ext4: protect i_disksize update by i_data_sem in direct write path
[linux-2.6-microblaze.git] / fs / ext4 / inode.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  64-bit file support on 64-bit platforms by Jakub Jelinek
17  *      (jj@sunsite.ms.mff.cuni.cz)
18  *
19  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20  */
21
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/dax.h>
27 #include <linux/quotaops.h>
28 #include <linux/string.h>
29 #include <linux/buffer_head.h>
30 #include <linux/writeback.h>
31 #include <linux/pagevec.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/uio.h>
35 #include <linux/bio.h>
36 #include <linux/workqueue.h>
37 #include <linux/kernel.h>
38 #include <linux/printk.h>
39 #include <linux/slab.h>
40 #include <linux/bitops.h>
41 #include <linux/iomap.h>
42 #include <linux/iversion.h>
43
44 #include "ext4_jbd2.h"
45 #include "xattr.h"
46 #include "acl.h"
47 #include "truncate.h"
48
49 #include <trace/events/ext4.h>
50
51 #define MPAGE_DA_EXTENT_TAIL 0x01
52
53 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
54                               struct ext4_inode_info *ei)
55 {
56         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
57         __u32 csum;
58         __u16 dummy_csum = 0;
59         int offset = offsetof(struct ext4_inode, i_checksum_lo);
60         unsigned int csum_size = sizeof(dummy_csum);
61
62         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
63         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
64         offset += csum_size;
65         csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
66                            EXT4_GOOD_OLD_INODE_SIZE - offset);
67
68         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
69                 offset = offsetof(struct ext4_inode, i_checksum_hi);
70                 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
71                                    EXT4_GOOD_OLD_INODE_SIZE,
72                                    offset - EXT4_GOOD_OLD_INODE_SIZE);
73                 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
74                         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
75                                            csum_size);
76                         offset += csum_size;
77                 }
78                 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
79                                    EXT4_INODE_SIZE(inode->i_sb) - offset);
80         }
81
82         return csum;
83 }
84
85 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
86                                   struct ext4_inode_info *ei)
87 {
88         __u32 provided, calculated;
89
90         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
91             cpu_to_le32(EXT4_OS_LINUX) ||
92             !ext4_has_metadata_csum(inode->i_sb))
93                 return 1;
94
95         provided = le16_to_cpu(raw->i_checksum_lo);
96         calculated = ext4_inode_csum(inode, raw, ei);
97         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
98             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
99                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
100         else
101                 calculated &= 0xFFFF;
102
103         return provided == calculated;
104 }
105
106 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
107                                 struct ext4_inode_info *ei)
108 {
109         __u32 csum;
110
111         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
112             cpu_to_le32(EXT4_OS_LINUX) ||
113             !ext4_has_metadata_csum(inode->i_sb))
114                 return;
115
116         csum = ext4_inode_csum(inode, raw, ei);
117         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
118         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
119             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
120                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
121 }
122
123 static inline int ext4_begin_ordered_truncate(struct inode *inode,
124                                               loff_t new_size)
125 {
126         trace_ext4_begin_ordered_truncate(inode, new_size);
127         /*
128          * If jinode is zero, then we never opened the file for
129          * writing, so there's no need to call
130          * jbd2_journal_begin_ordered_truncate() since there's no
131          * outstanding writes we need to flush.
132          */
133         if (!EXT4_I(inode)->jinode)
134                 return 0;
135         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
136                                                    EXT4_I(inode)->jinode,
137                                                    new_size);
138 }
139
140 static void ext4_invalidatepage(struct page *page, unsigned int offset,
141                                 unsigned int length);
142 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
143 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
144 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
145                                   int pextents);
146
147 /*
148  * Test whether an inode is a fast symlink.
149  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
150  */
151 int ext4_inode_is_fast_symlink(struct inode *inode)
152 {
153         if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
154                 int ea_blocks = EXT4_I(inode)->i_file_acl ?
155                                 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
156
157                 if (ext4_has_inline_data(inode))
158                         return 0;
159
160                 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
161         }
162         return S_ISLNK(inode->i_mode) && inode->i_size &&
163                (inode->i_size < EXT4_N_BLOCKS * 4);
164 }
165
166 /*
167  * Restart the transaction associated with *handle.  This does a commit,
168  * so before we call here everything must be consistently dirtied against
169  * this transaction.
170  */
171 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
172                                  int nblocks)
173 {
174         int ret;
175
176         /*
177          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
178          * moment, get_block can be called only for blocks inside i_size since
179          * page cache has been already dropped and writes are blocked by
180          * i_mutex. So we can safely drop the i_data_sem here.
181          */
182         BUG_ON(EXT4_JOURNAL(inode) == NULL);
183         jbd_debug(2, "restarting handle %p\n", handle);
184         up_write(&EXT4_I(inode)->i_data_sem);
185         ret = ext4_journal_restart(handle, nblocks);
186         down_write(&EXT4_I(inode)->i_data_sem);
187         ext4_discard_preallocations(inode);
188
189         return ret;
190 }
191
192 /*
193  * Called at the last iput() if i_nlink is zero.
194  */
195 void ext4_evict_inode(struct inode *inode)
196 {
197         handle_t *handle;
198         int err;
199         int extra_credits = 3;
200         struct ext4_xattr_inode_array *ea_inode_array = NULL;
201
202         trace_ext4_evict_inode(inode);
203
204         if (inode->i_nlink) {
205                 /*
206                  * When journalling data dirty buffers are tracked only in the
207                  * journal. So although mm thinks everything is clean and
208                  * ready for reaping the inode might still have some pages to
209                  * write in the running transaction or waiting to be
210                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
211                  * (via truncate_inode_pages()) to discard these buffers can
212                  * cause data loss. Also even if we did not discard these
213                  * buffers, we would have no way to find them after the inode
214                  * is reaped and thus user could see stale data if he tries to
215                  * read them before the transaction is checkpointed. So be
216                  * careful and force everything to disk here... We use
217                  * ei->i_datasync_tid to store the newest transaction
218                  * containing inode's data.
219                  *
220                  * Note that directories do not have this problem because they
221                  * don't use page cache.
222                  */
223                 if (inode->i_ino != EXT4_JOURNAL_INO &&
224                     ext4_should_journal_data(inode) &&
225                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
226                     inode->i_data.nrpages) {
227                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
228                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
229
230                         jbd2_complete_transaction(journal, commit_tid);
231                         filemap_write_and_wait(&inode->i_data);
232                 }
233                 truncate_inode_pages_final(&inode->i_data);
234
235                 goto no_delete;
236         }
237
238         if (is_bad_inode(inode))
239                 goto no_delete;
240         dquot_initialize(inode);
241
242         if (ext4_should_order_data(inode))
243                 ext4_begin_ordered_truncate(inode, 0);
244         truncate_inode_pages_final(&inode->i_data);
245
246         /*
247          * Protect us against freezing - iput() caller didn't have to have any
248          * protection against it
249          */
250         sb_start_intwrite(inode->i_sb);
251
252         if (!IS_NOQUOTA(inode))
253                 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
254
255         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
256                                  ext4_blocks_for_truncate(inode)+extra_credits);
257         if (IS_ERR(handle)) {
258                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
259                 /*
260                  * If we're going to skip the normal cleanup, we still need to
261                  * make sure that the in-core orphan linked list is properly
262                  * cleaned up.
263                  */
264                 ext4_orphan_del(NULL, inode);
265                 sb_end_intwrite(inode->i_sb);
266                 goto no_delete;
267         }
268
269         if (IS_SYNC(inode))
270                 ext4_handle_sync(handle);
271
272         /*
273          * Set inode->i_size to 0 before calling ext4_truncate(). We need
274          * special handling of symlinks here because i_size is used to
275          * determine whether ext4_inode_info->i_data contains symlink data or
276          * block mappings. Setting i_size to 0 will remove its fast symlink
277          * status. Erase i_data so that it becomes a valid empty block map.
278          */
279         if (ext4_inode_is_fast_symlink(inode))
280                 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
281         inode->i_size = 0;
282         err = ext4_mark_inode_dirty(handle, inode);
283         if (err) {
284                 ext4_warning(inode->i_sb,
285                              "couldn't mark inode dirty (err %d)", err);
286                 goto stop_handle;
287         }
288         if (inode->i_blocks) {
289                 err = ext4_truncate(inode);
290                 if (err) {
291                         ext4_error(inode->i_sb,
292                                    "couldn't truncate inode %lu (err %d)",
293                                    inode->i_ino, err);
294                         goto stop_handle;
295                 }
296         }
297
298         /* Remove xattr references. */
299         err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
300                                       extra_credits);
301         if (err) {
302                 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
303 stop_handle:
304                 ext4_journal_stop(handle);
305                 ext4_orphan_del(NULL, inode);
306                 sb_end_intwrite(inode->i_sb);
307                 ext4_xattr_inode_array_free(ea_inode_array);
308                 goto no_delete;
309         }
310
311         /*
312          * Kill off the orphan record which ext4_truncate created.
313          * AKPM: I think this can be inside the above `if'.
314          * Note that ext4_orphan_del() has to be able to cope with the
315          * deletion of a non-existent orphan - this is because we don't
316          * know if ext4_truncate() actually created an orphan record.
317          * (Well, we could do this if we need to, but heck - it works)
318          */
319         ext4_orphan_del(handle, inode);
320         EXT4_I(inode)->i_dtime  = get_seconds();
321
322         /*
323          * One subtle ordering requirement: if anything has gone wrong
324          * (transaction abort, IO errors, whatever), then we can still
325          * do these next steps (the fs will already have been marked as
326          * having errors), but we can't free the inode if the mark_dirty
327          * fails.
328          */
329         if (ext4_mark_inode_dirty(handle, inode))
330                 /* If that failed, just do the required in-core inode clear. */
331                 ext4_clear_inode(inode);
332         else
333                 ext4_free_inode(handle, inode);
334         ext4_journal_stop(handle);
335         sb_end_intwrite(inode->i_sb);
336         ext4_xattr_inode_array_free(ea_inode_array);
337         return;
338 no_delete:
339         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
340 }
341
342 #ifdef CONFIG_QUOTA
343 qsize_t *ext4_get_reserved_space(struct inode *inode)
344 {
345         return &EXT4_I(inode)->i_reserved_quota;
346 }
347 #endif
348
349 /*
350  * Called with i_data_sem down, which is important since we can call
351  * ext4_discard_preallocations() from here.
352  */
353 void ext4_da_update_reserve_space(struct inode *inode,
354                                         int used, int quota_claim)
355 {
356         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
357         struct ext4_inode_info *ei = EXT4_I(inode);
358
359         spin_lock(&ei->i_block_reservation_lock);
360         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
361         if (unlikely(used > ei->i_reserved_data_blocks)) {
362                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
363                          "with only %d reserved data blocks",
364                          __func__, inode->i_ino, used,
365                          ei->i_reserved_data_blocks);
366                 WARN_ON(1);
367                 used = ei->i_reserved_data_blocks;
368         }
369
370         /* Update per-inode reservations */
371         ei->i_reserved_data_blocks -= used;
372         percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
373
374         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
375
376         /* Update quota subsystem for data blocks */
377         if (quota_claim)
378                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
379         else {
380                 /*
381                  * We did fallocate with an offset that is already delayed
382                  * allocated. So on delayed allocated writeback we should
383                  * not re-claim the quota for fallocated blocks.
384                  */
385                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
386         }
387
388         /*
389          * If we have done all the pending block allocations and if
390          * there aren't any writers on the inode, we can discard the
391          * inode's preallocations.
392          */
393         if ((ei->i_reserved_data_blocks == 0) &&
394             (atomic_read(&inode->i_writecount) == 0))
395                 ext4_discard_preallocations(inode);
396 }
397
398 static int __check_block_validity(struct inode *inode, const char *func,
399                                 unsigned int line,
400                                 struct ext4_map_blocks *map)
401 {
402         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
403                                    map->m_len)) {
404                 ext4_error_inode(inode, func, line, map->m_pblk,
405                                  "lblock %lu mapped to illegal pblock "
406                                  "(length %d)", (unsigned long) map->m_lblk,
407                                  map->m_len);
408                 return -EFSCORRUPTED;
409         }
410         return 0;
411 }
412
413 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
414                        ext4_lblk_t len)
415 {
416         int ret;
417
418         if (ext4_encrypted_inode(inode))
419                 return fscrypt_zeroout_range(inode, lblk, pblk, len);
420
421         ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
422         if (ret > 0)
423                 ret = 0;
424
425         return ret;
426 }
427
428 #define check_block_validity(inode, map)        \
429         __check_block_validity((inode), __func__, __LINE__, (map))
430
431 #ifdef ES_AGGRESSIVE_TEST
432 static void ext4_map_blocks_es_recheck(handle_t *handle,
433                                        struct inode *inode,
434                                        struct ext4_map_blocks *es_map,
435                                        struct ext4_map_blocks *map,
436                                        int flags)
437 {
438         int retval;
439
440         map->m_flags = 0;
441         /*
442          * There is a race window that the result is not the same.
443          * e.g. xfstests #223 when dioread_nolock enables.  The reason
444          * is that we lookup a block mapping in extent status tree with
445          * out taking i_data_sem.  So at the time the unwritten extent
446          * could be converted.
447          */
448         down_read(&EXT4_I(inode)->i_data_sem);
449         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
450                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
451                                              EXT4_GET_BLOCKS_KEEP_SIZE);
452         } else {
453                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
454                                              EXT4_GET_BLOCKS_KEEP_SIZE);
455         }
456         up_read((&EXT4_I(inode)->i_data_sem));
457
458         /*
459          * We don't check m_len because extent will be collpased in status
460          * tree.  So the m_len might not equal.
461          */
462         if (es_map->m_lblk != map->m_lblk ||
463             es_map->m_flags != map->m_flags ||
464             es_map->m_pblk != map->m_pblk) {
465                 printk("ES cache assertion failed for inode: %lu "
466                        "es_cached ex [%d/%d/%llu/%x] != "
467                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
468                        inode->i_ino, es_map->m_lblk, es_map->m_len,
469                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
470                        map->m_len, map->m_pblk, map->m_flags,
471                        retval, flags);
472         }
473 }
474 #endif /* ES_AGGRESSIVE_TEST */
475
476 /*
477  * The ext4_map_blocks() function tries to look up the requested blocks,
478  * and returns if the blocks are already mapped.
479  *
480  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
481  * and store the allocated blocks in the result buffer head and mark it
482  * mapped.
483  *
484  * If file type is extents based, it will call ext4_ext_map_blocks(),
485  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
486  * based files
487  *
488  * On success, it returns the number of blocks being mapped or allocated.  if
489  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
490  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
491  *
492  * It returns 0 if plain look up failed (blocks have not been allocated), in
493  * that case, @map is returned as unmapped but we still do fill map->m_len to
494  * indicate the length of a hole starting at map->m_lblk.
495  *
496  * It returns the error in case of allocation failure.
497  */
498 int ext4_map_blocks(handle_t *handle, struct inode *inode,
499                     struct ext4_map_blocks *map, int flags)
500 {
501         struct extent_status es;
502         int retval;
503         int ret = 0;
504 #ifdef ES_AGGRESSIVE_TEST
505         struct ext4_map_blocks orig_map;
506
507         memcpy(&orig_map, map, sizeof(*map));
508 #endif
509
510         map->m_flags = 0;
511         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
512                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
513                   (unsigned long) map->m_lblk);
514
515         /*
516          * ext4_map_blocks returns an int, and m_len is an unsigned int
517          */
518         if (unlikely(map->m_len > INT_MAX))
519                 map->m_len = INT_MAX;
520
521         /* We can handle the block number less than EXT_MAX_BLOCKS */
522         if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
523                 return -EFSCORRUPTED;
524
525         /* Lookup extent status tree firstly */
526         if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
527                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
528                         map->m_pblk = ext4_es_pblock(&es) +
529                                         map->m_lblk - es.es_lblk;
530                         map->m_flags |= ext4_es_is_written(&es) ?
531                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
532                         retval = es.es_len - (map->m_lblk - es.es_lblk);
533                         if (retval > map->m_len)
534                                 retval = map->m_len;
535                         map->m_len = retval;
536                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
537                         map->m_pblk = 0;
538                         retval = es.es_len - (map->m_lblk - es.es_lblk);
539                         if (retval > map->m_len)
540                                 retval = map->m_len;
541                         map->m_len = retval;
542                         retval = 0;
543                 } else {
544                         BUG_ON(1);
545                 }
546 #ifdef ES_AGGRESSIVE_TEST
547                 ext4_map_blocks_es_recheck(handle, inode, map,
548                                            &orig_map, flags);
549 #endif
550                 goto found;
551         }
552
553         /*
554          * Try to see if we can get the block without requesting a new
555          * file system block.
556          */
557         down_read(&EXT4_I(inode)->i_data_sem);
558         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
559                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
560                                              EXT4_GET_BLOCKS_KEEP_SIZE);
561         } else {
562                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
563                                              EXT4_GET_BLOCKS_KEEP_SIZE);
564         }
565         if (retval > 0) {
566                 unsigned int status;
567
568                 if (unlikely(retval != map->m_len)) {
569                         ext4_warning(inode->i_sb,
570                                      "ES len assertion failed for inode "
571                                      "%lu: retval %d != map->m_len %d",
572                                      inode->i_ino, retval, map->m_len);
573                         WARN_ON(1);
574                 }
575
576                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
577                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
578                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
579                     !(status & EXTENT_STATUS_WRITTEN) &&
580                     ext4_find_delalloc_range(inode, map->m_lblk,
581                                              map->m_lblk + map->m_len - 1))
582                         status |= EXTENT_STATUS_DELAYED;
583                 ret = ext4_es_insert_extent(inode, map->m_lblk,
584                                             map->m_len, map->m_pblk, status);
585                 if (ret < 0)
586                         retval = ret;
587         }
588         up_read((&EXT4_I(inode)->i_data_sem));
589
590 found:
591         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
592                 ret = check_block_validity(inode, map);
593                 if (ret != 0)
594                         return ret;
595         }
596
597         /* If it is only a block(s) look up */
598         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
599                 return retval;
600
601         /*
602          * Returns if the blocks have already allocated
603          *
604          * Note that if blocks have been preallocated
605          * ext4_ext_get_block() returns the create = 0
606          * with buffer head unmapped.
607          */
608         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
609                 /*
610                  * If we need to convert extent to unwritten
611                  * we continue and do the actual work in
612                  * ext4_ext_map_blocks()
613                  */
614                 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
615                         return retval;
616
617         /*
618          * Here we clear m_flags because after allocating an new extent,
619          * it will be set again.
620          */
621         map->m_flags &= ~EXT4_MAP_FLAGS;
622
623         /*
624          * New blocks allocate and/or writing to unwritten extent
625          * will possibly result in updating i_data, so we take
626          * the write lock of i_data_sem, and call get_block()
627          * with create == 1 flag.
628          */
629         down_write(&EXT4_I(inode)->i_data_sem);
630
631         /*
632          * We need to check for EXT4 here because migrate
633          * could have changed the inode type in between
634          */
635         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
636                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
637         } else {
638                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
639
640                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
641                         /*
642                          * We allocated new blocks which will result in
643                          * i_data's format changing.  Force the migrate
644                          * to fail by clearing migrate flags
645                          */
646                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
647                 }
648
649                 /*
650                  * Update reserved blocks/metadata blocks after successful
651                  * block allocation which had been deferred till now. We don't
652                  * support fallocate for non extent files. So we can update
653                  * reserve space here.
654                  */
655                 if ((retval > 0) &&
656                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
657                         ext4_da_update_reserve_space(inode, retval, 1);
658         }
659
660         if (retval > 0) {
661                 unsigned int status;
662
663                 if (unlikely(retval != map->m_len)) {
664                         ext4_warning(inode->i_sb,
665                                      "ES len assertion failed for inode "
666                                      "%lu: retval %d != map->m_len %d",
667                                      inode->i_ino, retval, map->m_len);
668                         WARN_ON(1);
669                 }
670
671                 /*
672                  * We have to zeroout blocks before inserting them into extent
673                  * status tree. Otherwise someone could look them up there and
674                  * use them before they are really zeroed. We also have to
675                  * unmap metadata before zeroing as otherwise writeback can
676                  * overwrite zeros with stale data from block device.
677                  */
678                 if (flags & EXT4_GET_BLOCKS_ZERO &&
679                     map->m_flags & EXT4_MAP_MAPPED &&
680                     map->m_flags & EXT4_MAP_NEW) {
681                         clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
682                                            map->m_len);
683                         ret = ext4_issue_zeroout(inode, map->m_lblk,
684                                                  map->m_pblk, map->m_len);
685                         if (ret) {
686                                 retval = ret;
687                                 goto out_sem;
688                         }
689                 }
690
691                 /*
692                  * If the extent has been zeroed out, we don't need to update
693                  * extent status tree.
694                  */
695                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
696                     ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
697                         if (ext4_es_is_written(&es))
698                                 goto out_sem;
699                 }
700                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
701                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
702                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
703                     !(status & EXTENT_STATUS_WRITTEN) &&
704                     ext4_find_delalloc_range(inode, map->m_lblk,
705                                              map->m_lblk + map->m_len - 1))
706                         status |= EXTENT_STATUS_DELAYED;
707                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
708                                             map->m_pblk, status);
709                 if (ret < 0) {
710                         retval = ret;
711                         goto out_sem;
712                 }
713         }
714
715 out_sem:
716         up_write((&EXT4_I(inode)->i_data_sem));
717         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
718                 ret = check_block_validity(inode, map);
719                 if (ret != 0)
720                         return ret;
721
722                 /*
723                  * Inodes with freshly allocated blocks where contents will be
724                  * visible after transaction commit must be on transaction's
725                  * ordered data list.
726                  */
727                 if (map->m_flags & EXT4_MAP_NEW &&
728                     !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
729                     !(flags & EXT4_GET_BLOCKS_ZERO) &&
730                     !ext4_is_quota_file(inode) &&
731                     ext4_should_order_data(inode)) {
732                         if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
733                                 ret = ext4_jbd2_inode_add_wait(handle, inode);
734                         else
735                                 ret = ext4_jbd2_inode_add_write(handle, inode);
736                         if (ret)
737                                 return ret;
738                 }
739         }
740         return retval;
741 }
742
743 /*
744  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
745  * we have to be careful as someone else may be manipulating b_state as well.
746  */
747 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
748 {
749         unsigned long old_state;
750         unsigned long new_state;
751
752         flags &= EXT4_MAP_FLAGS;
753
754         /* Dummy buffer_head? Set non-atomically. */
755         if (!bh->b_page) {
756                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
757                 return;
758         }
759         /*
760          * Someone else may be modifying b_state. Be careful! This is ugly but
761          * once we get rid of using bh as a container for mapping information
762          * to pass to / from get_block functions, this can go away.
763          */
764         do {
765                 old_state = READ_ONCE(bh->b_state);
766                 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
767         } while (unlikely(
768                  cmpxchg(&bh->b_state, old_state, new_state) != old_state));
769 }
770
771 static int _ext4_get_block(struct inode *inode, sector_t iblock,
772                            struct buffer_head *bh, int flags)
773 {
774         struct ext4_map_blocks map;
775         int ret = 0;
776
777         if (ext4_has_inline_data(inode))
778                 return -ERANGE;
779
780         map.m_lblk = iblock;
781         map.m_len = bh->b_size >> inode->i_blkbits;
782
783         ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
784                               flags);
785         if (ret > 0) {
786                 map_bh(bh, inode->i_sb, map.m_pblk);
787                 ext4_update_bh_state(bh, map.m_flags);
788                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
789                 ret = 0;
790         } else if (ret == 0) {
791                 /* hole case, need to fill in bh->b_size */
792                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
793         }
794         return ret;
795 }
796
797 int ext4_get_block(struct inode *inode, sector_t iblock,
798                    struct buffer_head *bh, int create)
799 {
800         return _ext4_get_block(inode, iblock, bh,
801                                create ? EXT4_GET_BLOCKS_CREATE : 0);
802 }
803
804 /*
805  * Get block function used when preparing for buffered write if we require
806  * creating an unwritten extent if blocks haven't been allocated.  The extent
807  * will be converted to written after the IO is complete.
808  */
809 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
810                              struct buffer_head *bh_result, int create)
811 {
812         ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
813                    inode->i_ino, create);
814         return _ext4_get_block(inode, iblock, bh_result,
815                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
816 }
817
818 /* Maximum number of blocks we map for direct IO at once. */
819 #define DIO_MAX_BLOCKS 4096
820
821 /*
822  * Get blocks function for the cases that need to start a transaction -
823  * generally difference cases of direct IO and DAX IO. It also handles retries
824  * in case of ENOSPC.
825  */
826 static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
827                                 struct buffer_head *bh_result, int flags)
828 {
829         int dio_credits;
830         handle_t *handle;
831         int retries = 0;
832         int ret;
833
834         /* Trim mapping request to maximum we can map at once for DIO */
835         if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
836                 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
837         dio_credits = ext4_chunk_trans_blocks(inode,
838                                       bh_result->b_size >> inode->i_blkbits);
839 retry:
840         handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
841         if (IS_ERR(handle))
842                 return PTR_ERR(handle);
843
844         ret = _ext4_get_block(inode, iblock, bh_result, flags);
845         ext4_journal_stop(handle);
846
847         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
848                 goto retry;
849         return ret;
850 }
851
852 /* Get block function for DIO reads and writes to inodes without extents */
853 int ext4_dio_get_block(struct inode *inode, sector_t iblock,
854                        struct buffer_head *bh, int create)
855 {
856         /* We don't expect handle for direct IO */
857         WARN_ON_ONCE(ext4_journal_current_handle());
858
859         if (!create)
860                 return _ext4_get_block(inode, iblock, bh, 0);
861         return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
862 }
863
864 /*
865  * Get block function for AIO DIO writes when we create unwritten extent if
866  * blocks are not allocated yet. The extent will be converted to written
867  * after IO is complete.
