Merge tag 'devicetree-for-5.15' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / fs / ext4 / inode.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  64-bit file support on 64-bit platforms by Jakub Jelinek
17  *      (jj@sunsite.ms.mff.cuni.cz)
18  *
19  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20  */
21
22 #include <linux/fs.h>
23 #include <linux/mount.h>
24 #include <linux/time.h>
25 #include <linux/highuid.h>
26 #include <linux/pagemap.h>
27 #include <linux/dax.h>
28 #include <linux/quotaops.h>
29 #include <linux/string.h>
30 #include <linux/buffer_head.h>
31 #include <linux/writeback.h>
32 #include <linux/pagevec.h>
33 #include <linux/mpage.h>
34 #include <linux/namei.h>
35 #include <linux/uio.h>
36 #include <linux/bio.h>
37 #include <linux/workqueue.h>
38 #include <linux/kernel.h>
39 #include <linux/printk.h>
40 #include <linux/slab.h>
41 #include <linux/bitops.h>
42 #include <linux/iomap.h>
43 #include <linux/iversion.h>
44
45 #include "ext4_jbd2.h"
46 #include "xattr.h"
47 #include "acl.h"
48 #include "truncate.h"
49
50 #include <trace/events/ext4.h>
51
52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53                               struct ext4_inode_info *ei)
54 {
55         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
56         __u32 csum;
57         __u16 dummy_csum = 0;
58         int offset = offsetof(struct ext4_inode, i_checksum_lo);
59         unsigned int csum_size = sizeof(dummy_csum);
60
61         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
62         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
63         offset += csum_size;
64         csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
65                            EXT4_GOOD_OLD_INODE_SIZE - offset);
66
67         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
68                 offset = offsetof(struct ext4_inode, i_checksum_hi);
69                 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
70                                    EXT4_GOOD_OLD_INODE_SIZE,
71                                    offset - EXT4_GOOD_OLD_INODE_SIZE);
72                 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
73                         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
74                                            csum_size);
75                         offset += csum_size;
76                 }
77                 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
78                                    EXT4_INODE_SIZE(inode->i_sb) - offset);
79         }
80
81         return csum;
82 }
83
84 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
85                                   struct ext4_inode_info *ei)
86 {
87         __u32 provided, calculated;
88
89         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
90             cpu_to_le32(EXT4_OS_LINUX) ||
91             !ext4_has_metadata_csum(inode->i_sb))
92                 return 1;
93
94         provided = le16_to_cpu(raw->i_checksum_lo);
95         calculated = ext4_inode_csum(inode, raw, ei);
96         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
97             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
98                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
99         else
100                 calculated &= 0xFFFF;
101
102         return provided == calculated;
103 }
104
105 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
106                          struct ext4_inode_info *ei)
107 {
108         __u32 csum;
109
110         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
111             cpu_to_le32(EXT4_OS_LINUX) ||
112             !ext4_has_metadata_csum(inode->i_sb))
113                 return;
114
115         csum = ext4_inode_csum(inode, raw, ei);
116         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
117         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
118             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
119                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
120 }
121
122 static inline int ext4_begin_ordered_truncate(struct inode *inode,
123                                               loff_t new_size)
124 {
125         trace_ext4_begin_ordered_truncate(inode, new_size);
126         /*
127          * If jinode is zero, then we never opened the file for
128          * writing, so there's no need to call
129          * jbd2_journal_begin_ordered_truncate() since there's no
130          * outstanding writes we need to flush.
131          */
132         if (!EXT4_I(inode)->jinode)
133                 return 0;
134         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
135                                                    EXT4_I(inode)->jinode,
136                                                    new_size);
137 }
138
139 static void ext4_invalidatepage(struct page *page, unsigned int offset,
140                                 unsigned int length);
141 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
142 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
143 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
144                                   int pextents);
145
146 /*
147  * Test whether an inode is a fast symlink.
148  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
149  */
150 int ext4_inode_is_fast_symlink(struct inode *inode)
151 {
152         if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
153                 int ea_blocks = EXT4_I(inode)->i_file_acl ?
154                                 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
155
156                 if (ext4_has_inline_data(inode))
157                         return 0;
158
159                 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
160         }
161         return S_ISLNK(inode->i_mode) && inode->i_size &&
162                (inode->i_size < EXT4_N_BLOCKS * 4);
163 }
164
165 /*
166  * Called at the last iput() if i_nlink is zero.
167  */
168 void ext4_evict_inode(struct inode *inode)
169 {
170         handle_t *handle;
171         int err;
172         /*
173          * Credits for final inode cleanup and freeing:
174          * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
175          * (xattr block freeing), bitmap, group descriptor (inode freeing)
176          */
177         int extra_credits = 6;
178         struct ext4_xattr_inode_array *ea_inode_array = NULL;
179         bool freeze_protected = false;
180
181         trace_ext4_evict_inode(inode);
182
183         if (inode->i_nlink) {
184                 /*
185                  * When journalling data dirty buffers are tracked only in the
186                  * journal. So although mm thinks everything is clean and
187                  * ready for reaping the inode might still have some pages to
188                  * write in the running transaction or waiting to be
189                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
190                  * (via truncate_inode_pages()) to discard these buffers can
191                  * cause data loss. Also even if we did not discard these
192                  * buffers, we would have no way to find them after the inode
193                  * is reaped and thus user could see stale data if he tries to
194                  * read them before the transaction is checkpointed. So be
195                  * careful and force everything to disk here... We use
196                  * ei->i_datasync_tid to store the newest transaction
197                  * containing inode's data.
198                  *
199                  * Note that directories do not have this problem because they
200                  * don't use page cache.
201                  */
202                 if (inode->i_ino != EXT4_JOURNAL_INO &&
203                     ext4_should_journal_data(inode) &&
204                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
205                     inode->i_data.nrpages) {
206                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
207                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
208
209                         jbd2_complete_transaction(journal, commit_tid);
210                         filemap_write_and_wait(&inode->i_data);
211                 }
212                 truncate_inode_pages_final(&inode->i_data);
213
214                 goto no_delete;
215         }
216
217         if (is_bad_inode(inode))
218                 goto no_delete;
219         dquot_initialize(inode);
220
221         if (ext4_should_order_data(inode))
222                 ext4_begin_ordered_truncate(inode, 0);
223         truncate_inode_pages_final(&inode->i_data);
224
225         /*
226          * For inodes with journalled data, transaction commit could have
227          * dirtied the inode. Flush worker is ignoring it because of I_FREEING
228          * flag but we still need to remove the inode from the writeback lists.
229          */
230         if (!list_empty_careful(&inode->i_io_list)) {
231                 WARN_ON_ONCE(!ext4_should_journal_data(inode));
232                 inode_io_list_del(inode);
233         }
234
235         /*
236          * Protect us against freezing - iput() caller didn't have to have any
237          * protection against it. When we are in a running transaction though,
238          * we are already protected against freezing and we cannot grab further
239          * protection due to lock ordering constraints.
240          */
241         if (!ext4_journal_current_handle()) {
242                 sb_start_intwrite(inode->i_sb);
243                 freeze_protected = true;
244         }
245
246         if (!IS_NOQUOTA(inode))
247                 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
248
249         /*
250          * Block bitmap, group descriptor, and inode are accounted in both
251          * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
252          */
253         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
254                          ext4_blocks_for_truncate(inode) + extra_credits - 3);
255         if (IS_ERR(handle)) {
256                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
257                 /*
258                  * If we're going to skip the normal cleanup, we still need to
259                  * make sure that the in-core orphan linked list is properly
260                  * cleaned up.
261                  */
262                 ext4_orphan_del(NULL, inode);
263                 if (freeze_protected)
264                         sb_end_intwrite(inode->i_sb);
265                 goto no_delete;
266         }
267
268         if (IS_SYNC(inode))
269                 ext4_handle_sync(handle);
270
271         /*
272          * Set inode->i_size to 0 before calling ext4_truncate(). We need
273          * special handling of symlinks here because i_size is used to
274          * determine whether ext4_inode_info->i_data contains symlink data or
275          * block mappings. Setting i_size to 0 will remove its fast symlink
276          * status. Erase i_data so that it becomes a valid empty block map.
277          */
278         if (ext4_inode_is_fast_symlink(inode))
279                 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
280         inode->i_size = 0;
281         err = ext4_mark_inode_dirty(handle, inode);
282         if (err) {
283                 ext4_warning(inode->i_sb,
284                              "couldn't mark inode dirty (err %d)", err);
285                 goto stop_handle;
286         }
287         if (inode->i_blocks) {
288                 err = ext4_truncate(inode);
289                 if (err) {
290                         ext4_error_err(inode->i_sb, -err,
291                                        "couldn't truncate inode %lu (err %d)",
292                                        inode->i_ino, err);
293                         goto stop_handle;
294                 }
295         }
296
297         /* Remove xattr references. */
298         err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
299                                       extra_credits);
300         if (err) {
301                 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
302 stop_handle:
303                 ext4_journal_stop(handle);
304                 ext4_orphan_del(NULL, inode);
305                 if (freeze_protected)
306                         sb_end_intwrite(inode->i_sb);
307                 ext4_xattr_inode_array_free(ea_inode_array);
308                 goto no_delete;
309         }
310
311         /*
312          * Kill off the orphan record which ext4_truncate created.
313          * AKPM: I think this can be inside the above `if'.
314          * Note that ext4_orphan_del() has to be able to cope with the
315          * deletion of a non-existent orphan - this is because we don't
316          * know if ext4_truncate() actually created an orphan record.
317          * (Well, we could do this if we need to, but heck - it works)
318          */
319         ext4_orphan_del(handle, inode);
320         EXT4_I(inode)->i_dtime  = (__u32)ktime_get_real_seconds();
321
322         /*
323          * One subtle ordering requirement: if anything has gone wrong
324          * (transaction abort, IO errors, whatever), then we can still
325          * do these next steps (the fs will already have been marked as
326          * having errors), but we can't free the inode if the mark_dirty
327          * fails.
328          */
329         if (ext4_mark_inode_dirty(handle, inode))
330                 /* If that failed, just do the required in-core inode clear. */
331                 ext4_clear_inode(inode);
332         else
333                 ext4_free_inode(handle, inode);
334         ext4_journal_stop(handle);
335         if (freeze_protected)
336                 sb_end_intwrite(inode->i_sb);
337         ext4_xattr_inode_array_free(ea_inode_array);
338         return;
339 no_delete:
340         if (!list_empty(&EXT4_I(inode)->i_fc_list))
341                 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM);
342         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
343 }
344
345 #ifdef CONFIG_QUOTA
346 qsize_t *ext4_get_reserved_space(struct inode *inode)
347 {
348         return &EXT4_I(inode)->i_reserved_quota;
349 }
350 #endif
351
352 /*
353  * Called with i_data_sem down, which is important since we can call
354  * ext4_discard_preallocations() from here.
355  */
356 void ext4_da_update_reserve_space(struct inode *inode,
357                                         int used, int quota_claim)
358 {
359         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
360         struct ext4_inode_info *ei = EXT4_I(inode);
361
362         spin_lock(&ei->i_block_reservation_lock);
363         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
364         if (unlikely(used > ei->i_reserved_data_blocks)) {
365                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
366                          "with only %d reserved data blocks",
367                          __func__, inode->i_ino, used,
368                          ei->i_reserved_data_blocks);
369                 WARN_ON(1);
370                 used = ei->i_reserved_data_blocks;
371         }
372
373         /* Update per-inode reservations */
374         ei->i_reserved_data_blocks -= used;
375         percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
376
377         spin_unlock(&ei->i_block_reservation_lock);
378
379         /* Update quota subsystem for data blocks */
380         if (quota_claim)
381                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
382         else {
383                 /*
384                  * We did fallocate with an offset that is already delayed
385                  * allocated. So on delayed allocated writeback we should
386                  * not re-claim the quota for fallocated blocks.
387                  */
388                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
389         }
390
391         /*
392          * If we have done all the pending block allocations and if
393          * there aren't any writers on the inode, we can discard the
394          * inode's preallocations.
395          */
396         if ((ei->i_reserved_data_blocks == 0) &&
397             !inode_is_open_for_write(inode))
398                 ext4_discard_preallocations(inode, 0);
399 }
400
401 static int __check_block_validity(struct inode *inode, const char *func,
402                                 unsigned int line,
403                                 struct ext4_map_blocks *map)
404 {
405         if (ext4_has_feature_journal(inode->i_sb) &&
406             (inode->i_ino ==
407              le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
408                 return 0;
409         if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
410                 ext4_error_inode(inode, func, line, map->m_pblk,
411                                  "lblock %lu mapped to illegal pblock %llu "
412                                  "(length %d)", (unsigned long) map->m_lblk,
413                                  map->m_pblk, map->m_len);
414                 return -EFSCORRUPTED;
415         }
416         return 0;
417 }
418
419 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
420                        ext4_lblk_t len)
421 {
422         int ret;
423
424         if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
425                 return fscrypt_zeroout_range(inode, lblk, pblk, len);
426
427         ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
428         if (ret > 0)
429                 ret = 0;
430
431         return ret;
432 }
433
434 #define check_block_validity(inode, map)        \
435         __check_block_validity((inode), __func__, __LINE__, (map))
436
437 #ifdef ES_AGGRESSIVE_TEST
438 static void ext4_map_blocks_es_recheck(handle_t *handle,
439                                        struct inode *inode,
440                                        struct ext4_map_blocks *es_map,
441                                        struct ext4_map_blocks *map,
442                                        int flags)
443 {
444         int retval;
445
446         map->m_flags = 0;
447         /*
448          * There is a race window that the result is not the same.
449          * e.g. xfstests #223 when dioread_nolock enables.  The reason
450          * is that we lookup a block mapping in extent status tree with
451          * out taking i_data_sem.  So at the time the unwritten extent
452          * could be converted.
453          */
454         down_read(&EXT4_I(inode)->i_data_sem);
455         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
456                 retval = ext4_ext_map_blocks(handle, inode, map, 0);
457         } else {
458                 retval = ext4_ind_map_blocks(handle, inode, map, 0);
459         }
460         up_read((&EXT4_I(inode)->i_data_sem));
461
462         /*
463          * We don't check m_len because extent will be collpased in status
464          * tree.  So the m_len might not equal.
465          */
466         if (es_map->m_lblk != map->m_lblk ||
467             es_map->m_flags != map->m_flags ||
468             es_map->m_pblk != map->m_pblk) {
469                 printk("ES cache assertion failed for inode: %lu "
470                        "es_cached ex [%d/%d/%llu/%x] != "
471                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
472                        inode->i_ino, es_map->m_lblk, es_map->m_len,
473                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
474                        map->m_len, map->m_pblk, map->m_flags,
475                        retval, flags);
476         }
477 }
478 #endif /* ES_AGGRESSIVE_TEST */
479
480 /*
481  * The ext4_map_blocks() function tries to look up the requested blocks,
482  * and returns if the blocks are already mapped.
483  *
484  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
485  * and store the allocated blocks in the result buffer head and mark it
486  * mapped.
487  *
488  * If file type is extents based, it will call ext4_ext_map_blocks(),
489  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
490  * based files
491  *
492  * On success, it returns the number of blocks being mapped or allocated.  if
493  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
494  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
495  *
496  * It returns 0 if plain look up failed (blocks have not been allocated), in
497  * that case, @map is returned as unmapped but we still do fill map->m_len to
498  * indicate the length of a hole starting at map->m_lblk.
499  *
500  * It returns the error in case of allocation failure.
501  */
502 int ext4_map_blocks(handle_t *handle, struct inode *inode,
503                     struct ext4_map_blocks *map, int flags)
504 {
505         struct extent_status es;
506         int retval;
507         int ret = 0;
508 #ifdef ES_AGGRESSIVE_TEST
509         struct ext4_map_blocks orig_map;
510
511         memcpy(&orig_map, map, sizeof(*map));
512 #endif
513
514         map->m_flags = 0;
515         ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
516                   flags, map->m_len, (unsigned long) map->m_lblk);
517
518         /*
519          * ext4_map_blocks returns an int, and m_len is an unsigned int
520          */
521         if (unlikely(map->m_len > INT_MAX))
522                 map->m_len = INT_MAX;
523
524         /* We can handle the block number less than EXT_MAX_BLOCKS */
525         if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
526                 return -EFSCORRUPTED;
527
528         /* Lookup extent status tree firstly */
529         if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) &&
530             ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
531                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
532                         map->m_pblk = ext4_es_pblock(&es) +
533                                         map->m_lblk - es.es_lblk;
534                         map->m_flags |= ext4_es_is_written(&es) ?
535                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
536                         retval = es.es_len - (map->m_lblk - es.es_lblk);
537                         if (retval > map->m_len)
538                                 retval = map->m_len;
539                         map->m_len = retval;
540                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
541                         map->m_pblk = 0;
542                         retval = es.es_len - (map->m_lblk - es.es_lblk);
543                         if (retval > map->m_len)
544                                 retval = map->m_len;
545                         map->m_len = retval;
546                         retval = 0;
547                 } else {
548                         BUG();
549                 }
550 #ifdef ES_AGGRESSIVE_TEST
551                 ext4_map_blocks_es_recheck(handle, inode, map,
552                                            &orig_map, flags);
553 #endif
554                 goto found;
555         }
556
557         /*
558          * Try to see if we can get the block without requesting a new
559          * file system block.
560          */
561         down_read(&EXT4_I(inode)->i_data_sem);
562         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
563                 retval = ext4_ext_map_blocks(handle, inode, map, 0);
564         } else {
565                 retval = ext4_ind_map_blocks(handle, inode, map, 0);
566         }
567         if (retval > 0) {
568                 unsigned int status;
569
570                 if (unlikely(retval != map->m_len)) {
571                         ext4_warning(inode->i_sb,
572                                      "ES len assertion failed for inode "
573                                      "%lu: retval %d != map->m_len %d",
574                                      inode->i_ino, retval, map->m_len);
575                         WARN_ON(1);
576                 }
577
578                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
579                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
580                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
581                     !(status & EXTENT_STATUS_WRITTEN) &&
582                     ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
583                                        map->m_lblk + map->m_len - 1))
584                         status |= EXTENT_STATUS_DELAYED;
585                 ret = ext4_es_insert_extent(inode, map->m_lblk,
586                                             map->m_len, map->m_pblk, status);
587                 if (ret < 0)
588                         retval = ret;
589         }
590         up_read((&EXT4_I(inode)->i_data_sem));
591
592 found:
593         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
594                 ret = check_block_validity(inode, map);
595                 if (ret != 0)
596                         return ret;
597         }
598
599         /* If it is only a block(s) look up */
600         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
601                 return retval;
602
603         /*
604          * Returns if the blocks have already allocated
605          *
606          * Note that if blocks have been preallocated
607          * ext4_ext_get_block() returns the create = 0
608          * with buffer head unmapped.
609          */
610         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
611                 /*
612                  * If we need to convert extent to unwritten
613                  * we continue and do the actual work in
614                  * ext4_ext_map_blocks()
615                  */
616                 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
617                         return retval;
618
619         /*
620          * Here we clear m_flags because after allocating an new extent,
621          * it will be set again.
622          */
623         map->m_flags &= ~EXT4_MAP_FLAGS;
624
625         /*
626          * New blocks allocate and/or writing to unwritten extent
627          * will possibly result in updating i_data, so we take
628          * the write lock of i_data_sem, and call get_block()
629          * with create == 1 flag.
630          */
631         down_write(&EXT4_I(inode)->i_data_sem);
632
633         /*
634          * We need to check for EXT4 here because migrate
635          * could have changed the inode type in between
636          */
637         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
638                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
639         } else {
640                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
641
642                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
643                         /*
644                          * We allocated new blocks which will result in
645                          * i_data's format changing.  Force the migrate
646                          * to fail by clearing migrate flags
647                          */
648                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
649                 }
650
651                 /*
652                  * Update reserved blocks/metadata blocks after successful
653                  * block allocation which had been deferred till now. We don't
654                  * support fallocate for non extent files. So we can update
655                  * reserve space here.
656                  */
657                 if ((retval > 0) &&
658                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
659                         ext4_da_update_reserve_space(inode, retval, 1);
660         }
661
662         if (retval > 0) {
663                 unsigned int status;
664
665                 if (unlikely(retval != map->m_len)) {
666                         ext4_warning(inode->i_sb,
667                                      "ES len assertion failed for inode "
668                                      "%lu: retval %d != map->m_len %d",
669                                      inode->i_ino, retval, map->m_len);
670                         WARN_ON(1);
671                 }
672
673                 /*
674                  * We have to zeroout blocks before inserting them into extent
675                  * status tree. Otherwise someone could look them up there and
676                  * use them before they are really zeroed. We also have to
677                  * unmap metadata before zeroing as otherwise writeback can
678                  * overwrite zeros with stale data from block device.
679                  */
680                 if (flags & EXT4_GET_BLOCKS_ZERO &&
681                     map->m_flags & EXT4_MAP_MAPPED &&
682                     map->m_flags & EXT4_MAP_NEW) {
683                         ret = ext4_issue_zeroout(inode, map->m_lblk,
684                                                  map->m_pblk, map->m_len);
685                         if (ret) {
686                                 retval = ret;
687                                 goto out_sem;
688                         }
689                 }
690
691                 /*
692                  * If the extent has been zeroed out, we don't need to update
693                  * extent status tree.
694                  */
695                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
696                     ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
697                         if (ext4_es_is_written(&es))
698                                 goto out_sem;
699                 }
700                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
701                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
702                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
703                     !(status & EXTENT_STATUS_WRITTEN) &&
704                     ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
705                                        map->m_lblk + map->m_len - 1))
706                         status |= EXTENT_STATUS_DELAYED;
707                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
708                                             map->m_pblk, status);
709                 if (ret < 0) {
710                         retval = ret;
711                         goto out_sem;
712                 }
713         }
714
715 out_sem:
716         up_write((&EXT4_I(inode)->i_data_sem));
717         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
718                 ret = check_block_validity(inode, map);
719                 if (ret != 0)
720                         return ret;
721
722                 /*
723                  * Inodes with freshly allocated blocks where contents will be
724                  * visible after transaction commit must be on transaction's
725                  * ordered data list.
726                  */
727                 if (map->m_flags & EXT4_MAP_NEW &&
728                     !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
729                     !(flags & EXT4_GET_BLOCKS_ZERO) &&
730                     !ext4_is_quota_file(inode) &&
731                     ext4_should_order_data(inode)) {
732                         loff_t start_byte =
733                                 (loff_t)map->m_lblk << inode->i_blkbits;
734                         loff_t length = (loff_t)map->m_len << inode->i_blkbits;
735
736                         if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
737                                 ret = ext4_jbd2_inode_add_wait(handle, inode,
738                                                 start_byte, length);
739                         else
740                                 ret = ext4_jbd2_inode_add_write(handle, inode,
741                                                 start_byte, length);
742                         if (ret)
743                                 return ret;
744                 }
745                 ext4_fc_track_range(handle, inode, map->m_lblk,
746                             map->m_lblk + map->m_len - 1);
747         }
748
749         if (retval < 0)
750                 ext_debug(inode, "failed with err %d\n", retval);
751         return retval;
752 }
753
754 /*
755  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
756  * we have to be careful as someone else may be manipulating b_state as well.
757  */
758 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
759 {
760         unsigned long old_state;
761         unsigned long new_state;
762
763         flags &= EXT4_MAP_FLAGS;
764
765         /* Dummy buffer_head? Set non-atomically. */
766         if (!bh->b_page) {
767                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
768                 return;
769         }
770         /*
771          * Someone else may be modifying b_state. Be careful! This is ugly but
772          * once we get rid of using bh as a container for mapping information
773          * to pass to / from get_block functions, this can go away.
774          */
775         do {
776                 old_state = READ_ONCE(bh->b_state);
777                 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
778         } while (unlikely(
779                  cmpxchg(&bh->b_state, old_state, new_state) != old_state));
780 }
781
782 static int _ext4_get_block(struct inode *inode, sector_t iblock,
783                            struct buffer_head *bh, int flags)
784 {
785         struct ext4_map_blocks map;
786         int ret = 0;
787
788         if (ext4_has_inline_data(inode))
789                 return -ERANGE;
790
791         map.m_lblk = iblock;
792         map.m_len = bh->b_size >> inode->i_blkbits;
793
794         ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
795                               flags);
796         if (ret > 0) {
797                 map_bh(bh, inode->i_sb, map.m_pblk);
798                 ext4_update_bh_state(bh, map.m_flags);
799                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
800                 ret = 0;
801         } else if (ret == 0) {
802                 /* hole case, need to fill in bh->b_size */
803                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
804         }
805         return ret;
806 }
807
808 int ext4_get_block(struct inode *inode, sector_t iblock,
809                    struct buffer_head *bh, int create)
810 {
811         return _ext4_get_block(inode, iblock, bh,
812                                create ? EXT4_GET_BLOCKS_CREATE : 0);
813 }
814
815 /*
816  * Get block function used when preparing for buffered write if we require
817  * creating an unwritten extent if blocks haven't been allocated.  The extent
818  * will be converted to written after the IO is complete.
