Merge tag 'clk-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / fs / ext4 / inode.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  64-bit file support on 64-bit platforms by Jakub Jelinek
17  *      (jj@sunsite.ms.mff.cuni.cz)
18  *
19  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20  */
21
22 #include <linux/fs.h>
23 #include <linux/mount.h>
24 #include <linux/time.h>
25 #include <linux/highuid.h>
26 #include <linux/pagemap.h>
27 #include <linux/dax.h>
28 #include <linux/quotaops.h>
29 #include <linux/string.h>
30 #include <linux/buffer_head.h>
31 #include <linux/writeback.h>
32 #include <linux/pagevec.h>
33 #include <linux/mpage.h>
34 #include <linux/namei.h>
35 #include <linux/uio.h>
36 #include <linux/bio.h>
37 #include <linux/workqueue.h>
38 #include <linux/kernel.h>
39 #include <linux/printk.h>
40 #include <linux/slab.h>
41 #include <linux/bitops.h>
42 #include <linux/iomap.h>
43 #include <linux/iversion.h>
44
45 #include "ext4_jbd2.h"
46 #include "xattr.h"
47 #include "acl.h"
48 #include "truncate.h"
49
50 #include <trace/events/ext4.h>
51
52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53                               struct ext4_inode_info *ei)
54 {
55         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
56         __u32 csum;
57         __u16 dummy_csum = 0;
58         int offset = offsetof(struct ext4_inode, i_checksum_lo);
59         unsigned int csum_size = sizeof(dummy_csum);
60
61         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
62         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
63         offset += csum_size;
64         csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
65                            EXT4_GOOD_OLD_INODE_SIZE - offset);
66
67         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
68                 offset = offsetof(struct ext4_inode, i_checksum_hi);
69                 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
70                                    EXT4_GOOD_OLD_INODE_SIZE,
71                                    offset - EXT4_GOOD_OLD_INODE_SIZE);
72                 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
73                         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
74                                            csum_size);
75                         offset += csum_size;
76                 }
77                 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
78                                    EXT4_INODE_SIZE(inode->i_sb) - offset);
79         }
80
81         return csum;
82 }
83
84 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
85                                   struct ext4_inode_info *ei)
86 {
87         __u32 provided, calculated;
88
89         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
90             cpu_to_le32(EXT4_OS_LINUX) ||
91             !ext4_has_metadata_csum(inode->i_sb))
92                 return 1;
93
94         provided = le16_to_cpu(raw->i_checksum_lo);
95         calculated = ext4_inode_csum(inode, raw, ei);
96         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
97             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
98                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
99         else
100                 calculated &= 0xFFFF;
101
102         return provided == calculated;
103 }
104
105 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
106                          struct ext4_inode_info *ei)
107 {
108         __u32 csum;
109
110         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
111             cpu_to_le32(EXT4_OS_LINUX) ||
112             !ext4_has_metadata_csum(inode->i_sb))
113                 return;
114
115         csum = ext4_inode_csum(inode, raw, ei);
116         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
117         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
118             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
119                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
120 }
121
122 static inline int ext4_begin_ordered_truncate(struct inode *inode,
123                                               loff_t new_size)
124 {
125         trace_ext4_begin_ordered_truncate(inode, new_size);
126         /*
127          * If jinode is zero, then we never opened the file for
128          * writing, so there's no need to call
129          * jbd2_journal_begin_ordered_truncate() since there's no
130          * outstanding writes we need to flush.
131          */
132         if (!EXT4_I(inode)->jinode)
133                 return 0;
134         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
135                                                    EXT4_I(inode)->jinode,
136                                                    new_size);
137 }
138
139 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
140 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
141                                   int pextents);
142
143 /*
144  * Test whether an inode is a fast symlink.
145  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
146  */
147 int ext4_inode_is_fast_symlink(struct inode *inode)
148 {
149         if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
150                 int ea_blocks = EXT4_I(inode)->i_file_acl ?
151                                 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
152
153                 if (ext4_has_inline_data(inode))
154                         return 0;
155
156                 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
157         }
158         return S_ISLNK(inode->i_mode) && inode->i_size &&
159                (inode->i_size < EXT4_N_BLOCKS * 4);
160 }
161
162 /*
163  * Called at the last iput() if i_nlink is zero.
164  */
165 void ext4_evict_inode(struct inode *inode)
166 {
167         handle_t *handle;
168         int err;
169         /*
170          * Credits for final inode cleanup and freeing:
171          * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
172          * (xattr block freeing), bitmap, group descriptor (inode freeing)
173          */
174         int extra_credits = 6;
175         struct ext4_xattr_inode_array *ea_inode_array = NULL;
176         bool freeze_protected = false;
177
178         trace_ext4_evict_inode(inode);
179
180         if (inode->i_nlink) {
181                 /*
182                  * When journalling data dirty buffers are tracked only in the
183                  * journal. So although mm thinks everything is clean and
184                  * ready for reaping the inode might still have some pages to
185                  * write in the running transaction or waiting to be
186                  * checkpointed. Thus calling jbd2_journal_invalidate_folio()
187                  * (via truncate_inode_pages()) to discard these buffers can
188                  * cause data loss. Also even if we did not discard these
189                  * buffers, we would have no way to find them after the inode
190                  * is reaped and thus user could see stale data if he tries to
191                  * read them before the transaction is checkpointed. So be
192                  * careful and force everything to disk here... We use
193                  * ei->i_datasync_tid to store the newest transaction
194                  * containing inode's data.
195                  *
196                  * Note that directories do not have this problem because they
197                  * don't use page cache.
198                  */
199                 if (inode->i_ino != EXT4_JOURNAL_INO &&
200                     ext4_should_journal_data(inode) &&
201                     S_ISREG(inode->i_mode) && inode->i_data.nrpages) {
202                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
203                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
204
205                         jbd2_complete_transaction(journal, commit_tid);
206                         filemap_write_and_wait(&inode->i_data);
207                 }
208                 truncate_inode_pages_final(&inode->i_data);
209
210                 goto no_delete;
211         }
212
213         if (is_bad_inode(inode))
214                 goto no_delete;
215         dquot_initialize(inode);
216
217         if (ext4_should_order_data(inode))
218                 ext4_begin_ordered_truncate(inode, 0);
219         truncate_inode_pages_final(&inode->i_data);
220
221         /*
222          * For inodes with journalled data, transaction commit could have
223          * dirtied the inode. Flush worker is ignoring it because of I_FREEING
224          * flag but we still need to remove the inode from the writeback lists.
225          */
226         if (!list_empty_careful(&inode->i_io_list)) {
227                 WARN_ON_ONCE(!ext4_should_journal_data(inode));
228                 inode_io_list_del(inode);
229         }
230
231         /*
232          * Protect us against freezing - iput() caller didn't have to have any
233          * protection against it. When we are in a running transaction though,
234          * we are already protected against freezing and we cannot grab further
235          * protection due to lock ordering constraints.
236          */
237         if (!ext4_journal_current_handle()) {
238                 sb_start_intwrite(inode->i_sb);
239                 freeze_protected = true;
240         }
241
242         if (!IS_NOQUOTA(inode))
243                 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
244
245         /*
246          * Block bitmap, group descriptor, and inode are accounted in both
247          * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
248          */
249         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
250                          ext4_blocks_for_truncate(inode) + extra_credits - 3);
251         if (IS_ERR(handle)) {
252                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
253                 /*
254                  * If we're going to skip the normal cleanup, we still need to
255                  * make sure that the in-core orphan linked list is properly
256                  * cleaned up.
257                  */
258                 ext4_orphan_del(NULL, inode);
259                 if (freeze_protected)
260                         sb_end_intwrite(inode->i_sb);
261                 goto no_delete;
262         }
263
264         if (IS_SYNC(inode))
265                 ext4_handle_sync(handle);
266
267         /*
268          * Set inode->i_size to 0 before calling ext4_truncate(). We need
269          * special handling of symlinks here because i_size is used to
270          * determine whether ext4_inode_info->i_data contains symlink data or
271          * block mappings. Setting i_size to 0 will remove its fast symlink
272          * status. Erase i_data so that it becomes a valid empty block map.
273          */
274         if (ext4_inode_is_fast_symlink(inode))
275                 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
276         inode->i_size = 0;
277         err = ext4_mark_inode_dirty(handle, inode);
278         if (err) {
279                 ext4_warning(inode->i_sb,
280                              "couldn't mark inode dirty (err %d)", err);
281                 goto stop_handle;
282         }
283         if (inode->i_blocks) {
284                 err = ext4_truncate(inode);
285                 if (err) {
286                         ext4_error_err(inode->i_sb, -err,
287                                        "couldn't truncate inode %lu (err %d)",
288                                        inode->i_ino, err);
289                         goto stop_handle;
290                 }
291         }
292
293         /* Remove xattr references. */
294         err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
295                                       extra_credits);
296         if (err) {
297                 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
298 stop_handle:
299                 ext4_journal_stop(handle);
300                 ext4_orphan_del(NULL, inode);
301                 if (freeze_protected)
302                         sb_end_intwrite(inode->i_sb);
303                 ext4_xattr_inode_array_free(ea_inode_array);
304                 goto no_delete;
305         }
306
307         /*
308          * Kill off the orphan record which ext4_truncate created.
309          * AKPM: I think this can be inside the above `if'.