868  */
869 static int ext4_dio_get_block_unwritten_async(struct inode *inode,
870                 sector_t iblock, struct buffer_head *bh_result, int create)
871 {
872         int ret;
873
874         /* We don't expect handle for direct IO */
875         WARN_ON_ONCE(ext4_journal_current_handle());
876
877         ret = ext4_get_block_trans(inode, iblock, bh_result,
878                                    EXT4_GET_BLOCKS_IO_CREATE_EXT);
879
880         /*
881          * When doing DIO using unwritten extents, we need io_end to convert
882          * unwritten extents to written on IO completion. We allocate io_end
883          * once we spot unwritten extent and store it in b_private. Generic
884          * DIO code keeps b_private set and furthermore passes the value to
885          * our completion callback in 'private' argument.
886          */
887         if (!ret && buffer_unwritten(bh_result)) {
888                 if (!bh_result->b_private) {
889                         ext4_io_end_t *io_end;
890
891                         io_end = ext4_init_io_end(inode, GFP_KERNEL);
892                         if (!io_end)
893                                 return -ENOMEM;
894                         bh_result->b_private = io_end;
895                         ext4_set_io_unwritten_flag(inode, io_end);
896                 }
897                 set_buffer_defer_completion(bh_result);
898         }
899
900         return ret;
901 }
902
903 /*
904  * Get block function for non-AIO DIO writes when we create unwritten extent if
905  * blocks are not allocated yet. The extent will be converted to written
906  * after IO is complete by ext4_direct_IO_write().
907  */
908 static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
909                 sector_t iblock, struct buffer_head *bh_result, int create)
910 {
911         int ret;
912
913         /* We don't expect handle for direct IO */
914         WARN_ON_ONCE(ext4_journal_current_handle());
915
916         ret = ext4_get_block_trans(inode, iblock, bh_result,
917                                    EXT4_GET_BLOCKS_IO_CREATE_EXT);
918
919         /*
920          * Mark inode as having pending DIO writes to unwritten extents.
921          * ext4_direct_IO_write() checks this flag and converts extents to
922          * written.
923          */
924         if (!ret && buffer_unwritten(bh_result))
925                 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
926
927         return ret;
928 }
929
930 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
931                    struct buffer_head *bh_result, int create)
932 {
933         int ret;
934
935         ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
936                    inode->i_ino, create);
937         /* We don't expect handle for direct IO */
938         WARN_ON_ONCE(ext4_journal_current_handle());
939
940         ret = _ext4_get_block(inode, iblock, bh_result, 0);
941         /*
942          * Blocks should have been preallocated! ext4_file_write_iter() checks
943          * that.
944          */
945         WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
946
947         return ret;
948 }
949
950
951 /*
952  * `handle' can be NULL if create is zero
953  */
954 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
955                                 ext4_lblk_t block, int map_flags)
956 {
957         struct ext4_map_blocks map;
958         struct buffer_head *bh;
959         int create = map_flags & EXT4_GET_BLOCKS_CREATE;
960         int err;
961
962         J_ASSERT(handle != NULL || create == 0);
963
964         map.m_lblk = block;
965         map.m_len = 1;
966         err = ext4_map_blocks(handle, inode, &map, map_flags);
967
968         if (err == 0)
969                 return create ? ERR_PTR(-ENOSPC) : NULL;
970         if (err < 0)
971                 return ERR_PTR(err);
972
973         bh = sb_getblk(inode->i_sb, map.m_pblk);
974         if (unlikely(!bh))
975                 return ERR_PTR(-ENOMEM);
976         if (map.m_flags & EXT4_MAP_NEW) {
977                 J_ASSERT(create != 0);
978                 J_ASSERT(handle != NULL);
979
980                 /*
981                  * Now that we do not always journal data, we should
982                  * keep in mind whether this should always journal the
983                  * new buffer as metadata.  For now, regular file
984                  * writes use ext4_get_block instead, so it's not a
985                  * problem.
986                  */
987                 lock_buffer(bh);
988                 BUFFER_TRACE(bh, "call get_create_access");
989                 err = ext4_journal_get_create_access(handle, bh);
990                 if (unlikely(err)) {
991                         unlock_buffer(bh);
992                         goto errout;
993                 }
994                 if (!buffer_uptodate(bh)) {
995                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
996                         set_buffer_uptodate(bh);
997                 }
998                 unlock_buffer(bh);
999                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1000                 err = ext4_handle_dirty_metadata(handle, inode, bh);
1001                 if (unlikely(err))
1002                         goto errout;
1003         } else
1004                 BUFFER_TRACE(bh, "not a new buffer");
1005         return bh;
1006 errout:
1007         brelse(bh);
1008         return ERR_PTR(err);
1009 }
1010
1011 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1012                                ext4_lblk_t block, int map_flags)
1013 {
1014         struct buffer_head *bh;
1015
1016         bh = ext4_getblk(handle, inode, block, map_flags);
1017         if (IS_ERR(bh))
1018                 return bh;
1019         if (!bh || buffer_uptodate(bh))
1020                 return bh;
1021         ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
1022         wait_on_buffer(bh);
1023         if (buffer_uptodate(bh))
1024                 return bh;
1025         put_bh(bh);
1026         return ERR_PTR(-EIO);
1027 }
1028
1029 /* Read a contiguous batch of blocks. */
1030 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
1031                      bool wait, struct buffer_head **bhs)
1032 {
1033         int i, err;
1034
1035         for (i = 0; i < bh_count; i++) {
1036                 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
1037                 if (IS_ERR(bhs[i])) {
1038                         err = PTR_ERR(bhs[i]);
1039                         bh_count = i;
1040                         goto out_brelse;
1041                 }
1042         }
1043
1044         for (i = 0; i < bh_count; i++)
1045                 /* Note that NULL bhs[i] is valid because of holes. */
1046                 if (bhs[i] && !buffer_uptodate(bhs[i]))
1047                         ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1,
1048                                     &bhs[i]);
1049
1050         if (!wait)
1051                 return 0;
1052
1053         for (i = 0; i < bh_count; i++)
1054                 if (bhs[i])
1055                         wait_on_buffer(bhs[i]);
1056
1057         for (i = 0; i < bh_count; i++) {
1058                 if (bhs[i] && !buffer_uptodate(bhs[i])) {
1059                         err = -EIO;
1060                         goto out_brelse;
1061                 }
1062         }
1063         return 0;
1064
1065 out_brelse:
1066         for (i = 0; i < bh_count; i++) {
1067                 brelse(bhs[i]);
1068                 bhs[i] = NULL;
1069         }
1070         return err;
1071 }
1072
1073 int ext4_walk_page_buffers(handle_t *handle,
1074                            struct buffer_head *head,
1075                            unsigned from,
1076                            unsigned to,
1077                            int *partial,
1078                            int (*fn)(handle_t *handle,
1079                                      struct buffer_head *bh))
1080 {
1081         struct buffer_head *bh;
1082         unsigned block_start, block_end;
1083         unsigned blocksize = head->b_size;
1084         int err, ret = 0;
1085         struct buffer_head *next;
1086
1087         for (bh = head, block_start = 0;
1088              ret == 0 && (bh != head || !block_start);
1089              block_start = block_end, bh = next) {
1090                 next = bh->b_this_page;
1091                 block_end = block_start + blocksize;
1092                 if (block_end <= from || block_start >= to) {
1093                         if (partial && !buffer_uptodate(bh))
1094                                 *partial = 1;
1095                         continue;
1096                 }
1097                 err = (*fn)(handle, bh);
1098                 if (!ret)
1099                         ret = err;
1100         }
1101         return ret;
1102 }
1103
1104 /*
1105  * To preserve ordering, it is essential that the hole instantiation and
1106  * the data write be encapsulated in a single transaction.  We cannot
1107  * close off a transaction and start a new one between the ext4_get_block()
1108  * and the commit_write().  So doing the jbd2_journal_start at the start of
1109  * prepare_write() is the right place.
1110  *
1111  * Also, this function can nest inside ext4_writepage().  In that case, we
1112  * *know* that ext4_writepage() has generated enough buffer credits to do the
1113  * whole page.  So we won't block on the journal in that case, which is good,
1114  * because the caller may be PF_MEMALLOC.
1115  *
1116  * By accident, ext4 can be reentered when a transaction is open via
1117  * quota file writes.  If we were to commit the transaction while thus
1118  * reentered, there can be a deadlock - we would be holding a quota
1119  * lock, and the commit would never complete if another thread had a
1120  * transaction open and was blocking on the quota lock - a ranking
1121  * violation.
1122  *
1123  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1124  * will _not_ run commit under these circumstances because handle->h_ref
1125  * is elevated.  We'll still have enough credits for the tiny quotafile
1126  * write.
1127  */
1128 int do_journal_get_write_access(handle_t *handle,
1129                                 struct buffer_head *bh)
1130 {
1131         int dirty = buffer_dirty(bh);
1132         int ret;
1133
1134         if (!buffer_mapped(bh) || buffer_freed(bh))
1135                 return 0;
1136         /*
1137          * __block_write_begin() could have dirtied some buffers. Clean
1138          * the dirty bit as jbd2_journal_get_write_access() could complain
1139          * otherwise about fs integrity issues. Setting of the dirty bit
1140          * by __block_write_begin() isn't a real problem here as we clear
1141          * the bit before releasing a page lock and thus writeback cannot
1142          * ever write the buffer.
1143          */
1144         if (dirty)
1145                 clear_buffer_dirty(bh);
1146         BUFFER_TRACE(bh, "get write access");
1147         ret = ext4_journal_get_write_access(handle, bh);
1148         if (!ret && dirty)
1149                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1150         return ret;
1151 }
1152
1153 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1154 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1155                                   get_block_t *get_block)
1156 {
1157         unsigned from = pos & (PAGE_SIZE - 1);
1158         unsigned to = from + len;
1159         struct inode *inode = page->mapping->host;
1160         unsigned block_start, block_end;
1161         sector_t block;
1162         int err = 0;
1163         unsigned blocksize = inode->i_sb->s_blocksize;
1164         unsigned bbits;
1165         struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1166         bool decrypt = false;
1167
1168         BUG_ON(!PageLocked(page));
1169         BUG_ON(from > PAGE_SIZE);
1170         BUG_ON(to > PAGE_SIZE);
1171         BUG_ON(from > to);
1172
1173         if (!page_has_buffers(page))
1174                 create_empty_buffers(page, blocksize, 0);
1175         head = page_buffers(page);
1176         bbits = ilog2(blocksize);
1177         block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1178
1179         for (bh = head, block_start = 0; bh != head || !block_start;
1180             block++, block_start = block_end, bh = bh->b_this_page) {
1181                 block_end = block_start + blocksize;
1182                 if (block_end <= from || block_start >= to) {
1183                         if (PageUptodate(page)) {
1184                                 if (!buffer_uptodate(bh))
1185                                         set_buffer_uptodate(bh);
1186                         }
1187                         continue;
1188                 }
1189                 if (buffer_new(bh))
1190                         clear_buffer_new(bh);
1191                 if (!buffer_mapped(bh)) {
1192                         WARN_ON(bh->b_size != blocksize);
1193                         err = get_block(inode, block, bh, 1);
1194                         if (err)
1195                                 break;
1196                         if (buffer_new(bh)) {
1197                                 clean_bdev_bh_alias(bh);
1198                                 if (PageUptodate(page)) {
1199                                         clear_buffer_new(bh);
1200                                         set_buffer_uptodate(bh);
1201                                         mark_buffer_dirty(bh);
1202                                         continue;
1203                                 }
1204                                 if (block_end > to || block_start < from)
1205                                         zero_user_segments(page, to, block_end,
1206                                                            block_start, from);
1207                                 continue;
1208                         }
1209                 }
1210                 if (PageUptodate(page)) {
1211                         if (!buffer_uptodate(bh))
1212                                 set_buffer_uptodate(bh);
1213                         continue;
1214                 }
1215                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1216                     !buffer_unwritten(bh) &&
1217                     (block_start < from || block_end > to)) {
1218                         ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1219                         *wait_bh++ = bh;
1220                         decrypt = ext4_encrypted_inode(inode) &&
1221                                 S_ISREG(inode->i_mode);
1222                 }
1223         }
1224         /*
1225          * If we issued read requests, let them complete.
1226          */
1227         while (wait_bh > wait) {
1228                 wait_on_buffer(*--wait_bh);
1229                 if (!buffer_uptodate(*wait_bh))
1230                         err = -EIO;
1231         }
1232         if (unlikely(err))
1233                 page_zero_new_buffers(page, from, to);
1234         else if (decrypt)
1235                 err = fscrypt_decrypt_page(page->mapping->host, page,
1236                                 PAGE_SIZE, 0, page->index);
1237         return err;
1238 }
1239 #endif
1240
1241 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1242                             loff_t pos, unsigned len, unsigned flags,
1243                             struct page **pagep, void **fsdata)
1244 {
1245         struct inode *inode = mapping->host;
1246         int ret, needed_blocks;
1247         handle_t *handle;
1248         int retries = 0;
1249         struct page *page;
1250         pgoff_t index;
1251         unsigned from, to;
1252
1253         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1254                 return -EIO;
1255
1256         trace_ext4_write_begin(inode, pos, len, flags);
1257         /*
1258          * Reserve one block more for addition to orphan list in case
1259          * we allocate blocks but write fails for some reason
1260          */
1261         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1262         index = pos >> PAGE_SHIFT;
1263         from = pos & (PAGE_SIZE - 1);
1264         to = from + len;
1265
1266         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1267                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1268                                                     flags, pagep);
1269                 if (ret < 0)
1270                         return ret;
1271                 if (ret == 1)
1272                         return 0;
1273         }
1274
1275         /*
1276          * grab_cache_page_write_begin() can take a long time if the
1277          * system is thrashing due to memory pressure, or if the page
1278          * is being written back.  So grab it first before we start
1279          * the transaction handle.  This also allows us to allocate
1280          * the page (if needed) without using GFP_NOFS.
1281          */
1282 retry_grab:
1283         page = grab_cache_page_write_begin(mapping, index, flags);
1284         if (!page)
1285                 return -ENOMEM;
1286         unlock_page(page);
1287
1288 retry_journal:
1289         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1290         if (IS_ERR(handle)) {
1291                 put_page(page);
1292                 return PTR_ERR(handle);
1293         }
1294
1295         lock_page(page);
1296         if (page->mapping != mapping) {
1297                 /* The page got truncated from under us */
1298                 unlock_page(page);
1299                 put_page(page);
1300                 ext4_journal_stop(handle);
1301                 goto retry_grab;
1302         }
1303         /* In case writeback began while the page was unlocked */
1304         wait_for_stable_page(page);
1305
1306 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1307         if (ext4_should_dioread_nolock(inode))
1308                 ret = ext4_block_write_begin(page, pos, len,
1309                                              ext4_get_block_unwritten);
1310         else
1311                 ret = ext4_block_write_begin(page, pos, len,
1312                                              ext4_get_block);
1313 #else
1314         if (ext4_should_dioread_nolock(inode))
1315                 ret = __block_write_begin(page, pos, len,
1316                                           ext4_get_block_unwritten);
1317         else
1318                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1319 #endif
1320         if (!ret && ext4_should_journal_data(inode)) {
1321                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1322                                              from, to, NULL,
1323                                              do_journal_get_write_access);
1324         }
1325
1326         if (ret) {
1327                 unlock_page(page);
1328                 /*
1329                  * __block_write_begin may have instantiated a few blocks
1330                  * outside i_size.  Trim these off again. Don't need
1331                  * i_size_read because we hold i_mutex.
1332                  *
1333                  * Add inode to orphan list in case we crash before
1334                  * truncate finishes
1335                  */
1336                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1337                         ext4_orphan_add(handle, inode);
1338
1339                 ext4_journal_stop(handle);
1340                 if (pos + len > inode->i_size) {
1341                         ext4_truncate_failed_write(inode);
1342                         /*
1343                          * If truncate failed early the inode might
1344                          * still be on the orphan list; we need to
1345                          * make sure the inode is removed from the
1346                          * orphan list in that case.
1347                          */
1348                         if (inode->i_nlink)
1349                                 ext4_orphan_del(NULL, inode);
1350                 }
1351
1352                 if (ret == -ENOSPC &&
1353                     ext4_should_retry_alloc(inode->i_sb, &retries))
1354                         goto retry_journal;
1355                 put_page(page);
1356                 return ret;
1357         }
1358         *pagep = page;
1359         return ret;
1360 }
1361
1362 /* For write_end() in data=journal mode */
1363 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1364 {
1365         int ret;
1366         if (!buffer_mapped(bh) || buffer_freed(bh))
1367                 return 0;
1368         set_buffer_uptodate(bh);
1369         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1370         clear_buffer_meta(bh);
1371         clear_buffer_prio(bh);
1372         return ret;
1373 }
1374
1375 /*
1376  * We need to pick up the new inode size which generic_commit_write gave us
1377  * `file' can be NULL - eg, when called from page_symlink().
1378  *
1379  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1380  * buffers are managed internally.
1381  */
1382 static int ext4_write_end(struct file *file,
1383                           struct address_space *mapping,
1384                           loff_t pos, unsigned len, unsigned copied,
1385                           struct page *page, void *fsdata)
1386 {
1387         handle_t *handle = ext4_journal_current_handle();
1388         struct inode *inode = mapping->host;
1389         loff_t old_size = inode->i_size;
1390         int ret = 0, ret2;
1391         int i_size_changed = 0;
1392
1393         trace_ext4_write_end(inode, pos, len, copied);
1394         if (ext4_has_inline_data(inode)) {
1395                 ret = ext4_write_inline_data_end(inode, pos, len,
1396                                                  copied, page);
1397                 if (ret < 0) {
1398                         unlock_page(page);
1399                         put_page(page);
1400                         goto errout;
1401                 }
1402                 copied = ret;
1403         } else
1404                 copied = block_write_end(file, mapping, pos,
1405                                          len, copied, page, fsdata);
1406         /*
1407          * it's important to update i_size while still holding page lock:
1408          * page writeout could otherwise come in and zero beyond i_size.
1409          */
1410         i_size_changed = ext4_update_inode_size(inode, pos + copied);
1411         unlock_page(page);
1412         put_page(page);
1413
1414         if (old_size < pos)
1415                 pagecache_isize_extended(inode, old_size, pos);
1416         /*
1417          * Don't mark the inode dirty under page lock. First, it unnecessarily
1418          * makes the holding time of page lock longer. Second, it forces lock
1419          * ordering of page lock and transaction start for journaling
1420          * filesystems.
1421          */
1422         if (i_size_changed)
1423                 ext4_mark_inode_dirty(handle, inode);
1424
1425         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1426                 /* if we have allocated more blocks and copied
1427                  * less. We will have blocks allocated outside
1428                  * inode->i_size. So truncate them
1429                  */
1430                 ext4_orphan_add(handle, inode);
1431 errout:
1432         ret2 = ext4_journal_stop(handle);
1433         if (!ret)
1434                 ret = ret2;
1435
1436         if (pos + len > inode->i_size) {
1437                 ext4_truncate_failed_write(inode);
1438                 /*
1439                  * If truncate failed early the inode might still be
1440                  * on the orphan list; we need to make sure the inode
1441                  * is removed from the orphan list in that case.
1442                  */
1443                 if (inode->i_nlink)
1444                         ext4_orphan_del(NULL, inode);
1445         }
1446
1447         return ret ? ret : copied;
1448 }
1449
1450 /*
1451  * This is a private version of page_zero_new_buffers() which doesn't
1452  * set the buffer to be dirty, since in data=journalled mode we need
1453  * to call ext4_handle_dirty_metadata() instead.
1454  */
1455 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1456                                             struct page *page,
1457                                             unsigned from, unsigned to)
1458 {
1459         unsigned int block_start = 0, block_end;
1460         struct buffer_head *head, *bh;
1461
1462         bh = head = page_buffers(page);
1463         do {
1464                 block_end = block_start + bh->b_size;
1465                 if (buffer_new(bh)) {
1466                         if (block_end > from && block_start < to) {
1467                                 if (!PageUptodate(page)) {
1468                                         unsigned start, size;
1469
1470                                         start = max(from, block_start);
1471                                         size = min(to, block_end) - start;
1472
1473                                         zero_user(page, start, size);
1474                                         write_end_fn(handle, bh);
1475                                 }
1476                                 clear_buffer_new(bh);
1477                         }
1478                 }
1479                 block_start = block_end;
1480                 bh = bh->b_this_page;
1481         } while (bh != head);
1482 }
1483
1484 static int ext4_journalled_write_end(struct file *file,
1485                                      struct address_space *mapping,
1486                                      loff_t pos, unsigned len, unsigned copied,
1487                                      struct page *page, void *fsdata)
1488 {
1489         handle_t *handle = ext4_journal_current_handle();
1490         struct inode *inode = mapping->host;
1491         loff_t old_size = inode->i_size;
1492         int ret = 0, ret2;
1493         int partial = 0;
1494         unsigned from, to;
1495         int size_changed = 0;
1496
1497         trace_ext4_journalled_write_end(inode, pos, len, copied);
1498         from = pos & (PAGE_SIZE - 1);
1499         to = from + len;
1500
1501         BUG_ON(!ext4_handle_valid(handle));
1502
1503         if (ext4_has_inline_data(inode)) {
1504                 ret = ext4_write_inline_data_end(inode, pos, len,
1505                                                  copied, page);
1506                 if (ret < 0) {
1507                         unlock_page(page);
1508                         put_page(page);
1509                         goto errout;
1510                 }
1511                 copied = ret;
1512         } else if (unlikely(copied < len) && !PageUptodate(page)) {
1513                 copied = 0;
1514                 ext4_journalled_zero_new_buffers(handle, page, from, to);
1515         } else {
1516                 if (unlikely(copied < len))
1517                         ext4_journalled_zero_new_buffers(handle, page,
1518                                                          from + copied, to);
1519                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1520                                              from + copied, &partial,
1521                                              write_end_fn);
1522                 if (!partial)
1523                         SetPageUptodate(page);
1524         }
1525         size_changed = ext4_update_inode_size(inode, pos + copied);
1526         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1527         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1528         unlock_page(page);
1529         put_page(page);
1530
1531         if (old_size < pos)
1532                 pagecache_isize_extended(inode, old_size, pos);
1533
1534         if (size_changed) {
1535                 ret2 = ext4_mark_inode_dirty(handle, inode);
1536                 if (!ret)
1537                         ret = ret2;
1538         }
1539
1540         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1541                 /* if we have allocated more blocks and copied
1542                  * less. We will have blocks allocated outside
1543                  * inode->i_size. So truncate them
1544                  */
1545                 ext4_orphan_add(handle, inode);
1546
1547 errout:
1548         ret2 = ext4_journal_stop(handle);
1549         if (!ret)
1550                 ret = ret2;
1551         if (pos + len > inode->i_size) {
1552                 ext4_truncate_failed_write(inode);
1553                 /*
1554                  * If truncate failed early the inode might still be
1555                  * on the orphan list; we need to make sure the inode
1556                  * is removed from the orphan list in that case.
1557                  */
1558                 if (inode->i_nlink)
1559                         ext4_orphan_del(NULL, inode);
1560         }
1561
1562         return ret ? ret : copied;
1563 }
1564
1565 /*
1566  * Reserve space for a single cluster
1567  */
1568 static int ext4_da_reserve_space(struct inode *inode)
1569 {
1570         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1571         struct ext4_inode_info *ei = EXT4_I(inode);
1572         int ret;
1573
1574         /*
1575          * We will charge metadata quota at writeout time; this saves
1576          * us from metadata over-estimation, though we may go over by
1577          * a small amount in the end.  Here we just reserve for data.
1578          */
1579         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1580         if (ret)
1581                 return ret;
1582
1583         spin_lock(&ei->i_block_reservation_lock);
1584         if (ext4_claim_free_clusters(sbi, 1, 0)) {
1585                 spin_unlock(&ei->i_block_reservation_lock);
1586                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1587                 return -ENOSPC;
1588         }
1589         ei->i_reserved_data_blocks++;
1590         trace_ext4_da_reserve_space(inode);
1591         spin_unlock(&ei->i_block_reservation_lock);
1592
1593         return 0;       /* success */
1594 }
1595
1596 static void ext4_da_release_space(struct inode *inode, int to_free)
1597 {
1598         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1599         struct ext4_inode_info *ei = EXT4_I(inode);
1600
1601         if (!to_free)
1602                 return;         /* Nothing to release, exit */
1603
1604         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1605
1606         trace_ext4_da_release_space(inode, to_free);
1607         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1608                 /*
1609                  * if there aren't enough reserved blocks, then the
1610                  * counter is messed up somewhere.  Since this
1611                  * function is called from invalidate page, it's
1612                  * harmless to return without any action.