819  */
820 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
821                              struct buffer_head *bh_result, int create)
822 {
823         ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
824                    inode->i_ino, create);
825         return _ext4_get_block(inode, iblock, bh_result,
826                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
827 }
828
829 /* Maximum number of blocks we map for direct IO at once. */
830 #define DIO_MAX_BLOCKS 4096
831
832 /*
833  * `handle' can be NULL if create is zero
834  */
835 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
836                                 ext4_lblk_t block, int map_flags)
837 {
838         struct ext4_map_blocks map;
839         struct buffer_head *bh;
840         int create = map_flags & EXT4_GET_BLOCKS_CREATE;
841         int err;
842
843         ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
844                     || handle != NULL || create == 0);
845
846         map.m_lblk = block;
847         map.m_len = 1;
848         err = ext4_map_blocks(handle, inode, &map, map_flags);
849
850         if (err == 0)
851                 return create ? ERR_PTR(-ENOSPC) : NULL;
852         if (err < 0)
853                 return ERR_PTR(err);
854
855         bh = sb_getblk(inode->i_sb, map.m_pblk);
856         if (unlikely(!bh))
857                 return ERR_PTR(-ENOMEM);
858         if (map.m_flags & EXT4_MAP_NEW) {
859                 ASSERT(create != 0);
860                 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
861                             || (handle != NULL));
862
863                 /*
864                  * Now that we do not always journal data, we should
865                  * keep in mind whether this should always journal the
866                  * new buffer as metadata.  For now, regular file
867                  * writes use ext4_get_block instead, so it's not a
868                  * problem.
869                  */
870                 lock_buffer(bh);
871                 BUFFER_TRACE(bh, "call get_create_access");
872                 err = ext4_journal_get_create_access(handle, bh);
873                 if (unlikely(err)) {
874                         unlock_buffer(bh);
875                         goto errout;
876                 }
877                 if (!buffer_uptodate(bh)) {
878                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
879                         set_buffer_uptodate(bh);
880                 }
881                 unlock_buffer(bh);
882                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
883                 err = ext4_handle_dirty_metadata(handle, inode, bh);
884                 if (unlikely(err))
885                         goto errout;
886         } else
887                 BUFFER_TRACE(bh, "not a new buffer");
888         return bh;
889 errout:
890         brelse(bh);
891         return ERR_PTR(err);
892 }
893
894 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
895                                ext4_lblk_t block, int map_flags)
896 {
897         struct buffer_head *bh;
898         int ret;
899
900         bh = ext4_getblk(handle, inode, block, map_flags);
901         if (IS_ERR(bh))
902                 return bh;
903         if (!bh || ext4_buffer_uptodate(bh))
904                 return bh;
905
906         ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true);
907         if (ret) {
908                 put_bh(bh);
909                 return ERR_PTR(ret);
910         }
911         return bh;
912 }
913
914 /* Read a contiguous batch of blocks. */
915 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
916                      bool wait, struct buffer_head **bhs)
917 {
918         int i, err;
919
920         for (i = 0; i < bh_count; i++) {
921                 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
922                 if (IS_ERR(bhs[i])) {
923                         err = PTR_ERR(bhs[i]);
924                         bh_count = i;
925                         goto out_brelse;
926                 }
927         }
928
929         for (i = 0; i < bh_count; i++)
930                 /* Note that NULL bhs[i] is valid because of holes. */
931                 if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
932                         ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false);
933
934         if (!wait)
935                 return 0;
936
937         for (i = 0; i < bh_count; i++)
938                 if (bhs[i])
939                         wait_on_buffer(bhs[i]);
940
941         for (i = 0; i < bh_count; i++) {
942                 if (bhs[i] && !buffer_uptodate(bhs[i])) {
943                         err = -EIO;
944                         goto out_brelse;
945                 }
946         }
947         return 0;
948
949 out_brelse:
950         for (i = 0; i < bh_count; i++) {
951                 brelse(bhs[i]);
952                 bhs[i] = NULL;
953         }
954         return err;
955 }
956
957 int ext4_walk_page_buffers(handle_t *handle,
958                            struct buffer_head *head,
959                            unsigned from,
960                            unsigned to,
961                            int *partial,
962                            int (*fn)(handle_t *handle,
963                                      struct buffer_head *bh))
964 {
965         struct buffer_head *bh;
966         unsigned block_start, block_end;
967         unsigned blocksize = head->b_size;
968         int err, ret = 0;
969         struct buffer_head *next;
970
971         for (bh = head, block_start = 0;
972              ret == 0 && (bh != head || !block_start);
973              block_start = block_end, bh = next) {
974                 next = bh->b_this_page;
975                 block_end = block_start + blocksize;
976                 if (block_end <= from || block_start >= to) {
977                         if (partial && !buffer_uptodate(bh))
978                                 *partial = 1;
979                         continue;
980                 }
981                 err = (*fn)(handle, bh);
982                 if (!ret)
983                         ret = err;
984         }
985         return ret;
986 }
987
988 /*
989  * To preserve ordering, it is essential that the hole instantiation and
990  * the data write be encapsulated in a single transaction.  We cannot
991  * close off a transaction and start a new one between the ext4_get_block()
992  * and the commit_write().  So doing the jbd2_journal_start at the start of
993  * prepare_write() is the right place.
994  *
995  * Also, this function can nest inside ext4_writepage().  In that case, we
996  * *know* that ext4_writepage() has generated enough buffer credits to do the
997  * whole page.  So we won't block on the journal in that case, which is good,
998  * because the caller may be PF_MEMALLOC.
999  *
1000  * By accident, ext4 can be reentered when a transaction is open via
1001  * quota file writes.  If we were to commit the transaction while thus
1002  * reentered, there can be a deadlock - we would be holding a quota
1003  * lock, and the commit would never complete if another thread had a
1004  * transaction open and was blocking on the quota lock - a ranking
1005  * violation.
1006  *
1007  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1008  * will _not_ run commit under these circumstances because handle->h_ref
1009  * is elevated.  We'll still have enough credits for the tiny quotafile
1010  * write.
1011  */
1012 int do_journal_get_write_access(handle_t *handle,
1013                                 struct buffer_head *bh)
1014 {
1015         int dirty = buffer_dirty(bh);
1016         int ret;
1017
1018         if (!buffer_mapped(bh) || buffer_freed(bh))
1019                 return 0;
1020         /*
1021          * __block_write_begin() could have dirtied some buffers. Clean
1022          * the dirty bit as jbd2_journal_get_write_access() could complain
1023          * otherwise about fs integrity issues. Setting of the dirty bit
1024          * by __block_write_begin() isn't a real problem here as we clear
1025          * the bit before releasing a page lock and thus writeback cannot
1026          * ever write the buffer.
1027          */
1028         if (dirty)
1029                 clear_buffer_dirty(bh);
1030         BUFFER_TRACE(bh, "get write access");
1031         ret = ext4_journal_get_write_access(handle, bh);
1032         if (!ret && dirty)
1033                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1034         return ret;
1035 }
1036
1037 #ifdef CONFIG_FS_ENCRYPTION
1038 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1039                                   get_block_t *get_block)
1040 {
1041         unsigned from = pos & (PAGE_SIZE - 1);
1042         unsigned to = from + len;
1043         struct inode *inode = page->mapping->host;
1044         unsigned block_start, block_end;
1045         sector_t block;
1046         int err = 0;
1047         unsigned blocksize = inode->i_sb->s_blocksize;
1048         unsigned bbits;
1049         struct buffer_head *bh, *head, *wait[2];
1050         int nr_wait = 0;
1051         int i;
1052
1053         BUG_ON(!PageLocked(page));
1054         BUG_ON(from > PAGE_SIZE);
1055         BUG_ON(to > PAGE_SIZE);
1056         BUG_ON(from > to);
1057
1058         if (!page_has_buffers(page))
1059                 create_empty_buffers(page, blocksize, 0);
1060         head = page_buffers(page);
1061         bbits = ilog2(blocksize);
1062         block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1063
1064         for (bh = head, block_start = 0; bh != head || !block_start;
1065             block++, block_start = block_end, bh = bh->b_this_page) {
1066                 block_end = block_start + blocksize;
1067                 if (block_end <= from || block_start >= to) {
1068                         if (PageUptodate(page)) {
1069                                 set_buffer_uptodate(bh);
1070                         }
1071                         continue;
1072                 }
1073                 if (buffer_new(bh))
1074                         clear_buffer_new(bh);
1075                 if (!buffer_mapped(bh)) {
1076                         WARN_ON(bh->b_size != blocksize);
1077                         err = get_block(inode, block, bh, 1);
1078                         if (err)
1079                                 break;
1080                         if (buffer_new(bh)) {
1081                                 if (PageUptodate(page)) {
1082                                         clear_buffer_new(bh);
1083                                         set_buffer_uptodate(bh);
1084                                         mark_buffer_dirty(bh);
1085                                         continue;
1086                                 }
1087                                 if (block_end > to || block_start < from)
1088                                         zero_user_segments(page, to, block_end,
1089                                                            block_start, from);
1090                                 continue;
1091                         }
1092                 }
1093                 if (PageUptodate(page)) {
1094                         set_buffer_uptodate(bh);
1095                         continue;
1096                 }
1097                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1098                     !buffer_unwritten(bh) &&
1099                     (block_start < from || block_end > to)) {
1100                         ext4_read_bh_lock(bh, 0, false);
1101                         wait[nr_wait++] = bh;
1102                 }
1103         }
1104         /*
1105          * If we issued read requests, let them complete.
1106          */
1107         for (i = 0; i < nr_wait; i++) {
1108                 wait_on_buffer(wait[i]);
1109                 if (!buffer_uptodate(wait[i]))
1110                         err = -EIO;
1111         }
1112         if (unlikely(err)) {
1113                 page_zero_new_buffers(page, from, to);
1114         } else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1115                 for (i = 0; i < nr_wait; i++) {
1116                         int err2;
1117
1118                         err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize,
1119                                                                 bh_offset(wait[i]));
1120                         if (err2) {
1121                                 clear_buffer_uptodate(wait[i]);
1122                                 err = err2;
1123                         }
1124                 }
1125         }
1126
1127         return err;
1128 }
1129 #endif
1130
1131 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1132                             loff_t pos, unsigned len, unsigned flags,
1133                             struct page **pagep, void **fsdata)
1134 {
1135         struct inode *inode = mapping->host;
1136         int ret, needed_blocks;
1137         handle_t *handle;
1138         int retries = 0;
1139         struct page *page;
1140         pgoff_t index;
1141         unsigned from, to;
1142
1143         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1144                 return -EIO;
1145
1146         trace_ext4_write_begin(inode, pos, len, flags);
1147         /*
1148          * Reserve one block more for addition to orphan list in case
1149          * we allocate blocks but write fails for some reason
1150          */
1151         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1152         index = pos >> PAGE_SHIFT;
1153         from = pos & (PAGE_SIZE - 1);
1154         to = from + len;
1155
1156         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1157                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1158                                                     flags, pagep);
1159                 if (ret < 0)
1160                         return ret;
1161                 if (ret == 1)
1162                         return 0;
1163         }
1164
1165         /*
1166          * grab_cache_page_write_begin() can take a long time if the
1167          * system is thrashing due to memory pressure, or if the page
1168          * is being written back.  So grab it first before we start
1169          * the transaction handle.  This also allows us to allocate
1170          * the page (if needed) without using GFP_NOFS.
1171          */
1172 retry_grab:
1173         page = grab_cache_page_write_begin(mapping, index, flags);
1174         if (!page)
1175                 return -ENOMEM;
1176         unlock_page(page);
1177
1178 retry_journal:
1179         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1180         if (IS_ERR(handle)) {
1181                 put_page(page);
1182                 return PTR_ERR(handle);
1183         }
1184
1185         lock_page(page);
1186         if (page->mapping != mapping) {
1187                 /* The page got truncated from under us */
1188                 unlock_page(page);
1189                 put_page(page);
1190                 ext4_journal_stop(handle);
1191                 goto retry_grab;
1192         }
1193         /* In case writeback began while the page was unlocked */
1194         wait_for_stable_page(page);
1195
1196 #ifdef CONFIG_FS_ENCRYPTION
1197         if (ext4_should_dioread_nolock(inode))
1198                 ret = ext4_block_write_begin(page, pos, len,
1199                                              ext4_get_block_unwritten);
1200         else
1201                 ret = ext4_block_write_begin(page, pos, len,
1202                                              ext4_get_block);
1203 #else
1204         if (ext4_should_dioread_nolock(inode))
1205                 ret = __block_write_begin(page, pos, len,
1206                                           ext4_get_block_unwritten);
1207         else
1208                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1209 #endif
1210         if (!ret && ext4_should_journal_data(inode)) {
1211                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1212                                              from, to, NULL,
1213                                              do_journal_get_write_access);
1214         }
1215
1216         if (ret) {
1217                 bool extended = (pos + len > inode->i_size) &&
1218                                 !ext4_verity_in_progress(inode);
1219
1220                 unlock_page(page);
1221                 /*
1222                  * __block_write_begin may have instantiated a few blocks
1223                  * outside i_size.  Trim these off again. Don't need
1224                  * i_size_read because we hold i_mutex.
1225                  *
1226                  * Add inode to orphan list in case we crash before
1227                  * truncate finishes
1228                  */
1229                 if (extended && ext4_can_truncate(inode))
1230                         ext4_orphan_add(handle, inode);
1231
1232                 ext4_journal_stop(handle);
1233                 if (extended) {
1234                         ext4_truncate_failed_write(inode);
1235                         /*
1236                          * If truncate failed early the inode might
1237                          * still be on the orphan list; we need to
1238                          * make sure the inode is removed from the
1239                          * orphan list in that case.
1240                          */
1241                         if (inode->i_nlink)
1242                                 ext4_orphan_del(NULL, inode);
1243                 }
1244
1245                 if (ret == -ENOSPC &&
1246                     ext4_should_retry_alloc(inode->i_sb, &retries))
1247                         goto retry_journal;
1248                 put_page(page);
1249                 return ret;
1250         }
1251         *pagep = page;
1252         return ret;
1253 }
1254
1255 /* For write_end() in data=journal mode */
1256 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1257 {
1258         int ret;
1259         if (!buffer_mapped(bh) || buffer_freed(bh))
1260                 return 0;
1261         set_buffer_uptodate(bh);
1262         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1263         clear_buffer_meta(bh);
1264         clear_buffer_prio(bh);
1265         return ret;
1266 }
1267
1268 /*
1269  * We need to pick up the new inode size which generic_commit_write gave us
1270  * `file' can be NULL - eg, when called from page_symlink().
1271  *
1272  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1273  * buffers are managed internally.
1274  */
1275 static int ext4_write_end(struct file *file,
1276                           struct address_space *mapping,
1277                           loff_t pos, unsigned len, unsigned copied,
1278                           struct page *page, void *fsdata)
1279 {
1280         handle_t *handle = ext4_journal_current_handle();
1281         struct inode *inode = mapping->host;
1282         loff_t old_size = inode->i_size;
1283         int ret = 0, ret2;
1284         int i_size_changed = 0;
1285         int inline_data = ext4_has_inline_data(inode);
1286         bool verity = ext4_verity_in_progress(inode);
1287
1288         trace_ext4_write_end(inode, pos, len, copied);
1289         if (inline_data) {
1290                 ret = ext4_write_inline_data_end(inode, pos, len,
1291                                                  copied, page);
1292                 if (ret < 0) {
1293                         unlock_page(page);
1294                         put_page(page);
1295                         goto errout;
1296                 }
1297                 copied = ret;
1298         } else
1299                 copied = block_write_end(file, mapping, pos,
1300                                          len, copied, page, fsdata);
1301         /*
1302          * it's important to update i_size while still holding page lock:
1303          * page writeout could otherwise come in and zero beyond i_size.
1304          *
1305          * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1306          * blocks are being written past EOF, so skip the i_size update.
1307          */
1308         if (!verity)
1309                 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1310         unlock_page(page);
1311         put_page(page);
1312
1313         if (old_size < pos && !verity)
1314                 pagecache_isize_extended(inode, old_size, pos);
1315         /*
1316          * Don't mark the inode dirty under page lock. First, it unnecessarily
1317          * makes the holding time of page lock longer. Second, it forces lock
1318          * ordering of page lock and transaction start for journaling
1319          * filesystems.
1320          */
1321         if (i_size_changed || inline_data)
1322                 ret = ext4_mark_inode_dirty(handle, inode);
1323
1324         if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1325                 /* if we have allocated more blocks and copied
1326                  * less. We will have blocks allocated outside
1327                  * inode->i_size. So truncate them
1328                  */
1329                 ext4_orphan_add(handle, inode);
1330 errout:
1331         ret2 = ext4_journal_stop(handle);
1332         if (!ret)
1333                 ret = ret2;
1334
1335         if (pos + len > inode->i_size && !verity) {
1336                 ext4_truncate_failed_write(inode);
1337                 /*
1338                  * If truncate failed early the inode might still be
1339                  * on the orphan list; we need to make sure the inode
1340                  * is removed from the orphan list in that case.
1341                  */
1342                 if (inode->i_nlink)
1343                         ext4_orphan_del(NULL, inode);
1344         }
1345
1346         return ret ? ret : copied;
1347 }
1348
1349 /*
1350  * This is a private version of page_zero_new_buffers() which doesn't
1351  * set the buffer to be dirty, since in data=journalled mode we need
1352  * to call ext4_handle_dirty_metadata() instead.
1353  */
1354 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1355                                             struct page *page,
1356                                             unsigned from, unsigned to)
1357 {
1358         unsigned int block_start = 0, block_end;
1359         struct buffer_head *head, *bh;
1360
1361         bh = head = page_buffers(page);
1362         do {
1363                 block_end = block_start + bh->b_size;
1364                 if (buffer_new(bh)) {
1365                         if (block_end > from && block_start < to) {
1366                                 if (!PageUptodate(page)) {
1367                                         unsigned start, size;
1368
1369                                         start = max(from, block_start);
1370                                         size = min(to, block_end) - start;
1371
1372                                         zero_user(page, start, size);
1373                                         write_end_fn(handle, bh);
1374                                 }
1375                                 clear_buffer_new(bh);
1376                         }
1377                 }
1378                 block_start = block_end;
1379                 bh = bh->b_this_page;
1380         } while (bh != head);
1381 }
1382
1383 static int ext4_journalled_write_end(struct file *file,
1384                                      struct address_space *mapping,
1385                                      loff_t pos, unsigned len, unsigned copied,
1386                                      struct page *page, void *fsdata)
1387 {
1388         handle_t *handle = ext4_journal_current_handle();
1389         struct inode *inode = mapping->host;
1390         loff_t old_size = inode->i_size;
1391         int ret = 0, ret2;
1392         int partial = 0;
1393         unsigned from, to;
1394         int size_changed = 0;
1395         int inline_data = ext4_has_inline_data(inode);
1396         bool verity = ext4_verity_in_progress(inode);
1397
1398         trace_ext4_journalled_write_end(inode, pos, len, copied);
1399         from = pos & (PAGE_SIZE - 1);
1400         to = from + len;
1401
1402         BUG_ON(!ext4_handle_valid(handle));
1403
1404         if (inline_data) {
1405                 ret = ext4_write_inline_data_end(inode, pos, len,
1406                                                  copied, page);
1407                 if (ret < 0) {
1408                         unlock_page(page);
1409                         put_page(page);
1410                         goto errout;
1411                 }
1412                 copied = ret;
1413         } else if (unlikely(copied < len) && !PageUptodate(page)) {
1414                 copied = 0;
1415                 ext4_journalled_zero_new_buffers(handle, page, from, to);
1416         } else {
1417                 if (unlikely(copied < len))
1418                         ext4_journalled_zero_new_buffers(handle, page,
1419                                                          from + copied, to);
1420                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1421                                              from + copied, &partial,
1422                                              write_end_fn);
1423                 if (!partial)
1424                         SetPageUptodate(page);
1425         }
1426         if (!verity)
1427                 size_changed = ext4_update_inode_size(inode, pos + copied);
1428         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1429         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1430         unlock_page(page);
1431         put_page(page);
1432
1433         if (old_size < pos && !verity)
1434                 pagecache_isize_extended(inode, old_size, pos);
1435
1436         if (size_changed || inline_data) {
1437                 ret2 = ext4_mark_inode_dirty(handle, inode);
1438                 if (!ret)
1439                         ret = ret2;
1440         }
1441
1442         if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1443                 /* if we have allocated more blocks and copied
1444                  * less. We will have blocks allocated outside
1445                  * inode->i_size. So truncate them
1446                  */
1447                 ext4_orphan_add(handle, inode);
1448
1449 errout:
1450         ret2 = ext4_journal_stop(handle);
1451         if (!ret)
1452                 ret = ret2;
1453         if (pos + len > inode->i_size && !verity) {
1454                 ext4_truncate_failed_write(inode);
1455                 /*
1456                  * If truncate failed early the inode might still be
1457                  * on the orphan list; we need to make sure the inode
1458                  * is removed from the orphan list in that case.
1459                  */
1460                 if (inode->i_nlink)
1461                         ext4_orphan_del(NULL, inode);
1462         }
1463
1464         return ret ? ret : copied;
1465 }
1466
1467 /*
1468  * Reserve space for a single cluster
1469  */
1470 static int ext4_da_reserve_space(struct inode *inode)
1471 {
1472         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1473         struct ext4_inode_info *ei = EXT4_I(inode);
1474         int ret;
1475
1476         /*
1477          * We will charge metadata quota at writeout time; this saves
1478          * us from metadata over-estimation, though we may go over by
1479          * a small amount in the end.  Here we just reserve for data.
1480          */
1481         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1482         if (ret)
1483                 return ret;
1484
1485         spin_lock(&ei->i_block_reservation_lock);
1486         if (ext4_claim_free_clusters(sbi, 1, 0)) {
1487                 spin_unlock(&ei->i_block_reservation_lock);
1488                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1489                 return -ENOSPC;
1490         }
1491         ei->i_reserved_data_blocks++;
1492         trace_ext4_da_reserve_space(inode);
1493         spin_unlock(&ei->i_block_reservation_lock);
1494
1495         return 0;       /* success */
1496 }
1497
1498 void ext4_da_release_space(struct inode *inode, int to_free)
1499 {
1500         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1501         struct ext4_inode_info *ei = EXT4_I(inode);
1502
1503         if (!to_free)
1504                 return;         /* Nothing to release, exit */
1505
1506         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1507
1508         trace_ext4_da_release_space(inode, to_free);
1509         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1510                 /*
1511                  * if there aren't enough reserved blocks, then the
1512                  * counter is messed up somewhere.  Since this
1513                  * function is called from invalidate page, it's
1514                  * harmless to return without any action.
1515                  */
1516                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1517                          "ino %lu, to_free %d with only %d reserved "
1518                          "data blocks", inode->i_ino, to_free,
1519                          ei->i_reserved_data_blocks);
1520                 WARN_ON(1);
1521                 to_free = ei->i_reserved_data_blocks;
1522         }
1523         ei->i_reserved_data_blocks -= to_free;
1524
1525         /* update fs dirty data blocks counter */
1526         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1527
1528         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1529
1530         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1531 }
1532
1533 /*
1534  * Delayed allocation stuff
1535  */
1536
1537 struct mpage_da_data {
1538         struct inode *inode;
1539         struct writeback_control *wbc;
1540
1541         pgoff_t first_page;     /* The first page to write */
1542         pgoff_t next_page;      /* Current page to examine */
1543         pgoff_t last_page;      /* Last page to examine */
1544         /*
1545          * Extent to map - this can be after first_page because that can be
1546          * fully mapped. We somewhat abuse m_flags to store whether the extent
1547          * is delalloc or unwritten.
1548          */
1549         struct ext4_map_blocks map;
1550         struct ext4_io_submit io_submit;        /* IO submission data */
1551         unsigned int do_map:1;
1552         unsigned int scanned_until_end:1;
1553 };
1554
1555 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1556                                        bool invalidate)
1557 {
1558         int nr_pages, i;
1559         pgoff_t index, end;
1560         struct pagevec pvec;
1561         struct inode *inode = mpd->inode;
1562         struct address_space *mapping = inode->i_mapping;
1563
1564         /* This is necessary when next_page == 0. */
1565         if (mpd->first_page >= mpd->next_page)
1566                 return;
1567
1568         mpd->scanned_until_end = 0;
1569         index = mpd->first_page;
1570         end   = mpd->next_page - 1;
1571         if (invalidate) {
1572                 ext4_lblk_t start, last;
1573                 start = index << (PAGE_SHIFT - inode->i_blkbits);
1574                 last = end << (PAGE_SHIFT - inode->i_blkbits);
1575                 ext4_es_remove_extent(inode, start, last - start + 1);
1576         }
1577
1578         pagevec_init(&pvec);
1579         while (index <= end) {
1580                 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1581                 if (nr_pages == 0)
1582                         break;
1583                 for (i = 0; i < nr_pages; i++) {
1584                         struct page *page = pvec.pages[i];
1585
1586                         BUG_ON(!PageLocked(page));
1587                         BUG_ON(PageWriteback(page));
1588                         if (invalidate) {
1589                                 if (page_mapped(page))
1590                                         clear_page_dirty_for_io(page);
1591                                 block_invalidatepage(page, 0, PAGE_SIZE);
1592                                 ClearPageUptodate(page);
1593                         }
1594                         unlock_page(page);
1595                 }
1596                 pagevec_release(&pvec);
1597         }
1598 }
1599
1600 static void ext4_print_free_blocks(struct inode *inode)
1601 {
1602         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1603         struct super_block *sb = inode->i_sb;
1604         struct ext4_inode_info *ei = EXT4_I(inode);
1605
1606         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1607                EXT4_C2B(EXT4_SB(inode->i_sb),
1608                         ext4_count_free_clusters(sb)));
1609         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1610         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1611                (long long) EXT4_C2B(EXT4_SB(sb),
1612                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1613         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1614                (long long) EXT4_C2B(EXT4_SB(sb),
1615                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1616         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1617         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1618                  ei->i_reserved_data_blocks);
1619         return;
1620 }
1621
1622 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1623 {
1624         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1625 }
1626
1627 /*
1628  * ext4_insert_delayed_block - adds a delayed block to the extents status
1629  *                             tree, incrementing the reserved cluster/block
1630  *                             count or making a pending reservation
1631  *                             where needed
1632  *
1633  * @inode - file containing the newly added block
1634  * @lblk - logical block to be added
1635  *
1636  * Returns 0 on success, negative error code on failure.
