Merge branch 'irq-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / fs / ext4 / inode.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  64-bit file support on 64-bit platforms by Jakub Jelinek
17  *      (jj@sunsite.ms.mff.cuni.cz)
18  *
19  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20  */
21
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/dax.h>
27 #include <linux/quotaops.h>
28 #include <linux/string.h>
29 #include <linux/buffer_head.h>
30 #include <linux/writeback.h>
31 #include <linux/pagevec.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/uio.h>
35 #include <linux/bio.h>
36 #include <linux/workqueue.h>
37 #include <linux/kernel.h>
38 #include <linux/printk.h>
39 #include <linux/slab.h>
40 #include <linux/bitops.h>
41 #include <linux/iomap.h>
42 #include <linux/iversion.h>
43
44 #include "ext4_jbd2.h"
45 #include "xattr.h"
46 #include "acl.h"
47 #include "truncate.h"
48
49 #include <trace/events/ext4.h>
50
51 #define MPAGE_DA_EXTENT_TAIL 0x01
52
53 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
54                               struct ext4_inode_info *ei)
55 {
56         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
57         __u32 csum;
58         __u16 dummy_csum = 0;
59         int offset = offsetof(struct ext4_inode, i_checksum_lo);
60         unsigned int csum_size = sizeof(dummy_csum);
61
62         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
63         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
64         offset += csum_size;
65         csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
66                            EXT4_GOOD_OLD_INODE_SIZE - offset);
67
68         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
69                 offset = offsetof(struct ext4_inode, i_checksum_hi);
70                 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
71                                    EXT4_GOOD_OLD_INODE_SIZE,
72                                    offset - EXT4_GOOD_OLD_INODE_SIZE);
73                 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
74                         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
75                                            csum_size);
76                         offset += csum_size;
77                 }
78                 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
79                                    EXT4_INODE_SIZE(inode->i_sb) - offset);
80         }
81
82         return csum;
83 }
84
85 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
86                                   struct ext4_inode_info *ei)
87 {
88         __u32 provided, calculated;
89
90         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
91             cpu_to_le32(EXT4_OS_LINUX) ||
92             !ext4_has_metadata_csum(inode->i_sb))
93                 return 1;
94
95         provided = le16_to_cpu(raw->i_checksum_lo);
96         calculated = ext4_inode_csum(inode, raw, ei);
97         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
98             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
99                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
100         else
101                 calculated &= 0xFFFF;
102
103         return provided == calculated;
104 }
105
106 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
107                                 struct ext4_inode_info *ei)
108 {
109         __u32 csum;
110
111         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
112             cpu_to_le32(EXT4_OS_LINUX) ||
113             !ext4_has_metadata_csum(inode->i_sb))
114                 return;
115
116         csum = ext4_inode_csum(inode, raw, ei);
117         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
118         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
119             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
120                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
121 }
122
123 static inline int ext4_begin_ordered_truncate(struct inode *inode,
124                                               loff_t new_size)
125 {
126         trace_ext4_begin_ordered_truncate(inode, new_size);
127         /*
128          * If jinode is zero, then we never opened the file for
129          * writing, so there's no need to call
130          * jbd2_journal_begin_ordered_truncate() since there's no
131          * outstanding writes we need to flush.
132          */
133         if (!EXT4_I(inode)->jinode)
134                 return 0;
135         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
136                                                    EXT4_I(inode)->jinode,
137                                                    new_size);
138 }
139
140 static void ext4_invalidatepage(struct page *page, unsigned int offset,
141                                 unsigned int length);
142 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
143 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
144 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
145                                   int pextents);
146
147 /*
148  * Test whether an inode is a fast symlink.
149  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
150  */
151 int ext4_inode_is_fast_symlink(struct inode *inode)
152 {
153         if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
154                 int ea_blocks = EXT4_I(inode)->i_file_acl ?
155                                 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
156
157                 if (ext4_has_inline_data(inode))
158                         return 0;
159
160                 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
161         }
162         return S_ISLNK(inode->i_mode) && inode->i_size &&
163                (inode->i_size < EXT4_N_BLOCKS * 4);
164 }
165
166 /*
167  * Restart the transaction associated with *handle.  This does a commit,
168  * so before we call here everything must be consistently dirtied against
169  * this transaction.
170  */
171 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
172                                  int nblocks)
173 {
174         int ret;
175
176         /*
177          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
178          * moment, get_block can be called only for blocks inside i_size since
179          * page cache has been already dropped and writes are blocked by
180          * i_mutex. So we can safely drop the i_data_sem here.
181          */
182         BUG_ON(EXT4_JOURNAL(inode) == NULL);
183         jbd_debug(2, "restarting handle %p\n", handle);
184         up_write(&EXT4_I(inode)->i_data_sem);
185         ret = ext4_journal_restart(handle, nblocks);
186         down_write(&EXT4_I(inode)->i_data_sem);
187         ext4_discard_preallocations(inode);
188
189         return ret;
190 }
191
192 /*
193  * Called at the last iput() if i_nlink is zero.
194  */
195 void ext4_evict_inode(struct inode *inode)
196 {
197         handle_t *handle;
198         int err;
199         int extra_credits = 3;
200         struct ext4_xattr_inode_array *ea_inode_array = NULL;
201
202         trace_ext4_evict_inode(inode);
203
204         if (inode->i_nlink) {
205                 /*
206                  * When journalling data dirty buffers are tracked only in the
207                  * journal. So although mm thinks everything is clean and
208                  * ready for reaping the inode might still have some pages to
209                  * write in the running transaction or waiting to be
210                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
211                  * (via truncate_inode_pages()) to discard these buffers can
212                  * cause data loss. Also even if we did not discard these
213                  * buffers, we would have no way to find them after the inode
214                  * is reaped and thus user could see stale data if he tries to
215                  * read them before the transaction is checkpointed. So be
216                  * careful and force everything to disk here... We use
217                  * ei->i_datasync_tid to store the newest transaction
218                  * containing inode's data.
219                  *
220                  * Note that directories do not have this problem because they
221                  * don't use page cache.
222                  */
223                 if (inode->i_ino != EXT4_JOURNAL_INO &&
224                     ext4_should_journal_data(inode) &&
225                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
226                     inode->i_data.nrpages) {
227                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
228                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
229
230                         jbd2_complete_transaction(journal, commit_tid);
231                         filemap_write_and_wait(&inode->i_data);
232                 }
233                 truncate_inode_pages_final(&inode->i_data);
234
235                 goto no_delete;
236         }
237
238         if (is_bad_inode(inode))
239                 goto no_delete;
240         dquot_initialize(inode);
241
242         if (ext4_should_order_data(inode))
243                 ext4_begin_ordered_truncate(inode, 0);
244         truncate_inode_pages_final(&inode->i_data);
245
246         /*
247          * Protect us against freezing - iput() caller didn't have to have any
248          * protection against it
249          */
250         sb_start_intwrite(inode->i_sb);
251
252         if (!IS_NOQUOTA(inode))
253                 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
254
255         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
256                                  ext4_blocks_for_truncate(inode)+extra_credits);
257         if (IS_ERR(handle)) {
258                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
259                 /*
260                  * If we're going to skip the normal cleanup, we still need to
261                  * make sure that the in-core orphan linked list is properly
262                  * cleaned up.
263                  */
264                 ext4_orphan_del(NULL, inode);
265                 sb_end_intwrite(inode->i_sb);
266                 goto no_delete;
267         }
268
269         if (IS_SYNC(inode))
270                 ext4_handle_sync(handle);
271
272         /*
273          * Set inode->i_size to 0 before calling ext4_truncate(). We need
274          * special handling of symlinks here because i_size is used to
275          * determine whether ext4_inode_info->i_data contains symlink data or
276          * block mappings. Setting i_size to 0 will remove its fast symlink
277          * status. Erase i_data so that it becomes a valid empty block map.
278          */
279         if (ext4_inode_is_fast_symlink(inode))
280                 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
281         inode->i_size = 0;
282         err = ext4_mark_inode_dirty(handle, inode);
283         if (err) {
284                 ext4_warning(inode->i_sb,
285                              "couldn't mark inode dirty (err %d)", err);
286                 goto stop_handle;
287         }
288         if (inode->i_blocks) {
289                 err = ext4_truncate(inode);
290                 if (err) {
291                         ext4_error(inode->i_sb,
292                                    "couldn't truncate inode %lu (err %d)",
293                                    inode->i_ino, err);
294                         goto stop_handle;
295                 }
296         }
297
298         /* Remove xattr references. */
299         err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
300                                       extra_credits);
301         if (err) {
302                 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
303 stop_handle:
304                 ext4_journal_stop(handle);
305                 ext4_orphan_del(NULL, inode);
306                 sb_end_intwrite(inode->i_sb);
307                 ext4_xattr_inode_array_free(ea_inode_array);
308                 goto no_delete;
309         }
310
311         /*
312          * Kill off the orphan record which ext4_truncate created.
313          * AKPM: I think this can be inside the above `if'.
314          * Note that ext4_orphan_del() has to be able to cope with the
315          * deletion of a non-existent orphan - this is because we don't
316          * know if ext4_truncate() actually created an orphan record.
317          * (Well, we could do this if we need to, but heck - it works)
318          */
319         ext4_orphan_del(handle, inode);
320         EXT4_I(inode)->i_dtime  = (__u32)ktime_get_real_seconds();
321
322         /*
323          * One subtle ordering requirement: if anything has gone wrong
324          * (transaction abort, IO errors, whatever), then we can still
325          * do these next steps (the fs will already have been marked as
326          * having errors), but we can't free the inode if the mark_dirty
327          * fails.
328          */
329         if (ext4_mark_inode_dirty(handle, inode))
330                 /* If that failed, just do the required in-core inode clear. */
331                 ext4_clear_inode(inode);
332         else
333                 ext4_free_inode(handle, inode);
334         ext4_journal_stop(handle);
335         sb_end_intwrite(inode->i_sb);
336         ext4_xattr_inode_array_free(ea_inode_array);
337         return;
338 no_delete:
339         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
340 }
341
342 #ifdef CONFIG_QUOTA
343 qsize_t *ext4_get_reserved_space(struct inode *inode)
344 {
345         return &EXT4_I(inode)->i_reserved_quota;
346 }
347 #endif
348
349 /*
350  * Called with i_data_sem down, which is important since we can call
351  * ext4_discard_preallocations() from here.
352  */
353 void ext4_da_update_reserve_space(struct inode *inode,
354                                         int used, int quota_claim)
355 {
356         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
357         struct ext4_inode_info *ei = EXT4_I(inode);
358
359         spin_lock(&ei->i_block_reservation_lock);
360         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
361         if (unlikely(used > ei->i_reserved_data_blocks)) {
362                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
363                          "with only %d reserved data blocks",
364                          __func__, inode->i_ino, used,
365                          ei->i_reserved_data_blocks);
366                 WARN_ON(1);
367                 used = ei->i_reserved_data_blocks;
368         }
369
370         /* Update per-inode reservations */
371         ei->i_reserved_data_blocks -= used;
372         percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
373
374         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
375
376         /* Update quota subsystem for data blocks */
377         if (quota_claim)
378                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
379         else {
380                 /*
381                  * We did fallocate with an offset that is already delayed
382                  * allocated. So on delayed allocated writeback we should
383                  * not re-claim the quota for fallocated blocks.
384                  */
385                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
386         }
387
388         /*
389          * If we have done all the pending block allocations and if
390          * there aren't any writers on the inode, we can discard the
391          * inode's preallocations.
392          */
393         if ((ei->i_reserved_data_blocks == 0) &&
394             !inode_is_open_for_write(inode))
395                 ext4_discard_preallocations(inode);
396 }
397
398 static int __check_block_validity(struct inode *inode, const char *func,
399                                 unsigned int line,
400                                 struct ext4_map_blocks *map)
401 {
402         if (ext4_has_feature_journal(inode->i_sb) &&
403             (inode->i_ino ==
404              le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
405                 return 0;
406         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
407                                    map->m_len)) {
408                 ext4_error_inode(inode, func, line, map->m_pblk,
409                                  "lblock %lu mapped to illegal pblock %llu "
410                                  "(length %d)", (unsigned long) map->m_lblk,
411                                  map->m_pblk, map->m_len);
412                 return -EFSCORRUPTED;
413         }
414         return 0;
415 }
416
417 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
418                        ext4_lblk_t len)
419 {
420         int ret;
421
422         if (IS_ENCRYPTED(inode))
423                 return fscrypt_zeroout_range(inode, lblk, pblk, len);
424
425         ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
426         if (ret > 0)
427                 ret = 0;
428
429         return ret;
430 }
431
432 #define check_block_validity(inode, map)        \
433         __check_block_validity((inode), __func__, __LINE__, (map))
434
435 #ifdef ES_AGGRESSIVE_TEST
436 static void ext4_map_blocks_es_recheck(handle_t *handle,
437                                        struct inode *inode,
438                                        struct ext4_map_blocks *es_map,
439                                        struct ext4_map_blocks *map,
440                                        int flags)
441 {
442         int retval;
443
444         map->m_flags = 0;
445         /*
446          * There is a race window that the result is not the same.
447          * e.g. xfstests #223 when dioread_nolock enables.  The reason
448          * is that we lookup a block mapping in extent status tree with
449          * out taking i_data_sem.  So at the time the unwritten extent
450          * could be converted.
451          */
452         down_read(&EXT4_I(inode)->i_data_sem);
453         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
454                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
455                                              EXT4_GET_BLOCKS_KEEP_SIZE);
456         } else {
457                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
458                                              EXT4_GET_BLOCKS_KEEP_SIZE);
459         }
460         up_read((&EXT4_I(inode)->i_data_sem));
461
462         /*
463          * We don't check m_len because extent will be collpased in status
464          * tree.  So the m_len might not equal.
465          */
466         if (es_map->m_lblk != map->m_lblk ||
467             es_map->m_flags != map->m_flags ||
468             es_map->m_pblk != map->m_pblk) {
469                 printk("ES cache assertion failed for inode: %lu "
470                        "es_cached ex [%d/%d/%llu/%x] != "
471                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
472                        inode->i_ino, es_map->m_lblk, es_map->m_len,
473                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
474                        map->m_len, map->m_pblk, map->m_flags,
475                        retval, flags);
476         }
477 }
478 #endif /* ES_AGGRESSIVE_TEST */
479
480 /*
481  * The ext4_map_blocks() function tries to look up the requested blocks,
482  * and returns if the blocks are already mapped.
483  *
484  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
485  * and store the allocated blocks in the result buffer head and mark it
486  * mapped.
487  *
488  * If file type is extents based, it will call ext4_ext_map_blocks(),
489  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
490  * based files
491  *
492  * On success, it returns the number of blocks being mapped or allocated.  if
493  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
494  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
495  *
496  * It returns 0 if plain look up failed (blocks have not been allocated), in
497  * that case, @map is returned as unmapped but we still do fill map->m_len to
498  * indicate the length of a hole starting at map->m_lblk.
499  *
500  * It returns the error in case of allocation failure.
501  */
502 int ext4_map_blocks(handle_t *handle, struct inode *inode,
503                     struct ext4_map_blocks *map, int flags)
504 {
505         struct extent_status es;
506         int retval;
507         int ret = 0;
508 #ifdef ES_AGGRESSIVE_TEST
509         struct ext4_map_blocks orig_map;
510
511         memcpy(&orig_map, map, sizeof(*map));
512 #endif
513
514         map->m_flags = 0;
515         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
516                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
517                   (unsigned long) map->m_lblk);
518
519         /*
520          * ext4_map_blocks returns an int, and m_len is an unsigned int
521          */
522         if (unlikely(map->m_len > INT_MAX))
523                 map->m_len = INT_MAX;
524
525         /* We can handle the block number less than EXT_MAX_BLOCKS */
526         if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
527                 return -EFSCORRUPTED;
528
529         /* Lookup extent status tree firstly */
530         if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
531                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
532                         map->m_pblk = ext4_es_pblock(&es) +
533                                         map->m_lblk - es.es_lblk;
534                         map->m_flags |= ext4_es_is_written(&es) ?
535                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
536                         retval = es.es_len - (map->m_lblk - es.es_lblk);
537                         if (retval > map->m_len)
538                                 retval = map->m_len;
539                         map->m_len = retval;
540                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
541                         map->m_pblk = 0;
542                         retval = es.es_len - (map->m_lblk - es.es_lblk);
543                         if (retval > map->m_len)
544                                 retval = map->m_len;
545                         map->m_len = retval;
546                         retval = 0;
547                 } else {
548                         BUG();
549                 }
550 #ifdef ES_AGGRESSIVE_TEST
551                 ext4_map_blocks_es_recheck(handle, inode, map,
552                                            &orig_map, flags);
553 #endif
554                 goto found;
555         }
556
557         /*
558          * Try to see if we can get the block without requesting a new
559          * file system block.
560          */
561         down_read(&EXT4_I(inode)->i_data_sem);
562         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
563                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
564                                              EXT4_GET_BLOCKS_KEEP_SIZE);
565         } else {
566                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
567                                              EXT4_GET_BLOCKS_KEEP_SIZE);
568         }
569         if (retval > 0) {
570                 unsigned int status;
571
572                 if (unlikely(retval != map->m_len)) {
573                         ext4_warning(inode->i_sb,
574                                      "ES len assertion failed for inode "
575                                      "%lu: retval %d != map->m_len %d",
576                                      inode->i_ino, retval, map->m_len);
577                         WARN_ON(1);
578                 }
579
580                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
581                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
582                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
583                     !(status & EXTENT_STATUS_WRITTEN) &&
584                     ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
585                                        map->m_lblk + map->m_len - 1))
586                         status |= EXTENT_STATUS_DELAYED;
587                 ret = ext4_es_insert_extent(inode, map->m_lblk,
588                                             map->m_len, map->m_pblk, status);
589                 if (ret < 0)
590                         retval = ret;
591         }
592         up_read((&EXT4_I(inode)->i_data_sem));
593
594 found:
595         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
596                 ret = check_block_validity(inode, map);
597                 if (ret != 0)
598                         return ret;
599         }
600
601         /* If it is only a block(s) look up */
602         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
603                 return retval;
604
605         /*
606          * Returns if the blocks have already allocated
607          *
608          * Note that if blocks have been preallocated
609          * ext4_ext_get_block() returns the create = 0
610          * with buffer head unmapped.
611          */
612         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
613                 /*
614                  * If we need to convert extent to unwritten
615                  * we continue and do the actual work in
616                  * ext4_ext_map_blocks()
617                  */
618                 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
619                         return retval;
620
621         /*
622          * Here we clear m_flags because after allocating an new extent,
623          * it will be set again.
624          */
625         map->m_flags &= ~EXT4_MAP_FLAGS;
626
627         /*
628          * New blocks allocate and/or writing to unwritten extent
629          * will possibly result in updating i_data, so we take
630          * the write lock of i_data_sem, and call get_block()
631          * with create == 1 flag.
632          */
633         down_write(&EXT4_I(inode)->i_data_sem);
634
635         /*
636          * We need to check for EXT4 here because migrate
637          * could have changed the inode type in between
638          */
639         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
640                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
641         } else {
642                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
643
644                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
645                         /*
646                          * We allocated new blocks which will result in
647                          * i_data's format changing.  Force the migrate
648                          * to fail by clearing migrate flags
649                          */
650                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
651                 }
652
653                 /*
654                  * Update reserved blocks/metadata blocks after successful
655                  * block allocation which had been deferred till now. We don't
656                  * support fallocate for non extent files. So we can update
657                  * reserve space here.
658                  */
659                 if ((retval > 0) &&
660                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
661                         ext4_da_update_reserve_space(inode, retval, 1);
662         }
663
664         if (retval > 0) {
665                 unsigned int status;
666
667                 if (unlikely(retval != map->m_len)) {
668                         ext4_warning(inode->i_sb,
669                                      "ES len assertion failed for inode "
670                                      "%lu: retval %d != map->m_len %d",
671                                      inode->i_ino, retval, map->m_len);
672                         WARN_ON(1);
673                 }
674
675                 /*
676                  * We have to zeroout blocks before inserting them into extent
677                  * status tree. Otherwise someone could look them up there and
678                  * use them before they are really zeroed. We also have to
679                  * unmap metadata before zeroing as otherwise writeback can
680                  * overwrite zeros with stale data from block device.
681                  */
682                 if (flags & EXT4_GET_BLOCKS_ZERO &&
683                     map->m_flags & EXT4_MAP_MAPPED &&
684                     map->m_flags & EXT4_MAP_NEW) {
685                         ret = ext4_issue_zeroout(inode, map->m_lblk,
686                                                  map->m_pblk, map->m_len);
687                         if (ret) {
688                                 retval = ret;
689                                 goto out_sem;
690                         }
691                 }
692
693                 /*
694                  * If the extent has been zeroed out, we don't need to update
695                  * extent status tree.
696                  */
697                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
698                     ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
699                         if (ext4_es_is_written(&es))
700                                 goto out_sem;
701                 }
702                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
703                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
704                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
705                     !(status & EXTENT_STATUS_WRITTEN) &&
706                     ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
707                                        map->m_lblk + map->m_len - 1))
708                         status |= EXTENT_STATUS_DELAYED;
709                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
710                                             map->m_pblk, status);
711                 if (ret < 0) {
712                         retval = ret;
713                         goto out_sem;
714                 }
715         }
716
717 out_sem:
718         up_write((&EXT4_I(inode)->i_data_sem));
719         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
720                 ret = check_block_validity(inode, map);
721                 if (ret != 0)
722                         return ret;
723
724                 /*
725                  * Inodes with freshly allocated blocks where contents will be
726                  * visible after transaction commit must be on transaction's
727                  * ordered data list.
728                  */
729                 if (map->m_flags & EXT4_MAP_NEW &&
730                     !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
731                     !(flags & EXT4_GET_BLOCKS_ZERO) &&
732                     !ext4_is_quota_file(inode) &&
733                     ext4_should_order_data(inode)) {
734                         loff_t start_byte =
735                                 (loff_t)map->m_lblk << inode->i_blkbits;
736                         loff_t length = (loff_t)map->m_len << inode->i_blkbits;
737
738                         if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
739                                 ret = ext4_jbd2_inode_add_wait(handle, inode,
740                                                 start_byte, length);
741                         else
742                                 ret = ext4_jbd2_inode_add_write(handle, inode,
743                                                 start_byte, length);
744                         if (ret)
745                                 return ret;
746                 }
747         }
748         return retval;
749 }
750
751 /*
752  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
753  * we have to be careful as someone else may be manipulating b_state as well.
754  */
755 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
756 {
757         unsigned long old_state;
758         unsigned long new_state;
759
760         flags &= EXT4_MAP_FLAGS;
761
762         /* Dummy buffer_head? Set non-atomically. */
763         if (!bh->b_page) {
764                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
765                 return;
766         }
767         /*
768          * Someone else may be modifying b_state. Be careful! This is ugly but
769          * once we get rid of using bh as a container for mapping information
770          * to pass to / from get_block functions, this can go away.
771          */
772         do {
773                 old_state = READ_ONCE(bh->b_state);
774                 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
775         } while (unlikely(
776                  cmpxchg(&bh->b_state, old_state, new_state) != old_state));
777 }
778
779 static int _ext4_get_block(struct inode *inode, sector_t iblock,
780                            struct buffer_head *bh, int flags)
781 {
782         struct ext4_map_blocks map;
783         int ret = 0;
784
785         if (ext4_has_inline_data(inode))
786                 return -ERANGE;
787
788         map.m_lblk = iblock;
789         map.m_len = bh->b_size >> inode->i_blkbits;
790
791         ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
792                               flags);
793         if (ret > 0) {
794                 map_bh(bh, inode->i_sb, map.m_pblk);
795                 ext4_update_bh_state(bh, map.m_flags);
796                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
797                 ret = 0;
798         } else if (ret == 0) {
799                 /* hole case, need to fill in bh->b_size */
800                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
801         }
802         return ret;
803 }
804
805 int ext4_get_block(struct inode *inode, sector_t iblock,
806                    struct buffer_head *bh, int create)
807 {
808         return _ext4_get_block(inode, iblock, bh,
809                                create ? EXT4_GET_BLOCKS_CREATE : 0);
810 }
811
812 /*
813  * Get block function used when preparing for buffered write if we require
814  * creating an unwritten extent if blocks haven't been allocated.  The extent
815  * will be converted to written after the IO is complete.
816  */
817 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
818                              struct buffer_head *bh_result, int create)
819 {
820         ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
821                    inode->i_ino, create);
822         return _ext4_get_block(inode, iblock, bh_result,
823                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
824 }
825
826 /* Maximum number of blocks we map for direct IO at once. */
827 #define DIO_MAX_BLOCKS 4096
828
829 /*
830  * Get blocks function for the cases that need to start a transaction -
831  * generally difference cases of direct IO and DAX IO. It also handles retries
832  * in case of ENOSPC.
833  */
834 static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
835                                 struct buffer_head *bh_result, int flags)
836 {
837         int dio_credits;
838         handle_t *handle;
839         int retries = 0;
840         int ret;
841
842         /* Trim mapping request to maximum we can map at once for DIO */
843         if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
844                 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
845         dio_credits = ext4_chunk_trans_blocks(inode,
846                                       bh_result->b_size >> inode->i_blkbits);
847 retry:
848         handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
849         if (IS_ERR(handle))
850                 return PTR_ERR(handle);
851
852         ret = _ext4_get_block(inode, iblock, bh_result, flags);
853         ext4_journal_stop(handle);
854
855         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
856                 goto retry;
857         return ret;
858 }
859
860 /* Get block function for DIO reads and writes to inodes without extents */
861 int ext4_dio_get_block(struct inode *inode, sector_t iblock,
862                        struct buffer_head *bh, int create)
863 {
864         /* We don't expect handle for direct IO */
865         WARN_ON_ONCE(ext4_journal_current_handle());
866
867         if (!create)
868                 return _ext4_get_block(inode, iblock, bh, 0);
869         return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
870 }
871
872 /*
873  * Get block function for AIO DIO writes when we create unwritten extent if
874  * blocks are not allocated yet. The extent will be converted to written
875  * after IO is complete.