1613                  */
1614                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1615                          "ino %lu, to_free %d with only %d reserved "
1616                          "data blocks", inode->i_ino, to_free,
1617                          ei->i_reserved_data_blocks);
1618                 WARN_ON(1);
1619                 to_free = ei->i_reserved_data_blocks;
1620         }
1621         ei->i_reserved_data_blocks -= to_free;
1622
1623         /* update fs dirty data blocks counter */
1624         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1625
1626         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1627
1628         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1629 }
1630
1631 static void ext4_da_page_release_reservation(struct page *page,
1632                                              unsigned int offset,
1633                                              unsigned int length)
1634 {
1635         int to_release = 0, contiguous_blks = 0;
1636         struct buffer_head *head, *bh;
1637         unsigned int curr_off = 0;
1638         struct inode *inode = page->mapping->host;
1639         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1640         unsigned int stop = offset + length;
1641         int num_clusters;
1642         ext4_fsblk_t lblk;
1643
1644         BUG_ON(stop > PAGE_SIZE || stop < length);
1645
1646         head = page_buffers(page);
1647         bh = head;
1648         do {
1649                 unsigned int next_off = curr_off + bh->b_size;
1650
1651                 if (next_off > stop)
1652                         break;
1653
1654                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1655                         to_release++;
1656                         contiguous_blks++;
1657                         clear_buffer_delay(bh);
1658                 } else if (contiguous_blks) {
1659                         lblk = page->index <<
1660                                (PAGE_SHIFT - inode->i_blkbits);
1661                         lblk += (curr_off >> inode->i_blkbits) -
1662                                 contiguous_blks;
1663                         ext4_es_remove_extent(inode, lblk, contiguous_blks);
1664                         contiguous_blks = 0;
1665                 }
1666                 curr_off = next_off;
1667         } while ((bh = bh->b_this_page) != head);
1668
1669         if (contiguous_blks) {
1670                 lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
1671                 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1672                 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1673         }
1674
1675         /* If we have released all the blocks belonging to a cluster, then we
1676          * need to release the reserved space for that cluster. */
1677         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1678         while (num_clusters > 0) {
1679                 lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) +
1680                         ((num_clusters - 1) << sbi->s_cluster_bits);
1681                 if (sbi->s_cluster_ratio == 1 ||
1682                     !ext4_find_delalloc_cluster(inode, lblk))
1683                         ext4_da_release_space(inode, 1);
1684
1685                 num_clusters--;
1686         }
1687 }
1688
1689 /*
1690  * Delayed allocation stuff
1691  */
1692
1693 struct mpage_da_data {
1694         struct inode *inode;
1695         struct writeback_control *wbc;
1696
1697         pgoff_t first_page;     /* The first page to write */
1698         pgoff_t next_page;      /* Current page to examine */
1699         pgoff_t last_page;      /* Last page to examine */
1700         /*
1701          * Extent to map - this can be after first_page because that can be
1702          * fully mapped. We somewhat abuse m_flags to store whether the extent
1703          * is delalloc or unwritten.
1704          */
1705         struct ext4_map_blocks map;
1706         struct ext4_io_submit io_submit;        /* IO submission data */
1707         unsigned int do_map:1;
1708 };
1709
1710 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1711                                        bool invalidate)
1712 {
1713         int nr_pages, i;
1714         pgoff_t index, end;
1715         struct pagevec pvec;
1716         struct inode *inode = mpd->inode;
1717         struct address_space *mapping = inode->i_mapping;
1718
1719         /* This is necessary when next_page == 0. */
1720         if (mpd->first_page >= mpd->next_page)
1721                 return;
1722
1723         index = mpd->first_page;
1724         end   = mpd->next_page - 1;
1725         if (invalidate) {
1726                 ext4_lblk_t start, last;
1727                 start = index << (PAGE_SHIFT - inode->i_blkbits);
1728                 last = end << (PAGE_SHIFT - inode->i_blkbits);
1729                 ext4_es_remove_extent(inode, start, last - start + 1);
1730         }
1731
1732         pagevec_init(&pvec);
1733         while (index <= end) {
1734                 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1735                 if (nr_pages == 0)
1736                         break;
1737                 for (i = 0; i < nr_pages; i++) {
1738                         struct page *page = pvec.pages[i];
1739
1740                         BUG_ON(!PageLocked(page));
1741                         BUG_ON(PageWriteback(page));
1742                         if (invalidate) {
1743                                 if (page_mapped(page))
1744                                         clear_page_dirty_for_io(page);
1745                                 block_invalidatepage(page, 0, PAGE_SIZE);
1746                                 ClearPageUptodate(page);
1747                         }
1748                         unlock_page(page);
1749                 }
1750                 pagevec_release(&pvec);
1751         }
1752 }
1753
1754 static void ext4_print_free_blocks(struct inode *inode)
1755 {
1756         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1757         struct super_block *sb = inode->i_sb;
1758         struct ext4_inode_info *ei = EXT4_I(inode);
1759
1760         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1761                EXT4_C2B(EXT4_SB(inode->i_sb),
1762                         ext4_count_free_clusters(sb)));
1763         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1764         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1765                (long long) EXT4_C2B(EXT4_SB(sb),
1766                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1767         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1768                (long long) EXT4_C2B(EXT4_SB(sb),
1769                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1770         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1771         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1772                  ei->i_reserved_data_blocks);
1773         return;
1774 }
1775
1776 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1777 {
1778         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1779 }
1780
1781 /*
1782  * This function is grabs code from the very beginning of
1783  * ext4_map_blocks, but assumes that the caller is from delayed write
1784  * time. This function looks up the requested blocks and sets the
1785  * buffer delay bit under the protection of i_data_sem.
1786  */
1787 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1788                               struct ext4_map_blocks *map,
1789                               struct buffer_head *bh)
1790 {
1791         struct extent_status es;
1792         int retval;
1793         sector_t invalid_block = ~((sector_t) 0xffff);
1794 #ifdef ES_AGGRESSIVE_TEST
1795         struct ext4_map_blocks orig_map;
1796
1797         memcpy(&orig_map, map, sizeof(*map));
1798 #endif
1799
1800         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1801                 invalid_block = ~0;
1802
1803         map->m_flags = 0;
1804         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1805                   "logical block %lu\n", inode->i_ino, map->m_len,
1806                   (unsigned long) map->m_lblk);
1807
1808         /* Lookup extent status tree firstly */
1809         if (ext4_es_lookup_extent(inode, iblock, &es)) {
1810                 if (ext4_es_is_hole(&es)) {
1811                         retval = 0;
1812                         down_read(&EXT4_I(inode)->i_data_sem);
1813                         goto add_delayed;
1814                 }
1815
1816                 /*
1817                  * Delayed extent could be allocated by fallocate.
1818                  * So we need to check it.
1819                  */
1820                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1821                         map_bh(bh, inode->i_sb, invalid_block);
1822                         set_buffer_new(bh);
1823                         set_buffer_delay(bh);
1824                         return 0;
1825                 }
1826
1827                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1828                 retval = es.es_len - (iblock - es.es_lblk);
1829                 if (retval > map->m_len)
1830                         retval = map->m_len;
1831                 map->m_len = retval;
1832                 if (ext4_es_is_written(&es))
1833                         map->m_flags |= EXT4_MAP_MAPPED;
1834                 else if (ext4_es_is_unwritten(&es))
1835                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1836                 else
1837                         BUG_ON(1);
1838
1839 #ifdef ES_AGGRESSIVE_TEST
1840                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1841 #endif
1842                 return retval;
1843         }
1844
1845         /*
1846          * Try to see if we can get the block without requesting a new
1847          * file system block.
1848          */
1849         down_read(&EXT4_I(inode)->i_data_sem);
1850         if (ext4_has_inline_data(inode))
1851                 retval = 0;
1852         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1853                 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1854         else
1855                 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1856
1857 add_delayed:
1858         if (retval == 0) {
1859                 int ret;
1860                 /*
1861                  * XXX: __block_prepare_write() unmaps passed block,
1862                  * is it OK?
1863                  */
1864                 /*
1865                  * If the block was allocated from previously allocated cluster,
1866                  * then we don't need to reserve it again. However we still need
1867                  * to reserve metadata for every block we're going to write.
1868                  */
1869                 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1870                     !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1871                         ret = ext4_da_reserve_space(inode);
1872                         if (ret) {
1873                                 /* not enough space to reserve */
1874                                 retval = ret;
1875                                 goto out_unlock;
1876                         }
1877                 }
1878
1879                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1880                                             ~0, EXTENT_STATUS_DELAYED);
1881                 if (ret) {
1882                         retval = ret;
1883                         goto out_unlock;
1884                 }
1885
1886                 map_bh(bh, inode->i_sb, invalid_block);
1887                 set_buffer_new(bh);
1888                 set_buffer_delay(bh);
1889         } else if (retval > 0) {
1890                 int ret;
1891                 unsigned int status;
1892
1893                 if (unlikely(retval != map->m_len)) {
1894                         ext4_warning(inode->i_sb,
1895                                      "ES len assertion failed for inode "
1896                                      "%lu: retval %d != map->m_len %d",
1897                                      inode->i_ino, retval, map->m_len);
1898                         WARN_ON(1);
1899                 }
1900
1901                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1902                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1903                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1904                                             map->m_pblk, status);
1905                 if (ret != 0)
1906                         retval = ret;
1907         }
1908
1909 out_unlock:
1910         up_read((&EXT4_I(inode)->i_data_sem));
1911
1912         return retval;
1913 }
1914
1915 /*
1916  * This is a special get_block_t callback which is used by
1917  * ext4_da_write_begin().  It will either return mapped block or
1918  * reserve space for a single block.
1919  *
1920  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1921  * We also have b_blocknr = -1 and b_bdev initialized properly
1922  *
1923  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1924  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1925  * initialized properly.
1926  */
1927 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1928                            struct buffer_head *bh, int create)
1929 {
1930         struct ext4_map_blocks map;
1931         int ret = 0;
1932
1933         BUG_ON(create == 0);
1934         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1935
1936         map.m_lblk = iblock;
1937         map.m_len = 1;
1938
1939         /*
1940          * first, we need to know whether the block is allocated already
1941          * preallocated blocks are unmapped but should treated
1942          * the same as allocated blocks.
1943          */
1944         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1945         if (ret <= 0)
1946                 return ret;
1947
1948         map_bh(bh, inode->i_sb, map.m_pblk);
1949         ext4_update_bh_state(bh, map.m_flags);
1950
1951         if (buffer_unwritten(bh)) {
1952                 /* A delayed write to unwritten bh should be marked
1953                  * new and mapped.  Mapped ensures that we don't do
1954                  * get_block multiple times when we write to the same
1955                  * offset and new ensures that we do proper zero out
1956                  * for partial write.
1957                  */
1958                 set_buffer_new(bh);
1959                 set_buffer_mapped(bh);
1960         }
1961         return 0;
1962 }
1963
1964 static int bget_one(handle_t *handle, struct buffer_head *bh)
1965 {
1966         get_bh(bh);
1967         return 0;
1968 }
1969
1970 static int bput_one(handle_t *handle, struct buffer_head *bh)
1971 {
1972         put_bh(bh);
1973         return 0;
1974 }
1975
1976 static int __ext4_journalled_writepage(struct page *page,
1977                                        unsigned int len)
1978 {
1979         struct address_space *mapping = page->mapping;
1980         struct inode *inode = mapping->host;
1981         struct buffer_head *page_bufs = NULL;
1982         handle_t *handle = NULL;
1983         int ret = 0, err = 0;
1984         int inline_data = ext4_has_inline_data(inode);
1985         struct buffer_head *inode_bh = NULL;
1986
1987         ClearPageChecked(page);
1988
1989         if (inline_data) {
1990                 BUG_ON(page->index != 0);
1991                 BUG_ON(len > ext4_get_max_inline_size(inode));
1992                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1993                 if (inode_bh == NULL)
1994                         goto out;
1995         } else {
1996                 page_bufs = page_buffers(page);
1997                 if (!page_bufs) {
1998                         BUG();
1999                         goto out;
2000                 }
2001                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2002                                        NULL, bget_one);
2003         }
2004         /*
2005          * We need to release the page lock before we start the
2006          * journal, so grab a reference so the page won't disappear
2007          * out from under us.
2008          */
2009         get_page(page);
2010         unlock_page(page);
2011
2012         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2013                                     ext4_writepage_trans_blocks(inode));
2014         if (IS_ERR(handle)) {
2015                 ret = PTR_ERR(handle);
2016                 put_page(page);
2017                 goto out_no_pagelock;
2018         }
2019         BUG_ON(!ext4_handle_valid(handle));
2020
2021         lock_page(page);
2022         put_page(page);
2023         if (page->mapping != mapping) {
2024                 /* The page got truncated from under us */
2025                 ext4_journal_stop(handle);
2026                 ret = 0;
2027                 goto out;
2028         }
2029
2030         if (inline_data) {
2031                 BUFFER_TRACE(inode_bh, "get write access");
2032                 ret = ext4_journal_get_write_access(handle, inode_bh);
2033
2034                 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
2035
2036         } else {
2037                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2038                                              do_journal_get_write_access);
2039
2040                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2041                                              write_end_fn);
2042         }
2043         if (ret == 0)
2044                 ret = err;
2045         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2046         err = ext4_journal_stop(handle);
2047         if (!ret)
2048                 ret = err;
2049
2050         if (!ext4_has_inline_data(inode))
2051                 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
2052                                        NULL, bput_one);
2053         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2054 out:
2055         unlock_page(page);
2056 out_no_pagelock:
2057         brelse(inode_bh);
2058         return ret;
2059 }
2060
2061 /*
2062  * Note that we don't need to start a transaction unless we're journaling data
2063  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2064  * need to file the inode to the transaction's list in ordered mode because if
2065  * we are writing back data added by write(), the inode is already there and if
2066  * we are writing back data modified via mmap(), no one guarantees in which
2067  * transaction the data will hit the disk. In case we are journaling data, we
2068  * cannot start transaction directly because transaction start ranks above page
2069  * lock so we have to do some magic.
2070  *
2071  * This function can get called via...
2072  *   - ext4_writepages after taking page lock (have journal handle)
2073  *   - journal_submit_inode_data_buffers (no journal handle)
2074  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2075  *   - grab_page_cache when doing write_begin (have journal handle)
2076  *
2077  * We don't do any block allocation in this function. If we have page with
2078  * multiple blocks we need to write those buffer_heads that are mapped. This
2079  * is important for mmaped based write. So if we do with blocksize 1K
2080  * truncate(f, 1024);
2081  * a = mmap(f, 0, 4096);
2082  * a[0] = 'a';
2083  * truncate(f, 4096);
2084  * we have in the page first buffer_head mapped via page_mkwrite call back
2085  * but other buffer_heads would be unmapped but dirty (dirty done via the
2086  * do_wp_page). So writepage should write the first block. If we modify
2087  * the mmap area beyond 1024 we will again get a page_fault and the
2088  * page_mkwrite callback will do the block allocation and mark the
2089  * buffer_heads mapped.
2090  *
2091  * We redirty the page if we have any buffer_heads that is either delay or
2092  * unwritten in the page.
2093  *
2094  * We can get recursively called as show below.
2095  *
2096  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2097  *              ext4_writepage()
2098  *
2099  * But since we don't do any block allocation we should not deadlock.
2100  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2101  */
2102 static int ext4_writepage(struct page *page,
2103                           struct writeback_control *wbc)
2104 {
2105         int ret = 0;
2106         loff_t size;
2107         unsigned int len;
2108         struct buffer_head *page_bufs = NULL;
2109         struct inode *inode = page->mapping->host;
2110         struct ext4_io_submit io_submit;
2111         bool keep_towrite = false;
2112
2113         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2114                 ext4_invalidatepage(page, 0, PAGE_SIZE);
2115                 unlock_page(page);
2116                 return -EIO;
2117         }
2118
2119         trace_ext4_writepage(page);
2120         size = i_size_read(inode);
2121         if (page->index == size >> PAGE_SHIFT)
2122                 len = size & ~PAGE_MASK;
2123         else
2124                 len = PAGE_SIZE;
2125
2126         page_bufs = page_buffers(page);
2127         /*
2128          * We cannot do block allocation or other extent handling in this
2129          * function. If there are buffers needing that, we have to redirty
2130          * the page. But we may reach here when we do a journal commit via
2131          * journal_submit_inode_data_buffers() and in that case we must write
2132          * allocated buffers to achieve data=ordered mode guarantees.
2133          *
2134          * Also, if there is only one buffer per page (the fs block
2135          * size == the page size), if one buffer needs block
2136          * allocation or needs to modify the extent tree to clear the
2137          * unwritten flag, we know that the page can't be written at
2138          * all, so we might as well refuse the write immediately.
2139          * Unfortunately if the block size != page size, we can't as
2140          * easily detect this case using ext4_walk_page_buffers(), but
2141          * for the extremely common case, this is an optimization that
2142          * skips a useless round trip through ext4_bio_write_page().
2143          */
2144         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2145                                    ext4_bh_delay_or_unwritten)) {
2146                 redirty_page_for_writepage(wbc, page);
2147                 if ((current->flags & PF_MEMALLOC) ||
2148                     (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2149                         /*
2150                          * For memory cleaning there's no point in writing only
2151                          * some buffers. So just bail out. Warn if we came here
2152                          * from direct reclaim.
2153                          */
2154                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2155                                                         == PF_MEMALLOC);
2156                         unlock_page(page);
2157                         return 0;
2158                 }
2159                 keep_towrite = true;
2160         }
2161
2162         if (PageChecked(page) && ext4_should_journal_data(inode))
2163                 /*
2164                  * It's mmapped pagecache.  Add buffers and journal it.  There
2165                  * doesn't seem much point in redirtying the page here.
2166                  */
2167                 return __ext4_journalled_writepage(page, len);
2168
2169         ext4_io_submit_init(&io_submit, wbc);
2170         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2171         if (!io_submit.io_end) {
2172                 redirty_page_for_writepage(wbc, page);
2173                 unlock_page(page);
2174                 return -ENOMEM;
2175         }
2176         ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2177         ext4_io_submit(&io_submit);
2178         /* Drop io_end reference we got from init */
2179         ext4_put_io_end_defer(io_submit.io_end);
2180         return ret;
2181 }
2182
2183 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2184 {
2185         int len;
2186         loff_t size;
2187         int err;
2188
2189         BUG_ON(page->index != mpd->first_page);
2190         clear_page_dirty_for_io(page);
2191         /*
2192          * We have to be very careful here!  Nothing protects writeback path
2193          * against i_size changes and the page can be writeably mapped into
2194          * page tables. So an application can be growing i_size and writing
2195          * data through mmap while writeback runs. clear_page_dirty_for_io()
2196          * write-protects our page in page tables and the page cannot get
2197          * written to again until we release page lock. So only after
2198          * clear_page_dirty_for_io() we are safe to sample i_size for
2199          * ext4_bio_write_page() to zero-out tail of the written page. We rely
2200          * on the barrier provided by TestClearPageDirty in
2201          * clear_page_dirty_for_io() to make sure i_size is really sampled only
2202          * after page tables are updated.
2203          */
2204         size = i_size_read(mpd->inode);
2205         if (page->index == size >> PAGE_SHIFT)
2206                 len = size & ~PAGE_MASK;
2207         else
2208                 len = PAGE_SIZE;
2209         err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2210         if (!err)
2211                 mpd->wbc->nr_to_write--;
2212         mpd->first_page++;
2213
2214         return err;
2215 }
2216
2217 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2218
2219 /*
2220  * mballoc gives us at most this number of blocks...
2221  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2222  * The rest of mballoc seems to handle chunks up to full group size.
2223  */
2224 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2225
2226 /*
2227  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2228  *
2229  * @mpd - extent of blocks
2230  * @lblk - logical number of the block in the file
2231  * @bh - buffer head we want to add to the extent
2232  *
2233  * The function is used to collect contig. blocks in the same state. If the
2234  * buffer doesn't require mapping for writeback and we haven't started the
2235  * extent of buffers to map yet, the function returns 'true' immediately - the
2236  * caller can write the buffer right away. Otherwise the function returns true
2237  * if the block has been added to the extent, false if the block couldn't be
2238  * added.
2239  */
2240 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2241                                    struct buffer_head *bh)
2242 {
2243         struct ext4_map_blocks *map = &mpd->map;
2244
2245         /* Buffer that doesn't need mapping for writeback? */
2246         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2247             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2248                 /* So far no extent to map => we write the buffer right away */
2249                 if (map->m_len == 0)
2250                         return true;
2251                 return false;
2252         }
2253
2254         /* First block in the extent? */
2255         if (map->m_len == 0) {
2256                 /* We cannot map unless handle is started... */
2257                 if (!mpd->do_map)
2258                         return false;
2259                 map->m_lblk = lblk;
2260                 map->m_len = 1;
2261                 map->m_flags = bh->b_state & BH_FLAGS;
2262                 return true;
2263         }
2264
2265         /* Don't go larger than mballoc is willing to allocate */
2266         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2267                 return false;
2268
2269         /* Can we merge the block to our big extent? */
2270         if (lblk == map->m_lblk + map->m_len &&
2271             (bh->b_state & BH_FLAGS) == map->m_flags) {
2272                 map->m_len++;
2273                 return true;
2274         }
2275         return false;
2276 }
2277
2278 /*
2279  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2280  *
2281  * @mpd - extent of blocks for mapping
2282  * @head - the first buffer in the page
2283  * @bh - buffer we should start processing from
2284  * @lblk - logical number of the block in the file corresponding to @bh
2285  *
2286  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2287  * the page for IO if all buffers in this page were mapped and there's no
2288  * accumulated extent of buffers to map or add buffers in the page to the
2289  * extent of buffers to map. The function returns 1 if the caller can continue
2290  * by processing the next page, 0 if it should stop adding buffers to the
2291  * extent to map because we cannot extend it anymore. It can also return value
2292  * < 0 in case of error during IO submission.
2293  */
2294 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2295                                    struct buffer_head *head,
2296                                    struct buffer_head *bh,
2297                                    ext4_lblk_t lblk)
2298 {
2299         struct inode *inode = mpd->inode;
2300         int err;
2301         ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2302                                                         >> inode->i_blkbits;
2303
2304         do {
2305                 BUG_ON(buffer_locked(bh));
2306
2307                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2308                         /* Found extent to map? */
2309                         if (mpd->map.m_len)
2310                                 return 0;
2311                         /* Buffer needs mapping and handle is not started? */
2312                         if (!mpd->do_map)
2313                                 return 0;
2314                         /* Everything mapped so far and we hit EOF */
2315                         break;
2316                 }
2317         } while (lblk++, (bh = bh->b_this_page) != head);
2318         /* So far everything mapped? Submit the page for IO. */
2319         if (mpd->map.m_len == 0) {
2320                 err = mpage_submit_page(mpd, head->b_page);
2321                 if (err < 0)
2322                         return err;
2323         }
2324         return lblk < blocks;
2325 }
2326
2327 /*
2328  * mpage_map_buffers - update buffers corresponding to changed extent and
2329  *                     submit fully mapped pages for IO
2330  *
2331  * @mpd - description of extent to map, on return next extent to map
2332  *
2333  * Scan buffers corresponding to changed extent (we expect corresponding pages
2334  * to be already locked) and update buffer state according to new extent state.
2335  * We map delalloc buffers to their physical location, clear unwritten bits,
2336  * and mark buffers as uninit when we perform writes to unwritten extents
2337  * and do extent conversion after IO is finished. If the last page is not fully
2338  * mapped, we update @map to the next extent in the last page that needs
2339  * mapping. Otherwise we submit the page for IO.
2340  */
2341 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2342 {
2343         struct pagevec pvec;
2344         int nr_pages, i;
2345         struct inode *inode = mpd->inode;
2346         struct buffer_head *head, *bh;
2347         int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2348         pgoff_t start, end;
2349         ext4_lblk_t lblk;
2350         sector_t pblock;
2351         int err;
2352
2353         start = mpd->map.m_lblk >> bpp_bits;
2354         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2355         lblk = start << bpp_bits;
2356         pblock = mpd->map.m_pblk;
2357
2358         pagevec_init(&pvec);
2359         while (start <= end) {
2360                 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2361                                                 &start, end);
2362                 if (nr_pages == 0)
2363                         break;
2364                 for (i = 0; i < nr_pages; i++) {
2365                         struct page *page = pvec.pages[i];
2366
2367                         bh = head = page_buffers(page);
2368                         do {
2369                                 if (lblk < mpd->map.m_lblk)
2370                                         continue;
2371                                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2372                                         /*
2373                                          * Buffer after end of mapped extent.
2374                                          * Find next buffer in the page to map.
2375                                          */
2376                                         mpd->map.m_len = 0;
2377                                         mpd->map.m_flags = 0;
2378                                         /*
2379                                          * FIXME: If dioread_nolock supports
2380                                          * blocksize < pagesize, we need to make
2381                                          * sure we add size mapped so far to
2382                                          * io_end->size as the following call
2383                                          * can submit the page for IO.
2384                                          */
2385                                         err = mpage_process_page_bufs(mpd, head,
2386                                                                       bh, lblk);
2387                                         pagevec_release(&pvec);
2388                                         if (err > 0)
2389                                                 err = 0;
2390                                         return err;
2391                                 }
2392                                 if (buffer_delay(bh)) {
2393                                         clear_buffer_delay(bh);
2394                                         bh->b_blocknr = pblock++;
2395                                 }
2396                                 clear_buffer_unwritten(bh);
2397                         } while (lblk++, (bh = bh->b_this_page) != head);
2398
2399                         /*
2400                          * FIXME: This is going to break if dioread_nolock
2401                          * supports blocksize < pagesize as we will try to
2402                          * convert potentially unmapped parts of inode.