310          * Note that ext4_orphan_del() has to be able to cope with the
311          * deletion of a non-existent orphan - this is because we don't
312          * know if ext4_truncate() actually created an orphan record.
313          * (Well, we could do this if we need to, but heck - it works)
314          */
315         ext4_orphan_del(handle, inode);
316         EXT4_I(inode)->i_dtime  = (__u32)ktime_get_real_seconds();
317
318         /*
319          * One subtle ordering requirement: if anything has gone wrong
320          * (transaction abort, IO errors, whatever), then we can still
321          * do these next steps (the fs will already have been marked as
322          * having errors), but we can't free the inode if the mark_dirty
323          * fails.
324          */
325         if (ext4_mark_inode_dirty(handle, inode))
326                 /* If that failed, just do the required in-core inode clear. */
327                 ext4_clear_inode(inode);
328         else
329                 ext4_free_inode(handle, inode);
330         ext4_journal_stop(handle);
331         if (freeze_protected)
332                 sb_end_intwrite(inode->i_sb);
333         ext4_xattr_inode_array_free(ea_inode_array);
334         return;
335 no_delete:
336         if (!list_empty(&EXT4_I(inode)->i_fc_list))
337                 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM, NULL);
338         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
339 }
340
341 #ifdef CONFIG_QUOTA
342 qsize_t *ext4_get_reserved_space(struct inode *inode)
343 {
344         return &EXT4_I(inode)->i_reserved_quota;
345 }
346 #endif
347
348 /*
349  * Called with i_data_sem down, which is important since we can call
350  * ext4_discard_preallocations() from here.
351  */
352 void ext4_da_update_reserve_space(struct inode *inode,
353                                         int used, int quota_claim)
354 {
355         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
356         struct ext4_inode_info *ei = EXT4_I(inode);
357
358         spin_lock(&ei->i_block_reservation_lock);
359         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
360         if (unlikely(used > ei->i_reserved_data_blocks)) {
361                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
362                          "with only %d reserved data blocks",
363                          __func__, inode->i_ino, used,
364                          ei->i_reserved_data_blocks);
365                 WARN_ON(1);
366                 used = ei->i_reserved_data_blocks;
367         }
368
369         /* Update per-inode reservations */
370         ei->i_reserved_data_blocks -= used;
371         percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
372
373         spin_unlock(&ei->i_block_reservation_lock);
374
375         /* Update quota subsystem for data blocks */
376         if (quota_claim)
377                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
378         else {
379                 /*
380                  * We did fallocate with an offset that is already delayed
381                  * allocated. So on delayed allocated writeback we should
382                  * not re-claim the quota for fallocated blocks.
383                  */
384                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
385         }
386
387         /*
388          * If we have done all the pending block allocations and if
389          * there aren't any writers on the inode, we can discard the
390          * inode's preallocations.
391          */
392         if ((ei->i_reserved_data_blocks == 0) &&
393             !inode_is_open_for_write(inode))
394                 ext4_discard_preallocations(inode, 0);
395 }
396
397 static int __check_block_validity(struct inode *inode, const char *func,
398                                 unsigned int line,
399                                 struct ext4_map_blocks *map)
400 {
401         if (ext4_has_feature_journal(inode->i_sb) &&
402             (inode->i_ino ==
403              le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
404                 return 0;
405         if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
406                 ext4_error_inode(inode, func, line, map->m_pblk,
407                                  "lblock %lu mapped to illegal pblock %llu "
408                                  "(length %d)", (unsigned long) map->m_lblk,
409                                  map->m_pblk, map->m_len);
410                 return -EFSCORRUPTED;
411         }
412         return 0;
413 }
414
415 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
416                        ext4_lblk_t len)
417 {
418         int ret;
419
420         if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
421                 return fscrypt_zeroout_range(inode, lblk, pblk, len);
422
423         ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
424         if (ret > 0)
425                 ret = 0;
426
427         return ret;
428 }
429
430 #define check_block_validity(inode, map)        \
431         __check_block_validity((inode), __func__, __LINE__, (map))
432
433 #ifdef ES_AGGRESSIVE_TEST
434 static void ext4_map_blocks_es_recheck(handle_t *handle,
435                                        struct inode *inode,
436                                        struct ext4_map_blocks *es_map,
437                                        struct ext4_map_blocks *map,
438                                        int flags)
439 {
440         int retval;
441
442         map->m_flags = 0;
443         /*
444          * There is a race window that the result is not the same.
445          * e.g. xfstests #223 when dioread_nolock enables.  The reason
446          * is that we lookup a block mapping in extent status tree with
447          * out taking i_data_sem.  So at the time the unwritten extent
448          * could be converted.
449          */
450         down_read(&EXT4_I(inode)->i_data_sem);
451         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
452                 retval = ext4_ext_map_blocks(handle, inode, map, 0);
453         } else {
454                 retval = ext4_ind_map_blocks(handle, inode, map, 0);
455         }
456         up_read((&EXT4_I(inode)->i_data_sem));
457
458         /*
459          * We don't check m_len because extent will be collpased in status
460          * tree.  So the m_len might not equal.
461          */
462         if (es_map->m_lblk != map->m_lblk ||
463             es_map->m_flags != map->m_flags ||
464             es_map->m_pblk != map->m_pblk) {
465                 printk("ES cache assertion failed for inode: %lu "
466                        "es_cached ex [%d/%d/%llu/%x] != "
467                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
468                        inode->i_ino, es_map->m_lblk, es_map->m_len,
469                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
470                        map->m_len, map->m_pblk, map->m_flags,
471                        retval, flags);
472         }
473 }
474 #endif /* ES_AGGRESSIVE_TEST */
475
476 /*
477  * The ext4_map_blocks() function tries to look up the requested blocks,
478  * and returns if the blocks are already mapped.
479  *
480  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
481  * and store the allocated blocks in the result buffer head and mark it
482  * mapped.
483  *
484  * If file type is extents based, it will call ext4_ext_map_blocks(),
485  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
486  * based files
487  *
488  * On success, it returns the number of blocks being mapped or allocated.  if
489  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
490  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
491  *
492  * It returns 0 if plain look up failed (blocks have not been allocated), in
493  * that case, @map is returned as unmapped but we still do fill map->m_len to
494  * indicate the length of a hole starting at map->m_lblk.
495  *
496  * It returns the error in case of allocation failure.
497  */
498 int ext4_map_blocks(handle_t *handle, struct inode *inode,
499                     struct ext4_map_blocks *map, int flags)
500 {
501         struct extent_status es;
502         int retval;
503         int ret = 0;
504 #ifdef ES_AGGRESSIVE_TEST
505         struct ext4_map_blocks orig_map;
506
507         memcpy(&orig_map, map, sizeof(*map));
508 #endif
509
510         map->m_flags = 0;
511         ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
512                   flags, map->m_len, (unsigned long) map->m_lblk);
513
514         /*
515          * ext4_map_blocks returns an int, and m_len is an unsigned int
516          */
517         if (unlikely(map->m_len > INT_MAX))
518                 map->m_len = INT_MAX;
519
520         /* We can handle the block number less than EXT_MAX_BLOCKS */
521         if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
522                 return -EFSCORRUPTED;
523
524         /* Lookup extent status tree firstly */
525         if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) &&
526             ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
527                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
528                         map->m_pblk = ext4_es_pblock(&es) +
529                                         map->m_lblk - es.es_lblk;
530                         map->m_flags |= ext4_es_is_written(&es) ?
531                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
532                         retval = es.es_len - (map->m_lblk - es.es_lblk);
533                         if (retval > map->m_len)
534                                 retval = map->m_len;
535                         map->m_len = retval;
536                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
537                         map->m_pblk = 0;
538                         retval = es.es_len - (map->m_lblk - es.es_lblk);
539                         if (retval > map->m_len)
540                                 retval = map->m_len;
541                         map->m_len = retval;
542                         retval = 0;
543                 } else {
544                         BUG();
545                 }
546
547                 if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
548                         return retval;
549 #ifdef ES_AGGRESSIVE_TEST
550                 ext4_map_blocks_es_recheck(handle, inode, map,
551                                            &orig_map, flags);
552 #endif
553                 goto found;
554         }
555         /*
556          * In the query cache no-wait mode, nothing we can do more if we
557          * cannot find extent in the cache.
558          */
559         if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
560                 return 0;
561
562         /*
563          * Try to see if we can get the block without requesting a new
564          * file system block.
565          */
566         down_read(&EXT4_I(inode)->i_data_sem);
567         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
568                 retval = ext4_ext_map_blocks(handle, inode, map, 0);
569         } else {
570                 retval = ext4_ind_map_blocks(handle, inode, map, 0);
571         }
572         if (retval > 0) {
573                 unsigned int status;
574
575                 if (unlikely(retval != map->m_len)) {
576                         ext4_warning(inode->i_sb,
577                                      "ES len assertion failed for inode "
578                                      "%lu: retval %d != map->m_len %d",
579                                      inode->i_ino, retval, map->m_len);
580                         WARN_ON(1);
581                 }
582
583                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
584                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
585                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
586                     !(status & EXTENT_STATUS_WRITTEN) &&
587                     ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
588                                        map->m_lblk + map->m_len - 1))
589                         status |= EXTENT_STATUS_DELAYED;
590                 ret = ext4_es_insert_extent(inode, map->m_lblk,
591                                             map->m_len, map->m_pblk, status);
592                 if (ret < 0)
593                         retval = ret;
594         }
595         up_read((&EXT4_I(inode)->i_data_sem));
596
597 found:
598         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
599                 ret = check_block_validity(inode, map);
600                 if (ret != 0)
601                         return ret;
602         }
603
604         /* If it is only a block(s) look up */
605         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
606                 return retval;
607
608         /*
609          * Returns if the blocks have already allocated
610          *
611          * Note that if blocks have been preallocated
612          * ext4_ext_get_block() returns the create = 0
613          * with buffer head unmapped.