1637  */
1638 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1639 {
1640         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1641         int ret;
1642         bool allocated = false;
1643
1644         /*
1645          * If the cluster containing lblk is shared with a delayed,
1646          * written, or unwritten extent in a bigalloc file system, it's
1647          * already been accounted for and does not need to be reserved.
1648          * A pending reservation must be made for the cluster if it's
1649          * shared with a written or unwritten extent and doesn't already
1650          * have one.  Written and unwritten extents can be purged from the
1651          * extents status tree if the system is under memory pressure, so
1652          * it's necessary to examine the extent tree if a search of the
1653          * extents status tree doesn't get a match.
1654          */
1655         if (sbi->s_cluster_ratio == 1) {
1656                 ret = ext4_da_reserve_space(inode);
1657                 if (ret != 0)   /* ENOSPC */
1658                         goto errout;
1659         } else {   /* bigalloc */
1660                 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1661                         if (!ext4_es_scan_clu(inode,
1662                                               &ext4_es_is_mapped, lblk)) {
1663                                 ret = ext4_clu_mapped(inode,
1664                                                       EXT4_B2C(sbi, lblk));
1665                                 if (ret < 0)
1666                                         goto errout;
1667                                 if (ret == 0) {
1668                                         ret = ext4_da_reserve_space(inode);
1669                                         if (ret != 0)   /* ENOSPC */
1670                                                 goto errout;
1671                                 } else {
1672                                         allocated = true;
1673                                 }
1674                         } else {
1675                                 allocated = true;
1676                         }
1677                 }
1678         }
1679
1680         ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1681
1682 errout:
1683         return ret;
1684 }
1685
1686 /*
1687  * This function is grabs code from the very beginning of
1688  * ext4_map_blocks, but assumes that the caller is from delayed write
1689  * time. This function looks up the requested blocks and sets the
1690  * buffer delay bit under the protection of i_data_sem.
1691  */
1692 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1693                               struct ext4_map_blocks *map,
1694                               struct buffer_head *bh)
1695 {
1696         struct extent_status es;
1697         int retval;
1698         sector_t invalid_block = ~((sector_t) 0xffff);
1699 #ifdef ES_AGGRESSIVE_TEST
1700         struct ext4_map_blocks orig_map;
1701
1702         memcpy(&orig_map, map, sizeof(*map));
1703 #endif
1704
1705         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1706                 invalid_block = ~0;
1707
1708         map->m_flags = 0;
1709         ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1710                   (unsigned long) map->m_lblk);
1711
1712         /* Lookup extent status tree firstly */
1713         if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1714                 if (ext4_es_is_hole(&es)) {
1715                         retval = 0;
1716                         down_read(&EXT4_I(inode)->i_data_sem);
1717                         goto add_delayed;
1718                 }
1719
1720                 /*
1721                  * Delayed extent could be allocated by fallocate.
1722                  * So we need to check it.
1723                  */
1724                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1725                         map_bh(bh, inode->i_sb, invalid_block);
1726                         set_buffer_new(bh);
1727                         set_buffer_delay(bh);
1728                         return 0;
1729                 }
1730
1731                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1732                 retval = es.es_len - (iblock - es.es_lblk);
1733                 if (retval > map->m_len)
1734                         retval = map->m_len;
1735                 map->m_len = retval;
1736                 if (ext4_es_is_written(&es))
1737                         map->m_flags |= EXT4_MAP_MAPPED;
1738                 else if (ext4_es_is_unwritten(&es))
1739                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1740                 else
1741                         BUG();
1742
1743 #ifdef ES_AGGRESSIVE_TEST
1744                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1745 #endif
1746                 return retval;
1747         }
1748
1749         /*
1750          * Try to see if we can get the block without requesting a new
1751          * file system block.
1752          */
1753         down_read(&EXT4_I(inode)->i_data_sem);
1754         if (ext4_has_inline_data(inode))
1755                 retval = 0;
1756         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1757                 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1758         else
1759                 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1760
1761 add_delayed:
1762         if (retval == 0) {
1763                 int ret;
1764
1765                 /*
1766                  * XXX: __block_prepare_write() unmaps passed block,
1767                  * is it OK?
1768                  */
1769
1770                 ret = ext4_insert_delayed_block(inode, map->m_lblk);
1771                 if (ret != 0) {
1772                         retval = ret;
1773                         goto out_unlock;
1774                 }
1775
1776                 map_bh(bh, inode->i_sb, invalid_block);
1777                 set_buffer_new(bh);
1778                 set_buffer_delay(bh);
1779         } else if (retval > 0) {
1780                 int ret;
1781                 unsigned int status;
1782
1783                 if (unlikely(retval != map->m_len)) {
1784                         ext4_warning(inode->i_sb,
1785                                      "ES len assertion failed for inode "
1786                                      "%lu: retval %d != map->m_len %d",
1787                                      inode->i_ino, retval, map->m_len);
1788                         WARN_ON(1);
1789                 }
1790
1791                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1792                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1793                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1794                                             map->m_pblk, status);
1795                 if (ret != 0)
1796                         retval = ret;
1797         }
1798
1799 out_unlock:
1800         up_read((&EXT4_I(inode)->i_data_sem));
1801
1802         return retval;
1803 }
1804
1805 /*
1806  * This is a special get_block_t callback which is used by
1807  * ext4_da_write_begin().  It will either return mapped block or
1808  * reserve space for a single block.
1809  *
1810  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1811  * We also have b_blocknr = -1 and b_bdev initialized properly
1812  *
1813  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1814  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1815  * initialized properly.
1816  */
1817 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1818                            struct buffer_head *bh, int create)
1819 {
1820         struct ext4_map_blocks map;
1821         int ret = 0;
1822
1823         BUG_ON(create == 0);
1824         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1825
1826         map.m_lblk = iblock;
1827         map.m_len = 1;
1828
1829         /*
1830          * first, we need to know whether the block is allocated already
1831          * preallocated blocks are unmapped but should treated
1832          * the same as allocated blocks.
1833          */
1834         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1835         if (ret <= 0)
1836                 return ret;
1837
1838         map_bh(bh, inode->i_sb, map.m_pblk);
1839         ext4_update_bh_state(bh, map.m_flags);
1840
1841         if (buffer_unwritten(bh)) {
1842                 /* A delayed write to unwritten bh should be marked
1843                  * new and mapped.  Mapped ensures that we don't do
1844                  * get_block multiple times when we write to the same
1845                  * offset and new ensures that we do proper zero out
1846                  * for partial write.
1847                  */
1848                 set_buffer_new(bh);
1849                 set_buffer_mapped(bh);
1850         }
1851         return 0;
1852 }
1853
1854 static int bget_one(handle_t *handle, struct buffer_head *bh)
1855 {
1856         get_bh(bh);
1857         return 0;
1858 }
1859
1860 static int bput_one(handle_t *handle, struct buffer_head *bh)
1861 {
1862         put_bh(bh);
1863         return 0;
1864 }
1865
1866 static int __ext4_journalled_writepage(struct page *page,
1867                                        unsigned int len)
1868 {
1869         struct address_space *mapping = page->mapping;
1870         struct inode *inode = mapping->host;
1871         struct buffer_head *page_bufs = NULL;
1872         handle_t *handle = NULL;
1873         int ret = 0, err = 0;
1874         int inline_data = ext4_has_inline_data(inode);
1875         struct buffer_head *inode_bh = NULL;
1876
1877         ClearPageChecked(page);
1878
1879         if (inline_data) {
1880                 BUG_ON(page->index != 0);
1881                 BUG_ON(len > ext4_get_max_inline_size(inode));
1882                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1883                 if (inode_bh == NULL)
1884                         goto out;
1885         } else {
1886                 page_bufs = page_buffers(page);
1887                 if (!page_bufs) {
1888                         BUG();
1889                         goto out;
1890                 }
1891                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1892                                        NULL, bget_one);
1893         }
1894         /*
1895          * We need to release the page lock before we start the
1896          * journal, so grab a reference so the page won't disappear
1897          * out from under us.
1898          */
1899         get_page(page);
1900         unlock_page(page);
1901
1902         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1903                                     ext4_writepage_trans_blocks(inode));
1904         if (IS_ERR(handle)) {
1905                 ret = PTR_ERR(handle);
1906                 put_page(page);
1907                 goto out_no_pagelock;
1908         }
1909         BUG_ON(!ext4_handle_valid(handle));
1910
1911         lock_page(page);
1912         put_page(page);
1913         if (page->mapping != mapping) {
1914                 /* The page got truncated from under us */
1915                 ext4_journal_stop(handle);
1916                 ret = 0;
1917                 goto out;
1918         }
1919
1920         if (inline_data) {
1921                 ret = ext4_mark_inode_dirty(handle, inode);
1922         } else {
1923                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1924                                              do_journal_get_write_access);
1925
1926                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1927                                              write_end_fn);
1928         }
1929         if (ret == 0)
1930                 ret = err;
1931         err = ext4_jbd2_inode_add_write(handle, inode, page_offset(page), len);
1932         if (ret == 0)
1933                 ret = err;
1934         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1935         err = ext4_journal_stop(handle);
1936         if (!ret)
1937                 ret = err;
1938
1939         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1940 out:
1941         unlock_page(page);
1942 out_no_pagelock:
1943         if (!inline_data && page_bufs)
1944                 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1945                                        NULL, bput_one);
1946         brelse(inode_bh);
1947         return ret;
1948 }
1949
1950 /*
1951  * Note that we don't need to start a transaction unless we're journaling data
1952  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1953  * need to file the inode to the transaction's list in ordered mode because if
1954  * we are writing back data added by write(), the inode is already there and if
1955  * we are writing back data modified via mmap(), no one guarantees in which
1956  * transaction the data will hit the disk. In case we are journaling data, we
1957  * cannot start transaction directly because transaction start ranks above page
1958  * lock so we have to do some magic.
1959  *
1960  * This function can get called via...
1961  *   - ext4_writepages after taking page lock (have journal handle)
1962  *   - journal_submit_inode_data_buffers (no journal handle)
1963  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1964  *   - grab_page_cache when doing write_begin (have journal handle)
1965  *
1966  * We don't do any block allocation in this function. If we have page with
1967  * multiple blocks we need to write those buffer_heads that are mapped. This
1968  * is important for mmaped based write. So if we do with blocksize 1K
1969  * truncate(f, 1024);
1970  * a = mmap(f, 0, 4096);
1971  * a[0] = 'a';
1972  * truncate(f, 4096);
1973  * we have in the page first buffer_head mapped via page_mkwrite call back
1974  * but other buffer_heads would be unmapped but dirty (dirty done via the
1975  * do_wp_page). So writepage should write the first block. If we modify
1976  * the mmap area beyond 1024 we will again get a page_fault and the
1977  * page_mkwrite callback will do the block allocation and mark the
1978  * buffer_heads mapped.
1979  *
1980  * We redirty the page if we have any buffer_heads that is either delay or
1981  * unwritten in the page.
1982  *
1983  * We can get recursively called as show below.
1984  *
1985  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1986  *              ext4_writepage()
1987  *
1988  * But since we don't do any block allocation we should not deadlock.
1989  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1990  */
1991 static int ext4_writepage(struct page *page,
1992                           struct writeback_control *wbc)
1993 {
1994         int ret = 0;
1995         loff_t size;
1996         unsigned int len;
1997         struct buffer_head *page_bufs = NULL;
1998         struct inode *inode = page->mapping->host;
1999         struct ext4_io_submit io_submit;
2000         bool keep_towrite = false;
2001
2002         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2003                 inode->i_mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
2004                 unlock_page(page);
2005                 return -EIO;
2006         }
2007
2008         trace_ext4_writepage(page);
2009         size = i_size_read(inode);
2010         if (page->index == size >> PAGE_SHIFT &&
2011             !ext4_verity_in_progress(inode))
2012                 len = size & ~PAGE_MASK;
2013         else
2014                 len = PAGE_SIZE;
2015
2016         page_bufs = page_buffers(page);
2017         /*
2018          * We cannot do block allocation or other extent handling in this
2019          * function. If there are buffers needing that, we have to redirty
2020          * the page. But we may reach here when we do a journal commit via
2021          * journal_submit_inode_data_buffers() and in that case we must write
2022          * allocated buffers to achieve data=ordered mode guarantees.
2023          *
2024          * Also, if there is only one buffer per page (the fs block
2025          * size == the page size), if one buffer needs block
2026          * allocation or needs to modify the extent tree to clear the
2027          * unwritten flag, we know that the page can't be written at
2028          * all, so we might as well refuse the write immediately.
2029          * Unfortunately if the block size != page size, we can't as
2030          * easily detect this case using ext4_walk_page_buffers(), but
2031          * for the extremely common case, this is an optimization that
2032          * skips a useless round trip through ext4_bio_write_page().
2033          */
2034         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2035                                    ext4_bh_delay_or_unwritten)) {
2036                 redirty_page_for_writepage(wbc, page);
2037                 if ((current->flags & PF_MEMALLOC) ||
2038                     (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2039                         /*
2040                          * For memory cleaning there's no point in writing only
2041                          * some buffers. So just bail out. Warn if we came here
2042                          * from direct reclaim.
2043                          */
2044                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2045                                                         == PF_MEMALLOC);
2046                         unlock_page(page);
2047                         return 0;
2048                 }
2049                 keep_towrite = true;
2050         }
2051
2052         if (PageChecked(page) && ext4_should_journal_data(inode))
2053                 /*
2054                  * It's mmapped pagecache.  Add buffers and journal it.  There
2055                  * doesn't seem much point in redirtying the page here.
2056                  */
2057                 return __ext4_journalled_writepage(page, len);
2058
2059         ext4_io_submit_init(&io_submit, wbc);
2060         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2061         if (!io_submit.io_end) {
2062                 redirty_page_for_writepage(wbc, page);
2063                 unlock_page(page);
2064                 return -ENOMEM;
2065         }
2066         ret = ext4_bio_write_page(&io_submit, page, len, keep_towrite);
2067         ext4_io_submit(&io_submit);
2068         /* Drop io_end reference we got from init */
2069         ext4_put_io_end_defer(io_submit.io_end);
2070         return ret;
2071 }
2072
2073 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2074 {
2075         int len;
2076         loff_t size;
2077         int err;
2078
2079         BUG_ON(page->index != mpd->first_page);
2080         clear_page_dirty_for_io(page);
2081         /*
2082          * We have to be very careful here!  Nothing protects writeback path
2083          * against i_size changes and the page can be writeably mapped into
2084          * page tables. So an application can be growing i_size and writing
2085          * data through mmap while writeback runs. clear_page_dirty_for_io()
2086          * write-protects our page in page tables and the page cannot get
2087          * written to again until we release page lock. So only after
2088          * clear_page_dirty_for_io() we are safe to sample i_size for
2089          * ext4_bio_write_page() to zero-out tail of the written page. We rely
2090          * on the barrier provided by TestClearPageDirty in
2091          * clear_page_dirty_for_io() to make sure i_size is really sampled only
2092          * after page tables are updated.
2093          */
2094         size = i_size_read(mpd->inode);
2095         if (page->index == size >> PAGE_SHIFT &&
2096             !ext4_verity_in_progress(mpd->inode))
2097                 len = size & ~PAGE_MASK;
2098         else
2099                 len = PAGE_SIZE;
2100         err = ext4_bio_write_page(&mpd->io_submit, page, len, false);
2101         if (!err)
2102                 mpd->wbc->nr_to_write--;
2103         mpd->first_page++;
2104
2105         return err;
2106 }
2107
2108 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
2109
2110 /*
2111  * mballoc gives us at most this number of blocks...
2112  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2113  * The rest of mballoc seems to handle chunks up to full group size.
2114  */
2115 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2116
2117 /*
2118  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2119  *
2120  * @mpd - extent of blocks
2121  * @lblk - logical number of the block in the file
2122  * @bh - buffer head we want to add to the extent
2123  *
2124  * The function is used to collect contig. blocks in the same state. If the
2125  * buffer doesn't require mapping for writeback and we haven't started the
2126  * extent of buffers to map yet, the function returns 'true' immediately - the
2127  * caller can write the buffer right away. Otherwise the function returns true
2128  * if the block has been added to the extent, false if the block couldn't be
2129  * added.
2130  */
2131 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2132                                    struct buffer_head *bh)
2133 {
2134         struct ext4_map_blocks *map = &mpd->map;
2135
2136         /* Buffer that doesn't need mapping for writeback? */
2137         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2138             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2139                 /* So far no extent to map => we write the buffer right away */
2140                 if (map->m_len == 0)
2141                         return true;
2142                 return false;
2143         }
2144
2145         /* First block in the extent? */
2146         if (map->m_len == 0) {
2147                 /* We cannot map unless handle is started... */
2148                 if (!mpd->do_map)
2149                         return false;
2150                 map->m_lblk = lblk;
2151                 map->m_len = 1;
2152                 map->m_flags = bh->b_state & BH_FLAGS;
2153                 return true;
2154         }
2155
2156         /* Don't go larger than mballoc is willing to allocate */
2157         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2158                 return false;
2159
2160         /* Can we merge the block to our big extent? */
2161         if (lblk == map->m_lblk + map->m_len &&
2162             (bh->b_state & BH_FLAGS) == map->m_flags) {
2163                 map->m_len++;
2164                 return true;
2165         }
2166         return false;
2167 }
2168
2169 /*
2170  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2171  *
2172  * @mpd - extent of blocks for mapping
2173  * @head - the first buffer in the page
2174  * @bh - buffer we should start processing from
2175  * @lblk - logical number of the block in the file corresponding to @bh
2176  *
2177  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2178  * the page for IO if all buffers in this page were mapped and there's no
2179  * accumulated extent of buffers to map or add buffers in the page to the
2180  * extent of buffers to map. The function returns 1 if the caller can continue
2181  * by processing the next page, 0 if it should stop adding buffers to the
2182  * extent to map because we cannot extend it anymore. It can also return value
2183  * < 0 in case of error during IO submission.
2184  */
2185 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2186                                    struct buffer_head *head,
2187                                    struct buffer_head *bh,
2188                                    ext4_lblk_t lblk)
2189 {
2190         struct inode *inode = mpd->inode;
2191         int err;
2192         ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2193                                                         >> inode->i_blkbits;
2194
2195         if (ext4_verity_in_progress(inode))
2196                 blocks = EXT_MAX_BLOCKS;
2197
2198         do {
2199                 BUG_ON(buffer_locked(bh));
2200
2201                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2202                         /* Found extent to map? */
2203                         if (mpd->map.m_len)
2204                                 return 0;
2205                         /* Buffer needs mapping and handle is not started? */
2206                         if (!mpd->do_map)
2207                                 return 0;
2208                         /* Everything mapped so far and we hit EOF */
2209                         break;
2210                 }
2211         } while (lblk++, (bh = bh->b_this_page) != head);
2212         /* So far everything mapped? Submit the page for IO. */
2213         if (mpd->map.m_len == 0) {
2214                 err = mpage_submit_page(mpd, head->b_page);
2215                 if (err < 0)
2216                         return err;
2217         }
2218         if (lblk >= blocks) {
2219                 mpd->scanned_until_end = 1;
2220                 return 0;
2221         }
2222         return 1;
2223 }
2224
2225 /*
2226  * mpage_process_page - update page buffers corresponding to changed extent and
2227  *                     may submit fully mapped page for IO
2228  *
2229  * @mpd         - description of extent to map, on return next extent to map
2230  * @m_lblk      - logical block mapping.
2231  * @m_pblk      - corresponding physical mapping.
2232  * @map_bh      - determines on return whether this page requires any further
2233  *                mapping or not.
2234  * Scan given page buffers corresponding to changed extent and update buffer
2235  * state according to new extent state.
2236  * We map delalloc buffers to their physical location, clear unwritten bits.
2237  * If the given page is not fully mapped, we update @map to the next extent in
2238  * the given page that needs mapping & return @map_bh as true.
2239  */
2240 static int mpage_process_page(struct mpage_da_data *mpd, struct page *page,
2241                               ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2242                               bool *map_bh)
2243 {
2244         struct buffer_head *head, *bh;
2245         ext4_io_end_t *io_end = mpd->io_submit.io_end;
2246         ext4_lblk_t lblk = *m_lblk;
2247         ext4_fsblk_t pblock = *m_pblk;
2248         int err = 0;
2249         int blkbits = mpd->inode->i_blkbits;
2250         ssize_t io_end_size = 0;
2251         struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2252
2253         bh = head = page_buffers(page);
2254         do {
2255                 if (lblk < mpd->map.m_lblk)
2256                         continue;
2257                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2258                         /*
2259                          * Buffer after end of mapped extent.
2260                          * Find next buffer in the page to map.
2261                          */
2262                         mpd->map.m_len = 0;
2263                         mpd->map.m_flags = 0;
2264                         io_end_vec->size += io_end_size;
2265                         io_end_size = 0;
2266
2267                         err = mpage_process_page_bufs(mpd, head, bh, lblk);
2268                         if (err > 0)
2269                                 err = 0;
2270                         if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2271                                 io_end_vec = ext4_alloc_io_end_vec(io_end);
2272                                 if (IS_ERR(io_end_vec)) {
2273                                         err = PTR_ERR(io_end_vec);
2274                                         goto out;
2275                                 }
2276                                 io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits;
2277                         }
2278                         *map_bh = true;
2279                         goto out;
2280                 }
2281                 if (buffer_delay(bh)) {
2282                         clear_buffer_delay(bh);
2283                         bh->b_blocknr = pblock++;
2284                 }
2285                 clear_buffer_unwritten(bh);
2286                 io_end_size += (1 << blkbits);
2287         } while (lblk++, (bh = bh->b_this_page) != head);
2288
2289         io_end_vec->size += io_end_size;
2290         io_end_size = 0;
2291         *map_bh = false;
2292 out:
2293         *m_lblk = lblk;
2294         *m_pblk = pblock;
2295         return err;
2296 }
2297
2298 /*
2299  * mpage_map_buffers - update buffers corresponding to changed extent and
2300  *                     submit fully mapped pages for IO
2301  *
2302  * @mpd - description of extent to map, on return next extent to map
2303  *
2304  * Scan buffers corresponding to changed extent (we expect corresponding pages
2305  * to be already locked) and update buffer state according to new extent state.
2306  * We map delalloc buffers to their physical location, clear unwritten bits,
2307  * and mark buffers as uninit when we perform writes to unwritten extents
2308  * and do extent conversion after IO is finished. If the last page is not fully
2309  * mapped, we update @map to the next extent in the last page that needs
2310  * mapping. Otherwise we submit the page for IO.
2311  */
2312 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2313 {
2314         struct pagevec pvec;
2315         int nr_pages, i;
2316         struct inode *inode = mpd->inode;
2317         int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2318         pgoff_t start, end;
2319         ext4_lblk_t lblk;
2320         ext4_fsblk_t pblock;
2321         int err;
2322         bool map_bh = false;
2323
2324         start = mpd->map.m_lblk >> bpp_bits;
2325         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2326         lblk = start << bpp_bits;
2327         pblock = mpd->map.m_pblk;
2328
2329         pagevec_init(&pvec);
2330         while (start <= end) {
2331                 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2332                                                 &start, end);
2333                 if (nr_pages == 0)
2334                         break;
2335                 for (i = 0; i < nr_pages; i++) {
2336                         struct page *page = pvec.pages[i];
2337
2338                         err = mpage_process_page(mpd, page, &lblk, &pblock,
2339                                                  &map_bh);
2340                         /*
2341                          * If map_bh is true, means page may require further bh
2342                          * mapping, or maybe the page was submitted for IO.
2343                          * So we return to call further extent mapping.
2344                          */
2345                         if (err < 0 || map_bh)
2346                                 goto out;
2347                         /* Page fully mapped - let IO run! */
2348                         err = mpage_submit_page(mpd, page);
2349                         if (err < 0)
2350                                 goto out;
2351                 }
2352                 pagevec_release(&pvec);
2353         }
2354         /* Extent fully mapped and matches with page boundary. We are done. */
2355         mpd->map.m_len = 0;
2356         mpd->map.m_flags = 0;
2357         return 0;
2358 out:
2359         pagevec_release(&pvec);
2360         return err;
2361 }
2362
2363 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2364 {
2365         struct inode *inode = mpd->inode;
2366         struct ext4_map_blocks *map = &mpd->map;
2367         int get_blocks_flags;
2368         int err, dioread_nolock;
2369
2370         trace_ext4_da_write_pages_extent(inode, map);
2371         /*
2372          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2373          * to convert an unwritten extent to be initialized (in the case
2374          * where we have written into one or more preallocated blocks).  It is
2375          * possible that we're going to need more metadata blocks than
2376          * previously reserved. However we must not fail because we're in
2377          * writeback and there is nothing we can do about it so it might result
2378          * in data loss.  So use reserved blocks to allocate metadata if
2379          * possible.
2380          *
2381          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2382          * the blocks in question are delalloc blocks.  This indicates
2383          * that the blocks and quotas has already been checked when
2384          * the data was copied into the page cache.
