stub.h>
22
23 /*
24  * MUSTDO:
25  *   - test ext4_ext_search_left() and ext4_ext_search_right()
26  *   - search for metadata in few groups
27  *
28  * TODO v4:
29  *   - normalization should take into account whether file is still open
30  *   - discard preallocations if no free space left (policy?)
31  *   - don't normalize tails
32  *   - quota
33  *   - reservation for superuser
34  *
35  * TODO v3:
36  *   - bitmap read-ahead (proposed by Oleg Drokin aka green)
37  *   - track min/max extents in each group for better group selection
38  *   - mb_mark_used() may allocate chunk right after splitting buddy
39  *   - tree of groups sorted by number of free blocks
40  *   - error handling
41  */
42
43 /*
44  * The allocation request involve request for multiple number of blocks
45  * near to the goal(block) value specified.
46  *
47  * During initialization phase of the allocator we decide to use the
48  * group preallocation or inode preallocation depending on the size of
49  * the file. The size of the file could be the resulting file size we
50  * would have after allocation, or the current file size, which ever
51  * is larger. If the size is less than sbi->s_mb_stream_request we
52  * select to use the group preallocation. The default value of
53  * s_mb_stream_request is 16 blocks. This can also be tuned via
54  * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
55  * terms of number of blocks.
56  *
57  * The main motivation for having small file use group preallocation is to
58  * ensure that we have small files closer together on the disk.
59  *
60  * First stage the allocator looks at the inode prealloc list,
61  * ext4_inode_info->i_prealloc_list, which contains list of prealloc
62  * spaces for this particular inode. The inode prealloc space is
63  * represented as:
64  *
65  * pa_lstart -> the logical start block for this prealloc space
66  * pa_pstart -> the physical start block for this prealloc space
67  * pa_len    -> length for this prealloc space (in clusters)
68  * pa_free   ->  free space available in this prealloc space (in clusters)
69  *
70  * The inode preallocation space is used looking at the _logical_ start
71  * block. If only the logical file block falls within the range of prealloc
72  * space we will consume the particular prealloc space. This makes sure that
73  * we have contiguous physical blocks representing the file blocks
74  *
75  * The important thing to be noted in case of inode prealloc space is that
76  * we don't modify the values associated to inode prealloc space except
77  * pa_free.
78  *
79  * If we are not able to find blocks in the inode prealloc space and if we
80  * have the group allocation flag set then we look at the locality group
81  * prealloc space. These are per CPU prealloc list represented as
82  *
83  * ext4_sb_info.s_locality_groups[smp_processor_id()]
84  *
85  * The reason for having a per cpu locality group is to reduce the contention
86  * between CPUs. It is possible to get scheduled at this point.
87  *
88  * The locality group prealloc space is used looking at whether we have
89  * enough free space (pa_free) within the prealloc space.
90  *
91  * If we can't allocate blocks via inode prealloc or/and locality group
92  * prealloc then we look at the buddy cache. The buddy cache is represented
93  * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
94  * mapped to the buddy and bitmap information regarding different
95  * groups. The buddy information is attached to buddy cache inode so that
96  * we can access them through the page cache. The information regarding
97  * each group is loaded via ext4_mb_load_buddy.  The information involve
98  * block bitmap and buddy information. The information are stored in the
99  * inode as:
100  *
101  *  {                        page                        }
102  *  [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
103  *
104  *
105  * one block each for bitmap and buddy information.  So for each group we
106  * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE /
107  * blocksize) blocks.  So it can have information regarding groups_per_page
108  * which is blocks_per_page/2
109  *
110  * The buddy cache inode is not stored on disk. The inode is thrown
111  * away when the filesystem is unmounted.
112  *
113  * We look for count number of blocks in the buddy cache. If we were able
114  * to locate that many free blocks we return with additional information
115  * regarding rest of the contiguous physical block available
116  *
117  * Before allocating blocks via buddy cache we normalize the request
118  * blocks. This ensure we ask for more blocks that we needed. The extra
119  * blocks that we get after allocation is added to the respective prealloc
120  * list. In case of inode preallocation we follow a list of heuristics
121  * based on file size. This can be found in ext4_mb_normalize_request. If
122  * we are doing a group prealloc we try to normalize the request to
123  * sbi->s_mb_group_prealloc.  The default value of s_mb_group_prealloc is
124  * dependent on the cluster size; for non-bigalloc file systems, it is
125  * 512 blocks. This can be tuned via
126  * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
127  * terms of number of blocks. If we have mounted the file system with -O
128  * stripe=<value> option the group prealloc request is normalized to the
129  * smallest multiple of the stripe value (sbi->s_stripe) which is
130  * greater than the default mb_group_prealloc.
131  *
132  * If "mb_optimize_scan" mount option is set, we maintain in memory group info
133  * structures in two data structures:
134  *
135  * 1) Array of largest free order lists (sbi->s_mb_largest_free_orders)
136  *
137  *    Locking: sbi->s_mb_largest_free_orders_locks(array of rw locks)
138  *
139  *    This is an array of lists where the index in the array represents the
140  *    largest free order in the buddy bitmap of the participating group infos of
141  *    that list. So, there are exactly MB_NUM_ORDERS(sb) (which means total
142  *    number of buddy bitmap orders possible) number of lists. Group-infos are
143  *    placed in appropriate lists.
144  *
145  * 2) Average fragment size lists (sbi->s_mb_avg_fragment_size)
146  *
147  *    Locking: sbi->s_mb_avg_fragment_size_locks(array of rw locks)
148  *
149  *    This is an array of lists where in the i-th list there are groups with
150  *    average fragment size >= 2^i and < 2^(i+1). The average fragment size
151  *    is computed as ext4_group_info->bb_free / ext4_group_info->bb_fragments.
152  *    Note that we don't bother with a special list for completely empty groups
153  *    so we only have MB_NUM_ORDERS(sb) lists.
154  *
155  * When "mb_optimize_scan" mount option is set, mballoc consults the above data
156  * structures to decide the order in which groups are to be traversed for
157  * fulfilling an allocation request.
158  *
159  * At CR_POWER2_ALIGNED , we look for groups which have the largest_free_order
160  * >= the order of the request. We directly look at the largest free order list
161  * in the data structure (1) above where largest_free_order = order of the
162  * request. If that list is empty, we look at remaining list in the increasing
163  * order of largest_free_order. This allows us to perform CR_POWER2_ALIGNED
164  * lookup in O(1) time.
165  *
166  * At CR_GOAL_LEN_FAST, we only consider groups where
167  * average fragment size > request size. So, we lookup a group which has average
168  * fragment size just above or equal to request size using our average fragment
169  * size group lists (data structure 2) in O(1) time.
170  *
171  * At CR_BEST_AVAIL_LEN, we aim to optimize allocations which can't be satisfied
172  * in CR_GOAL_LEN_FAST. The fact that we couldn't find a group in
173  * CR_GOAL_LEN_FAST suggests that there is no BG that has avg
174  * fragment size > goal length. So before falling to the slower
175  * CR_GOAL_LEN_SLOW, in CR_BEST_AVAIL_LEN we proactively trim goal length and
176  * then use the same fragment lists as CR_GOAL_LEN_FAST to find a BG with a big
177  * enough average fragment size. This increases the chances of finding a
178  * suitable block group in O(1) time and results in faster allocation at the
179  * cost of reduced size of allocation.
180  *
181  * If "mb_optimize_scan" mount option is not set, mballoc traverses groups in
182  * linear order which requires O(N) search time for each CR_POWER2_ALIGNED and
183  * CR_GOAL_LEN_FAST phase.
184  *
185  * The regular allocator (using the buddy cache) supports a few tunables.
186  *
187  * /sys/fs/ext4/<partition>/mb_min_to_scan
188  * /sys/fs/ext4/<partition>/mb_max_to_scan
189  * /sys/fs/ext4/<partition>/mb_order2_req
190  * /sys/fs/ext4/<partition>/mb_linear_limit
191  *
192  * The regular allocator uses buddy scan only if the request len is power of
193  * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
194  * value of s_mb_order2_reqs can be tuned via
195  * /sys/fs/ext4/<partition>/mb_order2_req.  If the request len is equal to
196  * stripe size (sbi->s_stripe), we try to search for contiguous block in
197  * stripe size. This should result in better allocation on RAID setups. If
198  * not, we search in the specific group using bitmap for best extents. The
199  * tunable min_to_scan and max_to_scan control the behaviour here.
200  * min_to_scan indicate how long the mballoc __must__ look for a best
201  * extent and max_to_scan indicates how long the mballoc __can__ look for a
202  * best extent in the found extents. Searching for the blocks starts with
203  * the group specified as the goal value in allocation context via
204  * ac_g_ex. Each group is first checked based on the criteria whether it
205  * can be used for allocation. ext4_mb_good_group explains how the groups are
206  * checked.
207  *
208  * When "mb_optimize_scan" is turned on, as mentioned above, the groups may not
209  * get traversed linearly. That may result in subsequent allocations being not
210  * close to each other. And so, the underlying device may get filled up in a
211  * non-linear fashion. While that may not matter on non-rotational devices, for
212  * rotational devices that may result in higher seek times. "mb_linear_limit"
213  * tells mballoc how many groups mballoc should search linearly before
214  * performing consulting above data structures for more efficient lookups. For
215  * non rotational devices, this value defaults to 0 and for rotational devices
216  * this is set to MB_DEFAULT_LINEAR_LIMIT.
217  *
218  * Both the prealloc space are getting populated as above. So for the first
219  * request we will hit the buddy cache which will result in this prealloc
220  * space getting filled. The prealloc space is then later used for the
221  * subsequent request.
222  */
223
224 /*
225  * mballoc operates on the following data:
226  *  - on-disk bitmap
227  *  - in-core buddy (actually includes buddy and bitmap)
228  *  - preallocation descriptors (PAs)
229  *
230  * there are two types of preallocations:
231  *  - inode
232  *    assiged to specific inode and can be used for this inode only.
233  *    it describes part of inode's space preallocated to specific
234  *    physical blocks. any block from that preallocated can be used
235  *    independent. the descriptor just tracks number of blocks left
236  *    unused. so, before taking some block from descriptor, one must
237  *    make sure corresponded logical block isn't allocated yet. this
238  *    also means that freeing any block within descriptor's range
239  *    must discard all preallocated blocks.
240  *  - locality group
241  *    assigned to specific locality group which does not translate to
242  *    permanent set of inodes: inode can join and leave group. space
243  *    from this type of preallocation can be used for any inode. thus
244  *    it's consumed from the beginning to the end.
245  *
246  * relation between them can be expressed as:
247  *    in-core buddy = on-disk bitmap + preallocation descriptors
248  *
249  * this mean blocks mballoc considers used are:
250  *  - allocated blocks (persistent)
251  *  - preallocated blocks (non-persistent)
252  *
253  * consistency in mballoc world means that at any time a block is either
254  * free or used in ALL structures. notice: "any time" should not be read
255  * literally -- time is discrete and delimited by locks.
256  *
257  *  to keep it simple, we don't use block numbers, instead we count number of
258  *  blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
259  *
260  * all operations can be expressed as:
261  *  - init buddy:                       buddy = on-disk + PAs
262  *  - new PA:                           buddy += N; PA = N
263  *  - use inode PA:                     on-disk += N; PA -= N
264  *  - discard inode PA                  buddy -= on-disk - PA; PA = 0
265  *  - use locality group PA             on-disk += N; PA -= N
266  *  - discard locality group PA         buddy -= PA; PA = 0
267  *  note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
268  *        is used in real operation because we can't know actual used
269  *        bits from PA, only from on-disk bitmap
270  *
271  * if we follow this strict logic, then all operations above should be atomic.
272  * given some of them can block, we'd have to use something like semaphores
273  * killing performance on high-end SMP hardware. let's try to relax it using
274  * the following knowledge:
275  *  1) if buddy is referenced, it's already initialized
276  *  2) while block is used in buddy and the buddy is referenced,
277  *     nobody can re-allocate that block
278  *  3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
279  *     bit set and PA claims same block, it's OK. IOW, one can set bit in
280  *     on-disk bitmap if buddy has same bit set or/and PA covers corresponded
281  *     block
282  *
283  * so, now we're building a concurrency table:
284  *  - init buddy vs.
285  *    - new PA
286  *      blocks for PA are allocated in the buddy, buddy must be referenced
287  *      until PA is linked to allocation group to avoid concurrent buddy init
288  *    - use inode PA
289  *      we need to make sure that either on-disk bitmap or PA has uptodate data
290  *      given (3) we care that PA-=N operation doesn't interfere with init
291  *    - discard inode PA
292  *      the simplest way would be to have buddy initialized by the discard
293  *    - use locality group PA
294  *      again PA-=N must be serialized with init
295  *    - discard locality group PA
296  *      the simplest way would be to have buddy initialized by the discard
297  *  - new PA vs.
298  *    - use inode PA
299  *      i_data_sem serializes them
300  *    - discard inode PA
301  *      discard process must wait until PA isn't used by another process
302  *    - use locality group PA
303  *      some mutex should serialize them
304  *    - discard locality group PA
305  *      discard process must wait until PA isn't used by another process
306  *  - use inode PA
307  *    - use inode PA
308  *      i_data_sem or another mutex should serializes them
309  *    - discard inode PA
310  *      discard process must wait until PA isn't used by another process
311  *    - use locality group PA
312  *      nothing wrong here -- they're different PAs covering different blocks
313  *    - discard locality group PA
314  *      discard process must wait until PA isn't used by another process
315  *
316  * now we're ready to make few consequences:
317  *  - PA is referenced and while it is no discard is possible
318  *  - PA is referenced until block isn't marked in on-disk bitmap
319  *  - PA changes only after on-disk bitmap
320  *  - discard must not compete with init. either init is done before
321  *    any discard or they're serialized somehow
322  *  - buddy init as sum of on-disk bitmap and PAs is done atomically
323  *
324  * a special case when we've used PA to emptiness. no need to modify buddy
325  * in this case, but we should care about concurrent init
326  *
327  */
328
329  /*
330  * Logic in few words:
331  *
332  *  - allocation:
333  *    load group
334  *    find blocks
335  *    mark bits in on-disk bitmap
336  *    release group
337  *
338  *  - use preallocation:
339  *    find proper PA (per-inode or group)
340  *    load group
341  *    mark bits in on-disk bitmap
342  *    release group
343  *    release PA
344  *
345  *  - free:
346  *    load group
347  *    mark bits in on-disk bitmap
348  *    release group
349  *
350  *  - discard preallocations in group:
351  *    mark PAs deleted
352  *    move them onto local list
353  *    load on-disk bitmap
354  *    load group
355  *    remove PA from object (inode or locality group)
356  *    mark free blocks in-core
357  *
358  *  - discard inode's preallocations:
359  */
360
361 /*
362  * Locking rules
363  *
364  * Locks:
365  *  - bitlock on a group        (group)
366  *  - object (inode/locality)   (object)
367  *  - per-pa lock               (pa)
368  *  - cr_power2_aligned lists lock      (cr_power2_aligned)
369  *  - cr_goal_len_fast lists lock       (cr_goal_len_fast)
370  *
371  * Paths:
372  *  - new pa
373  *    object
374  *    group
375  *
376  *  - find and use pa:
377  *    pa
378  *
379  *  - release consumed pa:
380  *    pa
381  *    group
382  *    object
383  *
384  *  - generate in-core bitmap:
385  *    group
386  *        pa
387  *
388  *  - discard all for given object (inode, locality group):
389  *    object
390  *        pa
391  *    group
392  *
393  *  - discard all for given group:
394  *    group
395  *        pa
396  *    group
397  *        object
398  *
399  *  - allocation path (ext4_mb_regular_allocator)
400  *    group
401  *    cr_power2_aligned/cr_goal_len_fast
402  */
403 static struct kmem_cache *ext4_pspace_cachep;
404 static struct kmem_cache *ext4_ac_cachep;
405 static struct kmem_cache *ext4_free_data_cachep;
406
407 /* We create slab caches for groupinfo data structures based on the
408  * superblock block size.  There will be one per mounted filesystem for
409  * each unique s_blocksize_bits */
410 #define NR_GRPINFO_CACHES 8
411 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
412
413 static const char * const ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
414         "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
415         "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
416         "ext4_groupinfo_64k", "ext4_groupinfo_128k"
417 };
418
419 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
420                                         ext4_group_t group);
421 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac);
422
423 static bool ext4_mb_good_group(struct ext4_allocation_context *ac,
424                                ext4_group_t group, enum criteria cr);
425
426 static int ext4_try_to_trim_range(struct super_block *sb,
427                 struct ext4_buddy *e4b, ext4_grpblk_t start,
428                 ext4_grpblk_t max, ext4_grpblk_t minblocks);
429
430 /*
431  * The algorithm using this percpu seq counter goes below:
432  * 1. We sample the percpu discard_pa_seq counter before trying for block
433  *    allocation in ext4_mb_new_blocks().
434  * 2. We increment this percpu discard_pa_seq counter when we either allocate
435  *    or free these blocks i.e. while marking those blocks as used/free in
436  *    mb_mark_used()/mb_free_blocks().
437  * 3. We also increment this percpu seq counter when we successfully identify
438  *    that the bb_prealloc_list is not empty and hence proceed for discarding
439  *    of those PAs inside ext4_mb_discard_group_preallocations().
440  *
441  * Now to make sure that the regular fast path of block allocation is not
442  * affected, as a small optimization we only sample the percpu seq counter
443  * on that cpu. Only when the block allocation fails and when freed blocks
444  * found were 0, that is when we sample percpu seq counter for all cpus using
445  * below function ext4_get_discard_pa_seq_sum(). This happens after making
446  * sure that all the PAs on grp->bb_prealloc_list got freed or if it's empty.
447  */
448 static DEFINE_PER_CPU(u64, discard_pa_seq);
449 static inline u64 ext4_get_discard_pa_seq_sum(void)
450 {
451         int __cpu;
452         u64 __seq = 0;
453
454         for_each_possible_cpu(__cpu)
455                 __seq += per_cpu(discard_pa_seq, __cpu);
456         return __seq;
457 }
458
459 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
460 {
461 #if BITS_PER_LONG == 64
462         *bit += ((unsigned long) addr & 7UL) << 3;
463         addr = (void *) ((unsigned long) addr & ~7UL);
464 #elif BITS_PER_LONG == 32
465         *bit += ((unsigned long) addr & 3UL) << 3;
466         addr = (void *) ((unsigned long) addr & ~3UL);
467 #else
468 #error "how many bits you are?!"
469 #endif
470         return addr;
471 }
472
473 static inline int mb_test_bit(int bit, void *addr)
474 {
475         /*
476          * ext4_test_bit on architecture like powerpc
477          * needs unsigned long aligned address
478          */
479         addr = mb_correct_addr_and_bit(&bit, addr);
480         return ext4_test_bit(bit, addr);
481 }
482
483 static inline void mb_set_bit(int bit, void *addr)
484 {
485         addr = mb_correct_addr_and_bit(&bit, addr);
486         ext4_set_bit(bit, addr);
487 }
488
489 static inline void mb_clear_bit(int bit, void *addr)
490 {
491         addr = mb_correct_addr_and_bit(&bit, addr);
492         ext4_clear_bit(bit, addr);
493 }
494
495 static inline int mb_test_and_clear_bit(int bit, void *addr)
496 {
497         addr = mb_correct_addr_and_bit(&bit, addr);
498         return ext4_test_and_clear_bit(bit, addr);
499 }
500
501 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
502 {
503         int fix = 0, ret, tmpmax;
504         addr = mb_correct_addr_and_bit(&fix, addr);
505         tmpmax = max + fix;
506         start += fix;
507
508         ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
509         if (ret > max)
510                 return max;
511         return ret;
512 }
513
514 static inline int mb_find_next_bit(void *addr, int max, int start)
515 {
516         int fix = 0, ret, tmpmax;
517         addr = mb_correct_addr_and_bit(&fix, addr);
518         tmpmax = max + fix;
519         start += fix;
520
521         ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
522         if (ret > max)
523                 return max;
524         return ret;
525 }
526
527 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
528 {
529         char *bb;
530
531         BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
532         BUG_ON(max == NULL);
533
534         if (order > e4b->bd_blkbits + 1) {
535                 *max = 0;
536                 return NULL;
537         }
538
539         /* at order 0 we see each particular block */
540         if (order == 0) {
541                 *max = 1 << (e4b->bd_blkbits + 3);
542                 return e4b->bd_bitmap;
543         }
544
545         bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
546         *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
547
548         return bb;
549 }
550
551 #ifdef DOUBLE_CHECK
552 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
553                            int first, int count)
554 {
555         int i;
556         struct super_block *sb = e4b->bd_sb;
557
558         if (unlikely(e4b->bd_info->bb_bitmap == NULL))
559                 return;
560         assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
561         for (i = 0; i < count; i++) {
562                 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
563                         ext4_fsblk_t blocknr;
564
565                         blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
566                         blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
567                         ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
568                                         EXT4_GROUP_INFO_BBITMAP_CORRUPT);
569                         ext4_grp_locked_error(sb, e4b->bd_group,
570                                               inode ? inode->i_ino : 0,
571                                               blocknr,
572                                               "freeing block already freed "
573                                               "(bit %u)",
574                                               first + i);
575                 }
576                 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
577         }
578 }
579
580 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
581 {
582         int i;
583
584         if (unlikely(e4b->bd_info->bb_bitmap == NULL))
585                 return;
586         assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
587         for (i = 0; i < count; i++) {
588                 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
589                 mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
590         }
591 }
592
593 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
594 {
595         if (unlikely(e4b->bd_info->bb_bitmap == NULL))
596                 return;
597         if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
598                 unsigned char *b1, *b2;
599                 int i;
600                 b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
601                 b2 = (unsigned char *) bitmap;
602                 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
603                         if (b1[i] != b2[i]) {
604                                 ext4_msg(e4b->bd_sb, KERN_ERR,
605                                          "corruption in group %u "
606                                          "at byte %u(%u): %x in copy != %x "
607                                          "on disk/prealloc",
608                                          e4b->bd_group, i, i * 8, b1[i], b2[i]);
609                                 BUG();
610                         }
611                 }
612         }
613 }
614
615 static void mb_group_bb_bitmap_alloc(struct super_block *sb,
616                         struct ext4_group_info *grp, ext4_group_t group)
617 {
618         struct buffer_head *bh;
619
620         grp->bb_bitmap = kmalloc(sb->s_blocksize, GFP_NOFS);
621         if (!grp->bb_bitmap)
622                 return;
623
624         bh = ext4_read_block_bitmap(sb, group);
625         if (IS_ERR_OR_NULL(bh)) {
626                 kfree(grp->bb_bitmap);
627                 grp->bb_bitmap = NULL;
628                 return;
629         }
630
631         memcpy(grp->bb_bitmap, bh->b_data, sb->s_blocksize);
632         put_bh(bh);
633 }
634
635 static void mb_group_bb_bitmap_free(struct ext4_group_info *grp)
636 {
637         kfree(grp->bb_bitmap);
638 }
639
640 #else
641 static inline void mb_free_blocks_double(struct inode *inode,
642                                 struct ext4_buddy *e4b, int first, int count)
643 {
644         return;
645 }
646 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
647                                                 int first, int count)
648 {
649         return;
650 }
651 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
652 {
653         return;
654 }
655
656 static inline void mb_group_bb_bitmap_alloc(struct super_block *sb,
657                         struct ext4_group_info *grp, ext4_group_t group)
658 {
659         return;
660 }
661
662 static inline void mb_group_bb_bitmap_free(struct ext4_group_info *grp)
663 {
664         return;
665 }
666 #endif
667
668 #ifdef AGGRESSIVE_CHECK
669
670 #define MB_CHECK_ASSERT(assert)                                         \
671 do {                                                                    \
672         if (!(assert)) {                                                \
673                 printk(KERN_EMERG                                       \
674                         "Assertion failure in %s() at %s:%d: \"%s\"\n", \
675                         function, file, line, # assert);                \
676                 BUG();                                                  \
677         }                                                               \
678 } while (0)
679
680 static void __mb_check_buddy(struct ext4_buddy *e4b, char *file,
681                                 const char *function, int line)
682 {
683         struct super_block *sb = e4b->bd_sb;
684         int order = e4b->bd_blkbits + 1;
685         int max;
686         int max2;
687         int i;
688         int j;
689         int k;
690         int count;
691         struct ext4_group_info *grp;
692         int fragments = 0;
693         int fstart;
694         struct list_head *cur;
695         void *buddy;
696         void *buddy2;
697
698         if (e4b->bd_info->bb_check_counter++ % 10)
699                 return;
700
701         while (order > 1) {
702                 buddy = mb_find_buddy(e4b, order, &max);
703                 MB_CHECK_ASSERT(buddy);
704                 buddy2 = mb_find_buddy(e4b, order - 1, &max2);
705                 MB_CHECK_ASSERT(buddy2);
706                 MB_CHECK_ASSERT(buddy != buddy2);
707                 MB_CHECK_ASSERT(max * 2 == max2);
708
709                 count = 0;
710                 for (i = 0; i < max; i++) {
711
712                         if (mb_test_bit(i, buddy)) {
713                                 /* only single bit in buddy2 may be 0 */
714                                 if (!mb_test_bit(i << 1, buddy2)) {
715                                         MB_CHECK_ASSERT(
716                                                 mb_test_bit((i<<1)+1, buddy2));
717                                 }
718                                 continue;
719                         }
720
721                         /* both bits in buddy2 must be 1 */
722                         MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
723                         MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
724
725                         for (j = 0; j < (1 << order); j++) {
726                                 k = (i * (1 << order)) + j;
727                                 MB_CHECK_ASSERT(
728                                         !mb_test_bit(k, e4b->bd_bitmap));
729                         }
730                         count++;
731                 }
732                 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
733                 order--;
734         }
735
736         fstart = -1;
737         buddy = mb_find_buddy(e4b, 0, &max);
738         for (i = 0; i < max; i++) {
739                 if (!mb_test_bit(i, buddy)) {
740                         MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
741                         if (fstart == -1) {
742                                 fragments++;
743                                 fstart = i;
744                         }
745                         continue;
746                 }
747                 fstart = -1;
748                 /* check used bits only */
749                 for (j = 0; j < e4b->bd_blkbits + 1; j++) {
750                         buddy2 = mb_find_buddy(e4b, j, &max2);
751                         k = i >> j;
752                         MB_CHECK_ASSERT(k < max2);
753                         MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
754                 }
755         }
756         MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
757         MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
758
759         grp = ext4_get_group_info(sb, e4b->bd_group);
760         if (!grp)
761                 return;
762         list_for_each(cur, &grp->bb_prealloc_list) {
763                 ext4_group_t groupnr;
764                 struct ext4_prealloc_space *pa;
765                 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
766                 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
767                 MB_CHECK_ASSERT(groupnr == e4b->bd_group);
768                 for (i = 0; i < pa->pa_len; i++)
769                         MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
770         }
771 }
772 #undef MB_CHECK_ASSERT
773 #define mb_check_buddy(e4b) __mb_check_buddy(e4b,       \
774                                         __FILE__, __func__, __LINE__)
775 #else
776 #define mb_check_buddy(e4b)
777 #endif
778
779 /*
780  * Divide blocks started from @first with length @len into
781  * smaller chunks with power of 2 blocks.
782  * Clear the bits in bitmap which the blocks of the chunk(s) covered,
783  * then increase bb_counters[] for corresponded chunk size.
784  */
785 static void ext4_mb_mark_free_simple(struct super_block *sb,
786                                 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
787                                         struct ext4_group_info *grp)
788 {
789         struct ext4_sb_info *sbi = EXT4_SB(sb);
790         ext4_grpblk_t min;
791         ext4_grpblk_t max;
792         ext4_grpblk_t chunk;
793         unsigned int border;
794
795         BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
796
797         border = 2 << sb->s_blocksize_bits;
798
799         while (len > 0) {
800                 /* find how many blocks can be covered since this position */
801                 max = ffs(first | border) - 1;
802
803                 /* find how many blocks of power 2 we need to mark */
804                 min = fls(len) - 1;
805
806                 if (max < min)
807                         min = max;
808                 chunk = 1 << min;
809
810                 /* mark multiblock chunks only */
811                 grp->bb_counters[min]++;
812                 if (min > 0)
813                         mb_clear_bit(first >> min,
814                                      buddy + sbi->s_mb_offsets[min]);
815
816                 len -= chunk;
817                 first += chunk;
818         }
819 }
820
821 static int mb_avg_fragment_size_order(struct super_block *sb, ext4_grpblk_t len)
822 {
823         int order;
824
825         /*
826          * We don't bother with a special lists groups with only 1 block free
827          * extents and for completely empty groups.
828          */
829         order = fls(len) - 2;
830         if (order < 0)
831                 return 0;
832         if (order == MB_NUM_ORDERS(sb))
833                 order--;
834         return order;
835 }
836
837 /* Move group to appropriate avg_fragment_size list */
838 static void
839 mb_update_avg_fragment_size(struct super_block *sb, struct ext4_group_info *grp)
840 {
841         struct ext4_sb_info *sbi = EXT4_SB(sb);
842         int new_order;
843
844         if (!test_opt2(sb, MB_OPTIMIZE_SCAN) || grp->bb_fragments == 0)
845                 return;
846
847         new_order = mb_avg_fragment_size_order(sb,
848                                         grp->bb_free / grp->bb_fragments);
849         if (new_order == grp->bb_avg_fragment_size_order)
850                 return;
851
852         if (grp->bb_avg_fragment_size_order != -1) {
853                 write_lock(&sbi->s_mb_avg_fragment_size_locks[
854                                         grp->bb_avg_fragment_size_order]);
855                 list_del(&grp->bb_avg_fragment_size_node);
856                 write_unlock(&sbi->s_mb_avg_fragment_size_locks[
857                                         grp->bb_avg_fragment_size_order]);
858         }
859         grp->bb_avg_fragment_size_order = new_order;
860         write_lock(&sbi->s_mb_avg_fragment_size_locks[
861                                         grp->bb_avg_fragment_size_order]);
862         list_add_tail(&grp->bb_avg_fragment_size_node,
863                 &sbi->s_mb_avg_fragment_size[grp->bb_avg_fragment_size_order]);
864         write_unlock(&sbi->s_mb_avg_fragment_size_locks[
865                                         grp->bb_avg_fragment_size_order]);
866 }
867
868 /*
869  * Choose next group by traversing largest_free_order lists. Updates *new_cr if
870  * cr level needs an update.
871  */
872 static void ext4_mb_choose_next_group_p2_aligned(struct ext4_allocation_context *ac,
873                         enum criteria *new_cr, ext4_group_t *group)
874 {
875         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
876         struct ext4_group_info *iter;
877         int i;
878
879         if (ac->ac_status == AC_STATUS_FOUND)
880                 return;
881
882         if (unlikely(sbi->s_mb_stats && ac->ac_flags & EXT4_MB_CR_POWER2_ALIGNED_OPTIMIZED))
883                 atomic_inc(&sbi->s_bal_p2_aligned_bad_suggestions);
884
885         for (i = ac->ac_2order; i < MB_NUM_ORDERS(ac->ac_sb); i++) {
886                 if (list_empty(&sbi->s_mb_largest_free_orders[i]))
887                         continue;
888                 read_lock(&sbi->s_mb_largest_free_orders_locks[i]);
889                 if (list_empty(&sbi->s_mb_largest_free_orders[i])) {
890                         read_unlock(&sbi->s_mb_largest_free_orders_locks[i]);
891                         continue;
892                 }
893                 list_for_each_entry(iter, &sbi->s_mb_largest_free_orders[i],
894                                     bb_largest_free_order_node) {
895                         if (sbi->s_mb_stats)
896                                 atomic64_inc(&sbi->s_bal_cX_groups_considered[CR_POWER2_ALIGNED]);
897                         if (likely(ext4_mb_good_group(ac, iter->bb_group, CR_POWER2_ALIGNED))) {
898                                 *group = iter->bb_group;
899                                 ac->ac_flags |= EXT4_MB_CR_POWER2_ALIGNED_OPTIMIZED;
900                                 read_unlock(&sbi->s_mb_largest_free_orders_locks[i]);
901                                 return;
902                         }
903                 }
904                 read_unlock(&sbi->s_mb_largest_free_orders_locks[i]);
905         }
906
907         /* Increment cr and search again if no group is found */
908         *new_cr = CR_GOAL_LEN_FAST;
909 }
910
911 /*
912  * Find a suitable group of given order from the average fragments list.