614          */
615         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
616                 /*
617                  * If we need to convert extent to unwritten
618                  * we continue and do the actual work in
619                  * ext4_ext_map_blocks()
620                  */
621                 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
622                         return retval;
623
624         /*
625          * Here we clear m_flags because after allocating an new extent,
626          * it will be set again.
627          */
628         map->m_flags &= ~EXT4_MAP_FLAGS;
629
630         /*
631          * New blocks allocate and/or writing to unwritten extent
632          * will possibly result in updating i_data, so we take
633          * the write lock of i_data_sem, and call get_block()
634          * with create == 1 flag.
635          */
636         down_write(&EXT4_I(inode)->i_data_sem);
637
638         /*
639          * We need to check for EXT4 here because migrate
640          * could have changed the inode type in between
641          */
642         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
643                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
644         } else {
645                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
646
647                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
648                         /*
649                          * We allocated new blocks which will result in
650                          * i_data's format changing.  Force the migrate
651                          * to fail by clearing migrate flags
652                          */
653                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
654                 }
655
656                 /*
657                  * Update reserved blocks/metadata blocks after successful
658                  * block allocation which had been deferred till now. We don't
659                  * support fallocate for non extent files. So we can update
660                  * reserve space here.
661                  */
662                 if ((retval > 0) &&
663                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
664                         ext4_da_update_reserve_space(inode, retval, 1);
665         }
666
667         if (retval > 0) {
668                 unsigned int status;
669
670                 if (unlikely(retval != map->m_len)) {
671                         ext4_warning(inode->i_sb,
672                                      "ES len assertion failed for inode "
673                                      "%lu: retval %d != map->m_len %d",
674                                      inode->i_ino, retval, map->m_len);
675                         WARN_ON(1);
676                 }
677
678                 /*
679                  * We have to zeroout blocks before inserting them into extent
680                  * status tree. Otherwise someone could look them up there and
681                  * use them before they are really zeroed. We also have to
682                  * unmap metadata before zeroing as otherwise writeback can
683                  * overwrite zeros with stale data from block device.
684                  */
685                 if (flags & EXT4_GET_BLOCKS_ZERO &&
686                     map->m_flags & EXT4_MAP_MAPPED &&
687                     map->m_flags & EXT4_MAP_NEW) {
688                         ret = ext4_issue_zeroout(inode, map->m_lblk,
689                                                  map->m_pblk, map->m_len);
690                         if (ret) {
691                                 retval = ret;
692                                 goto out_sem;
693                         }
694                 }
695
696                 /*
697                  * If the extent has been zeroed out, we don't need to update
698                  * extent status tree.
699                  */
700                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
701                     ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
702                         if (ext4_es_is_written(&es))
703                                 goto out_sem;
704                 }
705                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
706                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
707                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
708                     !(status & EXTENT_STATUS_WRITTEN) &&
709                     ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
710                                        map->m_lblk + map->m_len - 1))
711                         status |= EXTENT_STATUS_DELAYED;
712                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
713                                             map->m_pblk, status);
714                 if (ret < 0) {
715                         retval = ret;
716                         goto out_sem;
717                 }
718         }
719
720 out_sem:
721         up_write((&EXT4_I(inode)->i_data_sem));
722         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
723                 ret = check_block_validity(inode, map);
724                 if (ret != 0)
725                         return ret;
726
727                 /*
728                  * Inodes with freshly allocated blocks where contents will be
729                  * visible after transaction commit must be on transaction's
730                  * ordered data list.
731                  */
732                 if (map->m_flags & EXT4_MAP_NEW &&
733                     !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
734                     !(flags & EXT4_GET_BLOCKS_ZERO) &&
735                     !ext4_is_quota_file(inode) &&
736                     ext4_should_order_data(inode)) {
737                         loff_t start_byte =
738                                 (loff_t)map->m_lblk << inode->i_blkbits;
739                         loff_t length = (loff_t)map->m_len << inode->i_blkbits;
740
741                         if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
742                                 ret = ext4_jbd2_inode_add_wait(handle, inode,
743                                                 start_byte, length);
744                         else
745                                 ret = ext4_jbd2_inode_add_write(handle, inode,
746                                                 start_byte, length);
747                         if (ret)
748                                 return ret;
749                 }
750         }
751         if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN ||
752                                 map->m_flags & EXT4_MAP_MAPPED))
753                 ext4_fc_track_range(handle, inode, map->m_lblk,
754                                         map->m_lblk + map->m_len - 1);
755         if (retval < 0)
756                 ext_debug(inode, "failed with err %d\n", retval);
757         return retval;
758 }
759
760 /*
761  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
762  * we have to be careful as someone else may be manipulating b_state as well.
763  */
764 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
765 {
766         unsigned long old_state;
767         unsigned long new_state;
768
769         flags &= EXT4_MAP_FLAGS;
770
771         /* Dummy buffer_head? Set non-atomically. */
772         if (!bh->b_page) {
773                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
774                 return;
775         }
776         /*
777          * Someone else may be modifying b_state. Be careful! This is ugly but
778          * once we get rid of using bh as a container for mapping information
779          * to pass to / from get_block functions, this can go away.
780          */
781         do {
782                 old_state = READ_ONCE(bh->b_state);
783                 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
784         } while (unlikely(
785                  cmpxchg(&bh->b_state, old_state, new_state) != old_state));
786 }
787
788 static int _ext4_get_block(struct inode *inode, sector_t iblock,
789                            struct buffer_head *bh, int flags)
790 {
791         struct ext4_map_blocks map;
792         int ret = 0;
793
794         if (ext4_has_inline_data(inode))
795                 return -ERANGE;
796
797         map.m_lblk = iblock;
798         map.m_len = bh->b_size >> inode->i_blkbits;
799
800         ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
801                               flags);
802         if (ret > 0) {
803                 map_bh(bh, inode->i_sb, map.m_pblk);
804                 ext4_update_bh_state(bh, map.m_flags);
805                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
806                 ret = 0;
807         } else if (ret == 0) {
808                 /* hole case, need to fill in bh->b_size */
809                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
810         }
811         return ret;
812 }
813
814 int ext4_get_block(struct inode *inode, sector_t iblock,
815                    struct buffer_head *bh, int create)
816 {
817         return _ext4_get_block(inode, iblock, bh,
818                                create ? EXT4_GET_BLOCKS_CREATE : 0);
819 }
820
821 /*
822  * Get block function used when preparing for buffered write if we require
823  * creating an unwritten extent if blocks haven't been allocated.  The extent
824  * will be converted to written after the IO is complete.
825  */
826 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
827                              struct buffer_head *bh_result, int create)
828 {
829         ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
830                    inode->i_ino, create);
831         return _ext4_get_block(inode, iblock, bh_result,
832                                EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT);
833 }
834
835 /* Maximum number of blocks we map for direct IO at once. */
836 #define DIO_MAX_BLOCKS 4096
837
838 /*
839  * `handle' can be NULL if create is zero
840  */
841 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
842                                 ext4_lblk_t block, int map_flags)
843 {
844         struct ext4_map_blocks map;
845         struct buffer_head *bh;
846         int create = map_flags & EXT4_GET_BLOCKS_CREATE;
847         bool nowait = map_flags & EXT4_GET_BLOCKS_CACHED_NOWAIT;
848         int err;
849
850         ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
851                     || handle != NULL || create == 0);
852         ASSERT(create == 0 || !nowait);
853
854         map.m_lblk = block;
855         map.m_len = 1;
856         err = ext4_map_blocks(handle, inode, &map, map_flags);
857
858         if (err == 0)
859                 return create ? ERR_PTR(-ENOSPC) : NULL;
860         if (err < 0)
861                 return ERR_PTR(err);
862
863         if (nowait)
864                 return sb_find_get_block(inode->i_sb, map.m_pblk);
865
866         bh = sb_getblk(inode->i_sb, map.m_pblk);
867         if (unlikely(!bh))
868                 return ERR_PTR(-ENOMEM);
869         if (map.m_flags & EXT4_MAP_NEW) {
870                 ASSERT(create != 0);
871                 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
872                             || (handle != NULL));
873
874                 /*
875                  * Now that we do not always journal data, we should
876                  * keep in mind whether this should always journal the
877                  * new buffer as metadata.  For now, regular file
878                  * writes use ext4_get_block instead, so it's not a
879                  * problem.