2385          */
2386         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2387                            EXT4_GET_BLOCKS_METADATA_NOFAIL |
2388                            EXT4_GET_BLOCKS_IO_SUBMIT;
2389         dioread_nolock = ext4_should_dioread_nolock(inode);
2390         if (dioread_nolock)
2391                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2392         if (map->m_flags & BIT(BH_Delay))
2393                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2394
2395         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2396         if (err < 0)
2397                 return err;
2398         if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2399                 if (!mpd->io_submit.io_end->handle &&
2400                     ext4_handle_valid(handle)) {
2401                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2402                         handle->h_rsv_handle = NULL;
2403                 }
2404                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2405         }
2406
2407         BUG_ON(map->m_len == 0);
2408         return 0;
2409 }
2410
2411 /*
2412  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2413  *                               mpd->len and submit pages underlying it for IO
2414  *
2415  * @handle - handle for journal operations
2416  * @mpd - extent to map
2417  * @give_up_on_write - we set this to true iff there is a fatal error and there
2418  *                     is no hope of writing the data. The caller should discard
2419  *                     dirty pages to avoid infinite loops.
2420  *
2421  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2422  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2423  * them to initialized or split the described range from larger unwritten
2424  * extent. Note that we need not map all the described range since allocation
2425  * can return less blocks or the range is covered by more unwritten extents. We
2426  * cannot map more because we are limited by reserved transaction credits. On
2427  * the other hand we always make sure that the last touched page is fully
2428  * mapped so that it can be written out (and thus forward progress is
2429  * guaranteed). After mapping we submit all mapped pages for IO.
2430  */
2431 static int mpage_map_and_submit_extent(handle_t *handle,
2432                                        struct mpage_da_data *mpd,
2433                                        bool *give_up_on_write)
2434 {
2435         struct inode *inode = mpd->inode;
2436         struct ext4_map_blocks *map = &mpd->map;
2437         int err;
2438         loff_t disksize;
2439         int progress = 0;
2440         ext4_io_end_t *io_end = mpd->io_submit.io_end;
2441         struct ext4_io_end_vec *io_end_vec;
2442
2443         io_end_vec = ext4_alloc_io_end_vec(io_end);
2444         if (IS_ERR(io_end_vec))
2445                 return PTR_ERR(io_end_vec);
2446         io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2447         do {
2448                 err = mpage_map_one_extent(handle, mpd);
2449                 if (err < 0) {
2450                         struct super_block *sb = inode->i_sb;
2451
2452                         if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2453                             ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
2454                                 goto invalidate_dirty_pages;
2455                         /*
2456                          * Let the uper layers retry transient errors.
2457                          * In the case of ENOSPC, if ext4_count_free_blocks()
2458                          * is non-zero, a commit should free up blocks.
2459                          */
2460                         if ((err == -ENOMEM) ||
2461                             (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2462                                 if (progress)
2463                                         goto update_disksize;
2464                                 return err;
2465                         }
2466                         ext4_msg(sb, KERN_CRIT,
2467                                  "Delayed block allocation failed for "
2468                                  "inode %lu at logical offset %llu with"
2469                                  " max blocks %u with error %d",
2470                                  inode->i_ino,
2471                                  (unsigned long long)map->m_lblk,
2472                                  (unsigned)map->m_len, -err);
2473                         ext4_msg(sb, KERN_CRIT,
2474                                  "This should not happen!! Data will "
2475                                  "be lost\n");
2476                         if (err == -ENOSPC)
2477                                 ext4_print_free_blocks(inode);
2478                 invalidate_dirty_pages:
2479                         *give_up_on_write = true;
2480                         return err;
2481                 }
2482                 progress = 1;
2483                 /*
2484                  * Update buffer state, submit mapped pages, and get us new
2485                  * extent to map
2486                  */
2487                 err = mpage_map_and_submit_buffers(mpd);
2488                 if (err < 0)
2489                         goto update_disksize;
2490         } while (map->m_len);
2491
2492 update_disksize:
2493         /*
2494          * Update on-disk size after IO is submitted.  Races with
2495          * truncate are avoided by checking i_size under i_data_sem.
2496          */
2497         disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2498         if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2499                 int err2;
2500                 loff_t i_size;
2501
2502                 down_write(&EXT4_I(inode)->i_data_sem);
2503                 i_size = i_size_read(inode);
2504                 if (disksize > i_size)
2505                         disksize = i_size;
2506                 if (disksize > EXT4_I(inode)->i_disksize)
2507                         EXT4_I(inode)->i_disksize = disksize;
2508                 up_write(&EXT4_I(inode)->i_data_sem);
2509                 err2 = ext4_mark_inode_dirty(handle, inode);
2510                 if (err2) {
2511                         ext4_error_err(inode->i_sb, -err2,
2512                                        "Failed to mark inode %lu dirty",
2513                                        inode->i_ino);
2514                 }
2515                 if (!err)
2516                         err = err2;
2517         }
2518         return err;
2519 }
2520
2521 /*
2522  * Calculate the total number of credits to reserve for one writepages
2523  * iteration. This is called from ext4_writepages(). We map an extent of
2524  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2525  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2526  * bpp - 1 blocks in bpp different extents.
2527  */
2528 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2529 {
2530         int bpp = ext4_journal_blocks_per_page(inode);
2531
2532         return ext4_meta_trans_blocks(inode,
2533                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2534 }
2535
2536 /*
2537  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2538  *                               and underlying extent to map
2539  *
2540  * @mpd - where to look for pages
2541  *
2542  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2543  * IO immediately. When we find a page which isn't mapped we start accumulating
2544  * extent of buffers underlying these pages that needs mapping (formed by
2545  * either delayed or unwritten buffers). We also lock the pages containing
2546  * these buffers. The extent found is returned in @mpd structure (starting at
2547  * mpd->lblk with length mpd->len blocks).
2548  *
2549  * Note that this function can attach bios to one io_end structure which are
2550  * neither logically nor physically contiguous. Although it may seem as an
2551  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2552  * case as we need to track IO to all buffers underlying a page in one io_end.
2553  */
2554 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2555 {
2556         struct address_space *mapping = mpd->inode->i_mapping;
2557         struct pagevec pvec;
2558         unsigned int nr_pages;
2559         long left = mpd->wbc->nr_to_write;
2560         pgoff_t index = mpd->first_page;
2561         pgoff_t end = mpd->last_page;
2562         xa_mark_t tag;
2563         int i, err = 0;
2564         int blkbits = mpd->inode->i_blkbits;
2565         ext4_lblk_t lblk;
2566         struct buffer_head *head;
2567
2568         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2569                 tag = PAGECACHE_TAG_TOWRITE;
2570         else
2571                 tag = PAGECACHE_TAG_DIRTY;
2572
2573         pagevec_init(&pvec);
2574         mpd->map.m_len = 0;
2575         mpd->next_page = index;
2576         while (index <= end) {
2577                 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2578                                 tag);
2579                 if (nr_pages == 0)
2580                         break;
2581
2582                 for (i = 0; i < nr_pages; i++) {
2583                         struct page *page = pvec.pages[i];
2584
2585                         /*
2586                          * Accumulated enough dirty pages? This doesn't apply
2587                          * to WB_SYNC_ALL mode. For integrity sync we have to
2588                          * keep going because someone may be concurrently
2589                          * dirtying pages, and we might have synced a lot of
2590                          * newly appeared dirty pages, but have not synced all
2591                          * of the old dirty pages.
2592                          */
2593                         if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2594                                 goto out;
2595
2596                         /* If we can't merge this page, we are done. */
2597                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2598                                 goto out;
2599
2600                         lock_page(page);
2601                         /*
2602                          * If the page is no longer dirty, or its mapping no
2603                          * longer corresponds to inode we are writing (which
2604                          * means it has been truncated or invalidated), or the
2605                          * page is already under writeback and we are not doing
2606                          * a data integrity writeback, skip the page
2607                          */
2608                         if (!PageDirty(page) ||
2609                             (PageWriteback(page) &&
2610                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2611                             unlikely(page->mapping != mapping)) {
2612                                 unlock_page(page);
2613                                 continue;
2614                         }
2615
2616                         wait_on_page_writeback(page);
2617                         BUG_ON(PageWriteback(page));
2618
2619                         if (mpd->map.m_len == 0)
2620                                 mpd->first_page = page->index;
2621                         mpd->next_page = page->index + 1;
2622                         /* Add all dirty buffers to mpd */
2623                         lblk = ((ext4_lblk_t)page->index) <<
2624                                 (PAGE_SHIFT - blkbits);
2625                         head = page_buffers(page);
2626                         err = mpage_process_page_bufs(mpd, head, head, lblk);
2627                         if (err <= 0)
2628                                 goto out;
2629                         err = 0;
2630                         left--;
2631                 }
2632                 pagevec_release(&pvec);
2633                 cond_resched();
2634         }
2635         mpd->scanned_until_end = 1;
2636         return 0;
2637 out:
2638         pagevec_release(&pvec);
2639         return err;
2640 }
2641
2642 static int ext4_writepages(struct address_space *mapping,
2643                            struct writeback_control *wbc)
2644 {
2645         pgoff_t writeback_index = 0;
2646         long nr_to_write = wbc->nr_to_write;
2647         int range_whole = 0;
2648         int cycled = 1;
2649         handle_t *handle = NULL;
2650         struct mpage_da_data mpd;
2651         struct inode *inode = mapping->host;
2652         int needed_blocks, rsv_blocks = 0, ret = 0;
2653         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2654         struct blk_plug plug;
2655         bool give_up_on_write = false;
2656
2657         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2658                 return -EIO;
2659
2660         percpu_down_read(&sbi->s_writepages_rwsem);
2661         trace_ext4_writepages(inode, wbc);
2662
2663         /*
2664          * No pages to write? This is mainly a kludge to avoid starting
2665          * a transaction for special inodes like journal inode on last iput()
2666          * because that could violate lock ordering on umount
2667          */
2668         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2669                 goto out_writepages;
2670
2671         if (ext4_should_journal_data(inode)) {
2672                 ret = generic_writepages(mapping, wbc);
2673                 goto out_writepages;
2674         }
2675
2676         /*
2677          * If the filesystem has aborted, it is read-only, so return
2678          * right away instead of dumping stack traces later on that
2679          * will obscure the real source of the problem.  We test
2680          * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2681          * the latter could be true if the filesystem is mounted
2682          * read-only, and in that case, ext4_writepages should
2683          * *never* be called, so if that ever happens, we would want
2684          * the stack trace.
2685          */
2686         if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2687                      ext4_test_mount_flag(inode->i_sb, EXT4_MF_FS_ABORTED))) {
2688                 ret = -EROFS;
2689                 goto out_writepages;
2690         }
2691
2692         /*
2693          * If we have inline data and arrive here, it means that
2694          * we will soon create the block for the 1st page, so
2695          * we'd better clear the inline data here.
2696          */
2697         if (ext4_has_inline_data(inode)) {
2698                 /* Just inode will be modified... */
2699                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2700                 if (IS_ERR(handle)) {
2701                         ret = PTR_ERR(handle);
2702                         goto out_writepages;
2703                 }
2704                 BUG_ON(ext4_test_inode_state(inode,
2705                                 EXT4_STATE_MAY_INLINE_DATA));
2706                 ext4_destroy_inline_data(handle, inode);
2707                 ext4_journal_stop(handle);
2708         }
2709
2710         if (ext4_should_dioread_nolock(inode)) {
2711                 /*
2712                  * We may need to convert up to one extent per block in
2713                  * the page and we may dirty the inode.
2714                  */
2715                 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2716                                                 PAGE_SIZE >> inode->i_blkbits);
2717         }
2718
2719         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2720                 range_whole = 1;
2721
2722         if (wbc->range_cyclic) {
2723                 writeback_index = mapping->writeback_index;
2724                 if (writeback_index)
2725                         cycled = 0;
2726                 mpd.first_page = writeback_index;
2727                 mpd.last_page = -1;
2728         } else {
2729                 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2730                 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2731         }
2732
2733         mpd.inode = inode;
2734         mpd.wbc = wbc;
2735         ext4_io_submit_init(&mpd.io_submit, wbc);
2736 retry:
2737         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2738                 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2739         blk_start_plug(&plug);
2740
2741         /*
2742          * First writeback pages that don't need mapping - we can avoid
2743          * starting a transaction unnecessarily and also avoid being blocked
2744          * in the block layer on device congestion while having transaction
2745          * started.
2746          */
2747         mpd.do_map = 0;
2748         mpd.scanned_until_end = 0;
2749         mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2750         if (!mpd.io_submit.io_end) {
2751                 ret = -ENOMEM;
2752                 goto unplug;
2753         }
2754         ret = mpage_prepare_extent_to_map(&mpd);
2755         /* Unlock pages we didn't use */
2756         mpage_release_unused_pages(&mpd, false);
2757         /* Submit prepared bio */
2758         ext4_io_submit(&mpd.io_submit);
2759         ext4_put_io_end_defer(mpd.io_submit.io_end);
2760         mpd.io_submit.io_end = NULL;
2761         if (ret < 0)
2762                 goto unplug;
2763
2764         while (!mpd.scanned_until_end && wbc->nr_to_write > 0) {
2765                 /* For each extent of pages we use new io_end */
2766                 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2767                 if (!mpd.io_submit.io_end) {
2768                         ret = -ENOMEM;
2769                         break;
2770                 }
2771
2772                 /*
2773                  * We have two constraints: We find one extent to map and we
2774                  * must always write out whole page (makes a difference when
2775                  * blocksize < pagesize) so that we don't block on IO when we
2776                  * try to write out the rest of the page. Journalled mode is
2777                  * not supported by delalloc.
2778                  */
2779                 BUG_ON(ext4_should_journal_data(inode));
2780                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2781
2782                 /* start a new transaction */
2783                 handle = ext4_journal_start_with_reserve(inode,
2784                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2785                 if (IS_ERR(handle)) {
2786                         ret = PTR_ERR(handle);
2787                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2788                                "%ld pages, ino %lu; err %d", __func__,
2789                                 wbc->nr_to_write, inode->i_ino, ret);
2790                         /* Release allocated io_end */
2791                         ext4_put_io_end(mpd.io_submit.io_end);
2792                         mpd.io_submit.io_end = NULL;
2793                         break;
2794                 }
2795                 mpd.do_map = 1;
2796
2797                 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2798                 ret = mpage_prepare_extent_to_map(&mpd);
2799                 if (!ret && mpd.map.m_len)
2800                         ret = mpage_map_and_submit_extent(handle, &mpd,
2801                                         &give_up_on_write);
2802                 /*
2803                  * Caution: If the handle is synchronous,
2804                  * ext4_journal_stop() can wait for transaction commit
2805                  * to finish which may depend on writeback of pages to
2806                  * complete or on page lock to be released.  In that
2807                  * case, we have to wait until after we have
2808                  * submitted all the IO, released page locks we hold,
2809                  * and dropped io_end reference (for extent conversion
2810                  * to be able to complete) before stopping the handle.
2811                  */
2812                 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2813                         ext4_journal_stop(handle);
2814                         handle = NULL;
2815                         mpd.do_map = 0;
2816                 }
2817                 /* Unlock pages we didn't use */
2818                 mpage_release_unused_pages(&mpd, give_up_on_write);
2819                 /* Submit prepared bio */
2820                 ext4_io_submit(&mpd.io_submit);
2821
2822                 /*
2823                  * Drop our io_end reference we got from init. We have
2824                  * to be careful and use deferred io_end finishing if
2825                  * we are still holding the transaction as we can
2826                  * release the last reference to io_end which may end
2827                  * up doing unwritten extent conversion.
2828                  */
2829                 if (handle) {
2830                         ext4_put_io_end_defer(mpd.io_submit.io_end);
2831                         ext4_journal_stop(handle);
2832                 } else
2833                         ext4_put_io_end(mpd.io_submit.io_end);
2834                 mpd.io_submit.io_end = NULL;
2835
2836                 if (ret == -ENOSPC && sbi->s_journal) {
2837                         /*
2838                          * Commit the transaction which would
2839                          * free blocks released in the transaction
2840                          * and try again
2841                          */
2842                         jbd2_journal_force_commit_nested(sbi->s_journal);
2843                         ret = 0;
2844                         continue;
2845                 }
2846                 /* Fatal error - ENOMEM, EIO... */
2847                 if (ret)
2848                         break;
2849         }
2850 unplug:
2851         blk_finish_plug(&plug);
2852         if (!ret && !cycled && wbc->nr_to_write > 0) {
2853                 cycled = 1;
2854                 mpd.last_page = writeback_index - 1;
2855                 mpd.first_page = 0;
2856                 goto retry;
2857         }
2858
2859         /* Update index */
2860         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2861                 /*
2862                  * Set the writeback_index so that range_cyclic
2863                  * mode will write it back later
2864                  */
2865                 mapping->writeback_index = mpd.first_page;
2866
2867 out_writepages:
2868         trace_ext4_writepages_result(inode, wbc, ret,
2869                                      nr_to_write - wbc->nr_to_write);
2870         percpu_up_read(&sbi->s_writepages_rwsem);
2871         return ret;
2872 }
2873
2874 static int ext4_dax_writepages(struct address_space *mapping,
2875                                struct writeback_control *wbc)
2876 {
2877         int ret;
2878         long nr_to_write = wbc->nr_to_write;
2879         struct inode *inode = mapping->host;
2880         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2881
2882         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2883                 return -EIO;
2884
2885         percpu_down_read(&sbi->s_writepages_rwsem);
2886         trace_ext4_writepages(inode, wbc);
2887
2888         ret = dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc);
2889         trace_ext4_writepages_result(inode, wbc, ret,
2890                                      nr_to_write - wbc->nr_to_write);
2891         percpu_up_read(&sbi->s_writepages_rwsem);
2892         return ret;
2893 }
2894
2895 static int ext4_nonda_switch(struct super_block *sb)
2896 {
2897         s64 free_clusters, dirty_clusters;
2898         struct ext4_sb_info *sbi = EXT4_SB(sb);
2899
2900         /*
2901          * switch to non delalloc mode if we are running low
2902          * on free block. The free block accounting via percpu
2903          * counters can get slightly wrong with percpu_counter_batch getting
2904          * accumulated on each CPU without updating global counters
2905          * Delalloc need an accurate free block accounting. So switch
2906          * to non delalloc when we are near to error range.
2907          */
2908         free_clusters =
2909                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2910         dirty_clusters =
2911                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2912         /*
2913          * Start pushing delalloc when 1/2 of free blocks are dirty.
2914          */
2915         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2916                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2917
2918         if (2 * free_clusters < 3 * dirty_clusters ||
2919             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2920                 /*
2921                  * free block count is less than 150% of dirty blocks
2922                  * or free blocks is less than watermark
2923                  */
2924                 return 1;
2925         }
2926         return 0;
2927 }
2928
2929 /* We always reserve for an inode update; the superblock could be there too */
2930 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2931 {
2932         if (likely(ext4_has_feature_large_file(inode->i_sb)))
2933                 return 1;
2934
2935         if (pos + len <= 0x7fffffffULL)
2936                 return 1;
2937
2938         /* We might need to update the superblock to set LARGE_FILE */
2939         return 2;
2940 }
2941
2942 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2943                                loff_t pos, unsigned len, unsigned flags,
2944                                struct page **pagep, void **fsdata)
2945 {
2946         int ret, retries = 0;
2947         struct page *page;
2948         pgoff_t index;
2949         struct inode *inode = mapping->host;
2950         handle_t *handle;
2951
2952         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2953                 return -EIO;
2954
2955         index = pos >> PAGE_SHIFT;
2956
2957         if (ext4_nonda_switch(inode->i_sb) || S_ISLNK(inode->i_mode) ||
2958             ext4_verity_in_progress(inode)) {
2959                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2960                 return ext4_write_begin(file, mapping, pos,
2961                                         len, flags, pagep, fsdata);
2962         }
2963         *fsdata = (void *)0;
2964         trace_ext4_da_write_begin(inode, pos, len, flags);
2965
2966         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2967                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2968                                                       pos, len, flags,
2969                                                       pagep, fsdata);
2970                 if (ret < 0)
2971                         return ret;
2972                 if (ret == 1)
2973                         return 0;
2974         }
2975
2976         /*
2977          * grab_cache_page_write_begin() can take a long time if the
2978          * system is thrashing due to memory pressure, or if the page
2979          * is being written back.  So grab it first before we start
2980          * the transaction handle.  This also allows us to allocate
2981          * the page (if needed) without using GFP_NOFS.
2982          */
2983 retry_grab:
2984         page = grab_cache_page_write_begin(mapping, index, flags);
2985         if (!page)
2986                 return -ENOMEM;
2987         unlock_page(page);
2988
2989         /*
2990          * With delayed allocation, we don't log the i_disksize update
2991          * if there is delayed block allocation. But we still need
2992          * to journalling the i_disksize update if writes to the end
2993          * of file which has an already mapped buffer.
2994          */
2995 retry_journal:
2996         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2997                                 ext4_da_write_credits(inode, pos, len));
2998         if (IS_ERR(handle)) {
2999                 put_page(page);
3000                 return PTR_ERR(handle);
3001         }
3002
3003         lock_page(page);
3004         if (page->mapping != mapping) {
3005                 /* The page got truncated from under us */
3006                 unlock_page(page);
3007                 put_page(page);
3008                 ext4_journal_stop(handle);
3009                 goto retry_grab;
3010         }
3011         /* In case writeback began while the page was unlocked */
3012         wait_for_stable_page(page);
3013
3014 #ifdef CONFIG_FS_ENCRYPTION
3015         ret = ext4_block_write_begin(page, pos, len,
3016                                      ext4_da_get_block_prep);
3017 #else
3018         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3019 #endif
3020         if (ret < 0) {
3021                 unlock_page(page);
3022                 ext4_journal_stop(handle);
3023                 /*
3024                  * block_write_begin may have instantiated a few blocks
3025                  * outside i_size.  Trim these off again. Don't need
3026                  * i_size_read because we hold i_mutex.
3027                  */
3028                 if (pos + len > inode->i_size)
3029                         ext4_truncate_failed_write(inode);
3030
3031                 if (ret == -ENOSPC &&
3032                     ext4_should_retry_alloc(inode->i_sb, &retries))
3033                         goto retry_journal;
3034
3035                 put_page(page);
3036                 return ret;
3037         }
3038
3039         *pagep = page;
3040         return ret;
3041 }
3042
3043 /*
3044  * Check if we should update i_disksize
3045  * when write to the end of file but not require block allocation
3046  */
3047 static int ext4_da_should_update_i_disksize(struct page *page,
3048                                             unsigned long offset)
3049 {
3050         struct buffer_head *bh;
3051         struct inode *inode = page->mapping->host;
3052         unsigned int idx;
3053         int i;
3054
3055         bh = page_buffers(page);
3056         idx = offset >> inode->i_blkbits;
3057
3058         for (i = 0; i < idx; i++)
3059                 bh = bh->b_this_page;
3060
3061         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3062                 return 0;
3063         return 1;
3064 }
3065
3066 static int ext4_da_write_end(struct file *file,
3067                              struct address_space *mapping,
3068                              loff_t pos, unsigned len, unsigned copied,
3069                              struct page *page, void *fsdata)
3070 {
3071         struct inode *inode = mapping->host;
3072         int ret = 0, ret2;
3073         handle_t *handle = ext4_journal_current_handle();
3074         loff_t new_i_size;
3075         unsigned long start, end;
3076         int write_mode = (int)(unsigned long)fsdata;
3077
3078         if (write_mode == FALL_BACK_TO_NONDELALLOC)
3079                 return ext4_write_end(file, mapping, pos,
3080                                       len, copied, page, fsdata);
3081
3082         trace_ext4_da_write_end(inode, pos, len, copied);
3083         start = pos & (PAGE_SIZE - 1);
3084         end = start + copied - 1;
3085
3086         /*
3087          * generic_write_end() will run mark_inode_dirty() if i_size
3088          * changes.  So let's piggyback the i_disksize mark_inode_dirty
3089          * into that.
3090          */
3091         new_i_size = pos + copied;
3092         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3093                 if (ext4_has_inline_data(inode) ||
3094                     ext4_da_should_update_i_disksize(page, end)) {
3095                         ext4_update_i_disksize(inode, new_i_size);
3096                         /* We need to mark inode dirty even if
3097                          * new_i_size is less that inode->i_size
3098                          * bu greater than i_disksize.(hint delalloc)
3099                          */
3100                         ret = ext4_mark_inode_dirty(handle, inode);
3101                 }
3102         }
3103
3104         if (write_mode != CONVERT_INLINE_DATA &&
3105             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3106             ext4_has_inline_data(inode))
3107                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3108                                                      page);
3109         else
3110                 ret2 = generic_write_end(file, mapping, pos, len, copied,
3111                                                         page, fsdata);
3112
3113         copied = ret2;
3114         if (ret2 < 0)
3115                 ret = ret2;
3116         ret2 = ext4_journal_stop(handle);
3117         if (unlikely(ret2 && !ret))
3118                 ret = ret2;
3119
3120         return ret ? ret : copied;
3121 }
3122
3123 /*
3124  * Force all delayed allocation blocks to be allocated for a given inode.
3125  */
3126 int ext4_alloc_da_blocks(struct inode *inode)
3127 {
3128         trace_ext4_alloc_da_blocks(inode);
3129
3130         if (!EXT4_I(inode)->i_reserved_data_blocks)
3131                 return 0;
3132
3133         /*
3134          * We do something simple for now.  The filemap_flush() will
3135          * also start triggering a write of the data blocks, which is
3136          * not strictly speaking necessary (and for users of
3137          * laptop_mode, not even desirable).  However, to do otherwise
3138          * would require replicating code paths in:
3139          *
3140          * ext4_writepages() ->
3141          *    write_cache_pages() ---> (via passed in callback function)
3142          *        __mpage_da_writepage() -->
3143          *           mpage_add_bh_to_extent()
3144          *           mpage_da_map_blocks()
3145          *
3146          * The problem is that write_cache_pages(), located in
3147          * mm/page-writeback.c, marks pages clean in preparation for
3148          * doing I/O, which is not desirable if we're not planning on
3149          * doing I/O at all.