913  */
914 static struct ext4_group_info *
915 ext4_mb_find_good_group_avg_frag_lists(struct ext4_allocation_context *ac, int order)
916 {
917         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
918         struct list_head *frag_list = &sbi->s_mb_avg_fragment_size[order];
919         rwlock_t *frag_list_lock = &sbi->s_mb_avg_fragment_size_locks[order];
920         struct ext4_group_info *grp = NULL, *iter;
921         enum criteria cr = ac->ac_criteria;
922
923         if (list_empty(frag_list))
924                 return NULL;
925         read_lock(frag_list_lock);
926         if (list_empty(frag_list)) {
927                 read_unlock(frag_list_lock);
928                 return NULL;
929         }
930         list_for_each_entry(iter, frag_list, bb_avg_fragment_size_node) {
931                 if (sbi->s_mb_stats)
932                         atomic64_inc(&sbi->s_bal_cX_groups_considered[cr]);
933                 if (likely(ext4_mb_good_group(ac, iter->bb_group, cr))) {
934                         grp = iter;
935                         break;
936                 }
937         }
938         read_unlock(frag_list_lock);
939         return grp;
940 }
941
942 /*
943  * Choose next group by traversing average fragment size list of suitable
944  * order. Updates *new_cr if cr level needs an update.
945  */
946 static void ext4_mb_choose_next_group_goal_fast(struct ext4_allocation_context *ac,
947                 enum criteria *new_cr, ext4_group_t *group)
948 {
949         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
950         struct ext4_group_info *grp = NULL;
951         int i;
952
953         if (unlikely(ac->ac_flags & EXT4_MB_CR_GOAL_LEN_FAST_OPTIMIZED)) {
954                 if (sbi->s_mb_stats)
955                         atomic_inc(&sbi->s_bal_goal_fast_bad_suggestions);
956         }
957
958         for (i = mb_avg_fragment_size_order(ac->ac_sb, ac->ac_g_ex.fe_len);
959              i < MB_NUM_ORDERS(ac->ac_sb); i++) {
960                 grp = ext4_mb_find_good_group_avg_frag_lists(ac, i);
961                 if (grp) {
962                         *group = grp->bb_group;
963                         ac->ac_flags |= EXT4_MB_CR_GOAL_LEN_FAST_OPTIMIZED;
964                         return;
965                 }
966         }
967
968         /*
969          * CR_BEST_AVAIL_LEN works based on the concept that we have
970          * a larger normalized goal len request which can be trimmed to
971          * a smaller goal len such that it can still satisfy original
972          * request len. However, allocation request for non-regular
973          * files never gets normalized.
974          * See function ext4_mb_normalize_request() (EXT4_MB_HINT_DATA).
975          */
976         if (ac->ac_flags & EXT4_MB_HINT_DATA)
977                 *new_cr = CR_BEST_AVAIL_LEN;
978         else
979                 *new_cr = CR_GOAL_LEN_SLOW;
980 }
981
982 /*
983  * We couldn't find a group in CR_GOAL_LEN_FAST so try to find the highest free fragment
984  * order we have and proactively trim the goal request length to that order to
985  * find a suitable group faster.
986  *
987  * This optimizes allocation speed at the cost of slightly reduced
988  * preallocations. However, we make sure that we don't trim the request too
989  * much and fall to CR_GOAL_LEN_SLOW in that case.
990  */
991 static void ext4_mb_choose_next_group_best_avail(struct ext4_allocation_context *ac,
992                 enum criteria *new_cr, ext4_group_t *group)
993 {
994         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
995         struct ext4_group_info *grp = NULL;
996         int i, order, min_order;
997         unsigned long num_stripe_clusters = 0;
998
999         if (unlikely(ac->ac_flags & EXT4_MB_CR_BEST_AVAIL_LEN_OPTIMIZED)) {
1000                 if (sbi->s_mb_stats)
1001                         atomic_inc(&sbi->s_bal_best_avail_bad_suggestions);
1002         }
1003
1004         /*
1005          * mb_avg_fragment_size_order() returns order in a way that makes
1006          * retrieving back the length using (1 << order) inaccurate. Hence, use
1007          * fls() instead since we need to know the actual length while modifying
1008          * goal length.
1009          */
1010         order = fls(ac->ac_g_ex.fe_len) - 1;
1011         min_order = order - sbi->s_mb_best_avail_max_trim_order;
1012         if (min_order < 0)
1013                 min_order = 0;
1014
1015         if (sbi->s_stripe > 0) {
1016                 /*
1017                  * We are assuming that stripe size is always a multiple of
1018                  * cluster ratio otherwise __ext4_fill_super exists early.
1019                  */
1020                 num_stripe_clusters = EXT4_NUM_B2C(sbi, sbi->s_stripe);
1021                 if (1 << min_order < num_stripe_clusters)
1022                         /*
1023                          * We consider 1 order less because later we round
1024                          * up the goal len to num_stripe_clusters
1025                          */
1026                         min_order = fls(num_stripe_clusters) - 1;
1027         }
1028
1029         if (1 << min_order < ac->ac_o_ex.fe_len)
1030                 min_order = fls(ac->ac_o_ex.fe_len);
1031
1032         for (i = order; i >= min_order; i--) {
1033                 int frag_order;
1034                 /*
1035                  * Scale down goal len to make sure we find something
1036                  * in the free fragments list. Basically, reduce
1037                  * preallocations.
1038                  */
1039                 ac->ac_g_ex.fe_len = 1 << i;
1040
1041                 if (num_stripe_clusters > 0) {
1042                         /*
1043                          * Try to round up the adjusted goal length to
1044                          * stripe size (in cluster units) multiple for
1045                          * efficiency.
1046                          */
1047                         ac->ac_g_ex.fe_len = roundup(ac->ac_g_ex.fe_len,
1048                                                      num_stripe_clusters);
1049                 }
1050
1051                 frag_order = mb_avg_fragment_size_order(ac->ac_sb,
1052                                                         ac->ac_g_ex.fe_len);
1053
1054                 grp = ext4_mb_find_good_group_avg_frag_lists(ac, frag_order);
1055                 if (grp) {
1056                         *group = grp->bb_group;
1057                         ac->ac_flags |= EXT4_MB_CR_BEST_AVAIL_LEN_OPTIMIZED;
1058                         return;
1059                 }
1060         }
1061
1062         /* Reset goal length to original goal length before falling into CR_GOAL_LEN_SLOW */
1063         ac->ac_g_ex.fe_len = ac->ac_orig_goal_len;
1064         *new_cr = CR_GOAL_LEN_SLOW;
1065 }
1066
1067 static inline int should_optimize_scan(struct ext4_allocation_context *ac)
1068 {
1069         if (unlikely(!test_opt2(ac->ac_sb, MB_OPTIMIZE_SCAN)))
1070                 return 0;
1071         if (ac->ac_criteria >= CR_GOAL_LEN_SLOW)
1072                 return 0;
1073         if (!ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS))
1074                 return 0;
1075         return 1;
1076 }
1077
1078 /*
1079  * Return next linear group for allocation. If linear traversal should not be
1080  * performed, this function just returns the same group
1081  */
1082 static ext4_group_t
1083 next_linear_group(struct ext4_allocation_context *ac, ext4_group_t group,
1084                   ext4_group_t ngroups)
1085 {
1086         if (!should_optimize_scan(ac))
1087                 goto inc_and_return;
1088
1089         if (ac->ac_groups_linear_remaining) {
1090                 ac->ac_groups_linear_remaining--;
1091                 goto inc_and_return;
1092         }
1093
1094         return group;
1095 inc_and_return:
1096         /*
1097          * Artificially restricted ngroups for non-extent
1098          * files makes group > ngroups possible on first loop.
1099          */
1100         return group + 1 >= ngroups ? 0 : group + 1;
1101 }
1102
1103 /*
1104  * ext4_mb_choose_next_group: choose next group for allocation.
1105  *
1106  * @ac        Allocation Context
1107  * @new_cr    This is an output parameter. If the there is no good group
1108  *            available at current CR level, this field is updated to indicate
1109  *            the new cr level that should be used.
1110  * @group     This is an input / output parameter. As an input it indicates the
1111  *            next group that the allocator intends to use for allocation. As
1112  *            output, this field indicates the next group that should be used as
1113  *            determined by the optimization functions.
1114  * @ngroups   Total number of groups
1115  */
1116 static void ext4_mb_choose_next_group(struct ext4_allocation_context *ac,
1117                 enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups)
1118 {
1119         *new_cr = ac->ac_criteria;
1120
1121         if (!should_optimize_scan(ac) || ac->ac_groups_linear_remaining) {
1122                 *group = next_linear_group(ac, *group, ngroups);
1123                 return;
1124         }
1125
1126         if (*new_cr == CR_POWER2_ALIGNED) {
1127                 ext4_mb_choose_next_group_p2_aligned(ac, new_cr, group);
1128         } else if (*new_cr == CR_GOAL_LEN_FAST) {
1129                 ext4_mb_choose_next_group_goal_fast(ac, new_cr, group);
1130         } else if (*new_cr == CR_BEST_AVAIL_LEN) {
1131                 ext4_mb_choose_next_group_best_avail(ac, new_cr, group);
1132         } else {
1133                 /*
1134                  * TODO: For CR=2, we can arrange groups in an rb tree sorted by
1135                  * bb_free. But until that happens, we should never come here.
1136                  */
1137                 WARN_ON(1);
1138         }
1139 }
1140
1141 /*
1142  * Cache the order of the largest free extent we have available in this block
1143  * group.
1144  */
1145 static void
1146 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
1147 {
1148         struct ext4_sb_info *sbi = EXT4_SB(sb);
1149         int i;
1150
1151         for (i = MB_NUM_ORDERS(sb) - 1; i >= 0; i--)
1152                 if (grp->bb_counters[i] > 0)
1153                         break;
1154         /* No need to move between order lists? */
1155         if (!test_opt2(sb, MB_OPTIMIZE_SCAN) ||
1156             i == grp->bb_largest_free_order) {
1157                 grp->bb_largest_free_order = i;
1158                 return;
1159         }
1160
1161         if (grp->bb_largest_free_order >= 0) {
1162                 write_lock(&sbi->s_mb_largest_free_orders_locks[
1163                                               grp->bb_largest_free_order]);
1164                 list_del_init(&grp->bb_largest_free_order_node);
1165                 write_unlock(&sbi->s_mb_largest_free_orders_locks[
1166                                               grp->bb_largest_free_order]);
1167         }
1168         grp->bb_largest_free_order = i;
1169         if (grp->bb_largest_free_order >= 0 && grp->bb_free) {
1170                 write_lock(&sbi->s_mb_largest_free_orders_locks[
1171                                               grp->bb_largest_free_order]);
1172                 list_add_tail(&grp->bb_largest_free_order_node,
1173                       &sbi->s_mb_largest_free_orders[grp->bb_largest_free_order]);
1174                 write_unlock(&sbi->s_mb_largest_free_orders_locks[
1175                                               grp->bb_largest_free_order]);
1176         }
1177 }
1178
1179 static noinline_for_stack
1180 void ext4_mb_generate_buddy(struct super_block *sb,
1181                             void *buddy, void *bitmap, ext4_group_t group,
1182                             struct ext4_group_info *grp)
1183 {
1184         struct ext4_sb_info *sbi = EXT4_SB(sb);
1185         ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
1186         ext4_grpblk_t i = 0;
1187         ext4_grpblk_t first;
1188         ext4_grpblk_t len;
1189         unsigned free = 0;
1190         unsigned fragments = 0;
1191         unsigned long long period = get_cycles();
1192
1193         /* initialize buddy from bitmap which is aggregation
1194          * of on-disk bitmap and preallocations */
1195         i = mb_find_next_zero_bit(bitmap, max, 0);
1196         grp->bb_first_free = i;
1197         while (i < max) {
1198                 fragments++;
1199                 first = i;
1200                 i = mb_find_next_bit(bitmap, max, i);
1201                 len = i - first;
1202                 free += len;
1203                 if (len > 1)
1204                         ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
1205                 else
1206                         grp->bb_counters[0]++;
1207                 if (i < max)
1208                         i = mb_find_next_zero_bit(bitmap, max, i);
1209         }
1210         grp->bb_fragments = fragments;
1211
1212         if (free != grp->bb_free) {
1213                 ext4_grp_locked_error(sb, group, 0, 0,
1214                                       "block bitmap and bg descriptor "
1215                                       "inconsistent: %u vs %u free clusters",
1216                                       free, grp->bb_free);
1217                 /*
1218                  * If we intend to continue, we consider group descriptor
1219                  * corrupt and update bb_free using bitmap value
1220                  */
1221                 grp->bb_free = free;
1222                 ext4_mark_group_bitmap_corrupted(sb, group,
1223                                         EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1224         }
1225         mb_set_largest_free_order(sb, grp);
1226         mb_update_avg_fragment_size(sb, grp);
1227
1228         clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
1229
1230         period = get_cycles() - period;
1231         atomic_inc(&sbi->s_mb_buddies_generated);
1232         atomic64_add(period, &sbi->s_mb_generation_time);
1233 }
1234
1235 static void mb_regenerate_buddy(struct ext4_buddy *e4b)
1236 {
1237         int count;
1238         int order = 1;
1239         void *buddy;
1240
1241         while ((buddy = mb_find_buddy(e4b, order++, &count)))
1242                 mb_set_bits(buddy, 0, count);
1243
1244         e4b->bd_info->bb_fragments = 0;
1245         memset(e4b->bd_info->bb_counters, 0,
1246                 sizeof(*e4b->bd_info->bb_counters) *
1247                 (e4b->bd_sb->s_blocksize_bits + 2));
1248
1249         ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy,
1250                 e4b->bd_bitmap, e4b->bd_group, e4b->bd_info);
1251 }
1252
1253 /* The buddy information is attached the buddy cache inode
1254  * for convenience. The information regarding each group
1255  * is loaded via ext4_mb_load_buddy. The information involve
1256  * block bitmap and buddy information. The information are
1257  * stored in the inode as
1258  *
1259  * {                        page                        }
1260  * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
1261  *
1262  *
1263  * one block each for bitmap and buddy information.
1264  * So for each group we take up 2 blocks. A page can
1265  * contain blocks_per_page (PAGE_SIZE / blocksize)  blocks.
1266  * So it can have information regarding groups_per_page which
1267  * is blocks_per_page/2
1268  *
1269  * Locking note:  This routine takes the block group lock of all groups
1270  * for this page; do not hold this lock when calling this routine!
1271  */
1272
1273 static int ext4_mb_init_cache(struct page *page, char *incore, gfp_t gfp)
1274 {
1275         ext4_group_t ngroups;
1276         unsigned int blocksize;
1277         int blocks_per_page;
1278         int groups_per_page;
1279         int err = 0;
1280         int i;
1281         ext4_group_t first_group, group;
1282         int first_block;
1283         struct super_block *sb;
1284         struct buffer_head *bhs;
1285         struct buffer_head **bh = NULL;
1286         struct inode *inode;
1287         char *data;
1288         char *bitmap;
1289         struct ext4_group_info *grinfo;
1290
1291         inode = page->mapping->host;
1292         sb = inode->i_sb;
1293         ngroups = ext4_get_groups_count(sb);
1294         blocksize = i_blocksize(inode);
1295         blocks_per_page = PAGE_SIZE / blocksize;
1296
1297         mb_debug(sb, "init page %lu\n", page->index);
1298
1299         groups_per_page = blocks_per_page >> 1;
1300         if (groups_per_page == 0)
1301                 groups_per_page = 1;
1302
1303         /* allocate buffer_heads to read bitmaps */
1304         if (groups_per_page > 1) {
1305                 i = sizeof(struct buffer_head *) * groups_per_page;
1306                 bh = kzalloc(i, gfp);
1307                 if (bh == NULL)
1308                         return -ENOMEM;
1309         } else
1310                 bh = &bhs;
1311
1312         first_group = page->index * blocks_per_page / 2;
1313
1314         /* read all groups the page covers into the cache */
1315         for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
1316                 if (group >= ngroups)
1317                         break;
1318
1319                 grinfo = ext4_get_group_info(sb, group);
1320                 if (!grinfo)
1321                         continue;
1322                 /*
1323                  * If page is uptodate then we came here after online resize
1324                  * which added some new uninitialized group info structs, so
1325                  * we must skip all initialized uptodate buddies on the page,
1326                  * which may be currently in use by an allocating task.
1327                  */
1328                 if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
1329                         bh[i] = NULL;
1330                         continue;
1331                 }
1332                 bh[i] = ext4_read_block_bitmap_nowait(sb, group, false);
1333                 if (IS_ERR(bh[i])) {
1334                         err = PTR_ERR(bh[i]);
1335                         bh[i] = NULL;
1336                         goto out;
1337                 }
1338                 mb_debug(sb, "read bitmap for group %u\n", group);
1339         }
1340
1341         /* wait for I/O completion */
1342         for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
1343                 int err2;
1344
1345                 if (!bh[i])
1346                         continue;
1347                 err2 = ext4_wait_block_bitmap(sb, group, bh[i]);
1348                 if (!err)
1349                         err = err2;
1350         }
1351
1352         first_block = page->index * blocks_per_page;
1353         for (i = 0; i < blocks_per_page; i++) {
1354                 group = (first_block + i) >> 1;
1355                 if (group >= ngroups)
1356                         break;
1357
1358                 if (!bh[group - first_group])
1359                         /* skip initialized uptodate buddy */
1360                         continue;
1361
1362                 if (!buffer_verified(bh[group - first_group]))
1363                         /* Skip faulty bitmaps */
1364                         continue;
1365                 err = 0;
1366
1367                 /*
1368                  * data carry information regarding this
1369                  * particular group in the format specified
1370                  * above
1371                  *
1372                  */
1373                 data = page_address(page) + (i * blocksize);
1374                 bitmap = bh[group - first_group]->b_data;
1375
1376                 /*
1377                  * We place the buddy block and bitmap block
1378                  * close together
1379                  */
1380                 grinfo = ext4_get_group_info(sb, group);
1381                 if (!grinfo) {
1382                         err = -EFSCORRUPTED;
1383                         goto out;
1384                 }
1385                 if ((first_block + i) & 1) {
1386                         /* this is block of buddy */
1387                         BUG_ON(incore == NULL);
1388                         mb_debug(sb, "put buddy for group %u in page %lu/%x\n",
1389                                 group, page->index, i * blocksize);
1390                         trace_ext4_mb_buddy_bitmap_load(sb, group);
1391                         grinfo->bb_fragments = 0;
1392                         memset(grinfo->bb_counters, 0,
1393                                sizeof(*grinfo->bb_counters) *
1394                                (MB_NUM_ORDERS(sb)));
1395                         /*
1396                          * incore got set to the group block bitmap below
1397                          */
1398                         ext4_lock_group(sb, group);
1399                         /* init the buddy */
1400                         memset(data, 0xff, blocksize);
1401                         ext4_mb_generate_buddy(sb, data, incore, group, grinfo);
1402                         ext4_unlock_group(sb, group);
1403                         incore = NULL;
1404                 } else {
1405                         /* this is block of bitmap */
1406                         BUG_ON(incore != NULL);
1407                         mb_debug(sb, "put bitmap for group %u in page %lu/%x\n",
1408                                 group, page->index, i * blocksize);
1409                         trace_ext4_mb_bitmap_load(sb, group);
1410
1411                         /* see comments in ext4_mb_put_pa() */
1412                         ext4_lock_group(sb, group);
1413                         memcpy(data, bitmap, blocksize);
1414
1415                         /* mark all preallocated blks used in in-core bitmap */
1416                         ext4_mb_generate_from_pa(sb, data, group);
1417                         WARN_ON_ONCE(!RB_EMPTY_ROOT(&grinfo->bb_free_root));
1418                         ext4_unlock_group(sb, group);
1419
1420                         /* set incore so that the buddy information can be
1421                          * generated using this
1422                          */
1423                         incore = data;
1424                 }
1425         }
1426         SetPageUptodate(page);
1427
1428 out:
1429         if (bh) {
1430                 for (i = 0; i < groups_per_page; i++)
1431                         brelse(bh[i]);
1432                 if (bh != &bhs)
1433                         kfree(bh);
1434         }
1435         return err;
1436 }
1437
1438 /*
1439  * Lock the buddy and bitmap pages. This make sure other parallel init_group
1440  * on the same buddy page doesn't happen whild holding the buddy page lock.
1441  * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
1442  * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
1443  */
1444 static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
1445                 ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp)
1446 {
1447         struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
1448         int block, pnum, poff;
1449         int blocks_per_page;
1450         struct page *page;
1451
1452         e4b->bd_buddy_page = NULL;
1453         e4b->bd_bitmap_page = NULL;
1454
1455         blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1456         /*
1457          * the buddy cache inode stores the block bitmap
1458          * and buddy information in consecutive blocks.
1459          * So for each group we need two blocks.
1460          */
1461         block = group * 2;
1462         pnum = block / blocks_per_page;
1463         poff = block % blocks_per_page;
1464         page = find_or_create_page(inode->i_mapping, pnum, gfp);
1465         if (!page)
1466                 return -ENOMEM;
1467         BUG_ON(page->mapping != inode->i_mapping);
1468         e4b->bd_bitmap_page = page;
1469         e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1470
1471         if (blocks_per_page >= 2) {
1472                 /* buddy and bitmap are on the same page */
1473                 return 0;
1474         }
1475
1476         /* blocks_per_page == 1, hence we need another page for the buddy */
1477         page = find_or_create_page(inode->i_mapping, block + 1, gfp);
1478         if (!page)
1479                 return -ENOMEM;
1480         BUG_ON(page->mapping != inode->i_mapping);
1481         e4b->bd_buddy_page = page;
1482         return 0;
1483 }
1484
1485 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
1486 {
1487         if (e4b->bd_bitmap_page) {
1488                 unlock_page(e4b->bd_bitmap_page);
1489                 put_page(e4b->bd_bitmap_page);
1490         }
1491         if (e4b->bd_buddy_page) {
1492                 unlock_page(e4b->bd_buddy_page);
1493                 put_page(e4b->bd_buddy_page);
1494         }
1495 }
1496
1497 /*
1498  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1499  * block group lock of all groups for this page; do not hold the BG lock when
1500  * calling this routine!
1501  */
1502 static noinline_for_stack
1503 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp)
1504 {
1505
1506         struct ext4_group_info *this_grp;
1507         struct ext4_buddy e4b;
1508         struct page *page;
1509         int ret = 0;
1510
1511         might_sleep();
1512         mb_debug(sb, "init group %u\n", group);
1513         this_grp = ext4_get_group_info(sb, group);
1514         if (!this_grp)
1515                 return -EFSCORRUPTED;
1516
1517         /*
1518          * This ensures that we don't reinit the buddy cache
1519          * page which map to the group from which we are already
1520          * allocating. If we are looking at the buddy cache we would
1521          * have taken a reference using ext4_mb_load_buddy and that
1522          * would have pinned buddy page to page cache.
1523          * The call to ext4_mb_get_buddy_page_lock will mark the
1524          * page accessed.
1525          */
1526         ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp);
1527         if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1528                 /*
1529                  * somebody initialized the group
1530                  * return without doing anything
1531                  */
1532                 goto err;
1533         }
1534
1535         page = e4b.bd_bitmap_page;
1536         ret = ext4_mb_init_cache(page, NULL, gfp);
1537         if (ret)
1538                 goto err;
1539         if (!PageUptodate(page)) {
1540                 ret = -EIO;
1541                 goto err;
1542         }
1543
1544         if (e4b.bd_buddy_page == NULL) {
1545                 /*
1546                  * If both the bitmap and buddy are in
1547                  * the same page we don't need to force
1548                  * init the buddy
1549                  */
1550                 ret = 0;
1551                 goto err;
1552         }
1553         /* init buddy cache */
1554         page = e4b.bd_buddy_page;
1555         ret = ext4_mb_init_cache(page, e4b.bd_bitmap, gfp);
1556         if (ret)
1557                 goto err;
1558         if (!PageUptodate(page)) {
1559                 ret = -EIO;
1560                 goto err;
1561         }
1562 err:
1563         ext4_mb_put_buddy_page_lock(&e4b);
1564         return ret;
1565 }
1566
1567 /*
1568  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1569  * block group lock of all groups for this page; do not hold the BG lock when
1570  * calling this routine!
1571  */
1572 static noinline_for_stack int
1573 ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group,
1574                        struct ext4_buddy *e4b, gfp_t gfp)
1575 {
1576         int blocks_per_page;
1577         int block;
1578         int pnum;
1579         int poff;
1580         struct page *page;
1581         int ret;
1582         struct ext4_group_info *grp;
1583         struct ext4_sb_info *sbi = EXT4_SB(sb);
1584         struct inode *inode = sbi->s_buddy_cache;
1585
1586         might_sleep();
1587         mb_debug(sb, "load group %u\n", group);
1588
1589         blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1590         grp = ext4_get_group_info(sb, group);
1591         if (!grp)
1592                 return -EFSCORRUPTED;
1593
1594         e4b->bd_blkbits = sb->s_blocksize_bits;
1595         e4b->bd_info = grp;
1596         e4b->bd_sb = sb;
1597         e4b->bd_group = group;
1598         e4b->bd_buddy_page = NULL;
1599         e4b->bd_bitmap_page = NULL;
1600
1601         if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1602                 /*
1603                  * we need full data about the group
1604                  * to make a good selection
1605                  */
1606                 ret = ext4_mb_init_group(sb, group, gfp);
1607                 if (ret)
1608                         return ret;
1609         }
1610
1611         /*
1612          * the buddy cache inode stores the block bitmap
1613          * and buddy information in consecutive blocks.
1614          * So for each group we need two blocks.
1615          */
1616         block = group * 2;
1617         pnum = block / blocks_per_page;
1618         poff = block % blocks_per_page;
1619
1620         /* we could use find_or_create_page(), but it locks page
1621          * what we'd like to avoid in fast path ... */
1622         page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1623         if (page == NULL || !PageUptodate(page)) {
1624                 if (page)
1625                         /*
1626                          * drop the page reference and try
1627                          * to get the page with lock. If we
1628                          * are not uptodate that implies
1629                          * somebody just created the page but
1630                          * is yet to initialize the same. So
1631                          * wait for it to initialize.
1632                          */
1633                         put_page(page);
1634                 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1635                 if (page) {
1636                         if (WARN_RATELIMIT(page->mapping != inode->i_mapping,
1637         "ext4: bitmap's paging->mapping != inode->i_mapping\n")) {
1638                                 /* should never happen */
1639                                 unlock_page(page);
1640                                 ret = -EINVAL;
1641                                 goto err;
1642                         }
1643                         if (!PageUptodate(page)) {
1644                                 ret = ext4_mb_init_cache(page, NULL, gfp);
1645                                 if (ret) {
1646                                         unlock_page(page);
1647                                         goto err;
1648                                 }
1649                                 mb_cmp_bitmaps(e4b, page_address(page) +
1650                                                (poff * sb->s_blocksize));
1651                         }
1652                         unlock_page(page);
1653                 }
1654         }
1655         if (page == NULL) {
1656                 ret = -ENOMEM;
1657                 goto err;
1658         }
1659         if (!PageUptodate(page)) {
1660                 ret = -EIO;
1661                 goto err;
1662         }
1663
1664         /* Pages marked accessed already */
1665         e4b->bd_bitmap_page = page;
1666         e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1667
1668         block++;
1669         pnum = block / blocks_per_page;
1670         poff = block % blocks_per_page;
1671
1672         page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1673         if (page == NULL || !PageUptodate(page)) {
1674                 if (page)
1675                         put_page(page);
1676                 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1677                 if (page) {
1678                         if (WARN_RATELIMIT(page->mapping != inode->i_mapping,
1679         "ext4: buddy bitmap's page->mapping != inode->i_mapping\n")) {
1680                                 /* should never happen */
1681                                 unlock_page(page);
1682                                 ret = -EINVAL;
1683                                 goto err;
1684                         }
1685                         if (!PageUptodate(page)) {
1686                                 ret = ext4_mb_init_cache(page, e4b->bd_bitmap,
1687                                                          gfp);
1688                                 if (ret) {
1689                                         unlock_page(page);
1690                                         goto err;
1691                                 }
1692                         }
1693                         unlock_page(page);
1694                 }
1695         }
1696         if (page == NULL) {
1697                 ret = -ENOMEM;
1698                 goto err;
1699         }
1700         if (!PageUptodate(page)) {
1701                 ret = -EIO;
1702                 goto err;
1703         }
1704
1705         /* Pages marked accessed already */
1706         e4b->bd_buddy_page = page;
1707         e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1708
1709         return 0;
1710
1711 err:
1712         if (page)
1713                 put_page(page);
1714         if (e4b->bd_bitmap_page)
1715                 put_page(e4b->bd_bitmap_page);
1716
1717         e4b->bd_buddy = NULL;
1718         e4b->bd_bitmap = NULL;
1719         return ret;
1720 }
1721
1722 static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1723                               struct ext4_buddy *e4b)
1724 {
1725         return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS);
1726 }
1727
1728 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1729 {
1730         if (e4b->bd_bitmap_page)
1731                 put_page(e4b->bd_bitmap_page);
1732         if (e4b->bd_buddy_page)
1733                 put_page(e4b->bd_buddy_page);
1734 }
1735
1736
1737 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1738 {
1739         int order = 1, max;
1740         void *bb;
1741
1742         BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1743         BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1744
1745         while (order <= e4b->bd_blkbits + 1) {
1746                 bb = mb_find_buddy(e4b, order, &max);
1747                 if (!mb_test_bit(block >> order, bb)) {
1748                         /* this block is part of buddy of order 'order' */
1749                         return order;
1750                 }
1751                 order++;
1752         }
1753         return 0;
1754 }
1755
1756 static void mb_clear_bits(void *bm, int cur, int len)
1757 {
1758         __u32 *addr;
1759
1760         len = cur + len;
1761         while (cur < len) {
1762                 if ((cur & 31) == 0 && (len - cur) >= 32) {
1763                         /* fast path: clear whole word at once */
1764                         addr = bm + (cur >> 3);
1765                         *addr = 0;
1766                         cur += 32;
1767                         continue;
1768                 }
1769                 mb_clear_bit(cur, bm);
1770                 cur++;
1771         }
1772 }
1773
1774 /* clear bits in given range
1775  * will return first found zero bit if any, -1 otherwise
1776  */
1777 static int mb_test_and_clear_bits(void *bm, int cur, int len)
1778 {
1779         __u32 *addr;
1780         int zero_bit = -1;
1781
1782         len = cur + len;
1783         while (cur < len) {
1784                 if ((cur & 31) == 0 && (len - cur) >= 32) {
1785                         /* fast path: clear whole word at once */
1786                         addr = bm + (cur >> 3);
1787                         if (*addr != (__u32)(-1) && zero_bit == -1)
1788                                 zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0);
1789                         *addr = 0;
1790                         cur += 32;
1791                         continue;
1792                 }
1793                 if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1)
1794                         zero_bit = cur;
1795                 cur++;
1796         }
1797
1798         return zero_bit;
1799 }
1800
1801 void mb_set_bits(void *bm, int cur, int len)
1802 {
1803         __u32 *addr;
1804
1805         len = cur + len;
1806         while (cur < len) {
1807                 if ((cur & 31) == 0 && (len - cur) >= 32) {
1808                         /* fast path: set whole word at once */
1809                         addr = bm + (cur >> 3);
1810                         *addr = 0xffffffff;
1811                         cur += 32;
1812                         continue;
1813                 }
1814                 mb_set_bit(cur, bm);
1815                 cur++;
1816         }
1817 }
1818
1819 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side)
1820 {
1821         if (mb_test_bit(*bit + side, bitmap)) {
1822                 mb_clear_bit(*bit, bitmap);
1823                 (*bit) -= side;
1824                 return 1;
1825         }
1826         else {
1827                 (*bit) += side;
1828                 mb_set_bit(*bit, bitmap);
1829                 return -1;
1830         }
1831 }
1832
1833 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last)
1834 {
1835         int max;
1836         int order = 1;
1837         void *buddy = mb_find_buddy(e4b, order, &max);
1838
1839         while (buddy) {
1840                 void *buddy2;
1841
1842                 /* Bits in range [first; last] are known to be set since
1843                  * corresponding blocks were allocated. Bits in range
1844                  * (first; last) will stay set because they form buddies on
1845                  * upper layer. We just deal with borders if they don't
1846                  * align with upper layer and then go up.
1847                  * Releasing entire group is all about clearing
1848                  * single bit of highest order buddy.
1849                  */
1850
1851                 /* Example:
1852                  * ---------------------------------
1853                  * |   1   |   1   |   1   |   1   |
1854                  * ---------------------------------
1855                  * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1856                  * ---------------------------------
1857                  *   0   1   2   3   4   5   6   7
1858                  *      \_____________________/
1859                  *
1860                  * Neither [1] nor [6] is aligned to above layer.
1861                  * Left neighbour [0] is free, so mark it busy,
1862                  * decrease bb_counters and extend range to
1863                  * [0; 6]
1864                  * Right neighbour [7] is busy. It can't be coaleasced with [6], so
1865                  * mark [6] free, increase bb_counters and shrink range to
1866                  * [0; 5].