876  */
877 static int ext4_dio_get_block_unwritten_async(struct inode *inode,
878                 sector_t iblock, struct buffer_head *bh_result, int create)
879 {
880         int ret;
881
882         /* We don't expect handle for direct IO */
883         WARN_ON_ONCE(ext4_journal_current_handle());
884
885         ret = ext4_get_block_trans(inode, iblock, bh_result,
886                                    EXT4_GET_BLOCKS_IO_CREATE_EXT);
887
888         /*
889          * When doing DIO using unwritten extents, we need io_end to convert
890          * unwritten extents to written on IO completion. We allocate io_end
891          * once we spot unwritten extent and store it in b_private. Generic
892          * DIO code keeps b_private set and furthermore passes the value to
893          * our completion callback in 'private' argument.
894          */
895         if (!ret && buffer_unwritten(bh_result)) {
896                 if (!bh_result->b_private) {
897                         ext4_io_end_t *io_end;
898
899                         io_end = ext4_init_io_end(inode, GFP_KERNEL);
900                         if (!io_end)
901                                 return -ENOMEM;
902                         bh_result->b_private = io_end;
903                         ext4_set_io_unwritten_flag(inode, io_end);
904                 }
905                 set_buffer_defer_completion(bh_result);
906         }
907
908         return ret;
909 }
910
911 /*
912  * Get block function for non-AIO DIO writes when we create unwritten extent if
913  * blocks are not allocated yet. The extent will be converted to written
914  * after IO is complete by ext4_direct_IO_write().
915  */
916 static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
917                 sector_t iblock, struct buffer_head *bh_result, int create)
918 {
919         int ret;
920
921         /* We don't expect handle for direct IO */
922         WARN_ON_ONCE(ext4_journal_current_handle());
923
924         ret = ext4_get_block_trans(inode, iblock, bh_result,
925                                    EXT4_GET_BLOCKS_IO_CREATE_EXT);
926
927         /*
928          * Mark inode as having pending DIO writes to unwritten extents.
929          * ext4_direct_IO_write() checks this flag and converts extents to
930          * written.
931          */
932         if (!ret && buffer_unwritten(bh_result))
933                 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
934
935         return ret;
936 }
937
938 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
939                    struct buffer_head *bh_result, int create)
940 {
941         int ret;
942
943         ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
944                    inode->i_ino, create);
945         /* We don't expect handle for direct IO */
946         WARN_ON_ONCE(ext4_journal_current_handle());
947
948         ret = _ext4_get_block(inode, iblock, bh_result, 0);
949         /*
950          * Blocks should have been preallocated! ext4_file_write_iter() checks
951          * that.
952          */
953         WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
954
955         return ret;
956 }
957
958
959 /*
960  * `handle' can be NULL if create is zero
961  */
962 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
963                                 ext4_lblk_t block, int map_flags)
964 {
965         struct ext4_map_blocks map;
966         struct buffer_head *bh;
967         int create = map_flags & EXT4_GET_BLOCKS_CREATE;
968         int err;
969
970         J_ASSERT(handle != NULL || create == 0);
971
972         map.m_lblk = block;
973         map.m_len = 1;
974         err = ext4_map_blocks(handle, inode, &map, map_flags);
975
976         if (err == 0)
977                 return create ? ERR_PTR(-ENOSPC) : NULL;
978         if (err < 0)
979                 return ERR_PTR(err);
980
981         bh = sb_getblk(inode->i_sb, map.m_pblk);
982         if (unlikely(!bh))
983                 return ERR_PTR(-ENOMEM);
984         if (map.m_flags & EXT4_MAP_NEW) {
985                 J_ASSERT(create != 0);
986                 J_ASSERT(handle != NULL);
987
988                 /*
989                  * Now that we do not always journal data, we should
990                  * keep in mind whether this should always journal the
991                  * new buffer as metadata.  For now, regular file
992                  * writes use ext4_get_block instead, so it's not a
993                  * problem.
994                  */
995                 lock_buffer(bh);
996                 BUFFER_TRACE(bh, "call get_create_access");
997                 err = ext4_journal_get_create_access(handle, bh);
998                 if (unlikely(err)) {
999                         unlock_buffer(bh);
1000                         goto errout;
1001                 }
1002                 if (!buffer_uptodate(bh)) {
1003                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1004                         set_buffer_uptodate(bh);
1005                 }
1006                 unlock_buffer(bh);
1007                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1008                 err = ext4_handle_dirty_metadata(handle, inode, bh);
1009                 if (unlikely(err))
1010                         goto errout;
1011         } else
1012                 BUFFER_TRACE(bh, "not a new buffer");
1013         return bh;
1014 errout:
1015         brelse(bh);
1016         return ERR_PTR(err);
1017 }
1018
1019 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1020                                ext4_lblk_t block, int map_flags)
1021 {
1022         struct buffer_head *bh;
1023
1024         bh = ext4_getblk(handle, inode, block, map_flags);
1025         if (IS_ERR(bh))
1026                 return bh;
1027         if (!bh || buffer_uptodate(bh))
1028                 return bh;
1029         ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
1030         wait_on_buffer(bh);
1031         if (buffer_uptodate(bh))
1032                 return bh;
1033         put_bh(bh);
1034         return ERR_PTR(-EIO);
1035 }
1036
1037 /* Read a contiguous batch of blocks. */
1038 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
1039                      bool wait, struct buffer_head **bhs)
1040 {
1041         int i, err;
1042
1043         for (i = 0; i < bh_count; i++) {
1044                 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
1045                 if (IS_ERR(bhs[i])) {
1046                         err = PTR_ERR(bhs[i]);
1047                         bh_count = i;
1048                         goto out_brelse;
1049                 }
1050         }
1051
1052         for (i = 0; i < bh_count; i++)
1053                 /* Note that NULL bhs[i] is valid because of holes. */
1054                 if (bhs[i] && !buffer_uptodate(bhs[i]))
1055                         ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1,
1056                                     &bhs[i]);
1057
1058         if (!wait)
1059                 return 0;
1060
1061         for (i = 0; i < bh_count; i++)
1062                 if (bhs[i])
1063                         wait_on_buffer(bhs[i]);
1064
1065         for (i = 0; i < bh_count; i++) {
1066                 if (bhs[i] && !buffer_uptodate(bhs[i])) {
1067                         err = -EIO;
1068                         goto out_brelse;
1069                 }
1070         }
1071         return 0;
1072
1073 out_brelse:
1074         for (i = 0; i < bh_count; i++) {
1075                 brelse(bhs[i]);
1076                 bhs[i] = NULL;
1077         }
1078         return err;
1079 }
1080
1081 int ext4_walk_page_buffers(handle_t *handle,
1082                            struct buffer_head *head,
1083                            unsigned from,
1084                            unsigned to,
1085                            int *partial,
1086                            int (*fn)(handle_t *handle,
1087                                      struct buffer_head *bh))
1088 {
1089         struct buffer_head *bh;
1090         unsigned block_start, block_end;
1091         unsigned blocksize = head->b_size;
1092         int err, ret = 0;
1093         struct buffer_head *next;
1094
1095         for (bh = head, block_start = 0;
1096              ret == 0 && (bh != head || !block_start);
1097              block_start = block_end, bh = next) {
1098                 next = bh->b_this_page;
1099                 block_end = block_start + blocksize;
1100                 if (block_end <= from || block_start >= to) {
1101                         if (partial && !buffer_uptodate(bh))
1102                                 *partial = 1;
1103                         continue;
1104                 }
1105                 err = (*fn)(handle, bh);
1106                 if (!ret)
1107                         ret = err;
1108         }
1109         return ret;
1110 }
1111
1112 /*
1113  * To preserve ordering, it is essential that the hole instantiation and
1114  * the data write be encapsulated in a single transaction.  We cannot
1115  * close off a transaction and start a new one between the ext4_get_block()
1116  * and the commit_write().  So doing the jbd2_journal_start at the start of
1117  * prepare_write() is the right place.
1118  *
1119  * Also, this function can nest inside ext4_writepage().  In that case, we
1120  * *know* that ext4_writepage() has generated enough buffer credits to do the
1121  * whole page.  So we won't block on the journal in that case, which is good,
1122  * because the caller may be PF_MEMALLOC.
1123  *
1124  * By accident, ext4 can be reentered when a transaction is open via
1125  * quota file writes.  If we were to commit the transaction while thus
1126  * reentered, there can be a deadlock - we would be holding a quota
1127  * lock, and the commit would never complete if another thread had a
1128  * transaction open and was blocking on the quota lock - a ranking
1129  * violation.
1130  *
1131  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1132  * will _not_ run commit under these circumstances because handle->h_ref
1133  * is elevated.  We'll still have enough credits for the tiny quotafile
1134  * write.
1135  */
1136 int do_journal_get_write_access(handle_t *handle,
1137                                 struct buffer_head *bh)
1138 {
1139         int dirty = buffer_dirty(bh);
1140         int ret;
1141
1142         if (!buffer_mapped(bh) || buffer_freed(bh))
1143                 return 0;
1144         /*
1145          * __block_write_begin() could have dirtied some buffers. Clean
1146          * the dirty bit as jbd2_journal_get_write_access() could complain
1147          * otherwise about fs integrity issues. Setting of the dirty bit
1148          * by __block_write_begin() isn't a real problem here as we clear
1149          * the bit before releasing a page lock and thus writeback cannot
1150          * ever write the buffer.
1151          */
1152         if (dirty)
1153                 clear_buffer_dirty(bh);
1154         BUFFER_TRACE(bh, "get write access");
1155         ret = ext4_journal_get_write_access(handle, bh);
1156         if (!ret && dirty)
1157                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1158         return ret;
1159 }
1160
1161 #ifdef CONFIG_FS_ENCRYPTION
1162 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1163                                   get_block_t *get_block)
1164 {
1165         unsigned from = pos & (PAGE_SIZE - 1);
1166         unsigned to = from + len;
1167         struct inode *inode = page->mapping->host;
1168         unsigned block_start, block_end;
1169         sector_t block;
1170         int err = 0;
1171         unsigned blocksize = inode->i_sb->s_blocksize;
1172         unsigned bbits;
1173         struct buffer_head *bh, *head, *wait[2];
1174         int nr_wait = 0;
1175         int i;
1176
1177         BUG_ON(!PageLocked(page));
1178         BUG_ON(from > PAGE_SIZE);
1179         BUG_ON(to > PAGE_SIZE);
1180         BUG_ON(from > to);
1181
1182         if (!page_has_buffers(page))
1183                 create_empty_buffers(page, blocksize, 0);
1184         head = page_buffers(page);
1185         bbits = ilog2(blocksize);
1186         block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1187
1188         for (bh = head, block_start = 0; bh != head || !block_start;
1189             block++, block_start = block_end, bh = bh->b_this_page) {
1190                 block_end = block_start + blocksize;
1191                 if (block_end <= from || block_start >= to) {
1192                         if (PageUptodate(page)) {
1193                                 if (!buffer_uptodate(bh))
1194                                         set_buffer_uptodate(bh);
1195                         }
1196                         continue;
1197                 }
1198                 if (buffer_new(bh))
1199                         clear_buffer_new(bh);
1200                 if (!buffer_mapped(bh)) {
1201                         WARN_ON(bh->b_size != blocksize);
1202                         err = get_block(inode, block, bh, 1);
1203                         if (err)
1204                                 break;
1205                         if (buffer_new(bh)) {
1206                                 if (PageUptodate(page)) {
1207                                         clear_buffer_new(bh);
1208                                         set_buffer_uptodate(bh);
1209                                         mark_buffer_dirty(bh);
1210                                         continue;
1211                                 }
1212                                 if (block_end > to || block_start < from)
1213                                         zero_user_segments(page, to, block_end,
1214                                                            block_start, from);
1215                                 continue;
1216                         }
1217                 }
1218                 if (PageUptodate(page)) {
1219                         if (!buffer_uptodate(bh))
1220                                 set_buffer_uptodate(bh);
1221                         continue;
1222                 }
1223                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1224                     !buffer_unwritten(bh) &&
1225                     (block_start < from || block_end > to)) {
1226                         ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1227                         wait[nr_wait++] = bh;
1228                 }
1229         }
1230         /*
1231          * If we issued read requests, let them complete.
1232          */
1233         for (i = 0; i < nr_wait; i++) {
1234                 wait_on_buffer(wait[i]);
1235                 if (!buffer_uptodate(wait[i]))
1236                         err = -EIO;
1237         }
1238         if (unlikely(err)) {
1239                 page_zero_new_buffers(page, from, to);
1240         } else if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode)) {
1241                 for (i = 0; i < nr_wait; i++) {
1242                         int err2;
1243
1244                         err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize,
1245                                                                 bh_offset(wait[i]));
1246                         if (err2) {
1247                                 clear_buffer_uptodate(wait[i]);
1248                                 err = err2;
1249                         }
1250                 }
1251         }
1252
1253         return err;
1254 }
1255 #endif
1256
1257 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1258                             loff_t pos, unsigned len, unsigned flags,
1259                             struct page **pagep, void **fsdata)
1260 {
1261         struct inode *inode = mapping->host;
1262         int ret, needed_blocks;
1263         handle_t *handle;
1264         int retries = 0;
1265         struct page *page;
1266         pgoff_t index;
1267         unsigned from, to;
1268
1269         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1270                 return -EIO;
1271
1272         trace_ext4_write_begin(inode, pos, len, flags);
1273         /*
1274          * Reserve one block more for addition to orphan list in case
1275          * we allocate blocks but write fails for some reason
1276          */
1277         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1278         index = pos >> PAGE_SHIFT;
1279         from = pos & (PAGE_SIZE - 1);
1280         to = from + len;
1281
1282         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1283                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1284                                                     flags, pagep);
1285                 if (ret < 0)
1286                         return ret;
1287                 if (ret == 1)
1288                         return 0;
1289         }
1290
1291         /*
1292          * grab_cache_page_write_begin() can take a long time if the
1293          * system is thrashing due to memory pressure, or if the page
1294          * is being written back.  So grab it first before we start
1295          * the transaction handle.  This also allows us to allocate
1296          * the page (if needed) without using GFP_NOFS.
1297          */
1298 retry_grab:
1299         page = grab_cache_page_write_begin(mapping, index, flags);
1300         if (!page)
1301                 return -ENOMEM;
1302         unlock_page(page);
1303
1304 retry_journal:
1305         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1306         if (IS_ERR(handle)) {
1307                 put_page(page);
1308                 return PTR_ERR(handle);
1309         }
1310
1311         lock_page(page);
1312         if (page->mapping != mapping) {
1313                 /* The page got truncated from under us */
1314                 unlock_page(page);
1315                 put_page(page);
1316                 ext4_journal_stop(handle);
1317                 goto retry_grab;
1318         }
1319         /* In case writeback began while the page was unlocked */
1320         wait_for_stable_page(page);
1321
1322 #ifdef CONFIG_FS_ENCRYPTION
1323         if (ext4_should_dioread_nolock(inode))
1324                 ret = ext4_block_write_begin(page, pos, len,
1325                                              ext4_get_block_unwritten);
1326         else
1327                 ret = ext4_block_write_begin(page, pos, len,
1328                                              ext4_get_block);
1329 #else
1330         if (ext4_should_dioread_nolock(inode))
1331                 ret = __block_write_begin(page, pos, len,
1332                                           ext4_get_block_unwritten);
1333         else
1334                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1335 #endif
1336         if (!ret && ext4_should_journal_data(inode)) {
1337                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1338                                              from, to, NULL,
1339                                              do_journal_get_write_access);
1340         }
1341
1342         if (ret) {
1343                 unlock_page(page);
1344                 /*
1345                  * __block_write_begin may have instantiated a few blocks
1346                  * outside i_size.  Trim these off again. Don't need
1347                  * i_size_read because we hold i_mutex.
1348                  *
1349                  * Add inode to orphan list in case we crash before
1350                  * truncate finishes
1351                  */
1352                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1353                         ext4_orphan_add(handle, inode);
1354
1355                 ext4_journal_stop(handle);
1356                 if (pos + len > inode->i_size) {
1357                         ext4_truncate_failed_write(inode);
1358                         /*
1359                          * If truncate failed early the inode might
1360                          * still be on the orphan list; we need to
1361                          * make sure the inode is removed from the
1362                          * orphan list in that case.
1363                          */
1364                         if (inode->i_nlink)
1365                                 ext4_orphan_del(NULL, inode);
1366                 }
1367
1368                 if (ret == -ENOSPC &&
1369                     ext4_should_retry_alloc(inode->i_sb, &retries))
1370                         goto retry_journal;
1371                 put_page(page);
1372                 return ret;
1373         }
1374         *pagep = page;
1375         return ret;
1376 }
1377
1378 /* For write_end() in data=journal mode */
1379 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1380 {
1381         int ret;
1382         if (!buffer_mapped(bh) || buffer_freed(bh))
1383                 return 0;
1384         set_buffer_uptodate(bh);
1385         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1386         clear_buffer_meta(bh);
1387         clear_buffer_prio(bh);
1388         return ret;
1389 }
1390
1391 /*
1392  * We need to pick up the new inode size which generic_commit_write gave us
1393  * `file' can be NULL - eg, when called from page_symlink().
1394  *
1395  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1396  * buffers are managed internally.
1397  */
1398 static int ext4_write_end(struct file *file,
1399                           struct address_space *mapping,
1400                           loff_t pos, unsigned len, unsigned copied,
1401                           struct page *page, void *fsdata)
1402 {
1403         handle_t *handle = ext4_journal_current_handle();
1404         struct inode *inode = mapping->host;
1405         loff_t old_size = inode->i_size;
1406         int ret = 0, ret2;
1407         int i_size_changed = 0;
1408         int inline_data = ext4_has_inline_data(inode);
1409
1410         trace_ext4_write_end(inode, pos, len, copied);
1411         if (inline_data) {
1412                 ret = ext4_write_inline_data_end(inode, pos, len,
1413                                                  copied, page);
1414                 if (ret < 0) {
1415                         unlock_page(page);
1416                         put_page(page);
1417                         goto errout;
1418                 }
1419                 copied = ret;
1420         } else
1421                 copied = block_write_end(file, mapping, pos,
1422                                          len, copied, page, fsdata);
1423         /*
1424          * it's important to update i_size while still holding page lock:
1425          * page writeout could otherwise come in and zero beyond i_size.
1426          */
1427         i_size_changed = ext4_update_inode_size(inode, pos + copied);
1428         unlock_page(page);
1429         put_page(page);
1430
1431         if (old_size < pos)
1432                 pagecache_isize_extended(inode, old_size, pos);
1433         /*
1434          * Don't mark the inode dirty under page lock. First, it unnecessarily
1435          * makes the holding time of page lock longer. Second, it forces lock
1436          * ordering of page lock and transaction start for journaling
1437          * filesystems.
1438          */
1439         if (i_size_changed || inline_data)
1440                 ext4_mark_inode_dirty(handle, inode);
1441
1442         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1443                 /* if we have allocated more blocks and copied
1444                  * less. We will have blocks allocated outside
1445                  * inode->i_size. So truncate them
1446                  */
1447                 ext4_orphan_add(handle, inode);
1448 errout:
1449         ret2 = ext4_journal_stop(handle);
1450         if (!ret)
1451                 ret = ret2;
1452
1453         if (pos + len > inode->i_size) {
1454                 ext4_truncate_failed_write(inode);
1455                 /*
1456                  * If truncate failed early the inode might still be
1457                  * on the orphan list; we need to make sure the inode
1458                  * is removed from the orphan list in that case.
1459                  */
1460                 if (inode->i_nlink)
1461                         ext4_orphan_del(NULL, inode);
1462         }
1463
1464         return ret ? ret : copied;
1465 }
1466
1467 /*
1468  * This is a private version of page_zero_new_buffers() which doesn't
1469  * set the buffer to be dirty, since in data=journalled mode we need
1470  * to call ext4_handle_dirty_metadata() instead.
1471  */
1472 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1473                                             struct page *page,
1474                                             unsigned from, unsigned to)
1475 {
1476         unsigned int block_start = 0, block_end;
1477         struct buffer_head *head, *bh;
1478
1479         bh = head = page_buffers(page);
1480         do {
1481                 block_end = block_start + bh->b_size;
1482                 if (buffer_new(bh)) {
1483                         if (block_end > from && block_start < to) {
1484                                 if (!PageUptodate(page)) {
1485                                         unsigned start, size;
1486
1487                                         start = max(from, block_start);
1488                                         size = min(to, block_end) - start;
1489
1490                                         zero_user(page, start, size);
1491                                         write_end_fn(handle, bh);
1492                                 }
1493                                 clear_buffer_new(bh);
1494                         }
1495                 }
1496                 block_start = block_end;
1497                 bh = bh->b_this_page;
1498         } while (bh != head);
1499 }
1500
1501 static int ext4_journalled_write_end(struct file *file,
1502                                      struct address_space *mapping,
1503                                      loff_t pos, unsigned len, unsigned copied,
1504                                      struct page *page, void *fsdata)
1505 {
1506         handle_t *handle = ext4_journal_current_handle();
1507         struct inode *inode = mapping->host;
1508         loff_t old_size = inode->i_size;
1509         int ret = 0, ret2;
1510         int partial = 0;
1511         unsigned from, to;
1512         int size_changed = 0;
1513         int inline_data = ext4_has_inline_data(inode);
1514
1515         trace_ext4_journalled_write_end(inode, pos, len, copied);
1516         from = pos & (PAGE_SIZE - 1);
1517         to = from + len;
1518
1519         BUG_ON(!ext4_handle_valid(handle));
1520
1521         if (inline_data) {
1522                 ret = ext4_write_inline_data_end(inode, pos, len,
1523                                                  copied, page);
1524                 if (ret < 0) {
1525                         unlock_page(page);
1526                         put_page(page);
1527                         goto errout;
1528                 }
1529                 copied = ret;
1530         } else if (unlikely(copied < len) && !PageUptodate(page)) {
1531                 copied = 0;
1532                 ext4_journalled_zero_new_buffers(handle, page, from, to);
1533         } else {
1534                 if (unlikely(copied < len))
1535                         ext4_journalled_zero_new_buffers(handle, page,
1536                                                          from + copied, to);
1537                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1538                                              from + copied, &partial,
1539                                              write_end_fn);
1540                 if (!partial)
1541                         SetPageUptodate(page);
1542         }
1543         size_changed = ext4_update_inode_size(inode, pos + copied);
1544         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1545         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1546         unlock_page(page);
1547         put_page(page);
1548
1549         if (old_size < pos)
1550                 pagecache_isize_extended(inode, old_size, pos);
1551
1552         if (size_changed || inline_data) {
1553                 ret2 = ext4_mark_inode_dirty(handle, inode);
1554                 if (!ret)
1555                         ret = ret2;
1556         }
1557
1558         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1559                 /* if we have allocated more blocks and copied
1560                  * less. We will have blocks allocated outside
1561                  * inode->i_size. So truncate them
1562                  */
1563                 ext4_orphan_add(handle, inode);
1564
1565 errout:
1566         ret2 = ext4_journal_stop(handle);
1567         if (!ret)
1568                 ret = ret2;
1569         if (pos + len > inode->i_size) {
1570                 ext4_truncate_failed_write(inode);
1571                 /*
1572                  * If truncate failed early the inode might still be
1573                  * on the orphan list; we need to make sure the inode
1574                  * is removed from the orphan list in that case.
1575                  */
1576                 if (inode->i_nlink)
1577                         ext4_orphan_del(NULL, inode);
1578         }
1579
1580         return ret ? ret : copied;
1581 }
1582
1583 /*
1584  * Reserve space for a single cluster
1585  */
1586 static int ext4_da_reserve_space(struct inode *inode)
1587 {
1588         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1589         struct ext4_inode_info *ei = EXT4_I(inode);
1590         int ret;
1591
1592         /*
1593          * We will charge metadata quota at writeout time; this saves
1594          * us from metadata over-estimation, though we may go over by
1595          * a small amount in the end.  Here we just reserve for data.
1596          */
1597         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1598         if (ret)
1599                 return ret;
1600
1601         spin_lock(&ei->i_block_reservation_lock);
1602         if (ext4_claim_free_clusters(sbi, 1, 0)) {
1603                 spin_unlock(&ei->i_block_reservation_lock);
1604                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1605                 return -ENOSPC;
1606         }
1607         ei->i_reserved_data_blocks++;
1608         trace_ext4_da_reserve_space(inode);
1609         spin_unlock(&ei->i_block_reservation_lock);
1610
1611         return 0;       /* success */
1612 }
1613
1614 void ext4_da_release_space(struct inode *inode, int to_free)
1615 {
1616         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1617         struct ext4_inode_info *ei = EXT4_I(inode);
1618
1619         if (!to_free)
1620                 return;         /* Nothing to release, exit */
1621
1622         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1623
1624         trace_ext4_da_release_space(inode, to_free);
1625         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1626                 /*
1627                  * if there aren't enough reserved blocks, then the
1628                  * counter is messed up somewhere.  Since this
1629                  * function is called from invalidate page, it's
1630                  * harmless to return without any action.