3150          *
3151          * We could call write_cache_pages(), and then redirty all of
3152          * the pages by calling redirty_page_for_writepage() but that
3153          * would be ugly in the extreme.  So instead we would need to
3154          * replicate parts of the code in the above functions,
3155          * simplifying them because we wouldn't actually intend to
3156          * write out the pages, but rather only collect contiguous
3157          * logical block extents, call the multi-block allocator, and
3158          * then update the buffer heads with the block allocations.
3159          *
3160          * For now, though, we'll cheat by calling filemap_flush(),
3161          * which will map the blocks, and start the I/O, but not
3162          * actually wait for the I/O to complete.
3163          */
3164         return filemap_flush(inode->i_mapping);
3165 }
3166
3167 /*
3168  * bmap() is special.  It gets used by applications such as lilo and by
3169  * the swapper to find the on-disk block of a specific piece of data.
3170  *
3171  * Naturally, this is dangerous if the block concerned is still in the
3172  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3173  * filesystem and enables swap, then they may get a nasty shock when the
3174  * data getting swapped to that swapfile suddenly gets overwritten by
3175  * the original zero's written out previously to the journal and
3176  * awaiting writeback in the kernel's buffer cache.
3177  *
3178  * So, if we see any bmap calls here on a modified, data-journaled file,
3179  * take extra steps to flush any blocks which might be in the cache.
3180  */
3181 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3182 {
3183         struct inode *inode = mapping->host;
3184         journal_t *journal;
3185         int err;
3186
3187         /*
3188          * We can get here for an inline file via the FIBMAP ioctl
3189          */
3190         if (ext4_has_inline_data(inode))
3191                 return 0;
3192
3193         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3194                         test_opt(inode->i_sb, DELALLOC)) {
3195                 /*
3196                  * With delalloc we want to sync the file
3197                  * so that we can make sure we allocate
3198                  * blocks for file
3199                  */
3200                 filemap_write_and_wait(mapping);
3201         }
3202
3203         if (EXT4_JOURNAL(inode) &&
3204             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3205                 /*
3206                  * This is a REALLY heavyweight approach, but the use of
3207                  * bmap on dirty files is expected to be extremely rare:
3208                  * only if we run lilo or swapon on a freshly made file
3209                  * do we expect this to happen.
3210                  *
3211                  * (bmap requires CAP_SYS_RAWIO so this does not
3212                  * represent an unprivileged user DOS attack --- we'd be
3213                  * in trouble if mortal users could trigger this path at
3214                  * will.)
3215                  *
3216                  * NB. EXT4_STATE_JDATA is not set on files other than
3217                  * regular files.  If somebody wants to bmap a directory
3218                  * or symlink and gets confused because the buffer
3219                  * hasn't yet been flushed to disk, they deserve
3220                  * everything they get.
3221                  */
3222
3223                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3224                 journal = EXT4_JOURNAL(inode);
3225                 jbd2_journal_lock_updates(journal);
3226                 err = jbd2_journal_flush(journal, 0);
3227                 jbd2_journal_unlock_updates(journal);
3228
3229                 if (err)
3230                         return 0;
3231         }
3232
3233         return iomap_bmap(mapping, block, &ext4_iomap_ops);
3234 }
3235
3236 static int ext4_readpage(struct file *file, struct page *page)
3237 {
3238         int ret = -EAGAIN;
3239         struct inode *inode = page->mapping->host;
3240
3241         trace_ext4_readpage(page);
3242
3243         if (ext4_has_inline_data(inode))
3244                 ret = ext4_readpage_inline(inode, page);
3245
3246         if (ret == -EAGAIN)
3247                 return ext4_mpage_readpages(inode, NULL, page);
3248
3249         return ret;
3250 }
3251
3252 static void ext4_readahead(struct readahead_control *rac)
3253 {
3254         struct inode *inode = rac->mapping->host;
3255
3256         /* If the file has inline data, no need to do readahead. */
3257         if (ext4_has_inline_data(inode))
3258                 return;
3259
3260         ext4_mpage_readpages(inode, rac, NULL);
3261 }
3262
3263 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3264                                 unsigned int length)
3265 {
3266         trace_ext4_invalidatepage(page, offset, length);
3267
3268         /* No journalling happens on data buffers when this function is used */
3269         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3270
3271         block_invalidatepage(page, offset, length);
3272 }
3273
3274 static int __ext4_journalled_invalidatepage(struct page *page,
3275                                             unsigned int offset,
3276                                             unsigned int length)
3277 {
3278         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3279
3280         trace_ext4_journalled_invalidatepage(page, offset, length);
3281
3282         /*
3283          * If it's a full truncate we just forget about the pending dirtying
3284          */
3285         if (offset == 0 && length == PAGE_SIZE)
3286                 ClearPageChecked(page);
3287
3288         return jbd2_journal_invalidatepage(journal, page, offset, length);
3289 }
3290
3291 /* Wrapper for aops... */
3292 static void ext4_journalled_invalidatepage(struct page *page,
3293                                            unsigned int offset,
3294                                            unsigned int length)
3295 {
3296         WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3297 }
3298
3299 static int ext4_releasepage(struct page *page, gfp_t wait)
3300 {
3301         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3302
3303         trace_ext4_releasepage(page);
3304
3305         /* Page has dirty journalled data -> cannot release */
3306         if (PageChecked(page))
3307                 return 0;
3308         if (journal)
3309                 return jbd2_journal_try_to_free_buffers(journal, page);
3310         else
3311                 return try_to_free_buffers(page);
3312 }
3313
3314 static bool ext4_inode_datasync_dirty(struct inode *inode)
3315 {
3316         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3317
3318         if (journal) {
3319                 if (jbd2_transaction_committed(journal,
3320                         EXT4_I(inode)->i_datasync_tid))
3321                         return false;
3322                 if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
3323                         return !list_empty(&EXT4_I(inode)->i_fc_list);
3324                 return true;
3325         }
3326
3327         /* Any metadata buffers to write? */
3328         if (!list_empty(&inode->i_mapping->private_list))
3329                 return true;
3330         return inode->i_state & I_DIRTY_DATASYNC;
3331 }
3332
3333 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3334                            struct ext4_map_blocks *map, loff_t offset,
3335                            loff_t length)
3336 {
3337         u8 blkbits = inode->i_blkbits;
3338
3339         /*
3340          * Writes that span EOF might trigger an I/O size update on completion,
3341          * so consider them to be dirty for the purpose of O_DSYNC, even if
3342          * there is no other metadata changes being made or are pending.
3343          */
3344         iomap->flags = 0;
3345         if (ext4_inode_datasync_dirty(inode) ||
3346             offset + length > i_size_read(inode))
3347                 iomap->flags |= IOMAP_F_DIRTY;
3348
3349         if (map->m_flags & EXT4_MAP_NEW)
3350                 iomap->flags |= IOMAP_F_NEW;
3351
3352         iomap->bdev = inode->i_sb->s_bdev;
3353         iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3354         iomap->offset = (u64) map->m_lblk << blkbits;
3355         iomap->length = (u64) map->m_len << blkbits;
3356
3357         if ((map->m_flags & EXT4_MAP_MAPPED) &&
3358             !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3359                 iomap->flags |= IOMAP_F_MERGED;
3360
3361         /*
3362          * Flags passed to ext4_map_blocks() for direct I/O writes can result
3363          * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3364          * set. In order for any allocated unwritten extents to be converted
3365          * into written extents correctly within the ->end_io() handler, we
3366          * need to ensure that the iomap->type is set appropriately. Hence, the
3367          * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3368          * been set first.
3369          */
3370         if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3371                 iomap->type = IOMAP_UNWRITTEN;
3372                 iomap->addr = (u64) map->m_pblk << blkbits;
3373         } else if (map->m_flags & EXT4_MAP_MAPPED) {
3374                 iomap->type = IOMAP_MAPPED;
3375                 iomap->addr = (u64) map->m_pblk << blkbits;
3376         } else {
3377                 iomap->type = IOMAP_HOLE;
3378                 iomap->addr = IOMAP_NULL_ADDR;
3379         }
3380 }
3381
3382 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3383                             unsigned int flags)
3384 {
3385         handle_t *handle;
3386         u8 blkbits = inode->i_blkbits;
3387         int ret, dio_credits, m_flags = 0, retries = 0;
3388
3389         /*
3390          * Trim the mapping request to the maximum value that we can map at
3391          * once for direct I/O.
3392          */
3393         if (map->m_len > DIO_MAX_BLOCKS)
3394                 map->m_len = DIO_MAX_BLOCKS;
3395         dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3396
3397 retry:
3398         /*
3399          * Either we allocate blocks and then don't get an unwritten extent, so
3400          * in that case we have reserved enough credits. Or, the blocks are
3401          * already allocated and unwritten. In that case, the extent conversion
3402          * fits into the credits as well.
3403          */
3404         handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3405         if (IS_ERR(handle))
3406                 return PTR_ERR(handle);
3407
3408         /*
3409          * DAX and direct I/O are the only two operations that are currently
3410          * supported with IOMAP_WRITE.
3411          */
3412         WARN_ON(!IS_DAX(inode) && !(flags & IOMAP_DIRECT));
3413         if (IS_DAX(inode))
3414                 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3415         /*
3416          * We use i_size instead of i_disksize here because delalloc writeback
3417          * can complete at any point during the I/O and subsequently push the
3418          * i_disksize out to i_size. This could be beyond where direct I/O is
3419          * happening and thus expose allocated blocks to direct I/O reads.
3420          */
3421         else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode))
3422                 m_flags = EXT4_GET_BLOCKS_CREATE;
3423         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3424                 m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3425
3426         ret = ext4_map_blocks(handle, inode, map, m_flags);
3427
3428         /*
3429          * We cannot fill holes in indirect tree based inodes as that could
3430          * expose stale data in the case of a crash. Use the magic error code
3431          * to fallback to buffered I/O.
3432          */
3433         if (!m_flags && !ret)
3434                 ret = -ENOTBLK;
3435
3436         ext4_journal_stop(handle);
3437         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3438                 goto retry;
3439
3440         return ret;
3441 }
3442
3443
3444 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3445                 unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3446 {
3447         int ret;
3448         struct ext4_map_blocks map;
3449         u8 blkbits = inode->i_blkbits;
3450
3451         if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3452                 return -EINVAL;
3453
3454         if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3455                 return -ERANGE;
3456
3457         /*
3458          * Calculate the first and last logical blocks respectively.
3459          */
3460         map.m_lblk = offset >> blkbits;
3461         map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3462                           EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3463
3464         if (flags & IOMAP_WRITE) {
3465                 /*
3466                  * We check here if the blocks are already allocated, then we
3467                  * don't need to start a journal txn and we can directly return
3468                  * the mapping information. This could boost performance
3469                  * especially in multi-threaded overwrite requests.
3470                  */
3471                 if (offset + length <= i_size_read(inode)) {
3472                         ret = ext4_map_blocks(NULL, inode, &map, 0);
3473                         if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED))
3474                                 goto out;
3475                 }
3476                 ret = ext4_iomap_alloc(inode, &map, flags);
3477         } else {
3478                 ret = ext4_map_blocks(NULL, inode, &map, 0);
3479         }
3480
3481         if (ret < 0)
3482                 return ret;
3483 out:
3484         ext4_set_iomap(inode, iomap, &map, offset, length);
3485
3486         return 0;
3487 }
3488
3489 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3490                 loff_t length, unsigned flags, struct iomap *iomap,
3491                 struct iomap *srcmap)
3492 {
3493         int ret;
3494
3495         /*
3496          * Even for writes we don't need to allocate blocks, so just pretend
3497          * we are reading to save overhead of starting a transaction.
3498          */
3499         flags &= ~IOMAP_WRITE;
3500         ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3501         WARN_ON_ONCE(iomap->type != IOMAP_MAPPED);
3502         return ret;
3503 }
3504
3505 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3506                           ssize_t written, unsigned flags, struct iomap *iomap)
3507 {
3508         /*
3509          * Check to see whether an error occurred while writing out the data to
3510          * the allocated blocks. If so, return the magic error code so that we
3511          * fallback to buffered I/O and attempt to complete the remainder of
3512          * the I/O. Any blocks that may have been allocated in preparation for
3513          * the direct I/O will be reused during buffered I/O.
3514          */
3515         if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3516                 return -ENOTBLK;
3517
3518         return 0;
3519 }
3520
3521 const struct iomap_ops ext4_iomap_ops = {
3522         .iomap_begin            = ext4_iomap_begin,
3523         .iomap_end              = ext4_iomap_end,
3524 };
3525
3526 const struct iomap_ops ext4_iomap_overwrite_ops = {
3527         .iomap_begin            = ext4_iomap_overwrite_begin,
3528         .iomap_end              = ext4_iomap_end,
3529 };
3530
3531 static bool ext4_iomap_is_delalloc(struct inode *inode,
3532                                    struct ext4_map_blocks *map)
3533 {
3534         struct extent_status es;
3535         ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1;
3536
3537         ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3538                                   map->m_lblk, end, &es);
3539
3540         if (!es.es_len || es.es_lblk > end)
3541                 return false;
3542
3543         if (es.es_lblk > map->m_lblk) {
3544                 map->m_len = es.es_lblk - map->m_lblk;
3545                 return false;
3546         }
3547
3548         offset = map->m_lblk - es.es_lblk;
3549         map->m_len = es.es_len - offset;
3550
3551         return true;
3552 }
3553
3554 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3555                                    loff_t length, unsigned int flags,
3556                                    struct iomap *iomap, struct iomap *srcmap)
3557 {
3558         int ret;
3559         bool delalloc = false;
3560         struct ext4_map_blocks map;
3561         u8 blkbits = inode->i_blkbits;
3562
3563         if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3564                 return -EINVAL;
3565
3566         if (ext4_has_inline_data(inode)) {
3567                 ret = ext4_inline_data_iomap(inode, iomap);
3568                 if (ret != -EAGAIN) {
3569                         if (ret == 0 && offset >= iomap->length)
3570                                 ret = -ENOENT;
3571                         return ret;
3572                 }
3573         }
3574
3575         /*
3576          * Calculate the first and last logical block respectively.
3577          */
3578         map.m_lblk = offset >> blkbits;
3579         map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3580                           EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3581
3582         /*
3583          * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3584          * So handle it here itself instead of querying ext4_map_blocks().
3585          * Since ext4_map_blocks() will warn about it and will return
3586          * -EIO error.
3587          */
3588         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3589                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3590
3591                 if (offset >= sbi->s_bitmap_maxbytes) {
3592                         map.m_flags = 0;
3593                         goto set_iomap;
3594                 }
3595         }
3596
3597         ret = ext4_map_blocks(NULL, inode, &map, 0);
3598         if (ret < 0)
3599                 return ret;
3600         if (ret == 0)
3601                 delalloc = ext4_iomap_is_delalloc(inode, &map);
3602
3603 set_iomap:
3604         ext4_set_iomap(inode, iomap, &map, offset, length);
3605         if (delalloc && iomap->type == IOMAP_HOLE)
3606                 iomap->type = IOMAP_DELALLOC;
3607
3608         return 0;
3609 }
3610
3611 const struct iomap_ops ext4_iomap_report_ops = {
3612         .iomap_begin = ext4_iomap_begin_report,
3613 };
3614
3615 /*
3616  * Pages can be marked dirty completely asynchronously from ext4's journalling
3617  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3618  * much here because ->set_page_dirty is called under VFS locks.  The page is
3619  * not necessarily locked.
3620  *
3621  * We cannot just dirty the page and leave attached buffers clean, because the
3622  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3623  * or jbddirty because all the journalling code will explode.
3624  *
3625  * So what we do is to mark the page "pending dirty" and next time writepage
3626  * is called, propagate that into the buffers appropriately.
3627  */
3628 static int ext4_journalled_set_page_dirty(struct page *page)
3629 {
3630         SetPageChecked(page);
3631         return __set_page_dirty_nobuffers(page);
3632 }
3633
3634 static int ext4_set_page_dirty(struct page *page)
3635 {
3636         WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3637         WARN_ON_ONCE(!page_has_buffers(page));
3638         return __set_page_dirty_buffers(page);
3639 }
3640
3641 static int ext4_iomap_swap_activate(struct swap_info_struct *sis,
3642                                     struct file *file, sector_t *span)
3643 {
3644         return iomap_swapfile_activate(sis, file, span,
3645                                        &ext4_iomap_report_ops);
3646 }
3647
3648 static const struct address_space_operations ext4_aops = {
3649         .readpage               = ext4_readpage,
3650         .readahead              = ext4_readahead,
3651         .writepage              = ext4_writepage,
3652         .writepages             = ext4_writepages,
3653         .write_begin            = ext4_write_begin,
3654         .write_end              = ext4_write_end,
3655         .set_page_dirty         = ext4_set_page_dirty,
3656         .bmap                   = ext4_bmap,
3657         .invalidatepage         = ext4_invalidatepage,
3658         .releasepage            = ext4_releasepage,
3659         .direct_IO              = noop_direct_IO,
3660         .migratepage            = buffer_migrate_page,
3661         .is_partially_uptodate  = block_is_partially_uptodate,
3662         .error_remove_page      = generic_error_remove_page,
3663         .swap_activate          = ext4_iomap_swap_activate,
3664 };
3665
3666 static const struct address_space_operations ext4_journalled_aops = {
3667         .readpage               = ext4_readpage,
3668         .readahead              = ext4_readahead,
3669         .writepage              = ext4_writepage,
3670         .writepages             = ext4_writepages,
3671         .write_begin            = ext4_write_begin,
3672         .write_end              = ext4_journalled_write_end,
3673         .set_page_dirty         = ext4_journalled_set_page_dirty,
3674         .bmap                   = ext4_bmap,
3675         .invalidatepage         = ext4_journalled_invalidatepage,
3676         .releasepage            = ext4_releasepage,
3677         .direct_IO              = noop_direct_IO,
3678         .is_partially_uptodate  = block_is_partially_uptodate,
3679         .error_remove_page      = generic_error_remove_page,
3680         .swap_activate          = ext4_iomap_swap_activate,
3681 };
3682
3683 static const struct address_space_operations ext4_da_aops = {
3684         .readpage               = ext4_readpage,
3685         .readahead              = ext4_readahead,
3686         .writepage              = ext4_writepage,
3687         .writepages             = ext4_writepages,
3688         .write_begin            = ext4_da_write_begin,
3689         .write_end              = ext4_da_write_end,
3690         .set_page_dirty         = ext4_set_page_dirty,
3691         .bmap                   = ext4_bmap,
3692         .invalidatepage         = ext4_invalidatepage,
3693         .releasepage            = ext4_releasepage,
3694         .direct_IO              = noop_direct_IO,
3695         .migratepage            = buffer_migrate_page,
3696         .is_partially_uptodate  = block_is_partially_uptodate,
3697         .error_remove_page      = generic_error_remove_page,
3698         .swap_activate          = ext4_iomap_swap_activate,
3699 };
3700
3701 static const struct address_space_operations ext4_dax_aops = {
3702         .writepages             = ext4_dax_writepages,
3703         .direct_IO              = noop_direct_IO,
3704         .set_page_dirty         = __set_page_dirty_no_writeback,
3705         .bmap                   = ext4_bmap,
3706         .invalidatepage         = noop_invalidatepage,
3707         .swap_activate          = ext4_iomap_swap_activate,
3708 };
3709
3710 void ext4_set_aops(struct inode *inode)
3711 {
3712         switch (ext4_inode_journal_mode(inode)) {
3713         case EXT4_INODE_ORDERED_DATA_MODE:
3714         case EXT4_INODE_WRITEBACK_DATA_MODE:
3715                 break;
3716         case EXT4_INODE_JOURNAL_DATA_MODE:
3717                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3718                 return;
3719         default:
3720                 BUG();
3721         }
3722         if (IS_DAX(inode))
3723                 inode->i_mapping->a_ops = &ext4_dax_aops;
3724         else if (test_opt(inode->i_sb, DELALLOC))
3725                 inode->i_mapping->a_ops = &ext4_da_aops;
3726         else
3727                 inode->i_mapping->a_ops = &ext4_aops;
3728 }
3729
3730 static int __ext4_block_zero_page_range(handle_t *handle,
3731                 struct address_space *mapping, loff_t from, loff_t length)
3732 {
3733         ext4_fsblk_t index = from >> PAGE_SHIFT;
3734         unsigned offset = from & (PAGE_SIZE-1);
3735         unsigned blocksize, pos;
3736         ext4_lblk_t iblock;
3737         struct inode *inode = mapping->host;
3738         struct buffer_head *bh;
3739         struct page *page;
3740         int err = 0;
3741
3742         page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3743                                    mapping_gfp_constraint(mapping, ~__GFP_FS));
3744         if (!page)
3745                 return -ENOMEM;
3746
3747         blocksize = inode->i_sb->s_blocksize;
3748
3749         iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3750
3751         if (!page_has_buffers(page))
3752                 create_empty_buffers(page, blocksize, 0);
3753
3754         /* Find the buffer that contains "offset" */
3755         bh = page_buffers(page);
3756         pos = blocksize;
3757         while (offset >= pos) {
3758                 bh = bh->b_this_page;
3759                 iblock++;
3760                 pos += blocksize;
3761         }
3762         if (buffer_freed(bh)) {
3763                 BUFFER_TRACE(bh, "freed: skip");
3764                 goto unlock;
3765         }
3766         if (!buffer_mapped(bh)) {
3767                 BUFFER_TRACE(bh, "unmapped");
3768                 ext4_get_block(inode, iblock, bh, 0);
3769                 /* unmapped? It's a hole - nothing to do */
3770                 if (!buffer_mapped(bh)) {
3771                         BUFFER_TRACE(bh, "still unmapped");
3772                         goto unlock;
3773                 }
3774         }
3775
3776         /* Ok, it's mapped. Make sure it's up-to-date */
3777         if (PageUptodate(page))
3778                 set_buffer_uptodate(bh);
3779
3780         if (!buffer_uptodate(bh)) {
3781                 err = ext4_read_bh_lock(bh, 0, true);
3782                 if (err)
3783                         goto unlock;
3784                 if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
3785                         /* We expect the key to be set. */
3786                         BUG_ON(!fscrypt_has_encryption_key(inode));
3787                         err = fscrypt_decrypt_pagecache_blocks(page, blocksize,
3788                                                                bh_offset(bh));
3789                         if (err) {
3790                                 clear_buffer_uptodate(bh);
3791                                 goto unlock;
3792                         }
3793                 }
3794         }
3795         if (ext4_should_journal_data(inode)) {
3796                 BUFFER_TRACE(bh, "get write access");
3797                 err = ext4_journal_get_write_access(handle, bh);
3798                 if (err)
3799                         goto unlock;
3800         }
3801         zero_user(page, offset, length);
3802         BUFFER_TRACE(bh, "zeroed end of block");
3803
3804         if (ext4_should_journal_data(inode)) {
3805                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3806         } else {
3807                 err = 0;
3808                 mark_buffer_dirty(bh);
3809                 if (ext4_should_order_data(inode))
3810                         err = ext4_jbd2_inode_add_write(handle, inode, from,
3811                                         length);
3812         }
3813
3814 unlock:
3815         unlock_page(page);
3816         put_page(page);
3817         return err;
3818 }
3819
3820 /*
3821  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3822  * starting from file offset 'from'.  The range to be zero'd must
3823  * be contained with in one block.  If the specified range exceeds
3824  * the end of the block it will be shortened to end of the block
3825  * that corresponds to 'from'
3826  */
3827 static int ext4_block_zero_page_range(handle_t *handle,
3828                 struct address_space *mapping, loff_t from, loff_t length)
3829 {
3830         struct inode *inode = mapping->host;
3831         unsigned offset = from & (PAGE_SIZE-1);
3832         unsigned blocksize = inode->i_sb->s_blocksize;
3833         unsigned max = blocksize - (offset & (blocksize - 1));
3834
3835         /*
3836          * correct length if it does not fall between
3837          * 'from' and the end of the block
3838          */
3839         if (length > max || length < 0)
3840                 length = max;
3841
3842         if (IS_DAX(inode)) {
3843                 return iomap_zero_range(inode, from, length, NULL,
3844                                         &ext4_iomap_ops);
3845         }
3846         return __ext4_block_zero_page_range(handle, mapping, from, length);
3847 }
3848
3849 /*
3850  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3851  * up to the end of the block which corresponds to `from'.
3852  * This required during truncate. We need to physically zero the tail end
3853  * of that block so it doesn't yield old data if the file is later grown.