1867                  * Then shift range to [0; 2], go up and do the same.
1868                  */
1869
1870
1871                 if (first & 1)
1872                         e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1);
1873                 if (!(last & 1))
1874                         e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1);
1875                 if (first > last)
1876                         break;
1877                 order++;
1878
1879                 buddy2 = mb_find_buddy(e4b, order, &max);
1880                 if (!buddy2) {
1881                         mb_clear_bits(buddy, first, last - first + 1);
1882                         e4b->bd_info->bb_counters[order - 1] += last - first + 1;
1883                         break;
1884                 }
1885                 first >>= 1;
1886                 last >>= 1;
1887                 buddy = buddy2;
1888         }
1889 }
1890
1891 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1892                            int first, int count)
1893 {
1894         int left_is_free = 0;
1895         int right_is_free = 0;
1896         int block;
1897         int last = first + count - 1;
1898         struct super_block *sb = e4b->bd_sb;
1899
1900         if (WARN_ON(count == 0))
1901                 return;
1902         BUG_ON(last >= (sb->s_blocksize << 3));
1903         assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1904         /* Don't bother if the block group is corrupt. */
1905         if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
1906                 return;
1907
1908         mb_check_buddy(e4b);
1909         mb_free_blocks_double(inode, e4b, first, count);
1910
1911         /* access memory sequentially: check left neighbour,
1912          * clear range and then check right neighbour
1913          */
1914         if (first != 0)
1915                 left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap);
1916         block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count);
1917         if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0])
1918                 right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap);
1919
1920         if (unlikely(block != -1)) {
1921                 struct ext4_sb_info *sbi = EXT4_SB(sb);
1922                 ext4_fsblk_t blocknr;
1923
1924                 /*
1925                  * Fastcommit replay can free already freed blocks which
1926                  * corrupts allocation info. Regenerate it.
1927                  */
1928                 if (sbi->s_mount_state & EXT4_FC_REPLAY) {
1929                         mb_regenerate_buddy(e4b);
1930                         goto check;
1931                 }
1932
1933                 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1934                 blocknr += EXT4_C2B(sbi, block);
1935                 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
1936                                 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1937                 ext4_grp_locked_error(sb, e4b->bd_group,
1938                                       inode ? inode->i_ino : 0, blocknr,
1939                                       "freeing already freed block (bit %u); block bitmap corrupt.",
1940                                       block);
1941                 return;
1942         }
1943
1944         this_cpu_inc(discard_pa_seq);
1945         e4b->bd_info->bb_free += count;
1946         if (first < e4b->bd_info->bb_first_free)
1947                 e4b->bd_info->bb_first_free = first;
1948
1949         /* let's maintain fragments counter */
1950         if (left_is_free && right_is_free)
1951                 e4b->bd_info->bb_fragments--;
1952         else if (!left_is_free && !right_is_free)
1953                 e4b->bd_info->bb_fragments++;
1954
1955         /* buddy[0] == bd_bitmap is a special case, so handle
1956          * it right away and let mb_buddy_mark_free stay free of
1957          * zero order checks.
1958          * Check if neighbours are to be coaleasced,
1959          * adjust bitmap bb_counters and borders appropriately.
1960          */
1961         if (first & 1) {
1962                 first += !left_is_free;
1963                 e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1;
1964         }
1965         if (!(last & 1)) {
1966                 last -= !right_is_free;
1967                 e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1;
1968         }
1969
1970         if (first <= last)
1971                 mb_buddy_mark_free(e4b, first >> 1, last >> 1);
1972
1973         mb_set_largest_free_order(sb, e4b->bd_info);
1974         mb_update_avg_fragment_size(sb, e4b->bd_info);
1975 check:
1976         mb_check_buddy(e4b);
1977 }
1978
1979 static int mb_find_extent(struct ext4_buddy *e4b, int block,
1980                                 int needed, struct ext4_free_extent *ex)
1981 {
1982         int max, order, next;
1983         void *buddy;
1984
1985         assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1986         BUG_ON(ex == NULL);
1987
1988         buddy = mb_find_buddy(e4b, 0, &max);
1989         BUG_ON(buddy == NULL);
1990         BUG_ON(block >= max);
1991         if (mb_test_bit(block, buddy)) {
1992                 ex->fe_len = 0;
1993                 ex->fe_start = 0;
1994                 ex->fe_group = 0;
1995                 return 0;
1996         }
1997
1998         /* find actual order */
1999         order = mb_find_order_for_block(e4b, block);
2000
2001         ex->fe_len = (1 << order) - (block & ((1 << order) - 1));
2002         ex->fe_start = block;
2003         ex->fe_group = e4b->bd_group;
2004
2005         block = block >> order;
2006
2007         while (needed > ex->fe_len &&
2008                mb_find_buddy(e4b, order, &max)) {
2009
2010                 if (block + 1 >= max)
2011                         break;
2012
2013                 next = (block + 1) * (1 << order);
2014                 if (mb_test_bit(next, e4b->bd_bitmap))
2015                         break;
2016
2017                 order = mb_find_order_for_block(e4b, next);
2018
2019                 block = next >> order;
2020                 ex->fe_len += 1 << order;
2021         }
2022
2023         if (ex->fe_start + ex->fe_len > EXT4_CLUSTERS_PER_GROUP(e4b->bd_sb)) {
2024                 /* Should never happen! (but apparently sometimes does?!?) */
2025                 WARN_ON(1);
2026                 ext4_grp_locked_error(e4b->bd_sb, e4b->bd_group, 0, 0,
2027                         "corruption or bug in mb_find_extent "
2028                         "block=%d, order=%d needed=%d ex=%u/%d/%d@%u",
2029                         block, order, needed, ex->fe_group, ex->fe_start,
2030                         ex->fe_len, ex->fe_logical);
2031                 ex->fe_len = 0;
2032                 ex->fe_start = 0;
2033                 ex->fe_group = 0;
2034         }
2035         return ex->fe_len;
2036 }
2037
2038 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
2039 {
2040         int ord;
2041         int mlen = 0;
2042         int max = 0;
2043         int cur;
2044         int start = ex->fe_start;
2045         int len = ex->fe_len;
2046         unsigned ret = 0;
2047         int len0 = len;
2048         void *buddy;
2049         bool split = false;
2050
2051         BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
2052         BUG_ON(e4b->bd_group != ex->fe_group);
2053         assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
2054         mb_check_buddy(e4b);
2055         mb_mark_used_double(e4b, start, len);
2056
2057         this_cpu_inc(discard_pa_seq);
2058         e4b->bd_info->bb_free -= len;
2059         if (e4b->bd_info->bb_first_free == start)
2060                 e4b->bd_info->bb_first_free += len;
2061
2062         /* let's maintain fragments counter */
2063         if (start != 0)
2064                 mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
2065         if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
2066                 max = !mb_test_bit(start + len, e4b->bd_bitmap);
2067         if (mlen && max)
2068                 e4b->bd_info->bb_fragments++;
2069         else if (!mlen && !max)
2070                 e4b->bd_info->bb_fragments--;
2071
2072         /* let's maintain buddy itself */
2073         while (len) {
2074                 if (!split)
2075                         ord = mb_find_order_for_block(e4b, start);
2076
2077                 if (((start >> ord) << ord) == start && len >= (1 << ord)) {
2078                         /* the whole chunk may be allocated at once! */
2079                         mlen = 1 << ord;
2080                         if (!split)
2081                                 buddy = mb_find_buddy(e4b, ord, &max);
2082                         else
2083                                 split = false;
2084                         BUG_ON((start >> ord) >= max);
2085                         mb_set_bit(start >> ord, buddy);
2086                         e4b->bd_info->bb_counters[ord]--;
2087                         start += mlen;
2088                         len -= mlen;
2089                         BUG_ON(len < 0);
2090                         continue;
2091                 }
2092
2093                 /* store for history */
2094                 if (ret == 0)
2095                         ret = len | (ord << 16);
2096
2097                 /* we have to split large buddy */
2098                 BUG_ON(ord <= 0);
2099                 buddy = mb_find_buddy(e4b, ord, &max);
2100                 mb_set_bit(start >> ord, buddy);
2101                 e4b->bd_info->bb_counters[ord]--;
2102
2103                 ord--;
2104                 cur = (start >> ord) & ~1U;
2105                 buddy = mb_find_buddy(e4b, ord, &max);
2106                 mb_clear_bit(cur, buddy);
2107                 mb_clear_bit(cur + 1, buddy);
2108                 e4b->bd_info->bb_counters[ord]++;
2109                 e4b->bd_info->bb_counters[ord]++;
2110                 split = true;
2111         }
2112         mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
2113
2114         mb_update_avg_fragment_size(e4b->bd_sb, e4b->bd_info);
2115         mb_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
2116         mb_check_buddy(e4b);
2117
2118         return ret;
2119 }
2120
2121 /*
2122  * Must be called under group lock!
2123  */
2124 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
2125                                         struct ext4_buddy *e4b)
2126 {
2127         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2128         int ret;
2129
2130         BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
2131         BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2132
2133         ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
2134         ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
2135         ret = mb_mark_used(e4b, &ac->ac_b_ex);
2136
2137         /* preallocation can change ac_b_ex, thus we store actually
2138          * allocated blocks for history */
2139         ac->ac_f_ex = ac->ac_b_ex;
2140
2141         ac->ac_status = AC_STATUS_FOUND;
2142         ac->ac_tail = ret & 0xffff;
2143         ac->ac_buddy = ret >> 16;
2144
2145         /*
2146          * take the page reference. We want the page to be pinned
2147          * so that we don't get a ext4_mb_init_cache_call for this
2148          * group until we update the bitmap. That would mean we
2149          * double allocate blocks. The reference is dropped
2150          * in ext4_mb_release_context
2151          */
2152         ac->ac_bitmap_page = e4b->bd_bitmap_page;
2153         get_page(ac->ac_bitmap_page);
2154         ac->ac_buddy_page = e4b->bd_buddy_page;
2155         get_page(ac->ac_buddy_page);
2156         /* store last allocated for subsequent stream allocation */
2157         if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2158                 spin_lock(&sbi->s_md_lock);
2159                 sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
2160                 sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
2161                 spin_unlock(&sbi->s_md_lock);
2162         }
2163         /*
2164          * As we've just preallocated more space than
2165          * user requested originally, we store allocated
2166          * space in a special descriptor.
2167          */
2168         if (ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
2169                 ext4_mb_new_preallocation(ac);
2170
2171 }
2172
2173 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
2174                                         struct ext4_buddy *e4b,
2175                                         int finish_group)
2176 {
2177         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2178         struct ext4_free_extent *bex = &ac->ac_b_ex;
2179         struct ext4_free_extent *gex = &ac->ac_g_ex;
2180
2181         if (ac->ac_status == AC_STATUS_FOUND)
2182                 return;
2183         /*
2184          * We don't want to scan for a whole year
2185          */
2186         if (ac->ac_found > sbi->s_mb_max_to_scan &&
2187                         !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2188                 ac->ac_status = AC_STATUS_BREAK;
2189                 return;
2190         }
2191
2192         /*
2193          * Haven't found good chunk so far, let's continue
2194          */
2195         if (bex->fe_len < gex->fe_len)
2196                 return;
2197
2198         if (finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
2199                 ext4_mb_use_best_found(ac, e4b);
2200 }
2201
2202 /*
2203  * The routine checks whether found extent is good enough. If it is,
2204  * then the extent gets marked used and flag is set to the context
2205  * to stop scanning. Otherwise, the extent is compared with the
2206  * previous found extent and if new one is better, then it's stored
2207  * in the context. Later, the best found extent will be used, if
2208  * mballoc can't find good enough extent.
2209  *
2210  * The algorithm used is roughly as follows:
2211  *
2212  * * If free extent found is exactly as big as goal, then
2213  *   stop the scan and use it immediately
2214  *
2215  * * If free extent found is smaller than goal, then keep retrying
2216  *   upto a max of sbi->s_mb_max_to_scan times (default 200). After
2217  *   that stop scanning and use whatever we have.
2218  *
2219  * * If free extent found is bigger than goal, then keep retrying
2220  *   upto a max of sbi->s_mb_min_to_scan times (default 10) before
2221  *   stopping the scan and using the extent.
2222  *
2223  *
2224  * FIXME: real allocation policy is to be designed yet!
2225  */
2226 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
2227                                         struct ext4_free_extent *ex,
2228                                         struct ext4_buddy *e4b)
2229 {
2230         struct ext4_free_extent *bex = &ac->ac_b_ex;
2231         struct ext4_free_extent *gex = &ac->ac_g_ex;
2232
2233         BUG_ON(ex->fe_len <= 0);
2234         BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
2235         BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
2236         BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
2237
2238         ac->ac_found++;
2239         ac->ac_cX_found[ac->ac_criteria]++;
2240
2241         /*
2242          * The special case - take what you catch first
2243          */
2244         if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2245                 *bex = *ex;
2246                 ext4_mb_use_best_found(ac, e4b);
2247                 return;
2248         }
2249
2250         /*
2251          * Let's check whether the chuck is good enough
2252          */
2253         if (ex->fe_len == gex->fe_len) {
2254                 *bex = *ex;
2255                 ext4_mb_use_best_found(ac, e4b);
2256                 return;
2257         }
2258
2259         /*
2260          * If this is first found extent, just store it in the context
2261          */
2262         if (bex->fe_len == 0) {
2263                 *bex = *ex;
2264                 return;
2265         }
2266
2267         /*
2268          * If new found extent is better, store it in the context
2269          */
2270         if (bex->fe_len < gex->fe_len) {
2271                 /* if the request isn't satisfied, any found extent
2272                  * larger than previous best one is better */
2273                 if (ex->fe_len > bex->fe_len)
2274                         *bex = *ex;
2275         } else if (ex->fe_len > gex->fe_len) {
2276                 /* if the request is satisfied, then we try to find
2277                  * an extent that still satisfy the request, but is
2278                  * smaller than previous one */
2279                 if (ex->fe_len < bex->fe_len)
2280                         *bex = *ex;
2281         }
2282
2283         ext4_mb_check_limits(ac, e4b, 0);
2284 }
2285
2286 static noinline_for_stack
2287 void ext4_mb_try_best_found(struct ext4_allocation_context *ac,
2288                                         struct ext4_buddy *e4b)
2289 {
2290         struct ext4_free_extent ex = ac->ac_b_ex;
2291         ext4_group_t group = ex.fe_group;
2292         int max;
2293         int err;
2294
2295         BUG_ON(ex.fe_len <= 0);
2296         err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
2297         if (err)
2298                 return;
2299
2300         ext4_lock_group(ac->ac_sb, group);
2301         if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
2302                 goto out;
2303
2304         max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex);
2305
2306         if (max > 0) {
2307                 ac->ac_b_ex = ex;
2308                 ext4_mb_use_best_found(ac, e4b);
2309         }
2310
2311 out:
2312         ext4_unlock_group(ac->ac_sb, group);
2313         ext4_mb_unload_buddy(e4b);
2314 }
2315
2316 static noinline_for_stack
2317 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
2318                                 struct ext4_buddy *e4b)
2319 {
2320         ext4_group_t group = ac->ac_g_ex.fe_group;
2321         int max;
2322         int err;
2323         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2324         struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2325         struct ext4_free_extent ex;
2326
2327         if (!grp)
2328                 return -EFSCORRUPTED;
2329         if (!(ac->ac_flags & (EXT4_MB_HINT_TRY_GOAL | EXT4_MB_HINT_GOAL_ONLY)))
2330                 return 0;
2331         if (grp->bb_free == 0)
2332                 return 0;
2333
2334         err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
2335         if (err)
2336                 return err;
2337
2338         ext4_lock_group(ac->ac_sb, group);
2339         if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
2340                 goto out;
2341
2342         max = mb_find_extent(e4b, ac->ac_g_ex.fe_start,
2343                              ac->ac_g_ex.fe_len, &ex);
2344         ex.fe_logical = 0xDEADFA11; /* debug value */
2345
2346         if (max >= ac->ac_g_ex.fe_len &&
2347             ac->ac_g_ex.fe_len == EXT4_B2C(sbi, sbi->s_stripe)) {
2348                 ext4_fsblk_t start;
2349
2350                 start = ext4_grp_offs_to_block(ac->ac_sb, &ex);
2351                 /* use do_div to get remainder (would be 64-bit modulo) */
2352                 if (do_div(start, sbi->s_stripe) == 0) {
2353                         ac->ac_found++;
2354                         ac->ac_b_ex = ex;
2355                         ext4_mb_use_best_found(ac, e4b);
2356                 }
2357         } else if (max >= ac->ac_g_ex.fe_len) {
2358                 BUG_ON(ex.fe_len <= 0);
2359                 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
2360                 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
2361                 ac->ac_found++;
2362                 ac->ac_b_ex = ex;
2363                 ext4_mb_use_best_found(ac, e4b);
2364         } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
2365                 /* Sometimes, caller may want to merge even small
2366                  * number of blocks to an existing extent */
2367                 BUG_ON(ex.fe_len <= 0);
2368                 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
2369                 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
2370                 ac->ac_found++;
2371                 ac->ac_b_ex = ex;
2372                 ext4_mb_use_best_found(ac, e4b);
2373         }
2374 out:
2375         ext4_unlock_group(ac->ac_sb, group);
2376         ext4_mb_unload_buddy(e4b);
2377
2378         return 0;
2379 }
2380
2381 /*
2382  * The routine scans buddy structures (not bitmap!) from given order
2383  * to max order and tries to find big enough chunk to satisfy the req
2384  */
2385 static noinline_for_stack
2386 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
2387                                         struct ext4_buddy *e4b)
2388 {
2389         struct super_block *sb = ac->ac_sb;
2390         struct ext4_group_info *grp = e4b->bd_info;
2391         void *buddy;
2392         int i;
2393         int k;
2394         int max;
2395
2396         BUG_ON(ac->ac_2order <= 0);
2397         for (i = ac->ac_2order; i < MB_NUM_ORDERS(sb); i++) {
2398                 if (grp->bb_counters[i] == 0)
2399                         continue;
2400
2401                 buddy = mb_find_buddy(e4b, i, &max);
2402                 if (WARN_RATELIMIT(buddy == NULL,
2403                          "ext4: mb_simple_scan_group: mb_find_buddy failed, (%d)\n", i))
2404                         continue;
2405
2406                 k = mb_find_next_zero_bit(buddy, max, 0);
2407                 if (k >= max) {
2408                         ext4_mark_group_bitmap_corrupted(ac->ac_sb,
2409                                         e4b->bd_group,
2410                                         EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2411                         ext4_grp_locked_error(ac->ac_sb, e4b->bd_group, 0, 0,
2412                                 "%d free clusters of order %d. But found 0",
2413                                 grp->bb_counters[i], i);
2414                         break;
2415                 }
2416                 ac->ac_found++;
2417                 ac->ac_cX_found[ac->ac_criteria]++;
2418
2419                 ac->ac_b_ex.fe_len = 1 << i;
2420                 ac->ac_b_ex.fe_start = k << i;
2421                 ac->ac_b_ex.fe_group = e4b->bd_group;
2422
2423                 ext4_mb_use_best_found(ac, e4b);
2424
2425                 BUG_ON(ac->ac_f_ex.fe_len != ac->ac_g_ex.fe_len);
2426
2427                 if (EXT4_SB(sb)->s_mb_stats)
2428                         atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
2429
2430                 break;
2431         }
2432 }
2433
2434 /*
2435  * The routine scans the group and measures all found extents.
2436  * In order to optimize scanning, caller must pass number of
2437  * free blocks in the group, so the routine can know upper limit.
2438  */
2439 static noinline_for_stack
2440 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
2441                                         struct ext4_buddy *e4b)
2442 {
2443         struct super_block *sb = ac->ac_sb;
2444         void *bitmap = e4b->bd_bitmap;
2445         struct ext4_free_extent ex;
2446         int i, j, freelen;
2447         int free;
2448
2449         free = e4b->bd_info->bb_free;
2450         if (WARN_ON(free <= 0))
2451                 return;
2452
2453         i = e4b->bd_info->bb_first_free;
2454
2455         while (free && ac->ac_status == AC_STATUS_CONTINUE) {
2456                 i = mb_find_next_zero_bit(bitmap,
2457                                                 EXT4_CLUSTERS_PER_GROUP(sb), i);
2458                 if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
2459                         /*
2460                          * IF we have corrupt bitmap, we won't find any
2461                          * free blocks even though group info says we
2462                          * have free blocks
2463                          */
2464                         ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
2465                                         EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2466                         ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
2467                                         "%d free clusters as per "
2468                                         "group info. But bitmap says 0",
2469                                         free);
2470                         break;
2471                 }
2472
2473                 if (!ext4_mb_cr_expensive(ac->ac_criteria)) {
2474                         /*
2475                          * In CR_GOAL_LEN_FAST and CR_BEST_AVAIL_LEN, we are
2476                          * sure that this group will have a large enough
2477                          * continuous free extent, so skip over the smaller free
2478                          * extents
2479                          */
2480                         j = mb_find_next_bit(bitmap,
2481                                                 EXT4_CLUSTERS_PER_GROUP(sb), i);
2482                         freelen = j - i;
2483
2484                         if (freelen < ac->ac_g_ex.fe_len) {
2485                                 i = j;
2486                                 free -= freelen;
2487                                 continue;
2488                         }
2489                 }
2490
2491                 mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex);
2492                 if (WARN_ON(ex.fe_len <= 0))
2493                         break;
2494                 if (free < ex.fe_len) {
2495                         ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
2496                                         EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2497                         ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
2498                                         "%d free clusters as per "
2499                                         "group info. But got %d blocks",
2500                                         free, ex.fe_len);
2501                         /*
2502                          * The number of free blocks differs. This mostly
2503                          * indicate that the bitmap is corrupt. So exit
2504                          * without claiming the space.
2505                          */
2506                         break;
2507                 }
2508                 ex.fe_logical = 0xDEADC0DE; /* debug value */
2509                 ext4_mb_measure_extent(ac, &ex, e4b);
2510
2511                 i += ex.fe_len;
2512                 free -= ex.fe_len;
2513         }
2514
2515         ext4_mb_check_limits(ac, e4b, 1);
2516 }
2517
2518 /*
2519  * This is a special case for storages like raid5
2520  * we try to find stripe-aligned chunks for stripe-size-multiple requests
2521  */
2522 static noinline_for_stack
2523 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
2524                                  struct ext4_buddy *e4b)
2525 {
2526         struct super_block *sb = ac->ac_sb;
2527         struct ext4_sb_info *sbi = EXT4_SB(sb);
2528         void *bitmap = e4b->bd_bitmap;
2529         struct ext4_free_extent ex;
2530         ext4_fsblk_t first_group_block;
2531         ext4_fsblk_t a;
2532         ext4_grpblk_t i, stripe;
2533         int max;
2534
2535         BUG_ON(sbi->s_stripe == 0);
2536
2537         /* find first stripe-aligned block in group */
2538         first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
2539
2540         a = first_group_block + sbi->s_stripe - 1;
2541         do_div(a, sbi->s_stripe);
2542         i = (a * sbi->s_stripe) - first_group_block;
2543
2544         stripe = EXT4_B2C(sbi, sbi->s_stripe);
2545         i = EXT4_B2C(sbi, i);
2546         while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
2547                 if (!mb_test_bit(i, bitmap)) {
2548                         max = mb_find_extent(e4b, i, stripe, &ex);
2549                         if (max >= stripe) {
2550                                 ac->ac_found++;
2551                                 ac->ac_cX_found[ac->ac_criteria]++;
2552                                 ex.fe_logical = 0xDEADF00D; /* debug value */
2553                                 ac->ac_b_ex = ex;
2554                                 ext4_mb_use_best_found(ac, e4b);
2555                                 break;
2556                         }
2557                 }
2558                 i += stripe;
2559         }
2560 }
2561
2562 /*
2563  * This is also called BEFORE we load the buddy bitmap.
2564  * Returns either 1 or 0 indicating that the group is either suitable
2565  * for the allocation or not.
2566  */
2567 static bool ext4_mb_good_group(struct ext4_allocation_context *ac,
2568                                 ext4_group_t group, enum criteria cr)
2569 {
2570         ext4_grpblk_t free, fragments;
2571         int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
2572         struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2573
2574         BUG_ON(cr < CR_POWER2_ALIGNED || cr >= EXT4_MB_NUM_CRS);
2575
2576         if (unlikely(!grp || EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2577                 return false;
2578
2579         free = grp->bb_free;
2580         if (free == 0)
2581                 return false;
2582
2583         fragments = grp->bb_fragments;
2584         if (fragments == 0)
2585                 return false;
2586
2587         switch (cr) {
2588         case CR_POWER2_ALIGNED:
2589                 BUG_ON(ac->ac_2order == 0);
2590
2591                 /* Avoid using the first bg of a flexgroup for data files */
2592                 if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
2593                     (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
2594                     ((group % flex_size) == 0))
2595                         return false;
2596
2597                 if (free < ac->ac_g_ex.fe_len)
2598                         return false;
2599
2600                 if (ac->ac_2order >= MB_NUM_ORDERS(ac->ac_sb))
2601                         return true;
2602
2603                 if (grp->bb_largest_free_order < ac->ac_2order)
2604                         return false;
2605
2606                 return true;
2607         case CR_GOAL_LEN_FAST:
2608         case CR_BEST_AVAIL_LEN:
2609                 if ((free / fragments) >= ac->ac_g_ex.fe_len)
2610                         return true;
2611                 break;
2612         case CR_GOAL_LEN_SLOW:
2613                 if (free >= ac->ac_g_ex.fe_len)
2614                         return true;
2615                 break;
2616         case CR_ANY_FREE:
2617                 return true;
2618         default:
2619                 BUG();
2620         }
2621
2622         return false;
2623 }
2624
2625 /*
2626  * This could return negative error code if something goes wrong
2627  * during ext4_mb_init_group(). This should not be called with
2628  * ext4_lock_group() held.
2629  *
2630  * Note: because we are conditionally operating with the group lock in
2631  * the EXT4_MB_STRICT_CHECK case, we need to fake out sparse in this
2632  * function using __acquire and __release.  This means we need to be
2633  * super careful before messing with the error path handling via "goto
2634  * out"!
2635  */
2636 static int ext4_mb_good_group_nolock(struct ext4_allocation_context *ac,
2637                                      ext4_group_t group, enum criteria cr)
2638 {
2639         struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2640         struct super_block *sb = ac->ac_sb;
2641         struct ext4_sb_info *sbi = EXT4_SB(sb);
2642         bool should_lock = ac->ac_flags & EXT4_MB_STRICT_CHECK;
2643         ext4_grpblk_t free;
2644         int ret = 0;
2645
2646         if (!grp)
2647                 return -EFSCORRUPTED;
2648         if (sbi->s_mb_stats)
2649                 atomic64_inc(&sbi->s_bal_cX_groups_considered[ac->ac_criteria]);
2650         if (should_lock) {
2651                 ext4_lock_group(sb, group);
2652                 __release(ext4_group_lock_ptr(sb, group));
2653         }
2654         free = grp->bb_free;
2655         if (free == 0)
2656                 goto out;
2657         /*
2658          * In all criterias except CR_ANY_FREE we try to avoid groups that
2659          * can't possibly satisfy the full goal request due to insufficient
2660          * free blocks.
2661          */
2662         if (cr < CR_ANY_FREE && free < ac->ac_g_ex.fe_len)
2663                 goto out;
2664         if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2665                 goto out;
2666         if (should_lock) {
2667                 __acquire(ext4_group_lock_ptr(sb, group));
2668                 ext4_unlock_group(sb, group);
2669         }
2670
2671         /* We only do this if the grp has never been initialized */
2672         if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
2673                 struct ext4_group_desc *gdp =
2674                         ext4_get_group_desc(sb, group, NULL);
2675                 int ret;
2676
2677                 /*
2678                  * cr=CR_POWER2_ALIGNED/CR_GOAL_LEN_FAST is a very optimistic
2679                  * search to find large good chunks almost for free. If buddy
2680                  * data is not ready, then this optimization makes no sense. But
2681                  * we never skip the first block group in a flex_bg, since this
2682                  * gets used for metadata block allocation, and we want to make
2683                  * sure we locate metadata blocks in the first block group in
2684                  * the flex_bg if possible.
2685                  */
2686                 if (!ext4_mb_cr_expensive(cr) &&
2687                     (!sbi->s_log_groups_per_flex ||
2688                      ((group & ((1 << sbi->s_log_groups_per_flex) - 1)) != 0)) &&
2689                     !(ext4_has_group_desc_csum(sb) &&
2690                       (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))))
2691                         return 0;
2692                 ret = ext4_mb_init_group(sb, group, GFP_NOFS);
2693                 if (ret)
2694                         return ret;
2695         }
2696
2697         if (should_lock) {
2698                 ext4_lock_group(sb, group);
2699                 __release(ext4_group_lock_ptr(sb, group));
2700         }
2701         ret = ext4_mb_good_group(ac, group, cr);
2702 out:
2703         if (should_lock) {
2704                 __acquire(ext4_group_lock_ptr(sb, group));
2705                 ext4_unlock_group(sb, group);
2706         }
2707         return ret;
2708 }
2709
2710 /*
2711  * Start prefetching @nr block bitmaps starting at @group.
2712  * Return the next group which needs to be prefetched.
2713  */
2714 ext4_group_t ext4_mb_prefetch(struct super_block *sb, ext4_group_t group,
2715                               unsigned int nr, int *cnt)
2716 {
2717         ext4_group_t ngroups = ext4_get_groups_count(sb);
2718         struct buffer_head *bh;
2719         struct blk_plug plug;
2720
2721         blk_start_plug(&plug);
2722         while (nr-- > 0) {
2723                 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group,
2724                                                                   NULL);
2725                 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
2726
2727                 /*
2728                  * Prefetch block groups with free blocks; but don't
2729                  * bother if it is marked uninitialized on disk, since
2730                  * it won't require I/O to read.  Also only try to
2731                  * prefetch once, so we avoid getblk() call, which can
2732                  * be expensive.
2733                  */
2734                 if (gdp && grp && !EXT4_MB_GRP_TEST_AND_SET_READ(grp) &&
2735                     EXT4_MB_GRP_NEED_INIT(grp) &&
2736                     ext4_free_group_clusters(sb, gdp) > 0 ) {
2737                         bh = ext4_read_block_bitmap_nowait(sb, group, true);
2738                         if (bh && !IS_ERR(bh)) {
2739                                 if (!buffer_uptodate(bh) && cnt)
2740                                         (*cnt)++;
2741                                 brelse(bh);
2742                         }
2743                 }
2744                 if (++group >= ngroups)
2745                         group = 0;
2746         }
2747         blk_finish_plug(&plug);
2748         return group;
2749 }
2750
2751 /*
2752  * Prefetching reads the block bitmap into the buffer cache; but we
2753  * need to make sure that the buddy bitmap in the page cache has been
2754  * initialized.  Note that ext4_mb_init_group() will block if the I/O
2755  * is not yet completed, or indeed if it was not initiated by
2756  * ext4_mb_prefetch did not start the I/O.
2757  *
2758  * TODO: We should actually kick off the buddy bitmap setup in a work
2759  * queue when the buffer I/O is completed, so that we don't block
2760  * waiting for the block allocation bitmap read to finish when
2761  * ext4_mb_prefetch_fini is called from ext4_mb_regular_allocator().
2762  */
2763 void ext4_mb_prefetch_fini(struct super_block *sb, ext4_group_t group,
2764                            unsigned int nr)
2765 {
2766         struct ext4_group_desc *gdp;
2767         struct ext4_group_info *grp;
2768
2769         while (nr-- > 0) {
2770                 if (!group)
2771                         group = ext4_get_groups_count(sb);
2772                 group--;
2773                 gdp = ext4_get_group_desc(sb, group, NULL);
2774                 grp = ext4_get_group_info(sb, group);
2775
2776                 if (grp && gdp && EXT4_MB_GRP_NEED_INIT(grp) &&
2777                     ext4_free_group_clusters(sb, gdp) > 0) {
2778                         if (ext4_mb_init_group(sb, group, GFP_NOFS))
2779                                 break;
2780                 }
2781         }
2782 }
2783
2784 static noinline_for_stack int
2785 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
2786 {
2787         ext4_group_t prefetch_grp = 0, ngroups, group, i;
2788         enum criteria new_cr, cr = CR_GOAL_LEN_FAST;
2789         int err = 0, first_err = 0;
2790         unsigned int nr = 0, prefetch_ios = 0;
2791         struct ext4_sb_info *sbi;
2792         struct super_block *sb;
2793         struct ext4_buddy e4b;
2794         int lost;
2795
2796         sb = ac->ac_sb;
2797         sbi = EXT4_SB(sb);
2798         ngroups = ext4_get_groups_count(sb);
2799         /* non-extent files are limited to low blocks/groups */
2800         if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
2801                 ngroups = sbi->s_blockfile_groups;
2802
2803         BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2804
2805         /* first, try the goal */
2806         err = ext4_mb_find_by_goal(ac, &e4b);
2807         if (err || ac->ac_status == AC_STATUS_FOUND)
2808                 goto out;
2809
2810         if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2811                 goto out;
2812
2813         /*
2814          * ac->ac_2order is set only if the fe_len is a power of 2
2815          * if ac->ac_2order is set we also set criteria to CR_POWER2_ALIGNED
2816          * so that we try exact allocation using buddy.