1631                  */
1632                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1633                          "ino %lu, to_free %d with only %d reserved "
1634                          "data blocks", inode->i_ino, to_free,
1635                          ei->i_reserved_data_blocks);
1636                 WARN_ON(1);
1637                 to_free = ei->i_reserved_data_blocks;
1638         }
1639         ei->i_reserved_data_blocks -= to_free;
1640
1641         /* update fs dirty data blocks counter */
1642         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1643
1644         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1645
1646         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1647 }
1648
1649 static void ext4_da_page_release_reservation(struct page *page,
1650                                              unsigned int offset,
1651                                              unsigned int length)
1652 {
1653         int contiguous_blks = 0;
1654         struct buffer_head *head, *bh;
1655         unsigned int curr_off = 0;
1656         struct inode *inode = page->mapping->host;
1657         unsigned int stop = offset + length;
1658         ext4_fsblk_t lblk;
1659
1660         BUG_ON(stop > PAGE_SIZE || stop < length);
1661
1662         head = page_buffers(page);
1663         bh = head;
1664         do {
1665                 unsigned int next_off = curr_off + bh->b_size;
1666
1667                 if (next_off > stop)
1668                         break;
1669
1670                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1671                         contiguous_blks++;
1672                         clear_buffer_delay(bh);
1673                 } else if (contiguous_blks) {
1674                         lblk = page->index <<
1675                                (PAGE_SHIFT - inode->i_blkbits);
1676                         lblk += (curr_off >> inode->i_blkbits) -
1677                                 contiguous_blks;
1678                         ext4_es_remove_blks(inode, lblk, contiguous_blks);
1679                         contiguous_blks = 0;
1680                 }
1681                 curr_off = next_off;
1682         } while ((bh = bh->b_this_page) != head);
1683
1684         if (contiguous_blks) {
1685                 lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
1686                 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1687                 ext4_es_remove_blks(inode, lblk, contiguous_blks);
1688         }
1689
1690 }
1691
1692 /*
1693  * Delayed allocation stuff
1694  */
1695
1696 struct mpage_da_data {
1697         struct inode *inode;
1698         struct writeback_control *wbc;
1699
1700         pgoff_t first_page;     /* The first page to write */
1701         pgoff_t next_page;      /* Current page to examine */
1702         pgoff_t last_page;      /* Last page to examine */
1703         /*
1704          * Extent to map - this can be after first_page because that can be
1705          * fully mapped. We somewhat abuse m_flags to store whether the extent
1706          * is delalloc or unwritten.
1707          */
1708         struct ext4_map_blocks map;
1709         struct ext4_io_submit io_submit;        /* IO submission data */
1710         unsigned int do_map:1;
1711 };
1712
1713 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1714                                        bool invalidate)
1715 {
1716         int nr_pages, i;
1717         pgoff_t index, end;
1718         struct pagevec pvec;
1719         struct inode *inode = mpd->inode;
1720         struct address_space *mapping = inode->i_mapping;
1721
1722         /* This is necessary when next_page == 0. */
1723         if (mpd->first_page >= mpd->next_page)
1724                 return;
1725
1726         index = mpd->first_page;
1727         end   = mpd->next_page - 1;
1728         if (invalidate) {
1729                 ext4_lblk_t start, last;
1730                 start = index << (PAGE_SHIFT - inode->i_blkbits);
1731                 last = end << (PAGE_SHIFT - inode->i_blkbits);
1732                 ext4_es_remove_extent(inode, start, last - start + 1);
1733         }
1734
1735         pagevec_init(&pvec);
1736         while (index <= end) {
1737                 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1738                 if (nr_pages == 0)
1739                         break;
1740                 for (i = 0; i < nr_pages; i++) {
1741                         struct page *page = pvec.pages[i];
1742
1743                         BUG_ON(!PageLocked(page));
1744                         BUG_ON(PageWriteback(page));
1745                         if (invalidate) {
1746                                 if (page_mapped(page))
1747                                         clear_page_dirty_for_io(page);
1748                                 block_invalidatepage(page, 0, PAGE_SIZE);
1749                                 ClearPageUptodate(page);
1750                         }
1751                         unlock_page(page);
1752                 }
1753                 pagevec_release(&pvec);
1754         }
1755 }
1756
1757 static void ext4_print_free_blocks(struct inode *inode)
1758 {
1759         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1760         struct super_block *sb = inode->i_sb;
1761         struct ext4_inode_info *ei = EXT4_I(inode);
1762
1763         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1764                EXT4_C2B(EXT4_SB(inode->i_sb),
1765                         ext4_count_free_clusters(sb)));
1766         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1767         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1768                (long long) EXT4_C2B(EXT4_SB(sb),
1769                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1770         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1771                (long long) EXT4_C2B(EXT4_SB(sb),
1772                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1773         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1774         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1775                  ei->i_reserved_data_blocks);
1776         return;
1777 }
1778
1779 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1780 {
1781         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1782 }
1783
1784 /*
1785  * ext4_insert_delayed_block - adds a delayed block to the extents status
1786  *                             tree, incrementing the reserved cluster/block
1787  *                             count or making a pending reservation
1788  *                             where needed
1789  *
1790  * @inode - file containing the newly added block
1791  * @lblk - logical block to be added
1792  *
1793  * Returns 0 on success, negative error code on failure.
1794  */
1795 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1796 {
1797         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1798         int ret;
1799         bool allocated = false;
1800
1801         /*
1802          * If the cluster containing lblk is shared with a delayed,
1803          * written, or unwritten extent in a bigalloc file system, it's
1804          * already been accounted for and does not need to be reserved.
1805          * A pending reservation must be made for the cluster if it's
1806          * shared with a written or unwritten extent and doesn't already
1807          * have one.  Written and unwritten extents can be purged from the
1808          * extents status tree if the system is under memory pressure, so
1809          * it's necessary to examine the extent tree if a search of the
1810          * extents status tree doesn't get a match.
1811          */
1812         if (sbi->s_cluster_ratio == 1) {
1813                 ret = ext4_da_reserve_space(inode);
1814                 if (ret != 0)   /* ENOSPC */
1815                         goto errout;
1816         } else {   /* bigalloc */
1817                 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1818                         if (!ext4_es_scan_clu(inode,
1819                                               &ext4_es_is_mapped, lblk)) {
1820                                 ret = ext4_clu_mapped(inode,
1821                                                       EXT4_B2C(sbi, lblk));
1822                                 if (ret < 0)
1823                                         goto errout;
1824                                 if (ret == 0) {
1825                                         ret = ext4_da_reserve_space(inode);
1826                                         if (ret != 0)   /* ENOSPC */
1827                                                 goto errout;
1828                                 } else {
1829                                         allocated = true;
1830                                 }
1831                         } else {
1832                                 allocated = true;
1833                         }
1834                 }
1835         }
1836
1837         ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1838
1839 errout:
1840         return ret;
1841 }
1842
1843 /*
1844  * This function is grabs code from the very beginning of
1845  * ext4_map_blocks, but assumes that the caller is from delayed write
1846  * time. This function looks up the requested blocks and sets the
1847  * buffer delay bit under the protection of i_data_sem.
1848  */
1849 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1850                               struct ext4_map_blocks *map,
1851                               struct buffer_head *bh)
1852 {
1853         struct extent_status es;
1854         int retval;
1855         sector_t invalid_block = ~((sector_t) 0xffff);
1856 #ifdef ES_AGGRESSIVE_TEST
1857         struct ext4_map_blocks orig_map;
1858
1859         memcpy(&orig_map, map, sizeof(*map));
1860 #endif
1861
1862         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1863                 invalid_block = ~0;
1864
1865         map->m_flags = 0;
1866         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1867                   "logical block %lu\n", inode->i_ino, map->m_len,
1868                   (unsigned long) map->m_lblk);
1869
1870         /* Lookup extent status tree firstly */
1871         if (ext4_es_lookup_extent(inode, iblock, &es)) {
1872                 if (ext4_es_is_hole(&es)) {
1873                         retval = 0;
1874                         down_read(&EXT4_I(inode)->i_data_sem);
1875                         goto add_delayed;
1876                 }
1877
1878                 /*
1879                  * Delayed extent could be allocated by fallocate.
1880                  * So we need to check it.
1881                  */
1882                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1883                         map_bh(bh, inode->i_sb, invalid_block);
1884                         set_buffer_new(bh);
1885                         set_buffer_delay(bh);
1886                         return 0;
1887                 }
1888
1889                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1890                 retval = es.es_len - (iblock - es.es_lblk);
1891                 if (retval > map->m_len)
1892                         retval = map->m_len;
1893                 map->m_len = retval;
1894                 if (ext4_es_is_written(&es))
1895                         map->m_flags |= EXT4_MAP_MAPPED;
1896                 else if (ext4_es_is_unwritten(&es))
1897                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1898                 else
1899                         BUG();
1900
1901 #ifdef ES_AGGRESSIVE_TEST
1902                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1903 #endif
1904                 return retval;
1905         }
1906
1907         /*
1908          * Try to see if we can get the block without requesting a new
1909          * file system block.
1910          */
1911         down_read(&EXT4_I(inode)->i_data_sem);
1912         if (ext4_has_inline_data(inode))
1913                 retval = 0;
1914         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1915                 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1916         else
1917                 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1918
1919 add_delayed:
1920         if (retval == 0) {
1921                 int ret;
1922
1923                 /*
1924                  * XXX: __block_prepare_write() unmaps passed block,
1925                  * is it OK?
1926                  */
1927
1928                 ret = ext4_insert_delayed_block(inode, map->m_lblk);
1929                 if (ret != 0) {
1930                         retval = ret;
1931                         goto out_unlock;
1932                 }
1933
1934                 map_bh(bh, inode->i_sb, invalid_block);
1935                 set_buffer_new(bh);
1936                 set_buffer_delay(bh);
1937         } else if (retval > 0) {
1938                 int ret;
1939                 unsigned int status;
1940
1941                 if (unlikely(retval != map->m_len)) {
1942                         ext4_warning(inode->i_sb,
1943                                      "ES len assertion failed for inode "
1944                                      "%lu: retval %d != map->m_len %d",
1945                                      inode->i_ino, retval, map->m_len);
1946                         WARN_ON(1);
1947                 }
1948
1949                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1950                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1951                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1952                                             map->m_pblk, status);
1953                 if (ret != 0)
1954                         retval = ret;
1955         }
1956
1957 out_unlock:
1958         up_read((&EXT4_I(inode)->i_data_sem));
1959
1960         return retval;
1961 }
1962
1963 /*
1964  * This is a special get_block_t callback which is used by
1965  * ext4_da_write_begin().  It will either return mapped block or
1966  * reserve space for a single block.
1967  *
1968  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1969  * We also have b_blocknr = -1 and b_bdev initialized properly
1970  *
1971  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1972  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1973  * initialized properly.
1974  */
1975 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1976                            struct buffer_head *bh, int create)
1977 {
1978         struct ext4_map_blocks map;
1979         int ret = 0;
1980
1981         BUG_ON(create == 0);
1982         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1983
1984         map.m_lblk = iblock;
1985         map.m_len = 1;
1986
1987         /*
1988          * first, we need to know whether the block is allocated already
1989          * preallocated blocks are unmapped but should treated
1990          * the same as allocated blocks.
1991          */
1992         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1993         if (ret <= 0)
1994                 return ret;
1995
1996         map_bh(bh, inode->i_sb, map.m_pblk);
1997         ext4_update_bh_state(bh, map.m_flags);
1998
1999         if (buffer_unwritten(bh)) {
2000                 /* A delayed write to unwritten bh should be marked
2001                  * new and mapped.  Mapped ensures that we don't do
2002                  * get_block multiple times when we write to the same
2003                  * offset and new ensures that we do proper zero out
2004                  * for partial write.
2005                  */
2006                 set_buffer_new(bh);
2007                 set_buffer_mapped(bh);
2008         }
2009         return 0;
2010 }
2011
2012 static int bget_one(handle_t *handle, struct buffer_head *bh)
2013 {
2014         get_bh(bh);
2015         return 0;
2016 }
2017
2018 static int bput_one(handle_t *handle, struct buffer_head *bh)
2019 {
2020         put_bh(bh);
2021         return 0;
2022 }
2023
2024 static int __ext4_journalled_writepage(struct page *page,
2025                                        unsigned int len)
2026 {
2027         struct address_space *mapping = page->mapping;
2028         struct inode *inode = mapping->host;
2029         struct buffer_head *page_bufs = NULL;
2030         handle_t *handle = NULL;
2031         int ret = 0, err = 0;
2032         int inline_data = ext4_has_inline_data(inode);
2033         struct buffer_head *inode_bh = NULL;
2034
2035         ClearPageChecked(page);
2036
2037         if (inline_data) {
2038                 BUG_ON(page->index != 0);
2039                 BUG_ON(len > ext4_get_max_inline_size(inode));
2040                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
2041                 if (inode_bh == NULL)
2042                         goto out;
2043         } else {
2044                 page_bufs = page_buffers(page);
2045                 if (!page_bufs) {
2046                         BUG();
2047                         goto out;
2048                 }
2049                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2050                                        NULL, bget_one);
2051         }
2052         /*
2053          * We need to release the page lock before we start the
2054          * journal, so grab a reference so the page won't disappear
2055          * out from under us.
2056          */
2057         get_page(page);
2058         unlock_page(page);
2059
2060         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2061                                     ext4_writepage_trans_blocks(inode));
2062         if (IS_ERR(handle)) {
2063                 ret = PTR_ERR(handle);
2064                 put_page(page);
2065                 goto out_no_pagelock;
2066         }
2067         BUG_ON(!ext4_handle_valid(handle));
2068
2069         lock_page(page);
2070         put_page(page);
2071         if (page->mapping != mapping) {
2072                 /* The page got truncated from under us */
2073                 ext4_journal_stop(handle);
2074                 ret = 0;
2075                 goto out;
2076         }
2077
2078         if (inline_data) {
2079                 ret = ext4_mark_inode_dirty(handle, inode);
2080         } else {
2081                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2082                                              do_journal_get_write_access);
2083
2084                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2085                                              write_end_fn);
2086         }
2087         if (ret == 0)
2088                 ret = err;
2089         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2090         err = ext4_journal_stop(handle);
2091         if (!ret)
2092                 ret = err;
2093
2094         if (!ext4_has_inline_data(inode))
2095                 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
2096                                        NULL, bput_one);
2097         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2098 out:
2099         unlock_page(page);
2100 out_no_pagelock:
2101         brelse(inode_bh);
2102         return ret;
2103 }
2104
2105 /*
2106  * Note that we don't need to start a transaction unless we're journaling data
2107  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2108  * need to file the inode to the transaction's list in ordered mode because if
2109  * we are writing back data added by write(), the inode is already there and if
2110  * we are writing back data modified via mmap(), no one guarantees in which
2111  * transaction the data will hit the disk. In case we are journaling data, we
2112  * cannot start transaction directly because transaction start ranks above page
2113  * lock so we have to do some magic.
2114  *
2115  * This function can get called via...
2116  *   - ext4_writepages after taking page lock (have journal handle)
2117  *   - journal_submit_inode_data_buffers (no journal handle)
2118  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2119  *   - grab_page_cache when doing write_begin (have journal handle)
2120  *
2121  * We don't do any block allocation in this function. If we have page with
2122  * multiple blocks we need to write those buffer_heads that are mapped. This
2123  * is important for mmaped based write. So if we do with blocksize 1K
2124  * truncate(f, 1024);
2125  * a = mmap(f, 0, 4096);
2126  * a[0] = 'a';
2127  * truncate(f, 4096);
2128  * we have in the page first buffer_head mapped via page_mkwrite call back
2129  * but other buffer_heads would be unmapped but dirty (dirty done via the
2130  * do_wp_page). So writepage should write the first block. If we modify
2131  * the mmap area beyond 1024 we will again get a page_fault and the
2132  * page_mkwrite callback will do the block allocation and mark the
2133  * buffer_heads mapped.
2134  *
2135  * We redirty the page if we have any buffer_heads that is either delay or
2136  * unwritten in the page.
2137  *
2138  * We can get recursively called as show below.
2139  *
2140  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2141  *              ext4_writepage()
2142  *
2143  * But since we don't do any block allocation we should not deadlock.
2144  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2145  */
2146 static int ext4_writepage(struct page *page,
2147                           struct writeback_control *wbc)
2148 {
2149         int ret = 0;
2150         loff_t size;
2151         unsigned int len;
2152         struct buffer_head *page_bufs = NULL;
2153         struct inode *inode = page->mapping->host;
2154         struct ext4_io_submit io_submit;
2155         bool keep_towrite = false;
2156
2157         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2158                 ext4_invalidatepage(page, 0, PAGE_SIZE);
2159                 unlock_page(page);
2160                 return -EIO;
2161         }
2162
2163         trace_ext4_writepage(page);
2164         size = i_size_read(inode);
2165         if (page->index == size >> PAGE_SHIFT)
2166                 len = size & ~PAGE_MASK;
2167         else
2168                 len = PAGE_SIZE;
2169
2170         page_bufs = page_buffers(page);
2171         /*
2172          * We cannot do block allocation or other extent handling in this
2173          * function. If there are buffers needing that, we have to redirty
2174          * the page. But we may reach here when we do a journal commit via
2175          * journal_submit_inode_data_buffers() and in that case we must write
2176          * allocated buffers to achieve data=ordered mode guarantees.
2177          *
2178          * Also, if there is only one buffer per page (the fs block
2179          * size == the page size), if one buffer needs block
2180          * allocation or needs to modify the extent tree to clear the
2181          * unwritten flag, we know that the page can't be written at
2182          * all, so we might as well refuse the write immediately.
2183          * Unfortunately if the block size != page size, we can't as
2184          * easily detect this case using ext4_walk_page_buffers(), but
2185          * for the extremely common case, this is an optimization that
2186          * skips a useless round trip through ext4_bio_write_page().
2187          */
2188         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2189                                    ext4_bh_delay_or_unwritten)) {
2190                 redirty_page_for_writepage(wbc, page);
2191                 if ((current->flags & PF_MEMALLOC) ||
2192                     (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2193                         /*
2194                          * For memory cleaning there's no point in writing only
2195                          * some buffers. So just bail out. Warn if we came here
2196                          * from direct reclaim.
2197                          */
2198                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2199                                                         == PF_MEMALLOC);
2200                         unlock_page(page);
2201                         return 0;
2202                 }
2203                 keep_towrite = true;
2204         }
2205
2206         if (PageChecked(page) && ext4_should_journal_data(inode))
2207                 /*
2208                  * It's mmapped pagecache.  Add buffers and journal it.  There
2209                  * doesn't seem much point in redirtying the page here.
2210                  */
2211                 return __ext4_journalled_writepage(page, len);
2212
2213         ext4_io_submit_init(&io_submit, wbc);
2214         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2215         if (!io_submit.io_end) {
2216                 redirty_page_for_writepage(wbc, page);
2217                 unlock_page(page);
2218                 return -ENOMEM;
2219         }
2220         ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2221         ext4_io_submit(&io_submit);
2222         /* Drop io_end reference we got from init */
2223         ext4_put_io_end_defer(io_submit.io_end);
2224         return ret;
2225 }
2226
2227 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2228 {
2229         int len;
2230         loff_t size;
2231         int err;
2232
2233         BUG_ON(page->index != mpd->first_page);
2234         clear_page_dirty_for_io(page);
2235         /*
2236          * We have to be very careful here!  Nothing protects writeback path
2237          * against i_size changes and the page can be writeably mapped into
2238          * page tables. So an application can be growing i_size and writing
2239          * data through mmap while writeback runs. clear_page_dirty_for_io()
2240          * write-protects our page in page tables and the page cannot get
2241          * written to again until we release page lock. So only after
2242          * clear_page_dirty_for_io() we are safe to sample i_size for
2243          * ext4_bio_write_page() to zero-out tail of the written page. We rely
2244          * on the barrier provided by TestClearPageDirty in
2245          * clear_page_dirty_for_io() to make sure i_size is really sampled only
2246          * after page tables are updated.
2247          */
2248         size = i_size_read(mpd->inode);
2249         if (page->index == size >> PAGE_SHIFT)
2250                 len = size & ~PAGE_MASK;
2251         else
2252                 len = PAGE_SIZE;
2253         err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2254         if (!err)
2255                 mpd->wbc->nr_to_write--;
2256         mpd->first_page++;
2257
2258         return err;
2259 }
2260
2261 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2262
2263 /*
2264  * mballoc gives us at most this number of blocks...
2265  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2266  * The rest of mballoc seems to handle chunks up to full group size.
2267  */
2268 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2269
2270 /*
2271  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2272  *
2273  * @mpd - extent of blocks
2274  * @lblk - logical number of the block in the file
2275  * @bh - buffer head we want to add to the extent
2276  *
2277  * The function is used to collect contig. blocks in the same state. If the
2278  * buffer doesn't require mapping for writeback and we haven't started the
2279  * extent of buffers to map yet, the function returns 'true' immediately - the
2280  * caller can write the buffer right away. Otherwise the function returns true
2281  * if the block has been added to the extent, false if the block couldn't be
2282  * added.
2283  */
2284 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2285                                    struct buffer_head *bh)
2286 {
2287         struct ext4_map_blocks *map = &mpd->map;
2288
2289         /* Buffer that doesn't need mapping for writeback? */
2290         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2291             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2292                 /* So far no extent to map => we write the buffer right away */
2293                 if (map->m_len == 0)
2294                         return true;
2295                 return false;
2296         }
2297
2298         /* First block in the extent? */
2299         if (map->m_len == 0) {
2300                 /* We cannot map unless handle is started... */
2301                 if (!mpd->do_map)
2302                         return false;
2303                 map->m_lblk = lblk;
2304                 map->m_len = 1;
2305                 map->m_flags = bh->b_state & BH_FLAGS;
2306                 return true;
2307         }
2308
2309         /* Don't go larger than mballoc is willing to allocate */
2310         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2311                 return false;
2312
2313         /* Can we merge the block to our big extent? */
2314         if (lblk == map->m_lblk + map->m_len &&
2315             (bh->b_state & BH_FLAGS) == map->m_flags) {
2316                 map->m_len++;
2317                 return true;
2318         }
2319         return false;
2320 }
2321
2322 /*
2323  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2324  *
2325  * @mpd - extent of blocks for mapping
2326  * @head - the first buffer in the page
2327  * @bh - buffer we should start processing from
2328  * @lblk - logical number of the block in the file corresponding to @bh
2329  *
2330  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2331  * the page for IO if all buffers in this page were mapped and there's no
2332  * accumulated extent of buffers to map or add buffers in the page to the
2333  * extent of buffers to map. The function returns 1 if the caller can continue
2334  * by processing the next page, 0 if it should stop adding buffers to the
2335  * extent to map because we cannot extend it anymore. It can also return value
2336  * < 0 in case of error during IO submission.
2337  */
2338 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2339                                    struct buffer_head *head,
2340                                    struct buffer_head *bh,
2341                                    ext4_lblk_t lblk)
2342 {
2343         struct inode *inode = mpd->inode;
2344         int err;
2345         ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2346                                                         >> inode->i_blkbits;
2347
2348         do {
2349                 BUG_ON(buffer_locked(bh));
2350
2351                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2352                         /* Found extent to map? */
2353                         if (mpd->map.m_len)
2354                                 return 0;
2355                         /* Buffer needs mapping and handle is not started? */
2356                         if (!mpd->do_map)
2357                                 return 0;
2358                         /* Everything mapped so far and we hit EOF */
2359                         break;
2360                 }
2361         } while (lblk++, (bh = bh->b_this_page) != head);
2362         /* So far everything mapped? Submit the page for IO. */
2363         if (mpd->map.m_len == 0) {
2364                 err = mpage_submit_page(mpd, head->b_page);
2365                 if (err < 0)
2366                         return err;
2367         }
2368         return lblk < blocks;
2369 }
2370
2371 /*
2372  * mpage_map_buffers - update buffers corresponding to changed extent and
2373  *                     submit fully mapped pages for IO
2374  *
2375  * @mpd - description of extent to map, on return next extent to map
2376  *
2377  * Scan buffers corresponding to changed extent (we expect corresponding pages
2378  * to be already locked) and update buffer state according to new extent state.
2379  * We map delalloc buffers to their physical location, clear unwritten bits,
2380  * and mark buffers as uninit when we perform writes to unwritten extents
2381  * and do extent conversion after IO is finished. If the last page is not fully
2382  * mapped, we update @map to the next extent in the last page that needs
2383  * mapping. Otherwise we submit the page for IO.
2384  */
2385 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2386 {
2387         struct pagevec pvec;
2388         int nr_pages, i;
2389         struct inode *inode = mpd->inode;
2390         struct buffer_head *head, *bh;
2391         int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2392         pgoff_t start, end;
2393         ext4_lblk_t lblk;
2394         sector_t pblock;
2395         int err;
2396
2397         start = mpd->map.m_lblk >> bpp_bits;
2398         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2399         lblk = start << bpp_bits;
2400         pblock = mpd->map.m_pblk;
2401
2402         pagevec_init(&pvec);
2403         while (start <= end) {
2404                 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2405                                                 &start, end);
2406                 if (nr_pages == 0)
2407                         break;
2408                 for (i = 0; i < nr_pages; i++) {
2409                         struct page *page = pvec.pages[i];
2410
2411                         bh = head = page_buffers(page);
2412                         do {
2413                                 if (lblk < mpd->map.m_lblk)
2414                                         continue;
2415                                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2416                                         /*
2417                                          * Buffer after end of mapped extent.
2418                                          * Find next buffer in the page to map.
2419                                          */
2420                                         mpd->map.m_len = 0;
2421                                         mpd->map.m_flags = 0;
2422                                         /*
2423                                          * FIXME: If dioread_nolock supports
2424                                          * blocksize < pagesize, we need to make
2425                                          * sure we add size mapped so far to
2426                                          * io_end->size as the following call
2427                                          * can submit the page for IO.
2428                                          */
2429                                         err = mpage_process_page_bufs(mpd, head,
2430                                                                       bh, lblk);
2431                                         pagevec_release(&pvec);
2432                                         if (err > 0)
2433                                                 err = 0;
2434                                         return err;
2435                                 }
2436                                 if (buffer_delay(bh)) {
2437                                         clear_buffer_delay(bh);
2438                                         bh->b_blocknr = pblock++;
2439                                 }
2440                                 clear_buffer_unwritten(bh);
2441                         } while (lblk++, (bh = bh->b_this_page) != head);
2442
2443                         /*
2444                          * FIXME: This is going to break if dioread_nolock
2445                          * supports blocksize < pagesize as we will try to
2446                          * convert potentially unmapped parts of inode.