880                  */
881                 lock_buffer(bh);
882                 BUFFER_TRACE(bh, "call get_create_access");
883                 err = ext4_journal_get_create_access(handle, inode->i_sb, bh,
884                                                      EXT4_JTR_NONE);
885                 if (unlikely(err)) {
886                         unlock_buffer(bh);
887                         goto errout;
888                 }
889                 if (!buffer_uptodate(bh)) {
890                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
891                         set_buffer_uptodate(bh);
892                 }
893                 unlock_buffer(bh);
894                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
895                 err = ext4_handle_dirty_metadata(handle, inode, bh);
896                 if (unlikely(err))
897                         goto errout;
898         } else
899                 BUFFER_TRACE(bh, "not a new buffer");
900         return bh;
901 errout:
902         brelse(bh);
903         return ERR_PTR(err);
904 }
905
906 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
907                                ext4_lblk_t block, int map_flags)
908 {
909         struct buffer_head *bh;
910         int ret;
911
912         bh = ext4_getblk(handle, inode, block, map_flags);
913         if (IS_ERR(bh))
914                 return bh;
915         if (!bh || ext4_buffer_uptodate(bh))
916                 return bh;
917
918         ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true);
919         if (ret) {
920                 put_bh(bh);
921                 return ERR_PTR(ret);
922         }
923         return bh;
924 }
925
926 /* Read a contiguous batch of blocks. */
927 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
928                      bool wait, struct buffer_head **bhs)
929 {
930         int i, err;
931
932         for (i = 0; i < bh_count; i++) {
933                 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
934                 if (IS_ERR(bhs[i])) {
935                         err = PTR_ERR(bhs[i]);
936                         bh_count = i;
937                         goto out_brelse;
938                 }
939         }
940
941         for (i = 0; i < bh_count; i++)
942                 /* Note that NULL bhs[i] is valid because of holes. */
943                 if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
944                         ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false);
945
946         if (!wait)
947                 return 0;
948
949         for (i = 0; i < bh_count; i++)
950                 if (bhs[i])
951                         wait_on_buffer(bhs[i]);
952
953         for (i = 0; i < bh_count; i++) {
954                 if (bhs[i] && !buffer_uptodate(bhs[i])) {
955                         err = -EIO;
956                         goto out_brelse;
957                 }
958         }
959         return 0;
960
961 out_brelse:
962         for (i = 0; i < bh_count; i++) {
963                 brelse(bhs[i]);
964                 bhs[i] = NULL;
965         }
966         return err;
967 }
968
969 int ext4_walk_page_buffers(handle_t *handle, struct inode *inode,
970                            struct buffer_head *head,
971                            unsigned from,
972                            unsigned to,
973                            int *partial,
974                            int (*fn)(handle_t *handle, struct inode *inode,
975                                      struct buffer_head *bh))
976 {
977         struct buffer_head *bh;
978         unsigned block_start, block_end;
979         unsigned blocksize = head->b_size;
980         int err, ret = 0;
981         struct buffer_head *next;
982
983         for (bh = head, block_start = 0;
984              ret == 0 && (bh != head || !block_start);
985              block_start = block_end, bh = next) {
986                 next = bh->b_this_page;
987                 block_end = block_start + blocksize;
988                 if (block_end <= from || block_start >= to) {
989                         if (partial && !buffer_uptodate(bh))
990                                 *partial = 1;
991                         continue;
992                 }
993                 err = (*fn)(handle, inode, bh);
994                 if (!ret)
995                         ret = err;
996         }
997         return ret;
998 }
999
1000 /*
1001  * To preserve ordering, it is essential that the hole instantiation and
1002  * the data write be encapsulated in a single transaction.  We cannot
1003  * close off a transaction and start a new one between the ext4_get_block()
1004  * and the commit_write().  So doing the jbd2_journal_start at the start of
1005  * prepare_write() is the right place.
1006  *
1007  * Also, this function can nest inside ext4_writepage().  In that case, we
1008  * *know* that ext4_writepage() has generated enough buffer credits to do the
1009  * whole page.  So we won't block on the journal in that case, which is good,
1010  * because the caller may be PF_MEMALLOC.
1011  *
1012  * By accident, ext4 can be reentered when a transaction is open via
1013  * quota file writes.  If we were to commit the transaction while thus
1014  * reentered, there can be a deadlock - we would be holding a quota
1015  * lock, and the commit would never complete if another thread had a
1016  * transaction open and was blocking on the quota lock - a ranking
1017  * violation.
1018  *
1019  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1020  * will _not_ run commit under these circumstances because handle->h_ref
1021  * is elevated.  We'll still have enough credits for the tiny quotafile
1022  * write.
1023  */
1024 int do_journal_get_write_access(handle_t *handle, struct inode *inode,
1025                                 struct buffer_head *bh)
1026 {
1027         int dirty = buffer_dirty(bh);
1028         int ret;
1029
1030         if (!buffer_mapped(bh) || buffer_freed(bh))
1031                 return 0;
1032         /*
1033          * __block_write_begin() could have dirtied some buffers. Clean
1034          * the dirty bit as jbd2_journal_get_write_access() could complain
1035          * otherwise about fs integrity issues. Setting of the dirty bit
1036          * by __block_write_begin() isn't a real problem here as we clear
1037          * the bit before releasing a page lock and thus writeback cannot
1038          * ever write the buffer.
1039          */
1040         if (dirty)
1041                 clear_buffer_dirty(bh);
1042         BUFFER_TRACE(bh, "get write access");
1043         ret = ext4_journal_get_write_access(handle, inode->i_sb, bh,
1044                                             EXT4_JTR_NONE);
1045         if (!ret && dirty)
1046                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1047         return ret;
1048 }
1049
1050 #ifdef CONFIG_FS_ENCRYPTION
1051 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1052                                   get_block_t *get_block)
1053 {
1054         unsigned from = pos & (PAGE_SIZE - 1);
1055         unsigned to = from + len;
1056         struct inode *inode = page->mapping->host;
1057         unsigned block_start, block_end;
1058         sector_t block;
1059         int err = 0;
1060         unsigned blocksize = inode->i_sb->s_blocksize;
1061         unsigned bbits;
1062         struct buffer_head *bh, *head, *wait[2];
1063         int nr_wait = 0;
1064         int i;
1065
1066         BUG_ON(!PageLocked(page));
1067         BUG_ON(from > PAGE_SIZE);
1068         BUG_ON(to > PAGE_SIZE);
1069         BUG_ON(from > to);
1070
1071         if (!page_has_buffers(page))
1072                 create_empty_buffers(page, blocksize, 0);
1073         head = page_buffers(page);
1074         bbits = ilog2(blocksize);
1075         block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1076
1077         for (bh = head, block_start = 0; bh != head || !block_start;
1078             block++, block_start = block_end, bh = bh->b_this_page) {
1079                 block_end = block_start + blocksize;
1080                 if (block_end <= from || block_start >= to) {
1081                         if (PageUptodate(page)) {
1082                                 set_buffer_uptodate(bh);
1083                         }
1084                         continue;
1085                 }
1086                 if (buffer_new(bh))
1087                         clear_buffer_new(bh);
1088                 if (!buffer_mapped(bh)) {
1089                         WARN_ON(bh->b_size != blocksize);
1090                         err = get_block(inode, block, bh, 1);
1091                         if (err)
1092                                 break;
1093                         if (buffer_new(bh)) {
1094                                 if (PageUptodate(page)) {
1095                                         clear_buffer_new(bh);
1096                                         set_buffer_uptodate(bh);
1097                                         mark_buffer_dirty(bh);
1098                                         continue;
1099                                 }
1100                                 if (block_end > to || block_start < from)
1101                                         zero_user_segments(page, to, block_end,
1102                                                            block_start, from);
1103                                 continue;
1104                         }
1105                 }
1106                 if (PageUptodate(page)) {
1107                         set_buffer_uptodate(bh);
1108                         continue;
1109                 }
1110                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1111                     !buffer_unwritten(bh) &&
1112                     (block_start < from || block_end > to)) {
1113                         ext4_read_bh_lock(bh, 0, false);
1114                         wait[nr_wait++] = bh;
1115                 }
1116         }
1117         /*
1118          * If we issued read requests, let them complete.
1119          */
1120         for (i = 0; i < nr_wait; i++) {
1121                 wait_on_buffer(wait[i]);
1122                 if (!buffer_uptodate(wait[i]))
1123                         err = -EIO;
1124         }
1125         if (unlikely(err)) {
1126                 page_zero_new_buffers(page, from, to);
1127         } else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1128                 for (i = 0; i < nr_wait; i++) {
1129                         int err2;
1130
1131                         err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize,
1132                                                                 bh_offset(wait[i]));
1133                         if (err2) {
1134                                 clear_buffer_uptodate(wait[i]);
1135                                 err = err2;
1136                         }
1137                 }
1138         }
1139
1140         return err;
1141 }
1142 #endif
1143
1144 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1145                             loff_t pos, unsigned len,
1146                             struct page **pagep, void **fsdata)
1147 {
1148         struct inode *inode = mapping->host;
1149         int ret, needed_blocks;
1150         handle_t *handle;
1151         int retries = 0;
1152         struct page *page;
1153         pgoff_t index;
1154         unsigned from, to;
1155
1156         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1157                 return -EIO;
1158
1159         trace_ext4_write_begin(inode, pos, len);
1160         /*
1161          * Reserve one block more for addition to orphan list in case
1162          * we allocate blocks but write fails for some reason
1163          */
1164         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1165         index = pos >> PAGE_SHIFT;
1166         from = pos & (PAGE_SIZE - 1);
1167         to = from + len;
1168
1169         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1170                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1171                                                     pagep);
1172                 if (ret < 0)
1173                         return ret;
1174                 if (ret == 1)
1175                         return 0;
1176         }
1177
1178         /*
1179          * grab_cache_page_write_begin() can take a long time if the
1180          * system is thrashing due to memory pressure, or if the page
1181          * is being written back.  So grab it first before we start
1182          * the transaction handle.  This also allows us to allocate
1183          * the page (if needed) without using GFP_NOFS.