2403                          */
2404                         mpd->io_submit.io_end->size += PAGE_SIZE;
2405                         /* Page fully mapped - let IO run! */
2406                         err = mpage_submit_page(mpd, page);
2407                         if (err < 0) {
2408                                 pagevec_release(&pvec);
2409                                 return err;
2410                         }
2411                 }
2412                 pagevec_release(&pvec);
2413         }
2414         /* Extent fully mapped and matches with page boundary. We are done. */
2415         mpd->map.m_len = 0;
2416         mpd->map.m_flags = 0;
2417         return 0;
2418 }
2419
2420 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2421 {
2422         struct inode *inode = mpd->inode;
2423         struct ext4_map_blocks *map = &mpd->map;
2424         int get_blocks_flags;
2425         int err, dioread_nolock;
2426
2427         trace_ext4_da_write_pages_extent(inode, map);
2428         /*
2429          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2430          * to convert an unwritten extent to be initialized (in the case
2431          * where we have written into one or more preallocated blocks).  It is
2432          * possible that we're going to need more metadata blocks than
2433          * previously reserved. However we must not fail because we're in
2434          * writeback and there is nothing we can do about it so it might result
2435          * in data loss.  So use reserved blocks to allocate metadata if
2436          * possible.
2437          *
2438          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2439          * the blocks in question are delalloc blocks.  This indicates
2440          * that the blocks and quotas has already been checked when
2441          * the data was copied into the page cache.
2442          */
2443         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2444                            EXT4_GET_BLOCKS_METADATA_NOFAIL |
2445                            EXT4_GET_BLOCKS_IO_SUBMIT;
2446         dioread_nolock = ext4_should_dioread_nolock(inode);
2447         if (dioread_nolock)
2448                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2449         if (map->m_flags & (1 << BH_Delay))
2450                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2451
2452         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2453         if (err < 0)
2454                 return err;
2455         if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2456                 if (!mpd->io_submit.io_end->handle &&
2457                     ext4_handle_valid(handle)) {
2458                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2459                         handle->h_rsv_handle = NULL;
2460                 }
2461                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2462         }
2463
2464         BUG_ON(map->m_len == 0);
2465         if (map->m_flags & EXT4_MAP_NEW) {
2466                 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
2467                                    map->m_len);
2468         }
2469         return 0;
2470 }
2471
2472 /*
2473  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2474  *                               mpd->len and submit pages underlying it for IO
2475  *
2476  * @handle - handle for journal operations
2477  * @mpd - extent to map
2478  * @give_up_on_write - we set this to true iff there is a fatal error and there
2479  *                     is no hope of writing the data. The caller should discard
2480  *                     dirty pages to avoid infinite loops.
2481  *
2482  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2483  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2484  * them to initialized or split the described range from larger unwritten
2485  * extent. Note that we need not map all the described range since allocation
2486  * can return less blocks or the range is covered by more unwritten extents. We
2487  * cannot map more because we are limited by reserved transaction credits. On
2488  * the other hand we always make sure that the last touched page is fully
2489  * mapped so that it can be written out (and thus forward progress is
2490  * guaranteed). After mapping we submit all mapped pages for IO.
2491  */
2492 static int mpage_map_and_submit_extent(handle_t *handle,
2493                                        struct mpage_da_data *mpd,
2494                                        bool *give_up_on_write)
2495 {
2496         struct inode *inode = mpd->inode;
2497         struct ext4_map_blocks *map = &mpd->map;
2498         int err;
2499         loff_t disksize;
2500         int progress = 0;
2501
2502         mpd->io_submit.io_end->offset =
2503                                 ((loff_t)map->m_lblk) << inode->i_blkbits;
2504         do {
2505                 err = mpage_map_one_extent(handle, mpd);
2506                 if (err < 0) {
2507                         struct super_block *sb = inode->i_sb;
2508
2509                         if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2510                             EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2511                                 goto invalidate_dirty_pages;
2512                         /*
2513                          * Let the uper layers retry transient errors.
2514                          * In the case of ENOSPC, if ext4_count_free_blocks()
2515                          * is non-zero, a commit should free up blocks.
2516                          */
2517                         if ((err == -ENOMEM) ||
2518                             (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2519                                 if (progress)
2520                                         goto update_disksize;
2521                                 return err;
2522                         }
2523                         ext4_msg(sb, KERN_CRIT,
2524                                  "Delayed block allocation failed for "
2525                                  "inode %lu at logical offset %llu with"
2526                                  " max blocks %u with error %d",
2527                                  inode->i_ino,
2528                                  (unsigned long long)map->m_lblk,
2529                                  (unsigned)map->m_len, -err);
2530                         ext4_msg(sb, KERN_CRIT,
2531                                  "This should not happen!! Data will "
2532                                  "be lost\n");
2533                         if (err == -ENOSPC)
2534                                 ext4_print_free_blocks(inode);
2535                 invalidate_dirty_pages:
2536                         *give_up_on_write = true;
2537                         return err;
2538                 }
2539                 progress = 1;
2540                 /*
2541                  * Update buffer state, submit mapped pages, and get us new
2542                  * extent to map
2543                  */
2544                 err = mpage_map_and_submit_buffers(mpd);
2545                 if (err < 0)
2546                         goto update_disksize;
2547         } while (map->m_len);
2548
2549 update_disksize:
2550         /*
2551          * Update on-disk size after IO is submitted.  Races with
2552          * truncate are avoided by checking i_size under i_data_sem.
2553          */
2554         disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2555         if (disksize > EXT4_I(inode)->i_disksize) {
2556                 int err2;
2557                 loff_t i_size;
2558
2559                 down_write(&EXT4_I(inode)->i_data_sem);
2560                 i_size = i_size_read(inode);
2561                 if (disksize > i_size)
2562                         disksize = i_size;
2563                 if (disksize > EXT4_I(inode)->i_disksize)
2564                         EXT4_I(inode)->i_disksize = disksize;
2565                 up_write(&EXT4_I(inode)->i_data_sem);
2566                 err2 = ext4_mark_inode_dirty(handle, inode);
2567                 if (err2)
2568                         ext4_error(inode->i_sb,
2569                                    "Failed to mark inode %lu dirty",
2570                                    inode->i_ino);
2571                 if (!err)
2572                         err = err2;
2573         }
2574         return err;
2575 }
2576
2577 /*
2578  * Calculate the total number of credits to reserve for one writepages
2579  * iteration. This is called from ext4_writepages(). We map an extent of
2580  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2581  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2582  * bpp - 1 blocks in bpp different extents.
2583  */
2584 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2585 {
2586         int bpp = ext4_journal_blocks_per_page(inode);
2587
2588         return ext4_meta_trans_blocks(inode,
2589                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2590 }
2591
2592 /*
2593  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2594  *                               and underlying extent to map
2595  *
2596  * @mpd - where to look for pages
2597  *
2598  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2599  * IO immediately. When we find a page which isn't mapped we start accumulating
2600  * extent of buffers underlying these pages that needs mapping (formed by
2601  * either delayed or unwritten buffers). We also lock the pages containing
2602  * these buffers. The extent found is returned in @mpd structure (starting at
2603  * mpd->lblk with length mpd->len blocks).
2604  *
2605  * Note that this function can attach bios to one io_end structure which are
2606  * neither logically nor physically contiguous. Although it may seem as an
2607  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2608  * case as we need to track IO to all buffers underlying a page in one io_end.
2609  */
2610 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2611 {
2612         struct address_space *mapping = mpd->inode->i_mapping;
2613         struct pagevec pvec;
2614         unsigned int nr_pages;
2615         long left = mpd->wbc->nr_to_write;
2616         pgoff_t index = mpd->first_page;
2617         pgoff_t end = mpd->last_page;
2618         int tag;
2619         int i, err = 0;
2620         int blkbits = mpd->inode->i_blkbits;
2621         ext4_lblk_t lblk;
2622         struct buffer_head *head;
2623
2624         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2625                 tag = PAGECACHE_TAG_TOWRITE;
2626         else
2627                 tag = PAGECACHE_TAG_DIRTY;
2628
2629         pagevec_init(&pvec);
2630         mpd->map.m_len = 0;
2631         mpd->next_page = index;
2632         while (index <= end) {
2633                 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2634                                 tag);
2635                 if (nr_pages == 0)
2636                         goto out;
2637
2638                 for (i = 0; i < nr_pages; i++) {
2639                         struct page *page = pvec.pages[i];
2640
2641                         /*
2642                          * Accumulated enough dirty pages? This doesn't apply
2643                          * to WB_SYNC_ALL mode. For integrity sync we have to
2644                          * keep going because someone may be concurrently
2645                          * dirtying pages, and we might have synced a lot of
2646                          * newly appeared dirty pages, but have not synced all
2647                          * of the old dirty pages.
2648                          */
2649                         if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2650                                 goto out;
2651
2652                         /* If we can't merge this page, we are done. */
2653                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2654                                 goto out;
2655
2656                         lock_page(page);
2657                         /*
2658                          * If the page is no longer dirty, or its mapping no
2659                          * longer corresponds to inode we are writing (which
2660                          * means it has been truncated or invalidated), or the
2661                          * page is already under writeback and we are not doing
2662                          * a data integrity writeback, skip the page
2663                          */
2664                         if (!PageDirty(page) ||
2665                             (PageWriteback(page) &&
2666                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2667                             unlikely(page->mapping != mapping)) {
2668                                 unlock_page(page);
2669                                 continue;
2670                         }
2671
2672                         wait_on_page_writeback(page);
2673                         BUG_ON(PageWriteback(page));
2674
2675                         if (mpd->map.m_len == 0)
2676                                 mpd->first_page = page->index;
2677                         mpd->next_page = page->index + 1;
2678                         /* Add all dirty buffers to mpd */
2679                         lblk = ((ext4_lblk_t)page->index) <<
2680                                 (PAGE_SHIFT - blkbits);
2681                         head = page_buffers(page);
2682                         err = mpage_process_page_bufs(mpd, head, head, lblk);
2683                         if (err <= 0)
2684                                 goto out;
2685                         err = 0;
2686                         left--;
2687                 }
2688                 pagevec_release(&pvec);
2689                 cond_resched();
2690         }
2691         return 0;
2692 out:
2693         pagevec_release(&pvec);
2694         return err;
2695 }
2696
2697 static int __writepage(struct page *page, struct writeback_control *wbc,
2698                        void *data)
2699 {
2700         struct address_space *mapping = data;
2701         int ret = ext4_writepage(page, wbc);
2702         mapping_set_error(mapping, ret);
2703         return ret;
2704 }
2705
2706 static int ext4_writepages(struct address_space *mapping,
2707                            struct writeback_control *wbc)
2708 {
2709         pgoff_t writeback_index = 0;
2710         long nr_to_write = wbc->nr_to_write;
2711         int range_whole = 0;
2712         int cycled = 1;
2713         handle_t *handle = NULL;
2714         struct mpage_da_data mpd;
2715         struct inode *inode = mapping->host;
2716         int needed_blocks, rsv_blocks = 0, ret = 0;
2717         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2718         bool done;
2719         struct blk_plug plug;
2720         bool give_up_on_write = false;
2721
2722         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2723                 return -EIO;
2724
2725         percpu_down_read(&sbi->s_journal_flag_rwsem);
2726         trace_ext4_writepages(inode, wbc);
2727
2728         if (dax_mapping(mapping)) {
2729                 ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev,
2730                                                   wbc);
2731                 goto out_writepages;
2732         }
2733
2734         /*
2735          * No pages to write? This is mainly a kludge to avoid starting
2736          * a transaction for special inodes like journal inode on last iput()
2737          * because that could violate lock ordering on umount
2738          */
2739         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2740                 goto out_writepages;
2741
2742         if (ext4_should_journal_data(inode)) {
2743                 struct blk_plug plug;
2744
2745                 blk_start_plug(&plug);
2746                 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2747                 blk_finish_plug(&plug);
2748                 goto out_writepages;
2749         }
2750
2751         /*
2752          * If the filesystem has aborted, it is read-only, so return
2753          * right away instead of dumping stack traces later on that
2754          * will obscure the real source of the problem.  We test
2755          * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2756          * the latter could be true if the filesystem is mounted
2757          * read-only, and in that case, ext4_writepages should
2758          * *never* be called, so if that ever happens, we would want
2759          * the stack trace.
2760          */
2761         if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2762                      sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2763                 ret = -EROFS;
2764                 goto out_writepages;
2765         }
2766
2767         if (ext4_should_dioread_nolock(inode)) {
2768                 /*
2769                  * We may need to convert up to one extent per block in
2770                  * the page and we may dirty the inode.
2771                  */
2772                 rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits);
2773         }
2774
2775         /*
2776          * If we have inline data and arrive here, it means that
2777          * we will soon create the block for the 1st page, so
2778          * we'd better clear the inline data here.
2779          */
2780         if (ext4_has_inline_data(inode)) {
2781                 /* Just inode will be modified... */
2782                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2783                 if (IS_ERR(handle)) {
2784                         ret = PTR_ERR(handle);
2785                         goto out_writepages;
2786                 }
2787                 BUG_ON(ext4_test_inode_state(inode,
2788                                 EXT4_STATE_MAY_INLINE_DATA));
2789                 ext4_destroy_inline_data(handle, inode);
2790                 ext4_journal_stop(handle);
2791         }
2792
2793         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2794                 range_whole = 1;
2795
2796         if (wbc->range_cyclic) {
2797                 writeback_index = mapping->writeback_index;
2798                 if (writeback_index)
2799                         cycled = 0;
2800                 mpd.first_page = writeback_index;
2801                 mpd.last_page = -1;
2802         } else {
2803                 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2804                 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2805         }
2806
2807         mpd.inode = inode;
2808         mpd.wbc = wbc;
2809         ext4_io_submit_init(&mpd.io_submit, wbc);
2810 retry:
2811         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2812                 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2813         done = false;
2814         blk_start_plug(&plug);
2815
2816         /*
2817          * First writeback pages that don't need mapping - we can avoid
2818          * starting a transaction unnecessarily and also avoid being blocked
2819          * in the block layer on device congestion while having transaction
2820          * started.
2821          */
2822         mpd.do_map = 0;
2823         mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2824         if (!mpd.io_submit.io_end) {
2825                 ret = -ENOMEM;
2826                 goto unplug;
2827         }
2828         ret = mpage_prepare_extent_to_map(&mpd);
2829         /* Submit prepared bio */
2830         ext4_io_submit(&mpd.io_submit);
2831         ext4_put_io_end_defer(mpd.io_submit.io_end);
2832         mpd.io_submit.io_end = NULL;
2833         /* Unlock pages we didn't use */
2834         mpage_release_unused_pages(&mpd, false);
2835         if (ret < 0)
2836                 goto unplug;
2837
2838         while (!done && mpd.first_page <= mpd.last_page) {
2839                 /* For each extent of pages we use new io_end */
2840                 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2841                 if (!mpd.io_submit.io_end) {
2842                         ret = -ENOMEM;
2843                         break;
2844                 }
2845
2846                 /*
2847                  * We have two constraints: We find one extent to map and we
2848                  * must always write out whole page (makes a difference when
2849                  * blocksize < pagesize) so that we don't block on IO when we
2850                  * try to write out the rest of the page. Journalled mode is
2851                  * not supported by delalloc.
2852                  */
2853                 BUG_ON(ext4_should_journal_data(inode));
2854                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2855
2856                 /* start a new transaction */
2857                 handle = ext4_journal_start_with_reserve(inode,
2858                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2859                 if (IS_ERR(handle)) {
2860                         ret = PTR_ERR(handle);
2861                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2862                                "%ld pages, ino %lu; err %d", __func__,
2863                                 wbc->nr_to_write, inode->i_ino, ret);
2864                         /* Release allocated io_end */
2865                         ext4_put_io_end(mpd.io_submit.io_end);
2866                         mpd.io_submit.io_end = NULL;
2867                         break;
2868                 }
2869                 mpd.do_map = 1;
2870
2871                 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2872                 ret = mpage_prepare_extent_to_map(&mpd);
2873                 if (!ret) {
2874                         if (mpd.map.m_len)
2875                                 ret = mpage_map_and_submit_extent(handle, &mpd,
2876                                         &give_up_on_write);
2877                         else {
2878                                 /*
2879                                  * We scanned the whole range (or exhausted
2880                                  * nr_to_write), submitted what was mapped and
2881                                  * didn't find anything needing mapping. We are
2882                                  * done.
2883                                  */
2884                                 done = true;
2885                         }
2886                 }
2887                 /*
2888                  * Caution: If the handle is synchronous,
2889                  * ext4_journal_stop() can wait for transaction commit
2890                  * to finish which may depend on writeback of pages to
2891                  * complete or on page lock to be released.  In that
2892                  * case, we have to wait until after after we have
2893                  * submitted all the IO, released page locks we hold,
2894                  * and dropped io_end reference (for extent conversion
2895                  * to be able to complete) before stopping the handle.
2896                  */
2897                 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2898                         ext4_journal_stop(handle);
2899                         handle = NULL;
2900                         mpd.do_map = 0;
2901                 }
2902                 /* Submit prepared bio */
2903                 ext4_io_submit(&mpd.io_submit);
2904                 /* Unlock pages we didn't use */
2905                 mpage_release_unused_pages(&mpd, give_up_on_write);
2906                 /*
2907                  * Drop our io_end reference we got from init. We have
2908                  * to be careful and use deferred io_end finishing if
2909                  * we are still holding the transaction as we can
2910                  * release the last reference to io_end which may end
2911                  * up doing unwritten extent conversion.
2912                  */
2913                 if (handle) {
2914                         ext4_put_io_end_defer(mpd.io_submit.io_end);
2915                         ext4_journal_stop(handle);
2916                 } else
2917                         ext4_put_io_end(mpd.io_submit.io_end);
2918                 mpd.io_submit.io_end = NULL;
2919
2920                 if (ret == -ENOSPC && sbi->s_journal) {
2921                         /*
2922                          * Commit the transaction which would
2923                          * free blocks released in the transaction
2924                          * and try again
2925                          */
2926                         jbd2_journal_force_commit_nested(sbi->s_journal);
2927                         ret = 0;
2928                         continue;
2929                 }
2930                 /* Fatal error - ENOMEM, EIO... */
2931                 if (ret)
2932                         break;
2933         }
2934 unplug:
2935         blk_finish_plug(&plug);
2936         if (!ret && !cycled && wbc->nr_to_write > 0) {
2937                 cycled = 1;
2938                 mpd.last_page = writeback_index - 1;
2939                 mpd.first_page = 0;
2940                 goto retry;
2941         }
2942
2943         /* Update index */
2944         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2945                 /*
2946                  * Set the writeback_index so that range_cyclic
2947                  * mode will write it back later
2948                  */
2949                 mapping->writeback_index = mpd.first_page;
2950
2951 out_writepages:
2952         trace_ext4_writepages_result(inode, wbc, ret,
2953                                      nr_to_write - wbc->nr_to_write);
2954         percpu_up_read(&sbi->s_journal_flag_rwsem);
2955         return ret;
2956 }
2957
2958 static int ext4_nonda_switch(struct super_block *sb)
2959 {
2960         s64 free_clusters, dirty_clusters;
2961         struct ext4_sb_info *sbi = EXT4_SB(sb);
2962
2963         /*
2964          * switch to non delalloc mode if we are running low
2965          * on free block. The free block accounting via percpu
2966          * counters can get slightly wrong with percpu_counter_batch getting
2967          * accumulated on each CPU without updating global counters
2968          * Delalloc need an accurate free block accounting. So switch
2969          * to non delalloc when we are near to error range.
2970          */
2971         free_clusters =
2972                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2973         dirty_clusters =
2974                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2975         /*
2976          * Start pushing delalloc when 1/2 of free blocks are dirty.
2977          */
2978         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2979                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2980
2981         if (2 * free_clusters < 3 * dirty_clusters ||
2982             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2983                 /*
2984                  * free block count is less than 150% of dirty blocks
2985                  * or free blocks is less than watermark
2986                  */
2987                 return 1;
2988         }
2989         return 0;
2990 }
2991
2992 /* We always reserve for an inode update; the superblock could be there too */
2993 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2994 {
2995         if (likely(ext4_has_feature_large_file(inode->i_sb)))
2996                 return 1;
2997
2998         if (pos + len <= 0x7fffffffULL)
2999                 return 1;
3000
3001         /* We might need to update the superblock to set LARGE_FILE */
3002         return 2;
3003 }
3004
3005 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3006                                loff_t pos, unsigned len, unsigned flags,
3007                                struct page **pagep, void **fsdata)
3008 {
3009         int ret, retries = 0;
3010         struct page *page;
3011         pgoff_t index;
3012         struct inode *inode = mapping->host;
3013         handle_t *handle;
3014
3015         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
3016                 return -EIO;
3017
3018         index = pos >> PAGE_SHIFT;
3019
3020         if (ext4_nonda_switch(inode->i_sb) ||
3021             S_ISLNK(inode->i_mode)) {
3022                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3023                 return ext4_write_begin(file, mapping, pos,
3024                                         len, flags, pagep, fsdata);
3025         }
3026         *fsdata = (void *)0;
3027         trace_ext4_da_write_begin(inode, pos, len, flags);
3028
3029         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
3030                 ret = ext4_da_write_inline_data_begin(mapping, inode,
3031                                                       pos, len, flags,
3032                                                       pagep, fsdata);
3033                 if (ret < 0)
3034                         return ret;
3035                 if (ret == 1)
3036                         return 0;
3037         }
3038
3039         /*
3040          * grab_cache_page_write_begin() can take a long time if the
3041          * system is thrashing due to memory pressure, or if the page
3042          * is being written back.  So grab it first before we start
3043          * the transaction handle.  This also allows us to allocate
3044          * the page (if needed) without using GFP_NOFS.
3045          */
3046 retry_grab:
3047         page = grab_cache_page_write_begin(mapping, index, flags);
3048         if (!page)
3049                 return -ENOMEM;
3050         unlock_page(page);
3051
3052         /*
3053          * With delayed allocation, we don't log the i_disksize update
3054          * if there is delayed block allocation. But we still need
3055          * to journalling the i_disksize update if writes to the end
3056          * of file which has an already mapped buffer.
3057          */
3058 retry_journal:
3059         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
3060                                 ext4_da_write_credits(inode, pos, len));
3061         if (IS_ERR(handle)) {
3062                 put_page(page);
3063                 return PTR_ERR(handle);
3064         }
3065
3066         lock_page(page);
3067         if (page->mapping != mapping) {
3068                 /* The page got truncated from under us */
3069                 unlock_page(page);
3070                 put_page(page);
3071                 ext4_journal_stop(handle);
3072                 goto retry_grab;
3073         }
3074         /* In case writeback began while the page was unlocked */
3075         wait_for_stable_page(page);
3076
3077 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3078         ret = ext4_block_write_begin(page, pos, len,
3079                                      ext4_da_get_block_prep);
3080 #else
3081         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3082 #endif
3083         if (ret < 0) {
3084                 unlock_page(page);
3085                 ext4_journal_stop(handle);
3086                 /*
3087                  * block_write_begin may have instantiated a few blocks
3088                  * outside i_size.  Trim these off again. Don't need
3089                  * i_size_read because we hold i_mutex.
3090                  */
3091                 if (pos + len > inode->i_size)
3092                         ext4_truncate_failed_write(inode);
3093
3094                 if (ret == -ENOSPC &&
3095                     ext4_should_retry_alloc(inode->i_sb, &retries))
3096                         goto retry_journal;
3097
3098                 put_page(page);
3099                 return ret;
3100         }
3101
3102         *pagep = page;
3103         return ret;
3104 }
3105
3106 /*
3107  * Check if we should update i_disksize
3108  * when write to the end of file but not require block allocation
3109  */
3110 static int ext4_da_should_update_i_disksize(struct page *page,
3111                                             unsigned long offset)
3112 {
3113         struct buffer_head *bh;
3114         struct inode *inode = page->mapping->host;
3115         unsigned int idx;
3116         int i;
3117
3118         bh = page_buffers(page);
3119         idx = offset >> inode->i_blkbits;
3120
3121         for (i = 0; i < idx; i++)
3122                 bh = bh->b_this_page;
3123
3124         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3125                 return 0;
3126         return 1;
3127 }
3128
3129 static int ext4_da_write_end(struct file *file,
3130                              struct address_space *mapping,
3131                              loff_t pos, unsigned len, unsigned copied,
3132                              struct page *page, void *fsdata)
3133 {
3134         struct inode *inode = mapping->host;
3135         int ret = 0, ret2;
3136         handle_t *handle = ext4_journal_current_handle();
3137         loff_t new_i_size;
3138         unsigned long start, end;
3139         int write_mode = (int)(unsigned long)fsdata;
3140
3141         if (write_mode == FALL_BACK_TO_NONDELALLOC)
3142                 return ext4_write_end(file, mapping, pos,
3143                                       len, copied, page, fsdata);
3144
3145         trace_ext4_da_write_end(inode, pos, len, copied);
3146         start = pos & (PAGE_SIZE - 1);
3147         end = start + copied - 1;
3148
3149         /*
3150          * generic_write_end() will run mark_inode_dirty() if i_size
3151          * changes.  So let's piggyback the i_disksize mark_inode_dirty
3152          * into that.