2447                          */
2448                         mpd->io_submit.io_end->size += PAGE_SIZE;
2449                         /* Page fully mapped - let IO run! */
2450                         err = mpage_submit_page(mpd, page);
2451                         if (err < 0) {
2452                                 pagevec_release(&pvec);
2453                                 return err;
2454                         }
2455                 }
2456                 pagevec_release(&pvec);
2457         }
2458         /* Extent fully mapped and matches with page boundary. We are done. */
2459         mpd->map.m_len = 0;
2460         mpd->map.m_flags = 0;
2461         return 0;
2462 }
2463
2464 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2465 {
2466         struct inode *inode = mpd->inode;
2467         struct ext4_map_blocks *map = &mpd->map;
2468         int get_blocks_flags;
2469         int err, dioread_nolock;
2470
2471         trace_ext4_da_write_pages_extent(inode, map);
2472         /*
2473          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2474          * to convert an unwritten extent to be initialized (in the case
2475          * where we have written into one or more preallocated blocks).  It is
2476          * possible that we're going to need more metadata blocks than
2477          * previously reserved. However we must not fail because we're in
2478          * writeback and there is nothing we can do about it so it might result
2479          * in data loss.  So use reserved blocks to allocate metadata if
2480          * possible.
2481          *
2482          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2483          * the blocks in question are delalloc blocks.  This indicates
2484          * that the blocks and quotas has already been checked when
2485          * the data was copied into the page cache.
2486          */
2487         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2488                            EXT4_GET_BLOCKS_METADATA_NOFAIL |
2489                            EXT4_GET_BLOCKS_IO_SUBMIT;
2490         dioread_nolock = ext4_should_dioread_nolock(inode);
2491         if (dioread_nolock)
2492                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2493         if (map->m_flags & (1 << BH_Delay))
2494                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2495
2496         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2497         if (err < 0)
2498                 return err;
2499         if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2500                 if (!mpd->io_submit.io_end->handle &&
2501                     ext4_handle_valid(handle)) {
2502                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2503                         handle->h_rsv_handle = NULL;
2504                 }
2505                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2506         }
2507
2508         BUG_ON(map->m_len == 0);
2509         return 0;
2510 }
2511
2512 /*
2513  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2514  *                               mpd->len and submit pages underlying it for IO
2515  *
2516  * @handle - handle for journal operations
2517  * @mpd - extent to map
2518  * @give_up_on_write - we set this to true iff there is a fatal error and there
2519  *                     is no hope of writing the data. The caller should discard
2520  *                     dirty pages to avoid infinite loops.
2521  *
2522  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2523  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2524  * them to initialized or split the described range from larger unwritten
2525  * extent. Note that we need not map all the described range since allocation
2526  * can return less blocks or the range is covered by more unwritten extents. We
2527  * cannot map more because we are limited by reserved transaction credits. On
2528  * the other hand we always make sure that the last touched page is fully
2529  * mapped so that it can be written out (and thus forward progress is
2530  * guaranteed). After mapping we submit all mapped pages for IO.
2531  */
2532 static int mpage_map_and_submit_extent(handle_t *handle,
2533                                        struct mpage_da_data *mpd,
2534                                        bool *give_up_on_write)
2535 {
2536         struct inode *inode = mpd->inode;
2537         struct ext4_map_blocks *map = &mpd->map;
2538         int err;
2539         loff_t disksize;
2540         int progress = 0;
2541
2542         mpd->io_submit.io_end->offset =
2543                                 ((loff_t)map->m_lblk) << inode->i_blkbits;
2544         do {
2545                 err = mpage_map_one_extent(handle, mpd);
2546                 if (err < 0) {
2547                         struct super_block *sb = inode->i_sb;
2548
2549                         if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2550                             EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2551                                 goto invalidate_dirty_pages;
2552                         /*
2553                          * Let the uper layers retry transient errors.
2554                          * In the case of ENOSPC, if ext4_count_free_blocks()
2555                          * is non-zero, a commit should free up blocks.
2556                          */
2557                         if ((err == -ENOMEM) ||
2558                             (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2559                                 if (progress)
2560                                         goto update_disksize;
2561                                 return err;
2562                         }
2563                         ext4_msg(sb, KERN_CRIT,
2564                                  "Delayed block allocation failed for "
2565                                  "inode %lu at logical offset %llu with"
2566                                  " max blocks %u with error %d",
2567                                  inode->i_ino,
2568                                  (unsigned long long)map->m_lblk,
2569                                  (unsigned)map->m_len, -err);
2570                         ext4_msg(sb, KERN_CRIT,
2571                                  "This should not happen!! Data will "
2572                                  "be lost\n");
2573                         if (err == -ENOSPC)
2574                                 ext4_print_free_blocks(inode);
2575                 invalidate_dirty_pages:
2576                         *give_up_on_write = true;
2577                         return err;
2578                 }
2579                 progress = 1;
2580                 /*
2581                  * Update buffer state, submit mapped pages, and get us new
2582                  * extent to map
2583                  */
2584                 err = mpage_map_and_submit_buffers(mpd);
2585                 if (err < 0)
2586                         goto update_disksize;
2587         } while (map->m_len);
2588
2589 update_disksize:
2590         /*
2591          * Update on-disk size after IO is submitted.  Races with
2592          * truncate are avoided by checking i_size under i_data_sem.
2593          */
2594         disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2595         if (disksize > EXT4_I(inode)->i_disksize) {
2596                 int err2;
2597                 loff_t i_size;
2598
2599                 down_write(&EXT4_I(inode)->i_data_sem);
2600                 i_size = i_size_read(inode);
2601                 if (disksize > i_size)
2602                         disksize = i_size;
2603                 if (disksize > EXT4_I(inode)->i_disksize)
2604                         EXT4_I(inode)->i_disksize = disksize;
2605                 up_write(&EXT4_I(inode)->i_data_sem);
2606                 err2 = ext4_mark_inode_dirty(handle, inode);
2607                 if (err2)
2608                         ext4_error(inode->i_sb,
2609                                    "Failed to mark inode %lu dirty",
2610                                    inode->i_ino);
2611                 if (!err)
2612                         err = err2;
2613         }
2614         return err;
2615 }
2616
2617 /*
2618  * Calculate the total number of credits to reserve for one writepages
2619  * iteration. This is called from ext4_writepages(). We map an extent of
2620  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2621  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2622  * bpp - 1 blocks in bpp different extents.
2623  */
2624 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2625 {
2626         int bpp = ext4_journal_blocks_per_page(inode);
2627
2628         return ext4_meta_trans_blocks(inode,
2629                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2630 }
2631
2632 /*
2633  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2634  *                               and underlying extent to map
2635  *
2636  * @mpd - where to look for pages
2637  *
2638  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2639  * IO immediately. When we find a page which isn't mapped we start accumulating
2640  * extent of buffers underlying these pages that needs mapping (formed by
2641  * either delayed or unwritten buffers). We also lock the pages containing
2642  * these buffers. The extent found is returned in @mpd structure (starting at
2643  * mpd->lblk with length mpd->len blocks).
2644  *
2645  * Note that this function can attach bios to one io_end structure which are
2646  * neither logically nor physically contiguous. Although it may seem as an
2647  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2648  * case as we need to track IO to all buffers underlying a page in one io_end.
2649  */
2650 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2651 {
2652         struct address_space *mapping = mpd->inode->i_mapping;
2653         struct pagevec pvec;
2654         unsigned int nr_pages;
2655         long left = mpd->wbc->nr_to_write;
2656         pgoff_t index = mpd->first_page;
2657         pgoff_t end = mpd->last_page;
2658         xa_mark_t tag;
2659         int i, err = 0;
2660         int blkbits = mpd->inode->i_blkbits;
2661         ext4_lblk_t lblk;
2662         struct buffer_head *head;
2663
2664         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2665                 tag = PAGECACHE_TAG_TOWRITE;
2666         else
2667                 tag = PAGECACHE_TAG_DIRTY;
2668
2669         pagevec_init(&pvec);
2670         mpd->map.m_len = 0;
2671         mpd->next_page = index;
2672         while (index <= end) {
2673                 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2674                                 tag);
2675                 if (nr_pages == 0)
2676                         goto out;
2677
2678                 for (i = 0; i < nr_pages; i++) {
2679                         struct page *page = pvec.pages[i];
2680
2681                         /*
2682                          * Accumulated enough dirty pages? This doesn't apply
2683                          * to WB_SYNC_ALL mode. For integrity sync we have to
2684                          * keep going because someone may be concurrently
2685                          * dirtying pages, and we might have synced a lot of
2686                          * newly appeared dirty pages, but have not synced all
2687                          * of the old dirty pages.
2688                          */
2689                         if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2690                                 goto out;
2691
2692                         /* If we can't merge this page, we are done. */
2693                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2694                                 goto out;
2695
2696                         lock_page(page);
2697                         /*
2698                          * If the page is no longer dirty, or its mapping no
2699                          * longer corresponds to inode we are writing (which
2700                          * means it has been truncated or invalidated), or the
2701                          * page is already under writeback and we are not doing
2702                          * a data integrity writeback, skip the page
2703                          */
2704                         if (!PageDirty(page) ||
2705                             (PageWriteback(page) &&
2706                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2707                             unlikely(page->mapping != mapping)) {
2708                                 unlock_page(page);
2709                                 continue;
2710                         }
2711
2712                         wait_on_page_writeback(page);
2713                         BUG_ON(PageWriteback(page));
2714
2715                         if (mpd->map.m_len == 0)
2716                                 mpd->first_page = page->index;
2717                         mpd->next_page = page->index + 1;
2718                         /* Add all dirty buffers to mpd */
2719                         lblk = ((ext4_lblk_t)page->index) <<
2720                                 (PAGE_SHIFT - blkbits);
2721                         head = page_buffers(page);
2722                         err = mpage_process_page_bufs(mpd, head, head, lblk);
2723                         if (err <= 0)
2724                                 goto out;
2725                         err = 0;
2726                         left--;
2727                 }
2728                 pagevec_release(&pvec);
2729                 cond_resched();
2730         }
2731         return 0;
2732 out:
2733         pagevec_release(&pvec);
2734         return err;
2735 }
2736
2737 static int ext4_writepages(struct address_space *mapping,
2738                            struct writeback_control *wbc)
2739 {
2740         pgoff_t writeback_index = 0;
2741         long nr_to_write = wbc->nr_to_write;
2742         int range_whole = 0;
2743         int cycled = 1;
2744         handle_t *handle = NULL;
2745         struct mpage_da_data mpd;
2746         struct inode *inode = mapping->host;
2747         int needed_blocks, rsv_blocks = 0, ret = 0;
2748         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2749         bool done;
2750         struct blk_plug plug;
2751         bool give_up_on_write = false;
2752
2753         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2754                 return -EIO;
2755
2756         percpu_down_read(&sbi->s_journal_flag_rwsem);
2757         trace_ext4_writepages(inode, wbc);
2758
2759         /*
2760          * No pages to write? This is mainly a kludge to avoid starting
2761          * a transaction for special inodes like journal inode on last iput()
2762          * because that could violate lock ordering on umount
2763          */
2764         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2765                 goto out_writepages;
2766
2767         if (ext4_should_journal_data(inode)) {
2768                 ret = generic_writepages(mapping, wbc);
2769                 goto out_writepages;
2770         }
2771
2772         /*
2773          * If the filesystem has aborted, it is read-only, so return
2774          * right away instead of dumping stack traces later on that
2775          * will obscure the real source of the problem.  We test
2776          * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2777          * the latter could be true if the filesystem is mounted
2778          * read-only, and in that case, ext4_writepages should
2779          * *never* be called, so if that ever happens, we would want
2780          * the stack trace.
2781          */
2782         if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2783                      sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2784                 ret = -EROFS;
2785                 goto out_writepages;
2786         }
2787
2788         if (ext4_should_dioread_nolock(inode)) {
2789                 /*
2790                  * We may need to convert up to one extent per block in
2791                  * the page and we may dirty the inode.
2792                  */
2793                 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2794                                                 PAGE_SIZE >> inode->i_blkbits);
2795         }
2796
2797         /*
2798          * If we have inline data and arrive here, it means that
2799          * we will soon create the block for the 1st page, so
2800          * we'd better clear the inline data here.
2801          */
2802         if (ext4_has_inline_data(inode)) {
2803                 /* Just inode will be modified... */
2804                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2805                 if (IS_ERR(handle)) {
2806                         ret = PTR_ERR(handle);
2807                         goto out_writepages;
2808                 }
2809                 BUG_ON(ext4_test_inode_state(inode,
2810                                 EXT4_STATE_MAY_INLINE_DATA));
2811                 ext4_destroy_inline_data(handle, inode);
2812                 ext4_journal_stop(handle);
2813         }
2814
2815         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2816                 range_whole = 1;
2817
2818         if (wbc->range_cyclic) {
2819                 writeback_index = mapping->writeback_index;
2820                 if (writeback_index)
2821                         cycled = 0;
2822                 mpd.first_page = writeback_index;
2823                 mpd.last_page = -1;
2824         } else {
2825                 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2826                 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2827         }
2828
2829         mpd.inode = inode;
2830         mpd.wbc = wbc;
2831         ext4_io_submit_init(&mpd.io_submit, wbc);
2832 retry:
2833         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2834                 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2835         done = false;
2836         blk_start_plug(&plug);
2837
2838         /*
2839          * First writeback pages that don't need mapping - we can avoid
2840          * starting a transaction unnecessarily and also avoid being blocked
2841          * in the block layer on device congestion while having transaction
2842          * started.
2843          */
2844         mpd.do_map = 0;
2845         mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2846         if (!mpd.io_submit.io_end) {
2847                 ret = -ENOMEM;
2848                 goto unplug;
2849         }
2850         ret = mpage_prepare_extent_to_map(&mpd);
2851         /* Unlock pages we didn't use */
2852         mpage_release_unused_pages(&mpd, false);
2853         /* Submit prepared bio */
2854         ext4_io_submit(&mpd.io_submit);
2855         ext4_put_io_end_defer(mpd.io_submit.io_end);
2856         mpd.io_submit.io_end = NULL;
2857         if (ret < 0)
2858                 goto unplug;
2859
2860         while (!done && mpd.first_page <= mpd.last_page) {
2861                 /* For each extent of pages we use new io_end */
2862                 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2863                 if (!mpd.io_submit.io_end) {
2864                         ret = -ENOMEM;
2865                         break;
2866                 }
2867
2868                 /*
2869                  * We have two constraints: We find one extent to map and we
2870                  * must always write out whole page (makes a difference when
2871                  * blocksize < pagesize) so that we don't block on IO when we
2872                  * try to write out the rest of the page. Journalled mode is
2873                  * not supported by delalloc.
2874                  */
2875                 BUG_ON(ext4_should_journal_data(inode));
2876                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2877
2878                 /* start a new transaction */
2879                 handle = ext4_journal_start_with_reserve(inode,
2880                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2881                 if (IS_ERR(handle)) {
2882                         ret = PTR_ERR(handle);
2883                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2884                                "%ld pages, ino %lu; err %d", __func__,
2885                                 wbc->nr_to_write, inode->i_ino, ret);
2886                         /* Release allocated io_end */
2887                         ext4_put_io_end(mpd.io_submit.io_end);
2888                         mpd.io_submit.io_end = NULL;
2889                         break;
2890                 }
2891                 mpd.do_map = 1;
2892
2893                 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2894                 ret = mpage_prepare_extent_to_map(&mpd);
2895                 if (!ret) {
2896                         if (mpd.map.m_len)
2897                                 ret = mpage_map_and_submit_extent(handle, &mpd,
2898                                         &give_up_on_write);
2899                         else {
2900                                 /*
2901                                  * We scanned the whole range (or exhausted
2902                                  * nr_to_write), submitted what was mapped and
2903                                  * didn't find anything needing mapping. We are
2904                                  * done.
2905                                  */
2906                                 done = true;
2907                         }
2908                 }
2909                 /*
2910                  * Caution: If the handle is synchronous,
2911                  * ext4_journal_stop() can wait for transaction commit
2912                  * to finish which may depend on writeback of pages to
2913                  * complete or on page lock to be released.  In that
2914                  * case, we have to wait until after after we have
2915                  * submitted all the IO, released page locks we hold,
2916                  * and dropped io_end reference (for extent conversion
2917                  * to be able to complete) before stopping the handle.
2918                  */
2919                 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2920                         ext4_journal_stop(handle);
2921                         handle = NULL;
2922                         mpd.do_map = 0;
2923                 }
2924                 /* Unlock pages we didn't use */
2925                 mpage_release_unused_pages(&mpd, give_up_on_write);
2926                 /* Submit prepared bio */
2927                 ext4_io_submit(&mpd.io_submit);
2928
2929                 /*
2930                  * Drop our io_end reference we got from init. We have
2931                  * to be careful and use deferred io_end finishing if
2932                  * we are still holding the transaction as we can
2933                  * release the last reference to io_end which may end
2934                  * up doing unwritten extent conversion.
2935                  */
2936                 if (handle) {
2937                         ext4_put_io_end_defer(mpd.io_submit.io_end);
2938                         ext4_journal_stop(handle);
2939                 } else
2940                         ext4_put_io_end(mpd.io_submit.io_end);
2941                 mpd.io_submit.io_end = NULL;
2942
2943                 if (ret == -ENOSPC && sbi->s_journal) {
2944                         /*
2945                          * Commit the transaction which would
2946                          * free blocks released in the transaction
2947                          * and try again
2948                          */
2949                         jbd2_journal_force_commit_nested(sbi->s_journal);
2950                         ret = 0;
2951                         continue;
2952                 }
2953                 /* Fatal error - ENOMEM, EIO... */
2954                 if (ret)
2955                         break;
2956         }
2957 unplug:
2958         blk_finish_plug(&plug);
2959         if (!ret && !cycled && wbc->nr_to_write > 0) {
2960                 cycled = 1;
2961                 mpd.last_page = writeback_index - 1;
2962                 mpd.first_page = 0;
2963                 goto retry;
2964         }
2965
2966         /* Update index */
2967         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2968                 /*
2969                  * Set the writeback_index so that range_cyclic
2970                  * mode will write it back later
2971                  */
2972                 mapping->writeback_index = mpd.first_page;
2973
2974 out_writepages:
2975         trace_ext4_writepages_result(inode, wbc, ret,
2976                                      nr_to_write - wbc->nr_to_write);
2977         percpu_up_read(&sbi->s_journal_flag_rwsem);
2978         return ret;
2979 }
2980
2981 static int ext4_dax_writepages(struct address_space *mapping,
2982                                struct writeback_control *wbc)
2983 {
2984         int ret;
2985         long nr_to_write = wbc->nr_to_write;
2986         struct inode *inode = mapping->host;
2987         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2988
2989         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2990                 return -EIO;
2991
2992         percpu_down_read(&sbi->s_journal_flag_rwsem);
2993         trace_ext4_writepages(inode, wbc);
2994
2995         ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev, wbc);
2996         trace_ext4_writepages_result(inode, wbc, ret,
2997                                      nr_to_write - wbc->nr_to_write);
2998         percpu_up_read(&sbi->s_journal_flag_rwsem);
2999         return ret;
3000 }
3001
3002 static int ext4_nonda_switch(struct super_block *sb)
3003 {
3004         s64 free_clusters, dirty_clusters;
3005         struct ext4_sb_info *sbi = EXT4_SB(sb);
3006
3007         /*
3008          * switch to non delalloc mode if we are running low
3009          * on free block. The free block accounting via percpu
3010          * counters can get slightly wrong with percpu_counter_batch getting
3011          * accumulated on each CPU without updating global counters
3012          * Delalloc need an accurate free block accounting. So switch
3013          * to non delalloc when we are near to error range.
3014          */
3015         free_clusters =
3016                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
3017         dirty_clusters =
3018                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
3019         /*
3020          * Start pushing delalloc when 1/2 of free blocks are dirty.
3021          */
3022         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
3023                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
3024
3025         if (2 * free_clusters < 3 * dirty_clusters ||
3026             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
3027                 /*
3028                  * free block count is less than 150% of dirty blocks
3029                  * or free blocks is less than watermark
3030                  */
3031                 return 1;
3032         }
3033         return 0;
3034 }
3035
3036 /* We always reserve for an inode update; the superblock could be there too */
3037 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
3038 {
3039         if (likely(ext4_has_feature_large_file(inode->i_sb)))
3040                 return 1;
3041
3042         if (pos + len <= 0x7fffffffULL)
3043                 return 1;
3044
3045         /* We might need to update the superblock to set LARGE_FILE */
3046         return 2;
3047 }
3048
3049 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3050                                loff_t pos, unsigned len, unsigned flags,
3051                                struct page **pagep, void **fsdata)
3052 {
3053         int ret, retries = 0;
3054         struct page *page;
3055         pgoff_t index;
3056         struct inode *inode = mapping->host;
3057         handle_t *handle;
3058
3059         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
3060                 return -EIO;
3061
3062         index = pos >> PAGE_SHIFT;
3063
3064         if (ext4_nonda_switch(inode->i_sb) ||
3065             S_ISLNK(inode->i_mode)) {
3066                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3067                 return ext4_write_begin(file, mapping, pos,
3068                                         len, flags, pagep, fsdata);
3069         }
3070         *fsdata = (void *)0;
3071         trace_ext4_da_write_begin(inode, pos, len, flags);
3072
3073         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
3074                 ret = ext4_da_write_inline_data_begin(mapping, inode,
3075                                                       pos, len, flags,
3076                                                       pagep, fsdata);
3077                 if (ret < 0)
3078                         return ret;
3079                 if (ret == 1)
3080                         return 0;
3081         }
3082
3083         /*
3084          * grab_cache_page_write_begin() can take a long time if the
3085          * system is thrashing due to memory pressure, or if the page
3086          * is being written back.  So grab it first before we start
3087          * the transaction handle.  This also allows us to allocate
3088          * the page (if needed) without using GFP_NOFS.
3089          */
3090 retry_grab:
3091         page = grab_cache_page_write_begin(mapping, index, flags);
3092         if (!page)
3093                 return -ENOMEM;
3094         unlock_page(page);
3095
3096         /*
3097          * With delayed allocation, we don't log the i_disksize update
3098          * if there is delayed block allocation. But we still need
3099          * to journalling the i_disksize update if writes to the end
3100          * of file which has an already mapped buffer.
3101          */
3102 retry_journal:
3103         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
3104                                 ext4_da_write_credits(inode, pos, len));
3105         if (IS_ERR(handle)) {
3106                 put_page(page);
3107                 return PTR_ERR(handle);
3108         }
3109
3110         lock_page(page);
3111         if (page->mapping != mapping) {
3112                 /* The page got truncated from under us */
3113                 unlock_page(page);
3114                 put_page(page);
3115                 ext4_journal_stop(handle);
3116                 goto retry_grab;
3117         }
3118         /* In case writeback began while the page was unlocked */
3119         wait_for_stable_page(page);
3120
3121 #ifdef CONFIG_FS_ENCRYPTION
3122         ret = ext4_block_write_begin(page, pos, len,
3123                                      ext4_da_get_block_prep);
3124 #else
3125         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3126 #endif
3127         if (ret < 0) {
3128                 unlock_page(page);
3129                 ext4_journal_stop(handle);
3130                 /*
3131                  * block_write_begin may have instantiated a few blocks
3132                  * outside i_size.  Trim these off again. Don't need
3133                  * i_size_read because we hold i_mutex.
3134                  */
3135                 if (pos + len > inode->i_size)
3136                         ext4_truncate_failed_write(inode);
3137
3138                 if (ret == -ENOSPC &&
3139                     ext4_should_retry_alloc(inode->i_sb, &retries))
3140                         goto retry_journal;
3141
3142                 put_page(page);
3143                 return ret;
3144         }
3145
3146         *pagep = page;
3147         return ret;
3148 }
3149
3150 /*
3151  * Check if we should update i_disksize
3152  * when write to the end of file but not require block allocation
3153  */
3154 static int ext4_da_should_update_i_disksize(struct page *page,
3155                                             unsigned long offset)
3156 {
3157         struct buffer_head *bh;
3158         struct inode *inode = page->mapping->host;
3159         unsigned int idx;
3160         int i;
3161
3162         bh = page_buffers(page);
3163         idx = offset >> inode->i_blkbits;
3164
3165         for (i = 0; i < idx; i++)
3166                 bh = bh->b_this_page;
3167
3168         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3169                 return 0;
3170         return 1;
3171 }
3172
3173 static int ext4_da_write_end(struct file *file,
3174                              struct address_space *mapping,
3175                              loff_t pos, unsigned len, unsigned copied,
3176                              struct page *page, void *fsdata)
3177 {
3178         struct inode *inode = mapping->host;
3179         int ret = 0, ret2;
3180         handle_t *handle = ext4_journal_current_handle();
3181         loff_t new_i_size;
3182         unsigned long start, end;
3183         int write_mode = (int)(unsigned long)fsdata;
3184
3185         if (write_mode == FALL_BACK_TO_NONDELALLOC)
3186                 return ext4_write_end(file, mapping, pos,
3187                                       len, copied, page, fsdata);
3188
3189         trace_ext4_da_write_end(inode, pos, len, copied);
3190         start = pos & (PAGE_SIZE - 1);
3191         end = start + copied - 1;
3192
3193         /*
3194          * generic_write_end() will run mark_inode_dirty() if i_size
3195          * changes.  So let's piggyback the i_disksize mark_inode_dirty
3196          * into that.
3197          */
3198         new_i_size = pos + copied;
3199         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3200                 if (ext4_has_inline_data(inode) ||
3201                     ext4_da_should_update_i_disksize(page, end)) {
3202                         ext4_update_i_disksize(inode, new_i_size);
3203                         /* We need to mark inode dirty even if
3204                          * new_i_size is less that inode->i_size
3205                          * bu greater than i_disksize.(hint delalloc)
3206                          */
3207                         ext4_mark_inode_dirty(handle, inode);
3208                 }
3209         }
3210
3211         if (write_mode != CONVERT_INLINE_DATA &&
3212             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3213             ext4_has_inline_data(inode))
3214                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3215                                                      page);
3216         else
3217                 ret2 = generic_write_end(file, mapping, pos, len, copied,
3218                                                         page, fsdata);
3219
3220         copied = ret2;
3221         if (ret2 < 0)
3222                 ret = ret2;
3223         ret2 = ext4_journal_stop(handle);
3224         if (!ret)
3225                 ret = ret2;
3226
3227         return ret ? ret : copied;
3228 }
3229
3230 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3231                                    unsigned int length)
3232 {
3233         /*
3234          * Drop reserved blocks
3235          */
3236         BUG_ON(!PageLocked(page));
3237         if (!page_has_buffers(page))
3238                 goto out;
3239
3240         ext4_da_page_release_reservation(page, offset, length);
3241
3242 out:
3243         ext4_invalidatepage(page, offset, length);
3244
3245         return;
3246 }
3247
3248 /*
3249  * Force all delayed allocation blocks to be allocated for a given inode.