1184          */
1185 retry_grab:
1186         page = grab_cache_page_write_begin(mapping, index);
1187         if (!page)
1188                 return -ENOMEM;
1189         unlock_page(page);
1190
1191 retry_journal:
1192         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1193         if (IS_ERR(handle)) {
1194                 put_page(page);
1195                 return PTR_ERR(handle);
1196         }
1197
1198         lock_page(page);
1199         if (page->mapping != mapping) {
1200                 /* The page got truncated from under us */
1201                 unlock_page(page);
1202                 put_page(page);
1203                 ext4_journal_stop(handle);
1204                 goto retry_grab;
1205         }
1206         /* In case writeback began while the page was unlocked */
1207         wait_for_stable_page(page);
1208
1209 #ifdef CONFIG_FS_ENCRYPTION
1210         if (ext4_should_dioread_nolock(inode))
1211                 ret = ext4_block_write_begin(page, pos, len,
1212                                              ext4_get_block_unwritten);
1213         else
1214                 ret = ext4_block_write_begin(page, pos, len,
1215                                              ext4_get_block);
1216 #else
1217         if (ext4_should_dioread_nolock(inode))
1218                 ret = __block_write_begin(page, pos, len,
1219                                           ext4_get_block_unwritten);
1220         else
1221                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1222 #endif
1223         if (!ret && ext4_should_journal_data(inode)) {
1224                 ret = ext4_walk_page_buffers(handle, inode,
1225                                              page_buffers(page), from, to, NULL,
1226                                              do_journal_get_write_access);
1227         }
1228
1229         if (ret) {
1230                 bool extended = (pos + len > inode->i_size) &&
1231                                 !ext4_verity_in_progress(inode);
1232
1233                 unlock_page(page);
1234                 /*
1235                  * __block_write_begin may have instantiated a few blocks
1236                  * outside i_size.  Trim these off again. Don't need
1237                  * i_size_read because we hold i_rwsem.
1238                  *
1239                  * Add inode to orphan list in case we crash before
1240                  * truncate finishes
1241                  */
1242                 if (extended && ext4_can_truncate(inode))
1243                         ext4_orphan_add(handle, inode);
1244
1245                 ext4_journal_stop(handle);
1246                 if (extended) {
1247                         ext4_truncate_failed_write(inode);
1248                         /*
1249                          * If truncate failed early the inode might
1250                          * still be on the orphan list; we need to
1251                          * make sure the inode is removed from the
1252                          * orphan list in that case.
1253                          */
1254                         if (inode->i_nlink)
1255                                 ext4_orphan_del(NULL, inode);
1256                 }
1257
1258                 if (ret == -ENOSPC &&
1259                     ext4_should_retry_alloc(inode->i_sb, &retries))
1260                         goto retry_journal;
1261                 put_page(page);
1262                 return ret;
1263         }
1264         *pagep = page;
1265         return ret;
1266 }
1267
1268 /* For write_end() in data=journal mode */
1269 static int write_end_fn(handle_t *handle, struct inode *inode,
1270                         struct buffer_head *bh)
1271 {
1272         int ret;
1273         if (!buffer_mapped(bh) || buffer_freed(bh))
1274                 return 0;
1275         set_buffer_uptodate(bh);
1276         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1277         clear_buffer_meta(bh);
1278         clear_buffer_prio(bh);
1279         return ret;
1280 }
1281
1282 /*
1283  * We need to pick up the new inode size which generic_commit_write gave us
1284  * `file' can be NULL - eg, when called from page_symlink().
1285  *
1286  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1287  * buffers are managed internally.
1288  */
1289 static int ext4_write_end(struct file *file,
1290                           struct address_space *mapping,
1291                           loff_t pos, unsigned len, unsigned copied,
1292                           struct page *page, void *fsdata)
1293 {
1294         handle_t *handle = ext4_journal_current_handle();
1295         struct inode *inode = mapping->host;
1296         loff_t old_size = inode->i_size;
1297         int ret = 0, ret2;
1298         int i_size_changed = 0;
1299         bool verity = ext4_verity_in_progress(inode);
1300
1301         trace_ext4_write_end(inode, pos, len, copied);
1302
1303         if (ext4_has_inline_data(inode))
1304                 return ext4_write_inline_data_end(inode, pos, len, copied, page);
1305
1306         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1307         /*
1308          * it's important to update i_size while still holding page lock:
1309          * page writeout could otherwise come in and zero beyond i_size.
1310          *
1311          * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1312          * blocks are being written past EOF, so skip the i_size update.
1313          */
1314         if (!verity)
1315                 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1316         unlock_page(page);
1317         put_page(page);
1318
1319         if (old_size < pos && !verity)
1320                 pagecache_isize_extended(inode, old_size, pos);
1321         /*
1322          * Don't mark the inode dirty under page lock. First, it unnecessarily
1323          * makes the holding time of page lock longer. Second, it forces lock
1324          * ordering of page lock and transaction start for journaling
1325          * filesystems.
1326          */
1327         if (i_size_changed)
1328                 ret = ext4_mark_inode_dirty(handle, inode);
1329
1330         if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1331                 /* if we have allocated more blocks and copied
1332                  * less. We will have blocks allocated outside
1333                  * inode->i_size. So truncate them
1334                  */
1335                 ext4_orphan_add(handle, inode);
1336
1337         ret2 = ext4_journal_stop(handle);
1338         if (!ret)
1339                 ret = ret2;
1340
1341         if (pos + len > inode->i_size && !verity) {
1342                 ext4_truncate_failed_write(inode);
1343                 /*
1344                  * If truncate failed early the inode might still be
1345                  * on the orphan list; we need to make sure the inode
1346                  * is removed from the orphan list in that case.
1347                  */
1348                 if (inode->i_nlink)
1349                         ext4_orphan_del(NULL, inode);
1350         }
1351
1352         return ret ? ret : copied;
1353 }
1354
1355 /*
1356  * This is a private version of page_zero_new_buffers() which doesn't
1357  * set the buffer to be dirty, since in data=journalled mode we need
1358  * to call ext4_handle_dirty_metadata() instead.
1359  */
1360 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1361                                             struct inode *inode,
1362                                             struct page *page,
1363                                             unsigned from, unsigned to)
1364 {
1365         unsigned int block_start = 0, block_end;
1366         struct buffer_head *head, *bh;
1367
1368         bh = head = page_buffers(page);
1369         do {
1370                 block_end = block_start + bh->b_size;
1371                 if (buffer_new(bh)) {
1372                         if (block_end > from && block_start < to) {
1373                                 if (!PageUptodate(page)) {
1374                                         unsigned start, size;
1375
1376                                         start = max(from, block_start);
1377                                         size = min(to, block_end) - start;
1378
1379                                         zero_user(page, start, size);
1380                                         write_end_fn(handle, inode, bh);
1381                                 }
1382                                 clear_buffer_new(bh);
1383                         }
1384                 }
1385                 block_start = block_end;
1386                 bh = bh->b_this_page;
1387         } while (bh != head);
1388 }
1389
1390 static int ext4_journalled_write_end(struct file *file,
1391                                      struct address_space *mapping,
1392                                      loff_t pos, unsigned len, unsigned copied,
1393                                      struct page *page, void *fsdata)
1394 {
1395         handle_t *handle = ext4_journal_current_handle();
1396         struct inode *inode = mapping->host;
1397         loff_t old_size = inode->i_size;
1398         int ret = 0, ret2;
1399         int partial = 0;
1400         unsigned from, to;
1401         int size_changed = 0;
1402         bool verity = ext4_verity_in_progress(inode);
1403
1404         trace_ext4_journalled_write_end(inode, pos, len, copied);
1405         from = pos & (PAGE_SIZE - 1);
1406         to = from + len;
1407
1408         BUG_ON(!ext4_handle_valid(handle));
1409
1410         if (ext4_has_inline_data(inode))
1411                 return ext4_write_inline_data_end(inode, pos, len, copied, page);
1412
1413         if (unlikely(copied < len) && !PageUptodate(page)) {
1414                 copied = 0;
1415                 ext4_journalled_zero_new_buffers(handle, inode, page, from, to);
1416         } else {
1417                 if (unlikely(copied < len))
1418                         ext4_journalled_zero_new_buffers(handle, inode, page,
1419                                                          from + copied, to);
1420                 ret = ext4_walk_page_buffers(handle, inode, page_buffers(page),
1421                                              from, from + copied, &partial,
1422                                              write_end_fn);
1423                 if (!partial)
1424                         SetPageUptodate(page);
1425         }
1426         if (!verity)
1427                 size_changed = ext4_update_inode_size(inode, pos + copied);
1428         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1429         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1430         unlock_page(page);
1431         put_page(page);
1432
1433         if (old_size < pos && !verity)
1434                 pagecache_isize_extended(inode, old_size, pos);
1435
1436         if (size_changed) {
1437                 ret2 = ext4_mark_inode_dirty(handle, inode);
1438                 if (!ret)
1439                         ret = ret2;
1440         }
1441
1442         if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1443                 /* if we have allocated more blocks and copied
1444                  * less. We will have blocks allocated outside
1445                  * inode->i_size. So truncate them
1446                  */
1447                 ext4_orphan_add(handle, inode);
1448
1449         ret2 = ext4_journal_stop(handle);
1450         if (!ret)
1451                 ret = ret2;
1452         if (pos + len > inode->i_size && !verity) {
1453                 ext4_truncate_failed_write(inode);
1454                 /*
1455                  * If truncate failed early the inode might still be
1456                  * on the orphan list; we need to make sure the inode
1457                  * is removed from the orphan list in that case.