3153          */
3154         new_i_size = pos + copied;
3155         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3156                 if (ext4_has_inline_data(inode) ||
3157                     ext4_da_should_update_i_disksize(page, end)) {
3158                         ext4_update_i_disksize(inode, new_i_size);
3159                         /* We need to mark inode dirty even if
3160                          * new_i_size is less that inode->i_size
3161                          * bu greater than i_disksize.(hint delalloc)
3162                          */
3163                         ext4_mark_inode_dirty(handle, inode);
3164                 }
3165         }
3166
3167         if (write_mode != CONVERT_INLINE_DATA &&
3168             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3169             ext4_has_inline_data(inode))
3170                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3171                                                      page);
3172         else
3173                 ret2 = generic_write_end(file, mapping, pos, len, copied,
3174                                                         page, fsdata);
3175
3176         copied = ret2;
3177         if (ret2 < 0)
3178                 ret = ret2;
3179         ret2 = ext4_journal_stop(handle);
3180         if (!ret)
3181                 ret = ret2;
3182
3183         return ret ? ret : copied;
3184 }
3185
3186 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3187                                    unsigned int length)
3188 {
3189         /*
3190          * Drop reserved blocks
3191          */
3192         BUG_ON(!PageLocked(page));
3193         if (!page_has_buffers(page))
3194                 goto out;
3195
3196         ext4_da_page_release_reservation(page, offset, length);
3197
3198 out:
3199         ext4_invalidatepage(page, offset, length);
3200
3201         return;
3202 }
3203
3204 /*
3205  * Force all delayed allocation blocks to be allocated for a given inode.
3206  */
3207 int ext4_alloc_da_blocks(struct inode *inode)
3208 {
3209         trace_ext4_alloc_da_blocks(inode);
3210
3211         if (!EXT4_I(inode)->i_reserved_data_blocks)
3212                 return 0;
3213
3214         /*
3215          * We do something simple for now.  The filemap_flush() will
3216          * also start triggering a write of the data blocks, which is
3217          * not strictly speaking necessary (and for users of
3218          * laptop_mode, not even desirable).  However, to do otherwise
3219          * would require replicating code paths in:
3220          *
3221          * ext4_writepages() ->
3222          *    write_cache_pages() ---> (via passed in callback function)
3223          *        __mpage_da_writepage() -->
3224          *           mpage_add_bh_to_extent()
3225          *           mpage_da_map_blocks()
3226          *
3227          * The problem is that write_cache_pages(), located in
3228          * mm/page-writeback.c, marks pages clean in preparation for
3229          * doing I/O, which is not desirable if we're not planning on
3230          * doing I/O at all.
3231          *
3232          * We could call write_cache_pages(), and then redirty all of
3233          * the pages by calling redirty_page_for_writepage() but that
3234          * would be ugly in the extreme.  So instead we would need to
3235          * replicate parts of the code in the above functions,
3236          * simplifying them because we wouldn't actually intend to
3237          * write out the pages, but rather only collect contiguous
3238          * logical block extents, call the multi-block allocator, and
3239          * then update the buffer heads with the block allocations.
3240          *
3241          * For now, though, we'll cheat by calling filemap_flush(),
3242          * which will map the blocks, and start the I/O, but not
3243          * actually wait for the I/O to complete.
3244          */
3245         return filemap_flush(inode->i_mapping);
3246 }
3247
3248 /*
3249  * bmap() is special.  It gets used by applications such as lilo and by
3250  * the swapper to find the on-disk block of a specific piece of data.
3251  *
3252  * Naturally, this is dangerous if the block concerned is still in the
3253  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3254  * filesystem and enables swap, then they may get a nasty shock when the
3255  * data getting swapped to that swapfile suddenly gets overwritten by
3256  * the original zero's written out previously to the journal and
3257  * awaiting writeback in the kernel's buffer cache.
3258  *
3259  * So, if we see any bmap calls here on a modified, data-journaled file,
3260  * take extra steps to flush any blocks which might be in the cache.
3261  */
3262 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3263 {
3264         struct inode *inode = mapping->host;
3265         journal_t *journal;
3266         int err;
3267
3268         /*
3269          * We can get here for an inline file via the FIBMAP ioctl
3270          */
3271         if (ext4_has_inline_data(inode))
3272                 return 0;
3273
3274         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3275                         test_opt(inode->i_sb, DELALLOC)) {
3276                 /*
3277                  * With delalloc we want to sync the file
3278                  * so that we can make sure we allocate
3279                  * blocks for file
3280                  */
3281                 filemap_write_and_wait(mapping);
3282         }
3283
3284         if (EXT4_JOURNAL(inode) &&
3285             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3286                 /*
3287                  * This is a REALLY heavyweight approach, but the use of
3288                  * bmap on dirty files is expected to be extremely rare:
3289                  * only if we run lilo or swapon on a freshly made file
3290                  * do we expect this to happen.
3291                  *
3292                  * (bmap requires CAP_SYS_RAWIO so this does not
3293                  * represent an unprivileged user DOS attack --- we'd be
3294                  * in trouble if mortal users could trigger this path at
3295                  * will.)
3296                  *
3297                  * NB. EXT4_STATE_JDATA is not set on files other than
3298                  * regular files.  If somebody wants to bmap a directory
3299                  * or symlink and gets confused because the buffer
3300                  * hasn't yet been flushed to disk, they deserve
3301                  * everything they get.
3302                  */
3303
3304                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3305                 journal = EXT4_JOURNAL(inode);
3306                 jbd2_journal_lock_updates(journal);
3307                 err = jbd2_journal_flush(journal);
3308                 jbd2_journal_unlock_updates(journal);
3309
3310                 if (err)
3311                         return 0;
3312         }
3313
3314         return generic_block_bmap(mapping, block, ext4_get_block);
3315 }
3316
3317 static int ext4_readpage(struct file *file, struct page *page)
3318 {
3319         int ret = -EAGAIN;
3320         struct inode *inode = page->mapping->host;
3321
3322         trace_ext4_readpage(page);
3323
3324         if (ext4_has_inline_data(inode))
3325                 ret = ext4_readpage_inline(inode, page);
3326
3327         if (ret == -EAGAIN)
3328                 return ext4_mpage_readpages(page->mapping, NULL, page, 1);
3329
3330         return ret;
3331 }
3332
3333 static int
3334 ext4_readpages(struct file *file, struct address_space *mapping,
3335                 struct list_head *pages, unsigned nr_pages)
3336 {
3337         struct inode *inode = mapping->host;
3338
3339         /* If the file has inline data, no need to do readpages. */
3340         if (ext4_has_inline_data(inode))
3341                 return 0;
3342
3343         return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
3344 }
3345
3346 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3347                                 unsigned int length)
3348 {
3349         trace_ext4_invalidatepage(page, offset, length);
3350
3351         /* No journalling happens on data buffers when this function is used */
3352         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3353
3354         block_invalidatepage(page, offset, length);
3355 }
3356
3357 static int __ext4_journalled_invalidatepage(struct page *page,
3358                                             unsigned int offset,
3359                                             unsigned int length)
3360 {
3361         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3362
3363         trace_ext4_journalled_invalidatepage(page, offset, length);
3364
3365         /*
3366          * If it's a full truncate we just forget about the pending dirtying
3367          */
3368         if (offset == 0 && length == PAGE_SIZE)
3369                 ClearPageChecked(page);
3370
3371         return jbd2_journal_invalidatepage(journal, page, offset, length);
3372 }
3373
3374 /* Wrapper for aops... */
3375 static void ext4_journalled_invalidatepage(struct page *page,
3376                                            unsigned int offset,
3377                                            unsigned int length)
3378 {
3379         WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3380 }
3381
3382 static int ext4_releasepage(struct page *page, gfp_t wait)
3383 {
3384         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3385
3386         trace_ext4_releasepage(page);
3387
3388         /* Page has dirty journalled data -> cannot release */
3389         if (PageChecked(page))
3390                 return 0;
3391         if (journal)
3392                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3393         else
3394                 return try_to_free_buffers(page);
3395 }
3396
3397 static bool ext4_inode_datasync_dirty(struct inode *inode)
3398 {
3399         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3400
3401         if (journal)
3402                 return !jbd2_transaction_committed(journal,
3403                                         EXT4_I(inode)->i_datasync_tid);
3404         /* Any metadata buffers to write? */
3405         if (!list_empty(&inode->i_mapping->private_list))
3406                 return true;
3407         return inode->i_state & I_DIRTY_DATASYNC;
3408 }
3409
3410 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3411                             unsigned flags, struct iomap *iomap)
3412 {
3413         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3414         unsigned int blkbits = inode->i_blkbits;
3415         unsigned long first_block = offset >> blkbits;
3416         unsigned long last_block = (offset + length - 1) >> blkbits;
3417         struct ext4_map_blocks map;
3418         bool delalloc = false;
3419         int ret;
3420
3421
3422         if (flags & IOMAP_REPORT) {
3423                 if (ext4_has_inline_data(inode)) {
3424                         ret = ext4_inline_data_iomap(inode, iomap);
3425                         if (ret != -EAGAIN) {
3426                                 if (ret == 0 && offset >= iomap->length)
3427                                         ret = -ENOENT;
3428                                 return ret;
3429                         }
3430                 }
3431         } else {
3432                 if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3433                         return -ERANGE;
3434         }
3435
3436         map.m_lblk = first_block;
3437         map.m_len = last_block - first_block + 1;
3438
3439         if (flags & IOMAP_REPORT) {
3440                 ret = ext4_map_blocks(NULL, inode, &map, 0);
3441                 if (ret < 0)
3442                         return ret;
3443
3444                 if (ret == 0) {
3445                         ext4_lblk_t end = map.m_lblk + map.m_len - 1;
3446                         struct extent_status es;
3447
3448                         ext4_es_find_delayed_extent_range(inode, map.m_lblk, end, &es);
3449
3450                         if (!es.es_len || es.es_lblk > end) {
3451                                 /* entire range is a hole */
3452                         } else if (es.es_lblk > map.m_lblk) {
3453                                 /* range starts with a hole */
3454                                 map.m_len = es.es_lblk - map.m_lblk;
3455                         } else {
3456                                 ext4_lblk_t offs = 0;
3457
3458                                 if (es.es_lblk < map.m_lblk)
3459                                         offs = map.m_lblk - es.es_lblk;
3460                                 map.m_lblk = es.es_lblk + offs;
3461                                 map.m_len = es.es_len - offs;
3462                                 delalloc = true;
3463                         }
3464                 }
3465         } else if (flags & IOMAP_WRITE) {
3466                 int dio_credits;
3467                 handle_t *handle;
3468                 int retries = 0;
3469
3470                 /* Trim mapping request to maximum we can map at once for DIO */
3471                 if (map.m_len > DIO_MAX_BLOCKS)
3472                         map.m_len = DIO_MAX_BLOCKS;
3473                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
3474 retry:
3475                 /*
3476                  * Either we allocate blocks and then we don't get unwritten
3477                  * extent so we have reserved enough credits, or the blocks
3478                  * are already allocated and unwritten and in that case
3479                  * extent conversion fits in the credits as well.
3480                  */
3481                 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
3482                                             dio_credits);
3483                 if (IS_ERR(handle))
3484                         return PTR_ERR(handle);
3485
3486                 ret = ext4_map_blocks(handle, inode, &map,
3487                                       EXT4_GET_BLOCKS_CREATE_ZERO);
3488                 if (ret < 0) {
3489                         ext4_journal_stop(handle);
3490                         if (ret == -ENOSPC &&
3491                             ext4_should_retry_alloc(inode->i_sb, &retries))
3492                                 goto retry;
3493                         return ret;
3494                 }
3495
3496                 /*
3497                  * If we added blocks beyond i_size, we need to make sure they
3498                  * will get truncated if we crash before updating i_size in
3499                  * ext4_iomap_end(). For faults we don't need to do that (and
3500                  * even cannot because for orphan list operations inode_lock is
3501                  * required) - if we happen to instantiate block beyond i_size,
3502                  * it is because we race with truncate which has already added
3503                  * the inode to the orphan list.
3504                  */
3505                 if (!(flags & IOMAP_FAULT) && first_block + map.m_len >
3506                     (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) {
3507                         int err;
3508
3509                         err = ext4_orphan_add(handle, inode);
3510                         if (err < 0) {
3511                                 ext4_journal_stop(handle);
3512                                 return err;
3513                         }
3514                 }
3515                 ext4_journal_stop(handle);
3516         } else {
3517                 ret = ext4_map_blocks(NULL, inode, &map, 0);
3518                 if (ret < 0)
3519                         return ret;
3520         }
3521
3522         iomap->flags = 0;
3523         if (ext4_inode_datasync_dirty(inode))
3524                 iomap->flags |= IOMAP_F_DIRTY;
3525         iomap->bdev = inode->i_sb->s_bdev;
3526         iomap->dax_dev = sbi->s_daxdev;
3527         iomap->offset = first_block << blkbits;
3528         iomap->length = (u64)map.m_len << blkbits;
3529
3530         if (ret == 0) {
3531                 iomap->type = delalloc ? IOMAP_DELALLOC : IOMAP_HOLE;
3532                 iomap->addr = IOMAP_NULL_ADDR;
3533         } else {
3534                 if (map.m_flags & EXT4_MAP_MAPPED) {
3535                         iomap->type = IOMAP_MAPPED;
3536                 } else if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3537                         iomap->type = IOMAP_UNWRITTEN;
3538                 } else {
3539                         WARN_ON_ONCE(1);
3540                         return -EIO;
3541                 }
3542                 iomap->addr = (u64)map.m_pblk << blkbits;
3543         }
3544
3545         if (map.m_flags & EXT4_MAP_NEW)
3546                 iomap->flags |= IOMAP_F_NEW;
3547
3548         return 0;
3549 }
3550
3551 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3552                           ssize_t written, unsigned flags, struct iomap *iomap)
3553 {
3554         int ret = 0;
3555         handle_t *handle;
3556         int blkbits = inode->i_blkbits;
3557         bool truncate = false;
3558
3559         if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT))
3560                 return 0;
3561
3562         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3563         if (IS_ERR(handle)) {
3564                 ret = PTR_ERR(handle);
3565                 goto orphan_del;
3566         }
3567         if (ext4_update_inode_size(inode, offset + written))
3568                 ext4_mark_inode_dirty(handle, inode);
3569         /*
3570          * We may need to truncate allocated but not written blocks beyond EOF.
3571          */
3572         if (iomap->offset + iomap->length > 
3573             ALIGN(inode->i_size, 1 << blkbits)) {
3574                 ext4_lblk_t written_blk, end_blk;
3575
3576                 written_blk = (offset + written) >> blkbits;
3577                 end_blk = (offset + length) >> blkbits;
3578                 if (written_blk < end_blk && ext4_can_truncate(inode))
3579                         truncate = true;
3580         }
3581         /*
3582          * Remove inode from orphan list if we were extending a inode and
3583          * everything went fine.
3584          */
3585         if (!truncate && inode->i_nlink &&
3586             !list_empty(&EXT4_I(inode)->i_orphan))
3587                 ext4_orphan_del(handle, inode);
3588         ext4_journal_stop(handle);
3589         if (truncate) {
3590                 ext4_truncate_failed_write(inode);
3591 orphan_del:
3592                 /*
3593                  * If truncate failed early the inode might still be on the
3594                  * orphan list; we need to make sure the inode is removed from
3595                  * the orphan list in that case.
3596                  */
3597                 if (inode->i_nlink)
3598                         ext4_orphan_del(NULL, inode);
3599         }
3600         return ret;
3601 }
3602
3603 const struct iomap_ops ext4_iomap_ops = {
3604         .iomap_begin            = ext4_iomap_begin,
3605         .iomap_end              = ext4_iomap_end,
3606 };
3607
3608 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3609                             ssize_t size, void *private)
3610 {
3611         ext4_io_end_t *io_end = private;
3612
3613         /* if not async direct IO just return */
3614         if (!io_end)
3615                 return 0;
3616
3617         ext_debug("ext4_end_io_dio(): io_end 0x%p "
3618                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3619                   io_end, io_end->inode->i_ino, iocb, offset, size);
3620
3621         /*
3622          * Error during AIO DIO. We cannot convert unwritten extents as the
3623          * data was not written. Just clear the unwritten flag and drop io_end.
3624          */
3625         if (size <= 0) {
3626                 ext4_clear_io_unwritten_flag(io_end);
3627                 size = 0;
3628         }
3629         io_end->offset = offset;
3630         io_end->size = size;
3631         ext4_put_io_end(io_end);
3632
3633         return 0;
3634 }
3635
3636 /*
3637  * Handling of direct IO writes.
3638  *
3639  * For ext4 extent files, ext4 will do direct-io write even to holes,
3640  * preallocated extents, and those write extend the file, no need to
3641  * fall back to buffered IO.
3642  *
3643  * For holes, we fallocate those blocks, mark them as unwritten
3644  * If those blocks were preallocated, we mark sure they are split, but
3645  * still keep the range to write as unwritten.
3646  *
3647  * The unwritten extents will be converted to written when DIO is completed.
3648  * For async direct IO, since the IO may still pending when return, we
3649  * set up an end_io call back function, which will do the conversion
3650  * when async direct IO completed.
3651  *
3652  * If the O_DIRECT write will extend the file then add this inode to the
3653  * orphan list.  So recovery will truncate it back to the original size
3654  * if the machine crashes during the write.
3655  *
3656  */
3657 static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
3658 {
3659         struct file *file = iocb->ki_filp;
3660         struct inode *inode = file->f_mapping->host;
3661         ssize_t ret;
3662         loff_t offset = iocb->ki_pos;
3663         size_t count = iov_iter_count(iter);
3664         int overwrite = 0;
3665         get_block_t *get_block_func = NULL;
3666         int dio_flags = 0;
3667         loff_t final_size = offset + count;
3668         int orphan = 0;
3669         handle_t *handle;
3670
3671         if (final_size > inode->i_size) {
3672                 /* Credits for sb + inode write */
3673                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3674                 if (IS_ERR(handle)) {
3675                         ret = PTR_ERR(handle);
3676                         goto out;
3677                 }
3678                 ret = ext4_orphan_add(handle, inode);
3679                 if (ret) {
3680                         ext4_journal_stop(handle);
3681                         goto out;
3682                 }
3683                 orphan = 1;
3684                 ext4_update_i_disksize(inode, inode->i_size);
3685                 ext4_journal_stop(handle);
3686         }
3687
3688         BUG_ON(iocb->private == NULL);
3689
3690         /*
3691          * Make all waiters for direct IO properly wait also for extent
3692          * conversion. This also disallows race between truncate() and
3693          * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3694          */
3695         inode_dio_begin(inode);
3696
3697         /* If we do a overwrite dio, i_mutex locking can be released */
3698         overwrite = *((int *)iocb->private);
3699
3700         if (overwrite)
3701                 inode_unlock(inode);
3702
3703         /*
3704          * For extent mapped files we could direct write to holes and fallocate.
3705          *
3706          * Allocated blocks to fill the hole are marked as unwritten to prevent
3707          * parallel buffered read to expose the stale data before DIO complete
3708          * the data IO.
3709          *
3710          * As to previously fallocated extents, ext4 get_block will just simply
3711          * mark the buffer mapped but still keep the extents unwritten.
3712          *
3713          * For non AIO case, we will convert those unwritten extents to written
3714          * after return back from blockdev_direct_IO. That way we save us from
3715          * allocating io_end structure and also the overhead of offloading
3716          * the extent convertion to a workqueue.
3717          *
3718          * For async DIO, the conversion needs to be deferred when the
3719          * IO is completed. The ext4 end_io callback function will be
3720          * called to take care of the conversion work.  Here for async
3721          * case, we allocate an io_end structure to hook to the iocb.
3722          */
3723         iocb->private = NULL;
3724         if (overwrite)
3725                 get_block_func = ext4_dio_get_block_overwrite;
3726         else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
3727                    round_down(offset, i_blocksize(inode)) >= inode->i_size) {
3728                 get_block_func = ext4_dio_get_block;
3729                 dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3730         } else if (is_sync_kiocb(iocb)) {
3731                 get_block_func = ext4_dio_get_block_unwritten_sync;
3732                 dio_flags = DIO_LOCKING;
3733         } else {
3734                 get_block_func = ext4_dio_get_block_unwritten_async;
3735                 dio_flags = DIO_LOCKING;
3736         }
3737         ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
3738                                    get_block_func, ext4_end_io_dio, NULL,
3739                                    dio_flags);
3740
3741         if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3742                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3743                 int err;
3744                 /*
3745                  * for non AIO case, since the IO is already
3746                  * completed, we could do the conversion right here
3747                  */
3748                 err = ext4_convert_unwritten_extents(NULL, inode,
3749                                                      offset, ret);
3750                 if (err < 0)
3751                         ret = err;
3752                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3753         }
3754
3755         inode_dio_end(inode);
3756         /* take i_mutex locking again if we do a ovewrite dio */
3757         if (overwrite)
3758                 inode_lock(inode);
3759
3760         if (ret < 0 && final_size > inode->i_size)
3761                 ext4_truncate_failed_write(inode);
3762
3763         /* Handle extending of i_size after direct IO write */
3764         if (orphan) {
3765                 int err;
3766
3767                 /* Credits for sb + inode write */
3768                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3769                 if (IS_ERR(handle)) {
3770                         /*
3771                          * We wrote the data but cannot extend
3772                          * i_size. Bail out. In async io case, we do
3773                          * not return error here because we have
3774                          * already submmitted the corresponding
3775                          * bio. Returning error here makes the caller
3776                          * think that this IO is done and failed
3777                          * resulting in race with bio's completion
3778                          * handler.
3779                          */
3780                         if (!ret)
3781                                 ret = PTR_ERR(handle);
3782                         if (inode->i_nlink)
3783                                 ext4_orphan_del(NULL, inode);
3784
3785                         goto out;
3786                 }
3787                 if (inode->i_nlink)
3788                         ext4_orphan_del(handle, inode);
3789                 if (ret > 0) {
3790                         loff_t end = offset + ret;
3791                         if (end > inode->i_size) {
3792                                 ext4_update_i_disksize(inode, end);
3793                                 i_size_write(inode, end);
3794                                 /*
3795                                  * We're going to return a positive `ret'
3796                                  * here due to non-zero-length I/O, so there's
3797                                  * no way of reporting error returns from
3798                                  * ext4_mark_inode_dirty() to userspace.  So
3799                                  * ignore it.
3800                                  */
3801                                 ext4_mark_inode_dirty(handle, inode);
3802                         }
3803                 }
3804                 err = ext4_journal_stop(handle);
3805                 if (ret == 0)
3806                         ret = err;
3807         }
3808 out:
3809         return ret;
3810 }
3811
3812 static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
3813 {
3814         struct address_space *mapping = iocb->ki_filp->f_mapping;
3815         struct inode *inode = mapping->host;
3816         size_t count = iov_iter_count(iter);
3817         ssize_t ret;
3818
3819         /*
3820          * Shared inode_lock is enough for us - it protects against concurrent
3821          * writes & truncates and since we take care of writing back page cache,
3822          * we are protected against page writeback as well.
3823          */
3824         inode_lock_shared(inode);
3825         ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
3826                                            iocb->ki_pos + count - 1);
3827         if (ret)
3828                 goto out_unlock;
3829         ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3830                                    iter, ext4_dio_get_block, NULL, NULL, 0);
3831 out_unlock:
3832         inode_unlock_shared(inode);
3833         return ret;
3834 }
3835
3836 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3837 {
3838         struct file *file = iocb->ki_filp;
3839         struct inode *inode = file->f_mapping->host;
3840         size_t count = iov_iter_count(iter);
3841         loff_t offset = iocb->ki_pos;
3842         ssize_t ret;
3843
3844 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3845         if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3846                 return 0;
3847 #endif
3848
3849         /*
3850          * If we are doing data journalling we don't support O_DIRECT
3851          */
3852         if (ext4_should_journal_data(inode))
3853                 return 0;
3854
3855         /* Let buffer I/O handle the inline data case. */
3856         if (ext4_has_inline_data(inode))
3857                 return 0;
3858
3859         /* DAX uses iomap path now */
3860         if (WARN_ON_ONCE(IS_DAX(inode)))
3861                 return 0;
3862
3863         trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3864         if (iov_iter_rw(iter) == READ)
3865                 ret = ext4_direct_IO_read(iocb, iter);
3866         else
3867                 ret = ext4_direct_IO_write(iocb, iter);
3868         trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3869         return ret;
3870 }
3871
3872 /*
3873  * Pages can be marked dirty completely asynchronously from ext4's journalling
3874  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3875  * much here because ->set_page_dirty is called under VFS locks.  The page is
3876  * not necessarily locked.
3877  *
3878  * We cannot just dirty the page and leave attached buffers clean, because the
3879  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3880  * or jbddirty because all the journalling code will explode.
3881  *
3882  * So what we do is to mark the page "pending dirty" and next time writepage
3883  * is called, propagate that into the buffers appropriately.