2817          */
2818         i = fls(ac->ac_g_ex.fe_len);
2819         ac->ac_2order = 0;
2820         /*
2821          * We search using buddy data only if the order of the request
2822          * is greater than equal to the sbi_s_mb_order2_reqs
2823          * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2824          * We also support searching for power-of-two requests only for
2825          * requests upto maximum buddy size we have constructed.
2826          */
2827         if (i >= sbi->s_mb_order2_reqs && i <= MB_NUM_ORDERS(sb)) {
2828                 if (is_power_of_2(ac->ac_g_ex.fe_len))
2829                         ac->ac_2order = array_index_nospec(i - 1,
2830                                                            MB_NUM_ORDERS(sb));
2831         }
2832
2833         /* if stream allocation is enabled, use global goal */
2834         if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2835                 /* TBD: may be hot point */
2836                 spin_lock(&sbi->s_md_lock);
2837                 ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2838                 ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2839                 spin_unlock(&sbi->s_md_lock);
2840         }
2841
2842         /*
2843          * Let's just scan groups to find more-less suitable blocks We
2844          * start with CR_GOAL_LEN_FAST, unless it is power of 2
2845          * aligned, in which case let's do that faster approach first.
2846          */
2847         if (ac->ac_2order)
2848                 cr = CR_POWER2_ALIGNED;
2849 repeat:
2850         for (; cr < EXT4_MB_NUM_CRS && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2851                 ac->ac_criteria = cr;
2852                 /*
2853                  * searching for the right group start
2854                  * from the goal value specified
2855                  */
2856                 group = ac->ac_g_ex.fe_group;
2857                 ac->ac_groups_linear_remaining = sbi->s_mb_max_linear_groups;
2858                 prefetch_grp = group;
2859
2860                 for (i = 0, new_cr = cr; i < ngroups; i++,
2861                      ext4_mb_choose_next_group(ac, &new_cr, &group, ngroups)) {
2862                         int ret = 0;
2863
2864                         cond_resched();
2865                         if (new_cr != cr) {
2866                                 cr = new_cr;
2867                                 goto repeat;
2868                         }
2869
2870                         /*
2871                          * Batch reads of the block allocation bitmaps
2872                          * to get multiple READs in flight; limit
2873                          * prefetching at inexpensive CR, otherwise mballoc
2874                          * can spend a lot of time loading imperfect groups
2875                          */
2876                         if ((prefetch_grp == group) &&
2877                             (ext4_mb_cr_expensive(cr) ||
2878                              prefetch_ios < sbi->s_mb_prefetch_limit)) {
2879                                 nr = sbi->s_mb_prefetch;
2880                                 if (ext4_has_feature_flex_bg(sb)) {
2881                                         nr = 1 << sbi->s_log_groups_per_flex;
2882                                         nr -= group & (nr - 1);
2883                                         nr = min(nr, sbi->s_mb_prefetch);
2884                                 }
2885                                 prefetch_grp = ext4_mb_prefetch(sb, group,
2886                                                         nr, &prefetch_ios);
2887                         }
2888
2889                         /* This now checks without needing the buddy page */
2890                         ret = ext4_mb_good_group_nolock(ac, group, cr);
2891                         if (ret <= 0) {
2892                                 if (!first_err)
2893                                         first_err = ret;
2894                                 continue;
2895                         }
2896
2897                         err = ext4_mb_load_buddy(sb, group, &e4b);
2898                         if (err)
2899                                 goto out;
2900
2901                         ext4_lock_group(sb, group);
2902
2903                         /*
2904                          * We need to check again after locking the
2905                          * block group
2906                          */
2907                         ret = ext4_mb_good_group(ac, group, cr);
2908                         if (ret == 0) {
2909                                 ext4_unlock_group(sb, group);
2910                                 ext4_mb_unload_buddy(&e4b);
2911                                 continue;
2912                         }
2913
2914                         ac->ac_groups_scanned++;
2915                         if (cr == CR_POWER2_ALIGNED)
2916                                 ext4_mb_simple_scan_group(ac, &e4b);
2917                         else {
2918                                 bool is_stripe_aligned = sbi->s_stripe &&
2919                                         !(ac->ac_g_ex.fe_len %
2920                                           EXT4_B2C(sbi, sbi->s_stripe));
2921
2922                                 if ((cr == CR_GOAL_LEN_FAST ||
2923                                      cr == CR_BEST_AVAIL_LEN) &&
2924                                     is_stripe_aligned)
2925                                         ext4_mb_scan_aligned(ac, &e4b);
2926
2927                                 if (ac->ac_status == AC_STATUS_CONTINUE)
2928                                         ext4_mb_complex_scan_group(ac, &e4b);
2929                         }
2930
2931                         ext4_unlock_group(sb, group);
2932                         ext4_mb_unload_buddy(&e4b);
2933
2934                         if (ac->ac_status != AC_STATUS_CONTINUE)
2935                                 break;
2936                 }
2937                 /* Processed all groups and haven't found blocks */
2938                 if (sbi->s_mb_stats && i == ngroups)
2939                         atomic64_inc(&sbi->s_bal_cX_failed[cr]);
2940
2941                 if (i == ngroups && ac->ac_criteria == CR_BEST_AVAIL_LEN)
2942                         /* Reset goal length to original goal length before
2943                          * falling into CR_GOAL_LEN_SLOW */
2944                         ac->ac_g_ex.fe_len = ac->ac_orig_goal_len;
2945         }
2946
2947         if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2948             !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2949                 /*
2950                  * We've been searching too long. Let's try to allocate
2951                  * the best chunk we've found so far
2952                  */
2953                 ext4_mb_try_best_found(ac, &e4b);
2954                 if (ac->ac_status != AC_STATUS_FOUND) {
2955                         /*
2956                          * Someone more lucky has already allocated it.
2957                          * The only thing we can do is just take first
2958                          * found block(s)
2959                          */
2960                         lost = atomic_inc_return(&sbi->s_mb_lost_chunks);
2961                         mb_debug(sb, "lost chunk, group: %u, start: %d, len: %d, lost: %d\n",
2962                                  ac->ac_b_ex.fe_group, ac->ac_b_ex.fe_start,
2963                                  ac->ac_b_ex.fe_len, lost);
2964
2965                         ac->ac_b_ex.fe_group = 0;
2966                         ac->ac_b_ex.fe_start = 0;
2967                         ac->ac_b_ex.fe_len = 0;
2968                         ac->ac_status = AC_STATUS_CONTINUE;
2969                         ac->ac_flags |= EXT4_MB_HINT_FIRST;
2970                         cr = CR_ANY_FREE;
2971                         goto repeat;
2972                 }
2973         }
2974
2975         if (sbi->s_mb_stats && ac->ac_status == AC_STATUS_FOUND)
2976                 atomic64_inc(&sbi->s_bal_cX_hits[ac->ac_criteria]);
2977 out:
2978         if (!err && ac->ac_status != AC_STATUS_FOUND && first_err)
2979                 err = first_err;
2980
2981         mb_debug(sb, "Best len %d, origin len %d, ac_status %u, ac_flags 0x%x, cr %d ret %d\n",
2982                  ac->ac_b_ex.fe_len, ac->ac_o_ex.fe_len, ac->ac_status,
2983                  ac->ac_flags, cr, err);
2984
2985         if (nr)
2986                 ext4_mb_prefetch_fini(sb, prefetch_grp, nr);
2987
2988         return err;
2989 }
2990
2991 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2992 {
2993         struct super_block *sb = pde_data(file_inode(seq->file));
2994         ext4_group_t group;
2995
2996         if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2997                 return NULL;
2998         group = *pos + 1;
2999         return (void *) ((unsigned long) group);
3000 }
3001
3002 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
3003 {
3004         struct super_block *sb = pde_data(file_inode(seq->file));
3005         ext4_group_t group;
3006
3007         ++*pos;
3008         if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
3009                 return NULL;
3010         group = *pos + 1;
3011         return (void *) ((unsigned long) group);
3012 }
3013
3014 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
3015 {
3016         struct super_block *sb = pde_data(file_inode(seq->file));
3017         ext4_group_t group = (ext4_group_t) ((unsigned long) v);
3018         int i;
3019         int err, buddy_loaded = 0;
3020         struct ext4_buddy e4b;
3021         struct ext4_group_info *grinfo;
3022         unsigned char blocksize_bits = min_t(unsigned char,
3023                                              sb->s_blocksize_bits,
3024                                              EXT4_MAX_BLOCK_LOG_SIZE);
3025         struct sg {
3026                 struct ext4_group_info info;
3027                 ext4_grpblk_t counters[EXT4_MAX_BLOCK_LOG_SIZE + 2];
3028         } sg;
3029
3030         group--;
3031         if (group == 0)
3032                 seq_puts(seq, "#group: free  frags first ["
3033                               " 2^0   2^1   2^2   2^3   2^4   2^5   2^6  "
3034                               " 2^7   2^8   2^9   2^10  2^11  2^12  2^13  ]\n");
3035
3036         i = (blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
3037                 sizeof(struct ext4_group_info);
3038
3039         grinfo = ext4_get_group_info(sb, group);
3040         if (!grinfo)
3041                 return 0;
3042         /* Load the group info in memory only if not already loaded. */
3043         if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
3044                 err = ext4_mb_load_buddy(sb, group, &e4b);
3045                 if (err) {
3046                         seq_printf(seq, "#%-5u: I/O error\n", group);
3047                         return 0;
3048                 }
3049                 buddy_loaded = 1;
3050         }
3051
3052         memcpy(&sg, grinfo, i);
3053
3054         if (buddy_loaded)
3055                 ext4_mb_unload_buddy(&e4b);
3056
3057         seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
3058                         sg.info.bb_fragments, sg.info.bb_first_free);
3059         for (i = 0; i <= 13; i++)
3060                 seq_printf(seq, " %-5u", i <= blocksize_bits + 1 ?
3061                                 sg.info.bb_counters[i] : 0);
3062         seq_puts(seq, " ]\n");
3063
3064         return 0;
3065 }
3066
3067 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
3068 {
3069 }
3070
3071 const struct seq_operations ext4_mb_seq_groups_ops = {
3072         .start  = ext4_mb_seq_groups_start,
3073         .next   = ext4_mb_seq_groups_next,
3074         .stop   = ext4_mb_seq_groups_stop,
3075         .show   = ext4_mb_seq_groups_show,
3076 };
3077
3078 int ext4_seq_mb_stats_show(struct seq_file *seq, void *offset)
3079 {
3080         struct super_block *sb = seq->private;
3081         struct ext4_sb_info *sbi = EXT4_SB(sb);
3082
3083         seq_puts(seq, "mballoc:\n");
3084         if (!sbi->s_mb_stats) {
3085                 seq_puts(seq, "\tmb stats collection turned off.\n");
3086                 seq_puts(
3087                         seq,
3088                         "\tTo enable, please write \"1\" to sysfs file mb_stats.\n");
3089                 return 0;
3090         }
3091         seq_printf(seq, "\treqs: %u\n", atomic_read(&sbi->s_bal_reqs));
3092         seq_printf(seq, "\tsuccess: %u\n", atomic_read(&sbi->s_bal_success));
3093
3094         seq_printf(seq, "\tgroups_scanned: %u\n",
3095                    atomic_read(&sbi->s_bal_groups_scanned));
3096
3097         /* CR_POWER2_ALIGNED stats */
3098         seq_puts(seq, "\tcr_p2_aligned_stats:\n");
3099         seq_printf(seq, "\t\thits: %llu\n",
3100                    atomic64_read(&sbi->s_bal_cX_hits[CR_POWER2_ALIGNED]));
3101         seq_printf(
3102                 seq, "\t\tgroups_considered: %llu\n",
3103                 atomic64_read(
3104                         &sbi->s_bal_cX_groups_considered[CR_POWER2_ALIGNED]));
3105         seq_printf(seq, "\t\textents_scanned: %u\n",
3106                    atomic_read(&sbi->s_bal_cX_ex_scanned[CR_POWER2_ALIGNED]));
3107         seq_printf(seq, "\t\tuseless_loops: %llu\n",
3108                    atomic64_read(&sbi->s_bal_cX_failed[CR_POWER2_ALIGNED]));
3109         seq_printf(seq, "\t\tbad_suggestions: %u\n",
3110                    atomic_read(&sbi->s_bal_p2_aligned_bad_suggestions));
3111
3112         /* CR_GOAL_LEN_FAST stats */
3113         seq_puts(seq, "\tcr_goal_fast_stats:\n");
3114         seq_printf(seq, "\t\thits: %llu\n",
3115                    atomic64_read(&sbi->s_bal_cX_hits[CR_GOAL_LEN_FAST]));
3116         seq_printf(seq, "\t\tgroups_considered: %llu\n",
3117                    atomic64_read(
3118                            &sbi->s_bal_cX_groups_considered[CR_GOAL_LEN_FAST]));
3119         seq_printf(seq, "\t\textents_scanned: %u\n",
3120                    atomic_read(&sbi->s_bal_cX_ex_scanned[CR_GOAL_LEN_FAST]));
3121         seq_printf(seq, "\t\tuseless_loops: %llu\n",
3122                    atomic64_read(&sbi->s_bal_cX_failed[CR_GOAL_LEN_FAST]));
3123         seq_printf(seq, "\t\tbad_suggestions: %u\n",
3124                    atomic_read(&sbi->s_bal_goal_fast_bad_suggestions));
3125
3126         /* CR_BEST_AVAIL_LEN stats */
3127         seq_puts(seq, "\tcr_best_avail_stats:\n");
3128         seq_printf(seq, "\t\thits: %llu\n",
3129                    atomic64_read(&sbi->s_bal_cX_hits[CR_BEST_AVAIL_LEN]));
3130         seq_printf(
3131                 seq, "\t\tgroups_considered: %llu\n",
3132                 atomic64_read(
3133                         &sbi->s_bal_cX_groups_considered[CR_BEST_AVAIL_LEN]));
3134         seq_printf(seq, "\t\textents_scanned: %u\n",
3135                    atomic_read(&sbi->s_bal_cX_ex_scanned[CR_BEST_AVAIL_LEN]));
3136         seq_printf(seq, "\t\tuseless_loops: %llu\n",
3137                    atomic64_read(&sbi->s_bal_cX_failed[CR_BEST_AVAIL_LEN]));
3138         seq_printf(seq, "\t\tbad_suggestions: %u\n",
3139                    atomic_read(&sbi->s_bal_best_avail_bad_suggestions));
3140
3141         /* CR_GOAL_LEN_SLOW stats */
3142         seq_puts(seq, "\tcr_goal_slow_stats:\n");
3143         seq_printf(seq, "\t\thits: %llu\n",
3144                    atomic64_read(&sbi->s_bal_cX_hits[CR_GOAL_LEN_SLOW]));
3145         seq_printf(seq, "\t\tgroups_considered: %llu\n",
3146                    atomic64_read(
3147                            &sbi->s_bal_cX_groups_considered[CR_GOAL_LEN_SLOW]));
3148         seq_printf(seq, "\t\textents_scanned: %u\n",
3149                    atomic_read(&sbi->s_bal_cX_ex_scanned[CR_GOAL_LEN_SLOW]));
3150         seq_printf(seq, "\t\tuseless_loops: %llu\n",
3151                    atomic64_read(&sbi->s_bal_cX_failed[CR_GOAL_LEN_SLOW]));
3152
3153         /* CR_ANY_FREE stats */
3154         seq_puts(seq, "\tcr_any_free_stats:\n");
3155         seq_printf(seq, "\t\thits: %llu\n",
3156                    atomic64_read(&sbi->s_bal_cX_hits[CR_ANY_FREE]));
3157         seq_printf(
3158                 seq, "\t\tgroups_considered: %llu\n",
3159                 atomic64_read(&sbi->s_bal_cX_groups_considered[CR_ANY_FREE]));
3160         seq_printf(seq, "\t\textents_scanned: %u\n",
3161                    atomic_read(&sbi->s_bal_cX_ex_scanned[CR_ANY_FREE]));
3162         seq_printf(seq, "\t\tuseless_loops: %llu\n",
3163                    atomic64_read(&sbi->s_bal_cX_failed[CR_ANY_FREE]));
3164
3165         /* Aggregates */
3166         seq_printf(seq, "\textents_scanned: %u\n",
3167                    atomic_read(&sbi->s_bal_ex_scanned));
3168         seq_printf(seq, "\t\tgoal_hits: %u\n", atomic_read(&sbi->s_bal_goals));
3169         seq_printf(seq, "\t\tlen_goal_hits: %u\n",
3170                    atomic_read(&sbi->s_bal_len_goals));
3171         seq_printf(seq, "\t\t2^n_hits: %u\n", atomic_read(&sbi->s_bal_2orders));
3172         seq_printf(seq, "\t\tbreaks: %u\n", atomic_read(&sbi->s_bal_breaks));
3173         seq_printf(seq, "\t\tlost: %u\n", atomic_read(&sbi->s_mb_lost_chunks));
3174         seq_printf(seq, "\tbuddies_generated: %u/%u\n",
3175                    atomic_read(&sbi->s_mb_buddies_generated),
3176                    ext4_get_groups_count(sb));
3177         seq_printf(seq, "\tbuddies_time_used: %llu\n",
3178                    atomic64_read(&sbi->s_mb_generation_time));
3179         seq_printf(seq, "\tpreallocated: %u\n",
3180                    atomic_read(&sbi->s_mb_preallocated));
3181         seq_printf(seq, "\tdiscarded: %u\n", atomic_read(&sbi->s_mb_discarded));
3182         return 0;
3183 }
3184
3185 static void *ext4_mb_seq_structs_summary_start(struct seq_file *seq, loff_t *pos)
3186 __acquires(&EXT4_SB(sb)->s_mb_rb_lock)
3187 {
3188         struct super_block *sb = pde_data(file_inode(seq->file));
3189         unsigned long position;
3190
3191         if (*pos < 0 || *pos >= 2*MB_NUM_ORDERS(sb))
3192                 return NULL;
3193         position = *pos + 1;
3194         return (void *) ((unsigned long) position);
3195 }
3196
3197 static void *ext4_mb_seq_structs_summary_next(struct seq_file *seq, void *v, loff_t *pos)
3198 {
3199         struct super_block *sb = pde_data(file_inode(seq->file));
3200         unsigned long position;
3201
3202         ++*pos;
3203         if (*pos < 0 || *pos >= 2*MB_NUM_ORDERS(sb))
3204                 return NULL;
3205         position = *pos + 1;
3206         return (void *) ((unsigned long) position);
3207 }
3208
3209 static int ext4_mb_seq_structs_summary_show(struct seq_file *seq, void *v)
3210 {
3211         struct super_block *sb = pde_data(file_inode(seq->file));
3212         struct ext4_sb_info *sbi = EXT4_SB(sb);
3213         unsigned long position = ((unsigned long) v);
3214         struct ext4_group_info *grp;
3215         unsigned int count;
3216
3217         position--;
3218         if (position >= MB_NUM_ORDERS(sb)) {
3219                 position -= MB_NUM_ORDERS(sb);
3220                 if (position == 0)
3221                         seq_puts(seq, "avg_fragment_size_lists:\n");
3222
3223                 count = 0;
3224                 read_lock(&sbi->s_mb_avg_fragment_size_locks[position]);
3225                 list_for_each_entry(grp, &sbi->s_mb_avg_fragment_size[position],
3226                                     bb_avg_fragment_size_node)
3227                         count++;
3228                 read_unlock(&sbi->s_mb_avg_fragment_size_locks[position]);
3229                 seq_printf(seq, "\tlist_order_%u_groups: %u\n",
3230                                         (unsigned int)position, count);
3231                 return 0;
3232         }
3233
3234         if (position == 0) {
3235                 seq_printf(seq, "optimize_scan: %d\n",
3236                            test_opt2(sb, MB_OPTIMIZE_SCAN) ? 1 : 0);
3237                 seq_puts(seq, "max_free_order_lists:\n");
3238         }
3239         count = 0;
3240         read_lock(&sbi->s_mb_largest_free_orders_locks[position]);
3241         list_for_each_entry(grp, &sbi->s_mb_largest_free_orders[position],
3242                             bb_largest_free_order_node)
3243                 count++;
3244         read_unlock(&sbi->s_mb_largest_free_orders_locks[position]);
3245         seq_printf(seq, "\tlist_order_%u_groups: %u\n",
3246                    (unsigned int)position, count);
3247
3248         return 0;
3249 }
3250
3251 static void ext4_mb_seq_structs_summary_stop(struct seq_file *seq, void *v)
3252 {
3253 }
3254
3255 const struct seq_operations ext4_mb_seq_structs_summary_ops = {
3256         .start  = ext4_mb_seq_structs_summary_start,
3257         .next   = ext4_mb_seq_structs_summary_next,
3258         .stop   = ext4_mb_seq_structs_summary_stop,
3259         .show   = ext4_mb_seq_structs_summary_show,
3260 };
3261
3262 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
3263 {
3264         int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
3265         struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
3266
3267         BUG_ON(!cachep);
3268         return cachep;
3269 }
3270
3271 /*
3272  * Allocate the top-level s_group_info array for the specified number
3273  * of groups
3274  */
3275 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)
3276 {
3277         struct ext4_sb_info *sbi = EXT4_SB(sb);
3278         unsigned size;
3279         struct ext4_group_info ***old_groupinfo, ***new_groupinfo;
3280
3281         size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >>
3282                 EXT4_DESC_PER_BLOCK_BITS(sb);
3283         if (size <= sbi->s_group_info_size)
3284                 return 0;
3285
3286         size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size);
3287         new_groupinfo = kvzalloc(size, GFP_KERNEL);
3288         if (!new_groupinfo) {
3289                 ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
3290                 return -ENOMEM;
3291         }
3292         rcu_read_lock();
3293         old_groupinfo = rcu_dereference(sbi->s_group_info);
3294         if (old_groupinfo)
3295                 memcpy(new_groupinfo, old_groupinfo,
3296                        sbi->s_group_info_size * sizeof(*sbi->s_group_info));
3297         rcu_read_unlock();
3298         rcu_assign_pointer(sbi->s_group_info, new_groupinfo);
3299         sbi->s_group_info_size = size / sizeof(*sbi->s_group_info);
3300         if (old_groupinfo)
3301                 ext4_kvfree_array_rcu(old_groupinfo);
3302         ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
3303                    sbi->s_group_info_size);
3304         return 0;
3305 }
3306
3307 /* Create and initialize ext4_group_info data for the given group. */
3308 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
3309                           struct ext4_group_desc *desc)
3310 {
3311         int i;
3312         int metalen = 0;
3313         int idx = group >> EXT4_DESC_PER_BLOCK_BITS(sb);
3314         struct ext4_sb_info *sbi = EXT4_SB(sb);
3315         struct ext4_group_info **meta_group_info;
3316         struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3317
3318         /*
3319          * First check if this group is the first of a reserved block.
3320          * If it's true, we have to allocate a new table of pointers
3321          * to ext4_group_info structures
3322          */
3323         if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
3324                 metalen = sizeof(*meta_group_info) <<
3325                         EXT4_DESC_PER_BLOCK_BITS(sb);
3326                 meta_group_info = kmalloc(metalen, GFP_NOFS);
3327                 if (meta_group_info == NULL) {
3328                         ext4_msg(sb, KERN_ERR, "can't allocate mem "
3329                                  "for a buddy group");
3330                         return -ENOMEM;
3331                 }
3332                 rcu_read_lock();
3333                 rcu_dereference(sbi->s_group_info)[idx] = meta_group_info;
3334                 rcu_read_unlock();
3335         }
3336
3337         meta_group_info = sbi_array_rcu_deref(sbi, s_group_info, idx);
3338         i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
3339
3340         meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS);
3341         if (meta_group_info[i] == NULL) {
3342                 ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
3343                 goto exit_group_info;
3344         }
3345         set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
3346                 &(meta_group_info[i]->bb_state));
3347
3348         /*
3349          * initialize bb_free to be able to skip
3350          * empty groups without initialization
3351          */
3352         if (ext4_has_group_desc_csum(sb) &&
3353             (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
3354                 meta_group_info[i]->bb_free =
3355                         ext4_free_clusters_after_init(sb, group, desc);
3356         } else {
3357                 meta_group_info[i]->bb_free =
3358                         ext4_free_group_clusters(sb, desc);
3359         }
3360
3361         INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
3362         init_rwsem(&meta_group_info[i]->alloc_sem);
3363         meta_group_info[i]->bb_free_root = RB_ROOT;
3364         INIT_LIST_HEAD(&meta_group_info[i]->bb_largest_free_order_node);
3365         INIT_LIST_HEAD(&meta_group_info[i]->bb_avg_fragment_size_node);
3366         meta_group_info[i]->bb_largest_free_order = -1;  /* uninit */
3367         meta_group_info[i]->bb_avg_fragment_size_order = -1;  /* uninit */
3368         meta_group_info[i]->bb_group = group;
3369
3370         mb_group_bb_bitmap_alloc(sb, meta_group_info[i], group);
3371         return 0;
3372
3373 exit_group_info:
3374         /* If a meta_group_info table has been allocated, release it now */
3375         if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
3376                 struct ext4_group_info ***group_info;
3377
3378                 rcu_read_lock();
3379                 group_info = rcu_dereference(sbi->s_group_info);
3380                 kfree(group_info[idx]);
3381                 group_info[idx] = NULL;
3382                 rcu_read_unlock();
3383         }
3384         return -ENOMEM;
3385 } /* ext4_mb_add_groupinfo */
3386
3387 static int ext4_mb_init_backend(struct super_block *sb)
3388 {
3389         ext4_group_t ngroups = ext4_get_groups_count(sb);
3390         ext4_group_t i;
3391         struct ext4_sb_info *sbi = EXT4_SB(sb);
3392         int err;
3393         struct ext4_group_desc *desc;
3394         struct ext4_group_info ***group_info;
3395         struct kmem_cache *cachep;
3396
3397         err = ext4_mb_alloc_groupinfo(sb, ngroups);
3398         if (err)
3399                 return err;
3400
3401         sbi->s_buddy_cache = new_inode(sb);
3402         if (sbi->s_buddy_cache == NULL) {
3403                 ext4_msg(sb, KERN_ERR, "can't get new inode");
3404                 goto err_freesgi;
3405         }
3406         /* To avoid potentially colliding with an valid on-disk inode number,
3407          * use EXT4_BAD_INO for the buddy cache inode number.  This inode is
3408          * not in the inode hash, so it should never be found by iget(), but
3409          * this will avoid confusion if it ever shows up during debugging. */
3410         sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
3411         EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
3412         for (i = 0; i < ngroups; i++) {
3413                 cond_resched();
3414                 desc = ext4_get_group_desc(sb, i, NULL);
3415                 if (desc == NULL) {
3416                         ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
3417                         goto err_freebuddy;
3418                 }
3419                 if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
3420                         goto err_freebuddy;
3421         }
3422
3423         if (ext4_has_feature_flex_bg(sb)) {
3424                 /* a single flex group is supposed to be read by a single IO.
3425                  * 2 ^ s_log_groups_per_flex != UINT_MAX as s_mb_prefetch is
3426                  * unsigned integer, so the maximum shift is 32.
3427                  */
3428                 if (sbi->s_es->s_log_groups_per_flex >= 32) {
3429                         ext4_msg(sb, KERN_ERR, "too many log groups per flexible block group");
3430                         goto err_freebuddy;
3431                 }
3432                 sbi->s_mb_prefetch = min_t(uint, 1 << sbi->s_es->s_log_groups_per_flex,
3433                         BLK_MAX_SEGMENT_SIZE >> (sb->s_blocksize_bits - 9));
3434                 sbi->s_mb_prefetch *= 8; /* 8 prefetch IOs in flight at most */
3435         } else {
3436                 sbi->s_mb_prefetch = 32;
3437         }
3438         if (sbi->s_mb_prefetch > ext4_get_groups_count(sb))
3439                 sbi->s_mb_prefetch = ext4_get_groups_count(sb);
3440         /* now many real IOs to prefetch within a single allocation at cr=0
3441          * given cr=0 is an CPU-related optimization we shouldn't try to
3442          * load too many groups, at some point we should start to use what
3443          * we've got in memory.