3854  */
3855 static int ext4_block_truncate_page(handle_t *handle,
3856                 struct address_space *mapping, loff_t from)
3857 {
3858         unsigned offset = from & (PAGE_SIZE-1);
3859         unsigned length;
3860         unsigned blocksize;
3861         struct inode *inode = mapping->host;
3862
3863         /* If we are processing an encrypted inode during orphan list handling */
3864         if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3865                 return 0;
3866
3867         blocksize = inode->i_sb->s_blocksize;
3868         length = blocksize - (offset & (blocksize - 1));
3869
3870         return ext4_block_zero_page_range(handle, mapping, from, length);
3871 }
3872
3873 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3874                              loff_t lstart, loff_t length)
3875 {
3876         struct super_block *sb = inode->i_sb;
3877         struct address_space *mapping = inode->i_mapping;
3878         unsigned partial_start, partial_end;
3879         ext4_fsblk_t start, end;
3880         loff_t byte_end = (lstart + length - 1);
3881         int err = 0;
3882
3883         partial_start = lstart & (sb->s_blocksize - 1);
3884         partial_end = byte_end & (sb->s_blocksize - 1);
3885
3886         start = lstart >> sb->s_blocksize_bits;
3887         end = byte_end >> sb->s_blocksize_bits;
3888
3889         /* Handle partial zero within the single block */
3890         if (start == end &&
3891             (partial_start || (partial_end != sb->s_blocksize - 1))) {
3892                 err = ext4_block_zero_page_range(handle, mapping,
3893                                                  lstart, length);
3894                 return err;
3895         }
3896         /* Handle partial zero out on the start of the range */
3897         if (partial_start) {
3898                 err = ext4_block_zero_page_range(handle, mapping,
3899                                                  lstart, sb->s_blocksize);
3900                 if (err)
3901                         return err;
3902         }
3903         /* Handle partial zero out on the end of the range */
3904         if (partial_end != sb->s_blocksize - 1)
3905                 err = ext4_block_zero_page_range(handle, mapping,
3906                                                  byte_end - partial_end,
3907                                                  partial_end + 1);
3908         return err;
3909 }
3910
3911 int ext4_can_truncate(struct inode *inode)
3912 {
3913         if (S_ISREG(inode->i_mode))
3914                 return 1;
3915         if (S_ISDIR(inode->i_mode))
3916                 return 1;
3917         if (S_ISLNK(inode->i_mode))
3918                 return !ext4_inode_is_fast_symlink(inode);
3919         return 0;
3920 }
3921
3922 /*
3923  * We have to make sure i_disksize gets properly updated before we truncate
3924  * page cache due to hole punching or zero range. Otherwise i_disksize update
3925  * can get lost as it may have been postponed to submission of writeback but
3926  * that will never happen after we truncate page cache.
3927  */
3928 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3929                                       loff_t len)
3930 {
3931         handle_t *handle;
3932         int ret;
3933
3934         loff_t size = i_size_read(inode);
3935
3936         WARN_ON(!inode_is_locked(inode));
3937         if (offset > size || offset + len < size)
3938                 return 0;
3939
3940         if (EXT4_I(inode)->i_disksize >= size)
3941                 return 0;
3942
3943         handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3944         if (IS_ERR(handle))
3945                 return PTR_ERR(handle);
3946         ext4_update_i_disksize(inode, size);
3947         ret = ext4_mark_inode_dirty(handle, inode);
3948         ext4_journal_stop(handle);
3949
3950         return ret;
3951 }
3952
3953 static void ext4_wait_dax_page(struct inode *inode)
3954 {
3955         filemap_invalidate_unlock(inode->i_mapping);
3956         schedule();
3957         filemap_invalidate_lock(inode->i_mapping);
3958 }
3959
3960 int ext4_break_layouts(struct inode *inode)
3961 {
3962         struct page *page;
3963         int error;
3964
3965         if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock)))
3966                 return -EINVAL;
3967
3968         do {
3969                 page = dax_layout_busy_page(inode->i_mapping);
3970                 if (!page)
3971                         return 0;
3972
3973                 error = ___wait_var_event(&page->_refcount,
3974                                 atomic_read(&page->_refcount) == 1,
3975                                 TASK_INTERRUPTIBLE, 0, 0,
3976                                 ext4_wait_dax_page(inode));
3977         } while (error == 0);
3978
3979         return error;
3980 }
3981
3982 /*
3983  * ext4_punch_hole: punches a hole in a file by releasing the blocks
3984  * associated with the given offset and length
3985  *
3986  * @inode:  File inode
3987  * @offset: The offset where the hole will begin
3988  * @len:    The length of the hole
3989  *
3990  * Returns: 0 on success or negative on failure
3991  */
3992
3993 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3994 {
3995         struct super_block *sb = inode->i_sb;
3996         ext4_lblk_t first_block, stop_block;
3997         struct address_space *mapping = inode->i_mapping;
3998         loff_t first_block_offset, last_block_offset;
3999         handle_t *handle;
4000         unsigned int credits;
4001         int ret = 0, ret2 = 0;
4002
4003         trace_ext4_punch_hole(inode, offset, length, 0);
4004
4005         ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
4006         if (ext4_has_inline_data(inode)) {
4007                 filemap_invalidate_lock(mapping);
4008                 ret = ext4_convert_inline_data(inode);
4009                 filemap_invalidate_unlock(mapping);
4010                 if (ret)
4011                         return ret;
4012         }
4013
4014         /*
4015          * Write out all dirty pages to avoid race conditions
4016          * Then release them.
4017          */
4018         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4019                 ret = filemap_write_and_wait_range(mapping, offset,
4020                                                    offset + length - 1);
4021                 if (ret)
4022                         return ret;
4023         }
4024
4025         inode_lock(inode);
4026
4027         /* No need to punch hole beyond i_size */
4028         if (offset >= inode->i_size)
4029                 goto out_mutex;
4030
4031         /*
4032          * If the hole extends beyond i_size, set the hole
4033          * to end after the page that contains i_size
4034          */
4035         if (offset + length > inode->i_size) {
4036                 length = inode->i_size +
4037                    PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4038                    offset;
4039         }
4040
4041         if (offset & (sb->s_blocksize - 1) ||
4042             (offset + length) & (sb->s_blocksize - 1)) {
4043                 /*
4044                  * Attach jinode to inode for jbd2 if we do any zeroing of
4045                  * partial block
4046                  */
4047                 ret = ext4_inode_attach_jinode(inode);
4048                 if (ret < 0)
4049                         goto out_mutex;
4050
4051         }
4052
4053         /* Wait all existing dio workers, newcomers will block on i_mutex */
4054         inode_dio_wait(inode);
4055
4056         /*
4057          * Prevent page faults from reinstantiating pages we have released from
4058          * page cache.
4059          */
4060         filemap_invalidate_lock(mapping);
4061
4062         ret = ext4_break_layouts(inode);
4063         if (ret)
4064                 goto out_dio;
4065
4066         first_block_offset = round_up(offset, sb->s_blocksize);
4067         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4068
4069         /* Now release the pages and zero block aligned part of pages*/
4070         if (last_block_offset > first_block_offset) {
4071                 ret = ext4_update_disksize_before_punch(inode, offset, length);
4072                 if (ret)
4073                         goto out_dio;
4074                 truncate_pagecache_range(inode, first_block_offset,
4075                                          last_block_offset);
4076         }
4077
4078         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4079                 credits = ext4_writepage_trans_blocks(inode);
4080         else
4081                 credits = ext4_blocks_for_truncate(inode);
4082         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4083         if (IS_ERR(handle)) {
4084                 ret = PTR_ERR(handle);
4085                 ext4_std_error(sb, ret);
4086                 goto out_dio;
4087         }
4088
4089         ret = ext4_zero_partial_blocks(handle, inode, offset,
4090                                        length);
4091         if (ret)
4092                 goto out_stop;
4093
4094         first_block = (offset + sb->s_blocksize - 1) >>
4095                 EXT4_BLOCK_SIZE_BITS(sb);
4096         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4097
4098         /* If there are blocks to remove, do it */
4099         if (stop_block > first_block) {
4100
4101                 down_write(&EXT4_I(inode)->i_data_sem);
4102                 ext4_discard_preallocations(inode, 0);
4103
4104                 ret = ext4_es_remove_extent(inode, first_block,
4105                                             stop_block - first_block);
4106                 if (ret) {
4107                         up_write(&EXT4_I(inode)->i_data_sem);
4108                         goto out_stop;
4109                 }
4110
4111                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4112                         ret = ext4_ext_remove_space(inode, first_block,
4113                                                     stop_block - 1);
4114                 else
4115                         ret = ext4_ind_remove_space(handle, inode, first_block,
4116                                                     stop_block);
4117
4118                 up_write(&EXT4_I(inode)->i_data_sem);
4119         }
4120         ext4_fc_track_range(handle, inode, first_block, stop_block);
4121         if (IS_SYNC(inode))
4122                 ext4_handle_sync(handle);
4123
4124         inode->i_mtime = inode->i_ctime = current_time(inode);
4125         ret2 = ext4_mark_inode_dirty(handle, inode);
4126         if (unlikely(ret2))
4127                 ret = ret2;
4128         if (ret >= 0)
4129                 ext4_update_inode_fsync_trans(handle, inode, 1);
4130 out_stop:
4131         ext4_journal_stop(handle);
4132 out_dio:
4133         filemap_invalidate_unlock(mapping);
4134 out_mutex:
4135         inode_unlock(inode);
4136         return ret;
4137 }
4138
4139 int ext4_inode_attach_jinode(struct inode *inode)
4140 {
4141         struct ext4_inode_info *ei = EXT4_I(inode);
4142         struct jbd2_inode *jinode;
4143
4144         if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4145                 return 0;
4146
4147         jinode = jbd2_alloc_inode(GFP_KERNEL);
4148         spin_lock(&inode->i_lock);
4149         if (!ei->jinode) {
4150                 if (!jinode) {
4151                         spin_unlock(&inode->i_lock);
4152                         return -ENOMEM;
4153                 }
4154                 ei->jinode = jinode;
4155                 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4156                 jinode = NULL;
4157         }
4158         spin_unlock(&inode->i_lock);
4159         if (unlikely(jinode != NULL))
4160                 jbd2_free_inode(jinode);
4161         return 0;
4162 }
4163
4164 /*
4165  * ext4_truncate()
4166  *
4167  * We block out ext4_get_block() block instantiations across the entire
4168  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4169  * simultaneously on behalf of the same inode.
4170  *
4171  * As we work through the truncate and commit bits of it to the journal there
4172  * is one core, guiding principle: the file's tree must always be consistent on
4173  * disk.  We must be able to restart the truncate after a crash.
4174  *
4175  * The file's tree may be transiently inconsistent in memory (although it
4176  * probably isn't), but whenever we close off and commit a journal transaction,
4177  * the contents of (the filesystem + the journal) must be consistent and
4178  * restartable.  It's pretty simple, really: bottom up, right to left (although
4179  * left-to-right works OK too).
4180  *
4181  * Note that at recovery time, journal replay occurs *before* the restart of
4182  * truncate against the orphan inode list.
4183  *
4184  * The committed inode has the new, desired i_size (which is the same as
4185  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4186  * that this inode's truncate did not complete and it will again call
4187  * ext4_truncate() to have another go.  So there will be instantiated blocks
4188  * to the right of the truncation point in a crashed ext4 filesystem.  But
4189  * that's fine - as long as they are linked from the inode, the post-crash
4190  * ext4_truncate() run will find them and release them.
4191  */
4192 int ext4_truncate(struct inode *inode)
4193 {
4194         struct ext4_inode_info *ei = EXT4_I(inode);
4195         unsigned int credits;
4196         int err = 0, err2;
4197         handle_t *handle;
4198         struct address_space *mapping = inode->i_mapping;
4199
4200         /*
4201          * There is a possibility that we're either freeing the inode
4202          * or it's a completely new inode. In those cases we might not
4203          * have i_mutex locked because it's not necessary.
4204          */
4205         if (!(inode->i_state & (I_NEW|I_FREEING)))
4206                 WARN_ON(!inode_is_locked(inode));
4207         trace_ext4_truncate_enter(inode);
4208
4209         if (!ext4_can_truncate(inode))
4210                 goto out_trace;
4211
4212         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4213                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4214
4215         if (ext4_has_inline_data(inode)) {
4216                 int has_inline = 1;
4217
4218                 err = ext4_inline_data_truncate(inode, &has_inline);
4219                 if (err || has_inline)
4220                         goto out_trace;
4221         }
4222
4223         /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4224         if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4225                 if (ext4_inode_attach_jinode(inode) < 0)
4226                         goto out_trace;
4227         }
4228
4229         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4230                 credits = ext4_writepage_trans_blocks(inode);
4231         else
4232                 credits = ext4_blocks_for_truncate(inode);
4233
4234         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4235         if (IS_ERR(handle)) {
4236                 err = PTR_ERR(handle);
4237                 goto out_trace;
4238         }
4239
4240         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4241                 ext4_block_truncate_page(handle, mapping, inode->i_size);
4242
4243         /*
4244          * We add the inode to the orphan list, so that if this
4245          * truncate spans multiple transactions, and we crash, we will
4246          * resume the truncate when the filesystem recovers.  It also
4247          * marks the inode dirty, to catch the new size.
4248          *
4249          * Implication: the file must always be in a sane, consistent
4250          * truncatable state while each transaction commits.
4251          */
4252         err = ext4_orphan_add(handle, inode);
4253         if (err)
4254                 goto out_stop;
4255
4256         down_write(&EXT4_I(inode)->i_data_sem);
4257
4258         ext4_discard_preallocations(inode, 0);
4259
4260         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4261                 err = ext4_ext_truncate(handle, inode);
4262         else
4263                 ext4_ind_truncate(handle, inode);
4264
4265         up_write(&ei->i_data_sem);
4266         if (err)
4267                 goto out_stop;
4268
4269         if (IS_SYNC(inode))
4270                 ext4_handle_sync(handle);
4271
4272 out_stop:
4273         /*
4274          * If this was a simple ftruncate() and the file will remain alive,
4275          * then we need to clear up the orphan record which we created above.
4276          * However, if this was a real unlink then we were called by
4277          * ext4_evict_inode(), and we allow that function to clean up the
4278          * orphan info for us.
4279          */
4280         if (inode->i_nlink)
4281                 ext4_orphan_del(handle, inode);
4282
4283         inode->i_mtime = inode->i_ctime = current_time(inode);
4284         err2 = ext4_mark_inode_dirty(handle, inode);
4285         if (unlikely(err2 && !err))
4286                 err = err2;
4287         ext4_journal_stop(handle);
4288
4289 out_trace:
4290         trace_ext4_truncate_exit(inode);
4291         return err;
4292 }
4293
4294 /*
4295  * ext4_get_inode_loc returns with an extra refcount against the inode's
4296  * underlying buffer_head on success. If 'in_mem' is true, we have all
4297  * data in memory that is needed to recreate the on-disk version of this
4298  * inode.
4299  */
4300 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino,
4301                                 struct ext4_iloc *iloc, int in_mem,
4302                                 ext4_fsblk_t *ret_block)
4303 {
4304         struct ext4_group_desc  *gdp;
4305         struct buffer_head      *bh;
4306         ext4_fsblk_t            block;
4307         struct blk_plug         plug;
4308         int                     inodes_per_block, inode_offset;
4309
4310         iloc->bh = NULL;
4311         if (ino < EXT4_ROOT_INO ||
4312             ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4313                 return -EFSCORRUPTED;
4314
4315         iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
4316         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4317         if (!gdp)
4318                 return -EIO;
4319
4320         /*
4321          * Figure out the offset within the block group inode table
4322          */
4323         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4324         inode_offset = ((ino - 1) %
4325                         EXT4_INODES_PER_GROUP(sb));
4326         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4327         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4328
4329         bh = sb_getblk(sb, block);
4330         if (unlikely(!bh))
4331                 return -ENOMEM;
4332         if (ext4_simulate_fail(sb, EXT4_SIM_INODE_EIO))
4333                 goto simulate_eio;
4334         if (!buffer_uptodate(bh)) {
4335                 lock_buffer(bh);
4336
4337                 if (ext4_buffer_uptodate(bh)) {
4338                         /* someone brought it uptodate while we waited */
4339                         unlock_buffer(bh);
4340                         goto has_buffer;
4341                 }
4342
4343                 /*
4344                  * If we have all information of the inode in memory and this
4345                  * is the only valid inode in the block, we need not read the
4346                  * block.
4347                  */
4348                 if (in_mem) {
4349                         struct buffer_head *bitmap_bh;
4350                         int i, start;
4351
4352                         start = inode_offset & ~(inodes_per_block - 1);
4353
4354                         /* Is the inode bitmap in cache? */
4355                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4356                         if (unlikely(!bitmap_bh))
4357                                 goto make_io;
4358
4359                         /*
4360                          * If the inode bitmap isn't in cache then the
4361                          * optimisation may end up performing two reads instead
4362                          * of one, so skip it.
4363                          */
4364                         if (!buffer_uptodate(bitmap_bh)) {
4365                                 brelse(bitmap_bh);
4366                                 goto make_io;
4367                         }
4368                         for (i = start; i < start + inodes_per_block; i++) {
4369                                 if (i == inode_offset)
4370                                         continue;
4371                                 if (ext4_test_bit(i, bitmap_bh->b_data))
4372                                         break;
4373                         }
4374                         brelse(bitmap_bh);
4375                         if (i == start + inodes_per_block) {
4376                                 /* all other inodes are free, so skip I/O */
4377                                 memset(bh->b_data, 0, bh->b_size);
4378                                 set_buffer_uptodate(bh);
4379                                 unlock_buffer(bh);
4380                                 goto has_buffer;
4381                         }
4382                 }
4383
4384 make_io:
4385                 /*
4386                  * If we need to do any I/O, try to pre-readahead extra
4387                  * blocks from the inode table.
4388                  */
4389                 blk_start_plug(&plug);
4390                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4391                         ext4_fsblk_t b, end, table;
4392                         unsigned num;
4393                         __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4394
4395                         table = ext4_inode_table(sb, gdp);
4396                         /* s_inode_readahead_blks is always a power of 2 */
4397                         b = block & ~((ext4_fsblk_t) ra_blks - 1);
4398                         if (table > b)
4399                                 b = table;
4400                         end = b + ra_blks;
4401                         num = EXT4_INODES_PER_GROUP(sb);
4402                         if (ext4_has_group_desc_csum(sb))
4403                                 num -= ext4_itable_unused_count(sb, gdp);
4404                         table += num / inodes_per_block;
4405                         if (end > table)
4406                                 end = table;
4407                         while (b <= end)
4408                                 ext4_sb_breadahead_unmovable(sb, b++);
4409                 }
4410
4411                 /*
4412                  * There are other valid inodes in the buffer, this inode
4413                  * has in-inode xattrs, or we don't have this inode in memory.
4414                  * Read the block from disk.
4415                  */
4416                 trace_ext4_load_inode(sb, ino);
4417                 ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL);
4418                 blk_finish_plug(&plug);
4419                 wait_on_buffer(bh);
4420                 if (!buffer_uptodate(bh)) {
4421                 simulate_eio:
4422                         if (ret_block)
4423                                 *ret_block = block;
4424                         brelse(bh);
4425                         return -EIO;
4426                 }
4427         }
4428 has_buffer:
4429         iloc->bh = bh;
4430         return 0;
4431 }
4432
4433 static int __ext4_get_inode_loc_noinmem(struct inode *inode,
4434                                         struct ext4_iloc *iloc)
4435 {
4436         ext4_fsblk_t err_blk;
4437         int ret;
4438
4439         ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, iloc, 0,
4440                                         &err_blk);
4441
4442         if (ret == -EIO)
4443                 ext4_error_inode_block(inode, err_blk, EIO,
4444                                         "unable to read itable block");
4445
4446         return ret;
4447 }
4448
4449 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4450 {
4451         ext4_fsblk_t err_blk;
4452         int ret;
4453
4454         /* We have all inode data except xattrs in memory here. */
4455         ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, iloc,
4456                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR), &err_blk);
4457
4458         if (ret == -EIO)
4459                 ext4_error_inode_block(inode, err_blk, EIO,
4460                                         "unable to read itable block");
4461
4462         return ret;
4463 }
4464
4465
4466 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino,
4467                           struct ext4_iloc *iloc)
4468 {
4469         return __ext4_get_inode_loc(sb, ino, iloc, 0, NULL);
4470 }
4471
4472 static bool ext4_should_enable_dax(struct inode *inode)
4473 {
4474         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4475
4476         if (test_opt2(inode->i_sb, DAX_NEVER))
4477                 return false;
4478         if (!S_ISREG(inode->i_mode))
4479                 return false;
4480         if (ext4_should_journal_data(inode))
4481                 return false;
4482         if (ext4_has_inline_data(inode))
4483                 return false;
4484         if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4485                 return false;
4486         if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4487                 return false;
4488         if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4489                 return false;
4490         if (test_opt(inode->i_sb, DAX_ALWAYS))
4491                 return true;
4492
4493         return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
4494 }
4495
4496 void ext4_set_inode_flags(struct inode *inode, bool init)
4497 {
4498         unsigned int flags = EXT4_I(inode)->i_flags;
4499         unsigned int new_fl = 0;
4500
4501         WARN_ON_ONCE(IS_DAX(inode) && init);
4502
4503         if (flags & EXT4_SYNC_FL)
4504                 new_fl |= S_SYNC;
4505         if (flags & EXT4_APPEND_FL)
4506                 new_fl |= S_APPEND;
4507         if (flags & EXT4_IMMUTABLE_FL)
4508                 new_fl |= S_IMMUTABLE;
4509         if (flags & EXT4_NOATIME_FL)
4510                 new_fl |= S_NOATIME;
4511         if (flags & EXT4_DIRSYNC_FL)
4512                 new_fl |= S_DIRSYNC;
4513
4514         /* Because of the way inode_set_flags() works we must preserve S_DAX
4515          * here if already set. */
4516         new_fl |= (inode->i_flags & S_DAX);
4517         if (init && ext4_should_enable_dax(inode))
4518                 new_fl |= S_DAX;
4519
4520         if (flags & EXT4_ENCRYPT_FL)
4521                 new_fl |= S_ENCRYPTED;
4522         if (flags & EXT4_CASEFOLD_FL)
4523                 new_fl |= S_CASEFOLD;
4524         if (flags & EXT4_VERITY_FL)
4525                 new_fl |= S_VERITY;
4526         inode_set_flags(inode, new_fl,
4527                         S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4528                         S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4529 }
4530
4531 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4532                                   struct ext4_inode_info *ei)
4533 {
4534         blkcnt_t i_blocks ;
4535         struct inode *inode = &(ei->vfs_inode);
4536         struct super_block *sb = inode->i_sb;
4537
4538         if (ext4_has_feature_huge_file(sb)) {
4539                 /* we are using combined 48 bit field */
4540                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4541                                         le32_to_cpu(raw_inode->i_blocks_lo);
4542                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4543                         /* i_blocks represent file system block size */
4544                         return i_blocks  << (inode->i_blkbits - 9);
4545                 } else {
4546                         return i_blocks;
4547                 }
4548         } else {
4549                 return le32_to_cpu(raw_inode->i_blocks_lo);
4550         }
4551 }
4552
4553 static inline int ext4_iget_extra_inode(struct inode *inode,
4554                                          struct ext4_inode *raw_inode,
4555                                          struct ext4_inode_info *ei)
4556 {
4557         __le32 *magic = (void *)raw_inode +
4558                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4559
4560         if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4561             EXT4_INODE_SIZE(inode->i_sb) &&
4562             *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4563                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4564                 return ext4_find_inline_data_nolock(inode);
4565         } else
4566                 EXT4_I(inode)->i_inline_off = 0;
4567         return 0;
4568 }
4569
4570 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4571 {
4572         if (!ext4_has_feature_project(inode->i_sb))
4573                 return -EOPNOTSUPP;
4574         *projid = EXT4_I(inode)->i_projid;
4575         return 0;
4576 }
4577
4578 /*
4579  * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4580  * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4581  * set.
4582  */
4583 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4584 {
4585         if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4586                 inode_set_iversion_raw(inode, val);
4587         else
4588                 inode_set_iversion_queried(inode, val);
4589 }
4590 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4591 {
4592         if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4593                 return inode_peek_iversion_raw(inode);
4594         else
4595                 return inode_peek_iversion(inode);
4596 }
4597
4598 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4599                           ext4_iget_flags flags, const char *function,
4600                           unsigned int line)
4601 {
4602         struct ext4_iloc iloc;
4603         struct ext4_inode *raw_inode;
4604         struct ext4_inode_info *ei;
4605         struct inode *inode;
4606         journal_t *journal = EXT4_SB(sb)->s_journal;
4607         long ret;
4608         loff_t size;
4609         int block;
4610         uid_t i_uid;
4611         gid_t i_gid;
4612         projid_t i_projid;
4613
4614         if ((!(flags & EXT4_IGET_SPECIAL) &&
4615              (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)) ||
4616             (ino < EXT4_ROOT_INO) ||
4617             (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))) {
4618                 if (flags & EXT4_IGET_HANDLE)
4619                         return ERR_PTR(-ESTALE);
4620                 __ext4_error(sb, function, line, false, EFSCORRUPTED, 0,
4621                              "inode #%lu: comm %s: iget: illegal inode #",
4622                              ino, current->comm);
4623                 return ERR_PTR(-EFSCORRUPTED);
4624         }
4625
4626         inode = iget_locked(sb, ino);
4627         if (!inode)
4628                 return ERR_PTR(-ENOMEM);
4629         if (!(inode->i_state & I_NEW))
4630                 return inode;
4631
4632         ei = EXT4_I(inode);
4633         iloc.bh = NULL;
4634
4635         ret = __ext4_get_inode_loc_noinmem(inode, &iloc);
4636         if (ret < 0)
4637                 goto bad_inode;
4638         raw_inode = ext4_raw_inode(&iloc);
4639
4640         if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4641                 ext4_error_inode(inode, function, line, 0,
4642                                  "iget: root inode unallocated");
4643                 ret = -EFSCORRUPTED;
4644                 goto bad_inode;
4645         }
4646
4647         if ((flags & EXT4_IGET_HANDLE) &&
4648             (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4649                 ret = -ESTALE;
4650                 goto bad_inode;
4651         }
4652
4653         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4654                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4655                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4656                         EXT4_INODE_SIZE(inode->i_sb) ||
4657                     (ei->i_extra_isize & 3)) {
4658                         ext4_error_inode(inode, function, line, 0,
4659                                          "iget: bad extra_isize %u "
4660                                          "(inode size %u)",
4661                                          ei->i_extra_isize,
4662                                          EXT4_INODE_SIZE(inode->i_sb));
4663                         ret = -EFSCORRUPTED;
4664                         goto bad_inode;
4665                 }
4666         } else
4667                 ei->i_extra_isize = 0;
4668
4669         /* Precompute checksum seed for inode metadata */
4670         if (ext4_has_metadata_csum(sb)) {
4671                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4672                 __u32 csum;
4673                 __le32 inum = cpu_to_le32(inode->i_ino);
4674                 __le32 gen = raw_inode->i_generation;
4675                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4676                                    sizeof(inum));
4677                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4678                                               sizeof(gen));
4679         }
4680
4681         if ((!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4682             ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) &&
4683              (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) {
4684                 ext4_error_inode_err(inode, function, line, 0,
4685                                 EFSBADCRC, "iget: checksum invalid");
4686                 ret = -EFSBADCRC;
4687                 goto bad_inode;
4688         }
4689
4690         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4691         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4692         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4693         if (ext4_has_feature_project(sb) &&
4694             EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4695             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4696                 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4697         else
4698                 i_projid = EXT4_DEF_PROJID;
4699
4700         if (!(test_opt(inode->i_sb, NO_UID32))) {
4701                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4702                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4703         }
4704         i_uid_write(inode, i_uid);
4705         i_gid_write(inode, i_gid);
4706         ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4707         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4708
4709         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4710         ei->i_inline_off = 0;
4711         ei->i_dir_start_lookup = 0;
4712         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4713         /* We now have enough fields to check if the inode was active or not.