1458                  */
1459                 if (inode->i_nlink)
1460                         ext4_orphan_del(NULL, inode);
1461         }
1462
1463         return ret ? ret : copied;
1464 }
1465
1466 /*
1467  * Reserve space for a single cluster
1468  */
1469 static int ext4_da_reserve_space(struct inode *inode)
1470 {
1471         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1472         struct ext4_inode_info *ei = EXT4_I(inode);
1473         int ret;
1474
1475         /*
1476          * We will charge metadata quota at writeout time; this saves
1477          * us from metadata over-estimation, though we may go over by
1478          * a small amount in the end.  Here we just reserve for data.
1479          */
1480         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1481         if (ret)
1482                 return ret;
1483
1484         spin_lock(&ei->i_block_reservation_lock);
1485         if (ext4_claim_free_clusters(sbi, 1, 0)) {
1486                 spin_unlock(&ei->i_block_reservation_lock);
1487                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1488                 return -ENOSPC;
1489         }
1490         ei->i_reserved_data_blocks++;
1491         trace_ext4_da_reserve_space(inode);
1492         spin_unlock(&ei->i_block_reservation_lock);
1493
1494         return 0;       /* success */
1495 }
1496
1497 void ext4_da_release_space(struct inode *inode, int to_free)
1498 {
1499         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1500         struct ext4_inode_info *ei = EXT4_I(inode);
1501
1502         if (!to_free)
1503                 return;         /* Nothing to release, exit */
1504
1505         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1506
1507         trace_ext4_da_release_space(inode, to_free);
1508         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1509                 /*
1510                  * if there aren't enough reserved blocks, then the
1511                  * counter is messed up somewhere.  Since this
1512                  * function is called from invalidate page, it's
1513                  * harmless to return without any action.
1514                  */
1515                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1516                          "ino %lu, to_free %d with only %d reserved "
1517                          "data blocks", inode->i_ino, to_free,
1518                          ei->i_reserved_data_blocks);
1519                 WARN_ON(1);
1520                 to_free = ei->i_reserved_data_blocks;
1521         }
1522         ei->i_reserved_data_blocks -= to_free;
1523
1524         /* update fs dirty data blocks counter */
1525         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1526
1527         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1528
1529         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1530 }
1531
1532 /*
1533  * Delayed allocation stuff
1534  */
1535
1536 struct mpage_da_data {
1537         struct inode *inode;
1538         struct writeback_control *wbc;
1539
1540         pgoff_t first_page;     /* The first page to write */
1541         pgoff_t next_page;      /* Current page to examine */
1542         pgoff_t last_page;      /* Last page to examine */
1543         /*
1544          * Extent to map - this can be after first_page because that can be
1545          * fully mapped. We somewhat abuse m_flags to store whether the extent
1546          * is delalloc or unwritten.
1547          */
1548         struct ext4_map_blocks map;
1549         struct ext4_io_submit io_submit;        /* IO submission data */
1550         unsigned int do_map:1;
1551         unsigned int scanned_until_end:1;
1552 };
1553
1554 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1555                                        bool invalidate)
1556 {
1557         int nr_pages, i;
1558         pgoff_t index, end;
1559         struct pagevec pvec;
1560         struct inode *inode = mpd->inode;
1561         struct address_space *mapping = inode->i_mapping;
1562
1563         /* This is necessary when next_page == 0. */
1564         if (mpd->first_page >= mpd->next_page)
1565                 return;
1566
1567         mpd->scanned_until_end = 0;
1568         index = mpd->first_page;
1569         end   = mpd->next_page - 1;
1570         if (invalidate) {
1571                 ext4_lblk_t start, last;
1572                 start = index << (PAGE_SHIFT - inode->i_blkbits);
1573                 last = end << (PAGE_SHIFT - inode->i_blkbits);
1574                 ext4_es_remove_extent(inode, start, last - start + 1);
1575         }
1576
1577         pagevec_init(&pvec);
1578         while (index <= end) {
1579                 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1580                 if (nr_pages == 0)
1581                         break;
1582                 for (i = 0; i < nr_pages; i++) {
1583                         struct page *page = pvec.pages[i];
1584                         struct folio *folio = page_folio(page);
1585
1586                         BUG_ON(!folio_test_locked(folio));
1587                         BUG_ON(folio_test_writeback(folio));
1588                         if (invalidate) {
1589                                 if (folio_mapped(folio))
1590                                         folio_clear_dirty_for_io(folio);
1591                                 block_invalidate_folio(folio, 0,
1592                                                 folio_size(folio));
1593                                 folio_clear_uptodate(folio);
1594                         }
1595                         folio_unlock(folio);
1596                 }
1597                 pagevec_release(&pvec);
1598         }
1599 }
1600
1601 static void ext4_print_free_blocks(struct inode *inode)
1602 {
1603         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1604         struct super_block *sb = inode->i_sb;
1605         struct ext4_inode_info *ei = EXT4_I(inode);
1606
1607         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1608                EXT4_C2B(EXT4_SB(inode->i_sb),
1609                         ext4_count_free_clusters(sb)));
1610         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1611         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1612                (long long) EXT4_C2B(EXT4_SB(sb),
1613                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1614         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1615                (long long) EXT4_C2B(EXT4_SB(sb),
1616                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1617         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1618         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1619                  ei->i_reserved_data_blocks);
1620         return;
1621 }
1622
1623 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct inode *inode,
1624                                       struct buffer_head *bh)
1625 {
1626         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1627 }
1628
1629 /*
1630  * ext4_insert_delayed_block - adds a delayed block to the extents status
1631  *                             tree, incrementing the reserved cluster/block
1632  *                             count or making a pending reservation
1633  *                             where needed
1634  *
1635  * @inode - file containing the newly added block
1636  * @lblk - logical block to be added
1637  *
1638  * Returns 0 on success, negative error code on failure.
1639  */
1640 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1641 {
1642         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1643         int ret;
1644         bool allocated = false;
1645         bool reserved = false;
1646
1647         /*
1648          * If the cluster containing lblk is shared with a delayed,
1649          * written, or unwritten extent in a bigalloc file system, it's
1650          * already been accounted for and does not need to be reserved.
1651          * A pending reservation must be made for the cluster if it's
1652          * shared with a written or unwritten extent and doesn't already
1653          * have one.  Written and unwritten extents can be purged from the
1654          * extents status tree if the system is under memory pressure, so
1655          * it's necessary to examine the extent tree if a search of the
1656          * extents status tree doesn't get a match.
1657          */
1658         if (sbi->s_cluster_ratio == 1) {
1659                 ret = ext4_da_reserve_space(inode);
1660                 if (ret != 0)   /* ENOSPC */
1661                         goto errout;
1662                 reserved = true;
1663         } else {   /* bigalloc */
1664                 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1665                         if (!ext4_es_scan_clu(inode,
1666                                               &ext4_es_is_mapped, lblk)) {
1667                                 ret = ext4_clu_mapped(inode,
1668                                                       EXT4_B2C(sbi, lblk));
1669                                 if (ret < 0)
1670                                         goto errout;
1671                                 if (ret == 0) {
1672                                         ret = ext4_da_reserve_space(inode);
1673                                         if (ret != 0)   /* ENOSPC */
1674                                                 goto errout;
1675                                         reserved = true;
1676                                 } else {
1677                                         allocated = true;
1678                                 }
1679                         } else {
1680                                 allocated = true;
1681                         }
1682                 }
1683         }
1684
1685         ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1686         if (ret && reserved)
1687                 ext4_da_release_space(inode, 1);
1688
1689 errout:
1690         return ret;
1691 }
1692
1693 /*
1694  * This function is grabs code from the very beginning of
1695  * ext4_map_blocks, but assumes that the caller is from delayed write
1696  * time. This function looks up the requested blocks and sets the
1697  * buffer delay bit under the protection of i_data_sem.
1698  */
1699 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1700                               struct ext4_map_blocks *map,
1701                               struct buffer_head *bh)
1702 {
1703         struct extent_status es;
1704         int retval;
1705         sector_t invalid_block = ~((sector_t) 0xffff);
1706 #ifdef ES_AGGRESSIVE_TEST
1707         struct ext4_map_blocks orig_map;
1708
1709         memcpy(&orig_map, map, sizeof(*map));
1710 #endif
1711
1712         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1713                 invalid_block = ~0;
1714
1715         map->m_flags = 0;
1716         ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1717                   (unsigned long) map->m_lblk);
1718
1719         /* Lookup extent status tree firstly */
1720         if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1721                 if (ext4_es_is_hole(&es)) {
1722                         retval = 0;
1723                         down_read(&EXT4_I(inode)->i_data_sem);
1724                         goto add_delayed;
1725                 }
1726
1727                 /*
1728                  * Delayed extent could be allocated by fallocate.