3884  */
3885 static int ext4_journalled_set_page_dirty(struct page *page)
3886 {
3887         SetPageChecked(page);
3888         return __set_page_dirty_nobuffers(page);
3889 }
3890
3891 static int ext4_set_page_dirty(struct page *page)
3892 {
3893         WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3894         WARN_ON_ONCE(!page_has_buffers(page));
3895         return __set_page_dirty_buffers(page);
3896 }
3897
3898 static const struct address_space_operations ext4_aops = {
3899         .readpage               = ext4_readpage,
3900         .readpages              = ext4_readpages,
3901         .writepage              = ext4_writepage,
3902         .writepages             = ext4_writepages,
3903         .write_begin            = ext4_write_begin,
3904         .write_end              = ext4_write_end,
3905         .set_page_dirty         = ext4_set_page_dirty,
3906         .bmap                   = ext4_bmap,
3907         .invalidatepage         = ext4_invalidatepage,
3908         .releasepage            = ext4_releasepage,
3909         .direct_IO              = ext4_direct_IO,
3910         .migratepage            = buffer_migrate_page,
3911         .is_partially_uptodate  = block_is_partially_uptodate,
3912         .error_remove_page      = generic_error_remove_page,
3913 };
3914
3915 static const struct address_space_operations ext4_journalled_aops = {
3916         .readpage               = ext4_readpage,
3917         .readpages              = ext4_readpages,
3918         .writepage              = ext4_writepage,
3919         .writepages             = ext4_writepages,
3920         .write_begin            = ext4_write_begin,
3921         .write_end              = ext4_journalled_write_end,
3922         .set_page_dirty         = ext4_journalled_set_page_dirty,
3923         .bmap                   = ext4_bmap,
3924         .invalidatepage         = ext4_journalled_invalidatepage,
3925         .releasepage            = ext4_releasepage,
3926         .direct_IO              = ext4_direct_IO,
3927         .is_partially_uptodate  = block_is_partially_uptodate,
3928         .error_remove_page      = generic_error_remove_page,
3929 };
3930
3931 static const struct address_space_operations ext4_da_aops = {
3932         .readpage               = ext4_readpage,
3933         .readpages              = ext4_readpages,
3934         .writepage              = ext4_writepage,
3935         .writepages             = ext4_writepages,
3936         .write_begin            = ext4_da_write_begin,
3937         .write_end              = ext4_da_write_end,
3938         .set_page_dirty         = ext4_set_page_dirty,
3939         .bmap                   = ext4_bmap,
3940         .invalidatepage         = ext4_da_invalidatepage,
3941         .releasepage            = ext4_releasepage,
3942         .direct_IO              = ext4_direct_IO,
3943         .migratepage            = buffer_migrate_page,
3944         .is_partially_uptodate  = block_is_partially_uptodate,
3945         .error_remove_page      = generic_error_remove_page,
3946 };
3947
3948 void ext4_set_aops(struct inode *inode)
3949 {
3950         switch (ext4_inode_journal_mode(inode)) {
3951         case EXT4_INODE_ORDERED_DATA_MODE:
3952         case EXT4_INODE_WRITEBACK_DATA_MODE:
3953                 break;
3954         case EXT4_INODE_JOURNAL_DATA_MODE:
3955                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3956                 return;
3957         default:
3958                 BUG();
3959         }
3960         if (test_opt(inode->i_sb, DELALLOC))
3961                 inode->i_mapping->a_ops = &ext4_da_aops;
3962         else
3963                 inode->i_mapping->a_ops = &ext4_aops;
3964 }
3965
3966 static int __ext4_block_zero_page_range(handle_t *handle,
3967                 struct address_space *mapping, loff_t from, loff_t length)
3968 {
3969         ext4_fsblk_t index = from >> PAGE_SHIFT;
3970         unsigned offset = from & (PAGE_SIZE-1);
3971         unsigned blocksize, pos;
3972         ext4_lblk_t iblock;
3973         struct inode *inode = mapping->host;
3974         struct buffer_head *bh;
3975         struct page *page;
3976         int err = 0;
3977
3978         page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3979                                    mapping_gfp_constraint(mapping, ~__GFP_FS));
3980         if (!page)
3981                 return -ENOMEM;
3982
3983         blocksize = inode->i_sb->s_blocksize;
3984
3985         iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3986
3987         if (!page_has_buffers(page))
3988                 create_empty_buffers(page, blocksize, 0);
3989
3990         /* Find the buffer that contains "offset" */
3991         bh = page_buffers(page);
3992         pos = blocksize;
3993         while (offset >= pos) {
3994                 bh = bh->b_this_page;
3995                 iblock++;
3996                 pos += blocksize;
3997         }
3998         if (buffer_freed(bh)) {
3999                 BUFFER_TRACE(bh, "freed: skip");
4000                 goto unlock;
4001         }
4002         if (!buffer_mapped(bh)) {
4003                 BUFFER_TRACE(bh, "unmapped");
4004                 ext4_get_block(inode, iblock, bh, 0);
4005                 /* unmapped? It's a hole - nothing to do */
4006                 if (!buffer_mapped(bh)) {
4007                         BUFFER_TRACE(bh, "still unmapped");
4008                         goto unlock;
4009                 }
4010         }
4011
4012         /* Ok, it's mapped. Make sure it's up-to-date */
4013         if (PageUptodate(page))
4014                 set_buffer_uptodate(bh);
4015
4016         if (!buffer_uptodate(bh)) {
4017                 err = -EIO;
4018                 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
4019                 wait_on_buffer(bh);
4020                 /* Uhhuh. Read error. Complain and punt. */
4021                 if (!buffer_uptodate(bh))
4022                         goto unlock;
4023                 if (S_ISREG(inode->i_mode) &&
4024                     ext4_encrypted_inode(inode)) {
4025                         /* We expect the key to be set. */
4026                         BUG_ON(!fscrypt_has_encryption_key(inode));
4027                         BUG_ON(blocksize != PAGE_SIZE);
4028                         WARN_ON_ONCE(fscrypt_decrypt_page(page->mapping->host,
4029                                                 page, PAGE_SIZE, 0, page->index));
4030                 }
4031         }
4032         if (ext4_should_journal_data(inode)) {
4033                 BUFFER_TRACE(bh, "get write access");
4034                 err = ext4_journal_get_write_access(handle, bh);
4035                 if (err)
4036                         goto unlock;
4037         }
4038         zero_user(page, offset, length);
4039         BUFFER_TRACE(bh, "zeroed end of block");
4040
4041         if (ext4_should_journal_data(inode)) {
4042                 err = ext4_handle_dirty_metadata(handle, inode, bh);
4043         } else {
4044                 err = 0;
4045                 mark_buffer_dirty(bh);
4046                 if (ext4_should_order_data(inode))
4047                         err = ext4_jbd2_inode_add_write(handle, inode);
4048         }
4049
4050 unlock:
4051         unlock_page(page);
4052         put_page(page);
4053         return err;
4054 }
4055
4056 /*
4057  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
4058  * starting from file offset 'from'.  The range to be zero'd must
4059  * be contained with in one block.  If the specified range exceeds
4060  * the end of the block it will be shortened to end of the block
4061  * that cooresponds to 'from'
4062  */
4063 static int ext4_block_zero_page_range(handle_t *handle,
4064                 struct address_space *mapping, loff_t from, loff_t length)
4065 {
4066         struct inode *inode = mapping->host;
4067         unsigned offset = from & (PAGE_SIZE-1);
4068         unsigned blocksize = inode->i_sb->s_blocksize;
4069         unsigned max = blocksize - (offset & (blocksize - 1));
4070
4071         /*
4072          * correct length if it does not fall between
4073          * 'from' and the end of the block
4074          */
4075         if (length > max || length < 0)
4076                 length = max;
4077
4078         if (IS_DAX(inode)) {
4079                 return iomap_zero_range(inode, from, length, NULL,
4080                                         &ext4_iomap_ops);
4081         }
4082         return __ext4_block_zero_page_range(handle, mapping, from, length);
4083 }
4084
4085 /*
4086  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
4087  * up to the end of the block which corresponds to `from'.
4088  * This required during truncate. We need to physically zero the tail end
4089  * of that block so it doesn't yield old data if the file is later grown.
4090  */
4091 static int ext4_block_truncate_page(handle_t *handle,
4092                 struct address_space *mapping, loff_t from)
4093 {
4094         unsigned offset = from & (PAGE_SIZE-1);
4095         unsigned length;
4096         unsigned blocksize;
4097         struct inode *inode = mapping->host;
4098
4099         /* If we are processing an encrypted inode during orphan list handling */
4100         if (ext4_encrypted_inode(inode) && !fscrypt_has_encryption_key(inode))
4101                 return 0;
4102
4103         blocksize = inode->i_sb->s_blocksize;
4104         length = blocksize - (offset & (blocksize - 1));
4105
4106         return ext4_block_zero_page_range(handle, mapping, from, length);
4107 }
4108
4109 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
4110                              loff_t lstart, loff_t length)
4111 {
4112         struct super_block *sb = inode->i_sb;
4113         struct address_space *mapping = inode->i_mapping;
4114         unsigned partial_start, partial_end;
4115         ext4_fsblk_t start, end;
4116         loff_t byte_end = (lstart + length - 1);
4117         int err = 0;
4118
4119         partial_start = lstart & (sb->s_blocksize - 1);
4120         partial_end = byte_end & (sb->s_blocksize - 1);
4121
4122         start = lstart >> sb->s_blocksize_bits;
4123         end = byte_end >> sb->s_blocksize_bits;
4124
4125         /* Handle partial zero within the single block */
4126         if (start == end &&
4127             (partial_start || (partial_end != sb->s_blocksize - 1))) {
4128                 err = ext4_block_zero_page_range(handle, mapping,
4129                                                  lstart, length);
4130                 return err;
4131         }
4132         /* Handle partial zero out on the start of the range */
4133         if (partial_start) {
4134                 err = ext4_block_zero_page_range(handle, mapping,
4135                                                  lstart, sb->s_blocksize);
4136                 if (err)
4137                         return err;
4138         }
4139         /* Handle partial zero out on the end of the range */
4140         if (partial_end != sb->s_blocksize - 1)
4141                 err = ext4_block_zero_page_range(handle, mapping,
4142                                                  byte_end - partial_end,
4143                                                  partial_end + 1);
4144         return err;
4145 }
4146
4147 int ext4_can_truncate(struct inode *inode)
4148 {
4149         if (S_ISREG(inode->i_mode))
4150                 return 1;
4151         if (S_ISDIR(inode->i_mode))
4152                 return 1;
4153         if (S_ISLNK(inode->i_mode))
4154                 return !ext4_inode_is_fast_symlink(inode);
4155         return 0;
4156 }
4157
4158 /*
4159  * We have to make sure i_disksize gets properly updated before we truncate
4160  * page cache due to hole punching or zero range. Otherwise i_disksize update
4161  * can get lost as it may have been postponed to submission of writeback but
4162  * that will never happen after we truncate page cache.
4163  */
4164 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
4165                                       loff_t len)
4166 {
4167         handle_t *handle;
4168         loff_t size = i_size_read(inode);
4169
4170         WARN_ON(!inode_is_locked(inode));
4171         if (offset > size || offset + len < size)
4172                 return 0;
4173
4174         if (EXT4_I(inode)->i_disksize >= size)
4175                 return 0;
4176
4177         handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
4178         if (IS_ERR(handle))
4179                 return PTR_ERR(handle);
4180         ext4_update_i_disksize(inode, size);
4181         ext4_mark_inode_dirty(handle, inode);
4182         ext4_journal_stop(handle);
4183
4184         return 0;
4185 }
4186
4187 /*
4188  * ext4_punch_hole: punches a hole in a file by releasing the blocks
4189  * associated with the given offset and length
4190  *
4191  * @inode:  File inode
4192  * @offset: The offset where the hole will begin
4193  * @len:    The length of the hole
4194  *
4195  * Returns: 0 on success or negative on failure
4196  */
4197
4198 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
4199 {
4200         struct super_block *sb = inode->i_sb;
4201         ext4_lblk_t first_block, stop_block;
4202         struct address_space *mapping = inode->i_mapping;
4203         loff_t first_block_offset, last_block_offset;
4204         handle_t *handle;
4205         unsigned int credits;
4206         int ret = 0;
4207
4208         if (!S_ISREG(inode->i_mode))
4209                 return -EOPNOTSUPP;
4210
4211         trace_ext4_punch_hole(inode, offset, length, 0);
4212
4213         /*
4214          * Write out all dirty pages to avoid race conditions
4215          * Then release them.
4216          */
4217         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4218                 ret = filemap_write_and_wait_range(mapping, offset,
4219                                                    offset + length - 1);
4220                 if (ret)
4221                         return ret;
4222         }
4223
4224         inode_lock(inode);
4225
4226         /* No need to punch hole beyond i_size */
4227         if (offset >= inode->i_size)
4228                 goto out_mutex;
4229
4230         /*
4231          * If the hole extends beyond i_size, set the hole
4232          * to end after the page that contains i_size
4233          */
4234         if (offset + length > inode->i_size) {
4235                 length = inode->i_size +
4236                    PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4237                    offset;
4238         }
4239
4240         if (offset & (sb->s_blocksize - 1) ||
4241             (offset + length) & (sb->s_blocksize - 1)) {
4242                 /*
4243                  * Attach jinode to inode for jbd2 if we do any zeroing of
4244                  * partial block
4245                  */
4246                 ret = ext4_inode_attach_jinode(inode);
4247                 if (ret < 0)
4248                         goto out_mutex;
4249
4250         }
4251
4252         /* Wait all existing dio workers, newcomers will block on i_mutex */
4253         ext4_inode_block_unlocked_dio(inode);
4254         inode_dio_wait(inode);
4255
4256         /*
4257          * Prevent page faults from reinstantiating pages we have released from
4258          * page cache.
4259          */
4260         down_write(&EXT4_I(inode)->i_mmap_sem);
4261         first_block_offset = round_up(offset, sb->s_blocksize);
4262         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4263
4264         /* Now release the pages and zero block aligned part of pages*/
4265         if (last_block_offset > first_block_offset) {
4266                 ret = ext4_update_disksize_before_punch(inode, offset, length);
4267                 if (ret)
4268                         goto out_dio;
4269                 truncate_pagecache_range(inode, first_block_offset,
4270                                          last_block_offset);
4271         }
4272
4273         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4274                 credits = ext4_writepage_trans_blocks(inode);
4275         else
4276                 credits = ext4_blocks_for_truncate(inode);
4277         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4278         if (IS_ERR(handle)) {
4279                 ret = PTR_ERR(handle);
4280                 ext4_std_error(sb, ret);
4281                 goto out_dio;
4282         }
4283
4284         ret = ext4_zero_partial_blocks(handle, inode, offset,
4285                                        length);
4286         if (ret)
4287                 goto out_stop;
4288
4289         first_block = (offset + sb->s_blocksize - 1) >>
4290                 EXT4_BLOCK_SIZE_BITS(sb);
4291         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4292
4293         /* If there are no blocks to remove, return now */
4294         if (first_block >= stop_block)
4295                 goto out_stop;
4296
4297         down_write(&EXT4_I(inode)->i_data_sem);
4298         ext4_discard_preallocations(inode);
4299
4300         ret = ext4_es_remove_extent(inode, first_block,
4301                                     stop_block - first_block);
4302         if (ret) {
4303                 up_write(&EXT4_I(inode)->i_data_sem);
4304                 goto out_stop;
4305         }
4306
4307         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4308                 ret = ext4_ext_remove_space(inode, first_block,
4309                                             stop_block - 1);
4310         else
4311                 ret = ext4_ind_remove_space(handle, inode, first_block,
4312                                             stop_block);
4313
4314         up_write(&EXT4_I(inode)->i_data_sem);
4315         if (IS_SYNC(inode))
4316                 ext4_handle_sync(handle);
4317
4318         inode->i_mtime = inode->i_ctime = current_time(inode);
4319         ext4_mark_inode_dirty(handle, inode);
4320         if (ret >= 0)
4321                 ext4_update_inode_fsync_trans(handle, inode, 1);
4322 out_stop:
4323         ext4_journal_stop(handle);
4324 out_dio:
4325         up_write(&EXT4_I(inode)->i_mmap_sem);
4326         ext4_inode_resume_unlocked_dio(inode);
4327 out_mutex:
4328         inode_unlock(inode);
4329         return ret;
4330 }
4331
4332 int ext4_inode_attach_jinode(struct inode *inode)
4333 {
4334         struct ext4_inode_info *ei = EXT4_I(inode);
4335         struct jbd2_inode *jinode;
4336
4337         if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4338                 return 0;
4339
4340         jinode = jbd2_alloc_inode(GFP_KERNEL);
4341         spin_lock(&inode->i_lock);
4342         if (!ei->jinode) {
4343                 if (!jinode) {
4344                         spin_unlock(&inode->i_lock);
4345                         return -ENOMEM;
4346                 }
4347                 ei->jinode = jinode;
4348                 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4349                 jinode = NULL;
4350         }
4351         spin_unlock(&inode->i_lock);
4352         if (unlikely(jinode != NULL))
4353                 jbd2_free_inode(jinode);
4354         return 0;
4355 }
4356
4357 /*
4358  * ext4_truncate()
4359  *
4360  * We block out ext4_get_block() block instantiations across the entire
4361  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4362  * simultaneously on behalf of the same inode.
4363  *
4364  * As we work through the truncate and commit bits of it to the journal there
4365  * is one core, guiding principle: the file's tree must always be consistent on
4366  * disk.  We must be able to restart the truncate after a crash.
4367  *
4368  * The file's tree may be transiently inconsistent in memory (although it
4369  * probably isn't), but whenever we close off and commit a journal transaction,
4370  * the contents of (the filesystem + the journal) must be consistent and
4371  * restartable.  It's pretty simple, really: bottom up, right to left (although
4372  * left-to-right works OK too).
4373  *
4374  * Note that at recovery time, journal replay occurs *before* the restart of
4375  * truncate against the orphan inode list.
4376  *
4377  * The committed inode has the new, desired i_size (which is the same as
4378  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4379  * that this inode's truncate did not complete and it will again call
4380  * ext4_truncate() to have another go.  So there will be instantiated blocks
4381  * to the right of the truncation point in a crashed ext4 filesystem.  But
4382  * that's fine - as long as they are linked from the inode, the post-crash
4383  * ext4_truncate() run will find them and release them.
4384  */
4385 int ext4_truncate(struct inode *inode)
4386 {
4387         struct ext4_inode_info *ei = EXT4_I(inode);
4388         unsigned int credits;
4389         int err = 0;
4390         handle_t *handle;
4391         struct address_space *mapping = inode->i_mapping;
4392
4393         /*
4394          * There is a possibility that we're either freeing the inode
4395          * or it's a completely new inode. In those cases we might not
4396          * have i_mutex locked because it's not necessary.
4397          */
4398         if (!(inode->i_state & (I_NEW|I_FREEING)))
4399                 WARN_ON(!inode_is_locked(inode));
4400         trace_ext4_truncate_enter(inode);
4401
4402         if (!ext4_can_truncate(inode))
4403                 return 0;
4404
4405         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4406
4407         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4408                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4409
4410         if (ext4_has_inline_data(inode)) {
4411                 int has_inline = 1;
4412
4413                 err = ext4_inline_data_truncate(inode, &has_inline);
4414                 if (err)
4415                         return err;
4416                 if (has_inline)
4417                         return 0;
4418         }
4419
4420         /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4421         if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4422                 if (ext4_inode_attach_jinode(inode) < 0)
4423                         return 0;
4424         }
4425
4426         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4427                 credits = ext4_writepage_trans_blocks(inode);
4428         else
4429                 credits = ext4_blocks_for_truncate(inode);
4430
4431         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4432         if (IS_ERR(handle))
4433                 return PTR_ERR(handle);
4434
4435         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4436                 ext4_block_truncate_page(handle, mapping, inode->i_size);
4437
4438         /*
4439          * We add the inode to the orphan list, so that if this
4440          * truncate spans multiple transactions, and we crash, we will
4441          * resume the truncate when the filesystem recovers.  It also
4442          * marks the inode dirty, to catch the new size.
4443          *
4444          * Implication: the file must always be in a sane, consistent
4445          * truncatable state while each transaction commits.
4446          */
4447         err = ext4_orphan_add(handle, inode);
4448         if (err)
4449                 goto out_stop;
4450
4451         down_write(&EXT4_I(inode)->i_data_sem);
4452
4453         ext4_discard_preallocations(inode);
4454
4455         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4456                 err = ext4_ext_truncate(handle, inode);
4457         else
4458                 ext4_ind_truncate(handle, inode);
4459
4460         up_write(&ei->i_data_sem);
4461         if (err)
4462                 goto out_stop;
4463
4464         if (IS_SYNC(inode))
4465                 ext4_handle_sync(handle);
4466
4467 out_stop:
4468         /*
4469          * If this was a simple ftruncate() and the file will remain alive,
4470          * then we need to clear up the orphan record which we created above.
4471          * However, if this was a real unlink then we were called by
4472          * ext4_evict_inode(), and we allow that function to clean up the
4473          * orphan info for us.
4474          */
4475         if (inode->i_nlink)
4476                 ext4_orphan_del(handle, inode);
4477
4478         inode->i_mtime = inode->i_ctime = current_time(inode);
4479         ext4_mark_inode_dirty(handle, inode);
4480         ext4_journal_stop(handle);
4481
4482         trace_ext4_truncate_exit(inode);
4483         return err;
4484 }
4485
4486 /*
4487  * ext4_get_inode_loc returns with an extra refcount against the inode's
4488  * underlying buffer_head on success. If 'in_mem' is true, we have all
4489  * data in memory that is needed to recreate the on-disk version of this
4490  * inode.
4491  */
4492 static int __ext4_get_inode_loc(struct inode *inode,
4493                                 struct ext4_iloc *iloc, int in_mem)
4494 {
4495         struct ext4_group_desc  *gdp;
4496         struct buffer_head      *bh;
4497         struct super_block      *sb = inode->i_sb;
4498         ext4_fsblk_t            block;
4499         int                     inodes_per_block, inode_offset;
4500
4501         iloc->bh = NULL;
4502         if (!ext4_valid_inum(sb, inode->i_ino))
4503                 return -EFSCORRUPTED;
4504
4505         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4506         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4507         if (!gdp)
4508                 return -EIO;
4509
4510         /*
4511          * Figure out the offset within the block group inode table
4512          */
4513         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4514         inode_offset = ((inode->i_ino - 1) %
4515                         EXT4_INODES_PER_GROUP(sb));
4516         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4517         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4518
4519         bh = sb_getblk(sb, block);
4520         if (unlikely(!bh))
4521                 return -ENOMEM;
4522         if (!buffer_uptodate(bh)) {
4523                 lock_buffer(bh);
4524
4525                 /*
4526                  * If the buffer has the write error flag, we have failed
4527                  * to write out another inode in the same block.  In this
4528                  * case, we don't have to read the block because we may
4529                  * read the old inode data successfully.
4530                  */
4531                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4532                         set_buffer_uptodate(bh);
4533
4534                 if (buffer_uptodate(bh)) {
4535                         /* someone brought it uptodate while we waited */
4536                         unlock_buffer(bh);
4537                         goto has_buffer;
4538                 }
4539
4540                 /*
4541                  * If we have all information of the inode in memory and this
4542                  * is the only valid inode in the block, we need not read the
4543                  * block.
4544                  */
4545                 if (in_mem) {
4546                         struct buffer_head *bitmap_bh;
4547                         int i, start;
4548
4549                         start = inode_offset & ~(inodes_per_block - 1);
4550
4551                         /* Is the inode bitmap in cache? */
4552                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4553                         if (unlikely(!bitmap_bh))
4554                                 goto make_io;
4555
4556                         /*
4557                          * If the inode bitmap isn't in cache then the
4558                          * optimisation may end up performing two reads instead
4559                          * of one, so skip it.
4560                          */
4561                         if (!buffer_uptodate(bitmap_bh)) {
4562                                 brelse(bitmap_bh);
4563                                 goto make_io;
4564                         }
4565                         for (i = start; i < start + inodes_per_block; i++) {
4566                                 if (i == inode_offset)
4567                                         continue;
4568                                 if (ext4_test_bit(i, bitmap_bh->b_data))
4569                                         break;
4570                         }
4571                         brelse(bitmap_bh);
4572                         if (i == start + inodes_per_block) {
4573                                 /* all other inodes are free, so skip I/O */
4574                                 memset(bh->b_data, 0, bh->b_size);
4575                                 set_buffer_uptodate(bh);
4576                                 unlock_buffer(bh);
4577                                 goto has_buffer;
4578                         }
4579                 }
4580
4581 make_io:
4582                 /*
4583                  * If we need to do any I/O, try to pre-readahead extra
4584                  * blocks from the inode table.
4585                  */
4586                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4587                         ext4_fsblk_t b, end, table;
4588                         unsigned num;
4589                         __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4590
4591                         table = ext4_inode_table(sb, gdp);
4592                         /* s_inode_readahead_blks is always a power of 2 */
4593                         b = block & ~((ext4_fsblk_t) ra_blks - 1);
4594                         if (table > b)
4595                                 b = table;
4596                         end = b + ra_blks;
4597                         num = EXT4_INODES_PER_GROUP(sb);
4598                         if (ext4_has_group_desc_csum(sb))
4599                                 num -= ext4_itable_unused_count(sb, gdp);
4600                         table += num / inodes_per_block;
4601                         if (end > table)
4602                                 end = table;
4603                         while (b <= end)
4604                                 sb_breadahead(sb, b++);
4605                 }
4606
4607                 /*
4608                  * There are other valid inodes in the buffer, this inode
4609                  * has in-inode xattrs, or we don't have this inode in memory.
4610                  * Read the block from disk.