3250  */
3251 int ext4_alloc_da_blocks(struct inode *inode)
3252 {
3253         trace_ext4_alloc_da_blocks(inode);
3254
3255         if (!EXT4_I(inode)->i_reserved_data_blocks)
3256                 return 0;
3257
3258         /*
3259          * We do something simple for now.  The filemap_flush() will
3260          * also start triggering a write of the data blocks, which is
3261          * not strictly speaking necessary (and for users of
3262          * laptop_mode, not even desirable).  However, to do otherwise
3263          * would require replicating code paths in:
3264          *
3265          * ext4_writepages() ->
3266          *    write_cache_pages() ---> (via passed in callback function)
3267          *        __mpage_da_writepage() -->
3268          *           mpage_add_bh_to_extent()
3269          *           mpage_da_map_blocks()
3270          *
3271          * The problem is that write_cache_pages(), located in
3272          * mm/page-writeback.c, marks pages clean in preparation for
3273          * doing I/O, which is not desirable if we're not planning on
3274          * doing I/O at all.
3275          *
3276          * We could call write_cache_pages(), and then redirty all of
3277          * the pages by calling redirty_page_for_writepage() but that
3278          * would be ugly in the extreme.  So instead we would need to
3279          * replicate parts of the code in the above functions,
3280          * simplifying them because we wouldn't actually intend to
3281          * write out the pages, but rather only collect contiguous
3282          * logical block extents, call the multi-block allocator, and
3283          * then update the buffer heads with the block allocations.
3284          *
3285          * For now, though, we'll cheat by calling filemap_flush(),
3286          * which will map the blocks, and start the I/O, but not
3287          * actually wait for the I/O to complete.
3288          */
3289         return filemap_flush(inode->i_mapping);
3290 }
3291
3292 /*
3293  * bmap() is special.  It gets used by applications such as lilo and by
3294  * the swapper to find the on-disk block of a specific piece of data.
3295  *
3296  * Naturally, this is dangerous if the block concerned is still in the
3297  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3298  * filesystem and enables swap, then they may get a nasty shock when the
3299  * data getting swapped to that swapfile suddenly gets overwritten by
3300  * the original zero's written out previously to the journal and
3301  * awaiting writeback in the kernel's buffer cache.
3302  *
3303  * So, if we see any bmap calls here on a modified, data-journaled file,
3304  * take extra steps to flush any blocks which might be in the cache.
3305  */
3306 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3307 {
3308         struct inode *inode = mapping->host;
3309         journal_t *journal;
3310         int err;
3311
3312         /*
3313          * We can get here for an inline file via the FIBMAP ioctl
3314          */
3315         if (ext4_has_inline_data(inode))
3316                 return 0;
3317
3318         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3319                         test_opt(inode->i_sb, DELALLOC)) {
3320                 /*
3321                  * With delalloc we want to sync the file
3322                  * so that we can make sure we allocate
3323                  * blocks for file
3324                  */
3325                 filemap_write_and_wait(mapping);
3326         }
3327
3328         if (EXT4_JOURNAL(inode) &&
3329             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3330                 /*
3331                  * This is a REALLY heavyweight approach, but the use of
3332                  * bmap on dirty files is expected to be extremely rare:
3333                  * only if we run lilo or swapon on a freshly made file
3334                  * do we expect this to happen.
3335                  *
3336                  * (bmap requires CAP_SYS_RAWIO so this does not
3337                  * represent an unprivileged user DOS attack --- we'd be
3338                  * in trouble if mortal users could trigger this path at
3339                  * will.)
3340                  *
3341                  * NB. EXT4_STATE_JDATA is not set on files other than
3342                  * regular files.  If somebody wants to bmap a directory
3343                  * or symlink and gets confused because the buffer
3344                  * hasn't yet been flushed to disk, they deserve
3345                  * everything they get.
3346                  */
3347
3348                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3349                 journal = EXT4_JOURNAL(inode);
3350                 jbd2_journal_lock_updates(journal);
3351                 err = jbd2_journal_flush(journal);
3352                 jbd2_journal_unlock_updates(journal);
3353
3354                 if (err)
3355                         return 0;
3356         }
3357
3358         return generic_block_bmap(mapping, block, ext4_get_block);
3359 }
3360
3361 static int ext4_readpage(struct file *file, struct page *page)
3362 {
3363         int ret = -EAGAIN;
3364         struct inode *inode = page->mapping->host;
3365
3366         trace_ext4_readpage(page);
3367
3368         if (ext4_has_inline_data(inode))
3369                 ret = ext4_readpage_inline(inode, page);
3370
3371         if (ret == -EAGAIN)
3372                 return ext4_mpage_readpages(page->mapping, NULL, page, 1,
3373                                                 false);
3374
3375         return ret;
3376 }
3377
3378 static int
3379 ext4_readpages(struct file *file, struct address_space *mapping,
3380                 struct list_head *pages, unsigned nr_pages)
3381 {
3382         struct inode *inode = mapping->host;
3383
3384         /* If the file has inline data, no need to do readpages. */
3385         if (ext4_has_inline_data(inode))
3386                 return 0;
3387
3388         return ext4_mpage_readpages(mapping, pages, NULL, nr_pages, true);
3389 }
3390
3391 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3392                                 unsigned int length)
3393 {
3394         trace_ext4_invalidatepage(page, offset, length);
3395
3396         /* No journalling happens on data buffers when this function is used */
3397         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3398
3399         block_invalidatepage(page, offset, length);
3400 }
3401
3402 static int __ext4_journalled_invalidatepage(struct page *page,
3403                                             unsigned int offset,
3404                                             unsigned int length)
3405 {
3406         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3407
3408         trace_ext4_journalled_invalidatepage(page, offset, length);
3409
3410         /*
3411          * If it's a full truncate we just forget about the pending dirtying
3412          */
3413         if (offset == 0 && length == PAGE_SIZE)
3414                 ClearPageChecked(page);
3415
3416         return jbd2_journal_invalidatepage(journal, page, offset, length);
3417 }
3418
3419 /* Wrapper for aops... */
3420 static void ext4_journalled_invalidatepage(struct page *page,
3421                                            unsigned int offset,
3422                                            unsigned int length)
3423 {
3424         WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3425 }
3426
3427 static int ext4_releasepage(struct page *page, gfp_t wait)
3428 {
3429         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3430
3431         trace_ext4_releasepage(page);
3432
3433         /* Page has dirty journalled data -> cannot release */
3434         if (PageChecked(page))
3435                 return 0;
3436         if (journal)
3437                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3438         else
3439                 return try_to_free_buffers(page);
3440 }
3441
3442 static bool ext4_inode_datasync_dirty(struct inode *inode)
3443 {
3444         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3445
3446         if (journal)
3447                 return !jbd2_transaction_committed(journal,
3448                                         EXT4_I(inode)->i_datasync_tid);
3449         /* Any metadata buffers to write? */
3450         if (!list_empty(&inode->i_mapping->private_list))
3451                 return true;
3452         return inode->i_state & I_DIRTY_DATASYNC;
3453 }
3454
3455 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3456                             unsigned flags, struct iomap *iomap)
3457 {
3458         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3459         unsigned int blkbits = inode->i_blkbits;
3460         unsigned long first_block, last_block;
3461         struct ext4_map_blocks map;
3462         bool delalloc = false;
3463         int ret;
3464
3465         if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3466                 return -EINVAL;
3467         first_block = offset >> blkbits;
3468         last_block = min_t(loff_t, (offset + length - 1) >> blkbits,
3469                            EXT4_MAX_LOGICAL_BLOCK);
3470
3471         if (flags & IOMAP_REPORT) {
3472                 if (ext4_has_inline_data(inode)) {
3473                         ret = ext4_inline_data_iomap(inode, iomap);
3474                         if (ret != -EAGAIN) {
3475                                 if (ret == 0 && offset >= iomap->length)
3476                                         ret = -ENOENT;
3477                                 return ret;
3478                         }
3479                 }
3480         } else {
3481                 if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3482                         return -ERANGE;
3483         }
3484
3485         map.m_lblk = first_block;
3486         map.m_len = last_block - first_block + 1;
3487
3488         if (flags & IOMAP_REPORT) {
3489                 ret = ext4_map_blocks(NULL, inode, &map, 0);
3490                 if (ret < 0)
3491                         return ret;
3492
3493                 if (ret == 0) {
3494                         ext4_lblk_t end = map.m_lblk + map.m_len - 1;
3495                         struct extent_status es;
3496
3497                         ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3498                                                   map.m_lblk, end, &es);
3499
3500                         if (!es.es_len || es.es_lblk > end) {
3501                                 /* entire range is a hole */
3502                         } else if (es.es_lblk > map.m_lblk) {
3503                                 /* range starts with a hole */
3504                                 map.m_len = es.es_lblk - map.m_lblk;
3505                         } else {
3506                                 ext4_lblk_t offs = 0;
3507
3508                                 if (es.es_lblk < map.m_lblk)
3509                                         offs = map.m_lblk - es.es_lblk;
3510                                 map.m_lblk = es.es_lblk + offs;
3511                                 map.m_len = es.es_len - offs;
3512                                 delalloc = true;
3513                         }
3514                 }
3515         } else if (flags & IOMAP_WRITE) {
3516                 int dio_credits;
3517                 handle_t *handle;
3518                 int retries = 0;
3519
3520                 /* Trim mapping request to maximum we can map at once for DIO */
3521                 if (map.m_len > DIO_MAX_BLOCKS)
3522                         map.m_len = DIO_MAX_BLOCKS;
3523                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
3524 retry:
3525                 /*
3526                  * Either we allocate blocks and then we don't get unwritten
3527                  * extent so we have reserved enough credits, or the blocks
3528                  * are already allocated and unwritten and in that case
3529                  * extent conversion fits in the credits as well.
3530                  */
3531                 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
3532                                             dio_credits);
3533                 if (IS_ERR(handle))
3534                         return PTR_ERR(handle);
3535
3536                 ret = ext4_map_blocks(handle, inode, &map,
3537                                       EXT4_GET_BLOCKS_CREATE_ZERO);
3538                 if (ret < 0) {
3539                         ext4_journal_stop(handle);
3540                         if (ret == -ENOSPC &&
3541                             ext4_should_retry_alloc(inode->i_sb, &retries))
3542                                 goto retry;
3543                         return ret;
3544                 }
3545
3546                 /*
3547                  * If we added blocks beyond i_size, we need to make sure they
3548                  * will get truncated if we crash before updating i_size in
3549                  * ext4_iomap_end(). For faults we don't need to do that (and
3550                  * even cannot because for orphan list operations inode_lock is
3551                  * required) - if we happen to instantiate block beyond i_size,
3552                  * it is because we race with truncate which has already added
3553                  * the inode to the orphan list.
3554                  */
3555                 if (!(flags & IOMAP_FAULT) && first_block + map.m_len >
3556                     (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) {
3557                         int err;
3558
3559                         err = ext4_orphan_add(handle, inode);
3560                         if (err < 0) {
3561                                 ext4_journal_stop(handle);
3562                                 return err;
3563                         }
3564                 }
3565                 ext4_journal_stop(handle);
3566         } else {
3567                 ret = ext4_map_blocks(NULL, inode, &map, 0);
3568                 if (ret < 0)
3569                         return ret;
3570         }
3571
3572         iomap->flags = 0;
3573         if (ext4_inode_datasync_dirty(inode))
3574                 iomap->flags |= IOMAP_F_DIRTY;
3575         iomap->bdev = inode->i_sb->s_bdev;
3576         iomap->dax_dev = sbi->s_daxdev;
3577         iomap->offset = (u64)first_block << blkbits;
3578         iomap->length = (u64)map.m_len << blkbits;
3579
3580         if (ret == 0) {
3581                 iomap->type = delalloc ? IOMAP_DELALLOC : IOMAP_HOLE;
3582                 iomap->addr = IOMAP_NULL_ADDR;
3583         } else {
3584                 if (map.m_flags & EXT4_MAP_MAPPED) {
3585                         iomap->type = IOMAP_MAPPED;
3586                 } else if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3587                         iomap->type = IOMAP_UNWRITTEN;
3588                 } else {
3589                         WARN_ON_ONCE(1);
3590                         return -EIO;
3591                 }
3592                 iomap->addr = (u64)map.m_pblk << blkbits;
3593         }
3594
3595         if (map.m_flags & EXT4_MAP_NEW)
3596                 iomap->flags |= IOMAP_F_NEW;
3597
3598         return 0;
3599 }
3600
3601 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3602                           ssize_t written, unsigned flags, struct iomap *iomap)
3603 {
3604         int ret = 0;
3605         handle_t *handle;
3606         int blkbits = inode->i_blkbits;
3607         bool truncate = false;
3608
3609         if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT))
3610                 return 0;
3611
3612         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3613         if (IS_ERR(handle)) {
3614                 ret = PTR_ERR(handle);
3615                 goto orphan_del;
3616         }
3617         if (ext4_update_inode_size(inode, offset + written))
3618                 ext4_mark_inode_dirty(handle, inode);
3619         /*
3620          * We may need to truncate allocated but not written blocks beyond EOF.
3621          */
3622         if (iomap->offset + iomap->length > 
3623             ALIGN(inode->i_size, 1 << blkbits)) {
3624                 ext4_lblk_t written_blk, end_blk;
3625
3626                 written_blk = (offset + written) >> blkbits;
3627                 end_blk = (offset + length) >> blkbits;
3628                 if (written_blk < end_blk && ext4_can_truncate(inode))
3629                         truncate = true;
3630         }
3631         /*
3632          * Remove inode from orphan list if we were extending a inode and
3633          * everything went fine.
3634          */
3635         if (!truncate && inode->i_nlink &&
3636             !list_empty(&EXT4_I(inode)->i_orphan))
3637                 ext4_orphan_del(handle, inode);
3638         ext4_journal_stop(handle);
3639         if (truncate) {
3640                 ext4_truncate_failed_write(inode);
3641 orphan_del:
3642                 /*
3643                  * If truncate failed early the inode might still be on the
3644                  * orphan list; we need to make sure the inode is removed from
3645                  * the orphan list in that case.
3646                  */
3647                 if (inode->i_nlink)
3648                         ext4_orphan_del(NULL, inode);
3649         }
3650         return ret;
3651 }
3652
3653 const struct iomap_ops ext4_iomap_ops = {
3654         .iomap_begin            = ext4_iomap_begin,
3655         .iomap_end              = ext4_iomap_end,
3656 };
3657
3658 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3659                             ssize_t size, void *private)
3660 {
3661         ext4_io_end_t *io_end = private;
3662
3663         /* if not async direct IO just return */
3664         if (!io_end)
3665                 return 0;
3666
3667         ext_debug("ext4_end_io_dio(): io_end 0x%p "
3668                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3669                   io_end, io_end->inode->i_ino, iocb, offset, size);
3670
3671         /*
3672          * Error during AIO DIO. We cannot convert unwritten extents as the
3673          * data was not written. Just clear the unwritten flag and drop io_end.
3674          */
3675         if (size <= 0) {
3676                 ext4_clear_io_unwritten_flag(io_end);
3677                 size = 0;
3678         }
3679         io_end->offset = offset;
3680         io_end->size = size;
3681         ext4_put_io_end(io_end);
3682
3683         return 0;
3684 }
3685
3686 /*
3687  * Handling of direct IO writes.
3688  *
3689  * For ext4 extent files, ext4 will do direct-io write even to holes,
3690  * preallocated extents, and those write extend the file, no need to
3691  * fall back to buffered IO.
3692  *
3693  * For holes, we fallocate those blocks, mark them as unwritten
3694  * If those blocks were preallocated, we mark sure they are split, but
3695  * still keep the range to write as unwritten.
3696  *
3697  * The unwritten extents will be converted to written when DIO is completed.
3698  * For async direct IO, since the IO may still pending when return, we
3699  * set up an end_io call back function, which will do the conversion
3700  * when async direct IO completed.
3701  *
3702  * If the O_DIRECT write will extend the file then add this inode to the
3703  * orphan list.  So recovery will truncate it back to the original size
3704  * if the machine crashes during the write.
3705  *
3706  */
3707 static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
3708 {
3709         struct file *file = iocb->ki_filp;
3710         struct inode *inode = file->f_mapping->host;
3711         struct ext4_inode_info *ei = EXT4_I(inode);
3712         ssize_t ret;
3713         loff_t offset = iocb->ki_pos;
3714         size_t count = iov_iter_count(iter);
3715         int overwrite = 0;
3716         get_block_t *get_block_func = NULL;
3717         int dio_flags = 0;
3718         loff_t final_size = offset + count;
3719         int orphan = 0;
3720         handle_t *handle;
3721
3722         if (final_size > inode->i_size || final_size > ei->i_disksize) {
3723                 /* Credits for sb + inode write */
3724                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3725                 if (IS_ERR(handle)) {
3726                         ret = PTR_ERR(handle);
3727                         goto out;
3728                 }
3729                 ret = ext4_orphan_add(handle, inode);
3730                 if (ret) {
3731                         ext4_journal_stop(handle);
3732                         goto out;
3733                 }
3734                 orphan = 1;
3735                 ext4_update_i_disksize(inode, inode->i_size);
3736                 ext4_journal_stop(handle);
3737         }
3738
3739         BUG_ON(iocb->private == NULL);
3740
3741         /*
3742          * Make all waiters for direct IO properly wait also for extent
3743          * conversion. This also disallows race between truncate() and
3744          * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3745          */
3746         inode_dio_begin(inode);
3747
3748         /* If we do a overwrite dio, i_mutex locking can be released */
3749         overwrite = *((int *)iocb->private);
3750
3751         if (overwrite)
3752                 inode_unlock(inode);
3753
3754         /*
3755          * For extent mapped files we could direct write to holes and fallocate.
3756          *
3757          * Allocated blocks to fill the hole are marked as unwritten to prevent
3758          * parallel buffered read to expose the stale data before DIO complete
3759          * the data IO.
3760          *
3761          * As to previously fallocated extents, ext4 get_block will just simply
3762          * mark the buffer mapped but still keep the extents unwritten.
3763          *
3764          * For non AIO case, we will convert those unwritten extents to written
3765          * after return back from blockdev_direct_IO. That way we save us from
3766          * allocating io_end structure and also the overhead of offloading
3767          * the extent convertion to a workqueue.
3768          *
3769          * For async DIO, the conversion needs to be deferred when the
3770          * IO is completed. The ext4 end_io callback function will be
3771          * called to take care of the conversion work.  Here for async
3772          * case, we allocate an io_end structure to hook to the iocb.
3773          */
3774         iocb->private = NULL;
3775         if (overwrite)
3776                 get_block_func = ext4_dio_get_block_overwrite;
3777         else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
3778                    round_down(offset, i_blocksize(inode)) >= inode->i_size) {
3779                 get_block_func = ext4_dio_get_block;
3780                 dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3781         } else if (is_sync_kiocb(iocb)) {
3782                 get_block_func = ext4_dio_get_block_unwritten_sync;
3783                 dio_flags = DIO_LOCKING;
3784         } else {
3785                 get_block_func = ext4_dio_get_block_unwritten_async;
3786                 dio_flags = DIO_LOCKING;
3787         }
3788         ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
3789                                    get_block_func, ext4_end_io_dio, NULL,
3790                                    dio_flags);
3791
3792         if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3793                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3794                 int err;
3795                 /*
3796                  * for non AIO case, since the IO is already
3797                  * completed, we could do the conversion right here
3798                  */
3799                 err = ext4_convert_unwritten_extents(NULL, inode,
3800                                                      offset, ret);
3801                 if (err < 0)
3802                         ret = err;
3803                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3804         }
3805
3806         inode_dio_end(inode);
3807         /* take i_mutex locking again if we do a ovewrite dio */
3808         if (overwrite)
3809                 inode_lock(inode);
3810
3811         if (ret < 0 && final_size > inode->i_size)
3812                 ext4_truncate_failed_write(inode);
3813
3814         /* Handle extending of i_size after direct IO write */
3815         if (orphan) {
3816                 int err;
3817
3818                 /* Credits for sb + inode write */
3819                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3820                 if (IS_ERR(handle)) {
3821                         /*
3822                          * We wrote the data but cannot extend
3823                          * i_size. Bail out. In async io case, we do
3824                          * not return error here because we have
3825                          * already submmitted the corresponding
3826                          * bio. Returning error here makes the caller
3827                          * think that this IO is done and failed
3828                          * resulting in race with bio's completion
3829                          * handler.
3830                          */
3831                         if (!ret)
3832                                 ret = PTR_ERR(handle);
3833                         if (inode->i_nlink)
3834                                 ext4_orphan_del(NULL, inode);
3835
3836                         goto out;
3837                 }
3838                 if (inode->i_nlink)
3839                         ext4_orphan_del(handle, inode);
3840                 if (ret > 0) {
3841                         loff_t end = offset + ret;
3842                         if (end > inode->i_size || end > ei->i_disksize) {
3843                                 ext4_update_i_disksize(inode, end);
3844                                 if (end > inode->i_size)
3845                                         i_size_write(inode, end);
3846                                 /*
3847                                  * We're going to return a positive `ret'
3848                                  * here due to non-zero-length I/O, so there's
3849                                  * no way of reporting error returns from
3850                                  * ext4_mark_inode_dirty() to userspace.  So
3851                                  * ignore it.
3852                                  */
3853                                 ext4_mark_inode_dirty(handle, inode);
3854                         }
3855                 }
3856                 err = ext4_journal_stop(handle);
3857                 if (ret == 0)
3858                         ret = err;
3859         }
3860 out:
3861         return ret;
3862 }
3863
3864 static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
3865 {
3866         struct address_space *mapping = iocb->ki_filp->f_mapping;
3867         struct inode *inode = mapping->host;
3868         size_t count = iov_iter_count(iter);
3869         ssize_t ret;
3870
3871         /*
3872          * Shared inode_lock is enough for us - it protects against concurrent
3873          * writes & truncates and since we take care of writing back page cache,
3874          * we are protected against page writeback as well.
3875          */
3876         inode_lock_shared(inode);
3877         ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
3878                                            iocb->ki_pos + count - 1);
3879         if (ret)
3880                 goto out_unlock;
3881         ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3882                                    iter, ext4_dio_get_block, NULL, NULL, 0);
3883 out_unlock:
3884         inode_unlock_shared(inode);
3885         return ret;
3886 }
3887
3888 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3889 {
3890         struct file *file = iocb->ki_filp;
3891         struct inode *inode = file->f_mapping->host;
3892         size_t count = iov_iter_count(iter);
3893         loff_t offset = iocb->ki_pos;
3894         ssize_t ret;
3895
3896 #ifdef CONFIG_FS_ENCRYPTION
3897         if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
3898                 return 0;
3899 #endif
3900
3901         /*
3902          * If we are doing data journalling we don't support O_DIRECT
3903          */
3904         if (ext4_should_journal_data(inode))
3905                 return 0;
3906
3907         /* Let buffer I/O handle the inline data case. */
3908         if (ext4_has_inline_data(inode))
3909                 return 0;
3910
3911         trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3912         if (iov_iter_rw(iter) == READ)
3913                 ret = ext4_direct_IO_read(iocb, iter);
3914         else
3915                 ret = ext4_direct_IO_write(iocb, iter);
3916         trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3917         return ret;
3918 }
3919
3920 /*
3921  * Pages can be marked dirty completely asynchronously from ext4's journalling
3922  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3923  * much here because ->set_page_dirty is called under VFS locks.  The page is
3924  * not necessarily locked.
3925  *
3926  * We cannot just dirty the page and leave attached buffers clean, because the
3927  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3928  * or jbddirty because all the journalling code will explode.
3929  *
3930  * So what we do is to mark the page "pending dirty" and next time writepage
3931  * is called, propagate that into the buffers appropriately.