4714          * This is needed because nfsd might try to access dead inodes
4715          * the test is that same one that e2fsck uses
4716          * NeilBrown 1999oct15
4717          */
4718         if (inode->i_nlink == 0) {
4719                 if ((inode->i_mode == 0 ||
4720                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4721                     ino != EXT4_BOOT_LOADER_INO) {
4722                         /* this inode is deleted */
4723                         ret = -ESTALE;
4724                         goto bad_inode;
4725                 }
4726                 /* The only unlinked inodes we let through here have
4727                  * valid i_mode and are being read by the orphan
4728                  * recovery code: that's fine, we're about to complete
4729                  * the process of deleting those.
4730                  * OR it is the EXT4_BOOT_LOADER_INO which is
4731                  * not initialized on a new filesystem. */
4732         }
4733         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4734         ext4_set_inode_flags(inode, true);
4735         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4736         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4737         if (ext4_has_feature_64bit(sb))
4738                 ei->i_file_acl |=
4739                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4740         inode->i_size = ext4_isize(sb, raw_inode);
4741         if ((size = i_size_read(inode)) < 0) {
4742                 ext4_error_inode(inode, function, line, 0,
4743                                  "iget: bad i_size value: %lld", size);
4744                 ret = -EFSCORRUPTED;
4745                 goto bad_inode;
4746         }
4747         /*
4748          * If dir_index is not enabled but there's dir with INDEX flag set,
4749          * we'd normally treat htree data as empty space. But with metadata
4750          * checksumming that corrupts checksums so forbid that.
4751          */
4752         if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4753             ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4754                 ext4_error_inode(inode, function, line, 0,
4755                          "iget: Dir with htree data on filesystem without dir_index feature.");
4756                 ret = -EFSCORRUPTED;
4757                 goto bad_inode;
4758         }
4759         ei->i_disksize = inode->i_size;
4760 #ifdef CONFIG_QUOTA
4761         ei->i_reserved_quota = 0;
4762 #endif
4763         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4764         ei->i_block_group = iloc.block_group;
4765         ei->i_last_alloc_group = ~0;
4766         /*
4767          * NOTE! The in-memory inode i_data array is in little-endian order
4768          * even on big-endian machines: we do NOT byteswap the block numbers!
4769          */
4770         for (block = 0; block < EXT4_N_BLOCKS; block++)
4771                 ei->i_data[block] = raw_inode->i_block[block];
4772         INIT_LIST_HEAD(&ei->i_orphan);
4773         ext4_fc_init_inode(&ei->vfs_inode);
4774
4775         /*
4776          * Set transaction id's of transactions that have to be committed
4777          * to finish f[data]sync. We set them to currently running transaction
4778          * as we cannot be sure that the inode or some of its metadata isn't
4779          * part of the transaction - the inode could have been reclaimed and
4780          * now it is reread from disk.
4781          */
4782         if (journal) {
4783                 transaction_t *transaction;
4784                 tid_t tid;
4785
4786                 read_lock(&journal->j_state_lock);
4787                 if (journal->j_running_transaction)
4788                         transaction = journal->j_running_transaction;
4789                 else
4790                         transaction = journal->j_committing_transaction;
4791                 if (transaction)
4792                         tid = transaction->t_tid;
4793                 else
4794                         tid = journal->j_commit_sequence;
4795                 read_unlock(&journal->j_state_lock);
4796                 ei->i_sync_tid = tid;
4797                 ei->i_datasync_tid = tid;
4798         }
4799
4800         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4801                 if (ei->i_extra_isize == 0) {
4802                         /* The extra space is currently unused. Use it. */
4803                         BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4804                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4805                                             EXT4_GOOD_OLD_INODE_SIZE;
4806                 } else {
4807                         ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4808                         if (ret)
4809                                 goto bad_inode;
4810                 }
4811         }
4812
4813         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4814         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4815         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4816         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4817
4818         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4819                 u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4820
4821                 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4822                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4823                                 ivers |=
4824                     (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4825                 }
4826                 ext4_inode_set_iversion_queried(inode, ivers);
4827         }
4828
4829         ret = 0;
4830         if (ei->i_file_acl &&
4831             !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
4832                 ext4_error_inode(inode, function, line, 0,
4833                                  "iget: bad extended attribute block %llu",
4834                                  ei->i_file_acl);
4835                 ret = -EFSCORRUPTED;
4836                 goto bad_inode;
4837         } else if (!ext4_has_inline_data(inode)) {
4838                 /* validate the block references in the inode */
4839                 if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) &&
4840                         (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4841                         (S_ISLNK(inode->i_mode) &&
4842                         !ext4_inode_is_fast_symlink(inode)))) {
4843                         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4844                                 ret = ext4_ext_check_inode(inode);
4845                         else
4846                                 ret = ext4_ind_check_inode(inode);
4847                 }
4848         }
4849         if (ret)
4850                 goto bad_inode;
4851
4852         if (S_ISREG(inode->i_mode)) {
4853                 inode->i_op = &ext4_file_inode_operations;
4854                 inode->i_fop = &ext4_file_operations;
4855                 ext4_set_aops(inode);
4856         } else if (S_ISDIR(inode->i_mode)) {
4857                 inode->i_op = &ext4_dir_inode_operations;
4858                 inode->i_fop = &ext4_dir_operations;
4859         } else if (S_ISLNK(inode->i_mode)) {
4860                 /* VFS does not allow setting these so must be corruption */
4861                 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
4862                         ext4_error_inode(inode, function, line, 0,
4863                                          "iget: immutable or append flags "
4864                                          "not allowed on symlinks");
4865                         ret = -EFSCORRUPTED;
4866                         goto bad_inode;
4867                 }
4868                 if (IS_ENCRYPTED(inode)) {
4869                         inode->i_op = &ext4_encrypted_symlink_inode_operations;
4870                         ext4_set_aops(inode);
4871                 } else if (ext4_inode_is_fast_symlink(inode)) {
4872                         inode->i_link = (char *)ei->i_data;
4873                         inode->i_op = &ext4_fast_symlink_inode_operations;
4874                         nd_terminate_link(ei->i_data, inode->i_size,
4875                                 sizeof(ei->i_data) - 1);
4876                 } else {
4877                         inode->i_op = &ext4_symlink_inode_operations;
4878                         ext4_set_aops(inode);
4879                 }
4880                 inode_nohighmem(inode);
4881         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4882               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4883                 inode->i_op = &ext4_special_inode_operations;
4884                 if (raw_inode->i_block[0])
4885                         init_special_inode(inode, inode->i_mode,
4886                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4887                 else
4888                         init_special_inode(inode, inode->i_mode,
4889                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4890         } else if (ino == EXT4_BOOT_LOADER_INO) {
4891                 make_bad_inode(inode);
4892         } else {
4893                 ret = -EFSCORRUPTED;
4894                 ext4_error_inode(inode, function, line, 0,
4895                                  "iget: bogus i_mode (%o)", inode->i_mode);
4896                 goto bad_inode;
4897         }
4898         if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb))
4899                 ext4_error_inode(inode, function, line, 0,
4900                                  "casefold flag without casefold feature");
4901         brelse(iloc.bh);
4902
4903         unlock_new_inode(inode);
4904         return inode;
4905
4906 bad_inode:
4907         brelse(iloc.bh);
4908         iget_failed(inode);
4909         return ERR_PTR(ret);
4910 }
4911
4912 static int ext4_inode_blocks_set(handle_t *handle,
4913                                 struct ext4_inode *raw_inode,
4914                                 struct ext4_inode_info *ei)
4915 {
4916         struct inode *inode = &(ei->vfs_inode);
4917         u64 i_blocks = READ_ONCE(inode->i_blocks);
4918         struct super_block *sb = inode->i_sb;
4919
4920         if (i_blocks <= ~0U) {
4921                 /*
4922                  * i_blocks can be represented in a 32 bit variable
4923                  * as multiple of 512 bytes
4924                  */
4925                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4926                 raw_inode->i_blocks_high = 0;
4927                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4928                 return 0;
4929         }
4930         if (!ext4_has_feature_huge_file(sb))
4931                 return -EFBIG;
4932
4933         if (i_blocks <= 0xffffffffffffULL) {
4934                 /*
4935                  * i_blocks can be represented in a 48 bit variable
4936                  * as multiple of 512 bytes
4937                  */
4938                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4939                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4940                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4941         } else {
4942                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4943                 /* i_block is stored in file system block size */
4944                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4945                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4946                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4947         }
4948         return 0;
4949 }
4950
4951 static void __ext4_update_other_inode_time(struct super_block *sb,
4952                                            unsigned long orig_ino,
4953                                            unsigned long ino,
4954                                            struct ext4_inode *raw_inode)
4955 {
4956         struct inode *inode;
4957
4958         inode = find_inode_by_ino_rcu(sb, ino);
4959         if (!inode)
4960                 return;
4961
4962         if (!inode_is_dirtytime_only(inode))
4963                 return;
4964
4965         spin_lock(&inode->i_lock);
4966         if (inode_is_dirtytime_only(inode)) {
4967                 struct ext4_inode_info  *ei = EXT4_I(inode);
4968
4969                 inode->i_state &= ~I_DIRTY_TIME;
4970                 spin_unlock(&inode->i_lock);
4971
4972                 spin_lock(&ei->i_raw_lock);
4973                 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4974                 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4975                 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4976                 ext4_inode_csum_set(inode, raw_inode, ei);
4977                 spin_unlock(&ei->i_raw_lock);
4978                 trace_ext4_other_inode_update_time(inode, orig_ino);
4979                 return;
4980         }
4981         spin_unlock(&inode->i_lock);
4982 }
4983
4984 /*
4985  * Opportunistically update the other time fields for other inodes in
4986  * the same inode table block.
4987  */
4988 static void ext4_update_other_inodes_time(struct super_block *sb,
4989                                           unsigned long orig_ino, char *buf)
4990 {
4991         unsigned long ino;
4992         int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4993         int inode_size = EXT4_INODE_SIZE(sb);
4994
4995         /*
4996          * Calculate the first inode in the inode table block.  Inode
4997          * numbers are one-based.  That is, the first inode in a block
4998          * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4999          */
5000         ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5001         rcu_read_lock();
5002         for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5003                 if (ino == orig_ino)
5004                         continue;
5005                 __ext4_update_other_inode_time(sb, orig_ino, ino,
5006                                                (struct ext4_inode *)buf);
5007         }
5008         rcu_read_unlock();
5009 }
5010
5011 /*
5012  * Post the struct inode info into an on-disk inode location in the
5013  * buffer-cache.  This gobbles the caller's reference to the
5014  * buffer_head in the inode location struct.
5015  *
5016  * The caller must have write access to iloc->bh.
5017  */
5018 static int ext4_do_update_inode(handle_t *handle,
5019                                 struct inode *inode,
5020                                 struct ext4_iloc *iloc)
5021 {
5022         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5023         struct ext4_inode_info *ei = EXT4_I(inode);
5024         struct buffer_head *bh = iloc->bh;
5025         struct super_block *sb = inode->i_sb;
5026         int err = 0, block;
5027         int need_datasync = 0, set_large_file = 0;
5028         uid_t i_uid;
5029         gid_t i_gid;
5030         projid_t i_projid;
5031
5032         spin_lock(&ei->i_raw_lock);
5033
5034         /* For fields not tracked in the in-memory inode,
5035          * initialise them to zero for new inodes. */
5036         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5037                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5038
5039         err = ext4_inode_blocks_set(handle, raw_inode, ei);
5040         if (err) {
5041                 spin_unlock(&ei->i_raw_lock);
5042                 goto out_brelse;
5043         }
5044
5045         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5046         i_uid = i_uid_read(inode);
5047         i_gid = i_gid_read(inode);
5048         i_projid = from_kprojid(&init_user_ns, ei->i_projid);
5049         if (!(test_opt(inode->i_sb, NO_UID32))) {
5050                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
5051                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
5052 /*
5053  * Fix up interoperability with old kernels. Otherwise, old inodes get
5054  * re-used with the upper 16 bits of the uid/gid intact
5055  */
5056                 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
5057                         raw_inode->i_uid_high = 0;
5058                         raw_inode->i_gid_high = 0;
5059                 } else {
5060                         raw_inode->i_uid_high =
5061                                 cpu_to_le16(high_16_bits(i_uid));
5062                         raw_inode->i_gid_high =
5063                                 cpu_to_le16(high_16_bits(i_gid));
5064                 }
5065         } else {
5066                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
5067                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
5068                 raw_inode->i_uid_high = 0;
5069                 raw_inode->i_gid_high = 0;
5070         }
5071         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5072
5073         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5074         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5075         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5076         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5077
5078         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5079         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5080         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
5081                 raw_inode->i_file_acl_high =
5082                         cpu_to_le16(ei->i_file_acl >> 32);
5083         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5084         if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode)) {
5085                 ext4_isize_set(raw_inode, ei->i_disksize);
5086                 need_datasync = 1;
5087         }
5088         if (ei->i_disksize > 0x7fffffffULL) {
5089                 if (!ext4_has_feature_large_file(sb) ||
5090                                 EXT4_SB(sb)->s_es->s_rev_level ==
5091                     cpu_to_le32(EXT4_GOOD_OLD_REV))
5092                         set_large_file = 1;
5093         }
5094         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5095         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5096                 if (old_valid_dev(inode->i_rdev)) {
5097                         raw_inode->i_block[0] =
5098                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
5099                         raw_inode->i_block[1] = 0;
5100                 } else {
5101                         raw_inode->i_block[0] = 0;
5102                         raw_inode->i_block[1] =
5103                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
5104                         raw_inode->i_block[2] = 0;
5105                 }
5106         } else if (!ext4_has_inline_data(inode)) {
5107                 for (block = 0; block < EXT4_N_BLOCKS; block++)
5108                         raw_inode->i_block[block] = ei->i_data[block];
5109         }
5110
5111         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5112                 u64 ivers = ext4_inode_peek_iversion(inode);
5113
5114                 raw_inode->i_disk_version = cpu_to_le32(ivers);
5115                 if (ei->i_extra_isize) {
5116                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5117                                 raw_inode->i_version_hi =
5118                                         cpu_to_le32(ivers >> 32);
5119                         raw_inode->i_extra_isize =
5120                                 cpu_to_le16(ei->i_extra_isize);
5121                 }
5122         }
5123
5124         BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5125                i_projid != EXT4_DEF_PROJID);
5126
5127         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5128             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5129                 raw_inode->i_projid = cpu_to_le32(i_projid);
5130
5131         ext4_inode_csum_set(inode, raw_inode, ei);
5132         spin_unlock(&ei->i_raw_lock);
5133         if (inode->i_sb->s_flags & SB_LAZYTIME)
5134                 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5135                                               bh->b_data);
5136
5137         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5138         err = ext4_handle_dirty_metadata(handle, NULL, bh);
5139         if (err)
5140                 goto out_brelse;
5141         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5142         if (set_large_file) {
5143                 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5144                 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5145                 if (err)
5146                         goto out_brelse;
5147                 lock_buffer(EXT4_SB(sb)->s_sbh);
5148                 ext4_set_feature_large_file(sb);
5149                 ext4_superblock_csum_set(sb);
5150                 unlock_buffer(EXT4_SB(sb)->s_sbh);
5151                 ext4_handle_sync(handle);
5152                 err = ext4_handle_dirty_metadata(handle, NULL,
5153                                                  EXT4_SB(sb)->s_sbh);
5154         }
5155         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5156 out_brelse:
5157         brelse(bh);
5158         ext4_std_error(inode->i_sb, err);
5159         return err;
5160 }
5161
5162 /*
5163  * ext4_write_inode()
5164  *
5165  * We are called from a few places:
5166  *
5167  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5168  *   Here, there will be no transaction running. We wait for any running
5169  *   transaction to commit.
5170  *
5171  * - Within flush work (sys_sync(), kupdate and such).
5172  *   We wait on commit, if told to.
5173  *
5174  * - Within iput_final() -> write_inode_now()
5175  *   We wait on commit, if told to.
5176  *
5177  * In all cases it is actually safe for us to return without doing anything,
5178  * because the inode has been copied into a raw inode buffer in
5179  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5180  * writeback.
5181  *
5182  * Note that we are absolutely dependent upon all inode dirtiers doing the
5183  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5184  * which we are interested.
5185  *
5186  * It would be a bug for them to not do this.  The code:
5187  *
5188  *      mark_inode_dirty(inode)
5189  *      stuff();
5190  *      inode->i_size = expr;
5191  *
5192  * is in error because write_inode() could occur while `stuff()' is running,
5193  * and the new i_size will be lost.  Plus the inode will no longer be on the
5194  * superblock's dirty inode list.
5195  */
5196 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5197 {
5198         int err;
5199
5200         if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5201             sb_rdonly(inode->i_sb))
5202                 return 0;
5203
5204         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5205                 return -EIO;
5206
5207         if (EXT4_SB(inode->i_sb)->s_journal) {
5208                 if (ext4_journal_current_handle()) {
5209                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5210                         dump_stack();
5211                         return -EIO;
5212                 }
5213
5214                 /*
5215                  * No need to force transaction in WB_SYNC_NONE mode. Also
5216                  * ext4_sync_fs() will force the commit after everything is
5217                  * written.
5218                  */
5219                 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5220                         return 0;
5221
5222                 err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal,
5223                                                 EXT4_I(inode)->i_sync_tid);
5224         } else {
5225                 struct ext4_iloc iloc;
5226
5227                 err = __ext4_get_inode_loc_noinmem(inode, &iloc);
5228                 if (err)
5229                         return err;
5230                 /*
5231                  * sync(2) will flush the whole buffer cache. No need to do
5232                  * it here separately for each inode.
5233                  */
5234                 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5235                         sync_dirty_buffer(iloc.bh);
5236                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5237                         ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5238                                                "IO error syncing inode");
5239                         err = -EIO;
5240                 }
5241                 brelse(iloc.bh);
5242         }
5243         return err;
5244 }
5245
5246 /*
5247  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5248  * buffers that are attached to a page stradding i_size and are undergoing
5249  * commit. In that case we have to wait for commit to finish and try again.
5250  */
5251 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5252 {
5253         struct page *page;
5254         unsigned offset;
5255         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5256         tid_t commit_tid = 0;
5257         int ret;
5258
5259         offset = inode->i_size & (PAGE_SIZE - 1);
5260         /*
5261          * If the page is fully truncated, we don't need to wait for any commit
5262          * (and we even should not as __ext4_journalled_invalidatepage() may
5263          * strip all buffers from the page but keep the page dirty which can then
5264          * confuse e.g. concurrent ext4_writepage() seeing dirty page without
5265          * buffers). Also we don't need to wait for any commit if all buffers in
5266          * the page remain valid. This is most beneficial for the common case of
5267          * blocksize == PAGESIZE.
5268          */
5269         if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5270                 return;
5271         while (1) {
5272                 page = find_lock_page(inode->i_mapping,
5273                                       inode->i_size >> PAGE_SHIFT);
5274                 if (!page)
5275                         return;
5276                 ret = __ext4_journalled_invalidatepage(page, offset,
5277                                                 PAGE_SIZE - offset);
5278                 unlock_page(page);
5279                 put_page(page);
5280                 if (ret != -EBUSY)
5281                         return;
5282                 commit_tid = 0;
5283                 read_lock(&journal->j_state_lock);
5284                 if (journal->j_committing_transaction)
5285                         commit_tid = journal->j_committing_transaction->t_tid;
5286                 read_unlock(&journal->j_state_lock);
5287                 if (commit_tid)
5288                         jbd2_log_wait_commit(journal, commit_tid);
5289         }
5290 }
5291
5292 /*
5293  * ext4_setattr()
5294  *
5295  * Called from notify_change.
5296  *
5297  * We want to trap VFS attempts to truncate the file as soon as
5298  * possible.  In particular, we want to make sure that when the VFS
5299  * shrinks i_size, we put the inode on the orphan list and modify
5300  * i_disksize immediately, so that during the subsequent flushing of
5301  * dirty pages and freeing of disk blocks, we can guarantee that any
5302  * commit will leave the blocks being flushed in an unused state on
5303  * disk.  (On recovery, the inode will get truncated and the blocks will
5304  * be freed, so we have a strong guarantee that no future commit will
5305  * leave these blocks visible to the user.)
5306  *
5307  * Another thing we have to assure is that if we are in ordered mode
5308  * and inode is still attached to the committing transaction, we must
5309  * we start writeout of all the dirty pages which are being truncated.
5310  * This way we are sure that all the data written in the previous
5311  * transaction are already on disk (truncate waits for pages under
5312  * writeback).
5313  *
5314  * Called with inode->i_mutex down.
5315  */
5316 int ext4_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
5317                  struct iattr *attr)
5318 {
5319         struct inode *inode = d_inode(dentry);
5320         int error, rc = 0;
5321         int orphan = 0;
5322         const unsigned int ia_valid = attr->ia_valid;
5323
5324         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5325                 return -EIO;
5326
5327         if (unlikely(IS_IMMUTABLE(inode)))
5328                 return -EPERM;
5329
5330         if (unlikely(IS_APPEND(inode) &&
5331                      (ia_valid & (ATTR_MODE | ATTR_UID |
5332                                   ATTR_GID | ATTR_TIMES_SET))))
5333                 return -EPERM;
5334
5335         error = setattr_prepare(mnt_userns, dentry, attr);
5336         if (error)
5337                 return error;
5338
5339         error = fscrypt_prepare_setattr(dentry, attr);
5340         if (error)
5341                 return error;
5342
5343         error = fsverity_prepare_setattr(dentry, attr);
5344         if (error)
5345                 return error;
5346
5347         if (is_quota_modification(inode, attr)) {
5348                 error = dquot_initialize(inode);
5349                 if (error)
5350                         return error;
5351         }
5352         ext4_fc_start_update(inode);
5353         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5354             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5355                 handle_t *handle;
5356
5357                 /* (user+group)*(old+new) structure, inode write (sb,
5358                  * inode block, ? - but truncate inode update has it) */
5359                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5360                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5361                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5362                 if (IS_ERR(handle)) {
5363                         error = PTR_ERR(handle);
5364                         goto err_out;
5365                 }
5366
5367                 /* dquot_transfer() calls back ext4_get_inode_usage() which
5368                  * counts xattr inode references.
5369                  */
5370                 down_read(&EXT4_I(inode)->xattr_sem);
5371                 error = dquot_transfer(inode, attr);
5372                 up_read(&EXT4_I(inode)->xattr_sem);
5373
5374                 if (error) {
5375                         ext4_journal_stop(handle);
5376                         ext4_fc_stop_update(inode);
5377                         return error;
5378                 }
5379                 /* Update corresponding info in inode so that everything is in
5380                  * one transaction */
5381                 if (attr->ia_valid & ATTR_UID)
5382                         inode->i_uid = attr->ia_uid;
5383                 if (attr->ia_valid & ATTR_GID)
5384                         inode->i_gid = attr->ia_gid;
5385                 error = ext4_mark_inode_dirty(handle, inode);
5386                 ext4_journal_stop(handle);
5387                 if (unlikely(error)) {
5388                         ext4_fc_stop_update(inode);
5389                         return error;
5390                 }
5391         }
5392
5393         if (attr->ia_valid & ATTR_SIZE) {
5394                 handle_t *handle;
5395                 loff_t oldsize = inode->i_size;
5396                 int shrink = (attr->ia_size < inode->i_size);
5397
5398                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5399                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5400
5401                         if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5402                                 ext4_fc_stop_update(inode);
5403                                 return -EFBIG;
5404                         }
5405                 }
5406                 if (!S_ISREG(inode->i_mode)) {
5407                         ext4_fc_stop_update(inode);
5408                         return -EINVAL;
5409                 }
5410
5411                 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5412                         inode_inc_iversion(inode);
5413
5414                 if (shrink) {
5415                         if (ext4_should_order_data(inode)) {
5416                                 error = ext4_begin_ordered_truncate(inode,
5417                                                             attr->ia_size);
5418                                 if (error)
5419                                         goto err_out;
5420                         }
5421                         /*
5422                          * Blocks are going to be removed from the inode. Wait
5423                          * for dio in flight.