1729                  * So we need to check it.
1730                  */
1731                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1732                         map_bh(bh, inode->i_sb, invalid_block);
1733                         set_buffer_new(bh);
1734                         set_buffer_delay(bh);
1735                         return 0;
1736                 }
1737
1738                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1739                 retval = es.es_len - (iblock - es.es_lblk);
1740                 if (retval > map->m_len)
1741                         retval = map->m_len;
1742                 map->m_len = retval;
1743                 if (ext4_es_is_written(&es))
1744                         map->m_flags |= EXT4_MAP_MAPPED;
1745                 else if (ext4_es_is_unwritten(&es))
1746                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1747                 else
1748                         BUG();
1749
1750 #ifdef ES_AGGRESSIVE_TEST
1751                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1752 #endif
1753                 return retval;
1754         }
1755
1756         /*
1757          * Try to see if we can get the block without requesting a new
1758          * file system block.
1759          */
1760         down_read(&EXT4_I(inode)->i_data_sem);
1761         if (ext4_has_inline_data(inode))
1762                 retval = 0;
1763         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1764                 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1765         else
1766                 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1767
1768 add_delayed:
1769         if (retval == 0) {
1770                 int ret;
1771
1772                 /*
1773                  * XXX: __block_prepare_write() unmaps passed block,
1774                  * is it OK?
1775                  */
1776
1777                 ret = ext4_insert_delayed_block(inode, map->m_lblk);
1778                 if (ret != 0) {
1779                         retval = ret;
1780                         goto out_unlock;
1781                 }
1782
1783                 map_bh(bh, inode->i_sb, invalid_block);
1784                 set_buffer_new(bh);
1785                 set_buffer_delay(bh);
1786         } else if (retval > 0) {
1787                 int ret;
1788                 unsigned int status;
1789
1790                 if (unlikely(retval != map->m_len)) {
1791                         ext4_warning(inode->i_sb,
1792                                      "ES len assertion failed for inode "
1793                                      "%lu: retval %d != map->m_len %d",
1794                                      inode->i_ino, retval, map->m_len);
1795                         WARN_ON(1);
1796                 }
1797
1798                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1799                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1800                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1801                                             map->m_pblk, status);
1802                 if (ret != 0)
1803                         retval = ret;
1804         }
1805
1806 out_unlock:
1807         up_read((&EXT4_I(inode)->i_data_sem));
1808
1809         return retval;
1810 }
1811
1812 /*
1813  * This is a special get_block_t callback which is used by
1814  * ext4_da_write_begin().  It will either return mapped block or
1815  * reserve space for a single block.
1816  *
1817  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1818  * We also have b_blocknr = -1 and b_bdev initialized properly
1819  *
1820  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1821  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1822  * initialized properly.
1823  */
1824 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1825                            struct buffer_head *bh, int create)
1826 {
1827         struct ext4_map_blocks map;
1828         int ret = 0;
1829
1830         BUG_ON(create == 0);
1831         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1832
1833         map.m_lblk = iblock;
1834         map.m_len = 1;
1835
1836         /*
1837          * first, we need to know whether the block is allocated already
1838          * preallocated blocks are unmapped but should treated
1839          * the same as allocated blocks.
1840          */
1841         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1842         if (ret <= 0)
1843                 return ret;
1844
1845         map_bh(bh, inode->i_sb, map.m_pblk);
1846         ext4_update_bh_state(bh, map.m_flags);
1847
1848         if (buffer_unwritten(bh)) {
1849                 /* A delayed write to unwritten bh should be marked
1850                  * new and mapped.  Mapped ensures that we don't do
1851                  * get_block multiple times when we write to the same
1852                  * offset and new ensures that we do proper zero out
1853                  * for partial write.
1854                  */
1855                 set_buffer_new(bh);
1856                 set_buffer_mapped(bh);
1857         }
1858         return 0;
1859 }
1860
1861 static int __ext4_journalled_writepage(struct page *page,
1862                                        unsigned int len)
1863 {
1864         struct address_space *mapping = page->mapping;
1865         struct inode *inode = mapping->host;
1866         handle_t *handle = NULL;
1867         int ret = 0, err = 0;
1868         int inline_data = ext4_has_inline_data(inode);
1869         struct buffer_head *inode_bh = NULL;
1870         loff_t size;
1871
1872         ClearPageChecked(page);
1873
1874         if (inline_data) {
1875                 BUG_ON(page->index != 0);
1876                 BUG_ON(len > ext4_get_max_inline_size(inode));
1877                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1878                 if (inode_bh == NULL)
1879                         goto out;
1880         }
1881         /*
1882          * We need to release the page lock before we start the
1883          * journal, so grab a reference so the page won't disappear
1884          * out from under us.
1885          */
1886         get_page(page);
1887         unlock_page(page);
1888
1889         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1890                                     ext4_writepage_trans_blocks(inode));
1891         if (IS_ERR(handle)) {
1892                 ret = PTR_ERR(handle);
1893                 put_page(page);
1894                 goto out_no_pagelock;
1895         }
1896         BUG_ON(!ext4_handle_valid(handle));
1897
1898         lock_page(page);
1899         put_page(page);
1900         size = i_size_read(inode);
1901         if (page->mapping != mapping || page_offset(page) > size) {
1902                 /* The page got truncated from under us */
1903                 ext4_journal_stop(handle);
1904                 ret = 0;
1905                 goto out;
1906         }
1907
1908         if (inline_data) {
1909                 ret = ext4_mark_inode_dirty(handle, inode);
1910         } else {
1911                 struct buffer_head *page_bufs = page_buffers(page);
1912
1913                 if (page->index == size >> PAGE_SHIFT)
1914                         len = size & ~PAGE_MASK;
1915                 else
1916                         len = PAGE_SIZE;
1917
1918                 ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
1919                                              NULL, do_journal_get_write_access);
1920
1921                 err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
1922                                              NULL, write_end_fn);
1923         }
1924         if (ret == 0)
1925                 ret = err;
1926         err = ext4_jbd2_inode_add_write(handle, inode, page_offset(page), len);
1927         if (ret == 0)
1928                 ret = err;
1929         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1930         err = ext4_journal_stop(handle);
1931         if (!ret)
1932                 ret = err;
1933
1934         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1935 out:
1936         unlock_page(page);
1937 out_no_pagelock:
1938         brelse(inode_bh);
1939         return ret;
1940 }
1941
1942 /*
1943  * Note that we don't need to start a transaction unless we're journaling data
1944  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1945  * need to file the inode to the transaction's list in ordered mode because if
1946  * we are writing back data added by write(), the inode is already there and if
1947  * we are writing back data modified via mmap(), no one guarantees in which
1948  * transaction the data will hit the disk. In case we are journaling data, we
1949  * cannot start transaction directly because transaction start ranks above page
1950  * lock so we have to do some magic.
1951  *
1952  * This function can get called via...
1953  *   - ext4_writepages after taking page lock (have journal handle)
1954  *   - journal_submit_inode_data_buffers (no journal handle)
1955  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1956  *   - grab_page_cache when doing write_begin (have journal handle)
1957  *
1958  * We don't do any block allocation in this function. If we have page with
1959  * multiple blocks we need to write those buffer_heads that are mapped. This
1960  * is important for mmaped based write. So if we do with blocksize 1K
1961  * truncate(f, 1024);
1962  * a = mmap(f, 0, 4096);
1963  * a[0] = 'a';
1964  * truncate(f, 4096);
1965  * we have in the page first buffer_head mapped via page_mkwrite call back
1966  * but other buffer_heads would be unmapped but dirty (dirty done via the
1967  * do_wp_page). So writepage should write the first block. If we modify
1968  * the mmap area beyond 1024 we will again get a page_fault and the
1969  * page_mkwrite callback will do the block allocation and mark the
1970  * buffer_heads mapped.
1971  *
1972  * We redirty the page if we have any buffer_heads that is either delay or
1973  * unwritten in the page.
1974  *
1975  * We can get recursively called as show below.
1976  *
1977  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1978  *              ext4_writepage()
1979  *
1980  * But since we don't do any block allocation we should not deadlock.
1981  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1982  */
1983 static int ext4_writepage(struct page *page,
1984                           struct writeback_control *wbc)
1985 {
1986         struct folio *folio = page_folio(page);
1987         int ret = 0;
1988         loff_t size;
1989         unsigned int len;
1990         struct buffer_head *page_bufs = NULL;
1991         struct inode *inode = page->mapping->host;
1992         struct ext4_io_submit io_submit;
1993         bool keep_towrite = false;
1994
1995         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
1996                 folio_invalidate(folio, 0, folio_size(folio));
1997                 folio_unlock(folio);
1998                 return -EIO;
1999         }
2000
2001         trace_ext4_writepage(page);
2002         size = i_size_read(inode);
2003         if (page->index == size >> PAGE_SHIFT &&
2004             !ext4_verity_in_progress(inode))
2005                 len = size & ~PAGE_MASK;
2006         else
2007                 len = PAGE_SIZE;
2008
2009         /* Should never happen but for bugs in other kernel subsystems */
2010         if (!page_has_buffers(page)) {
2011                 ext4_warning_inode(inode,
2012                    "page %lu does not have buffers attached", page->index);
2013                 ClearPageDirty(page);
2014                 unlock_page(page);
2015                 return 0;
2016         }
2017
2018         page_bufs = page_buffers(page);
2019         /*
2020          * We cannot do block allocation or other extent handling in this
2021          * function. If there are buffers needing that, we have to redirty
2022          * the page. But we may reach here when we do a journal commit via
2023          * journal_submit_inode_data_buffers() and in that case we must write
2024          * allocated buffers to achieve data=ordered mode guarantees.