3444          * with an average random access time 5ms, it'd take a second to get
3445          * 200 groups (* N with flex_bg), so let's make this limit 4
3446          */
3447         sbi->s_mb_prefetch_limit = sbi->s_mb_prefetch * 4;
3448         if (sbi->s_mb_prefetch_limit > ext4_get_groups_count(sb))
3449                 sbi->s_mb_prefetch_limit = ext4_get_groups_count(sb);
3450
3451         return 0;
3452
3453 err_freebuddy:
3454         cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3455         while (i-- > 0) {
3456                 struct ext4_group_info *grp = ext4_get_group_info(sb, i);
3457
3458                 if (grp)
3459                         kmem_cache_free(cachep, grp);
3460         }
3461         i = sbi->s_group_info_size;
3462         rcu_read_lock();
3463         group_info = rcu_dereference(sbi->s_group_info);
3464         while (i-- > 0)
3465                 kfree(group_info[i]);
3466         rcu_read_unlock();
3467         iput(sbi->s_buddy_cache);
3468 err_freesgi:
3469         rcu_read_lock();
3470         kvfree(rcu_dereference(sbi->s_group_info));
3471         rcu_read_unlock();
3472         return -ENOMEM;
3473 }
3474
3475 static void ext4_groupinfo_destroy_slabs(void)
3476 {
3477         int i;
3478
3479         for (i = 0; i < NR_GRPINFO_CACHES; i++) {
3480                 kmem_cache_destroy(ext4_groupinfo_caches[i]);
3481                 ext4_groupinfo_caches[i] = NULL;
3482         }
3483 }
3484
3485 static int ext4_groupinfo_create_slab(size_t size)
3486 {
3487         static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
3488         int slab_size;
3489         int blocksize_bits = order_base_2(size);
3490         int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
3491         struct kmem_cache *cachep;
3492
3493         if (cache_index >= NR_GRPINFO_CACHES)
3494                 return -EINVAL;
3495
3496         if (unlikely(cache_index < 0))
3497                 cache_index = 0;
3498
3499         mutex_lock(&ext4_grpinfo_slab_create_mutex);
3500         if (ext4_groupinfo_caches[cache_index]) {
3501                 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
3502                 return 0;       /* Already created */
3503         }
3504
3505         slab_size = offsetof(struct ext4_group_info,
3506                                 bb_counters[blocksize_bits + 2]);
3507
3508         cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
3509                                         slab_size, 0, SLAB_RECLAIM_ACCOUNT,
3510                                         NULL);
3511
3512         ext4_groupinfo_caches[cache_index] = cachep;
3513
3514         mutex_unlock(&ext4_grpinfo_slab_create_mutex);
3515         if (!cachep) {
3516                 printk(KERN_EMERG
3517                        "EXT4-fs: no memory for groupinfo slab cache\n");
3518                 return -ENOMEM;
3519         }
3520
3521         return 0;
3522 }
3523
3524 static void ext4_discard_work(struct work_struct *work)
3525 {
3526         struct ext4_sb_info *sbi = container_of(work,
3527                         struct ext4_sb_info, s_discard_work);
3528         struct super_block *sb = sbi->s_sb;
3529         struct ext4_free_data *fd, *nfd;
3530         struct ext4_buddy e4b;
3531         LIST_HEAD(discard_list);
3532         ext4_group_t grp, load_grp;
3533         int err = 0;
3534
3535         spin_lock(&sbi->s_md_lock);
3536         list_splice_init(&sbi->s_discard_list, &discard_list);
3537         spin_unlock(&sbi->s_md_lock);
3538
3539         load_grp = UINT_MAX;
3540         list_for_each_entry_safe(fd, nfd, &discard_list, efd_list) {
3541                 /*
3542                  * If filesystem is umounting or no memory or suffering
3543                  * from no space, give up the discard
3544                  */
3545                 if ((sb->s_flags & SB_ACTIVE) && !err &&
3546                     !atomic_read(&sbi->s_retry_alloc_pending)) {
3547                         grp = fd->efd_group;
3548                         if (grp != load_grp) {
3549                                 if (load_grp != UINT_MAX)
3550                                         ext4_mb_unload_buddy(&e4b);
3551
3552                                 err = ext4_mb_load_buddy(sb, grp, &e4b);
3553                                 if (err) {
3554                                         kmem_cache_free(ext4_free_data_cachep, fd);
3555                                         load_grp = UINT_MAX;
3556                                         continue;
3557                                 } else {
3558                                         load_grp = grp;
3559                                 }
3560                         }
3561
3562                         ext4_lock_group(sb, grp);
3563                         ext4_try_to_trim_range(sb, &e4b, fd->efd_start_cluster,
3564                                                 fd->efd_start_cluster + fd->efd_count - 1, 1);
3565                         ext4_unlock_group(sb, grp);
3566                 }
3567                 kmem_cache_free(ext4_free_data_cachep, fd);
3568         }
3569
3570         if (load_grp != UINT_MAX)
3571                 ext4_mb_unload_buddy(&e4b);
3572 }
3573
3574 int ext4_mb_init(struct super_block *sb)
3575 {
3576         struct ext4_sb_info *sbi = EXT4_SB(sb);
3577         unsigned i, j;
3578         unsigned offset, offset_incr;
3579         unsigned max;
3580         int ret;
3581
3582         i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_offsets);
3583
3584         sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
3585         if (sbi->s_mb_offsets == NULL) {
3586                 ret = -ENOMEM;
3587                 goto out;
3588         }
3589
3590         i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_maxs);
3591         sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
3592         if (sbi->s_mb_maxs == NULL) {
3593                 ret = -ENOMEM;
3594                 goto out;
3595         }
3596
3597         ret = ext4_groupinfo_create_slab(sb->s_blocksize);
3598         if (ret < 0)
3599                 goto out;
3600
3601         /* order 0 is regular bitmap */
3602         sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
3603         sbi->s_mb_offsets[0] = 0;
3604
3605         i = 1;
3606         offset = 0;
3607         offset_incr = 1 << (sb->s_blocksize_bits - 1);
3608         max = sb->s_blocksize << 2;
3609         do {
3610                 sbi->s_mb_offsets[i] = offset;
3611                 sbi->s_mb_maxs[i] = max;
3612                 offset += offset_incr;
3613                 offset_incr = offset_incr >> 1;
3614                 max = max >> 1;
3615                 i++;
3616         } while (i < MB_NUM_ORDERS(sb));
3617
3618         sbi->s_mb_avg_fragment_size =
3619                 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct list_head),
3620                         GFP_KERNEL);
3621         if (!sbi->s_mb_avg_fragment_size) {
3622                 ret = -ENOMEM;
3623                 goto out;
3624         }
3625         sbi->s_mb_avg_fragment_size_locks =
3626                 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(rwlock_t),
3627                         GFP_KERNEL);
3628         if (!sbi->s_mb_avg_fragment_size_locks) {
3629                 ret = -ENOMEM;
3630                 goto out;
3631         }
3632         for (i = 0; i < MB_NUM_ORDERS(sb); i++) {
3633                 INIT_LIST_HEAD(&sbi->s_mb_avg_fragment_size[i]);
3634                 rwlock_init(&sbi->s_mb_avg_fragment_size_locks[i]);
3635         }
3636         sbi->s_mb_largest_free_orders =
3637                 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct list_head),
3638                         GFP_KERNEL);
3639         if (!sbi->s_mb_largest_free_orders) {
3640                 ret = -ENOMEM;
3641                 goto out;
3642         }
3643         sbi->s_mb_largest_free_orders_locks =
3644                 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(rwlock_t),
3645                         GFP_KERNEL);
3646         if (!sbi->s_mb_largest_free_orders_locks) {
3647                 ret = -ENOMEM;
3648                 goto out;
3649         }
3650         for (i = 0; i < MB_NUM_ORDERS(sb); i++) {
3651                 INIT_LIST_HEAD(&sbi->s_mb_largest_free_orders[i]);
3652                 rwlock_init(&sbi->s_mb_largest_free_orders_locks[i]);
3653         }
3654
3655         spin_lock_init(&sbi->s_md_lock);
3656         sbi->s_mb_free_pending = 0;
3657         INIT_LIST_HEAD(&sbi->s_freed_data_list[0]);
3658         INIT_LIST_HEAD(&sbi->s_freed_data_list[1]);
3659         INIT_LIST_HEAD(&sbi->s_discard_list);
3660         INIT_WORK(&sbi->s_discard_work, ext4_discard_work);
3661         atomic_set(&sbi->s_retry_alloc_pending, 0);
3662
3663         sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
3664         sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
3665         sbi->s_mb_stats = MB_DEFAULT_STATS;
3666         sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
3667         sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
3668         sbi->s_mb_best_avail_max_trim_order = MB_DEFAULT_BEST_AVAIL_TRIM_ORDER;
3669
3670         /*
3671          * The default group preallocation is 512, which for 4k block
3672          * sizes translates to 2 megabytes.  However for bigalloc file
3673          * systems, this is probably too big (i.e, if the cluster size
3674          * is 1 megabyte, then group preallocation size becomes half a
3675          * gigabyte!).  As a default, we will keep a two megabyte
3676          * group pralloc size for cluster sizes up to 64k, and after
3677          * that, we will force a minimum group preallocation size of
3678          * 32 clusters.  This translates to 8 megs when the cluster
3679          * size is 256k, and 32 megs when the cluster size is 1 meg,
3680          * which seems reasonable as a default.
3681          */
3682         sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
3683                                        sbi->s_cluster_bits, 32);
3684         /*
3685          * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
3686          * to the lowest multiple of s_stripe which is bigger than
3687          * the s_mb_group_prealloc as determined above. We want
3688          * the preallocation size to be an exact multiple of the
3689          * RAID stripe size so that preallocations don't fragment
3690          * the stripes.
3691          */
3692         if (sbi->s_stripe > 1) {
3693                 sbi->s_mb_group_prealloc = roundup(
3694                         sbi->s_mb_group_prealloc, EXT4_B2C(sbi, sbi->s_stripe));
3695         }
3696
3697         sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
3698         if (sbi->s_locality_groups == NULL) {
3699                 ret = -ENOMEM;
3700                 goto out;
3701         }
3702         for_each_possible_cpu(i) {
3703                 struct ext4_locality_group *lg;
3704                 lg = per_cpu_ptr(sbi->s_locality_groups, i);
3705                 mutex_init(&lg->lg_mutex);
3706                 for (j = 0; j < PREALLOC_TB_SIZE; j++)
3707                         INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
3708                 spin_lock_init(&lg->lg_prealloc_lock);
3709         }
3710
3711         if (bdev_nonrot(sb->s_bdev))
3712                 sbi->s_mb_max_linear_groups = 0;
3713         else
3714                 sbi->s_mb_max_linear_groups = MB_DEFAULT_LINEAR_LIMIT;
3715         /* init file for buddy data */
3716         ret = ext4_mb_init_backend(sb);
3717         if (ret != 0)
3718                 goto out_free_locality_groups;
3719
3720         return 0;
3721
3722 out_free_locality_groups:
3723         free_percpu(sbi->s_locality_groups);
3724         sbi->s_locality_groups = NULL;
3725 out:
3726         kfree(sbi->s_mb_avg_fragment_size);
3727         kfree(sbi->s_mb_avg_fragment_size_locks);
3728         kfree(sbi->s_mb_largest_free_orders);
3729         kfree(sbi->s_mb_largest_free_orders_locks);
3730         kfree(sbi->s_mb_offsets);
3731         sbi->s_mb_offsets = NULL;
3732         kfree(sbi->s_mb_maxs);
3733         sbi->s_mb_maxs = NULL;
3734         return ret;
3735 }
3736
3737 /* need to called with the ext4 group lock held */
3738 static int ext4_mb_cleanup_pa(struct ext4_group_info *grp)
3739 {
3740         struct ext4_prealloc_space *pa;
3741         struct list_head *cur, *tmp;
3742         int count = 0;
3743
3744         list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
3745                 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3746                 list_del(&pa->pa_group_list);
3747                 count++;
3748                 kmem_cache_free(ext4_pspace_cachep, pa);
3749         }
3750         return count;
3751 }
3752
3753 void ext4_mb_release(struct super_block *sb)
3754 {
3755         ext4_group_t ngroups = ext4_get_groups_count(sb);
3756         ext4_group_t i;
3757         int num_meta_group_infos;
3758         struct ext4_group_info *grinfo, ***group_info;
3759         struct ext4_sb_info *sbi = EXT4_SB(sb);
3760         struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3761         int count;
3762
3763         if (test_opt(sb, DISCARD)) {
3764                 /*
3765                  * wait the discard work to drain all of ext4_free_data
3766                  */
3767                 flush_work(&sbi->s_discard_work);
3768                 WARN_ON_ONCE(!list_empty(&sbi->s_discard_list));
3769         }
3770
3771         if (sbi->s_group_info) {
3772                 for (i = 0; i < ngroups; i++) {
3773                         cond_resched();
3774                         grinfo = ext4_get_group_info(sb, i);
3775                         if (!grinfo)
3776                                 continue;
3777                         mb_group_bb_bitmap_free(grinfo);
3778                         ext4_lock_group(sb, i);
3779                         count = ext4_mb_cleanup_pa(grinfo);
3780                         if (count)
3781                                 mb_debug(sb, "mballoc: %d PAs left\n",
3782                                          count);
3783                         ext4_unlock_group(sb, i);
3784                         kmem_cache_free(cachep, grinfo);
3785                 }
3786                 num_meta_group_infos = (ngroups +
3787                                 EXT4_DESC_PER_BLOCK(sb) - 1) >>
3788                         EXT4_DESC_PER_BLOCK_BITS(sb);
3789                 rcu_read_lock();
3790                 group_info = rcu_dereference(sbi->s_group_info);
3791                 for (i = 0; i < num_meta_group_infos; i++)
3792                         kfree(group_info[i]);
3793                 kvfree(group_info);
3794                 rcu_read_unlock();
3795         }
3796         kfree(sbi->s_mb_avg_fragment_size);
3797         kfree(sbi->s_mb_avg_fragment_size_locks);
3798         kfree(sbi->s_mb_largest_free_orders);
3799         kfree(sbi->s_mb_largest_free_orders_locks);
3800         kfree(sbi->s_mb_offsets);
3801         kfree(sbi->s_mb_maxs);
3802         iput(sbi->s_buddy_cache);
3803         if (sbi->s_mb_stats) {
3804                 ext4_msg(sb, KERN_INFO,
3805                        "mballoc: %u blocks %u reqs (%u success)",
3806                                 atomic_read(&sbi->s_bal_allocated),
3807                                 atomic_read(&sbi->s_bal_reqs),
3808                                 atomic_read(&sbi->s_bal_success));
3809                 ext4_msg(sb, KERN_INFO,
3810                       "mballoc: %u extents scanned, %u groups scanned, %u goal hits, "
3811                                 "%u 2^N hits, %u breaks, %u lost",
3812                                 atomic_read(&sbi->s_bal_ex_scanned),
3813                                 atomic_read(&sbi->s_bal_groups_scanned),
3814                                 atomic_read(&sbi->s_bal_goals),
3815                                 atomic_read(&sbi->s_bal_2orders),
3816                                 atomic_read(&sbi->s_bal_breaks),
3817                                 atomic_read(&sbi->s_mb_lost_chunks));
3818                 ext4_msg(sb, KERN_INFO,
3819                        "mballoc: %u generated and it took %llu",
3820                                 atomic_read(&sbi->s_mb_buddies_generated),
3821                                 atomic64_read(&sbi->s_mb_generation_time));
3822                 ext4_msg(sb, KERN_INFO,
3823                        "mballoc: %u preallocated, %u discarded",
3824                                 atomic_read(&sbi->s_mb_preallocated),
3825                                 atomic_read(&sbi->s_mb_discarded));
3826         }
3827
3828         free_percpu(sbi->s_locality_groups);
3829 }
3830
3831 static inline int ext4_issue_discard(struct super_block *sb,
3832                 ext4_group_t block_group, ext4_grpblk_t cluster, int count,
3833                 struct bio **biop)
3834 {
3835         ext4_fsblk_t discard_block;
3836
3837         discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
3838                          ext4_group_first_block_no(sb, block_group));
3839         count = EXT4_C2B(EXT4_SB(sb), count);
3840         trace_ext4_discard_blocks(sb,
3841                         (unsigned long long) discard_block, count);
3842         if (biop) {
3843                 return __blkdev_issue_discard(sb->s_bdev,
3844                         (sector_t)discard_block << (sb->s_blocksize_bits - 9),
3845                         (sector_t)count << (sb->s_blocksize_bits - 9),
3846                         GFP_NOFS, biop);
3847         } else
3848                 return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
3849 }
3850
3851 static void ext4_free_data_in_buddy(struct super_block *sb,
3852                                     struct ext4_free_data *entry)
3853 {
3854         struct ext4_buddy e4b;
3855         struct ext4_group_info *db;
3856         int err, count = 0;
3857
3858         mb_debug(sb, "gonna free %u blocks in group %u (0x%p):",
3859                  entry->efd_count, entry->efd_group, entry);
3860
3861         err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
3862         /* we expect to find existing buddy because it's pinned */
3863         BUG_ON(err != 0);
3864
3865         spin_lock(&EXT4_SB(sb)->s_md_lock);
3866         EXT4_SB(sb)->s_mb_free_pending -= entry->efd_count;
3867         spin_unlock(&EXT4_SB(sb)->s_md_lock);
3868
3869         db = e4b.bd_info;
3870         /* there are blocks to put in buddy to make them really free */
3871         count += entry->efd_count;
3872         ext4_lock_group(sb, entry->efd_group);
3873         /* Take it out of per group rb tree */
3874         rb_erase(&entry->efd_node, &(db->bb_free_root));
3875         mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
3876
3877         /*
3878          * Clear the trimmed flag for the group so that the next
3879          * ext4_trim_fs can trim it.
3880          * If the volume is mounted with -o discard, online discard
3881          * is supported and the free blocks will be trimmed online.
3882          */
3883         if (!test_opt(sb, DISCARD))
3884                 EXT4_MB_GRP_CLEAR_TRIMMED(db);
3885
3886         if (!db->bb_free_root.rb_node) {
3887                 /* No more items in the per group rb tree
3888                  * balance refcounts from ext4_mb_free_metadata()
3889                  */
3890                 put_page(e4b.bd_buddy_page);
3891                 put_page(e4b.bd_bitmap_page);
3892         }
3893         ext4_unlock_group(sb, entry->efd_group);
3894         ext4_mb_unload_buddy(&e4b);
3895
3896         mb_debug(sb, "freed %d blocks in 1 structures\n", count);
3897 }
3898
3899 /*
3900  * This function is called by the jbd2 layer once the commit has finished,
3901  * so we know we can free the blocks that were released with that commit.
3902  */
3903 void ext4_process_freed_data(struct super_block *sb, tid_t commit_tid)
3904 {
3905         struct ext4_sb_info *sbi = EXT4_SB(sb);
3906         struct ext4_free_data *entry, *tmp;
3907         LIST_HEAD(freed_data_list);
3908         struct list_head *s_freed_head = &sbi->s_freed_data_list[commit_tid & 1];
3909         bool wake;
3910
3911         list_replace_init(s_freed_head, &freed_data_list);
3912
3913         list_for_each_entry(entry, &freed_data_list, efd_list)
3914                 ext4_free_data_in_buddy(sb, entry);
3915
3916         if (test_opt(sb, DISCARD)) {
3917                 spin_lock(&sbi->s_md_lock);
3918                 wake = list_empty(&sbi->s_discard_list);
3919                 list_splice_tail(&freed_data_list, &sbi->s_discard_list);
3920                 spin_unlock(&sbi->s_md_lock);
3921                 if (wake)
3922                         queue_work(system_unbound_wq, &sbi->s_discard_work);
3923         } else {
3924                 list_for_each_entry_safe(entry, tmp, &freed_data_list, efd_list)
3925                         kmem_cache_free(ext4_free_data_cachep, entry);
3926         }
3927 }
3928
3929 int __init ext4_init_mballoc(void)
3930 {
3931         ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
3932                                         SLAB_RECLAIM_ACCOUNT);
3933         if (ext4_pspace_cachep == NULL)
3934                 goto out;
3935
3936         ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
3937                                     SLAB_RECLAIM_ACCOUNT);
3938         if (ext4_ac_cachep == NULL)
3939                 goto out_pa_free;
3940
3941         ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
3942                                            SLAB_RECLAIM_ACCOUNT);
3943         if (ext4_free_data_cachep == NULL)
3944                 goto out_ac_free;
3945
3946         return 0;
3947
3948 out_ac_free:
3949         kmem_cache_destroy(ext4_ac_cachep);
3950 out_pa_free:
3951         kmem_cache_destroy(ext4_pspace_cachep);
3952 out:
3953         return -ENOMEM;
3954 }
3955
3956 void ext4_exit_mballoc(void)
3957 {
3958         /*
3959          * Wait for completion of call_rcu()'s on ext4_pspace_cachep
3960          * before destroying the slab cache.
3961          */
3962         rcu_barrier();
3963         kmem_cache_destroy(ext4_pspace_cachep);
3964         kmem_cache_destroy(ext4_ac_cachep);
3965         kmem_cache_destroy(ext4_free_data_cachep);
3966         ext4_groupinfo_destroy_slabs();
3967 }
3968
3969 #define EXT4_MB_BITMAP_MARKED_CHECK 0x0001
3970 #define EXT4_MB_SYNC_UPDATE 0x0002
3971 static int
3972 ext4_mb_mark_context(handle_t *handle, struct super_block *sb, bool state,
3973                      ext4_group_t group, ext4_grpblk_t blkoff,
3974                      ext4_grpblk_t len, int flags, ext4_grpblk_t *ret_changed)
3975 {
3976         struct ext4_sb_info *sbi = EXT4_SB(sb);
3977         struct buffer_head *bitmap_bh = NULL;
3978         struct ext4_group_desc *gdp;
3979         struct buffer_head *gdp_bh;
3980         int err;
3981         unsigned int i, already, changed = len;
3982
3983         KUNIT_STATIC_STUB_REDIRECT(ext4_mb_mark_context,
3984                                    handle, sb, state, group, blkoff, len,
3985                                    flags, ret_changed);
3986
3987         if (ret_changed)
3988                 *ret_changed = 0;
3989         bitmap_bh = ext4_read_block_bitmap(sb, group);
3990         if (IS_ERR(bitmap_bh))
3991                 return PTR_ERR(bitmap_bh);
3992
3993         if (handle) {
3994                 BUFFER_TRACE(bitmap_bh, "getting write access");
3995                 err = ext4_journal_get_write_access(handle, sb, bitmap_bh,
3996                                                     EXT4_JTR_NONE);
3997                 if (err)
3998                         goto out_err;
3999         }
4000
4001         err = -EIO;
4002         gdp = ext4_get_group_desc(sb, group, &gdp_bh);
4003         if (!gdp)
4004                 goto out_err;
4005
4006         if (handle) {
4007                 BUFFER_TRACE(gdp_bh, "get_write_access");
4008                 err = ext4_journal_get_write_access(handle, sb, gdp_bh,
4009                                                     EXT4_JTR_NONE);
4010                 if (err)
4011                         goto out_err;
4012         }
4013
4014         ext4_lock_group(sb, group);
4015         if (ext4_has_group_desc_csum(sb) &&
4016             (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
4017                 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
4018                 ext4_free_group_clusters_set(sb, gdp,
4019                         ext4_free_clusters_after_init(sb, group, gdp));
4020         }
4021
4022         if (flags & EXT4_MB_BITMAP_MARKED_CHECK) {
4023                 already = 0;
4024                 for (i = 0; i < len; i++)
4025                         if (mb_test_bit(blkoff + i, bitmap_bh->b_data) ==
4026                                         state)
4027                                 already++;
4028                 changed = len - already;
4029         }
4030
4031         if (state) {
4032                 mb_set_bits(bitmap_bh->b_data, blkoff, len);
4033                 ext4_free_group_clusters_set(sb, gdp,
4034                         ext4_free_group_clusters(sb, gdp) - changed);
4035         } else {
4036                 mb_clear_bits(bitmap_bh->b_data, blkoff, len);
4037                 ext4_free_group_clusters_set(sb, gdp,
4038                         ext4_free_group_clusters(sb, gdp) + changed);
4039         }
4040
4041         ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh);
4042         ext4_group_desc_csum_set(sb, group, gdp);
4043         ext4_unlock_group(sb, group);
4044         if (ret_changed)
4045                 *ret_changed = changed;
4046
4047         if (sbi->s_log_groups_per_flex) {
4048                 ext4_group_t flex_group = ext4_flex_group(sbi, group);
4049                 struct flex_groups *fg = sbi_array_rcu_deref(sbi,
4050                                            s_flex_groups, flex_group);
4051
4052                 if (state)
4053                         atomic64_sub(changed, &fg->free_clusters);
4054                 else
4055                         atomic64_add(changed, &fg->free_clusters);
4056         }
4057
4058         err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4059         if (err)
4060                 goto out_err;
4061         err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
4062         if (err)
4063                 goto out_err;
4064
4065         if (flags & EXT4_MB_SYNC_UPDATE) {
4066                 sync_dirty_buffer(bitmap_bh);
4067                 sync_dirty_buffer(gdp_bh);
4068         }
4069
4070 out_err:
4071         brelse(bitmap_bh);
4072         return err;
4073 }
4074
4075 /*
4076  * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
4077  * Returns 0 if success or error code
4078  */
4079 static noinline_for_stack int
4080 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
4081                                 handle_t *handle, unsigned int reserv_clstrs)
4082 {
4083         struct ext4_group_desc *gdp;
4084         struct ext4_sb_info *sbi;
4085         struct super_block *sb;
4086         ext4_fsblk_t block;
4087         int err, len;
4088         int flags = 0;
4089         ext4_grpblk_t changed;
4090
4091         BUG_ON(ac->ac_status != AC_STATUS_FOUND);
4092         BUG_ON(ac->ac_b_ex.fe_len <= 0);
4093
4094         sb = ac->ac_sb;
4095         sbi = EXT4_SB(sb);
4096
4097         gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, NULL);
4098         if (!gdp)
4099                 return -EIO;
4100         ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
4101                         ext4_free_group_clusters(sb, gdp));
4102
4103         block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4104         len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4105         if (!ext4_inode_block_valid(ac->ac_inode, block, len)) {
4106                 ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
4107                            "fs metadata", block, block+len);
4108                 /* File system mounted not to panic on error
4109                  * Fix the bitmap and return EFSCORRUPTED
4110                  * We leak some of the blocks here.
4111                  */
4112                 err = ext4_mb_mark_context(handle, sb, true,
4113                                            ac->ac_b_ex.fe_group,
4114                                            ac->ac_b_ex.fe_start,
4115                                            ac->ac_b_ex.fe_len,
4116                                            0, NULL);
4117                 if (!err)
4118                         err = -EFSCORRUPTED;
4119                 return err;
4120         }
4121
4122 #ifdef AGGRESSIVE_CHECK
4123         flags |= EXT4_MB_BITMAP_MARKED_CHECK;
4124 #endif
4125         err = ext4_mb_mark_context(handle, sb, true, ac->ac_b_ex.fe_group,
4126                                    ac->ac_b_ex.fe_start, ac->ac_b_ex.fe_len,
4127                                    flags, &changed);
4128
4129         if (err && changed == 0)
4130                 return err;
4131
4132 #ifdef AGGRESSIVE_CHECK
4133         BUG_ON(changed != ac->ac_b_ex.fe_len);
4134 #endif
4135         percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
4136         /*
4137          * Now reduce the dirty block count also. Should not go negative
4138          */
4139         if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
4140                 /* release all the reserved blocks if non delalloc */
4141                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
4142                                    reserv_clstrs);
4143
4144         return err;
4145 }
4146
4147 /*
4148  * Idempotent helper for Ext4 fast commit replay path to set the state of
4149  * blocks in bitmaps and update counters.
4150  */
4151 void ext4_mb_mark_bb(struct super_block *sb, ext4_fsblk_t block,
4152                      int len, bool state)
4153 {
4154         struct ext4_sb_info *sbi = EXT4_SB(sb);
4155         ext4_group_t group;
4156         ext4_grpblk_t blkoff;
4157         int err = 0;
4158         unsigned int clen, thisgrp_len;
4159
4160         while (len > 0) {
4161                 ext4_get_group_no_and_offset(sb, block, &group, &blkoff);
4162
4163                 /*
4164                  * Check to see if we are freeing blocks across a group
4165                  * boundary.
4166                  * In case of flex_bg, this can happen that (block, len) may
4167                  * span across more than one group. In that case we need to
4168                  * get the corresponding group metadata to work with.
4169                  * For this we have goto again loop.
4170                  */
4171                 thisgrp_len = min_t(unsigned int, (unsigned int)len,
4172                         EXT4_BLOCKS_PER_GROUP(sb) - EXT4_C2B(sbi, blkoff));
4173                 clen = EXT4_NUM_B2C(sbi, thisgrp_len);
4174
4175                 if (!ext4_sb_block_valid(sb, NULL, block, thisgrp_len)) {
4176                         ext4_error(sb, "Marking blocks in system zone - "
4177                                    "Block = %llu, len = %u",
4178                                    block, thisgrp_len);
4179                         break;
4180                 }
4181
4182                 err = ext4_mb_mark_context(NULL, sb, state,
4183                                            group, blkoff, clen,
4184                                            EXT4_MB_BITMAP_MARKED_CHECK |
4185                                            EXT4_MB_SYNC_UPDATE,
4186                                            NULL);
4187                 if (err)
4188                         break;
4189
4190                 block += thisgrp_len;
4191                 len -= thisgrp_len;
4192                 BUG_ON(len < 0);
4193         }
4194 }
4195
4196 /*
4197  * here we normalize request for locality group
4198  * Group request are normalized to s_mb_group_prealloc, which goes to
4199  * s_strip if we set the same via mount option.
4200  * s_mb_group_prealloc can be configured via
4201  * /sys/fs/ext4/<partition>/mb_group_prealloc
4202  *
4203  * XXX: should we try to preallocate more than the group has now?
4204  */
4205 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
4206 {
4207         struct super_block *sb = ac->ac_sb;
4208         struct ext4_locality_group *lg = ac->ac_lg;
4209
4210         BUG_ON(lg == NULL);
4211         ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
4212         mb_debug(sb, "goal %u blocks for locality group\n", ac->ac_g_ex.fe_len);
4213 }
4214
4215 /*
4216  * This function returns the next element to look at during inode
4217  * PA rbtree walk. We assume that we have held the inode PA rbtree lock
4218  * (ei->i_prealloc_lock)
4219  *
4220  * new_start    The start of the range we want to compare
4221  * cur_start    The existing start that we are comparing against
4222  * node The node of the rb_tree
4223  */
4224 static inline struct rb_node*
4225 ext4_mb_pa_rb_next_iter(ext4_lblk_t new_start, ext4_lblk_t cur_start, struct rb_node *node)
4226 {
4227         if (new_start < cur_start)
4228                 return node->rb_left;
4229         else
4230                 return node->rb_right;
4231 }
4232
4233 static inline void
4234 ext4_mb_pa_assert_overlap(struct ext4_allocation_context *ac,
4235                           ext4_lblk_t start, loff_t end)
4236 {
4237         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4238         struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
4239         struct ext4_prealloc_space *tmp_pa;
4240         ext4_lblk_t tmp_pa_start;
4241         loff_t tmp_pa_end;
4242         struct rb_node *iter;
4243
4244         read_lock(&ei->i_prealloc_lock);
4245         for (iter = ei->i_prealloc_node.rb_node; iter;
4246              iter = ext4_mb_pa_rb_next_iter(start, tmp_pa_start, iter)) {
4247                 tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4248                                   pa_node.inode_node);
4249                 tmp_pa_start = tmp_pa->pa_lstart;
4250                 tmp_pa_end = pa_logical_end(sbi, tmp_pa);
4251
4252                 spin_lock(&tmp_pa->pa_lock);
4253                 if (tmp_pa->pa_deleted == 0)
4254                         BUG_ON(!(start >= tmp_pa_end || end <= tmp_pa_start));
4255                 spin_unlock(&tmp_pa->pa_lock);
4256         }
4257         read_unlock(&ei->i_prealloc_lock);
4258 }
4259
4260 /*
4261  * Given an allocation context "ac" and a range "start", "end", check
4262  * and adjust boundaries if the range overlaps with any of the existing
4263  * preallocatoins stored in the corresponding inode of the allocation context.
4264  *
4265  * Parameters:
4266  *      ac                      allocation context
4267  *      start                   start of the new range
4268  *      end                     end of the new range
4269  */
4270 static inline void
4271 ext4_mb_pa_adjust_overlap(struct ext4_allocation_context *ac,
4272                           ext4_lblk_t *start, loff_t *end)
4273 {
4274         struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
4275         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4276         struct ext4_prealloc_space *tmp_pa = NULL, *left_pa = NULL, *right_pa = NULL;
4277         struct rb_node *iter;
4278         ext4_lblk_t new_start, tmp_pa_start, right_pa_start = -1;
4279         loff_t new_end, tmp_pa_end, left_pa_end = -1;
4280
4281         new_start = *start;
4282         new_end = *end;
4283
4284         /*
4285          * Adjust the normalized range so that it doesn't overlap with any
4286          * existing preallocated blocks(PAs). Make sure to hold the rbtree lock
4287          * so it doesn't change underneath us.