3932  */
3933 static int ext4_journalled_set_page_dirty(struct page *page)
3934 {
3935         SetPageChecked(page);
3936         return __set_page_dirty_nobuffers(page);
3937 }
3938
3939 static int ext4_set_page_dirty(struct page *page)
3940 {
3941         WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3942         WARN_ON_ONCE(!page_has_buffers(page));
3943         return __set_page_dirty_buffers(page);
3944 }
3945
3946 static const struct address_space_operations ext4_aops = {
3947         .readpage               = ext4_readpage,
3948         .readpages              = ext4_readpages,
3949         .writepage              = ext4_writepage,
3950         .writepages             = ext4_writepages,
3951         .write_begin            = ext4_write_begin,
3952         .write_end              = ext4_write_end,
3953         .set_page_dirty         = ext4_set_page_dirty,
3954         .bmap                   = ext4_bmap,
3955         .invalidatepage         = ext4_invalidatepage,
3956         .releasepage            = ext4_releasepage,
3957         .direct_IO              = ext4_direct_IO,
3958         .migratepage            = buffer_migrate_page,
3959         .is_partially_uptodate  = block_is_partially_uptodate,
3960         .error_remove_page      = generic_error_remove_page,
3961 };
3962
3963 static const struct address_space_operations ext4_journalled_aops = {
3964         .readpage               = ext4_readpage,
3965         .readpages              = ext4_readpages,
3966         .writepage              = ext4_writepage,
3967         .writepages             = ext4_writepages,
3968         .write_begin            = ext4_write_begin,
3969         .write_end              = ext4_journalled_write_end,
3970         .set_page_dirty         = ext4_journalled_set_page_dirty,
3971         .bmap                   = ext4_bmap,
3972         .invalidatepage         = ext4_journalled_invalidatepage,
3973         .releasepage            = ext4_releasepage,
3974         .direct_IO              = ext4_direct_IO,
3975         .is_partially_uptodate  = block_is_partially_uptodate,
3976         .error_remove_page      = generic_error_remove_page,
3977 };
3978
3979 static const struct address_space_operations ext4_da_aops = {
3980         .readpage               = ext4_readpage,
3981         .readpages              = ext4_readpages,
3982         .writepage              = ext4_writepage,
3983         .writepages             = ext4_writepages,
3984         .write_begin            = ext4_da_write_begin,
3985         .write_end              = ext4_da_write_end,
3986         .set_page_dirty         = ext4_set_page_dirty,
3987         .bmap                   = ext4_bmap,
3988         .invalidatepage         = ext4_da_invalidatepage,
3989         .releasepage            = ext4_releasepage,
3990         .direct_IO              = ext4_direct_IO,
3991         .migratepage            = buffer_migrate_page,
3992         .is_partially_uptodate  = block_is_partially_uptodate,
3993         .error_remove_page      = generic_error_remove_page,
3994 };
3995
3996 static const struct address_space_operations ext4_dax_aops = {
3997         .writepages             = ext4_dax_writepages,
3998         .direct_IO              = noop_direct_IO,
3999         .set_page_dirty         = noop_set_page_dirty,
4000         .bmap                   = ext4_bmap,
4001         .invalidatepage         = noop_invalidatepage,
4002 };
4003
4004 void ext4_set_aops(struct inode *inode)
4005 {
4006         switch (ext4_inode_journal_mode(inode)) {
4007         case EXT4_INODE_ORDERED_DATA_MODE:
4008         case EXT4_INODE_WRITEBACK_DATA_MODE:
4009                 break;
4010         case EXT4_INODE_JOURNAL_DATA_MODE:
4011                 inode->i_mapping->a_ops = &ext4_journalled_aops;
4012                 return;
4013         default:
4014                 BUG();
4015         }
4016         if (IS_DAX(inode))
4017                 inode->i_mapping->a_ops = &ext4_dax_aops;
4018         else if (test_opt(inode->i_sb, DELALLOC))
4019                 inode->i_mapping->a_ops = &ext4_da_aops;
4020         else
4021                 inode->i_mapping->a_ops = &ext4_aops;
4022 }
4023
4024 static int __ext4_block_zero_page_range(handle_t *handle,
4025                 struct address_space *mapping, loff_t from, loff_t length)
4026 {
4027         ext4_fsblk_t index = from >> PAGE_SHIFT;
4028         unsigned offset = from & (PAGE_SIZE-1);
4029         unsigned blocksize, pos;
4030         ext4_lblk_t iblock;
4031         struct inode *inode = mapping->host;
4032         struct buffer_head *bh;
4033         struct page *page;
4034         int err = 0;
4035
4036         page = find_or_create_page(mapping, from >> PAGE_SHIFT,
4037                                    mapping_gfp_constraint(mapping, ~__GFP_FS));
4038         if (!page)
4039                 return -ENOMEM;
4040
4041         blocksize = inode->i_sb->s_blocksize;
4042
4043         iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
4044
4045         if (!page_has_buffers(page))
4046                 create_empty_buffers(page, blocksize, 0);
4047
4048         /* Find the buffer that contains "offset" */
4049         bh = page_buffers(page);
4050         pos = blocksize;
4051         while (offset >= pos) {
4052                 bh = bh->b_this_page;
4053                 iblock++;
4054                 pos += blocksize;
4055         }
4056         if (buffer_freed(bh)) {
4057                 BUFFER_TRACE(bh, "freed: skip");
4058                 goto unlock;
4059         }
4060         if (!buffer_mapped(bh)) {
4061                 BUFFER_TRACE(bh, "unmapped");
4062                 ext4_get_block(inode, iblock, bh, 0);
4063                 /* unmapped? It's a hole - nothing to do */
4064                 if (!buffer_mapped(bh)) {
4065                         BUFFER_TRACE(bh, "still unmapped");
4066                         goto unlock;
4067                 }
4068         }
4069
4070         /* Ok, it's mapped. Make sure it's up-to-date */
4071         if (PageUptodate(page))
4072                 set_buffer_uptodate(bh);
4073
4074         if (!buffer_uptodate(bh)) {
4075                 err = -EIO;
4076                 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
4077                 wait_on_buffer(bh);
4078                 /* Uhhuh. Read error. Complain and punt. */
4079                 if (!buffer_uptodate(bh))
4080                         goto unlock;
4081                 if (S_ISREG(inode->i_mode) && IS_ENCRYPTED(inode)) {
4082                         /* We expect the key to be set. */
4083                         BUG_ON(!fscrypt_has_encryption_key(inode));
4084                         WARN_ON_ONCE(fscrypt_decrypt_pagecache_blocks(
4085                                         page, blocksize, bh_offset(bh)));
4086                 }
4087         }
4088         if (ext4_should_journal_data(inode)) {
4089                 BUFFER_TRACE(bh, "get write access");
4090                 err = ext4_journal_get_write_access(handle, bh);
4091                 if (err)
4092                         goto unlock;
4093         }
4094         zero_user(page, offset, length);
4095         BUFFER_TRACE(bh, "zeroed end of block");
4096
4097         if (ext4_should_journal_data(inode)) {
4098                 err = ext4_handle_dirty_metadata(handle, inode, bh);
4099         } else {
4100                 err = 0;
4101                 mark_buffer_dirty(bh);
4102                 if (ext4_should_order_data(inode))
4103                         err = ext4_jbd2_inode_add_write(handle, inode, from,
4104                                         length);
4105         }
4106
4107 unlock:
4108         unlock_page(page);
4109         put_page(page);
4110         return err;
4111 }
4112
4113 /*
4114  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
4115  * starting from file offset 'from'.  The range to be zero'd must
4116  * be contained with in one block.  If the specified range exceeds
4117  * the end of the block it will be shortened to end of the block
4118  * that cooresponds to 'from'
4119  */
4120 static int ext4_block_zero_page_range(handle_t *handle,
4121                 struct address_space *mapping, loff_t from, loff_t length)
4122 {
4123         struct inode *inode = mapping->host;
4124         unsigned offset = from & (PAGE_SIZE-1);
4125         unsigned blocksize = inode->i_sb->s_blocksize;
4126         unsigned max = blocksize - (offset & (blocksize - 1));
4127
4128         /*
4129          * correct length if it does not fall between
4130          * 'from' and the end of the block
4131          */
4132         if (length > max || length < 0)
4133                 length = max;
4134
4135         if (IS_DAX(inode)) {
4136                 return iomap_zero_range(inode, from, length, NULL,
4137                                         &ext4_iomap_ops);
4138         }
4139         return __ext4_block_zero_page_range(handle, mapping, from, length);
4140 }
4141
4142 /*
4143  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
4144  * up to the end of the block which corresponds to `from'.
4145  * This required during truncate. We need to physically zero the tail end
4146  * of that block so it doesn't yield old data if the file is later grown.
4147  */
4148 static int ext4_block_truncate_page(handle_t *handle,
4149                 struct address_space *mapping, loff_t from)
4150 {
4151         unsigned offset = from & (PAGE_SIZE-1);
4152         unsigned length;
4153         unsigned blocksize;
4154         struct inode *inode = mapping->host;
4155
4156         /* If we are processing an encrypted inode during orphan list handling */
4157         if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
4158                 return 0;
4159
4160         blocksize = inode->i_sb->s_blocksize;
4161         length = blocksize - (offset & (blocksize - 1));
4162
4163         return ext4_block_zero_page_range(handle, mapping, from, length);
4164 }
4165
4166 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
4167                              loff_t lstart, loff_t length)
4168 {
4169         struct super_block *sb = inode->i_sb;
4170         struct address_space *mapping = inode->i_mapping;
4171         unsigned partial_start, partial_end;
4172         ext4_fsblk_t start, end;
4173         loff_t byte_end = (lstart + length - 1);
4174         int err = 0;
4175
4176         partial_start = lstart & (sb->s_blocksize - 1);
4177         partial_end = byte_end & (sb->s_blocksize - 1);
4178
4179         start = lstart >> sb->s_blocksize_bits;
4180         end = byte_end >> sb->s_blocksize_bits;
4181
4182         /* Handle partial zero within the single block */
4183         if (start == end &&
4184             (partial_start || (partial_end != sb->s_blocksize - 1))) {
4185                 err = ext4_block_zero_page_range(handle, mapping,
4186                                                  lstart, length);
4187                 return err;
4188         }
4189         /* Handle partial zero out on the start of the range */
4190         if (partial_start) {
4191                 err = ext4_block_zero_page_range(handle, mapping,
4192                                                  lstart, sb->s_blocksize);
4193                 if (err)
4194                         return err;
4195         }
4196         /* Handle partial zero out on the end of the range */
4197         if (partial_end != sb->s_blocksize - 1)
4198                 err = ext4_block_zero_page_range(handle, mapping,
4199                                                  byte_end - partial_end,
4200                                                  partial_end + 1);
4201         return err;
4202 }
4203
4204 int ext4_can_truncate(struct inode *inode)
4205 {
4206         if (S_ISREG(inode->i_mode))
4207                 return 1;
4208         if (S_ISDIR(inode->i_mode))
4209                 return 1;
4210         if (S_ISLNK(inode->i_mode))
4211                 return !ext4_inode_is_fast_symlink(inode);
4212         return 0;
4213 }
4214
4215 /*
4216  * We have to make sure i_disksize gets properly updated before we truncate
4217  * page cache due to hole punching or zero range. Otherwise i_disksize update
4218  * can get lost as it may have been postponed to submission of writeback but
4219  * that will never happen after we truncate page cache.
4220  */
4221 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
4222                                       loff_t len)
4223 {
4224         handle_t *handle;
4225         loff_t size = i_size_read(inode);
4226
4227         WARN_ON(!inode_is_locked(inode));
4228         if (offset > size || offset + len < size)
4229                 return 0;
4230
4231         if (EXT4_I(inode)->i_disksize >= size)
4232                 return 0;
4233
4234         handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
4235         if (IS_ERR(handle))
4236                 return PTR_ERR(handle);
4237         ext4_update_i_disksize(inode, size);
4238         ext4_mark_inode_dirty(handle, inode);
4239         ext4_journal_stop(handle);
4240
4241         return 0;
4242 }
4243
4244 static void ext4_wait_dax_page(struct ext4_inode_info *ei)
4245 {
4246         up_write(&ei->i_mmap_sem);
4247         schedule();
4248         down_write(&ei->i_mmap_sem);
4249 }
4250
4251 int ext4_break_layouts(struct inode *inode)
4252 {
4253         struct ext4_inode_info *ei = EXT4_I(inode);
4254         struct page *page;
4255         int error;
4256
4257         if (WARN_ON_ONCE(!rwsem_is_locked(&ei->i_mmap_sem)))
4258                 return -EINVAL;
4259
4260         do {
4261                 page = dax_layout_busy_page(inode->i_mapping);
4262                 if (!page)
4263                         return 0;
4264
4265                 error = ___wait_var_event(&page->_refcount,
4266                                 atomic_read(&page->_refcount) == 1,
4267                                 TASK_INTERRUPTIBLE, 0, 0,
4268                                 ext4_wait_dax_page(ei));
4269         } while (error == 0);
4270
4271         return error;
4272 }
4273
4274 /*
4275  * ext4_punch_hole: punches a hole in a file by releasing the blocks
4276  * associated with the given offset and length
4277  *
4278  * @inode:  File inode
4279  * @offset: The offset where the hole will begin
4280  * @len:    The length of the hole
4281  *
4282  * Returns: 0 on success or negative on failure
4283  */
4284
4285 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
4286 {
4287         struct super_block *sb = inode->i_sb;
4288         ext4_lblk_t first_block, stop_block;
4289         struct address_space *mapping = inode->i_mapping;
4290         loff_t first_block_offset, last_block_offset;
4291         handle_t *handle;
4292         unsigned int credits;
4293         int ret = 0;
4294
4295         if (!S_ISREG(inode->i_mode))
4296                 return -EOPNOTSUPP;
4297
4298         trace_ext4_punch_hole(inode, offset, length, 0);
4299
4300         /*
4301          * Write out all dirty pages to avoid race conditions
4302          * Then release them.
4303          */
4304         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4305                 ret = filemap_write_and_wait_range(mapping, offset,
4306                                                    offset + length - 1);
4307                 if (ret)
4308                         return ret;
4309         }
4310
4311         inode_lock(inode);
4312
4313         /* No need to punch hole beyond i_size */
4314         if (offset >= inode->i_size)
4315                 goto out_mutex;
4316
4317         /*
4318          * If the hole extends beyond i_size, set the hole
4319          * to end after the page that contains i_size
4320          */
4321         if (offset + length > inode->i_size) {
4322                 length = inode->i_size +
4323                    PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4324                    offset;
4325         }
4326
4327         if (offset & (sb->s_blocksize - 1) ||
4328             (offset + length) & (sb->s_blocksize - 1)) {
4329                 /*
4330                  * Attach jinode to inode for jbd2 if we do any zeroing of
4331                  * partial block
4332                  */
4333                 ret = ext4_inode_attach_jinode(inode);
4334                 if (ret < 0)
4335                         goto out_mutex;
4336
4337         }
4338
4339         /* Wait all existing dio workers, newcomers will block on i_mutex */
4340         inode_dio_wait(inode);
4341
4342         /*
4343          * Prevent page faults from reinstantiating pages we have released from
4344          * page cache.
4345          */
4346         down_write(&EXT4_I(inode)->i_mmap_sem);
4347
4348         ret = ext4_break_layouts(inode);
4349         if (ret)
4350                 goto out_dio;
4351
4352         first_block_offset = round_up(offset, sb->s_blocksize);
4353         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4354
4355         /* Now release the pages and zero block aligned part of pages*/
4356         if (last_block_offset > first_block_offset) {
4357                 ret = ext4_update_disksize_before_punch(inode, offset, length);
4358                 if (ret)
4359                         goto out_dio;
4360                 truncate_pagecache_range(inode, first_block_offset,
4361                                          last_block_offset);
4362         }
4363
4364         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4365                 credits = ext4_writepage_trans_blocks(inode);
4366         else
4367                 credits = ext4_blocks_for_truncate(inode);
4368         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4369         if (IS_ERR(handle)) {
4370                 ret = PTR_ERR(handle);
4371                 ext4_std_error(sb, ret);
4372                 goto out_dio;
4373         }
4374
4375         ret = ext4_zero_partial_blocks(handle, inode, offset,
4376                                        length);
4377         if (ret)
4378                 goto out_stop;
4379
4380         first_block = (offset + sb->s_blocksize - 1) >>
4381                 EXT4_BLOCK_SIZE_BITS(sb);
4382         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4383
4384         /* If there are blocks to remove, do it */
4385         if (stop_block > first_block) {
4386
4387                 down_write(&EXT4_I(inode)->i_data_sem);
4388                 ext4_discard_preallocations(inode);
4389
4390                 ret = ext4_es_remove_extent(inode, first_block,
4391                                             stop_block - first_block);
4392                 if (ret) {
4393                         up_write(&EXT4_I(inode)->i_data_sem);
4394                         goto out_stop;
4395                 }
4396
4397                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4398                         ret = ext4_ext_remove_space(inode, first_block,
4399                                                     stop_block - 1);
4400                 else
4401                         ret = ext4_ind_remove_space(handle, inode, first_block,
4402                                                     stop_block);
4403
4404                 up_write(&EXT4_I(inode)->i_data_sem);
4405         }
4406         if (IS_SYNC(inode))
4407                 ext4_handle_sync(handle);
4408
4409         inode->i_mtime = inode->i_ctime = current_time(inode);
4410         ext4_mark_inode_dirty(handle, inode);
4411         if (ret >= 0)
4412                 ext4_update_inode_fsync_trans(handle, inode, 1);
4413 out_stop:
4414         ext4_journal_stop(handle);
4415 out_dio:
4416         up_write(&EXT4_I(inode)->i_mmap_sem);
4417 out_mutex:
4418         inode_unlock(inode);
4419         return ret;
4420 }
4421
4422 int ext4_inode_attach_jinode(struct inode *inode)
4423 {
4424         struct ext4_inode_info *ei = EXT4_I(inode);
4425         struct jbd2_inode *jinode;
4426
4427         if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4428                 return 0;
4429
4430         jinode = jbd2_alloc_inode(GFP_KERNEL);
4431         spin_lock(&inode->i_lock);
4432         if (!ei->jinode) {
4433                 if (!jinode) {
4434                         spin_unlock(&inode->i_lock);
4435                         return -ENOMEM;
4436                 }
4437                 ei->jinode = jinode;
4438                 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4439                 jinode = NULL;
4440         }
4441         spin_unlock(&inode->i_lock);
4442         if (unlikely(jinode != NULL))
4443                 jbd2_free_inode(jinode);
4444         return 0;
4445 }
4446
4447 /*
4448  * ext4_truncate()
4449  *
4450  * We block out ext4_get_block() block instantiations across the entire
4451  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4452  * simultaneously on behalf of the same inode.
4453  *
4454  * As we work through the truncate and commit bits of it to the journal there
4455  * is one core, guiding principle: the file's tree must always be consistent on
4456  * disk.  We must be able to restart the truncate after a crash.
4457  *
4458  * The file's tree may be transiently inconsistent in memory (although it
4459  * probably isn't), but whenever we close off and commit a journal transaction,
4460  * the contents of (the filesystem + the journal) must be consistent and
4461  * restartable.  It's pretty simple, really: bottom up, right to left (although
4462  * left-to-right works OK too).
4463  *
4464  * Note that at recovery time, journal replay occurs *before* the restart of
4465  * truncate against the orphan inode list.
4466  *
4467  * The committed inode has the new, desired i_size (which is the same as
4468  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4469  * that this inode's truncate did not complete and it will again call
4470  * ext4_truncate() to have another go.  So there will be instantiated blocks
4471  * to the right of the truncation point in a crashed ext4 filesystem.  But
4472  * that's fine - as long as they are linked from the inode, the post-crash
4473  * ext4_truncate() run will find them and release them.
4474  */
4475 int ext4_truncate(struct inode *inode)
4476 {
4477         struct ext4_inode_info *ei = EXT4_I(inode);
4478         unsigned int credits;
4479         int err = 0;
4480         handle_t *handle;
4481         struct address_space *mapping = inode->i_mapping;
4482
4483         /*
4484          * There is a possibility that we're either freeing the inode
4485          * or it's a completely new inode. In those cases we might not
4486          * have i_mutex locked because it's not necessary.
4487          */
4488         if (!(inode->i_state & (I_NEW|I_FREEING)))
4489                 WARN_ON(!inode_is_locked(inode));
4490         trace_ext4_truncate_enter(inode);
4491
4492         if (!ext4_can_truncate(inode))
4493                 return 0;
4494
4495         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4496
4497         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4498                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4499
4500         if (ext4_has_inline_data(inode)) {
4501                 int has_inline = 1;
4502
4503                 err = ext4_inline_data_truncate(inode, &has_inline);
4504                 if (err)
4505                         return err;
4506                 if (has_inline)
4507                         return 0;
4508         }
4509
4510         /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4511         if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4512                 if (ext4_inode_attach_jinode(inode) < 0)
4513                         return 0;
4514         }
4515
4516         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4517                 credits = ext4_writepage_trans_blocks(inode);
4518         else
4519                 credits = ext4_blocks_for_truncate(inode);
4520
4521         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4522         if (IS_ERR(handle))
4523                 return PTR_ERR(handle);
4524
4525         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4526                 ext4_block_truncate_page(handle, mapping, inode->i_size);
4527
4528         /*
4529          * We add the inode to the orphan list, so that if this
4530          * truncate spans multiple transactions, and we crash, we will
4531          * resume the truncate when the filesystem recovers.  It also
4532          * marks the inode dirty, to catch the new size.
4533          *
4534          * Implication: the file must always be in a sane, consistent
4535          * truncatable state while each transaction commits.
4536          */
4537         err = ext4_orphan_add(handle, inode);
4538         if (err)
4539                 goto out_stop;
4540
4541         down_write(&EXT4_I(inode)->i_data_sem);
4542
4543         ext4_discard_preallocations(inode);
4544
4545         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4546                 err = ext4_ext_truncate(handle, inode);
4547         else
4548                 ext4_ind_truncate(handle, inode);
4549
4550         up_write(&ei->i_data_sem);
4551         if (err)
4552                 goto out_stop;
4553
4554         if (IS_SYNC(inode))
4555                 ext4_handle_sync(handle);
4556
4557 out_stop:
4558         /*
4559          * If this was a simple ftruncate() and the file will remain alive,
4560          * then we need to clear up the orphan record which we created above.
4561          * However, if this was a real unlink then we were called by
4562          * ext4_evict_inode(), and we allow that function to clean up the
4563          * orphan info for us.
4564          */
4565         if (inode->i_nlink)
4566                 ext4_orphan_del(handle, inode);
4567
4568         inode->i_mtime = inode->i_ctime = current_time(inode);
4569         ext4_mark_inode_dirty(handle, inode);
4570         ext4_journal_stop(handle);
4571
4572         trace_ext4_truncate_exit(inode);
4573         return err;
4574 }
4575
4576 /*
4577  * ext4_get_inode_loc returns with an extra refcount against the inode's
4578  * underlying buffer_head on success. If 'in_mem' is true, we have all
4579  * data in memory that is needed to recreate the on-disk version of this
4580  * inode.
4581  */
4582 static int __ext4_get_inode_loc(struct inode *inode,
4583                                 struct ext4_iloc *iloc, int in_mem)
4584 {
4585         struct ext4_group_desc  *gdp;
4586         struct buffer_head      *bh;
4587         struct super_block      *sb = inode->i_sb;
4588         ext4_fsblk_t            block;
4589         int                     inodes_per_block, inode_offset;
4590
4591         iloc->bh = NULL;
4592         if (inode->i_ino < EXT4_ROOT_INO ||
4593             inode->i_ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4594                 return -EFSCORRUPTED;
4595
4596         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4597         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4598         if (!gdp)
4599                 return -EIO;
4600
4601         /*
4602          * Figure out the offset within the block group inode table
4603          */
4604         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4605         inode_offset = ((inode->i_ino - 1) %
4606                         EXT4_INODES_PER_GROUP(sb));
4607         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4608         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4609
4610         bh = sb_getblk(sb, block);
4611         if (unlikely(!bh))
4612                 return -ENOMEM;
4613         if (!buffer_uptodate(bh)) {
4614                 lock_buffer(bh);
4615
4616                 /*
4617                  * If the buffer has the write error flag, we have failed
4618                  * to write out another inode in the same block.  In this
4619                  * case, we don't have to read the block because we may
4620                  * read the old inode data successfully.
4621                  */
4622                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4623                         set_buffer_uptodate(bh);
4624
4625                 if (buffer_uptodate(bh)) {
4626                         /* someone brought it uptodate while we waited */
4627                         unlock_buffer(bh);
4628                         goto has_buffer;
4629                 }
4630
4631                 /*
4632                  * If we have all information of the inode in memory and this
4633                  * is the only valid inode in the block, we need not read the
4634                  * block.
4635                  */
4636                 if (in_mem) {
4637                         struct buffer_head *bitmap_bh;
4638                         int i, start;
4639
4640                         start = inode_offset & ~(inodes_per_block - 1);
4641
4642                         /* Is the inode bitmap in cache? */
4643                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4644                         if (unlikely(!bitmap_bh))
4645                                 goto make_io;
4646
4647                         /*
4648                          * If the inode bitmap isn't in cache then the
4649                          * optimisation may end up performing two reads instead
4650                          * of one, so skip it.
4651                          */
4652                         if (!buffer_uptodate(bitmap_bh)) {
4653                                 brelse(bitmap_bh);
4654                                 goto make_io;
4655                         }
4656                         for (i = start; i < start + inodes_per_block; i++) {
4657                                 if (i == inode_offset)
4658                                         continue;
4659                                 if (ext4_test_bit(i, bitmap_bh->b_data))
4660                                         break;
4661                         }
4662                         brelse(bitmap_bh);
4663                         if (i == start + inodes_per_block) {
4664                                 /* all other inodes are free, so skip I/O */
4665                                 memset(bh->b_data, 0, bh->b_size);
4666                                 set_buffer_uptodate(bh);
4667                                 unlock_buffer(bh);
4668                                 goto has_buffer;
4669                         }
4670                 }
4671
4672 make_io:
4673                 /*
4674                  * If we need to do any I/O, try to pre-readahead extra
4675                  * blocks from the inode table.
4676                  */
4677                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4678                         ext4_fsblk_t b, end, table;
4679                         unsigned num;
4680                         __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4681
4682                         table = ext4_inode_table(sb, gdp);
4683                         /* s_inode_readahead_blks is always a power of 2 */
4684                         b = block & ~((ext4_fsblk_t) ra_blks - 1);
4685                         if (table > b)
4686                                 b = table;
4687                         end = b + ra_blks;
4688                         num = EXT4_INODES_PER_GROUP(sb);
4689                         if (ext4_has_group_desc_csum(sb))
4690                                 num -= ext4_itable_unused_count(sb, gdp);
4691                         table += num / inodes_per_block;
4692                         if (end > table)
4693                                 end = table;
4694                         while (b <= end)
4695                                 sb_breadahead(sb, b++);
4696                 }
4697
4698                 /*
4699                  * There are other valid inodes in the buffer, this inode
4700                  * has in-inode xattrs, or we don't have this inode in memory.
4701                  * Read the block from disk.