5424                          */
5425                         inode_dio_wait(inode);
5426                 }
5427
5428                 filemap_invalidate_lock(inode->i_mapping);
5429
5430                 rc = ext4_break_layouts(inode);
5431                 if (rc) {
5432                         filemap_invalidate_unlock(inode->i_mapping);
5433                         goto err_out;
5434                 }
5435
5436                 if (attr->ia_size != inode->i_size) {
5437                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5438                         if (IS_ERR(handle)) {
5439                                 error = PTR_ERR(handle);
5440                                 goto out_mmap_sem;
5441                         }
5442                         if (ext4_handle_valid(handle) && shrink) {
5443                                 error = ext4_orphan_add(handle, inode);
5444                                 orphan = 1;
5445                         }
5446                         /*
5447                          * Update c/mtime on truncate up, ext4_truncate() will
5448                          * update c/mtime in shrink case below
5449                          */
5450                         if (!shrink) {
5451                                 inode->i_mtime = current_time(inode);
5452                                 inode->i_ctime = inode->i_mtime;
5453                         }
5454
5455                         if (shrink)
5456                                 ext4_fc_track_range(handle, inode,
5457                                         (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5458                                         inode->i_sb->s_blocksize_bits,
5459                                         (oldsize > 0 ? oldsize - 1 : 0) >>
5460                                         inode->i_sb->s_blocksize_bits);
5461                         else
5462                                 ext4_fc_track_range(
5463                                         handle, inode,
5464                                         (oldsize > 0 ? oldsize - 1 : oldsize) >>
5465                                         inode->i_sb->s_blocksize_bits,
5466                                         (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5467                                         inode->i_sb->s_blocksize_bits);
5468
5469                         down_write(&EXT4_I(inode)->i_data_sem);
5470                         EXT4_I(inode)->i_disksize = attr->ia_size;
5471                         rc = ext4_mark_inode_dirty(handle, inode);
5472                         if (!error)
5473                                 error = rc;
5474                         /*
5475                          * We have to update i_size under i_data_sem together
5476                          * with i_disksize to avoid races with writeback code
5477                          * running ext4_wb_update_i_disksize().
5478                          */
5479                         if (!error)
5480                                 i_size_write(inode, attr->ia_size);
5481                         up_write(&EXT4_I(inode)->i_data_sem);
5482                         ext4_journal_stop(handle);
5483                         if (error)
5484                                 goto out_mmap_sem;
5485                         if (!shrink) {
5486                                 pagecache_isize_extended(inode, oldsize,
5487                                                          inode->i_size);
5488                         } else if (ext4_should_journal_data(inode)) {
5489                                 ext4_wait_for_tail_page_commit(inode);
5490                         }
5491                 }
5492
5493                 /*
5494                  * Truncate pagecache after we've waited for commit
5495                  * in data=journal mode to make pages freeable.
5496                  */
5497                 truncate_pagecache(inode, inode->i_size);
5498                 /*
5499                  * Call ext4_truncate() even if i_size didn't change to
5500                  * truncate possible preallocated blocks.
5501                  */
5502                 if (attr->ia_size <= oldsize) {
5503                         rc = ext4_truncate(inode);
5504                         if (rc)
5505                                 error = rc;
5506                 }
5507 out_mmap_sem:
5508                 filemap_invalidate_unlock(inode->i_mapping);
5509         }
5510
5511         if (!error) {
5512                 setattr_copy(mnt_userns, inode, attr);
5513                 mark_inode_dirty(inode);
5514         }
5515
5516         /*
5517          * If the call to ext4_truncate failed to get a transaction handle at
5518          * all, we need to clean up the in-core orphan list manually.
5519          */
5520         if (orphan && inode->i_nlink)
5521                 ext4_orphan_del(NULL, inode);
5522
5523         if (!error && (ia_valid & ATTR_MODE))
5524                 rc = posix_acl_chmod(mnt_userns, inode, inode->i_mode);
5525
5526 err_out:
5527         if  (error)
5528                 ext4_std_error(inode->i_sb, error);
5529         if (!error)
5530                 error = rc;
5531         ext4_fc_stop_update(inode);
5532         return error;
5533 }
5534
5535 int ext4_getattr(struct user_namespace *mnt_userns, const struct path *path,
5536                  struct kstat *stat, u32 request_mask, unsigned int query_flags)
5537 {
5538         struct inode *inode = d_inode(path->dentry);
5539         struct ext4_inode *raw_inode;
5540         struct ext4_inode_info *ei = EXT4_I(inode);
5541         unsigned int flags;
5542
5543         if ((request_mask & STATX_BTIME) &&
5544             EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5545                 stat->result_mask |= STATX_BTIME;
5546                 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5547                 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5548         }
5549
5550         flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5551         if (flags & EXT4_APPEND_FL)
5552                 stat->attributes |= STATX_ATTR_APPEND;
5553         if (flags & EXT4_COMPR_FL)
5554                 stat->attributes |= STATX_ATTR_COMPRESSED;
5555         if (flags & EXT4_ENCRYPT_FL)
5556                 stat->attributes |= STATX_ATTR_ENCRYPTED;
5557         if (flags & EXT4_IMMUTABLE_FL)
5558                 stat->attributes |= STATX_ATTR_IMMUTABLE;
5559         if (flags & EXT4_NODUMP_FL)
5560                 stat->attributes |= STATX_ATTR_NODUMP;
5561         if (flags & EXT4_VERITY_FL)
5562                 stat->attributes |= STATX_ATTR_VERITY;
5563
5564         stat->attributes_mask |= (STATX_ATTR_APPEND |
5565                                   STATX_ATTR_COMPRESSED |
5566                                   STATX_ATTR_ENCRYPTED |
5567                                   STATX_ATTR_IMMUTABLE |
5568                                   STATX_ATTR_NODUMP |
5569                                   STATX_ATTR_VERITY);
5570
5571         generic_fillattr(mnt_userns, inode, stat);
5572         return 0;
5573 }
5574
5575 int ext4_file_getattr(struct user_namespace *mnt_userns,
5576                       const struct path *path, struct kstat *stat,
5577                       u32 request_mask, unsigned int query_flags)
5578 {
5579         struct inode *inode = d_inode(path->dentry);
5580         u64 delalloc_blocks;
5581
5582         ext4_getattr(mnt_userns, path, stat, request_mask, query_flags);
5583
5584         /*
5585          * If there is inline data in the inode, the inode will normally not
5586          * have data blocks allocated (it may have an external xattr block).
5587          * Report at least one sector for such files, so tools like tar, rsync,
5588          * others don't incorrectly think the file is completely sparse.
5589          */
5590         if (unlikely(ext4_has_inline_data(inode)))
5591                 stat->blocks += (stat->size + 511) >> 9;
5592
5593         /*
5594          * We can't update i_blocks if the block allocation is delayed
5595          * otherwise in the case of system crash before the real block
5596          * allocation is done, we will have i_blocks inconsistent with
5597          * on-disk file blocks.
5598          * We always keep i_blocks updated together with real
5599          * allocation. But to not confuse with user, stat
5600          * will return the blocks that include the delayed allocation
5601          * blocks for this file.
5602          */
5603         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5604                                    EXT4_I(inode)->i_reserved_data_blocks);
5605         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5606         return 0;
5607 }
5608
5609 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5610                                    int pextents)
5611 {
5612         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5613                 return ext4_ind_trans_blocks(inode, lblocks);
5614         return ext4_ext_index_trans_blocks(inode, pextents);
5615 }
5616
5617 /*
5618  * Account for index blocks, block groups bitmaps and block group
5619  * descriptor blocks if modify datablocks and index blocks
5620  * worse case, the indexs blocks spread over different block groups
5621  *
5622  * If datablocks are discontiguous, they are possible to spread over
5623  * different block groups too. If they are contiguous, with flexbg,
5624  * they could still across block group boundary.
5625  *
5626  * Also account for superblock, inode, quota and xattr blocks
5627  */
5628 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5629                                   int pextents)
5630 {
5631         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5632         int gdpblocks;
5633         int idxblocks;
5634         int ret = 0;
5635
5636         /*
5637          * How many index blocks need to touch to map @lblocks logical blocks
5638          * to @pextents physical extents?
5639          */
5640         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5641
5642         ret = idxblocks;
5643
5644         /*
5645          * Now let's see how many group bitmaps and group descriptors need
5646          * to account
5647          */
5648         groups = idxblocks + pextents;
5649         gdpblocks = groups;
5650         if (groups > ngroups)
5651                 groups = ngroups;
5652         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5653                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5654
5655         /* bitmaps and block group descriptor blocks */
5656         ret += groups + gdpblocks;
5657
5658         /* Blocks for super block, inode, quota and xattr blocks */
5659         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5660
5661         return ret;
5662 }
5663
5664 /*
5665  * Calculate the total number of credits to reserve to fit
5666  * the modification of a single pages into a single transaction,
5667  * which may include multiple chunks of block allocations.
5668  *
5669  * This could be called via ext4_write_begin()
5670  *
5671  * We need to consider the worse case, when
5672  * one new block per extent.
5673  */
5674 int ext4_writepage_trans_blocks(struct inode *inode)
5675 {
5676         int bpp = ext4_journal_blocks_per_page(inode);
5677         int ret;
5678
5679         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5680
5681         /* Account for data blocks for journalled mode */
5682         if (ext4_should_journal_data(inode))
5683                 ret += bpp;
5684         return ret;
5685 }
5686
5687 /*
5688  * Calculate the journal credits for a chunk of data modification.
5689  *
5690  * This is called from DIO, fallocate or whoever calling
5691  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5692  *
5693  * journal buffers for data blocks are not included here, as DIO
5694  * and fallocate do no need to journal data buffers.
5695  */
5696 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5697 {
5698         return ext4_meta_trans_blocks(inode, nrblocks, 1);
5699 }
5700
5701 /*
5702  * The caller must have previously called ext4_reserve_inode_write().
5703  * Give this, we know that the caller already has write access to iloc->bh.
5704  */
5705 int ext4_mark_iloc_dirty(handle_t *handle,
5706                          struct inode *inode, struct ext4_iloc *iloc)
5707 {
5708         int err = 0;
5709
5710         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5711                 put_bh(iloc->bh);
5712                 return -EIO;
5713         }
5714         ext4_fc_track_inode(handle, inode);
5715
5716         if (IS_I_VERSION(inode))
5717                 inode_inc_iversion(inode);
5718
5719         /* the do_update_inode consumes one bh->b_count */
5720         get_bh(iloc->bh);
5721
5722         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5723         err = ext4_do_update_inode(handle, inode, iloc);
5724         put_bh(iloc->bh);
5725         return err;
5726 }
5727
5728 /*
5729  * On success, We end up with an outstanding reference count against
5730  * iloc->bh.  This _must_ be cleaned up later.
5731  */
5732
5733 int
5734 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5735                          struct ext4_iloc *iloc)
5736 {
5737         int err;
5738
5739         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5740                 return -EIO;
5741
5742         err = ext4_get_inode_loc(inode, iloc);
5743         if (!err) {
5744                 BUFFER_TRACE(iloc->bh, "get_write_access");
5745                 err = ext4_journal_get_write_access(handle, iloc->bh);
5746                 if (err) {
5747                         brelse(iloc->bh);
5748                         iloc->bh = NULL;
5749                 }
5750         }
5751         ext4_std_error(inode->i_sb, err);
5752         return err;
5753 }
5754
5755 static int __ext4_expand_extra_isize(struct inode *inode,
5756                                      unsigned int new_extra_isize,
5757                                      struct ext4_iloc *iloc,
5758                                      handle_t *handle, int *no_expand)
5759 {
5760         struct ext4_inode *raw_inode;
5761         struct ext4_xattr_ibody_header *header;
5762         unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5763         struct ext4_inode_info *ei = EXT4_I(inode);
5764         int error;
5765
5766         /* this was checked at iget time, but double check for good measure */
5767         if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5768             (ei->i_extra_isize & 3)) {
5769                 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5770                                  ei->i_extra_isize,
5771                                  EXT4_INODE_SIZE(inode->i_sb));
5772                 return -EFSCORRUPTED;
5773         }
5774         if ((new_extra_isize < ei->i_extra_isize) ||
5775             (new_extra_isize < 4) ||
5776             (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5777                 return -EINVAL; /* Should never happen */
5778
5779         raw_inode = ext4_raw_inode(iloc);
5780
5781         header = IHDR(inode, raw_inode);
5782
5783         /* No extended attributes present */
5784         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5785             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5786                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5787                        EXT4_I(inode)->i_extra_isize, 0,
5788                        new_extra_isize - EXT4_I(inode)->i_extra_isize);
5789                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5790                 return 0;
5791         }
5792
5793         /* try to expand with EAs present */
5794         error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5795                                            raw_inode, handle);
5796         if (error) {
5797                 /*
5798                  * Inode size expansion failed; don't try again
5799                  */
5800                 *no_expand = 1;
5801         }
5802
5803         return error;
5804 }
5805
5806 /*
5807  * Expand an inode by new_extra_isize bytes.
5808  * Returns 0 on success or negative error number on failure.
5809  */
5810 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5811                                           unsigned int new_extra_isize,
5812                                           struct ext4_iloc iloc,
5813                                           handle_t *handle)
5814 {
5815         int no_expand;
5816         int error;
5817
5818         if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5819                 return -EOVERFLOW;
5820
5821         /*
5822          * In nojournal mode, we can immediately attempt to expand
5823          * the inode.  When journaled, we first need to obtain extra
5824          * buffer credits since we may write into the EA block
5825          * with this same handle. If journal_extend fails, then it will
5826          * only result in a minor loss of functionality for that inode.
5827          * If this is felt to be critical, then e2fsck should be run to
5828          * force a large enough s_min_extra_isize.
5829          */
5830         if (ext4_journal_extend(handle,
5831                                 EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5832                 return -ENOSPC;
5833
5834         if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5835                 return -EBUSY;
5836
5837         error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5838                                           handle, &no_expand);
5839         ext4_write_unlock_xattr(inode, &no_expand);
5840
5841         return error;
5842 }
5843
5844 int ext4_expand_extra_isize(struct inode *inode,
5845                             unsigned int new_extra_isize,
5846                             struct ext4_iloc *iloc)
5847 {
5848         handle_t *handle;
5849         int no_expand;
5850         int error, rc;
5851
5852         if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5853                 brelse(iloc->bh);
5854                 return -EOVERFLOW;
5855         }
5856
5857         handle = ext4_journal_start(inode, EXT4_HT_INODE,
5858                                     EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5859         if (IS_ERR(handle)) {
5860                 error = PTR_ERR(handle);
5861                 brelse(iloc->bh);
5862                 return error;
5863         }
5864
5865         ext4_write_lock_xattr(inode, &no_expand);
5866
5867         BUFFER_TRACE(iloc->bh, "get_write_access");
5868         error = ext4_journal_get_write_access(handle, iloc->bh);
5869         if (error) {
5870                 brelse(iloc->bh);
5871                 goto out_unlock;
5872         }
5873
5874         error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5875                                           handle, &no_expand);
5876
5877         rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5878         if (!error)
5879                 error = rc;
5880
5881 out_unlock:
5882         ext4_write_unlock_xattr(inode, &no_expand);
5883         ext4_journal_stop(handle);
5884         return error;
5885 }
5886
5887 /*
5888  * What we do here is to mark the in-core inode as clean with respect to inode
5889  * dirtiness (it may still be data-dirty).
5890  * This means that the in-core inode may be reaped by prune_icache
5891  * without having to perform any I/O.  This is a very good thing,
5892  * because *any* task may call prune_icache - even ones which
5893  * have a transaction open against a different journal.
5894  *
5895  * Is this cheating?  Not really.  Sure, we haven't written the
5896  * inode out, but prune_icache isn't a user-visible syncing function.
5897  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5898  * we start and wait on commits.
5899  */
5900 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
5901                                 const char *func, unsigned int line)
5902 {
5903         struct ext4_iloc iloc;
5904         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5905         int err;
5906
5907         might_sleep();
5908         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5909         err = ext4_reserve_inode_write(handle, inode, &iloc);
5910         if (err)
5911                 goto out;
5912
5913         if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5914                 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5915                                                iloc, handle);
5916
5917         err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5918 out:
5919         if (unlikely(err))
5920                 ext4_error_inode_err(inode, func, line, 0, err,
5921                                         "mark_inode_dirty error");
5922         return err;
5923 }
5924
5925 /*
5926  * ext4_dirty_inode() is called from __mark_inode_dirty()
5927  *
5928  * We're really interested in the case where a file is being extended.
5929  * i_size has been changed by generic_commit_write() and we thus need
5930  * to include the updated inode in the current transaction.
5931  *
5932  * Also, dquot_alloc_block() will always dirty the inode when blocks
5933  * are allocated to the file.
5934  *
5935  * If the inode is marked synchronous, we don't honour that here - doing
5936  * so would cause a commit on atime updates, which we don't bother doing.
5937  * We handle synchronous inodes at the highest possible level.
5938  */
5939 void ext4_dirty_inode(struct inode *inode, int flags)
5940 {
5941         handle_t *handle;
5942
5943         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5944         if (IS_ERR(handle))
5945                 return;
5946         ext4_mark_inode_dirty(handle, inode);
5947         ext4_journal_stop(handle);
5948 }
5949
5950 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5951 {
5952         journal_t *journal;
5953         handle_t *handle;
5954         int err;
5955         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5956
5957         /*
5958          * We have to be very careful here: changing a data block's
5959          * journaling status dynamically is dangerous.  If we write a
5960          * data block to the journal, change the status and then delete
5961          * that block, we risk forgetting to revoke the old log record
5962          * from the journal and so a subsequent replay can corrupt data.
5963          * So, first we make sure that the journal is empty and that
5964          * nobody is changing anything.
5965          */
5966
5967         journal = EXT4_JOURNAL(inode);
5968         if (!journal)
5969                 return 0;
5970         if (is_journal_aborted(journal))
5971                 return -EROFS;
5972
5973         /* Wait for all existing dio workers */
5974         inode_dio_wait(inode);
5975
5976         /*
5977          * Before flushing the journal and switching inode's aops, we have
5978          * to flush all dirty data the inode has. There can be outstanding
5979          * delayed allocations, there can be unwritten extents created by
5980          * fallocate or buffered writes in dioread_nolock mode covered by
5981          * dirty data which can be converted only after flushing the dirty
5982          * data (and journalled aops don't know how to handle these cases).
5983          */
5984         if (val) {
5985                 filemap_invalidate_lock(inode->i_mapping);
5986                 err = filemap_write_and_wait(inode->i_mapping);
5987                 if (err < 0) {
5988                         filemap_invalidate_unlock(inode->i_mapping);
5989                         return err;
5990                 }
5991         }
5992
5993         percpu_down_write(&sbi->s_writepages_rwsem);
5994         jbd2_journal_lock_updates(journal);
5995
5996         /*
5997          * OK, there are no updates running now, and all cached data is
5998          * synced to disk.  We are now in a completely consistent state
5999          * which doesn't have anything in the journal, and we know that
6000          * no filesystem updates are running, so it is safe to modify
6001          * the inode's in-core data-journaling state flag now.
6002          */
6003
6004         if (val)
6005                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6006         else {
6007                 err = jbd2_journal_flush(journal, 0);
6008                 if (err < 0) {
6009                         jbd2_journal_unlock_updates(journal);
6010                         percpu_up_write(&sbi->s_writepages_rwsem);
6011                         return err;
6012                 }
6013                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6014         }
6015         ext4_set_aops(inode);
6016
6017         jbd2_journal_unlock_updates(journal);
6018         percpu_up_write(&sbi->s_writepages_rwsem);
6019
6020         if (val)
6021                 filemap_invalidate_unlock(inode->i_mapping);
6022
6023         /* Finally we can mark the inode as dirty. */
6024
6025         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6026         if (IS_ERR(handle))
6027                 return PTR_ERR(handle);
6028
6029         ext4_fc_mark_ineligible(inode->i_sb,
6030                 EXT4_FC_REASON_JOURNAL_FLAG_CHANGE);
6031         err = ext4_mark_inode_dirty(handle, inode);
6032         ext4_handle_sync(handle);
6033         ext4_journal_stop(handle);
6034         ext4_std_error(inode->i_sb, err);
6035
6036         return err;
6037 }
6038
6039 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
6040 {
6041         return !buffer_mapped(bh);
6042 }
6043
6044 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6045 {
6046         struct vm_area_struct *vma = vmf->vma;
6047         struct page *page = vmf->page;
6048         loff_t size;
6049         unsigned long len;
6050         int err;
6051         vm_fault_t ret;
6052         struct file *file = vma->vm_file;
6053         struct inode *inode = file_inode(file);
6054         struct address_space *mapping = inode->i_mapping;
6055         handle_t *handle;
6056         get_block_t *get_block;
6057         int retries = 0;
6058
6059         if (unlikely(IS_IMMUTABLE(inode)))
6060                 return VM_FAULT_SIGBUS;
6061
6062         sb_start_pagefault(inode->i_sb);
6063         file_update_time(vma->vm_file);
6064
6065         filemap_invalidate_lock_shared(mapping);
6066
6067         err = ext4_convert_inline_data(inode);
6068         if (err)
6069                 goto out_ret;
6070
6071         /*
6072          * On data journalling we skip straight to the transaction handle:
6073          * there's no delalloc; page truncated will be checked later; the
6074          * early return w/ all buffers mapped (calculates size/len) can't
6075          * be used; and there's no dioread_nolock, so only ext4_get_block.
6076          */
6077         if (ext4_should_journal_data(inode))
6078                 goto retry_alloc;
6079
6080         /* Delalloc case is easy... */
6081         if (test_opt(inode->i_sb, DELALLOC) &&
6082             !ext4_nonda_switch(inode->i_sb)) {
6083                 do {
6084                         err = block_page_mkwrite(vma, vmf,
6085                                                    ext4_da_get_block_prep);
6086                 } while (err == -ENOSPC &&
6087                        ext4_should_retry_alloc(inode->i_sb, &retries));
6088                 goto out_ret;
6089         }
6090
6091         lock_page(page);
6092         size = i_size_read(inode);
6093         /* Page got truncated from under us? */
6094         if (page->mapping != mapping || page_offset(page) > size) {
6095                 unlock_page(page);
6096                 ret = VM_FAULT_NOPAGE;
6097                 goto out;
6098         }
6099
6100         if (page->index == size >> PAGE_SHIFT)
6101                 len = size & ~PAGE_MASK;
6102         else
6103                 len = PAGE_SIZE;
6104         /*
6105          * Return if we have all the buffers mapped. This avoids the need to do
6106          * journal_start/journal_stop which can block and take a long time
6107          *
6108          * This cannot be done for data journalling, as we have to add the
6109          * inode to the transaction's list to writeprotect pages on commit.
6110          */
6111         if (page_has_buffers(page)) {
6112                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
6113                                             0, len, NULL,
6114                                             ext4_bh_unmapped)) {
6115                         /* Wait so that we don't change page under IO */
6116                         wait_for_stable_page(page);
6117                         ret = VM_FAULT_LOCKED;
6118                         goto out;
6119                 }
6120         }
6121         unlock_page(page);
6122         /* OK, we need to fill the hole... */
6123         if (ext4_should_dioread_nolock(inode))
6124                 get_block = ext4_get_block_unwritten;
6125         else
6126                 get_block = ext4_get_block;
6127 retry_alloc:
6128         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6129                                     ext4_writepage_trans_blocks(inode));
6130         if (IS_ERR(handle)) {
6131                 ret = VM_FAULT_SIGBUS;
6132                 goto out;
6133         }
6134         /*
6135          * Data journalling can't use block_page_mkwrite() because it
6136          * will set_buffer_dirty() before do_journal_get_write_access()
6137          * thus might hit warning messages for dirty metadata buffers.
6138          */
6139         if (!ext4_should_journal_data(inode)) {
6140                 err = block_page_mkwrite(vma, vmf, get_block);
6141         } else {
6142                 lock_page(page);
6143                 size = i_size_read(inode);
6144                 /* Page got truncated from under us? */
6145                 if (page->mapping != mapping || page_offset(page) > size) {
6146                         ret = VM_FAULT_NOPAGE;
6147                         goto out_error;
6148                 }
6149
6150                 if (page->index == size >> PAGE_SHIFT)
6151                         len = size & ~PAGE_MASK;
6152                 else
6153                         len = PAGE_SIZE;
6154
6155                 err = __block_write_begin(page, 0, len, ext4_get_block);
6156                 if (!err) {
6157                         ret = VM_FAULT_SIGBUS;
6158                         if (ext4_walk_page_buffers(handle, page_buffers(page),
6159                                         0, len, NULL, do_journal_get_write_access))
6160                                 goto out_error;
6161                         if (ext4_walk_page_buffers(handle, page_buffers(page),
6162                                         0, len, NULL, write_end_fn))
6163                                 goto out_error;
6164                         if (ext4_jbd2_inode_add_write(handle, inode,
6165                                                       page_offset(page), len))
6166                                 goto out_error;
6167                         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6168                 } else {
6169                         unlock_page(page);
6170                 }
6171         }
6172         ext4_journal_stop(handle);
6173         if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6174                 goto retry_alloc;
6175 out_ret:
6176         ret = block_page_mkwrite_return(err);
6177 out:
6178         filemap_invalidate_unlock_shared(mapping);
6179         sb_end_pagefault(inode->i_sb);
6180         return ret;
6181 out_error:
6182         unlock_page(page);
6183         ext4_journal_stop(handle);
6184         goto out;
6185 }