4288          */
4289         read_lock(&ei->i_prealloc_lock);
4290
4291         /* Step 1: find any one immediate neighboring PA of the normalized range */
4292         for (iter = ei->i_prealloc_node.rb_node; iter;
4293              iter = ext4_mb_pa_rb_next_iter(ac->ac_o_ex.fe_logical,
4294                                             tmp_pa_start, iter)) {
4295                 tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4296                                   pa_node.inode_node);
4297                 tmp_pa_start = tmp_pa->pa_lstart;
4298                 tmp_pa_end = pa_logical_end(sbi, tmp_pa);
4299
4300                 /* PA must not overlap original request */
4301                 spin_lock(&tmp_pa->pa_lock);
4302                 if (tmp_pa->pa_deleted == 0)
4303                         BUG_ON(!(ac->ac_o_ex.fe_logical >= tmp_pa_end ||
4304                                  ac->ac_o_ex.fe_logical < tmp_pa_start));
4305                 spin_unlock(&tmp_pa->pa_lock);
4306         }
4307
4308         /*
4309          * Step 2: check if the found PA is left or right neighbor and
4310          * get the other neighbor
4311          */
4312         if (tmp_pa) {
4313                 if (tmp_pa->pa_lstart < ac->ac_o_ex.fe_logical) {
4314                         struct rb_node *tmp;
4315
4316                         left_pa = tmp_pa;
4317                         tmp = rb_next(&left_pa->pa_node.inode_node);
4318                         if (tmp) {
4319                                 right_pa = rb_entry(tmp,
4320                                                     struct ext4_prealloc_space,
4321                                                     pa_node.inode_node);
4322                         }
4323                 } else {
4324                         struct rb_node *tmp;
4325
4326                         right_pa = tmp_pa;
4327                         tmp = rb_prev(&right_pa->pa_node.inode_node);
4328                         if (tmp) {
4329                                 left_pa = rb_entry(tmp,
4330                                                    struct ext4_prealloc_space,
4331                                                    pa_node.inode_node);
4332                         }
4333                 }
4334         }
4335
4336         /* Step 3: get the non deleted neighbors */
4337         if (left_pa) {
4338                 for (iter = &left_pa->pa_node.inode_node;;
4339                      iter = rb_prev(iter)) {
4340                         if (!iter) {
4341                                 left_pa = NULL;
4342                                 break;
4343                         }
4344
4345                         tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4346                                           pa_node.inode_node);
4347                         left_pa = tmp_pa;
4348                         spin_lock(&tmp_pa->pa_lock);
4349                         if (tmp_pa->pa_deleted == 0) {
4350                                 spin_unlock(&tmp_pa->pa_lock);
4351                                 break;
4352                         }
4353                         spin_unlock(&tmp_pa->pa_lock);
4354                 }
4355         }
4356
4357         if (right_pa) {
4358                 for (iter = &right_pa->pa_node.inode_node;;
4359                      iter = rb_next(iter)) {
4360                         if (!iter) {
4361                                 right_pa = NULL;
4362                                 break;
4363                         }
4364
4365                         tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4366                                           pa_node.inode_node);
4367                         right_pa = tmp_pa;
4368                         spin_lock(&tmp_pa->pa_lock);
4369                         if (tmp_pa->pa_deleted == 0) {
4370                                 spin_unlock(&tmp_pa->pa_lock);
4371                                 break;
4372                         }
4373                         spin_unlock(&tmp_pa->pa_lock);
4374                 }
4375         }
4376
4377         if (left_pa) {
4378                 left_pa_end = pa_logical_end(sbi, left_pa);
4379                 BUG_ON(left_pa_end > ac->ac_o_ex.fe_logical);
4380         }
4381
4382         if (right_pa) {
4383                 right_pa_start = right_pa->pa_lstart;
4384                 BUG_ON(right_pa_start <= ac->ac_o_ex.fe_logical);
4385         }
4386
4387         /* Step 4: trim our normalized range to not overlap with the neighbors */
4388         if (left_pa) {
4389                 if (left_pa_end > new_start)
4390                         new_start = left_pa_end;
4391         }
4392
4393         if (right_pa) {
4394                 if (right_pa_start < new_end)
4395                         new_end = right_pa_start;
4396         }
4397         read_unlock(&ei->i_prealloc_lock);
4398
4399         /* XXX: extra loop to check we really don't overlap preallocations */
4400         ext4_mb_pa_assert_overlap(ac, new_start, new_end);
4401
4402         *start = new_start;
4403         *end = new_end;
4404 }
4405
4406 /*
4407  * Normalization means making request better in terms of
4408  * size and alignment
4409  */
4410 static noinline_for_stack void
4411 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
4412                                 struct ext4_allocation_request *ar)
4413 {
4414         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4415         struct ext4_super_block *es = sbi->s_es;
4416         int bsbits, max;
4417         loff_t size, start_off, end;
4418         loff_t orig_size __maybe_unused;
4419         ext4_lblk_t start;
4420
4421         /* do normalize only data requests, metadata requests
4422            do not need preallocation */
4423         if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4424                 return;
4425
4426         /* sometime caller may want exact blocks */
4427         if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4428                 return;
4429
4430         /* caller may indicate that preallocation isn't
4431          * required (it's a tail, for example) */
4432         if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
4433                 return;
4434
4435         if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
4436                 ext4_mb_normalize_group_request(ac);
4437                 return ;
4438         }
4439
4440         bsbits = ac->ac_sb->s_blocksize_bits;
4441
4442         /* first, let's learn actual file size
4443          * given current request is allocated */
4444         size = extent_logical_end(sbi, &ac->ac_o_ex);
4445         size = size << bsbits;
4446         if (size < i_size_read(ac->ac_inode))
4447                 size = i_size_read(ac->ac_inode);
4448         orig_size = size;
4449
4450         /* max size of free chunks */
4451         max = 2 << bsbits;
4452
4453 #define NRL_CHECK_SIZE(req, size, max, chunk_size)      \
4454                 (req <= (size) || max <= (chunk_size))
4455
4456         /* first, try to predict filesize */
4457         /* XXX: should this table be tunable? */
4458         start_off = 0;
4459         if (size <= 16 * 1024) {
4460                 size = 16 * 1024;
4461         } else if (size <= 32 * 1024) {
4462                 size = 32 * 1024;
4463         } else if (size <= 64 * 1024) {
4464                 size = 64 * 1024;
4465         } else if (size <= 128 * 1024) {
4466                 size = 128 * 1024;
4467         } else if (size <= 256 * 1024) {
4468                 size = 256 * 1024;
4469         } else if (size <= 512 * 1024) {
4470                 size = 512 * 1024;
4471         } else if (size <= 1024 * 1024) {
4472                 size = 1024 * 1024;
4473         } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
4474                 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
4475                                                 (21 - bsbits)) << 21;
4476                 size = 2 * 1024 * 1024;
4477         } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
4478                 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
4479                                                         (22 - bsbits)) << 22;
4480                 size = 4 * 1024 * 1024;
4481         } else if (NRL_CHECK_SIZE(EXT4_C2B(sbi, ac->ac_o_ex.fe_len),
4482                                         (8<<20)>>bsbits, max, 8 * 1024)) {
4483                 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
4484                                                         (23 - bsbits)) << 23;
4485                 size = 8 * 1024 * 1024;
4486         } else {
4487                 start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits;
4488                 size      = (loff_t) EXT4_C2B(sbi,
4489                                               ac->ac_o_ex.fe_len) << bsbits;
4490         }
4491         size = size >> bsbits;
4492         start = start_off >> bsbits;
4493
4494         /*
4495          * For tiny groups (smaller than 8MB) the chosen allocation
4496          * alignment may be larger than group size. Make sure the
4497          * alignment does not move allocation to a different group which
4498          * makes mballoc fail assertions later.
4499          */
4500         start = max(start, rounddown(ac->ac_o_ex.fe_logical,
4501                         (ext4_lblk_t)EXT4_BLOCKS_PER_GROUP(ac->ac_sb)));
4502
4503         /* avoid unnecessary preallocation that may trigger assertions */
4504         if (start + size > EXT_MAX_BLOCKS)
4505                 size = EXT_MAX_BLOCKS - start;
4506
4507         /* don't cover already allocated blocks in selected range */
4508         if (ar->pleft && start <= ar->lleft) {
4509                 size -= ar->lleft + 1 - start;
4510                 start = ar->lleft + 1;
4511         }
4512         if (ar->pright && start + size - 1 >= ar->lright)
4513                 size -= start + size - ar->lright;
4514
4515         /*
4516          * Trim allocation request for filesystems with artificially small
4517          * groups.
4518          */
4519         if (size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb))
4520                 size = EXT4_BLOCKS_PER_GROUP(ac->ac_sb);
4521
4522         end = start + size;
4523
4524         ext4_mb_pa_adjust_overlap(ac, &start, &end);
4525
4526         size = end - start;
4527
4528         /*
4529          * In this function "start" and "size" are normalized for better
4530          * alignment and length such that we could preallocate more blocks.
4531          * This normalization is done such that original request of
4532          * ac->ac_o_ex.fe_logical & fe_len should always lie within "start" and
4533          * "size" boundaries.
4534          * (Note fe_len can be relaxed since FS block allocation API does not
4535          * provide gurantee on number of contiguous blocks allocation since that
4536          * depends upon free space left, etc).
4537          * In case of inode pa, later we use the allocated blocks
4538          * [pa_pstart + fe_logical - pa_lstart, fe_len/size] from the preallocated
4539          * range of goal/best blocks [start, size] to put it at the
4540          * ac_o_ex.fe_logical extent of this inode.
4541          * (See ext4_mb_use_inode_pa() for more details)
4542          */
4543         if (start + size <= ac->ac_o_ex.fe_logical ||
4544                         start > ac->ac_o_ex.fe_logical) {
4545                 ext4_msg(ac->ac_sb, KERN_ERR,
4546                          "start %lu, size %lu, fe_logical %lu",
4547                          (unsigned long) start, (unsigned long) size,
4548                          (unsigned long) ac->ac_o_ex.fe_logical);
4549                 BUG();
4550         }
4551         BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
4552
4553         /* now prepare goal request */
4554
4555         /* XXX: is it better to align blocks WRT to logical
4556          * placement or satisfy big request as is */
4557         ac->ac_g_ex.fe_logical = start;
4558         ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
4559         ac->ac_orig_goal_len = ac->ac_g_ex.fe_len;
4560
4561         /* define goal start in order to merge */
4562         if (ar->pright && (ar->lright == (start + size)) &&
4563             ar->pright >= size &&
4564             ar->pright - size >= le32_to_cpu(es->s_first_data_block)) {
4565                 /* merge to the right */
4566                 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
4567                                                 &ac->ac_g_ex.fe_group,
4568                                                 &ac->ac_g_ex.fe_start);
4569                 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
4570         }
4571         if (ar->pleft && (ar->lleft + 1 == start) &&
4572             ar->pleft + 1 < ext4_blocks_count(es)) {
4573                 /* merge to the left */
4574                 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
4575                                                 &ac->ac_g_ex.fe_group,
4576                                                 &ac->ac_g_ex.fe_start);
4577                 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
4578         }
4579
4580         mb_debug(ac->ac_sb, "goal: %lld(was %lld) blocks at %u\n", size,
4581                  orig_size, start);
4582 }
4583
4584 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
4585 {
4586         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4587
4588         if (sbi->s_mb_stats && ac->ac_g_ex.fe_len >= 1) {
4589                 atomic_inc(&sbi->s_bal_reqs);
4590                 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
4591                 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
4592                         atomic_inc(&sbi->s_bal_success);
4593
4594                 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
4595                 for (int i=0; i<EXT4_MB_NUM_CRS; i++) {
4596                         atomic_add(ac->ac_cX_found[i], &sbi->s_bal_cX_ex_scanned[i]);
4597                 }
4598
4599                 atomic_add(ac->ac_groups_scanned, &sbi->s_bal_groups_scanned);
4600                 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
4601                                 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
4602                         atomic_inc(&sbi->s_bal_goals);
4603                 /* did we allocate as much as normalizer originally wanted? */
4604                 if (ac->ac_f_ex.fe_len == ac->ac_orig_goal_len)
4605                         atomic_inc(&sbi->s_bal_len_goals);
4606
4607                 if (ac->ac_found > sbi->s_mb_max_to_scan)
4608                         atomic_inc(&sbi->s_bal_breaks);
4609         }
4610
4611         if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
4612                 trace_ext4_mballoc_alloc(ac);
4613         else
4614                 trace_ext4_mballoc_prealloc(ac);
4615 }
4616
4617 /*
4618  * Called on failure; free up any blocks from the inode PA for this
4619  * context.  We don't need this for MB_GROUP_PA because we only change
4620  * pa_free in ext4_mb_release_context(), but on failure, we've already
4621  * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
4622  */
4623 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
4624 {
4625         struct ext4_prealloc_space *pa = ac->ac_pa;
4626         struct ext4_buddy e4b;
4627         int err;
4628
4629         if (pa == NULL) {
4630                 if (ac->ac_f_ex.fe_len == 0)
4631                         return;
4632                 err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b);
4633                 if (WARN_RATELIMIT(err,
4634                                    "ext4: mb_load_buddy failed (%d)", err))
4635                         /*
4636                          * This should never happen since we pin the
4637                          * pages in the ext4_allocation_context so
4638                          * ext4_mb_load_buddy() should never fail.
4639                          */
4640                         return;
4641                 ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
4642                 mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start,
4643                                ac->ac_f_ex.fe_len);
4644                 ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
4645                 ext4_mb_unload_buddy(&e4b);
4646                 return;
4647         }
4648         if (pa->pa_type == MB_INODE_PA) {
4649                 spin_lock(&pa->pa_lock);
4650                 pa->pa_free += ac->ac_b_ex.fe_len;
4651                 spin_unlock(&pa->pa_lock);
4652         }
4653 }
4654
4655 /*
4656  * use blocks preallocated to inode
4657  */
4658 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
4659                                 struct ext4_prealloc_space *pa)
4660 {
4661         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4662         ext4_fsblk_t start;
4663         ext4_fsblk_t end;
4664         int len;
4665
4666         /* found preallocated blocks, use them */
4667         start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
4668         end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
4669                   start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
4670         len = EXT4_NUM_B2C(sbi, end - start);
4671         ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
4672                                         &ac->ac_b_ex.fe_start);
4673         ac->ac_b_ex.fe_len = len;
4674         ac->ac_status = AC_STATUS_FOUND;
4675         ac->ac_pa = pa;
4676
4677         BUG_ON(start < pa->pa_pstart);
4678         BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
4679         BUG_ON(pa->pa_free < len);
4680         BUG_ON(ac->ac_b_ex.fe_len <= 0);
4681         pa->pa_free -= len;
4682
4683         mb_debug(ac->ac_sb, "use %llu/%d from inode pa %p\n", start, len, pa);
4684 }
4685
4686 /*
4687  * use blocks preallocated to locality group
4688  */
4689 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
4690                                 struct ext4_prealloc_space *pa)
4691 {
4692         unsigned int len = ac->ac_o_ex.fe_len;
4693
4694         ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
4695                                         &ac->ac_b_ex.fe_group,
4696                                         &ac->ac_b_ex.fe_start);
4697         ac->ac_b_ex.fe_len = len;
4698         ac->ac_status = AC_STATUS_FOUND;
4699         ac->ac_pa = pa;
4700
4701         /* we don't correct pa_pstart or pa_len here to avoid
4702          * possible race when the group is being loaded concurrently
4703          * instead we correct pa later, after blocks are marked
4704          * in on-disk bitmap -- see ext4_mb_release_context()
4705          * Other CPUs are prevented from allocating from this pa by lg_mutex
4706          */
4707         mb_debug(ac->ac_sb, "use %u/%u from group pa %p\n",
4708                  pa->pa_lstart, len, pa);
4709 }
4710
4711 /*
4712  * Return the prealloc space that have minimal distance
4713  * from the goal block. @cpa is the prealloc
4714  * space that is having currently known minimal distance
4715  * from the goal block.
4716  */
4717 static struct ext4_prealloc_space *
4718 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
4719                         struct ext4_prealloc_space *pa,
4720                         struct ext4_prealloc_space *cpa)
4721 {
4722         ext4_fsblk_t cur_distance, new_distance;
4723
4724         if (cpa == NULL) {
4725                 atomic_inc(&pa->pa_count);
4726                 return pa;
4727         }
4728         cur_distance = abs(goal_block - cpa->pa_pstart);
4729         new_distance = abs(goal_block - pa->pa_pstart);
4730
4731         if (cur_distance <= new_distance)
4732                 return cpa;
4733
4734         /* drop the previous reference */
4735         atomic_dec(&cpa->pa_count);
4736         atomic_inc(&pa->pa_count);
4737         return pa;
4738 }
4739
4740 /*
4741  * check if found pa meets EXT4_MB_HINT_GOAL_ONLY
4742  */
4743 static bool
4744 ext4_mb_pa_goal_check(struct ext4_allocation_context *ac,
4745                       struct ext4_prealloc_space *pa)
4746 {
4747         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4748         ext4_fsblk_t start;
4749
4750         if (likely(!(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)))
4751                 return true;
4752
4753         /*
4754          * If EXT4_MB_HINT_GOAL_ONLY is set, ac_g_ex will not be adjusted
4755          * in ext4_mb_normalize_request and will keep same with ac_o_ex
4756          * from ext4_mb_initialize_context. Choose ac_g_ex here to keep
4757          * consistent with ext4_mb_find_by_goal.
4758          */
4759         start = pa->pa_pstart +
4760                 (ac->ac_g_ex.fe_logical - pa->pa_lstart);
4761         if (ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex) != start)
4762                 return false;
4763
4764         if (ac->ac_g_ex.fe_len > pa->pa_len -
4765             EXT4_B2C(sbi, ac->ac_g_ex.fe_logical - pa->pa_lstart))
4766                 return false;
4767
4768         return true;
4769 }
4770
4771 /*
4772  * search goal blocks in preallocated space
4773  */
4774 static noinline_for_stack bool
4775 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
4776 {
4777         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4778         int order, i;
4779         struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
4780         struct ext4_locality_group *lg;
4781         struct ext4_prealloc_space *tmp_pa = NULL, *cpa = NULL;
4782         struct rb_node *iter;
4783         ext4_fsblk_t goal_block;
4784
4785         /* only data can be preallocated */
4786         if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4787                 return false;
4788
4789         /*
4790          * first, try per-file preallocation by searching the inode pa rbtree.
4791          *
4792          * Here, we can't do a direct traversal of the tree because
4793          * ext4_mb_discard_group_preallocation() can paralelly mark the pa
4794          * deleted and that can cause direct traversal to skip some entries.
4795          */
4796         read_lock(&ei->i_prealloc_lock);
4797
4798         if (RB_EMPTY_ROOT(&ei->i_prealloc_node)) {
4799                 goto try_group_pa;
4800         }
4801
4802         /*
4803          * Step 1: Find a pa with logical start immediately adjacent to the
4804          * original logical start. This could be on the left or right.
4805          *
4806          * (tmp_pa->pa_lstart never changes so we can skip locking for it).
4807          */
4808         for (iter = ei->i_prealloc_node.rb_node; iter;
4809              iter = ext4_mb_pa_rb_next_iter(ac->ac_o_ex.fe_logical,
4810                                             tmp_pa->pa_lstart, iter)) {
4811                 tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4812                                   pa_node.inode_node);
4813         }
4814
4815         /*
4816          * Step 2: The adjacent pa might be to the right of logical start, find
4817          * the left adjacent pa. After this step we'd have a valid tmp_pa whose
4818          * logical start is towards the left of original request's logical start
4819          */
4820         if (tmp_pa->pa_lstart > ac->ac_o_ex.fe_logical) {
4821                 struct rb_node *tmp;
4822                 tmp = rb_prev(&tmp_pa->pa_node.inode_node);
4823
4824                 if (tmp) {
4825                         tmp_pa = rb_entry(tmp, struct ext4_prealloc_space,
4826                                             pa_node.inode_node);
4827                 } else {
4828                         /*
4829                          * If there is no adjacent pa to the left then finding
4830                          * an overlapping pa is not possible hence stop searching
4831                          * inode pa tree
4832                          */
4833                         goto try_group_pa;
4834                 }
4835         }
4836
4837         BUG_ON(!(tmp_pa && tmp_pa->pa_lstart <= ac->ac_o_ex.fe_logical));
4838
4839         /*
4840          * Step 3: If the left adjacent pa is deleted, keep moving left to find
4841          * the first non deleted adjacent pa. After this step we should have a
4842          * valid tmp_pa which is guaranteed to be non deleted.
4843          */
4844         for (iter = &tmp_pa->pa_node.inode_node;; iter = rb_prev(iter)) {
4845                 if (!iter) {
4846                         /*
4847                          * no non deleted left adjacent pa, so stop searching
4848                          * inode pa tree
4849                          */
4850                         goto try_group_pa;
4851                 }
4852                 tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4853                                   pa_node.inode_node);
4854                 spin_lock(&tmp_pa->pa_lock);
4855                 if (tmp_pa->pa_deleted == 0) {
4856                         /*
4857                          * We will keep holding the pa_lock from
4858                          * this point on because we don't want group discard
4859                          * to delete this pa underneath us. Since group
4860                          * discard is anyways an ENOSPC operation it
4861                          * should be okay for it to wait a few more cycles.
4862                          */
4863                         break;
4864                 } else {
4865                         spin_unlock(&tmp_pa->pa_lock);
4866                 }
4867         }
4868
4869         BUG_ON(!(tmp_pa && tmp_pa->pa_lstart <= ac->ac_o_ex.fe_logical));
4870         BUG_ON(tmp_pa->pa_deleted == 1);
4871
4872         /*
4873          * Step 4: We now have the non deleted left adjacent pa. Only this
4874          * pa can possibly satisfy the request hence check if it overlaps
4875          * original logical start and stop searching if it doesn't.
4876          */
4877         if (ac->ac_o_ex.fe_logical >= pa_logical_end(sbi, tmp_pa)) {
4878                 spin_unlock(&tmp_pa->pa_lock);
4879                 goto try_group_pa;
4880         }
4881
4882         /* non-extent files can't have physical blocks past 2^32 */
4883         if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
4884             (tmp_pa->pa_pstart + EXT4_C2B(sbi, tmp_pa->pa_len) >
4885              EXT4_MAX_BLOCK_FILE_PHYS)) {
4886                 /*
4887                  * Since PAs don't overlap, we won't find any other PA to
4888                  * satisfy this.
4889                  */
4890                 spin_unlock(&tmp_pa->pa_lock);
4891                 goto try_group_pa;
4892         }
4893
4894         if (tmp_pa->pa_free && likely(ext4_mb_pa_goal_check(ac, tmp_pa))) {
4895                 atomic_inc(&tmp_pa->pa_count);
4896                 ext4_mb_use_inode_pa(ac, tmp_pa);
4897                 spin_unlock(&tmp_pa->pa_lock);
4898                 read_unlock(&ei->i_prealloc_lock);
4899                 return true;
4900         } else {
4901                 /*
4902                  * We found a valid overlapping pa but couldn't use it because
4903                  * it had no free blocks. This should ideally never happen
4904                  * because:
4905                  *
4906                  * 1. When a new inode pa is added to rbtree it must have
4907                  *    pa_free > 0 since otherwise we won't actually need
4908                  *    preallocation.
4909                  *
4910                  * 2. An inode pa that is in the rbtree can only have it's
4911                  *    pa_free become zero when another thread calls:
4912                  *      ext4_mb_new_blocks
4913                  *       ext4_mb_use_preallocated
4914                  *        ext4_mb_use_inode_pa
4915                  *
4916                  * 3. Further, after the above calls make pa_free == 0, we will
4917                  *    immediately remove it from the rbtree in:
4918                  *      ext4_mb_new_blocks
4919                  *       ext4_mb_release_context
4920                  *        ext4_mb_put_pa
4921                  *
4922                  * 4. Since the pa_free becoming 0 and pa_free getting removed
4923                  * from tree both happen in ext4_mb_new_blocks, which is always
4924                  * called with i_data_sem held for data allocations, we can be
4925                  * sure that another process will never see a pa in rbtree with
4926                  * pa_free == 0.
4927                  */
4928                 WARN_ON_ONCE(tmp_pa->pa_free == 0);
4929         }
4930         spin_unlock(&tmp_pa->pa_lock);
4931 try_group_pa:
4932         read_unlock(&ei->i_prealloc_lock);
4933
4934         /* can we use group allocation? */
4935         if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
4936                 return false;
4937
4938         /* inode may have no locality group for some reason */
4939         lg = ac->ac_lg;
4940         if (lg == NULL)
4941                 return false;
4942         order  = fls(ac->ac_o_ex.fe_len) - 1;
4943         if (order > PREALLOC_TB_SIZE - 1)
4944                 /* The max size of hash table is PREALLOC_TB_SIZE */
4945                 order = PREALLOC_TB_SIZE - 1;
4946
4947         goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
4948         /*
4949          * search for the prealloc space that is having
4950          * minimal distance from the goal block.
4951          */
4952         for (i = order; i < PREALLOC_TB_SIZE; i++) {
4953                 rcu_read_lock();
4954                 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[i],
4955                                         pa_node.lg_list) {
4956                         spin_lock(&tmp_pa->pa_lock);
4957                         if (tmp_pa->pa_deleted == 0 &&
4958                                         tmp_pa->pa_free >= ac->ac_o_ex.fe_len) {
4959
4960                                 cpa = ext4_mb_check_group_pa(goal_block,
4961                                                                 tmp_pa, cpa);
4962                         }
4963                         spin_unlock(&tmp_pa->pa_lock);
4964                 }
4965                 rcu_read_unlock();
4966         }
4967         if (cpa) {
4968                 ext4_mb_use_group_pa(ac, cpa);
4969                 return true;
4970         }
4971         return false;
4972 }
4973
4974 /*
4975  * the function goes through all preallocation in this group and marks them
4976  * used in in-core bitmap. buddy must be generated from this bitmap
4977  * Need to be called with ext4 group lock held
4978  */
4979 static noinline_for_stack
4980 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
4981                                         ext4_group_t group)
4982 {
4983         struct ext4_group_info *grp = ext4_get_group_info(sb, group);
4984         struct ext4_prealloc_space *pa;
4985         struct list_head *cur;
4986         ext4_group_t groupnr;
4987         ext4_grpblk_t start;
4988         int preallocated = 0;
4989         int len;
4990
4991         if (!grp)
4992                 return;
4993
4994         /* all form of preallocation discards first load group,
4995          * so the only competing code is preallocation use.
4996          * we don't need any locking here
4997          * notice we do NOT ignore preallocations with pa_deleted
4998          * otherwise we could leave used blocks available for
4999          * allocation in buddy when concurrent ext4_mb_put_pa()
5000          * is dropping preallocation
5001          */
5002         list_for_each(cur, &grp->bb_prealloc_list) {
5003                 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
5004                 spin_lock(&pa->pa_lock);
5005                 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
5006                                              &groupnr, &start);
5007                 len = pa->pa_len;
5008                 spin_unlock(&pa->pa_lock);
5009                 if (unlikely(len == 0))
5010                         continue;
5011                 BUG_ON(groupnr != group);
5012                 mb_set_bits(bitmap, start, len);
5013                 preallocated += len;
5014         }
5015         mb_debug(sb, "preallocated %d for group %u\n", preallocated, group);
5016 }
5017
5018 static void ext4_mb_mark_pa_deleted(struct super_block *sb,
5019                                     struct ext4_prealloc_space *pa)
5020 {
5021         struct ext4_inode_info *ei;
5022
5023         if (pa->pa_deleted) {
5024                 ext4_warning(sb, "deleted pa, type:%d, pblk:%llu, lblk:%u, len:%d\n",
5025                              pa->pa_type, pa->pa_pstart, pa->pa_lstart,
5026                              pa->pa_len);
5027                 return;
5028         }
5029
5030         pa->pa_deleted = 1;
5031
5032         if (pa->pa_type == MB_INODE_PA) {
5033                 ei = EXT4_I(pa->pa_inode);
5034                 atomic_dec(&ei->i_prealloc_active);
5035         }
5036 }
5037
5038 static inline void ext4_mb_pa_free(struct ext4_prealloc_space *pa)
5039 {
5040         BUG_ON(!pa);
5041         BUG_ON(atomic_read(&pa->pa_count));
5042         BUG_ON(pa->pa_deleted == 0);
5043         kmem_cache_free(ext4_pspace_cachep, pa);
5044 }
5045
5046 static void ext4_mb_pa_callback(struct rcu_head *head)
5047 {
5048         struct ext4_prealloc_space *pa;
5049
5050         pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
5051         ext4_mb_pa_free(pa);
5052 }
5053
5054 /*
5055  * drops a reference to preallocated space descriptor
5056  * if this was the last reference and the space is consumed
5057  */
5058 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
5059                         struct super_block *sb, struct ext4_prealloc_space *pa)
5060 {
5061         ext4_group_t grp;
5062         ext4_fsblk_t grp_blk;
5063         struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
5064
5065         /* in this short window concurrent discard can set pa_deleted */
5066         spin_lock(&pa->pa_lock);
5067         if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) {
5068                 spin_unlock(&pa->pa_lock);
5069                 return;
5070         }
5071
5072         if (pa->pa_deleted == 1) {
5073                 spin_unlock(&pa->pa_lock);
5074                 return;
5075         }
5076
5077         ext4_mb_mark_pa_deleted(sb, pa);
5078         spin_unlock(&pa->pa_lock);
5079
5080         grp_blk = pa->pa_pstart;
5081         /*
5082          * If doing group-based preallocation, pa_pstart may be in the
5083          * next group when pa is used up
5084          */
5085         if (pa->pa_type == MB_GROUP_PA)
5086                 grp_blk--;
5087
5088         grp = ext4_get_group_number(sb, grp_blk);
5089
5090         /*
5091          * possible race:
5092          *
5093          *  P1 (buddy init)                     P2 (regular allocation)
5094          *                                      find block B in PA
5095          *  copy on-disk bitmap to buddy
5096          *                                      mark B in on-disk bitmap
5097          *                                      drop PA from group
5098          *  mark all PAs in buddy
5099          *
5100          * thus, P1 initializes buddy with B available. to prevent this
5101          * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
5102          * against that pair
5103          */
5104         ext4_lock_group(sb, grp);
5105         list_del(&pa->pa_group_list);
5106         ext4_unlock_group(sb, grp);
5107
5108         if (pa->pa_type == MB_INODE_PA) {
5109                 write_lock(pa->pa_node_lock.inode_lock);
5110                 rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node);
5111                 write_unlock(pa->pa_node_lock.inode_lock);
5112                 ext4_mb_pa_free(pa);
5113         } else {
5114                 spin_lock(pa->pa_node_lock.lg_lock);
5115                 list_del_rcu(&pa->pa_node.lg_list);
5116                 spin_unlock(pa->pa_node_lock.lg_lock);
5117                 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
5118         }
5119 }
5120
5121 static void ext4_mb_pa_rb_insert(struct rb_root *root, struct rb_node *new)
5122 {
5123         struct rb_node **iter = &root->rb_node, *parent = NULL;
5124         struct ext4_prealloc_space *iter_pa, *new_pa;
5125         ext4_lblk_t iter_start, new_start;
5126
5127         while (*iter) {
5128                 iter_pa = rb_entry(*iter, struct ext4_prealloc_space,
5129                                    pa_node.inode_node);
5130                 new_pa = rb_entry(new, struct ext4_prealloc_space,
5131                                    pa_node.inode_node);
5132                 iter_start = iter_pa->pa_lstart;
5133                 new_start = new_pa->pa_lstart;
5134
5135                 parent = *iter;
5136                 if (new_start < iter_start)
5137                         iter = &((*iter)->rb_left);
5138                 else
5139                         iter = &((*iter)->rb_right);
5140         }
5141
5142         rb_link_node(new, parent, iter);
5143         rb_insert_color(new, root);
5144 }
5145
5146 /*
5147  * creates new preallocated space for given inode
5148  */
5149 static noinline_for_stack void
5150 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
5151 {
5152         struct super_block *sb = ac->ac_sb;
5153         struct ext4_sb_info *sbi = EXT4_SB(sb);
5154         struct ext4_prealloc_space *pa;
5155         struct ext4_group_info *grp;
5156         struct ext4_inode_info *ei;
5157
5158         /* preallocate only when found space is larger then requested */
5159         BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
5160         BUG_ON(ac->ac_status != AC_STATUS_FOUND);
5161         BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
5162         BUG_ON(ac->ac_pa == NULL);
5163
5164         pa = ac->ac_pa;
5165
5166         if (ac->ac_b_ex.fe_len < ac->ac_orig_goal_len) {
5167                 struct ext4_free_extent ex = {
5168                         .fe_logical = ac->ac_g_ex.fe_logical,
5169                         .fe_len = ac->ac_orig_goal_len,
5170                 };
5171                 loff_t orig_goal_end = extent_logical_end(sbi, &ex);
5172
5173                 /* we can't allocate as much as normalizer wants.
5174                  * so, found space must get proper lstart
5175                  * to cover original request */
5176                 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
5177                 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
5178
5179                 /*
5180                  * Use the below logic for adjusting best extent as it keeps
5181                  * fragmentation in check while ensuring logical range of best
5182                  * extent doesn't overflow out of goal extent:
5183                  *
5184                  * 1. Check if best ex can be kept at end of goal (before
5185                  *    cr_best_avail trimmed it) and still cover original start
5186                  * 2. Else, check if best ex can be kept at start of goal and
5187                  *    still cover original start
5188                  * 3. Else, keep the best ex at start of original request.
5189                  */
5190                 ex.fe_len = ac->ac_b_ex.fe_len;
5191
5192                 ex.fe_logical = orig_goal_end - EXT4_C2B(sbi, ex.fe_len);
5193                 if (ac->ac_o_ex.fe_logical >= ex.fe_logical)
5194                         goto adjust_bex;
5195
5196                 ex.fe_logical = ac->ac_g_ex.fe_logical;
5197                 if (ac->ac_o_ex.fe_logical < extent_logical_end(sbi, &ex))
5198                         goto adjust_bex;
5199
5200                 ex.fe_logical = ac->ac_o_ex.fe_logical;
5201 adjust_bex:
5202                 ac->ac_b_ex.fe_logical = ex.fe_logical;
5203
5204                 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
5205                 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
5206                 BUG_ON(extent_logical_end(sbi, &ex) > orig_goal_end);
5207         }
5208
5209         pa->pa_lstart = ac->ac_b_ex.fe_logical;
5210         pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
5211         pa->pa_len = ac->ac_b_ex.fe_len;
5212         pa->pa_free = pa->pa_len;
5213         spin_lock_init(&pa->pa_lock);
5214         INIT_LIST_HEAD(&pa->pa_group_list);
5215         pa->pa_deleted = 0;
5216         pa->pa_type = MB_INODE_PA;
5217
5218         mb_debug(sb, "new inode pa %p: %llu/%d for %u\n", pa, pa->pa_pstart,
5219                  pa->pa_len, pa->pa_lstart);
5220         trace_ext4_mb_new_inode_pa(ac, pa);
5221
5222         atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
5223         ext4_mb_use_inode_pa(ac, pa);
5224
5225         ei = EXT4_I(ac->ac_inode);
5226         grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
5227         if (!grp)
5228                 return;
5229
5230         pa->pa_node_lock.inode_lock = &ei->i_prealloc_lock;
5231         pa->pa_inode = ac->ac_inode;
5232
5233         list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
5234
5235         write_lock(pa->pa_node_lock.inode_lock);
5236         ext4_mb_pa_rb_insert(&ei->i_prealloc_node, &pa->pa_node.inode_node);
5237         write_unlock(pa->pa_node_lock.inode_lock);
5238         atomic_inc(&ei->i_prealloc_active);
5239 }
5240
5241 /*
5242  * creates new preallocated space for locality group inodes belongs to
5243  */
5244 static noinline_for_stack void
5245 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
5246 {
5247         struct super_block *sb = ac->ac_sb;
5248         struct ext4_locality_group *lg;
5249         struct ext4_prealloc_space *pa;
5250         struct ext4_group_info *grp;
5251
5252         /* preallocate only when found space is larger then requested */
5253         BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
5254         BUG_ON(ac->ac_status != AC_STATUS_FOUND);
5255         BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
5256         BUG_ON(ac->ac_pa == NULL);
5257
5258         pa = ac->ac_pa;
5259
5260         pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
5261         pa->pa_lstart = pa->pa_pstart;
5262         pa->pa_len = ac->ac_b_ex.fe_len;
5263         pa->pa_free = pa->pa_len;
5264         spin_lock_init(&pa->pa_lock);
5265         INIT_LIST_HEAD(&pa->pa_node.lg_list);
5266         INIT_LIST_HEAD(&pa->pa_group_list);
5267         pa->pa_deleted = 0;
5268         pa->pa_type = MB_GROUP_PA;
5269
5270         mb_debug(sb, "new group pa %p: %llu/%d for %u\n", pa, pa->pa_pstart,
5271                  pa->pa_len, pa->pa_lstart);
5272         trace_ext4_mb_new_group_pa(ac, pa);
5273
5274         ext4_mb_use_group_pa(ac, pa);
5275         atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
5276
5277         grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
5278         if (!grp)
5279                 return;
5280         lg = ac->ac_lg;
5281         BUG_ON(lg == NULL);
5282
5283         pa->pa_node_lock.lg_lock = &lg->lg_prealloc_lock;
5284         pa->pa_inode = NULL;
5285
5286         list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
5287
5288         /*
5289          * We will later add the new pa to the right bucket
5290          * after updating the pa_free in ext4_mb_release_context
5291          */
5292 }
5293
5294 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
5295 {
5296         if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
5297                 ext4_mb_new_group_pa(ac);
5298         else
5299                 ext4_mb_new_inode_pa(ac);
5300 }
5301
5302 /*
5303  * finds all unused blocks in on-disk bitmap, frees them in
5304  * in-core bitmap and buddy.