4702                  */
4703                 trace_ext4_load_inode(inode);
4704                 get_bh(bh);
4705                 bh->b_end_io = end_buffer_read_sync;
4706                 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4707                 wait_on_buffer(bh);
4708                 if (!buffer_uptodate(bh)) {
4709                         EXT4_ERROR_INODE_BLOCK(inode, block,
4710                                                "unable to read itable block");
4711                         brelse(bh);
4712                         return -EIO;
4713                 }
4714         }
4715 has_buffer:
4716         iloc->bh = bh;
4717         return 0;
4718 }
4719
4720 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4721 {
4722         /* We have all inode data except xattrs in memory here. */
4723         return __ext4_get_inode_loc(inode, iloc,
4724                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4725 }
4726
4727 static bool ext4_should_use_dax(struct inode *inode)
4728 {
4729         if (!test_opt(inode->i_sb, DAX))
4730                 return false;
4731         if (!S_ISREG(inode->i_mode))
4732                 return false;
4733         if (ext4_should_journal_data(inode))
4734                 return false;
4735         if (ext4_has_inline_data(inode))
4736                 return false;
4737         if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4738                 return false;
4739         return true;
4740 }
4741
4742 void ext4_set_inode_flags(struct inode *inode)
4743 {
4744         unsigned int flags = EXT4_I(inode)->i_flags;
4745         unsigned int new_fl = 0;
4746
4747         if (flags & EXT4_SYNC_FL)
4748                 new_fl |= S_SYNC;
4749         if (flags & EXT4_APPEND_FL)
4750                 new_fl |= S_APPEND;
4751         if (flags & EXT4_IMMUTABLE_FL)
4752                 new_fl |= S_IMMUTABLE;
4753         if (flags & EXT4_NOATIME_FL)
4754                 new_fl |= S_NOATIME;
4755         if (flags & EXT4_DIRSYNC_FL)
4756                 new_fl |= S_DIRSYNC;
4757         if (ext4_should_use_dax(inode))
4758                 new_fl |= S_DAX;
4759         if (flags & EXT4_ENCRYPT_FL)
4760                 new_fl |= S_ENCRYPTED;
4761         if (flags & EXT4_CASEFOLD_FL)
4762                 new_fl |= S_CASEFOLD;
4763         inode_set_flags(inode, new_fl,
4764                         S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4765                         S_ENCRYPTED|S_CASEFOLD);
4766 }
4767
4768 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4769                                   struct ext4_inode_info *ei)
4770 {
4771         blkcnt_t i_blocks ;
4772         struct inode *inode = &(ei->vfs_inode);
4773         struct super_block *sb = inode->i_sb;
4774
4775         if (ext4_has_feature_huge_file(sb)) {
4776                 /* we are using combined 48 bit field */
4777                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4778                                         le32_to_cpu(raw_inode->i_blocks_lo);
4779                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4780                         /* i_blocks represent file system block size */
4781                         return i_blocks  << (inode->i_blkbits - 9);
4782                 } else {
4783                         return i_blocks;
4784                 }
4785         } else {
4786                 return le32_to_cpu(raw_inode->i_blocks_lo);
4787         }
4788 }
4789
4790 static inline int ext4_iget_extra_inode(struct inode *inode,
4791                                          struct ext4_inode *raw_inode,
4792                                          struct ext4_inode_info *ei)
4793 {
4794         __le32 *magic = (void *)raw_inode +
4795                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4796
4797         if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4798             EXT4_INODE_SIZE(inode->i_sb) &&
4799             *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4800                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4801                 return ext4_find_inline_data_nolock(inode);
4802         } else
4803                 EXT4_I(inode)->i_inline_off = 0;
4804         return 0;
4805 }
4806
4807 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4808 {
4809         if (!ext4_has_feature_project(inode->i_sb))
4810                 return -EOPNOTSUPP;
4811         *projid = EXT4_I(inode)->i_projid;
4812         return 0;
4813 }
4814
4815 /*
4816  * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4817  * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4818  * set.
4819  */
4820 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4821 {
4822         if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4823                 inode_set_iversion_raw(inode, val);
4824         else
4825                 inode_set_iversion_queried(inode, val);
4826 }
4827 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4828 {
4829         if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4830                 return inode_peek_iversion_raw(inode);
4831         else
4832                 return inode_peek_iversion(inode);
4833 }
4834
4835 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4836                           ext4_iget_flags flags, const char *function,
4837                           unsigned int line)
4838 {
4839         struct ext4_iloc iloc;
4840         struct ext4_inode *raw_inode;
4841         struct ext4_inode_info *ei;
4842         struct inode *inode;
4843         journal_t *journal = EXT4_SB(sb)->s_journal;
4844         long ret;
4845         loff_t size;
4846         int block;
4847         uid_t i_uid;
4848         gid_t i_gid;
4849         projid_t i_projid;
4850
4851         if ((!(flags & EXT4_IGET_SPECIAL) &&
4852              (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)) ||
4853             (ino < EXT4_ROOT_INO) ||
4854             (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))) {
4855                 if (flags & EXT4_IGET_HANDLE)
4856                         return ERR_PTR(-ESTALE);
4857                 __ext4_error(sb, function, line,
4858                              "inode #%lu: comm %s: iget: illegal inode #",
4859                              ino, current->comm);
4860                 return ERR_PTR(-EFSCORRUPTED);
4861         }
4862
4863         inode = iget_locked(sb, ino);
4864         if (!inode)
4865                 return ERR_PTR(-ENOMEM);
4866         if (!(inode->i_state & I_NEW))
4867                 return inode;
4868
4869         ei = EXT4_I(inode);
4870         iloc.bh = NULL;
4871
4872         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4873         if (ret < 0)
4874                 goto bad_inode;
4875         raw_inode = ext4_raw_inode(&iloc);
4876
4877         if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4878                 ext4_error_inode(inode, function, line, 0,
4879                                  "iget: root inode unallocated");
4880                 ret = -EFSCORRUPTED;
4881                 goto bad_inode;
4882         }
4883
4884         if ((flags & EXT4_IGET_HANDLE) &&
4885             (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4886                 ret = -ESTALE;
4887                 goto bad_inode;
4888         }
4889
4890         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4891                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4892                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4893                         EXT4_INODE_SIZE(inode->i_sb) ||
4894                     (ei->i_extra_isize & 3)) {
4895                         ext4_error_inode(inode, function, line, 0,
4896                                          "iget: bad extra_isize %u "
4897                                          "(inode size %u)",
4898                                          ei->i_extra_isize,
4899                                          EXT4_INODE_SIZE(inode->i_sb));
4900                         ret = -EFSCORRUPTED;
4901                         goto bad_inode;
4902                 }
4903         } else
4904                 ei->i_extra_isize = 0;
4905
4906         /* Precompute checksum seed for inode metadata */
4907         if (ext4_has_metadata_csum(sb)) {
4908                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4909                 __u32 csum;
4910                 __le32 inum = cpu_to_le32(inode->i_ino);
4911                 __le32 gen = raw_inode->i_generation;
4912                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4913                                    sizeof(inum));
4914                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4915                                               sizeof(gen));
4916         }
4917
4918         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4919                 ext4_error_inode(inode, function, line, 0,
4920                                  "iget: checksum invalid");
4921                 ret = -EFSBADCRC;
4922                 goto bad_inode;
4923         }
4924
4925         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4926         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4927         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4928         if (ext4_has_feature_project(sb) &&
4929             EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4930             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4931                 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4932         else
4933                 i_projid = EXT4_DEF_PROJID;
4934
4935         if (!(test_opt(inode->i_sb, NO_UID32))) {
4936                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4937                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4938         }
4939         i_uid_write(inode, i_uid);
4940         i_gid_write(inode, i_gid);
4941         ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4942         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4943
4944         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4945         ei->i_inline_off = 0;
4946         ei->i_dir_start_lookup = 0;
4947         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4948         /* We now have enough fields to check if the inode was active or not.
4949          * This is needed because nfsd might try to access dead inodes
4950          * the test is that same one that e2fsck uses
4951          * NeilBrown 1999oct15
4952          */
4953         if (inode->i_nlink == 0) {
4954                 if ((inode->i_mode == 0 ||
4955                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4956                     ino != EXT4_BOOT_LOADER_INO) {
4957                         /* this inode is deleted */
4958                         ret = -ESTALE;
4959                         goto bad_inode;
4960                 }
4961                 /* The only unlinked inodes we let through here have
4962                  * valid i_mode and are being read by the orphan
4963                  * recovery code: that's fine, we're about to complete
4964                  * the process of deleting those.
4965                  * OR it is the EXT4_BOOT_LOADER_INO which is
4966                  * not initialized on a new filesystem. */
4967         }
4968         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4969         ext4_set_inode_flags(inode);
4970         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4971         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4972         if (ext4_has_feature_64bit(sb))
4973                 ei->i_file_acl |=
4974                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4975         inode->i_size = ext4_isize(sb, raw_inode);
4976         if ((size = i_size_read(inode)) < 0) {
4977                 ext4_error_inode(inode, function, line, 0,
4978                                  "iget: bad i_size value: %lld", size);
4979                 ret = -EFSCORRUPTED;
4980                 goto bad_inode;
4981         }
4982         ei->i_disksize = inode->i_size;
4983 #ifdef CONFIG_QUOTA
4984         ei->i_reserved_quota = 0;
4985 #endif
4986         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4987         ei->i_block_group = iloc.block_group;
4988         ei->i_last_alloc_group = ~0;
4989         /*
4990          * NOTE! The in-memory inode i_data array is in little-endian order
4991          * even on big-endian machines: we do NOT byteswap the block numbers!
4992          */
4993         for (block = 0; block < EXT4_N_BLOCKS; block++)
4994                 ei->i_data[block] = raw_inode->i_block[block];
4995         INIT_LIST_HEAD(&ei->i_orphan);
4996
4997         /*
4998          * Set transaction id's of transactions that have to be committed
4999          * to finish f[data]sync. We set them to currently running transaction
5000          * as we cannot be sure that the inode or some of its metadata isn't
5001          * part of the transaction - the inode could have been reclaimed and
5002          * now it is reread from disk.
5003          */
5004         if (journal) {
5005                 transaction_t *transaction;
5006                 tid_t tid;
5007
5008                 read_lock(&journal->j_state_lock);
5009                 if (journal->j_running_transaction)
5010                         transaction = journal->j_running_transaction;
5011                 else
5012                         transaction = journal->j_committing_transaction;
5013                 if (transaction)
5014                         tid = transaction->t_tid;
5015                 else
5016                         tid = journal->j_commit_sequence;
5017                 read_unlock(&journal->j_state_lock);
5018                 ei->i_sync_tid = tid;
5019                 ei->i_datasync_tid = tid;
5020         }
5021
5022         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5023                 if (ei->i_extra_isize == 0) {
5024                         /* The extra space is currently unused. Use it. */
5025                         BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
5026                         ei->i_extra_isize = sizeof(struct ext4_inode) -
5027                                             EXT4_GOOD_OLD_INODE_SIZE;
5028                 } else {
5029                         ret = ext4_iget_extra_inode(inode, raw_inode, ei);
5030                         if (ret)
5031                                 goto bad_inode;
5032                 }
5033         }
5034
5035         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
5036         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
5037         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
5038         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
5039
5040         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5041                 u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
5042
5043                 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5044                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5045                                 ivers |=
5046                     (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
5047                 }
5048                 ext4_inode_set_iversion_queried(inode, ivers);
5049         }
5050
5051         ret = 0;
5052         if (ei->i_file_acl &&
5053             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
5054                 ext4_error_inode(inode, function, line, 0,
5055                                  "iget: bad extended attribute block %llu",
5056                                  ei->i_file_acl);
5057                 ret = -EFSCORRUPTED;
5058                 goto bad_inode;
5059         } else if (!ext4_has_inline_data(inode)) {
5060                 /* validate the block references in the inode */
5061                 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5062                    (S_ISLNK(inode->i_mode) &&
5063                     !ext4_inode_is_fast_symlink(inode))) {
5064                         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
5065                                 ret = ext4_ext_check_inode(inode);
5066                         else
5067                                 ret = ext4_ind_check_inode(inode);
5068                 }
5069         }
5070         if (ret)
5071                 goto bad_inode;
5072
5073         if (S_ISREG(inode->i_mode)) {
5074                 inode->i_op = &ext4_file_inode_operations;
5075                 inode->i_fop = &ext4_file_operations;
5076                 ext4_set_aops(inode);
5077         } else if (S_ISDIR(inode->i_mode)) {
5078                 inode->i_op = &ext4_dir_inode_operations;
5079                 inode->i_fop = &ext4_dir_operations;
5080         } else if (S_ISLNK(inode->i_mode)) {
5081                 /* VFS does not allow setting these so must be corruption */
5082                 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
5083                         ext4_error_inode(inode, function, line, 0,
5084                                          "iget: immutable or append flags "
5085                                          "not allowed on symlinks");
5086                         ret = -EFSCORRUPTED;
5087                         goto bad_inode;
5088                 }
5089                 if (IS_ENCRYPTED(inode)) {
5090                         inode->i_op = &ext4_encrypted_symlink_inode_operations;
5091                         ext4_set_aops(inode);
5092                 } else if (ext4_inode_is_fast_symlink(inode)) {
5093                         inode->i_link = (char *)ei->i_data;
5094                         inode->i_op = &ext4_fast_symlink_inode_operations;
5095                         nd_terminate_link(ei->i_data, inode->i_size,
5096                                 sizeof(ei->i_data) - 1);
5097                 } else {
5098                         inode->i_op = &ext4_symlink_inode_operations;
5099                         ext4_set_aops(inode);
5100                 }
5101                 inode_nohighmem(inode);
5102         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5103               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5104                 inode->i_op = &ext4_special_inode_operations;
5105                 if (raw_inode->i_block[0])
5106                         init_special_inode(inode, inode->i_mode,
5107                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5108                 else
5109                         init_special_inode(inode, inode->i_mode,
5110                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5111         } else if (ino == EXT4_BOOT_LOADER_INO) {
5112                 make_bad_inode(inode);
5113         } else {
5114                 ret = -EFSCORRUPTED;
5115                 ext4_error_inode(inode, function, line, 0,
5116                                  "iget: bogus i_mode (%o)", inode->i_mode);
5117                 goto bad_inode;
5118         }
5119         brelse(iloc.bh);
5120
5121         unlock_new_inode(inode);
5122         return inode;
5123
5124 bad_inode:
5125         brelse(iloc.bh);
5126         iget_failed(inode);
5127         return ERR_PTR(ret);
5128 }
5129
5130 static int ext4_inode_blocks_set(handle_t *handle,
5131                                 struct ext4_inode *raw_inode,
5132                                 struct ext4_inode_info *ei)
5133 {
5134         struct inode *inode = &(ei->vfs_inode);
5135         u64 i_blocks = inode->i_blocks;
5136         struct super_block *sb = inode->i_sb;
5137
5138         if (i_blocks <= ~0U) {
5139                 /*
5140                  * i_blocks can be represented in a 32 bit variable
5141                  * as multiple of 512 bytes
5142                  */
5143                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5144                 raw_inode->i_blocks_high = 0;
5145                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5146                 return 0;
5147         }
5148         if (!ext4_has_feature_huge_file(sb))
5149                 return -EFBIG;
5150
5151         if (i_blocks <= 0xffffffffffffULL) {
5152                 /*
5153                  * i_blocks can be represented in a 48 bit variable
5154                  * as multiple of 512 bytes
5155                  */
5156                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5157                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5158                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5159         } else {
5160                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5161                 /* i_block is stored in file system block size */
5162                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
5163                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5164                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5165         }
5166         return 0;
5167 }
5168
5169 struct other_inode {
5170         unsigned long           orig_ino;
5171         struct ext4_inode       *raw_inode;
5172 };
5173
5174 static int other_inode_match(struct inode * inode, unsigned long ino,
5175                              void *data)
5176 {
5177         struct other_inode *oi = (struct other_inode *) data;
5178
5179         if ((inode->i_ino != ino) ||
5180             (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5181                                I_DIRTY_INODE)) ||
5182             ((inode->i_state & I_DIRTY_TIME) == 0))
5183                 return 0;
5184         spin_lock(&inode->i_lock);
5185         if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5186                                 I_DIRTY_INODE)) == 0) &&
5187             (inode->i_state & I_DIRTY_TIME)) {
5188                 struct ext4_inode_info  *ei = EXT4_I(inode);
5189
5190                 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
5191                 spin_unlock(&inode->i_lock);
5192
5193                 spin_lock(&ei->i_raw_lock);
5194                 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
5195                 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
5196                 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
5197                 ext4_inode_csum_set(inode, oi->raw_inode, ei);
5198                 spin_unlock(&ei->i_raw_lock);
5199                 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
5200                 return -1;
5201         }
5202         spin_unlock(&inode->i_lock);
5203         return -1;
5204 }
5205
5206 /*
5207  * Opportunistically update the other time fields for other inodes in
5208  * the same inode table block.
5209  */
5210 static void ext4_update_other_inodes_time(struct super_block *sb,
5211                                           unsigned long orig_ino, char *buf)
5212 {
5213         struct other_inode oi;
5214         unsigned long ino;
5215         int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5216         int inode_size = EXT4_INODE_SIZE(sb);
5217
5218         oi.orig_ino = orig_ino;
5219         /*
5220          * Calculate the first inode in the inode table block.  Inode
5221          * numbers are one-based.  That is, the first inode in a block
5222          * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5223          */
5224         ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5225         for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5226                 if (ino == orig_ino)
5227                         continue;
5228                 oi.raw_inode = (struct ext4_inode *) buf;
5229                 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
5230         }
5231 }
5232
5233 /*
5234  * Post the struct inode info into an on-disk inode location in the
5235  * buffer-cache.  This gobbles the caller's reference to the
5236  * buffer_head in the inode location struct.
5237  *
5238  * The caller must have write access to iloc->bh.
5239  */
5240 static int ext4_do_update_inode(handle_t *handle,
5241                                 struct inode *inode,
5242                                 struct ext4_iloc *iloc)
5243 {
5244         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5245         struct ext4_inode_info *ei = EXT4_I(inode);
5246         struct buffer_head *bh = iloc->bh;
5247         struct super_block *sb = inode->i_sb;
5248         int err = 0, rc, block;
5249         int need_datasync = 0, set_large_file = 0;
5250         uid_t i_uid;
5251         gid_t i_gid;
5252         projid_t i_projid;
5253
5254         spin_lock(&ei->i_raw_lock);
5255
5256         /* For fields not tracked in the in-memory inode,
5257          * initialise them to zero for new inodes. */
5258         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5259                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5260
5261         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5262         i_uid = i_uid_read(inode);
5263         i_gid = i_gid_read(inode);
5264         i_projid = from_kprojid(&init_user_ns, ei->i_projid);
5265         if (!(test_opt(inode->i_sb, NO_UID32))) {
5266                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
5267                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
5268 /*
5269  * Fix up interoperability with old kernels. Otherwise, old inodes get
5270  * re-used with the upper 16 bits of the uid/gid intact
5271  */
5272                 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
5273                         raw_inode->i_uid_high = 0;
5274                         raw_inode->i_gid_high = 0;
5275                 } else {
5276                         raw_inode->i_uid_high =
5277                                 cpu_to_le16(high_16_bits(i_uid));
5278                         raw_inode->i_gid_high =
5279                                 cpu_to_le16(high_16_bits(i_gid));
5280                 }
5281         } else {
5282                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
5283                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
5284                 raw_inode->i_uid_high = 0;
5285                 raw_inode->i_gid_high = 0;
5286         }
5287         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5288
5289         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5290         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5291         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5292         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5293
5294         err = ext4_inode_blocks_set(handle, raw_inode, ei);
5295         if (err) {
5296                 spin_unlock(&ei->i_raw_lock);
5297                 goto out_brelse;
5298         }
5299         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5300         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5301         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
5302                 raw_inode->i_file_acl_high =
5303                         cpu_to_le16(ei->i_file_acl >> 32);
5304         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5305         if (ei->i_disksize != ext4_isize(inode->i_sb, raw_inode)) {
5306                 ext4_isize_set(raw_inode, ei->i_disksize);
5307                 need_datasync = 1;
5308         }
5309         if (ei->i_disksize > 0x7fffffffULL) {
5310                 if (!ext4_has_feature_large_file(sb) ||
5311                                 EXT4_SB(sb)->s_es->s_rev_level ==
5312                     cpu_to_le32(EXT4_GOOD_OLD_REV))
5313                         set_large_file = 1;
5314         }
5315         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5316         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5317                 if (old_valid_dev(inode->i_rdev)) {
5318                         raw_inode->i_block[0] =
5319                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
5320                         raw_inode->i_block[1] = 0;
5321                 } else {
5322                         raw_inode->i_block[0] = 0;
5323                         raw_inode->i_block[1] =
5324                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
5325                         raw_inode->i_block[2] = 0;
5326                 }
5327         } else if (!ext4_has_inline_data(inode)) {
5328                 for (block = 0; block < EXT4_N_BLOCKS; block++)
5329                         raw_inode->i_block[block] = ei->i_data[block];
5330         }
5331
5332         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5333                 u64 ivers = ext4_inode_peek_iversion(inode);
5334
5335                 raw_inode->i_disk_version = cpu_to_le32(ivers);
5336                 if (ei->i_extra_isize) {
5337                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5338                                 raw_inode->i_version_hi =
5339                                         cpu_to_le32(ivers >> 32);
5340                         raw_inode->i_extra_isize =
5341                                 cpu_to_le16(ei->i_extra_isize);
5342                 }
5343         }
5344
5345         BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5346                i_projid != EXT4_DEF_PROJID);
5347
5348         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5349             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5350                 raw_inode->i_projid = cpu_to_le32(i_projid);
5351
5352         ext4_inode_csum_set(inode, raw_inode, ei);
5353         spin_unlock(&ei->i_raw_lock);
5354         if (inode->i_sb->s_flags & SB_LAZYTIME)
5355                 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5356                                               bh->b_data);
5357
5358         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5359         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5360         if (!err)
5361                 err = rc;
5362         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5363         if (set_large_file) {
5364                 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5365                 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5366                 if (err)
5367                         goto out_brelse;
5368                 ext4_set_feature_large_file(sb);
5369                 ext4_handle_sync(handle);
5370                 err = ext4_handle_dirty_super(handle, sb);
5371         }
5372         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5373 out_brelse:
5374         brelse(bh);
5375         ext4_std_error(inode->i_sb, err);
5376         return err;
5377 }
5378
5379 /*
5380  * ext4_write_inode()
5381  *
5382  * We are called from a few places:
5383  *
5384  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5385  *   Here, there will be no transaction running. We wait for any running
5386  *   transaction to commit.
5387  *
5388  * - Within flush work (sys_sync(), kupdate and such).
5389  *   We wait on commit, if told to.
5390  *
5391  * - Within iput_final() -> write_inode_now()
5392  *   We wait on commit, if told to.
5393  *
5394  * In all cases it is actually safe for us to return without doing anything,
5395  * because the inode has been copied into a raw inode buffer in
5396  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5397  * writeback.
5398  *
5399  * Note that we are absolutely dependent upon all inode dirtiers doing the
5400  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5401  * which we are interested.
5402  *
5403  * It would be a bug for them to not do this.  The code:
5404  *
5405  *      mark_inode_dirty(inode)
5406  *      stuff();
5407  *      inode->i_size = expr;
5408  *
5409  * is in error because write_inode() could occur while `stuff()' is running,
5410  * and the new i_size will be lost.  Plus the inode will no longer be on the
5411  * superblock's dirty inode list.
5412  */
5413 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5414 {
5415         int err;
5416
5417         if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5418             sb_rdonly(inode->i_sb))
5419                 return 0;
5420
5421         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5422                 return -EIO;
5423
5424         if (EXT4_SB(inode->i_sb)->s_journal) {
5425                 if (ext4_journal_current_handle()) {
5426                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5427                         dump_stack();
5428                         return -EIO;
5429                 }
5430
5431                 /*
5432                  * No need to force transaction in WB_SYNC_NONE mode. Also
5433                  * ext4_sync_fs() will force the commit after everything is
5434                  * written.
5435                  */
5436                 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5437                         return 0;
5438
5439                 err = jbd2_complete_transaction(EXT4_SB(inode->i_sb)->s_journal,
5440                                                 EXT4_I(inode)->i_sync_tid);
5441         } else {
5442                 struct ext4_iloc iloc;
5443
5444                 err = __ext4_get_inode_loc(inode, &iloc, 0);
5445                 if (err)
5446                         return err;
5447                 /*
5448                  * sync(2) will flush the whole buffer cache. No need to do
5449                  * it here separately for each inode.
5450                  */
5451                 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5452                         sync_dirty_buffer(iloc.bh);
5453                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5454                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5455                                          "IO error syncing inode");
5456                         err = -EIO;
5457                 }
5458                 brelse(iloc.bh);
5459         }
5460         return err;
5461 }
5462
5463 /*
5464  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5465  * buffers that are attached to a page stradding i_size and are undergoing
5466  * commit. In that case we have to wait for commit to finish and try again.
5467  */
5468 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5469 {
5470         struct page *page;
5471         unsigned offset;
5472         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5473         tid_t commit_tid = 0;
5474         int ret;
5475
5476         offset = inode->i_size & (PAGE_SIZE - 1);
5477         /*
5478          * All buffers in the last page remain valid? Then there's nothing to
5479          * do. We do the check mainly to optimize the common PAGE_SIZE ==
5480          * blocksize case
5481          */
5482         if (offset > PAGE_SIZE - i_blocksize(inode))
5483                 return;
5484         while (1) {
5485                 page = find_lock_page(inode->i_mapping,
5486                                       inode->i_size >> PAGE_SHIFT);
5487                 if (!page)
5488                         return;
5489                 ret = __ext4_journalled_invalidatepage(page, offset,
5490                                                 PAGE_SIZE - offset);
5491                 unlock_page(page);
5492                 put_page(page);
5493                 if (ret != -EBUSY)
5494                         return;
5495                 commit_tid = 0;
5496                 read_lock(&journal->j_state_lock);
5497                 if (journal->j_committing_transaction)
5498                         commit_tid = journal->j_committing_transaction->t_tid;
5499                 read_unlock(&journal->j_state_lock);
5500                 if (commit_tid)
5501                         jbd2_log_wait_commit(journal, commit_tid);
5502         }
5503 }
5504
5505 /*
5506  * ext4_setattr()
5507  *
5508  * Called from notify_change.
5509  *
5510  * We want to trap VFS attempts to truncate the file as soon as
5511  * possible.  In particular, we want to make sure that when the VFS
5512  * shrinks i_size, we put the inode on the orphan list and modify
5513  * i_disksize immediately, so that during the subsequent flushing of
5514  * dirty pages and freeing of disk blocks, we can guarantee that any
5515  * commit will leave the blocks being flushed in an unused state on
5516  * disk.  (On recovery, the inode will get truncated and the blocks will
5517  * be freed, so we have a strong guarantee that no future commit will
5518  * leave these blocks visible to the user.)