4611                  */
4612                 trace_ext4_load_inode(inode);
4613                 get_bh(bh);
4614                 bh->b_end_io = end_buffer_read_sync;
4615                 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4616                 wait_on_buffer(bh);
4617                 if (!buffer_uptodate(bh)) {
4618                         EXT4_ERROR_INODE_BLOCK(inode, block,
4619                                                "unable to read itable block");
4620                         brelse(bh);
4621                         return -EIO;
4622                 }
4623         }
4624 has_buffer:
4625         iloc->bh = bh;
4626         return 0;
4627 }
4628
4629 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4630 {
4631         /* We have all inode data except xattrs in memory here. */
4632         return __ext4_get_inode_loc(inode, iloc,
4633                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4634 }
4635
4636 static bool ext4_should_use_dax(struct inode *inode)
4637 {
4638         if (!test_opt(inode->i_sb, DAX))
4639                 return false;
4640         if (!S_ISREG(inode->i_mode))
4641                 return false;
4642         if (ext4_should_journal_data(inode))
4643                 return false;
4644         if (ext4_has_inline_data(inode))
4645                 return false;
4646         if (ext4_encrypted_inode(inode))
4647                 return false;
4648         return true;
4649 }
4650
4651 void ext4_set_inode_flags(struct inode *inode)
4652 {
4653         unsigned int flags = EXT4_I(inode)->i_flags;
4654         unsigned int new_fl = 0;
4655
4656         if (flags & EXT4_SYNC_FL)
4657                 new_fl |= S_SYNC;
4658         if (flags & EXT4_APPEND_FL)
4659                 new_fl |= S_APPEND;
4660         if (flags & EXT4_IMMUTABLE_FL)
4661                 new_fl |= S_IMMUTABLE;
4662         if (flags & EXT4_NOATIME_FL)
4663                 new_fl |= S_NOATIME;
4664         if (flags & EXT4_DIRSYNC_FL)
4665                 new_fl |= S_DIRSYNC;
4666         if (ext4_should_use_dax(inode))
4667                 new_fl |= S_DAX;
4668         if (flags & EXT4_ENCRYPT_FL)
4669                 new_fl |= S_ENCRYPTED;
4670         inode_set_flags(inode, new_fl,
4671                         S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4672                         S_ENCRYPTED);
4673 }
4674
4675 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4676                                   struct ext4_inode_info *ei)
4677 {
4678         blkcnt_t i_blocks ;
4679         struct inode *inode = &(ei->vfs_inode);
4680         struct super_block *sb = inode->i_sb;
4681
4682         if (ext4_has_feature_huge_file(sb)) {
4683                 /* we are using combined 48 bit field */
4684                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4685                                         le32_to_cpu(raw_inode->i_blocks_lo);
4686                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4687                         /* i_blocks represent file system block size */
4688                         return i_blocks  << (inode->i_blkbits - 9);
4689                 } else {
4690                         return i_blocks;
4691                 }
4692         } else {
4693                 return le32_to_cpu(raw_inode->i_blocks_lo);
4694         }
4695 }
4696
4697 static inline void ext4_iget_extra_inode(struct inode *inode,
4698                                          struct ext4_inode *raw_inode,
4699                                          struct ext4_inode_info *ei)
4700 {
4701         __le32 *magic = (void *)raw_inode +
4702                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4703         if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4704             EXT4_INODE_SIZE(inode->i_sb) &&
4705             *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4706                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4707                 ext4_find_inline_data_nolock(inode);
4708         } else
4709                 EXT4_I(inode)->i_inline_off = 0;
4710 }
4711
4712 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4713 {
4714         if (!ext4_has_feature_project(inode->i_sb))
4715                 return -EOPNOTSUPP;
4716         *projid = EXT4_I(inode)->i_projid;
4717         return 0;
4718 }
4719
4720 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4721 {
4722         struct ext4_iloc iloc;
4723         struct ext4_inode *raw_inode;
4724         struct ext4_inode_info *ei;
4725         struct inode *inode;
4726         journal_t *journal = EXT4_SB(sb)->s_journal;
4727         long ret;
4728         loff_t size;
4729         int block;
4730         uid_t i_uid;
4731         gid_t i_gid;
4732         projid_t i_projid;
4733
4734         inode = iget_locked(sb, ino);
4735         if (!inode)
4736                 return ERR_PTR(-ENOMEM);
4737         if (!(inode->i_state & I_NEW))
4738                 return inode;
4739
4740         ei = EXT4_I(inode);
4741         iloc.bh = NULL;
4742
4743         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4744         if (ret < 0)
4745                 goto bad_inode;
4746         raw_inode = ext4_raw_inode(&iloc);
4747
4748         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4749                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4750                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4751                         EXT4_INODE_SIZE(inode->i_sb) ||
4752                     (ei->i_extra_isize & 3)) {
4753                         EXT4_ERROR_INODE(inode,
4754                                          "bad extra_isize %u (inode size %u)",
4755                                          ei->i_extra_isize,
4756                                          EXT4_INODE_SIZE(inode->i_sb));
4757                         ret = -EFSCORRUPTED;
4758                         goto bad_inode;
4759                 }
4760         } else
4761                 ei->i_extra_isize = 0;
4762
4763         /* Precompute checksum seed for inode metadata */
4764         if (ext4_has_metadata_csum(sb)) {
4765                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4766                 __u32 csum;
4767                 __le32 inum = cpu_to_le32(inode->i_ino);
4768                 __le32 gen = raw_inode->i_generation;
4769                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4770                                    sizeof(inum));
4771                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4772                                               sizeof(gen));
4773         }
4774
4775         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4776                 EXT4_ERROR_INODE(inode, "checksum invalid");
4777                 ret = -EFSBADCRC;
4778                 goto bad_inode;
4779         }
4780
4781         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4782         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4783         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4784         if (ext4_has_feature_project(sb) &&
4785             EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4786             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4787                 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4788         else
4789                 i_projid = EXT4_DEF_PROJID;
4790
4791         if (!(test_opt(inode->i_sb, NO_UID32))) {
4792                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4793                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4794         }
4795         i_uid_write(inode, i_uid);
4796         i_gid_write(inode, i_gid);
4797         ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4798         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4799
4800         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4801         ei->i_inline_off = 0;
4802         ei->i_dir_start_lookup = 0;
4803         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4804         /* We now have enough fields to check if the inode was active or not.
4805          * This is needed because nfsd might try to access dead inodes
4806          * the test is that same one that e2fsck uses
4807          * NeilBrown 1999oct15
4808          */
4809         if (inode->i_nlink == 0) {
4810                 if ((inode->i_mode == 0 ||
4811                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4812                     ino != EXT4_BOOT_LOADER_INO) {
4813                         /* this inode is deleted */
4814                         ret = -ESTALE;
4815                         goto bad_inode;
4816                 }
4817                 /* The only unlinked inodes we let through here have
4818                  * valid i_mode and are being read by the orphan
4819                  * recovery code: that's fine, we're about to complete
4820                  * the process of deleting those.
4821                  * OR it is the EXT4_BOOT_LOADER_INO which is
4822                  * not initialized on a new filesystem. */
4823         }
4824         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4825         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4826         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4827         if (ext4_has_feature_64bit(sb))
4828                 ei->i_file_acl |=
4829                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4830         inode->i_size = ext4_isize(sb, raw_inode);
4831         if ((size = i_size_read(inode)) < 0) {
4832                 EXT4_ERROR_INODE(inode, "bad i_size value: %lld", size);
4833                 ret = -EFSCORRUPTED;
4834                 goto bad_inode;
4835         }
4836         ei->i_disksize = inode->i_size;
4837 #ifdef CONFIG_QUOTA
4838         ei->i_reserved_quota = 0;
4839 #endif
4840         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4841         ei->i_block_group = iloc.block_group;
4842         ei->i_last_alloc_group = ~0;
4843         /*
4844          * NOTE! The in-memory inode i_data array is in little-endian order
4845          * even on big-endian machines: we do NOT byteswap the block numbers!
4846          */
4847         for (block = 0; block < EXT4_N_BLOCKS; block++)
4848                 ei->i_data[block] = raw_inode->i_block[block];
4849         INIT_LIST_HEAD(&ei->i_orphan);
4850
4851         /*
4852          * Set transaction id's of transactions that have to be committed
4853          * to finish f[data]sync. We set them to currently running transaction
4854          * as we cannot be sure that the inode or some of its metadata isn't
4855          * part of the transaction - the inode could have been reclaimed and
4856          * now it is reread from disk.
4857          */
4858         if (journal) {
4859                 transaction_t *transaction;
4860                 tid_t tid;
4861
4862                 read_lock(&journal->j_state_lock);
4863                 if (journal->j_running_transaction)
4864                         transaction = journal->j_running_transaction;
4865                 else
4866                         transaction = journal->j_committing_transaction;
4867                 if (transaction)
4868                         tid = transaction->t_tid;
4869                 else
4870                         tid = journal->j_commit_sequence;
4871                 read_unlock(&journal->j_state_lock);
4872                 ei->i_sync_tid = tid;
4873                 ei->i_datasync_tid = tid;
4874         }
4875
4876         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4877                 if (ei->i_extra_isize == 0) {
4878                         /* The extra space is currently unused. Use it. */
4879                         BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4880                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4881                                             EXT4_GOOD_OLD_INODE_SIZE;
4882                 } else {
4883                         ext4_iget_extra_inode(inode, raw_inode, ei);
4884                 }
4885         }
4886
4887         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4888         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4889         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4890         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4891
4892         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4893                 u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4894
4895                 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4896                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4897                                 ivers |=
4898                     (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4899                 }
4900                 inode_set_iversion_queried(inode, ivers);
4901         }
4902
4903         ret = 0;
4904         if (ei->i_file_acl &&
4905             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4906                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4907                                  ei->i_file_acl);
4908                 ret = -EFSCORRUPTED;
4909                 goto bad_inode;
4910         } else if (!ext4_has_inline_data(inode)) {
4911                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4912                         if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4913                             (S_ISLNK(inode->i_mode) &&
4914                              !ext4_inode_is_fast_symlink(inode))))
4915                                 /* Validate extent which is part of inode */
4916                                 ret = ext4_ext_check_inode(inode);
4917                 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4918                            (S_ISLNK(inode->i_mode) &&
4919                             !ext4_inode_is_fast_symlink(inode))) {
4920                         /* Validate block references which are part of inode */
4921                         ret = ext4_ind_check_inode(inode);
4922                 }
4923         }
4924         if (ret)
4925                 goto bad_inode;
4926
4927         if (S_ISREG(inode->i_mode)) {
4928                 inode->i_op = &ext4_file_inode_operations;
4929                 inode->i_fop = &ext4_file_operations;
4930                 ext4_set_aops(inode);
4931         } else if (S_ISDIR(inode->i_mode)) {
4932                 inode->i_op = &ext4_dir_inode_operations;
4933                 inode->i_fop = &ext4_dir_operations;
4934         } else if (S_ISLNK(inode->i_mode)) {
4935                 if (ext4_encrypted_inode(inode)) {
4936                         inode->i_op = &ext4_encrypted_symlink_inode_operations;
4937                         ext4_set_aops(inode);
4938                 } else if (ext4_inode_is_fast_symlink(inode)) {
4939                         inode->i_link = (char *)ei->i_data;
4940                         inode->i_op = &ext4_fast_symlink_inode_operations;
4941                         nd_terminate_link(ei->i_data, inode->i_size,
4942                                 sizeof(ei->i_data) - 1);
4943                 } else {
4944                         inode->i_op = &ext4_symlink_inode_operations;
4945                         ext4_set_aops(inode);
4946                 }
4947                 inode_nohighmem(inode);
4948         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4949               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4950                 inode->i_op = &ext4_special_inode_operations;
4951                 if (raw_inode->i_block[0])
4952                         init_special_inode(inode, inode->i_mode,
4953                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4954                 else
4955                         init_special_inode(inode, inode->i_mode,
4956                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4957         } else if (ino == EXT4_BOOT_LOADER_INO) {
4958                 make_bad_inode(inode);
4959         } else {
4960                 ret = -EFSCORRUPTED;
4961                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4962                 goto bad_inode;
4963         }
4964         brelse(iloc.bh);
4965         ext4_set_inode_flags(inode);
4966
4967         unlock_new_inode(inode);
4968         return inode;
4969
4970 bad_inode:
4971         brelse(iloc.bh);
4972         iget_failed(inode);
4973         return ERR_PTR(ret);
4974 }
4975
4976 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4977 {
4978         if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4979                 return ERR_PTR(-EFSCORRUPTED);
4980         return ext4_iget(sb, ino);
4981 }
4982
4983 static int ext4_inode_blocks_set(handle_t *handle,
4984                                 struct ext4_inode *raw_inode,
4985                                 struct ext4_inode_info *ei)
4986 {
4987         struct inode *inode = &(ei->vfs_inode);
4988         u64 i_blocks = inode->i_blocks;
4989         struct super_block *sb = inode->i_sb;
4990
4991         if (i_blocks <= ~0U) {
4992                 /*
4993                  * i_blocks can be represented in a 32 bit variable
4994                  * as multiple of 512 bytes
4995                  */
4996                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4997                 raw_inode->i_blocks_high = 0;
4998                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4999                 return 0;
5000         }
5001         if (!ext4_has_feature_huge_file(sb))
5002                 return -EFBIG;
5003
5004         if (i_blocks <= 0xffffffffffffULL) {
5005                 /*
5006                  * i_blocks can be represented in a 48 bit variable
5007                  * as multiple of 512 bytes
5008                  */
5009                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5010                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5011                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5012         } else {
5013                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5014                 /* i_block is stored in file system block size */
5015                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
5016                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5017                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5018         }
5019         return 0;
5020 }
5021
5022 struct other_inode {
5023         unsigned long           orig_ino;
5024         struct ext4_inode       *raw_inode;
5025 };
5026
5027 static int other_inode_match(struct inode * inode, unsigned long ino,
5028                              void *data)
5029 {
5030         struct other_inode *oi = (struct other_inode *) data;
5031
5032         if ((inode->i_ino != ino) ||
5033             (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5034                                I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
5035             ((inode->i_state & I_DIRTY_TIME) == 0))
5036                 return 0;
5037         spin_lock(&inode->i_lock);
5038         if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5039                                 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
5040             (inode->i_state & I_DIRTY_TIME)) {
5041                 struct ext4_inode_info  *ei = EXT4_I(inode);
5042
5043                 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
5044                 spin_unlock(&inode->i_lock);
5045
5046                 spin_lock(&ei->i_raw_lock);
5047                 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
5048                 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
5049                 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
5050                 ext4_inode_csum_set(inode, oi->raw_inode, ei);
5051                 spin_unlock(&ei->i_raw_lock);
5052                 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
5053                 return -1;
5054         }
5055         spin_unlock(&inode->i_lock);
5056         return -1;
5057 }
5058
5059 /*
5060  * Opportunistically update the other time fields for other inodes in
5061  * the same inode table block.
5062  */
5063 static void ext4_update_other_inodes_time(struct super_block *sb,
5064                                           unsigned long orig_ino, char *buf)
5065 {
5066         struct other_inode oi;
5067         unsigned long ino;
5068         int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5069         int inode_size = EXT4_INODE_SIZE(sb);
5070
5071         oi.orig_ino = orig_ino;
5072         /*
5073          * Calculate the first inode in the inode table block.  Inode
5074          * numbers are one-based.  That is, the first inode in a block
5075          * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5076          */
5077         ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5078         for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5079                 if (ino == orig_ino)
5080                         continue;
5081                 oi.raw_inode = (struct ext4_inode *) buf;
5082                 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
5083         }
5084 }
5085
5086 /*
5087  * Post the struct inode info into an on-disk inode location in the
5088  * buffer-cache.  This gobbles the caller's reference to the
5089  * buffer_head in the inode location struct.
5090  *
5091  * The caller must have write access to iloc->bh.
5092  */
5093 static int ext4_do_update_inode(handle_t *handle,
5094                                 struct inode *inode,
5095                                 struct ext4_iloc *iloc)
5096 {
5097         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5098         struct ext4_inode_info *ei = EXT4_I(inode);
5099         struct buffer_head *bh = iloc->bh;
5100         struct super_block *sb = inode->i_sb;
5101         int err = 0, rc, block;
5102         int need_datasync = 0, set_large_file = 0;
5103         uid_t i_uid;
5104         gid_t i_gid;
5105         projid_t i_projid;
5106
5107         spin_lock(&ei->i_raw_lock);
5108
5109         /* For fields not tracked in the in-memory inode,
5110          * initialise them to zero for new inodes. */
5111         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5112                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5113
5114         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5115         i_uid = i_uid_read(inode);
5116         i_gid = i_gid_read(inode);
5117         i_projid = from_kprojid(&init_user_ns, ei->i_projid);
5118         if (!(test_opt(inode->i_sb, NO_UID32))) {
5119                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
5120                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
5121 /*
5122  * Fix up interoperability with old kernels. Otherwise, old inodes get
5123  * re-used with the upper 16 bits of the uid/gid intact
5124  */
5125                 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
5126                         raw_inode->i_uid_high = 0;
5127                         raw_inode->i_gid_high = 0;
5128                 } else {
5129                         raw_inode->i_uid_high =
5130                                 cpu_to_le16(high_16_bits(i_uid));
5131                         raw_inode->i_gid_high =
5132                                 cpu_to_le16(high_16_bits(i_gid));
5133                 }
5134         } else {
5135                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
5136                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
5137                 raw_inode->i_uid_high = 0;
5138                 raw_inode->i_gid_high = 0;
5139         }
5140         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5141
5142         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5143         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5144         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5145         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5146
5147         err = ext4_inode_blocks_set(handle, raw_inode, ei);
5148         if (err) {
5149                 spin_unlock(&ei->i_raw_lock);
5150                 goto out_brelse;
5151         }
5152         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5153         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5154         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
5155                 raw_inode->i_file_acl_high =
5156                         cpu_to_le16(ei->i_file_acl >> 32);
5157         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5158         if (ei->i_disksize != ext4_isize(inode->i_sb, raw_inode)) {
5159                 ext4_isize_set(raw_inode, ei->i_disksize);
5160                 need_datasync = 1;
5161         }
5162         if (ei->i_disksize > 0x7fffffffULL) {
5163                 if (!ext4_has_feature_large_file(sb) ||
5164                                 EXT4_SB(sb)->s_es->s_rev_level ==
5165                     cpu_to_le32(EXT4_GOOD_OLD_REV))
5166                         set_large_file = 1;
5167         }
5168         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5169         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5170                 if (old_valid_dev(inode->i_rdev)) {
5171                         raw_inode->i_block[0] =
5172                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
5173                         raw_inode->i_block[1] = 0;
5174                 } else {
5175                         raw_inode->i_block[0] = 0;
5176                         raw_inode->i_block[1] =
5177                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
5178                         raw_inode->i_block[2] = 0;
5179                 }
5180         } else if (!ext4_has_inline_data(inode)) {
5181                 for (block = 0; block < EXT4_N_BLOCKS; block++)
5182                         raw_inode->i_block[block] = ei->i_data[block];
5183         }
5184
5185         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5186                 u64 ivers = inode_peek_iversion(inode);
5187
5188                 raw_inode->i_disk_version = cpu_to_le32(ivers);
5189                 if (ei->i_extra_isize) {
5190                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5191                                 raw_inode->i_version_hi =
5192                                         cpu_to_le32(ivers >> 32);
5193                         raw_inode->i_extra_isize =
5194                                 cpu_to_le16(ei->i_extra_isize);
5195                 }
5196         }
5197
5198         BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5199                i_projid != EXT4_DEF_PROJID);
5200
5201         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5202             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5203                 raw_inode->i_projid = cpu_to_le32(i_projid);
5204
5205         ext4_inode_csum_set(inode, raw_inode, ei);
5206         spin_unlock(&ei->i_raw_lock);
5207         if (inode->i_sb->s_flags & SB_LAZYTIME)
5208                 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5209                                               bh->b_data);
5210
5211         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5212         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5213         if (!err)
5214                 err = rc;
5215         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5216         if (set_large_file) {
5217                 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5218                 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5219                 if (err)
5220                         goto out_brelse;
5221                 ext4_update_dynamic_rev(sb);
5222                 ext4_set_feature_large_file(sb);
5223                 ext4_handle_sync(handle);
5224                 err = ext4_handle_dirty_super(handle, sb);
5225         }
5226         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5227 out_brelse:
5228         brelse(bh);
5229         ext4_std_error(inode->i_sb, err);
5230         return err;
5231 }
5232
5233 /*
5234  * ext4_write_inode()
5235  *
5236  * We are called from a few places:
5237  *
5238  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5239  *   Here, there will be no transaction running. We wait for any running
5240  *   transaction to commit.
5241  *
5242  * - Within flush work (sys_sync(), kupdate and such).
5243  *   We wait on commit, if told to.
5244  *
5245  * - Within iput_final() -> write_inode_now()
5246  *   We wait on commit, if told to.
5247  *
5248  * In all cases it is actually safe for us to return without doing anything,
5249  * because the inode has been copied into a raw inode buffer in
5250  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5251  * writeback.
5252  *
5253  * Note that we are absolutely dependent upon all inode dirtiers doing the
5254  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5255  * which we are interested.
5256  *
5257  * It would be a bug for them to not do this.  The code:
5258  *
5259  *      mark_inode_dirty(inode)
5260  *      stuff();
5261  *      inode->i_size = expr;
5262  *
5263  * is in error because write_inode() could occur while `stuff()' is running,
5264  * and the new i_size will be lost.  Plus the inode will no longer be on the
5265  * superblock's dirty inode list.
5266  */
5267 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5268 {
5269         int err;
5270
5271         if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
5272                 return 0;
5273
5274         if (EXT4_SB(inode->i_sb)->s_journal) {
5275                 if (ext4_journal_current_handle()) {
5276                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5277                         dump_stack();
5278                         return -EIO;
5279                 }
5280
5281                 /*
5282                  * No need to force transaction in WB_SYNC_NONE mode. Also
5283                  * ext4_sync_fs() will force the commit after everything is
5284                  * written.
5285                  */
5286                 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5287                         return 0;
5288
5289                 err = ext4_force_commit(inode->i_sb);
5290         } else {
5291                 struct ext4_iloc iloc;
5292
5293                 err = __ext4_get_inode_loc(inode, &iloc, 0);
5294                 if (err)
5295                         return err;
5296                 /*
5297                  * sync(2) will flush the whole buffer cache. No need to do
5298                  * it here separately for each inode.
5299                  */
5300                 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5301                         sync_dirty_buffer(iloc.bh);
5302                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5303                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5304                                          "IO error syncing inode");
5305                         err = -EIO;
5306                 }
5307                 brelse(iloc.bh);
5308         }
5309         return err;
5310 }
5311
5312 /*
5313  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5314  * buffers that are attached to a page stradding i_size and are undergoing
5315  * commit. In that case we have to wait for commit to finish and try again.
5316  */
5317 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5318 {
5319         struct page *page;
5320         unsigned offset;
5321         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5322         tid_t commit_tid = 0;
5323         int ret;
5324
5325         offset = inode->i_size & (PAGE_SIZE - 1);
5326         /*
5327          * All buffers in the last page remain valid? Then there's nothing to
5328          * do. We do the check mainly to optimize the common PAGE_SIZE ==
5329          * blocksize case
5330          */
5331         if (offset > PAGE_SIZE - i_blocksize(inode))
5332                 return;
5333         while (1) {
5334                 page = find_lock_page(inode->i_mapping,
5335                                       inode->i_size >> PAGE_SHIFT);
5336                 if (!page)
5337                         return;
5338                 ret = __ext4_journalled_invalidatepage(page, offset,
5339                                                 PAGE_SIZE - offset);
5340                 unlock_page(page);
5341                 put_page(page);
5342                 if (ret != -EBUSY)
5343                         return;
5344                 commit_tid = 0;
5345                 read_lock(&journal->j_state_lock);
5346                 if (journal->j_committing_transaction)
5347                         commit_tid = journal->j_committing_transaction->t_tid;
5348                 read_unlock(&journal->j_state_lock);
5349                 if (commit_tid)
5350                         jbd2_log_wait_commit(journal, commit_tid);
5351         }
5352 }
5353
5354 /*
5355  * ext4_setattr()
5356  *
5357  * Called from notify_change.
5358  *
5359  * We want to trap VFS attempts to truncate the file as soon as
5360  * possible.  In particular, we want to make sure that when the VFS
5361  * shrinks i_size, we put the inode on the orphan list and modify
5362  * i_disksize immediately, so that during the subsequent flushing of
5363  * dirty pages and freeing of disk blocks, we can guarantee that any
5364  * commit will leave the blocks being flushed in an unused state on
5365  * disk.  (On recovery, the inode will get truncated and the blocks will
5366  * be freed, so we have a strong guarantee that no future commit will
5367  * leave these blocks visible to the user.)
5368  *
5369  * Another thing we have to assure is that if we are in ordered mode
5370  * and inode is still attached to the committing transaction, we must
5371  * we start writeout of all the dirty pages which are being truncated.
5372  * This way we are sure that all the data written in the previous
5373  * transaction are already on disk (truncate waits for pages under
5374  * writeback).
5375  *
5376  * Called with inode->i_mutex down.
5377  */
5378 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5379 {
5380         struct inode *inode = d_inode(dentry);
5381         int error, rc = 0;
5382         int orphan = 0;
5383         const unsigned int ia_valid = attr->ia_valid;
5384
5385         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5386                 return -EIO;
5387
5388         error = setattr_prepare(dentry, attr);
5389         if (error)
5390                 return error;
5391
5392         error = fscrypt_prepare_setattr(dentry, attr);
5393         if (error)
5394                 return error;
5395
5396         if (is_quota_modification(inode, attr)) {
5397                 error = dquot_initialize(inode);
5398                 if (error)
5399                         return error;
5400         }
5401         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5402             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5403                 handle_t *handle;
5404
5405                 /* (user+group)*(old+new) structure, inode write (sb,
5406                  * inode block, ? - but truncate inode update has it) */
5407                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5408                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5409                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5410                 if (IS_ERR(handle)) {
5411                         error = PTR_ERR(handle);
5412                         goto err_out;
5413                 }
5414
5415                 /* dquot_transfer() calls back ext4_get_inode_usage() which
5416                  * counts xattr inode references.