5305  * @pa must be unlinked from inode and group lists, so that
5306  * nobody else can find/use it.
5307  * the caller MUST hold group/inode locks.
5308  * TODO: optimize the case when there are no in-core structures yet
5309  */
5310 static noinline_for_stack void
5311 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
5312                         struct ext4_prealloc_space *pa)
5313 {
5314         struct super_block *sb = e4b->bd_sb;
5315         struct ext4_sb_info *sbi = EXT4_SB(sb);
5316         unsigned int end;
5317         unsigned int next;
5318         ext4_group_t group;
5319         ext4_grpblk_t bit;
5320         unsigned long long grp_blk_start;
5321         int free = 0;
5322
5323         BUG_ON(pa->pa_deleted == 0);
5324         ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
5325         grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
5326         BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
5327         end = bit + pa->pa_len;
5328
5329         while (bit < end) {
5330                 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
5331                 if (bit >= end)
5332                         break;
5333                 next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
5334                 mb_debug(sb, "free preallocated %u/%u in group %u\n",
5335                          (unsigned) ext4_group_first_block_no(sb, group) + bit,
5336                          (unsigned) next - bit, (unsigned) group);
5337                 free += next - bit;
5338
5339                 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
5340                 trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
5341                                                     EXT4_C2B(sbi, bit)),
5342                                                next - bit);
5343                 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
5344                 bit = next + 1;
5345         }
5346         if (free != pa->pa_free) {
5347                 ext4_msg(e4b->bd_sb, KERN_CRIT,
5348                          "pa %p: logic %lu, phys. %lu, len %d",
5349                          pa, (unsigned long) pa->pa_lstart,
5350                          (unsigned long) pa->pa_pstart,
5351                          pa->pa_len);
5352                 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
5353                                         free, pa->pa_free);
5354                 /*
5355                  * pa is already deleted so we use the value obtained
5356                  * from the bitmap and continue.
5357                  */
5358         }
5359         atomic_add(free, &sbi->s_mb_discarded);
5360 }
5361
5362 static noinline_for_stack void
5363 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
5364                                 struct ext4_prealloc_space *pa)
5365 {
5366         struct super_block *sb = e4b->bd_sb;
5367         ext4_group_t group;
5368         ext4_grpblk_t bit;
5369
5370         trace_ext4_mb_release_group_pa(sb, pa);
5371         BUG_ON(pa->pa_deleted == 0);
5372         ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
5373         if (unlikely(group != e4b->bd_group && pa->pa_len != 0)) {
5374                 ext4_warning(sb, "bad group: expected %u, group %u, pa_start %llu",
5375                              e4b->bd_group, group, pa->pa_pstart);
5376                 return;
5377         }
5378         mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
5379         atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
5380         trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
5381 }
5382
5383 /*
5384  * releases all preallocations in given group
5385  *
5386  * first, we need to decide discard policy:
5387  * - when do we discard
5388  *   1) ENOSPC
5389  * - how many do we discard
5390  *   1) how many requested
5391  */
5392 static noinline_for_stack int
5393 ext4_mb_discard_group_preallocations(struct super_block *sb,
5394                                      ext4_group_t group, int *busy)
5395 {
5396         struct ext4_group_info *grp = ext4_get_group_info(sb, group);
5397         struct buffer_head *bitmap_bh = NULL;
5398         struct ext4_prealloc_space *pa, *tmp;
5399         LIST_HEAD(list);
5400         struct ext4_buddy e4b;
5401         struct ext4_inode_info *ei;
5402         int err;
5403         int free = 0;
5404
5405         if (!grp)
5406                 return 0;
5407         mb_debug(sb, "discard preallocation for group %u\n", group);
5408         if (list_empty(&grp->bb_prealloc_list))
5409                 goto out_dbg;
5410
5411         bitmap_bh = ext4_read_block_bitmap(sb, group);
5412         if (IS_ERR(bitmap_bh)) {
5413                 err = PTR_ERR(bitmap_bh);
5414                 ext4_error_err(sb, -err,
5415                                "Error %d reading block bitmap for %u",
5416                                err, group);
5417                 goto out_dbg;
5418         }
5419
5420         err = ext4_mb_load_buddy(sb, group, &e4b);
5421         if (err) {
5422                 ext4_warning(sb, "Error %d loading buddy information for %u",
5423                              err, group);
5424                 put_bh(bitmap_bh);
5425                 goto out_dbg;
5426         }
5427
5428         ext4_lock_group(sb, group);
5429         list_for_each_entry_safe(pa, tmp,
5430                                 &grp->bb_prealloc_list, pa_group_list) {
5431                 spin_lock(&pa->pa_lock);
5432                 if (atomic_read(&pa->pa_count)) {
5433                         spin_unlock(&pa->pa_lock);
5434                         *busy = 1;
5435                         continue;
5436                 }
5437                 if (pa->pa_deleted) {
5438                         spin_unlock(&pa->pa_lock);
5439                         continue;
5440                 }
5441
5442                 /* seems this one can be freed ... */
5443                 ext4_mb_mark_pa_deleted(sb, pa);
5444
5445                 if (!free)
5446                         this_cpu_inc(discard_pa_seq);
5447
5448                 /* we can trust pa_free ... */
5449                 free += pa->pa_free;
5450
5451                 spin_unlock(&pa->pa_lock);
5452
5453                 list_del(&pa->pa_group_list);
5454                 list_add(&pa->u.pa_tmp_list, &list);
5455         }
5456
5457         /* now free all selected PAs */
5458         list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
5459
5460                 /* remove from object (inode or locality group) */
5461                 if (pa->pa_type == MB_GROUP_PA) {
5462                         spin_lock(pa->pa_node_lock.lg_lock);
5463                         list_del_rcu(&pa->pa_node.lg_list);
5464                         spin_unlock(pa->pa_node_lock.lg_lock);
5465                 } else {
5466                         write_lock(pa->pa_node_lock.inode_lock);
5467                         ei = EXT4_I(pa->pa_inode);
5468                         rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node);
5469                         write_unlock(pa->pa_node_lock.inode_lock);
5470                 }
5471
5472                 list_del(&pa->u.pa_tmp_list);
5473
5474                 if (pa->pa_type == MB_GROUP_PA) {
5475                         ext4_mb_release_group_pa(&e4b, pa);
5476                         call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
5477                 } else {
5478                         ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
5479                         ext4_mb_pa_free(pa);
5480                 }
5481         }
5482
5483         ext4_unlock_group(sb, group);
5484         ext4_mb_unload_buddy(&e4b);
5485         put_bh(bitmap_bh);
5486 out_dbg:
5487         mb_debug(sb, "discarded (%d) blocks preallocated for group %u bb_free (%d)\n",
5488                  free, group, grp->bb_free);
5489         return free;
5490 }
5491
5492 /*
5493  * releases all non-used preallocated blocks for given inode
5494  *
5495  * It's important to discard preallocations under i_data_sem
5496  * We don't want another block to be served from the prealloc
5497  * space when we are discarding the inode prealloc space.
5498  *
5499  * FIXME!! Make sure it is valid at all the call sites
5500  */
5501 void ext4_discard_preallocations(struct inode *inode)
5502 {
5503         struct ext4_inode_info *ei = EXT4_I(inode);
5504         struct super_block *sb = inode->i_sb;
5505         struct buffer_head *bitmap_bh = NULL;
5506         struct ext4_prealloc_space *pa, *tmp;
5507         ext4_group_t group = 0;
5508         LIST_HEAD(list);
5509         struct ext4_buddy e4b;
5510         struct rb_node *iter;
5511         int err;
5512
5513         if (!S_ISREG(inode->i_mode))
5514                 return;
5515
5516         if (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY)
5517                 return;
5518
5519         mb_debug(sb, "discard preallocation for inode %lu\n",
5520                  inode->i_ino);
5521         trace_ext4_discard_preallocations(inode,
5522                         atomic_read(&ei->i_prealloc_active));
5523
5524 repeat:
5525         /* first, collect all pa's in the inode */
5526         write_lock(&ei->i_prealloc_lock);
5527         for (iter = rb_first(&ei->i_prealloc_node); iter;
5528              iter = rb_next(iter)) {
5529                 pa = rb_entry(iter, struct ext4_prealloc_space,
5530                               pa_node.inode_node);
5531                 BUG_ON(pa->pa_node_lock.inode_lock != &ei->i_prealloc_lock);
5532
5533                 spin_lock(&pa->pa_lock);
5534                 if (atomic_read(&pa->pa_count)) {
5535                         /* this shouldn't happen often - nobody should
5536                          * use preallocation while we're discarding it */
5537                         spin_unlock(&pa->pa_lock);
5538                         write_unlock(&ei->i_prealloc_lock);
5539                         ext4_msg(sb, KERN_ERR,
5540                                  "uh-oh! used pa while discarding");
5541                         WARN_ON(1);
5542                         schedule_timeout_uninterruptible(HZ);
5543                         goto repeat;
5544
5545                 }
5546                 if (pa->pa_deleted == 0) {
5547                         ext4_mb_mark_pa_deleted(sb, pa);
5548                         spin_unlock(&pa->pa_lock);
5549                         rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node);
5550                         list_add(&pa->u.pa_tmp_list, &list);
5551                         continue;
5552                 }
5553
5554                 /* someone is deleting pa right now */
5555                 spin_unlock(&pa->pa_lock);
5556                 write_unlock(&ei->i_prealloc_lock);
5557
5558                 /* we have to wait here because pa_deleted
5559                  * doesn't mean pa is already unlinked from
5560                  * the list. as we might be called from
5561                  * ->clear_inode() the inode will get freed
5562                  * and concurrent thread which is unlinking
5563                  * pa from inode's list may access already
5564                  * freed memory, bad-bad-bad */
5565
5566                 /* XXX: if this happens too often, we can
5567                  * add a flag to force wait only in case
5568                  * of ->clear_inode(), but not in case of
5569                  * regular truncate */
5570                 schedule_timeout_uninterruptible(HZ);
5571                 goto repeat;
5572         }
5573         write_unlock(&ei->i_prealloc_lock);
5574
5575         list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
5576                 BUG_ON(pa->pa_type != MB_INODE_PA);
5577                 group = ext4_get_group_number(sb, pa->pa_pstart);
5578
5579                 err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
5580                                              GFP_NOFS|__GFP_NOFAIL);
5581                 if (err) {
5582                         ext4_error_err(sb, -err, "Error %d loading buddy information for %u",
5583                                        err, group);
5584                         continue;
5585                 }
5586
5587                 bitmap_bh = ext4_read_block_bitmap(sb, group);
5588                 if (IS_ERR(bitmap_bh)) {
5589                         err = PTR_ERR(bitmap_bh);
5590                         ext4_error_err(sb, -err, "Error %d reading block bitmap for %u",
5591                                        err, group);
5592                         ext4_mb_unload_buddy(&e4b);
5593                         continue;
5594                 }
5595
5596                 ext4_lock_group(sb, group);
5597                 list_del(&pa->pa_group_list);
5598                 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
5599                 ext4_unlock_group(sb, group);
5600
5601                 ext4_mb_unload_buddy(&e4b);
5602                 put_bh(bitmap_bh);
5603
5604                 list_del(&pa->u.pa_tmp_list);
5605                 ext4_mb_pa_free(pa);
5606         }
5607 }
5608
5609 static int ext4_mb_pa_alloc(struct ext4_allocation_context *ac)
5610 {
5611         struct ext4_prealloc_space *pa;
5612
5613         BUG_ON(ext4_pspace_cachep == NULL);
5614         pa = kmem_cache_zalloc(ext4_pspace_cachep, GFP_NOFS);
5615         if (!pa)
5616                 return -ENOMEM;
5617         atomic_set(&pa->pa_count, 1);
5618         ac->ac_pa = pa;
5619         return 0;
5620 }
5621
5622 static void ext4_mb_pa_put_free(struct ext4_allocation_context *ac)
5623 {
5624         struct ext4_prealloc_space *pa = ac->ac_pa;
5625
5626         BUG_ON(!pa);
5627         ac->ac_pa = NULL;
5628         WARN_ON(!atomic_dec_and_test(&pa->pa_count));
5629         /*
5630          * current function is only called due to an error or due to
5631          * len of found blocks < len of requested blocks hence the PA has not
5632          * been added to grp->bb_prealloc_list. So we don't need to lock it
5633          */
5634         pa->pa_deleted = 1;
5635         ext4_mb_pa_free(pa);
5636 }
5637
5638 #ifdef CONFIG_EXT4_DEBUG
5639 static inline void ext4_mb_show_pa(struct super_block *sb)
5640 {
5641         ext4_group_t i, ngroups;
5642
5643         if (ext4_forced_shutdown(sb))
5644                 return;
5645
5646         ngroups = ext4_get_groups_count(sb);
5647         mb_debug(sb, "groups: ");
5648         for (i = 0; i < ngroups; i++) {
5649                 struct ext4_group_info *grp = ext4_get_group_info(sb, i);
5650                 struct ext4_prealloc_space *pa;
5651                 ext4_grpblk_t start;
5652                 struct list_head *cur;
5653
5654                 if (!grp)
5655                         continue;
5656                 ext4_lock_group(sb, i);
5657                 list_for_each(cur, &grp->bb_prealloc_list) {
5658                         pa = list_entry(cur, struct ext4_prealloc_space,
5659                                         pa_group_list);
5660                         spin_lock(&pa->pa_lock);
5661                         ext4_get_group_no_and_offset(sb, pa->pa_pstart,
5662                                                      NULL, &start);
5663                         spin_unlock(&pa->pa_lock);
5664                         mb_debug(sb, "PA:%u:%d:%d\n", i, start,
5665                                  pa->pa_len);
5666                 }
5667                 ext4_unlock_group(sb, i);
5668                 mb_debug(sb, "%u: %d/%d\n", i, grp->bb_free,
5669                          grp->bb_fragments);
5670         }
5671 }
5672
5673 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
5674 {
5675         struct super_block *sb = ac->ac_sb;
5676
5677         if (ext4_forced_shutdown(sb))
5678                 return;
5679
5680         mb_debug(sb, "Can't allocate:"
5681                         " Allocation context details:");
5682         mb_debug(sb, "status %u flags 0x%x",
5683                         ac->ac_status, ac->ac_flags);
5684         mb_debug(sb, "orig %lu/%lu/%lu@%lu, "
5685                         "goal %lu/%lu/%lu@%lu, "
5686                         "best %lu/%lu/%lu@%lu cr %d",
5687                         (unsigned long)ac->ac_o_ex.fe_group,
5688                         (unsigned long)ac->ac_o_ex.fe_start,
5689                         (unsigned long)ac->ac_o_ex.fe_len,
5690                         (unsigned long)ac->ac_o_ex.fe_logical,
5691                         (unsigned long)ac->ac_g_ex.fe_group,
5692                         (unsigned long)ac->ac_g_ex.fe_start,
5693                         (unsigned long)ac->ac_g_ex.fe_len,
5694                         (unsigned long)ac->ac_g_ex.fe_logical,
5695                         (unsigned long)ac->ac_b_ex.fe_group,
5696                         (unsigned long)ac->ac_b_ex.fe_start,
5697                         (unsigned long)ac->ac_b_ex.fe_len,
5698                         (unsigned long)ac->ac_b_ex.fe_logical,
5699                         (int)ac->ac_criteria);
5700         mb_debug(sb, "%u found", ac->ac_found);
5701         mb_debug(sb, "used pa: %s, ", ac->ac_pa ? "yes" : "no");
5702         if (ac->ac_pa)
5703                 mb_debug(sb, "pa_type %s\n", ac->ac_pa->pa_type == MB_GROUP_PA ?
5704                          "group pa" : "inode pa");
5705         ext4_mb_show_pa(sb);
5706 }
5707 #else
5708 static inline void ext4_mb_show_pa(struct super_block *sb)
5709 {
5710 }
5711 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
5712 {
5713         ext4_mb_show_pa(ac->ac_sb);
5714 }
5715 #endif
5716
5717 /*
5718  * We use locality group preallocation for small size file. The size of the
5719  * file is determined by the current size or the resulting size after
5720  * allocation which ever is larger
5721  *
5722  * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
5723  */
5724 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
5725 {
5726         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
5727         int bsbits = ac->ac_sb->s_blocksize_bits;
5728         loff_t size, isize;
5729         bool inode_pa_eligible, group_pa_eligible;
5730
5731         if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
5732                 return;
5733
5734         if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
5735                 return;
5736
5737         group_pa_eligible = sbi->s_mb_group_prealloc > 0;
5738         inode_pa_eligible = true;
5739         size = extent_logical_end(sbi, &ac->ac_o_ex);
5740         isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
5741                 >> bsbits;
5742
5743         /* No point in using inode preallocation for closed files */
5744         if ((size == isize) && !ext4_fs_is_busy(sbi) &&
5745             !inode_is_open_for_write(ac->ac_inode))
5746                 inode_pa_eligible = false;
5747
5748         size = max(size, isize);
5749         /* Don't use group allocation for large files */
5750         if (size > sbi->s_mb_stream_request)
5751                 group_pa_eligible = false;
5752
5753         if (!group_pa_eligible) {
5754                 if (inode_pa_eligible)
5755                         ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
5756                 else
5757                         ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
5758                 return;
5759         }
5760
5761         BUG_ON(ac->ac_lg != NULL);
5762         /*
5763          * locality group prealloc space are per cpu. The reason for having
5764          * per cpu locality group is to reduce the contention between block
5765          * request from multiple CPUs.
5766          */
5767         ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups);
5768
5769         /* we're going to use group allocation */
5770         ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
5771
5772         /* serialize all allocations in the group */
5773         mutex_lock(&ac->ac_lg->lg_mutex);
5774 }
5775
5776 static noinline_for_stack void
5777 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
5778                                 struct ext4_allocation_request *ar)
5779 {
5780         struct super_block *sb = ar->inode->i_sb;
5781         struct ext4_sb_info *sbi = EXT4_SB(sb);
5782         struct ext4_super_block *es = sbi->s_es;
5783         ext4_group_t group;
5784         unsigned int len;
5785         ext4_fsblk_t goal;
5786         ext4_grpblk_t block;
5787
5788         /* we can't allocate > group size */
5789         len = ar->len;
5790
5791         /* just a dirty hack to filter too big requests  */
5792         if (len >= EXT4_CLUSTERS_PER_GROUP(sb))
5793                 len = EXT4_CLUSTERS_PER_GROUP(sb);
5794
5795         /* start searching from the goal */
5796         goal = ar->goal;
5797         if (goal < le32_to_cpu(es->s_first_data_block) ||
5798                         goal >= ext4_blocks_count(es))
5799                 goal = le32_to_cpu(es->s_first_data_block);
5800         ext4_get_group_no_and_offset(sb, goal, &group, &block);
5801
5802         /* set up allocation goals */
5803         ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical);
5804         ac->ac_status = AC_STATUS_CONTINUE;
5805         ac->ac_sb = sb;
5806         ac->ac_inode = ar->inode;
5807         ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
5808         ac->ac_o_ex.fe_group = group;
5809         ac->ac_o_ex.fe_start = block;
5810         ac->ac_o_ex.fe_len = len;
5811         ac->ac_g_ex = ac->ac_o_ex;
5812         ac->ac_orig_goal_len = ac->ac_g_ex.fe_len;
5813         ac->ac_flags = ar->flags;
5814
5815         /* we have to define context: we'll work with a file or
5816          * locality group. this is a policy, actually */
5817         ext4_mb_group_or_file(ac);
5818
5819         mb_debug(sb, "init ac: %u blocks @ %u, goal %u, flags 0x%x, 2^%d, "
5820                         "left: %u/%u, right %u/%u to %swritable\n",
5821                         (unsigned) ar->len, (unsigned) ar->logical,
5822                         (unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
5823                         (unsigned) ar->lleft, (unsigned) ar->pleft,
5824                         (unsigned) ar->lright, (unsigned) ar->pright,
5825                         inode_is_open_for_write(ar->inode) ? "" : "non-");
5826 }
5827
5828 static noinline_for_stack void
5829 ext4_mb_discard_lg_preallocations(struct super_block *sb,
5830                                         struct ext4_locality_group *lg,
5831                                         int order, int total_entries)
5832 {
5833         ext4_group_t group = 0;
5834         struct ext4_buddy e4b;
5835         LIST_HEAD(discard_list);
5836         struct ext4_prealloc_space *pa, *tmp;
5837
5838         mb_debug(sb, "discard locality group preallocation\n");
5839
5840         spin_lock(&lg->lg_prealloc_lock);
5841         list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
5842                                 pa_node.lg_list,
5843                                 lockdep_is_held(&lg->lg_prealloc_lock)) {
5844                 spin_lock(&pa->pa_lock);
5845                 if (atomic_read(&pa->pa_count)) {
5846                         /*
5847                          * This is the pa that we just used
5848                          * for block allocation. So don't
5849                          * free that
5850                          */
5851                         spin_unlock(&pa->pa_lock);
5852                         continue;
5853                 }
5854                 if (pa->pa_deleted) {
5855                         spin_unlock(&pa->pa_lock);
5856                         continue;
5857                 }
5858                 /* only lg prealloc space */
5859                 BUG_ON(pa->pa_type != MB_GROUP_PA);
5860
5861                 /* seems this one can be freed ... */
5862                 ext4_mb_mark_pa_deleted(sb, pa);
5863                 spin_unlock(&pa->pa_lock);
5864
5865                 list_del_rcu(&pa->pa_node.lg_list);
5866                 list_add(&pa->u.pa_tmp_list, &discard_list);
5867
5868                 total_entries--;
5869                 if (total_entries <= 5) {
5870                         /*
5871                          * we want to keep only 5 entries
5872                          * allowing it to grow to 8. This
5873                          * mak sure we don't call discard
5874                          * soon for this list.
5875                          */
5876                         break;
5877                 }
5878         }
5879         spin_unlock(&lg->lg_prealloc_lock);
5880
5881         list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
5882                 int err;
5883
5884                 group = ext4_get_group_number(sb, pa->pa_pstart);
5885                 err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
5886                                              GFP_NOFS|__GFP_NOFAIL);
5887                 if (err) {
5888                         ext4_error_err(sb, -err, "Error %d loading buddy information for %u",
5889                                        err, group);
5890                         continue;
5891                 }
5892                 ext4_lock_group(sb, group);
5893                 list_del(&pa->pa_group_list);
5894                 ext4_mb_release_group_pa(&e4b, pa);
5895                 ext4_unlock_group(sb, group);
5896
5897                 ext4_mb_unload_buddy(&e4b);
5898                 list_del(&pa->u.pa_tmp_list);
5899                 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
5900         }
5901 }
5902
5903 /*
5904  * We have incremented pa_count. So it cannot be freed at this
5905  * point. Also we hold lg_mutex. So no parallel allocation is
5906  * possible from this lg. That means pa_free cannot be updated.
5907  *
5908  * A parallel ext4_mb_discard_group_preallocations is possible.
5909  * which can cause the lg_prealloc_list to be updated.
5910  */
5911
5912 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
5913 {
5914         int order, added = 0, lg_prealloc_count = 1;
5915         struct super_block *sb = ac->ac_sb;
5916         struct ext4_locality_group *lg = ac->ac_lg;
5917         struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
5918
5919         order = fls(pa->pa_free) - 1;
5920         if (order > PREALLOC_TB_SIZE - 1)
5921                 /* The max size of hash table is PREALLOC_TB_SIZE */
5922                 order = PREALLOC_TB_SIZE - 1;
5923         /* Add the prealloc space to lg */
5924         spin_lock(&lg->lg_prealloc_lock);
5925         list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
5926                                 pa_node.lg_list,
5927                                 lockdep_is_held(&lg->lg_prealloc_lock)) {
5928                 spin_lock(&tmp_pa->pa_lock);
5929                 if (tmp_pa->pa_deleted) {
5930                         spin_unlock(&tmp_pa->pa_lock);
5931                         continue;
5932                 }
5933                 if (!added && pa->pa_free < tmp_pa->pa_free) {
5934                         /* Add to the tail of the previous entry */
5935                         list_add_tail_rcu(&pa->pa_node.lg_list,
5936                                                 &tmp_pa->pa_node.lg_list);
5937                         added = 1;
5938                         /*
5939                          * we want to count the total
5940                          * number of entries in the list
5941                          */
5942                 }
5943                 spin_unlock(&tmp_pa->pa_lock);
5944                 lg_prealloc_count++;
5945         }
5946         if (!added)
5947                 list_add_tail_rcu(&pa->pa_node.lg_list,
5948                                         &lg->lg_prealloc_list[order]);
5949         spin_unlock(&lg->lg_prealloc_lock);
5950
5951         /* Now trim the list to be not more than 8 elements */
5952         if (lg_prealloc_count > 8)
5953                 ext4_mb_discard_lg_preallocations(sb, lg,
5954                                                   order, lg_prealloc_count);
5955 }
5956
5957 /*
5958  * release all resource we used in allocation
5959  */
5960 static void ext4_mb_release_context(struct ext4_allocation_context *ac)
5961 {
5962         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
5963         struct ext4_prealloc_space *pa = ac->ac_pa;
5964         if (pa) {
5965                 if (pa->pa_type == MB_GROUP_PA) {
5966                         /* see comment in ext4_mb_use_group_pa() */
5967                         spin_lock(&pa->pa_lock);
5968                         pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
5969                         pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
5970                         pa->pa_free -= ac->ac_b_ex.fe_len;
5971                         pa->pa_len -= ac->ac_b_ex.fe_len;
5972                         spin_unlock(&pa->pa_lock);
5973
5974                         /*
5975                          * We want to add the pa to the right bucket.
5976                          * Remove it from the list and while adding
5977                          * make sure the list to which we are adding
5978                          * doesn't grow big.
5979                          */
5980                         if (likely(pa->pa_free)) {
5981                                 spin_lock(pa->pa_node_lock.lg_lock);
5982                                 list_del_rcu(&pa->pa_node.lg_list);
5983                                 spin_unlock(pa->pa_node_lock.lg_lock);
5984                                 ext4_mb_add_n_trim(ac);
5985                         }
5986                 }
5987
5988                 ext4_mb_put_pa(ac, ac->ac_sb, pa);
5989         }
5990         if (ac->ac_bitmap_page)
5991                 put_page(ac->ac_bitmap_page);
5992         if (ac->ac_buddy_page)
5993                 put_page(ac->ac_buddy_page);
5994         if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
5995                 mutex_unlock(&ac->ac_lg->lg_mutex);
5996         ext4_mb_collect_stats(ac);
5997 }
5998
5999 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
6000 {
6001         ext4_group_t i, ngroups = ext4_get_groups_count(sb);
6002         int ret;
6003         int freed = 0, busy = 0;
6004         int retry = 0;
6005
6006         trace_ext4_mb_discard_preallocations(sb, needed);
6007
6008         if (needed == 0)
6009                 needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
6010  repeat:
6011         for (i = 0; i < ngroups && needed > 0; i++) {
6012                 ret = ext4_mb_discard_group_preallocations(sb, i, &busy);
6013                 freed += ret;
6014                 needed -= ret;
6015                 cond_resched();
6016         }
6017
6018         if (needed > 0 && busy && ++retry < 3) {
6019                 busy = 0;
6020                 goto repeat;
6021         }
6022
6023         return freed;
6024 }
6025
6026 static bool ext4_mb_discard_preallocations_should_retry(struct super_block *sb,
6027                         struct ext4_allocation_context *ac, u64 *seq)
6028 {
6029         int freed;
6030         u64 seq_retry = 0;
6031         bool ret = false;
6032
6033         freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
6034         if (freed) {
6035                 ret = true;
6036                 goto out_dbg;
6037         }
6038         seq_retry = ext4_get_discard_pa_seq_sum();
6039         if (!(ac->ac_flags & EXT4_MB_STRICT_CHECK) || seq_retry != *seq) {
6040                 ac->ac_flags |= EXT4_MB_STRICT_CHECK;
6041                 *seq = seq_retry;
6042                 ret = true;
6043         }
6044
6045 out_dbg:
6046         mb_debug(sb, "freed %d, retry ? %s\n", freed, ret ? "yes" : "no");
6047         return ret;
6048 }
6049
6050 /*
6051  * Simple allocator for Ext4 fast commit replay path. It searches for blocks
6052  * linearly starting at the goal block and also excludes the blocks which
6053  * are going to be in use after fast commit replay.
6054  */
6055 static ext4_fsblk_t
6056 ext4_mb_new_blocks_simple(struct ext4_allocation_request *ar, int *errp)
6057 {
6058         struct buffer_head *bitmap_bh;
6059         struct super_block *sb = ar->inode->i_sb;
6060         struct ext4_sb_info *sbi = EXT4_SB(sb);
6061         ext4_group_t group, nr;
6062         ext4_grpblk_t blkoff;
6063         ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
6064         ext4_grpblk_t i = 0;
6065         ext4_fsblk_t goal, block;
6066         struct ext4_super_block *es = sbi->s_es;
6067
6068         goal = ar->goal;
6069         if (goal < le32_to_cpu(es->s_first_data_block) ||
6070                         goal >= ext4_blocks_count(es))
6071                 goal = le32_to_cpu(es->s_first_data_block);
6072
6073         ar->len = 0;
6074         ext4_get_group_no_and_offset(sb, goal, &group, &blkoff);
6075         for (nr = ext4_get_groups_count(sb); nr > 0; nr--) {
6076                 bitmap_bh = ext4_read_block_bitmap(sb, group);
6077                 if (IS_ERR(bitmap_bh)) {
6078                         *errp = PTR_ERR(bitmap_bh);
6079                         pr_warn("Failed to read block bitmap\n");
6080                         return 0;
6081                 }
6082
6083                 while (1) {
6084                         i = mb_find_next_zero_bit(bitmap_bh->b_data, max,
6085                                                 blkoff);
6086                         if (i >= max)
6087                                 break;
6088                         if (ext4_fc_replay_check_excluded(sb,
6089                                 ext4_group_first_block_no(sb, group) +
6090                                 EXT4_C2B(sbi, i))) {
6091                                 blkoff = i + 1;
6092                         } else
6093                                 break;
6094                 }
6095                 brelse(bitmap_bh);
6096                 if (i < max)
6097                         break;
6098
6099                 if (++group >= ext4_get_groups_count(sb))
6100                         group = 0;
6101
6102                 blkoff = 0;
6103         }
6104
6105         if (i >= max) {
6106                 *errp = -ENOSPC;
6107                 return 0;
6108         }
6109
6110         block = ext4_group_first_block_no(sb, group) + EXT4_C2B(sbi, i);
6111         ext4_mb_mark_bb(sb, block, 1, true);
6112         ar->len = 1;
6113
6114         return block;
6115 }
6116
6117 /*
6118  * Main entry point into mballoc to allocate blocks
6119  * it tries to use preallocation first, then falls back
6120  * to usual allocation
6121  */
6122 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
6123                                 struct ext4_allocation_request *ar, int *errp)
6124 {
6125         struct ext4_allocation_context *ac = NULL;
6126         struct ext4_sb_info *sbi;
6127         struct super_block *sb;
6128         ext4_fsblk_t block = 0;
6129         unsigned int inquota = 0;
6130         unsigned int reserv_clstrs = 0;
6131         int retries = 0;
6132         u64 seq;
6133
6134         might_sleep();
6135         sb = ar->inode->i_sb;
6136         sbi = EXT4_SB(sb);
6137
6138         trace_ext4_request_blocks(ar);
6139         if (sbi->s_mount_state & EXT4_FC_REPLAY)
6140                 return ext4_mb_new_blocks_simple(ar, errp);
6141
6142         /* Allow to use superuser reservation for quota file */
6143         if (ext4_is_quota_file(ar->inode))
6144                 ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
6145
6146         if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) {
6147                 /* Without delayed allocation we need to verify
6148                  * there is enough free blocks to do block allocation
6149                  * and verify allocation doesn't exceed the quota limits.