5519  *
5520  * Another thing we have to assure is that if we are in ordered mode
5521  * and inode is still attached to the committing transaction, we must
5522  * we start writeout of all the dirty pages which are being truncated.
5523  * This way we are sure that all the data written in the previous
5524  * transaction are already on disk (truncate waits for pages under
5525  * writeback).
5526  *
5527  * Called with inode->i_mutex down.
5528  */
5529 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5530 {
5531         struct inode *inode = d_inode(dentry);
5532         int error, rc = 0;
5533         int orphan = 0;
5534         const unsigned int ia_valid = attr->ia_valid;
5535
5536         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5537                 return -EIO;
5538
5539         if (unlikely(IS_IMMUTABLE(inode)))
5540                 return -EPERM;
5541
5542         if (unlikely(IS_APPEND(inode) &&
5543                      (ia_valid & (ATTR_MODE | ATTR_UID |
5544                                   ATTR_GID | ATTR_TIMES_SET))))
5545                 return -EPERM;
5546
5547         error = setattr_prepare(dentry, attr);
5548         if (error)
5549                 return error;
5550
5551         error = fscrypt_prepare_setattr(dentry, attr);
5552         if (error)
5553                 return error;
5554
5555         if (is_quota_modification(inode, attr)) {
5556                 error = dquot_initialize(inode);
5557                 if (error)
5558                         return error;
5559         }
5560         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5561             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5562                 handle_t *handle;
5563
5564                 /* (user+group)*(old+new) structure, inode write (sb,
5565                  * inode block, ? - but truncate inode update has it) */
5566                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5567                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5568                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5569                 if (IS_ERR(handle)) {
5570                         error = PTR_ERR(handle);
5571                         goto err_out;
5572                 }
5573
5574                 /* dquot_transfer() calls back ext4_get_inode_usage() which
5575                  * counts xattr inode references.
5576                  */
5577                 down_read(&EXT4_I(inode)->xattr_sem);
5578                 error = dquot_transfer(inode, attr);
5579                 up_read(&EXT4_I(inode)->xattr_sem);
5580
5581                 if (error) {
5582                         ext4_journal_stop(handle);
5583                         return error;
5584                 }
5585                 /* Update corresponding info in inode so that everything is in
5586                  * one transaction */
5587                 if (attr->ia_valid & ATTR_UID)
5588                         inode->i_uid = attr->ia_uid;
5589                 if (attr->ia_valid & ATTR_GID)
5590                         inode->i_gid = attr->ia_gid;
5591                 error = ext4_mark_inode_dirty(handle, inode);
5592                 ext4_journal_stop(handle);
5593         }
5594
5595         if (attr->ia_valid & ATTR_SIZE) {
5596                 handle_t *handle;
5597                 loff_t oldsize = inode->i_size;
5598                 int shrink = (attr->ia_size < inode->i_size);
5599
5600                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5601                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5602
5603                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
5604                                 return -EFBIG;
5605                 }
5606                 if (!S_ISREG(inode->i_mode))
5607                         return -EINVAL;
5608
5609                 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5610                         inode_inc_iversion(inode);
5611
5612                 if (shrink) {
5613                         if (ext4_should_order_data(inode)) {
5614                                 error = ext4_begin_ordered_truncate(inode,
5615                                                             attr->ia_size);
5616                                 if (error)
5617                                         goto err_out;
5618                         }
5619                         /*
5620                          * Blocks are going to be removed from the inode. Wait
5621                          * for dio in flight.
5622                          */
5623                         inode_dio_wait(inode);
5624                 }
5625
5626                 down_write(&EXT4_I(inode)->i_mmap_sem);
5627
5628                 rc = ext4_break_layouts(inode);
5629                 if (rc) {
5630                         up_write(&EXT4_I(inode)->i_mmap_sem);
5631                         return rc;
5632                 }
5633
5634                 if (attr->ia_size != inode->i_size) {
5635                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5636                         if (IS_ERR(handle)) {
5637                                 error = PTR_ERR(handle);
5638                                 goto out_mmap_sem;
5639                         }
5640                         if (ext4_handle_valid(handle) && shrink) {
5641                                 error = ext4_orphan_add(handle, inode);
5642                                 orphan = 1;
5643                         }
5644                         /*
5645                          * Update c/mtime on truncate up, ext4_truncate() will
5646                          * update c/mtime in shrink case below
5647                          */
5648                         if (!shrink) {
5649                                 inode->i_mtime = current_time(inode);
5650                                 inode->i_ctime = inode->i_mtime;
5651                         }
5652                         down_write(&EXT4_I(inode)->i_data_sem);
5653                         EXT4_I(inode)->i_disksize = attr->ia_size;
5654                         rc = ext4_mark_inode_dirty(handle, inode);
5655                         if (!error)
5656                                 error = rc;
5657                         /*
5658                          * We have to update i_size under i_data_sem together
5659                          * with i_disksize to avoid races with writeback code
5660                          * running ext4_wb_update_i_disksize().
5661                          */
5662                         if (!error)
5663                                 i_size_write(inode, attr->ia_size);
5664                         up_write(&EXT4_I(inode)->i_data_sem);
5665                         ext4_journal_stop(handle);
5666                         if (error)
5667                                 goto out_mmap_sem;
5668                         if (!shrink) {
5669                                 pagecache_isize_extended(inode, oldsize,
5670                                                          inode->i_size);
5671                         } else if (ext4_should_journal_data(inode)) {
5672                                 ext4_wait_for_tail_page_commit(inode);
5673                         }
5674                 }
5675
5676                 /*
5677                  * Truncate pagecache after we've waited for commit
5678                  * in data=journal mode to make pages freeable.
5679                  */
5680                 truncate_pagecache(inode, inode->i_size);
5681                 /*
5682                  * Call ext4_truncate() even if i_size didn't change to
5683                  * truncate possible preallocated blocks.
5684                  */
5685                 if (attr->ia_size <= oldsize) {
5686                         rc = ext4_truncate(inode);
5687                         if (rc)
5688                                 error = rc;
5689                 }
5690 out_mmap_sem:
5691                 up_write(&EXT4_I(inode)->i_mmap_sem);
5692         }
5693
5694         if (!error) {
5695                 setattr_copy(inode, attr);
5696                 mark_inode_dirty(inode);
5697         }
5698
5699         /*
5700          * If the call to ext4_truncate failed to get a transaction handle at
5701          * all, we need to clean up the in-core orphan list manually.
5702          */
5703         if (orphan && inode->i_nlink)
5704                 ext4_orphan_del(NULL, inode);
5705
5706         if (!error && (ia_valid & ATTR_MODE))
5707                 rc = posix_acl_chmod(inode, inode->i_mode);
5708
5709 err_out:
5710         ext4_std_error(inode->i_sb, error);
5711         if (!error)
5712                 error = rc;
5713         return error;
5714 }
5715
5716 int ext4_getattr(const struct path *path, struct kstat *stat,
5717                  u32 request_mask, unsigned int query_flags)
5718 {
5719         struct inode *inode = d_inode(path->dentry);
5720         struct ext4_inode *raw_inode;
5721         struct ext4_inode_info *ei = EXT4_I(inode);
5722         unsigned int flags;
5723
5724         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5725                 stat->result_mask |= STATX_BTIME;
5726                 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5727                 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5728         }
5729
5730         flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5731         if (flags & EXT4_APPEND_FL)
5732                 stat->attributes |= STATX_ATTR_APPEND;
5733         if (flags & EXT4_COMPR_FL)
5734                 stat->attributes |= STATX_ATTR_COMPRESSED;
5735         if (flags & EXT4_ENCRYPT_FL)
5736                 stat->attributes |= STATX_ATTR_ENCRYPTED;
5737         if (flags & EXT4_IMMUTABLE_FL)
5738                 stat->attributes |= STATX_ATTR_IMMUTABLE;
5739         if (flags & EXT4_NODUMP_FL)
5740                 stat->attributes |= STATX_ATTR_NODUMP;
5741
5742         stat->attributes_mask |= (STATX_ATTR_APPEND |
5743                                   STATX_ATTR_COMPRESSED |
5744                                   STATX_ATTR_ENCRYPTED |
5745                                   STATX_ATTR_IMMUTABLE |
5746                                   STATX_ATTR_NODUMP);
5747
5748         generic_fillattr(inode, stat);
5749         return 0;
5750 }
5751
5752 int ext4_file_getattr(const struct path *path, struct kstat *stat,
5753                       u32 request_mask, unsigned int query_flags)
5754 {
5755         struct inode *inode = d_inode(path->dentry);
5756         u64 delalloc_blocks;
5757
5758         ext4_getattr(path, stat, request_mask, query_flags);
5759
5760         /*
5761          * If there is inline data in the inode, the inode will normally not
5762          * have data blocks allocated (it may have an external xattr block).
5763          * Report at least one sector for such files, so tools like tar, rsync,
5764          * others don't incorrectly think the file is completely sparse.
5765          */
5766         if (unlikely(ext4_has_inline_data(inode)))
5767                 stat->blocks += (stat->size + 511) >> 9;
5768
5769         /*
5770          * We can't update i_blocks if the block allocation is delayed
5771          * otherwise in the case of system crash before the real block
5772          * allocation is done, we will have i_blocks inconsistent with
5773          * on-disk file blocks.
5774          * We always keep i_blocks updated together with real
5775          * allocation. But to not confuse with user, stat
5776          * will return the blocks that include the delayed allocation
5777          * blocks for this file.
5778          */
5779         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5780                                    EXT4_I(inode)->i_reserved_data_blocks);
5781         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5782         return 0;
5783 }
5784
5785 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5786                                    int pextents)
5787 {
5788         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5789                 return ext4_ind_trans_blocks(inode, lblocks);
5790         return ext4_ext_index_trans_blocks(inode, pextents);
5791 }
5792
5793 /*
5794  * Account for index blocks, block groups bitmaps and block group
5795  * descriptor blocks if modify datablocks and index blocks
5796  * worse case, the indexs blocks spread over different block groups
5797  *
5798  * If datablocks are discontiguous, they are possible to spread over
5799  * different block groups too. If they are contiguous, with flexbg,
5800  * they could still across block group boundary.
5801  *
5802  * Also account for superblock, inode, quota and xattr blocks
5803  */
5804 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5805                                   int pextents)
5806 {
5807         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5808         int gdpblocks;
5809         int idxblocks;
5810         int ret = 0;
5811
5812         /*
5813          * How many index blocks need to touch to map @lblocks logical blocks
5814          * to @pextents physical extents?
5815          */
5816         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5817
5818         ret = idxblocks;
5819
5820         /*
5821          * Now let's see how many group bitmaps and group descriptors need
5822          * to account
5823          */
5824         groups = idxblocks + pextents;
5825         gdpblocks = groups;
5826         if (groups > ngroups)
5827                 groups = ngroups;
5828         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5829                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5830
5831         /* bitmaps and block group descriptor blocks */
5832         ret += groups + gdpblocks;
5833
5834         /* Blocks for super block, inode, quota and xattr blocks */
5835         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5836
5837         return ret;
5838 }
5839
5840 /*
5841  * Calculate the total number of credits to reserve to fit
5842  * the modification of a single pages into a single transaction,
5843  * which may include multiple chunks of block allocations.
5844  *
5845  * This could be called via ext4_write_begin()
5846  *
5847  * We need to consider the worse case, when
5848  * one new block per extent.
5849  */
5850 int ext4_writepage_trans_blocks(struct inode *inode)
5851 {
5852         int bpp = ext4_journal_blocks_per_page(inode);
5853         int ret;
5854
5855         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5856
5857         /* Account for data blocks for journalled mode */
5858         if (ext4_should_journal_data(inode))
5859                 ret += bpp;
5860         return ret;
5861 }
5862
5863 /*
5864  * Calculate the journal credits for a chunk of data modification.
5865  *
5866  * This is called from DIO, fallocate or whoever calling
5867  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5868  *
5869  * journal buffers for data blocks are not included here, as DIO
5870  * and fallocate do no need to journal data buffers.
5871  */
5872 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5873 {
5874         return ext4_meta_trans_blocks(inode, nrblocks, 1);
5875 }
5876
5877 /*
5878  * The caller must have previously called ext4_reserve_inode_write().
5879  * Give this, we know that the caller already has write access to iloc->bh.
5880  */
5881 int ext4_mark_iloc_dirty(handle_t *handle,
5882                          struct inode *inode, struct ext4_iloc *iloc)
5883 {
5884         int err = 0;
5885
5886         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5887                 put_bh(iloc->bh);
5888                 return -EIO;
5889         }
5890         if (IS_I_VERSION(inode))
5891                 inode_inc_iversion(inode);
5892
5893         /* the do_update_inode consumes one bh->b_count */
5894         get_bh(iloc->bh);
5895
5896         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5897         err = ext4_do_update_inode(handle, inode, iloc);
5898         put_bh(iloc->bh);
5899         return err;
5900 }
5901
5902 /*
5903  * On success, We end up with an outstanding reference count against
5904  * iloc->bh.  This _must_ be cleaned up later.
5905  */
5906
5907 int
5908 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5909                          struct ext4_iloc *iloc)
5910 {
5911         int err;
5912
5913         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5914                 return -EIO;
5915
5916         err = ext4_get_inode_loc(inode, iloc);
5917         if (!err) {
5918                 BUFFER_TRACE(iloc->bh, "get_write_access");
5919                 err = ext4_journal_get_write_access(handle, iloc->bh);
5920                 if (err) {
5921                         brelse(iloc->bh);
5922                         iloc->bh = NULL;
5923                 }
5924         }
5925         ext4_std_error(inode->i_sb, err);
5926         return err;
5927 }
5928
5929 static int __ext4_expand_extra_isize(struct inode *inode,
5930                                      unsigned int new_extra_isize,
5931                                      struct ext4_iloc *iloc,
5932                                      handle_t *handle, int *no_expand)
5933 {
5934         struct ext4_inode *raw_inode;
5935         struct ext4_xattr_ibody_header *header;
5936         int error;
5937
5938         raw_inode = ext4_raw_inode(iloc);
5939
5940         header = IHDR(inode, raw_inode);
5941
5942         /* No extended attributes present */
5943         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5944             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5945                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5946                        EXT4_I(inode)->i_extra_isize, 0,
5947                        new_extra_isize - EXT4_I(inode)->i_extra_isize);
5948                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5949                 return 0;
5950         }
5951
5952         /* try to expand with EAs present */
5953         error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5954                                            raw_inode, handle);
5955         if (error) {
5956                 /*
5957                  * Inode size expansion failed; don't try again
5958                  */
5959                 *no_expand = 1;
5960         }
5961
5962         return error;
5963 }
5964
5965 /*
5966  * Expand an inode by new_extra_isize bytes.
5967  * Returns 0 on success or negative error number on failure.
5968  */
5969 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5970                                           unsigned int new_extra_isize,
5971                                           struct ext4_iloc iloc,
5972                                           handle_t *handle)
5973 {
5974         int no_expand;
5975         int error;
5976
5977         if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5978                 return -EOVERFLOW;
5979
5980         /*
5981          * In nojournal mode, we can immediately attempt to expand
5982          * the inode.  When journaled, we first need to obtain extra
5983          * buffer credits since we may write into the EA block
5984          * with this same handle. If journal_extend fails, then it will
5985          * only result in a minor loss of functionality for that inode.
5986          * If this is felt to be critical, then e2fsck should be run to
5987          * force a large enough s_min_extra_isize.
5988          */
5989         if (ext4_handle_valid(handle) &&
5990             jbd2_journal_extend(handle,
5991                                 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) != 0)
5992                 return -ENOSPC;
5993
5994         if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5995                 return -EBUSY;
5996
5997         error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5998                                           handle, &no_expand);
5999         ext4_write_unlock_xattr(inode, &no_expand);
6000
6001         return error;
6002 }
6003
6004 int ext4_expand_extra_isize(struct inode *inode,
6005                             unsigned int new_extra_isize,
6006                             struct ext4_iloc *iloc)
6007 {
6008         handle_t *handle;
6009         int no_expand;
6010         int error, rc;
6011
6012         if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
6013                 brelse(iloc->bh);
6014                 return -EOVERFLOW;
6015         }
6016
6017         handle = ext4_journal_start(inode, EXT4_HT_INODE,
6018                                     EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
6019         if (IS_ERR(handle)) {
6020                 error = PTR_ERR(handle);
6021                 brelse(iloc->bh);
6022                 return error;
6023         }
6024
6025         ext4_write_lock_xattr(inode, &no_expand);
6026
6027         BUFFER_TRACE(iloc->bh, "get_write_access");
6028         error = ext4_journal_get_write_access(handle, iloc->bh);
6029         if (error) {
6030                 brelse(iloc->bh);
6031                 goto out_stop;
6032         }
6033
6034         error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
6035                                           handle, &no_expand);
6036
6037         rc = ext4_mark_iloc_dirty(handle, inode, iloc);
6038         if (!error)
6039                 error = rc;
6040
6041         ext4_write_unlock_xattr(inode, &no_expand);
6042 out_stop:
6043         ext4_journal_stop(handle);
6044         return error;
6045 }
6046
6047 /*
6048  * What we do here is to mark the in-core inode as clean with respect to inode
6049  * dirtiness (it may still be data-dirty).
6050  * This means that the in-core inode may be reaped by prune_icache
6051  * without having to perform any I/O.  This is a very good thing,
6052  * because *any* task may call prune_icache - even ones which
6053  * have a transaction open against a different journal.
6054  *
6055  * Is this cheating?  Not really.  Sure, we haven't written the
6056  * inode out, but prune_icache isn't a user-visible syncing function.
6057  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
6058  * we start and wait on commits.
6059  */
6060 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
6061 {
6062         struct ext4_iloc iloc;
6063         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6064         int err;
6065
6066         might_sleep();
6067         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
6068         err = ext4_reserve_inode_write(handle, inode, &iloc);
6069         if (err)
6070                 return err;
6071
6072         if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
6073                 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
6074                                                iloc, handle);
6075
6076         return ext4_mark_iloc_dirty(handle, inode, &iloc);
6077 }
6078
6079 /*
6080  * ext4_dirty_inode() is called from __mark_inode_dirty()
6081  *
6082  * We're really interested in the case where a file is being extended.
6083  * i_size has been changed by generic_commit_write() and we thus need
6084  * to include the updated inode in the current transaction.
6085  *
6086  * Also, dquot_alloc_block() will always dirty the inode when blocks
6087  * are allocated to the file.
6088  *
6089  * If the inode is marked synchronous, we don't honour that here - doing
6090  * so would cause a commit on atime updates, which we don't bother doing.
6091  * We handle synchronous inodes at the highest possible level.
6092  *
6093  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
6094  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
6095  * to copy into the on-disk inode structure are the timestamp files.
6096  */
6097 void ext4_dirty_inode(struct inode *inode, int flags)
6098 {
6099         handle_t *handle;
6100
6101         if (flags == I_DIRTY_TIME)
6102                 return;
6103         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
6104         if (IS_ERR(handle))
6105                 goto out;
6106
6107         ext4_mark_inode_dirty(handle, inode);
6108
6109         ext4_journal_stop(handle);
6110 out:
6111         return;
6112 }
6113
6114 int ext4_change_inode_journal_flag(struct inode *inode, int val)
6115 {
6116         journal_t *journal;
6117         handle_t *handle;
6118         int err;
6119         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6120
6121         /*
6122          * We have to be very careful here: changing a data block's
6123          * journaling status dynamically is dangerous.  If we write a
6124          * data block to the journal, change the status and then delete
6125          * that block, we risk forgetting to revoke the old log record
6126          * from the journal and so a subsequent replay can corrupt data.
6127          * So, first we make sure that the journal is empty and that
6128          * nobody is changing anything.
6129          */
6130
6131         journal = EXT4_JOURNAL(inode);
6132         if (!journal)
6133                 return 0;
6134         if (is_journal_aborted(journal))
6135                 return -EROFS;
6136
6137         /* Wait for all existing dio workers */
6138         inode_dio_wait(inode);
6139
6140         /*
6141          * Before flushing the journal and switching inode's aops, we have
6142          * to flush all dirty data the inode has. There can be outstanding
6143          * delayed allocations, there can be unwritten extents created by
6144          * fallocate or buffered writes in dioread_nolock mode covered by
6145          * dirty data which can be converted only after flushing the dirty
6146          * data (and journalled aops don't know how to handle these cases).
6147          */
6148         if (val) {
6149                 down_write(&EXT4_I(inode)->i_mmap_sem);
6150                 err = filemap_write_and_wait(inode->i_mapping);
6151                 if (err < 0) {
6152                         up_write(&EXT4_I(inode)->i_mmap_sem);
6153                         return err;
6154                 }
6155         }
6156
6157         percpu_down_write(&sbi->s_journal_flag_rwsem);
6158         jbd2_journal_lock_updates(journal);
6159
6160         /*
6161          * OK, there are no updates running now, and all cached data is
6162          * synced to disk.  We are now in a completely consistent state
6163          * which doesn't have anything in the journal, and we know that
6164          * no filesystem updates are running, so it is safe to modify
6165          * the inode's in-core data-journaling state flag now.
6166          */
6167
6168         if (val)
6169                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6170         else {
6171                 err = jbd2_journal_flush(journal);
6172                 if (err < 0) {
6173                         jbd2_journal_unlock_updates(journal);
6174                         percpu_up_write(&sbi->s_journal_flag_rwsem);
6175                         return err;
6176                 }
6177                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6178         }
6179         ext4_set_aops(inode);
6180
6181         jbd2_journal_unlock_updates(journal);
6182         percpu_up_write(&sbi->s_journal_flag_rwsem);
6183
6184         if (val)
6185                 up_write(&EXT4_I(inode)->i_mmap_sem);
6186
6187         /* Finally we can mark the inode as dirty. */
6188
6189         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6190         if (IS_ERR(handle))
6191                 return PTR_ERR(handle);
6192
6193         err = ext4_mark_inode_dirty(handle, inode);
6194         ext4_handle_sync(handle);
6195         ext4_journal_stop(handle);
6196         ext4_std_error(inode->i_sb, err);
6197
6198         return err;
6199 }
6200
6201 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
6202 {
6203         return !buffer_mapped(bh);
6204 }
6205
6206 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6207 {
6208         struct vm_area_struct *vma = vmf->vma;
6209         struct page *page = vmf->page;
6210         loff_t size;
6211         unsigned long len;
6212         int err;
6213         vm_fault_t ret;
6214         struct file *file = vma->vm_file;
6215         struct inode *inode = file_inode(file);
6216         struct address_space *mapping = inode->i_mapping;
6217         handle_t *handle;
6218         get_block_t *get_block;
6219         int retries = 0;
6220
6221         if (unlikely(IS_IMMUTABLE(inode)))
6222                 return VM_FAULT_SIGBUS;
6223
6224         sb_start_pagefault(inode->i_sb);
6225         file_update_time(vma->vm_file);
6226
6227         down_read(&EXT4_I(inode)->i_mmap_sem);
6228
6229         err = ext4_convert_inline_data(inode);
6230         if (err)
6231                 goto out_ret;
6232
6233         /* Delalloc case is easy... */
6234         if (test_opt(inode->i_sb, DELALLOC) &&
6235             !ext4_should_journal_data(inode) &&
6236             !ext4_nonda_switch(inode->i_sb)) {
6237                 do {
6238                         err = block_page_mkwrite(vma, vmf,
6239                                                    ext4_da_get_block_prep);
6240                 } while (err == -ENOSPC &&
6241                        ext4_should_retry_alloc(inode->i_sb, &retries));
6242                 goto out_ret;
6243         }
6244
6245         lock_page(page);
6246         size = i_size_read(inode);
6247         /* Page got truncated from under us? */
6248         if (page->mapping != mapping || page_offset(page) > size) {
6249                 unlock_page(page);
6250                 ret = VM_FAULT_NOPAGE;
6251                 goto out;
6252         }
6253
6254         if (page->index == size >> PAGE_SHIFT)
6255                 len = size & ~PAGE_MASK;
6256         else
6257                 len = PAGE_SIZE;
6258         /*
6259          * Return if we have all the buffers mapped. This avoids the need to do
6260          * journal_start/journal_stop which can block and take a long time
6261          */
6262         if (page_has_buffers(page)) {
6263                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
6264                                             0, len, NULL,
6265                                             ext4_bh_unmapped)) {
6266                         /* Wait so that we don't change page under IO */
6267                         wait_for_stable_page(page);
6268                         ret = VM_FAULT_LOCKED;
6269                         goto out;
6270                 }
6271         }
6272         unlock_page(page);
6273         /* OK, we need to fill the hole... */
6274         if (ext4_should_dioread_nolock(inode))
6275                 get_block = ext4_get_block_unwritten;
6276         else
6277                 get_block = ext4_get_block;
6278 retry_alloc:
6279         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6280                                     ext4_writepage_trans_blocks(inode));
6281         if (IS_ERR(handle)) {
6282                 ret = VM_FAULT_SIGBUS;
6283                 goto out;
6284         }
6285         err = block_page_mkwrite(vma, vmf, get_block);
6286         if (!err && ext4_should_journal_data(inode)) {
6287                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
6288                           PAGE_SIZE, NULL, do_journal_get_write_access)) {
6289                         unlock_page(page);
6290                         ret = VM_FAULT_SIGBUS;
6291                         ext4_journal_stop(handle);
6292                         goto out;
6293                 }
6294                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6295         }
6296         ext4_journal_stop(handle);
6297         if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6298                 goto retry_alloc;
6299 out_ret:
6300         ret = block_page_mkwrite_return(err);
6301 out:
6302         up_read(&EXT4_I(inode)->i_mmap_sem);
6303         sb_end_pagefault(inode->i_sb);
6304         return ret;
6305 }
6306
6307 vm_fault_t ext4_filemap_fault(struct vm_fault *vmf)
6308 {
6309         struct inode *inode = file_inode(vmf->vma->vm_file);
6310         vm_fault_t ret;
6311
6312         down_read(&EXT4_I(inode)->i_mmap_sem);
6313         ret = filemap_fault(vmf);
6314         up_read(&EXT4_I(inode)->i_mmap_sem);
6315
6316         return ret;
6317 }