5417                  */
5418                 down_read(&EXT4_I(inode)->xattr_sem);
5419                 error = dquot_transfer(inode, attr);
5420                 up_read(&EXT4_I(inode)->xattr_sem);
5421
5422                 if (error) {
5423                         ext4_journal_stop(handle);
5424                         return error;
5425                 }
5426                 /* Update corresponding info in inode so that everything is in
5427                  * one transaction */
5428                 if (attr->ia_valid & ATTR_UID)
5429                         inode->i_uid = attr->ia_uid;
5430                 if (attr->ia_valid & ATTR_GID)
5431                         inode->i_gid = attr->ia_gid;
5432                 error = ext4_mark_inode_dirty(handle, inode);
5433                 ext4_journal_stop(handle);
5434         }
5435
5436         if (attr->ia_valid & ATTR_SIZE) {
5437                 handle_t *handle;
5438                 loff_t oldsize = inode->i_size;
5439                 int shrink = (attr->ia_size <= inode->i_size);
5440
5441                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5442                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5443
5444                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
5445                                 return -EFBIG;
5446                 }
5447                 if (!S_ISREG(inode->i_mode))
5448                         return -EINVAL;
5449
5450                 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5451                         inode_inc_iversion(inode);
5452
5453                 if (ext4_should_order_data(inode) &&
5454                     (attr->ia_size < inode->i_size)) {
5455                         error = ext4_begin_ordered_truncate(inode,
5456                                                             attr->ia_size);
5457                         if (error)
5458                                 goto err_out;
5459                 }
5460                 if (attr->ia_size != inode->i_size) {
5461                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5462                         if (IS_ERR(handle)) {
5463                                 error = PTR_ERR(handle);
5464                                 goto err_out;
5465                         }
5466                         if (ext4_handle_valid(handle) && shrink) {
5467                                 error = ext4_orphan_add(handle, inode);
5468                                 orphan = 1;
5469                         }
5470                         /*
5471                          * Update c/mtime on truncate up, ext4_truncate() will
5472                          * update c/mtime in shrink case below
5473                          */
5474                         if (!shrink) {
5475                                 inode->i_mtime = current_time(inode);
5476                                 inode->i_ctime = inode->i_mtime;
5477                         }
5478                         down_write(&EXT4_I(inode)->i_data_sem);
5479                         EXT4_I(inode)->i_disksize = attr->ia_size;
5480                         rc = ext4_mark_inode_dirty(handle, inode);
5481                         if (!error)
5482                                 error = rc;
5483                         /*
5484                          * We have to update i_size under i_data_sem together
5485                          * with i_disksize to avoid races with writeback code
5486                          * running ext4_wb_update_i_disksize().
5487                          */
5488                         if (!error)
5489                                 i_size_write(inode, attr->ia_size);
5490                         up_write(&EXT4_I(inode)->i_data_sem);
5491                         ext4_journal_stop(handle);
5492                         if (error) {
5493                                 if (orphan)
5494                                         ext4_orphan_del(NULL, inode);
5495                                 goto err_out;
5496                         }
5497                 }
5498                 if (!shrink)
5499                         pagecache_isize_extended(inode, oldsize, inode->i_size);
5500
5501                 /*
5502                  * Blocks are going to be removed from the inode. Wait
5503                  * for dio in flight.  Temporarily disable
5504                  * dioread_nolock to prevent livelock.
5505                  */
5506                 if (orphan) {
5507                         if (!ext4_should_journal_data(inode)) {
5508                                 ext4_inode_block_unlocked_dio(inode);
5509                                 inode_dio_wait(inode);
5510                                 ext4_inode_resume_unlocked_dio(inode);
5511                         } else
5512                                 ext4_wait_for_tail_page_commit(inode);
5513                 }
5514                 down_write(&EXT4_I(inode)->i_mmap_sem);
5515                 /*
5516                  * Truncate pagecache after we've waited for commit
5517                  * in data=journal mode to make pages freeable.
5518                  */
5519                 truncate_pagecache(inode, inode->i_size);
5520                 if (shrink) {
5521                         rc = ext4_truncate(inode);
5522                         if (rc)
5523                                 error = rc;
5524                 }
5525                 up_write(&EXT4_I(inode)->i_mmap_sem);
5526         }
5527
5528         if (!error) {
5529                 setattr_copy(inode, attr);
5530                 mark_inode_dirty(inode);
5531         }
5532
5533         /*
5534          * If the call to ext4_truncate failed to get a transaction handle at
5535          * all, we need to clean up the in-core orphan list manually.
5536          */
5537         if (orphan && inode->i_nlink)
5538                 ext4_orphan_del(NULL, inode);
5539
5540         if (!error && (ia_valid & ATTR_MODE))
5541                 rc = posix_acl_chmod(inode, inode->i_mode);
5542
5543 err_out:
5544         ext4_std_error(inode->i_sb, error);
5545         if (!error)
5546                 error = rc;
5547         return error;
5548 }
5549
5550 int ext4_getattr(const struct path *path, struct kstat *stat,
5551                  u32 request_mask, unsigned int query_flags)
5552 {
5553         struct inode *inode = d_inode(path->dentry);
5554         struct ext4_inode *raw_inode;
5555         struct ext4_inode_info *ei = EXT4_I(inode);
5556         unsigned int flags;
5557
5558         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5559                 stat->result_mask |= STATX_BTIME;
5560                 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5561                 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5562         }
5563
5564         flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5565         if (flags & EXT4_APPEND_FL)
5566                 stat->attributes |= STATX_ATTR_APPEND;
5567         if (flags & EXT4_COMPR_FL)
5568                 stat->attributes |= STATX_ATTR_COMPRESSED;
5569         if (flags & EXT4_ENCRYPT_FL)
5570                 stat->attributes |= STATX_ATTR_ENCRYPTED;
5571         if (flags & EXT4_IMMUTABLE_FL)
5572                 stat->attributes |= STATX_ATTR_IMMUTABLE;
5573         if (flags & EXT4_NODUMP_FL)
5574                 stat->attributes |= STATX_ATTR_NODUMP;
5575
5576         stat->attributes_mask |= (STATX_ATTR_APPEND |
5577                                   STATX_ATTR_COMPRESSED |
5578                                   STATX_ATTR_ENCRYPTED |
5579                                   STATX_ATTR_IMMUTABLE |
5580                                   STATX_ATTR_NODUMP);
5581
5582         generic_fillattr(inode, stat);
5583         return 0;
5584 }
5585
5586 int ext4_file_getattr(const struct path *path, struct kstat *stat,
5587                       u32 request_mask, unsigned int query_flags)
5588 {
5589         struct inode *inode = d_inode(path->dentry);
5590         u64 delalloc_blocks;
5591
5592         ext4_getattr(path, stat, request_mask, query_flags);
5593
5594         /*
5595          * If there is inline data in the inode, the inode will normally not
5596          * have data blocks allocated (it may have an external xattr block).
5597          * Report at least one sector for such files, so tools like tar, rsync,
5598          * others don't incorrectly think the file is completely sparse.
5599          */
5600         if (unlikely(ext4_has_inline_data(inode)))
5601                 stat->blocks += (stat->size + 511) >> 9;
5602
5603         /*
5604          * We can't update i_blocks if the block allocation is delayed
5605          * otherwise in the case of system crash before the real block
5606          * allocation is done, we will have i_blocks inconsistent with
5607          * on-disk file blocks.
5608          * We always keep i_blocks updated together with real
5609          * allocation. But to not confuse with user, stat
5610          * will return the blocks that include the delayed allocation
5611          * blocks for this file.
5612          */
5613         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5614                                    EXT4_I(inode)->i_reserved_data_blocks);
5615         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5616         return 0;
5617 }
5618
5619 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5620                                    int pextents)
5621 {
5622         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5623                 return ext4_ind_trans_blocks(inode, lblocks);
5624         return ext4_ext_index_trans_blocks(inode, pextents);
5625 }
5626
5627 /*
5628  * Account for index blocks, block groups bitmaps and block group
5629  * descriptor blocks if modify datablocks and index blocks
5630  * worse case, the indexs blocks spread over different block groups
5631  *
5632  * If datablocks are discontiguous, they are possible to spread over
5633  * different block groups too. If they are contiguous, with flexbg,
5634  * they could still across block group boundary.
5635  *
5636  * Also account for superblock, inode, quota and xattr blocks
5637  */
5638 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5639                                   int pextents)
5640 {
5641         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5642         int gdpblocks;
5643         int idxblocks;
5644         int ret = 0;
5645
5646         /*
5647          * How many index blocks need to touch to map @lblocks logical blocks
5648          * to @pextents physical extents?
5649          */
5650         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5651
5652         ret = idxblocks;
5653
5654         /*
5655          * Now let's see how many group bitmaps and group descriptors need
5656          * to account
5657          */
5658         groups = idxblocks + pextents;
5659         gdpblocks = groups;
5660         if (groups > ngroups)
5661                 groups = ngroups;
5662         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5663                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5664
5665         /* bitmaps and block group descriptor blocks */
5666         ret += groups + gdpblocks;
5667
5668         /* Blocks for super block, inode, quota and xattr blocks */
5669         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5670
5671         return ret;
5672 }
5673
5674 /*
5675  * Calculate the total number of credits to reserve to fit
5676  * the modification of a single pages into a single transaction,
5677  * which may include multiple chunks of block allocations.
5678  *
5679  * This could be called via ext4_write_begin()
5680  *
5681  * We need to consider the worse case, when
5682  * one new block per extent.
5683  */
5684 int ext4_writepage_trans_blocks(struct inode *inode)
5685 {
5686         int bpp = ext4_journal_blocks_per_page(inode);
5687         int ret;
5688
5689         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5690
5691         /* Account for data blocks for journalled mode */
5692         if (ext4_should_journal_data(inode))
5693                 ret += bpp;
5694         return ret;
5695 }
5696
5697 /*
5698  * Calculate the journal credits for a chunk of data modification.
5699  *
5700  * This is called from DIO, fallocate or whoever calling
5701  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5702  *
5703  * journal buffers for data blocks are not included here, as DIO
5704  * and fallocate do no need to journal data buffers.
5705  */
5706 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5707 {
5708         return ext4_meta_trans_blocks(inode, nrblocks, 1);
5709 }
5710
5711 /*
5712  * The caller must have previously called ext4_reserve_inode_write().
5713  * Give this, we know that the caller already has write access to iloc->bh.
5714  */
5715 int ext4_mark_iloc_dirty(handle_t *handle,
5716                          struct inode *inode, struct ext4_iloc *iloc)
5717 {
5718         int err = 0;
5719
5720         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5721                 return -EIO;
5722
5723         if (IS_I_VERSION(inode))
5724                 inode_inc_iversion(inode);
5725
5726         /* the do_update_inode consumes one bh->b_count */
5727         get_bh(iloc->bh);
5728
5729         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5730         err = ext4_do_update_inode(handle, inode, iloc);
5731         put_bh(iloc->bh);
5732         return err;
5733 }
5734
5735 /*
5736  * On success, We end up with an outstanding reference count against
5737  * iloc->bh.  This _must_ be cleaned up later.
5738  */
5739
5740 int
5741 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5742                          struct ext4_iloc *iloc)
5743 {
5744         int err;
5745
5746         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5747                 return -EIO;
5748
5749         err = ext4_get_inode_loc(inode, iloc);
5750         if (!err) {
5751                 BUFFER_TRACE(iloc->bh, "get_write_access");
5752                 err = ext4_journal_get_write_access(handle, iloc->bh);
5753                 if (err) {
5754                         brelse(iloc->bh);
5755                         iloc->bh = NULL;
5756                 }
5757         }
5758         ext4_std_error(inode->i_sb, err);
5759         return err;
5760 }
5761
5762 static int __ext4_expand_extra_isize(struct inode *inode,
5763                                      unsigned int new_extra_isize,
5764                                      struct ext4_iloc *iloc,
5765                                      handle_t *handle, int *no_expand)
5766 {
5767         struct ext4_inode *raw_inode;
5768         struct ext4_xattr_ibody_header *header;
5769         int error;
5770
5771         raw_inode = ext4_raw_inode(iloc);
5772
5773         header = IHDR(inode, raw_inode);
5774
5775         /* No extended attributes present */
5776         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5777             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5778                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5779                        EXT4_I(inode)->i_extra_isize, 0,
5780                        new_extra_isize - EXT4_I(inode)->i_extra_isize);
5781                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5782                 return 0;
5783         }
5784
5785         /* try to expand with EAs present */
5786         error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5787                                            raw_inode, handle);
5788         if (error) {
5789                 /*
5790                  * Inode size expansion failed; don't try again
5791                  */
5792                 *no_expand = 1;
5793         }
5794
5795         return error;
5796 }
5797
5798 /*
5799  * Expand an inode by new_extra_isize bytes.
5800  * Returns 0 on success or negative error number on failure.
5801  */
5802 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5803                                           unsigned int new_extra_isize,
5804                                           struct ext4_iloc iloc,
5805                                           handle_t *handle)
5806 {
5807         int no_expand;
5808         int error;
5809
5810         if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5811                 return -EOVERFLOW;
5812
5813         /*
5814          * In nojournal mode, we can immediately attempt to expand
5815          * the inode.  When journaled, we first need to obtain extra
5816          * buffer credits since we may write into the EA block
5817          * with this same handle. If journal_extend fails, then it will
5818          * only result in a minor loss of functionality for that inode.
5819          * If this is felt to be critical, then e2fsck should be run to
5820          * force a large enough s_min_extra_isize.
5821          */
5822         if (ext4_handle_valid(handle) &&
5823             jbd2_journal_extend(handle,
5824                                 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) != 0)
5825                 return -ENOSPC;
5826
5827         if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5828                 return -EBUSY;
5829
5830         error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5831                                           handle, &no_expand);
5832         ext4_write_unlock_xattr(inode, &no_expand);
5833
5834         return error;
5835 }
5836
5837 int ext4_expand_extra_isize(struct inode *inode,
5838                             unsigned int new_extra_isize,
5839                             struct ext4_iloc *iloc)
5840 {
5841         handle_t *handle;
5842         int no_expand;
5843         int error, rc;
5844
5845         if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5846                 brelse(iloc->bh);
5847                 return -EOVERFLOW;
5848         }
5849
5850         handle = ext4_journal_start(inode, EXT4_HT_INODE,
5851                                     EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5852         if (IS_ERR(handle)) {
5853                 error = PTR_ERR(handle);
5854                 brelse(iloc->bh);
5855                 return error;
5856         }
5857
5858         ext4_write_lock_xattr(inode, &no_expand);
5859
5860         BUFFER_TRACE(iloc.bh, "get_write_access");
5861         error = ext4_journal_get_write_access(handle, iloc->bh);
5862         if (error) {
5863                 brelse(iloc->bh);
5864                 goto out_stop;
5865         }
5866
5867         error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5868                                           handle, &no_expand);
5869
5870         rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5871         if (!error)
5872                 error = rc;
5873
5874         ext4_write_unlock_xattr(inode, &no_expand);
5875 out_stop:
5876         ext4_journal_stop(handle);
5877         return error;
5878 }
5879
5880 /*
5881  * What we do here is to mark the in-core inode as clean with respect to inode
5882  * dirtiness (it may still be data-dirty).
5883  * This means that the in-core inode may be reaped by prune_icache
5884  * without having to perform any I/O.  This is a very good thing,
5885  * because *any* task may call prune_icache - even ones which
5886  * have a transaction open against a different journal.
5887  *
5888  * Is this cheating?  Not really.  Sure, we haven't written the
5889  * inode out, but prune_icache isn't a user-visible syncing function.
5890  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5891  * we start and wait on commits.
5892  */
5893 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5894 {
5895         struct ext4_iloc iloc;
5896         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5897         int err;
5898
5899         might_sleep();
5900         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5901         err = ext4_reserve_inode_write(handle, inode, &iloc);
5902         if (err)
5903                 return err;
5904
5905         if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5906                 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5907                                                iloc, handle);
5908
5909         return ext4_mark_iloc_dirty(handle, inode, &iloc);
5910 }
5911
5912 /*
5913  * ext4_dirty_inode() is called from __mark_inode_dirty()
5914  *
5915  * We're really interested in the case where a file is being extended.
5916  * i_size has been changed by generic_commit_write() and we thus need
5917  * to include the updated inode in the current transaction.
5918  *
5919  * Also, dquot_alloc_block() will always dirty the inode when blocks
5920  * are allocated to the file.
5921  *
5922  * If the inode is marked synchronous, we don't honour that here - doing
5923  * so would cause a commit on atime updates, which we don't bother doing.
5924  * We handle synchronous inodes at the highest possible level.
5925  *
5926  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
5927  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5928  * to copy into the on-disk inode structure are the timestamp files.
5929  */
5930 void ext4_dirty_inode(struct inode *inode, int flags)
5931 {
5932         handle_t *handle;
5933
5934         if (flags == I_DIRTY_TIME)
5935                 return;
5936         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5937         if (IS_ERR(handle))
5938                 goto out;
5939
5940         ext4_mark_inode_dirty(handle, inode);
5941
5942         ext4_journal_stop(handle);
5943 out:
5944         return;
5945 }
5946
5947 #if 0
5948 /*
5949  * Bind an inode's backing buffer_head into this transaction, to prevent
5950  * it from being flushed to disk early.  Unlike
5951  * ext4_reserve_inode_write, this leaves behind no bh reference and
5952  * returns no iloc structure, so the caller needs to repeat the iloc
5953  * lookup to mark the inode dirty later.
5954  */
5955 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5956 {
5957         struct ext4_iloc iloc;
5958
5959         int err = 0;
5960         if (handle) {
5961                 err = ext4_get_inode_loc(inode, &iloc);
5962                 if (!err) {
5963                         BUFFER_TRACE(iloc.bh, "get_write_access");
5964                         err = jbd2_journal_get_write_access(handle, iloc.bh);
5965                         if (!err)
5966                                 err = ext4_handle_dirty_metadata(handle,
5967                                                                  NULL,
5968                                                                  iloc.bh);
5969                         brelse(iloc.bh);
5970                 }
5971         }
5972         ext4_std_error(inode->i_sb, err);
5973         return err;
5974 }
5975 #endif
5976
5977 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5978 {
5979         journal_t *journal;
5980         handle_t *handle;
5981         int err;
5982         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5983
5984         /*
5985          * We have to be very careful here: changing a data block's
5986          * journaling status dynamically is dangerous.  If we write a
5987          * data block to the journal, change the status and then delete
5988          * that block, we risk forgetting to revoke the old log record
5989          * from the journal and so a subsequent replay can corrupt data.
5990          * So, first we make sure that the journal is empty and that
5991          * nobody is changing anything.
5992          */
5993
5994         journal = EXT4_JOURNAL(inode);
5995         if (!journal)
5996                 return 0;
5997         if (is_journal_aborted(journal))
5998                 return -EROFS;
5999
6000         /* Wait for all existing dio workers */
6001         ext4_inode_block_unlocked_dio(inode);
6002         inode_dio_wait(inode);
6003
6004         /*
6005          * Before flushing the journal and switching inode's aops, we have
6006          * to flush all dirty data the inode has. There can be outstanding
6007          * delayed allocations, there can be unwritten extents created by
6008          * fallocate or buffered writes in dioread_nolock mode covered by
6009          * dirty data which can be converted only after flushing the dirty
6010          * data (and journalled aops don't know how to handle these cases).
6011          */
6012         if (val) {
6013                 down_write(&EXT4_I(inode)->i_mmap_sem);
6014                 err = filemap_write_and_wait(inode->i_mapping);
6015                 if (err < 0) {
6016                         up_write(&EXT4_I(inode)->i_mmap_sem);
6017                         ext4_inode_resume_unlocked_dio(inode);
6018                         return err;
6019                 }
6020         }
6021
6022         percpu_down_write(&sbi->s_journal_flag_rwsem);
6023         jbd2_journal_lock_updates(journal);
6024
6025         /*
6026          * OK, there are no updates running now, and all cached data is
6027          * synced to disk.  We are now in a completely consistent state
6028          * which doesn't have anything in the journal, and we know that
6029          * no filesystem updates are running, so it is safe to modify
6030          * the inode's in-core data-journaling state flag now.
6031          */
6032
6033         if (val)
6034                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6035         else {
6036                 err = jbd2_journal_flush(journal);
6037                 if (err < 0) {
6038                         jbd2_journal_unlock_updates(journal);
6039                         percpu_up_write(&sbi->s_journal_flag_rwsem);
6040                         ext4_inode_resume_unlocked_dio(inode);
6041                         return err;
6042                 }
6043                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6044         }
6045         ext4_set_aops(inode);
6046
6047         jbd2_journal_unlock_updates(journal);
6048         percpu_up_write(&sbi->s_journal_flag_rwsem);
6049
6050         if (val)
6051                 up_write(&EXT4_I(inode)->i_mmap_sem);
6052         ext4_inode_resume_unlocked_dio(inode);
6053
6054         /* Finally we can mark the inode as dirty. */
6055
6056         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6057         if (IS_ERR(handle))
6058                 return PTR_ERR(handle);
6059
6060         err = ext4_mark_inode_dirty(handle, inode);
6061         ext4_handle_sync(handle);
6062         ext4_journal_stop(handle);
6063         ext4_std_error(inode->i_sb, err);
6064
6065         return err;
6066 }
6067
6068 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
6069 {
6070         return !buffer_mapped(bh);
6071 }
6072
6073 int ext4_page_mkwrite(struct vm_fault *vmf)
6074 {
6075         struct vm_area_struct *vma = vmf->vma;
6076         struct page *page = vmf->page;
6077         loff_t size;
6078         unsigned long len;
6079         int ret;
6080         struct file *file = vma->vm_file;
6081         struct inode *inode = file_inode(file);
6082         struct address_space *mapping = inode->i_mapping;
6083         handle_t *handle;
6084         get_block_t *get_block;
6085         int retries = 0;
6086
6087         sb_start_pagefault(inode->i_sb);
6088         file_update_time(vma->vm_file);
6089
6090         down_read(&EXT4_I(inode)->i_mmap_sem);
6091
6092         ret = ext4_convert_inline_data(inode);
6093         if (ret)
6094                 goto out_ret;
6095
6096         /* Delalloc case is easy... */
6097         if (test_opt(inode->i_sb, DELALLOC) &&
6098             !ext4_should_journal_data(inode) &&
6099             !ext4_nonda_switch(inode->i_sb)) {
6100                 do {
6101                         ret = block_page_mkwrite(vma, vmf,
6102                                                    ext4_da_get_block_prep);
6103                 } while (ret == -ENOSPC &&
6104                        ext4_should_retry_alloc(inode->i_sb, &retries));
6105                 goto out_ret;
6106         }
6107
6108         lock_page(page);
6109         size = i_size_read(inode);
6110         /* Page got truncated from under us? */
6111         if (page->mapping != mapping || page_offset(page) > size) {
6112                 unlock_page(page);
6113                 ret = VM_FAULT_NOPAGE;
6114                 goto out;
6115         }
6116
6117         if (page->index == size >> PAGE_SHIFT)
6118                 len = size & ~PAGE_MASK;
6119         else
6120                 len = PAGE_SIZE;
6121         /*
6122          * Return if we have all the buffers mapped. This avoids the need to do
6123          * journal_start/journal_stop which can block and take a long time
6124          */
6125         if (page_has_buffers(page)) {
6126                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
6127                                             0, len, NULL,
6128                                             ext4_bh_unmapped)) {
6129                         /* Wait so that we don't change page under IO */
6130                         wait_for_stable_page(page);
6131                         ret = VM_FAULT_LOCKED;
6132                         goto out;
6133                 }
6134         }
6135         unlock_page(page);
6136         /* OK, we need to fill the hole... */
6137         if (ext4_should_dioread_nolock(inode))
6138                 get_block = ext4_get_block_unwritten;
6139         else
6140                 get_block = ext4_get_block;
6141 retry_alloc:
6142         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6143                                     ext4_writepage_trans_blocks(inode));
6144         if (IS_ERR(handle)) {
6145                 ret = VM_FAULT_SIGBUS;
6146                 goto out;
6147         }
6148         ret = block_page_mkwrite(vma, vmf, get_block);
6149         if (!ret && ext4_should_journal_data(inode)) {
6150                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
6151                           PAGE_SIZE, NULL, do_journal_get_write_access)) {
6152                         unlock_page(page);
6153                         ret = VM_FAULT_SIGBUS;
6154                         ext4_journal_stop(handle);
6155                         goto out;
6156                 }
6157                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6158         }
6159         ext4_journal_stop(handle);
6160         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6161                 goto retry_alloc;
6162 out_ret:
6163         ret = block_page_mkwrite_return(ret);
6164 out:
6165         up_read(&EXT4_I(inode)->i_mmap_sem);
6166         sb_end_pagefault(inode->i_sb);
6167         return ret;
6168 }
6169
6170 int ext4_filemap_fault(struct vm_fault *vmf)
6171 {
6172         struct inode *inode = file_inode(vmf->vma->vm_file);
6173         int err;
6174
6175         down_read(&EXT4_I(inode)->i_mmap_sem);
6176         err = filemap_fault(vmf);
6177         up_read(&EXT4_I(inode)->i_mmap_sem);
6178
6179         return err;
6180 }