6150                  */
6151                 while (ar->len &&
6152                         ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
6153
6154                         /* let others to free the space */
6155                         cond_resched();
6156                         ar->len = ar->len >> 1;
6157                 }
6158                 if (!ar->len) {
6159                         ext4_mb_show_pa(sb);
6160                         *errp = -ENOSPC;
6161                         return 0;
6162                 }
6163                 reserv_clstrs = ar->len;
6164                 if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
6165                         dquot_alloc_block_nofail(ar->inode,
6166                                                  EXT4_C2B(sbi, ar->len));
6167                 } else {
6168                         while (ar->len &&
6169                                 dquot_alloc_block(ar->inode,
6170                                                   EXT4_C2B(sbi, ar->len))) {
6171
6172                                 ar->flags |= EXT4_MB_HINT_NOPREALLOC;
6173                                 ar->len--;
6174                         }
6175                 }
6176                 inquota = ar->len;
6177                 if (ar->len == 0) {
6178                         *errp = -EDQUOT;
6179                         goto out;
6180                 }
6181         }
6182
6183         ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS);
6184         if (!ac) {
6185                 ar->len = 0;
6186                 *errp = -ENOMEM;
6187                 goto out;
6188         }
6189
6190         ext4_mb_initialize_context(ac, ar);
6191
6192         ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
6193         seq = this_cpu_read(discard_pa_seq);
6194         if (!ext4_mb_use_preallocated(ac)) {
6195                 ac->ac_op = EXT4_MB_HISTORY_ALLOC;
6196                 ext4_mb_normalize_request(ac, ar);
6197
6198                 *errp = ext4_mb_pa_alloc(ac);
6199                 if (*errp)
6200                         goto errout;
6201 repeat:
6202                 /* allocate space in core */
6203                 *errp = ext4_mb_regular_allocator(ac);
6204                 /*
6205                  * pa allocated above is added to grp->bb_prealloc_list only
6206                  * when we were able to allocate some block i.e. when
6207                  * ac->ac_status == AC_STATUS_FOUND.
6208                  * And error from above mean ac->ac_status != AC_STATUS_FOUND
6209                  * So we have to free this pa here itself.
6210                  */
6211                 if (*errp) {
6212                         ext4_mb_pa_put_free(ac);
6213                         ext4_discard_allocated_blocks(ac);
6214                         goto errout;
6215                 }
6216                 if (ac->ac_status == AC_STATUS_FOUND &&
6217                         ac->ac_o_ex.fe_len >= ac->ac_f_ex.fe_len)
6218                         ext4_mb_pa_put_free(ac);
6219         }
6220         if (likely(ac->ac_status == AC_STATUS_FOUND)) {
6221                 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
6222                 if (*errp) {
6223                         ext4_discard_allocated_blocks(ac);
6224                         goto errout;
6225                 } else {
6226                         block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
6227                         ar->len = ac->ac_b_ex.fe_len;
6228                 }
6229         } else {
6230                 if (++retries < 3 &&
6231                     ext4_mb_discard_preallocations_should_retry(sb, ac, &seq))
6232                         goto repeat;
6233                 /*
6234                  * If block allocation fails then the pa allocated above
6235                  * needs to be freed here itself.
6236                  */
6237                 ext4_mb_pa_put_free(ac);
6238                 *errp = -ENOSPC;
6239         }
6240
6241         if (*errp) {
6242 errout:
6243                 ac->ac_b_ex.fe_len = 0;
6244                 ar->len = 0;
6245                 ext4_mb_show_ac(ac);
6246         }
6247         ext4_mb_release_context(ac);
6248         kmem_cache_free(ext4_ac_cachep, ac);
6249 out:
6250         if (inquota && ar->len < inquota)
6251                 dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
6252         if (!ar->len) {
6253                 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0)
6254                         /* release all the reserved blocks if non delalloc */
6255                         percpu_counter_sub(&sbi->s_dirtyclusters_counter,
6256                                                 reserv_clstrs);
6257         }
6258
6259         trace_ext4_allocate_blocks(ar, (unsigned long long)block);
6260
6261         return block;
6262 }
6263
6264 /*
6265  * We can merge two free data extents only if the physical blocks
6266  * are contiguous, AND the extents were freed by the same transaction,
6267  * AND the blocks are associated with the same group.
6268  */
6269 static void ext4_try_merge_freed_extent(struct ext4_sb_info *sbi,
6270                                         struct ext4_free_data *entry,
6271                                         struct ext4_free_data *new_entry,
6272                                         struct rb_root *entry_rb_root)
6273 {
6274         if ((entry->efd_tid != new_entry->efd_tid) ||
6275             (entry->efd_group != new_entry->efd_group))
6276                 return;
6277         if (entry->efd_start_cluster + entry->efd_count ==
6278             new_entry->efd_start_cluster) {
6279                 new_entry->efd_start_cluster = entry->efd_start_cluster;
6280                 new_entry->efd_count += entry->efd_count;
6281         } else if (new_entry->efd_start_cluster + new_entry->efd_count ==
6282                    entry->efd_start_cluster) {
6283                 new_entry->efd_count += entry->efd_count;
6284         } else
6285                 return;
6286         spin_lock(&sbi->s_md_lock);
6287         list_del(&entry->efd_list);
6288         spin_unlock(&sbi->s_md_lock);
6289         rb_erase(&entry->efd_node, entry_rb_root);
6290         kmem_cache_free(ext4_free_data_cachep, entry);
6291 }
6292
6293 static noinline_for_stack void
6294 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
6295                       struct ext4_free_data *new_entry)
6296 {
6297         ext4_group_t group = e4b->bd_group;
6298         ext4_grpblk_t cluster;
6299         ext4_grpblk_t clusters = new_entry->efd_count;
6300         struct ext4_free_data *entry;
6301         struct ext4_group_info *db = e4b->bd_info;
6302         struct super_block *sb = e4b->bd_sb;
6303         struct ext4_sb_info *sbi = EXT4_SB(sb);
6304         struct rb_node **n = &db->bb_free_root.rb_node, *node;
6305         struct rb_node *parent = NULL, *new_node;
6306
6307         BUG_ON(!ext4_handle_valid(handle));
6308         BUG_ON(e4b->bd_bitmap_page == NULL);
6309         BUG_ON(e4b->bd_buddy_page == NULL);
6310
6311         new_node = &new_entry->efd_node;
6312         cluster = new_entry->efd_start_cluster;
6313
6314         if (!*n) {
6315                 /* first free block exent. We need to
6316                    protect buddy cache from being freed,
6317                  * otherwise we'll refresh it from
6318                  * on-disk bitmap and lose not-yet-available
6319                  * blocks */
6320                 get_page(e4b->bd_buddy_page);
6321                 get_page(e4b->bd_bitmap_page);
6322         }
6323         while (*n) {
6324                 parent = *n;
6325                 entry = rb_entry(parent, struct ext4_free_data, efd_node);
6326                 if (cluster < entry->efd_start_cluster)
6327                         n = &(*n)->rb_left;
6328                 else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
6329                         n = &(*n)->rb_right;
6330                 else {
6331                         ext4_grp_locked_error(sb, group, 0,
6332                                 ext4_group_first_block_no(sb, group) +
6333                                 EXT4_C2B(sbi, cluster),
6334                                 "Block already on to-be-freed list");
6335                         kmem_cache_free(ext4_free_data_cachep, new_entry);
6336                         return;
6337                 }
6338         }
6339
6340         rb_link_node(new_node, parent, n);
6341         rb_insert_color(new_node, &db->bb_free_root);
6342
6343         /* Now try to see the extent can be merged to left and right */
6344         node = rb_prev(new_node);
6345         if (node) {
6346                 entry = rb_entry(node, struct ext4_free_data, efd_node);
6347                 ext4_try_merge_freed_extent(sbi, entry, new_entry,
6348                                             &(db->bb_free_root));
6349         }
6350
6351         node = rb_next(new_node);
6352         if (node) {
6353                 entry = rb_entry(node, struct ext4_free_data, efd_node);
6354                 ext4_try_merge_freed_extent(sbi, entry, new_entry,
6355                                             &(db->bb_free_root));
6356         }
6357
6358         spin_lock(&sbi->s_md_lock);
6359         list_add_tail(&new_entry->efd_list, &sbi->s_freed_data_list[new_entry->efd_tid & 1]);
6360         sbi->s_mb_free_pending += clusters;
6361         spin_unlock(&sbi->s_md_lock);
6362 }
6363
6364 static void ext4_free_blocks_simple(struct inode *inode, ext4_fsblk_t block,
6365                                         unsigned long count)
6366 {
6367         struct super_block *sb = inode->i_sb;
6368         ext4_group_t group;
6369         ext4_grpblk_t blkoff;
6370
6371         ext4_get_group_no_and_offset(sb, block, &group, &blkoff);
6372         ext4_mb_mark_context(NULL, sb, false, group, blkoff, count,
6373                              EXT4_MB_BITMAP_MARKED_CHECK |
6374                              EXT4_MB_SYNC_UPDATE,
6375                              NULL);
6376 }
6377
6378 /**
6379  * ext4_mb_clear_bb() -- helper function for freeing blocks.
6380  *                      Used by ext4_free_blocks()
6381  * @handle:             handle for this transaction
6382  * @inode:              inode
6383  * @block:              starting physical block to be freed
6384  * @count:              number of blocks to be freed
6385  * @flags:              flags used by ext4_free_blocks
6386  */
6387 static void ext4_mb_clear_bb(handle_t *handle, struct inode *inode,
6388                                ext4_fsblk_t block, unsigned long count,
6389                                int flags)
6390 {
6391         struct super_block *sb = inode->i_sb;
6392         struct ext4_group_info *grp;
6393         unsigned int overflow;
6394         ext4_grpblk_t bit;
6395         ext4_group_t block_group;
6396         struct ext4_sb_info *sbi;
6397         struct ext4_buddy e4b;
6398         unsigned int count_clusters;
6399         int err = 0;
6400         int mark_flags = 0;
6401         ext4_grpblk_t changed;
6402
6403         sbi = EXT4_SB(sb);
6404
6405         if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
6406             !ext4_inode_block_valid(inode, block, count)) {
6407                 ext4_error(sb, "Freeing blocks in system zone - "
6408                            "Block = %llu, count = %lu", block, count);
6409                 /* err = 0. ext4_std_error should be a no op */
6410                 goto error_out;
6411         }
6412         flags |= EXT4_FREE_BLOCKS_VALIDATED;
6413
6414 do_more:
6415         overflow = 0;
6416         ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
6417
6418         grp = ext4_get_group_info(sb, block_group);
6419         if (unlikely(!grp || EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
6420                 return;
6421
6422         /*
6423          * Check to see if we are freeing blocks across a group
6424          * boundary.
6425          */
6426         if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
6427                 overflow = EXT4_C2B(sbi, bit) + count -
6428                         EXT4_BLOCKS_PER_GROUP(sb);
6429                 count -= overflow;
6430                 /* The range changed so it's no longer validated */
6431                 flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6432         }
6433         count_clusters = EXT4_NUM_B2C(sbi, count);
6434         trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
6435
6436         /* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */
6437         err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b,
6438                                      GFP_NOFS|__GFP_NOFAIL);
6439         if (err)
6440                 goto error_out;
6441
6442         if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
6443             !ext4_inode_block_valid(inode, block, count)) {
6444                 ext4_error(sb, "Freeing blocks in system zone - "
6445                            "Block = %llu, count = %lu", block, count);
6446                 /* err = 0. ext4_std_error should be a no op */
6447                 goto error_clean;
6448         }
6449
6450 #ifdef AGGRESSIVE_CHECK
6451         mark_flags |= EXT4_MB_BITMAP_MARKED_CHECK;
6452 #endif
6453         err = ext4_mb_mark_context(handle, sb, false, block_group, bit,
6454                                    count_clusters, mark_flags, &changed);
6455
6456
6457         if (err && changed == 0)
6458                 goto error_clean;
6459
6460 #ifdef AGGRESSIVE_CHECK
6461         BUG_ON(changed != count_clusters);
6462 #endif
6463
6464         /*
6465          * We need to make sure we don't reuse the freed block until after the
6466          * transaction is committed. We make an exception if the inode is to be
6467          * written in writeback mode since writeback mode has weak data
6468          * consistency guarantees.
6469          */
6470         if (ext4_handle_valid(handle) &&
6471             ((flags & EXT4_FREE_BLOCKS_METADATA) ||
6472              !ext4_should_writeback_data(inode))) {
6473                 struct ext4_free_data *new_entry;
6474                 /*
6475                  * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed
6476                  * to fail.
6477                  */
6478                 new_entry = kmem_cache_alloc(ext4_free_data_cachep,
6479                                 GFP_NOFS|__GFP_NOFAIL);
6480                 new_entry->efd_start_cluster = bit;
6481                 new_entry->efd_group = block_group;
6482                 new_entry->efd_count = count_clusters;
6483                 new_entry->efd_tid = handle->h_transaction->t_tid;
6484
6485                 ext4_lock_group(sb, block_group);
6486                 ext4_mb_free_metadata(handle, &e4b, new_entry);
6487         } else {
6488                 if (test_opt(sb, DISCARD)) {
6489                         err = ext4_issue_discard(sb, block_group, bit,
6490                                                  count_clusters, NULL);
6491                         if (err && err != -EOPNOTSUPP)
6492                                 ext4_msg(sb, KERN_WARNING, "discard request in"
6493                                          " group:%u block:%d count:%lu failed"
6494                                          " with %d", block_group, bit, count,
6495                                          err);
6496                 } else
6497                         EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info);
6498
6499                 ext4_lock_group(sb, block_group);
6500                 mb_free_blocks(inode, &e4b, bit, count_clusters);
6501         }
6502
6503         ext4_unlock_group(sb, block_group);
6504
6505         /*
6506          * on a bigalloc file system, defer the s_freeclusters_counter
6507          * update to the caller (ext4_remove_space and friends) so they
6508          * can determine if a cluster freed here should be rereserved
6509          */
6510         if (!(flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER)) {
6511                 if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
6512                         dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
6513                 percpu_counter_add(&sbi->s_freeclusters_counter,
6514                                    count_clusters);
6515         }
6516
6517         if (overflow && !err) {
6518                 block += count;
6519                 count = overflow;
6520                 ext4_mb_unload_buddy(&e4b);
6521                 /* The range changed so it's no longer validated */
6522                 flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6523                 goto do_more;
6524         }
6525
6526 error_clean:
6527         ext4_mb_unload_buddy(&e4b);
6528 error_out:
6529         ext4_std_error(sb, err);
6530 }
6531
6532 /**
6533  * ext4_free_blocks() -- Free given blocks and update quota
6534  * @handle:             handle for this transaction
6535  * @inode:              inode
6536  * @bh:                 optional buffer of the block to be freed
6537  * @block:              starting physical block to be freed
6538  * @count:              number of blocks to be freed
6539  * @flags:              flags used by ext4_free_blocks
6540  */
6541 void ext4_free_blocks(handle_t *handle, struct inode *inode,
6542                       struct buffer_head *bh, ext4_fsblk_t block,
6543                       unsigned long count, int flags)
6544 {
6545         struct super_block *sb = inode->i_sb;
6546         unsigned int overflow;
6547         struct ext4_sb_info *sbi;
6548
6549         sbi = EXT4_SB(sb);
6550
6551         if (bh) {
6552                 if (block)
6553                         BUG_ON(block != bh->b_blocknr);
6554                 else
6555                         block = bh->b_blocknr;
6556         }
6557
6558         if (sbi->s_mount_state & EXT4_FC_REPLAY) {
6559                 ext4_free_blocks_simple(inode, block, EXT4_NUM_B2C(sbi, count));
6560                 return;
6561         }
6562
6563         might_sleep();
6564
6565         if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
6566             !ext4_inode_block_valid(inode, block, count)) {
6567                 ext4_error(sb, "Freeing blocks not in datazone - "
6568                            "block = %llu, count = %lu", block, count);
6569                 return;
6570         }
6571         flags |= EXT4_FREE_BLOCKS_VALIDATED;
6572
6573         ext4_debug("freeing block %llu\n", block);
6574         trace_ext4_free_blocks(inode, block, count, flags);
6575
6576         if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
6577                 BUG_ON(count > 1);
6578
6579                 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
6580                             inode, bh, block);
6581         }
6582
6583         /*
6584          * If the extent to be freed does not begin on a cluster
6585          * boundary, we need to deal with partial clusters at the
6586          * beginning and end of the extent.  Normally we will free
6587          * blocks at the beginning or the end unless we are explicitly
6588          * requested to avoid doing so.
6589          */
6590         overflow = EXT4_PBLK_COFF(sbi, block);
6591         if (overflow) {
6592                 if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
6593                         overflow = sbi->s_cluster_ratio - overflow;
6594                         block += overflow;
6595                         if (count > overflow)
6596                                 count -= overflow;
6597                         else
6598                                 return;
6599                 } else {
6600                         block -= overflow;
6601                         count += overflow;
6602                 }
6603                 /* The range changed so it's no longer validated */
6604                 flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6605         }
6606         overflow = EXT4_LBLK_COFF(sbi, count);
6607         if (overflow) {
6608                 if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
6609                         if (count > overflow)
6610                                 count -= overflow;
6611                         else
6612                                 return;
6613                 } else
6614                         count += sbi->s_cluster_ratio - overflow;
6615                 /* The range changed so it's no longer validated */
6616                 flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6617         }
6618
6619         if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
6620                 int i;
6621                 int is_metadata = flags & EXT4_FREE_BLOCKS_METADATA;
6622
6623                 for (i = 0; i < count; i++) {
6624                         cond_resched();
6625                         if (is_metadata)
6626                                 bh = sb_find_get_block(inode->i_sb, block + i);
6627                         ext4_forget(handle, is_metadata, inode, bh, block + i);
6628                 }
6629         }
6630
6631         ext4_mb_clear_bb(handle, inode, block, count, flags);
6632 }
6633
6634 /**
6635  * ext4_group_add_blocks() -- Add given blocks to an existing group
6636  * @handle:                     handle to this transaction
6637  * @sb:                         super block
6638  * @block:                      start physical block to add to the block group
6639  * @count:                      number of blocks to free
6640  *
6641  * This marks the blocks as free in the bitmap and buddy.
6642  */
6643 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
6644                          ext4_fsblk_t block, unsigned long count)
6645 {
6646         ext4_group_t block_group;
6647         ext4_grpblk_t bit;
6648         struct ext4_sb_info *sbi = EXT4_SB(sb);
6649         struct ext4_buddy e4b;
6650         int err = 0;
6651         ext4_fsblk_t first_cluster = EXT4_B2C(sbi, block);
6652         ext4_fsblk_t last_cluster = EXT4_B2C(sbi, block + count - 1);
6653         unsigned long cluster_count = last_cluster - first_cluster + 1;
6654         ext4_grpblk_t changed;
6655
6656         ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
6657
6658         if (cluster_count == 0)
6659                 return 0;
6660
6661         ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
6662         /*
6663          * Check to see if we are freeing blocks across a group
6664          * boundary.
6665          */
6666         if (bit + cluster_count > EXT4_CLUSTERS_PER_GROUP(sb)) {
6667                 ext4_warning(sb, "too many blocks added to group %u",
6668                              block_group);
6669                 err = -EINVAL;
6670                 goto error_out;
6671         }
6672
6673         err = ext4_mb_load_buddy(sb, block_group, &e4b);
6674         if (err)
6675                 goto error_out;
6676
6677         if (!ext4_sb_block_valid(sb, NULL, block, count)) {
6678                 ext4_error(sb, "Adding blocks in system zones - "
6679                            "Block = %llu, count = %lu",
6680                            block, count);
6681                 err = -EINVAL;
6682                 goto error_clean;
6683         }
6684
6685         err = ext4_mb_mark_context(handle, sb, false, block_group, bit,
6686                                    cluster_count, EXT4_MB_BITMAP_MARKED_CHECK,
6687                                    &changed);
6688         if (err && changed == 0)
6689                 goto error_clean;
6690
6691         if (changed != cluster_count)
6692                 ext4_error(sb, "bit already cleared in group %u", block_group);
6693
6694         ext4_lock_group(sb, block_group);
6695         mb_free_blocks(NULL, &e4b, bit, cluster_count);
6696         ext4_unlock_group(sb, block_group);
6697         percpu_counter_add(&sbi->s_freeclusters_counter,
6698                            changed);
6699
6700 error_clean:
6701         ext4_mb_unload_buddy(&e4b);
6702 error_out:
6703         ext4_std_error(sb, err);
6704         return err;
6705 }
6706
6707 /**
6708  * ext4_trim_extent -- function to TRIM one single free extent in the group
6709  * @sb:         super block for the file system
6710  * @start:      starting block of the free extent in the alloc. group
6711  * @count:      number of blocks to TRIM
6712  * @e4b:        ext4 buddy for the group
6713  *
6714  * Trim "count" blocks starting at "start" in the "group". To assure that no
6715  * one will allocate those blocks, mark it as used in buddy bitmap. This must
6716  * be called with under the group lock.
6717  */
6718 static int ext4_trim_extent(struct super_block *sb,
6719                 int start, int count, struct ext4_buddy *e4b)
6720 __releases(bitlock)
6721 __acquires(bitlock)
6722 {
6723         struct ext4_free_extent ex;
6724         ext4_group_t group = e4b->bd_group;
6725         int ret = 0;
6726
6727         trace_ext4_trim_extent(sb, group, start, count);
6728
6729         assert_spin_locked(ext4_group_lock_ptr(sb, group));
6730
6731         ex.fe_start = start;
6732         ex.fe_group = group;
6733         ex.fe_len = count;
6734
6735         /*
6736          * Mark blocks used, so no one can reuse them while
6737          * being trimmed.
6738          */
6739         mb_mark_used(e4b, &ex);
6740         ext4_unlock_group(sb, group);
6741         ret = ext4_issue_discard(sb, group, start, count, NULL);
6742         ext4_lock_group(sb, group);
6743         mb_free_blocks(NULL, e4b, start, ex.fe_len);
6744         return ret;
6745 }
6746
6747 static ext4_grpblk_t ext4_last_grp_cluster(struct super_block *sb,
6748                                            ext4_group_t grp)
6749 {
6750         unsigned long nr_clusters_in_group;
6751
6752         if (grp < (ext4_get_groups_count(sb) - 1))
6753                 nr_clusters_in_group = EXT4_CLUSTERS_PER_GROUP(sb);
6754         else
6755                 nr_clusters_in_group = (ext4_blocks_count(EXT4_SB(sb)->s_es) -
6756                                         ext4_group_first_block_no(sb, grp))
6757                                        >> EXT4_CLUSTER_BITS(sb);
6758
6759         return nr_clusters_in_group - 1;
6760 }
6761
6762 static bool ext4_trim_interrupted(void)
6763 {
6764         return fatal_signal_pending(current) || freezing(current);
6765 }
6766
6767 static int ext4_try_to_trim_range(struct super_block *sb,
6768                 struct ext4_buddy *e4b, ext4_grpblk_t start,
6769                 ext4_grpblk_t max, ext4_grpblk_t minblocks)
6770 __acquires(ext4_group_lock_ptr(sb, e4b->bd_group))
6771 __releases(ext4_group_lock_ptr(sb, e4b->bd_group))
6772 {
6773         ext4_grpblk_t next, count, free_count, last, origin_start;
6774         bool set_trimmed = false;
6775         void *bitmap;
6776
6777         if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
6778                 return 0;
6779
6780         last = ext4_last_grp_cluster(sb, e4b->bd_group);
6781         bitmap = e4b->bd_bitmap;
6782         if (start == 0 && max >= last)
6783                 set_trimmed = true;
6784         origin_start = start;
6785         start = max(e4b->bd_info->bb_first_free, start);
6786         count = 0;
6787         free_count = 0;
6788
6789         while (start <= max) {
6790                 start = mb_find_next_zero_bit(bitmap, max + 1, start);
6791                 if (start > max)
6792                         break;
6793
6794                 next = mb_find_next_bit(bitmap, last + 1, start);
6795                 if (origin_start == 0 && next >= last)
6796                         set_trimmed = true;
6797
6798                 if ((next - start) >= minblocks) {
6799                         int ret = ext4_trim_extent(sb, start, next - start, e4b);
6800
6801                         if (ret && ret != -EOPNOTSUPP)
6802                                 return count;
6803                         count += next - start;
6804                 }
6805                 free_count += next - start;
6806                 start = next + 1;
6807
6808                 if (ext4_trim_interrupted())
6809                         return count;
6810
6811                 if (need_resched()) {
6812                         ext4_unlock_group(sb, e4b->bd_group);
6813                         cond_resched();
6814                         ext4_lock_group(sb, e4b->bd_group);
6815                 }
6816
6817                 if ((e4b->bd_info->bb_free - free_count) < minblocks)
6818                         break;
6819         }
6820
6821         if (set_trimmed)
6822                 EXT4_MB_GRP_SET_TRIMMED(e4b->bd_info);
6823
6824         return count;
6825 }
6826
6827 /**
6828  * ext4_trim_all_free -- function to trim all free space in alloc. group
6829  * @sb:                 super block for file system
6830  * @group:              group to be trimmed
6831  * @start:              first group block to examine
6832  * @max:                last group block to examine
6833  * @minblocks:          minimum extent block count
6834  *
6835  * ext4_trim_all_free walks through group's block bitmap searching for free
6836  * extents. When the free extent is found, mark it as used in group buddy
6837  * bitmap. Then issue a TRIM command on this extent and free the extent in
6838  * the group buddy bitmap.
6839  */
6840 static ext4_grpblk_t
6841 ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
6842                    ext4_grpblk_t start, ext4_grpblk_t max,
6843                    ext4_grpblk_t minblocks)
6844 {
6845         struct ext4_buddy e4b;
6846         int ret;
6847
6848         trace_ext4_trim_all_free(sb, group, start, max);
6849
6850         ret = ext4_mb_load_buddy(sb, group, &e4b);
6851         if (ret) {
6852                 ext4_warning(sb, "Error %d loading buddy information for %u",
6853                              ret, group);
6854                 return ret;
6855         }
6856
6857         ext4_lock_group(sb, group);
6858
6859         if (!EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) ||
6860             minblocks < EXT4_SB(sb)->s_last_trim_minblks)
6861                 ret = ext4_try_to_trim_range(sb, &e4b, start, max, minblocks);
6862         else
6863                 ret = 0;
6864
6865         ext4_unlock_group(sb, group);
6866         ext4_mb_unload_buddy(&e4b);
6867
6868         ext4_debug("trimmed %d blocks in the group %d\n",
6869                 ret, group);
6870
6871         return ret;
6872 }
6873
6874 /**
6875  * ext4_trim_fs() -- trim ioctl handle function
6876  * @sb:                 superblock for filesystem
6877  * @range:              fstrim_range structure
6878  *
6879  * start:       First Byte to trim
6880  * len:         number of Bytes to trim from start
6881  * minlen:      minimum extent length in Bytes
6882  * ext4_trim_fs goes through all allocation groups containing Bytes from
6883  * start to start+len. For each such a group ext4_trim_all_free function
6884  * is invoked to trim all free space.
6885  */
6886 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
6887 {
6888         unsigned int discard_granularity = bdev_discard_granularity(sb->s_bdev);
6889         struct ext4_group_info *grp;
6890         ext4_group_t group, first_group, last_group;
6891         ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
6892         uint64_t start, end, minlen, trimmed = 0;
6893         ext4_fsblk_t first_data_blk =
6894                         le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
6895         ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
6896         int ret = 0;
6897
6898         start = range->start >> sb->s_blocksize_bits;
6899         end = start + (range->len >> sb->s_blocksize_bits) - 1;
6900         minlen = EXT4_NUM_B2C(EXT4_SB(sb),
6901                               range->minlen >> sb->s_blocksize_bits);
6902
6903         if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) ||
6904             start >= max_blks ||
6905             range->len < sb->s_blocksize)
6906                 return -EINVAL;
6907         /* No point to try to trim less than discard granularity */
6908         if (range->minlen < discard_granularity) {
6909                 minlen = EXT4_NUM_B2C(EXT4_SB(sb),
6910                                 discard_granularity >> sb->s_blocksize_bits);
6911                 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb))
6912                         goto out;
6913         }
6914         if (end >= max_blks - 1)
6915                 end = max_blks - 1;
6916         if (end <= first_data_blk)
6917                 goto out;
6918         if (start < first_data_blk)
6919                 start = first_data_blk;
6920
6921         /* Determine first and last group to examine based on start and end */
6922         ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
6923                                      &first_group, &first_cluster);
6924         ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
6925                                      &last_group, &last_cluster);
6926
6927         /* end now represents the last cluster to discard in this group */
6928         end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
6929
6930         for (group = first_group; group <= last_group; group++) {
6931                 if (ext4_trim_interrupted())
6932                         break;
6933                 grp = ext4_get_group_info(sb, group);
6934                 if (!grp)
6935                         continue;
6936                 /* We only do this if the grp has never been initialized */
6937                 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
6938                         ret = ext4_mb_init_group(sb, group, GFP_NOFS);
6939                         if (ret)
6940                                 break;
6941                 }
6942
6943                 /*
6944                  * For all the groups except the last one, last cluster will
6945                  * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
6946                  * change it for the last group, note that last_cluster is
6947                  * already computed earlier by ext4_get_group_no_and_offset()
6948                  */
6949                 if (group == last_group)
6950                         end = last_cluster;
6951                 if (grp->bb_free >= minlen) {
6952                         cnt = ext4_trim_all_free(sb, group, first_cluster,
6953                                                  end, minlen);
6954                         if (cnt < 0) {
6955                                 ret = cnt;
6956                                 break;
6957                         }
6958                         trimmed += cnt;
6959                 }
6960
6961                 /*
6962                  * For every group except the first one, we are sure
6963                  * that the first cluster to discard will be cluster #0.
6964                  */
6965                 first_cluster = 0;
6966         }
6967
6968         if (!ret)
6969                 EXT4_SB(sb)->s_last_trim_minblks = minlen;
6970
6971 out:
6972         range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits;
6973         return ret;
6974 }
6975
6976 /* Iterate all the free extents in the group. */
6977 int
6978 ext4_mballoc_query_range(
6979         struct super_block              *sb,
6980         ext4_group_t                    group,
6981         ext4_grpblk_t                   start,
6982         ext4_grpblk_t                   end,
6983         ext4_mballoc_query_range_fn     formatter,
6984         void                            *priv)
6985 {
6986         void                            *bitmap;
6987         ext4_grpblk_t                   next;
6988         struct ext4_buddy               e4b;
6989         int                             error;
6990
6991         error = ext4_mb_load_buddy(sb, group, &e4b);
6992         if (error)
6993                 return error;
6994         bitmap = e4b.bd_bitmap;
6995
6996         ext4_lock_group(sb, group);
6997
6998         start = max(e4b.bd_info->bb_first_free, start);
6999         if (end >= EXT4_CLUSTERS_PER_GROUP(sb))
7000                 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
7001
7002         while (start <= end) {
7003                 start = mb_find_next_zero_bit(bitmap, end + 1, start);
7004                 if (start > end)
7005                         break;
7006                 next = mb_find_next_bit(bitmap, end + 1, start);
7007
7008                 ext4_unlock_group(sb, group);
7009                 error = formatter(sb, group, start, next - start, priv);
7010                 if (error)
7011                         goto out_unload;
7012                 ext4_lock_group(sb, group);
7013
7014                 start = next + 1;
7015         }
7016
7017         ext4_unlock_group(sb, group);
7018 out_unload:
7019         ext4_mb_unload_buddy(&e4b);
7020
7021         return error;
7022 }
7023
7024 #ifdef CONFIG_EXT4_KUNIT_TESTS
7025 #include "mballoc-test.c"
7026 #endif