2025          *
2026          * Also, if there is only one buffer per page (the fs block
2027          * size == the page size), if one buffer needs block
2028          * allocation or needs to modify the extent tree to clear the
2029          * unwritten flag, we know that the page can't be written at
2030          * all, so we might as well refuse the write immediately.
2031          * Unfortunately if the block size != page size, we can't as
2032          * easily detect this case using ext4_walk_page_buffers(), but
2033          * for the extremely common case, this is an optimization that
2034          * skips a useless round trip through ext4_bio_write_page().
2035          */
2036         if (ext4_walk_page_buffers(NULL, inode, page_bufs, 0, len, NULL,
2037                                    ext4_bh_delay_or_unwritten)) {
2038                 redirty_page_for_writepage(wbc, page);
2039                 if ((current->flags & PF_MEMALLOC) ||
2040                     (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2041                         /*
2042                          * For memory cleaning there's no point in writing only
2043                          * some buffers. So just bail out. Warn if we came here
2044                          * from direct reclaim.
2045                          */
2046                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2047                                                         == PF_MEMALLOC);
2048                         unlock_page(page);
2049                         return 0;
2050                 }
2051                 keep_towrite = true;
2052         }
2053
2054         if (PageChecked(page) && ext4_should_journal_data(inode))
2055                 /*
2056                  * It's mmapped pagecache.  Add buffers and journal it.  There
2057                  * doesn't seem much point in redirtying the page here.
2058                  */
2059                 return __ext4_journalled_writepage(page, len);
2060
2061         ext4_io_submit_init(&io_submit, wbc);
2062         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2063         if (!io_submit.io_end) {
2064                 redirty_page_for_writepage(wbc, page);
2065                 unlock_page(page);
2066                 return -ENOMEM;
2067         }
2068         ret = ext4_bio_write_page(&io_submit, page, len, keep_towrite);
2069         ext4_io_submit(&io_submit);
2070         /* Drop io_end reference we got from init */
2071         ext4_put_io_end_defer(io_submit.io_end);
2072         return ret;
2073 }
2074
2075 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2076 {
2077         int len;
2078         loff_t size;
2079         int err;
2080
2081         BUG_ON(page->index != mpd->first_page);
2082         clear_page_dirty_for_io(page);
2083         /*
2084          * We have to be very careful here!  Nothing protects writeback path
2085          * against i_size changes and the page can be writeably mapped into
2086          * page tables. So an application can be growing i_size and writing
2087          * data through mmap while writeback runs. clear_page_dirty_for_io()
2088          * write-protects our page in page tables and the page cannot get
2089          * written to again until we release page lock. So only after
2090          * clear_page_dirty_for_io() we are safe to sample i_size for
2091          * ext4_bio_write_page() to zero-out tail of the written page. We rely
2092          * on the barrier provided by TestClearPageDirty in
2093          * clear_page_dirty_for_io() to make sure i_size is really sampled only
2094          * after page tables are updated.
2095          */
2096         size = i_size_read(mpd->inode);
2097         if (page->index == size >> PAGE_SHIFT &&
2098             !ext4_verity_in_progress(mpd->inode))
2099                 len = size & ~PAGE_MASK;
2100         else
2101                 len = PAGE_SIZE;
2102         err = ext4_bio_write_page(&mpd->io_submit, page, len, false);
2103         if (!err)
2104                 mpd->wbc->nr_to_write--;
2105         mpd->first_page++;
2106
2107         return err;
2108 }
2109
2110 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
2111
2112 /*
2113  * mballoc gives us at most this number of blocks...
2114  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2115  * The rest of mballoc seems to handle chunks up to full group size.
2116  */
2117 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2118
2119 /*
2120  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2121  *
2122  * @mpd - extent of blocks
2123  * @lblk - logical number of the block in the file
2124  * @bh - buffer head we want to add to the extent
2125  *
2126  * The function is used to collect contig. blocks in the same state. If the
2127  * buffer doesn't require mapping for writeback and we haven't started the
2128  * extent of buffers to map yet, the function returns 'true' immediately - the
2129  * caller can write the buffer right away. Otherwise the function returns true
2130  * if the block has been added to the extent, false if the block couldn't be
2131  * added.
2132  */
2133 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2134                                    struct buffer_head *bh)
2135 {
2136         struct ext4_map_blocks *map = &mpd->map;
2137
2138         /* Buffer that doesn't need mapping for writeback? */
2139         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2140             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2141                 /* So far no extent to map => we write the buffer right away */
2142                 if (map->m_len == 0)
2143                         return true;
2144                 return false;
2145         }
2146
2147         /* First block in the extent? */
2148         if (map->m_len == 0) {
2149                 /* We cannot map unless handle is started... */
2150                 if (!mpd->do_map)
2151                         return false;
2152                 map->m_lblk = lblk;
2153                 map->m_len = 1;
2154                 map->m_flags = bh->b_state & BH_FLAGS;
2155                 return true;
2156         }
2157
2158         /* Don't go larger than mballoc is willing to allocate */
2159         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2160                 return false;
2161
2162         /* Can we merge the block to our big extent? */
2163         if (lblk == map->m_lblk + map->m_len &&
2164             (bh->b_state & BH_FLAGS) == map->m_flags) {
2165                 map->m_len++;
2166                 return true;
2167         }
2168         return false;
2169 }
2170
2171 /*
2172  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2173  *
2174  * @mpd - extent of blocks for mapping
2175  * @head - the first buffer in the page
2176  * @bh - buffer we should start processing from
2177  * @lblk - logical number of the block in the file corresponding to @bh
2178  *
2179  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2180  * the page for IO if all buffers in this page were mapped and there's no
2181  * accumulated extent of buffers to map or add buffers in the page to the
2182  * extent of buffers to map. The function returns 1 if the caller can continue
2183  * by processing the next page, 0 if it should stop adding buffers to the
2184  * extent to map because we cannot extend it anymore. It can also return value
2185  * < 0 in case of error during IO submission.
2186  */
2187 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2188                                    struct buffer_head *head,
2189                                    struct buffer_head *bh,
2190                                    ext4_lblk_t lblk)
2191 {
2192         struct inode *inode = mpd->inode;
2193         int err;
2194         ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2195                                                         >> inode->i_blkbits;
2196
2197         if (ext4_verity_in_progress(inode))
2198                 blocks = EXT_MAX_BLOCKS;
2199
2200         do {
2201                 BUG_ON(buffer_locked(bh));
2202
2203                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2204                         /* Found extent to map? */
2205                         if (mpd->map.m_len)
2206                                 return 0;
2207                         /* Buffer needs mapping and handle is not started? */
2208                         if (!mpd->do_map)
2209                                 return 0;
2210                         /* Everything mapped so far and we hit EOF */
2211                         break;
2212                 }
2213         } while (lblk++, (bh = bh->b_this_page) != head);
2214         /* So far everything mapped? Submit the page for IO. */
2215         if (mpd->map.m_len == 0) {
2216                 err = mpage_submit_page(mpd, head->b_page);
2217                 if (err < 0)
2218                         return err;
2219         }
2220         if (lblk >= blocks) {
2221                 mpd->scanned_until_end = 1;
2222                 return 0;
2223         }
2224         return 1;
2225 }
2226
2227 /*
2228  * mpage_process_page - update page buffers corresponding to changed extent and
2229  *                     may submit fully mapped page for IO
2230  *
2231  * @mpd         - description of extent to map, on return next extent to map
2232  * @m_lblk      - logical block mapping.
2233  * @m_pblk      - corresponding physical mapping.
2234  * @map_bh      - determines on return whether this page requires any further
2235  *                mapping or not.
2236  * Scan given page buffers corresponding to changed extent and update buffer
2237  * state according to new extent state.
2238  * We map delalloc buffers to their physical location, clear unwritten bits.
2239  * If the given page is not fully mapped, we update @map to the next extent in
2240  * the given page that needs mapping & return @map_bh as true.
2241  */
2242 static int mpage_process_page(struct mpage_da_data *mpd, struct page *page,
2243                               ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2244                               bool *map_bh)
2245 {
2246         struct buffer_head *head, *bh;
2247         ext4_io_end_t *io_end = mpd->io_submit.io_end;
2248         ext4_lblk_t lblk = *m_lblk;
2249         ext4_fsblk_t pblock = *m_pblk;
2250         int err = 0;
2251         int blkbits = mpd->inode->i_blkbits;
2252         ssize_t io_end_size = 0;
2253         struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2254
2255         bh = head = page_buffers(page);
2256         do {
2257                 if (lblk < mpd->map.m_lblk)
2258                         continue;
2259                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2260                         /*
2261                          * Buffer after end of mapped extent.
2262                          * Find next buffer in the page to map.
2263                          */
2264                         mpd->map.m_len = 0;
2265                         mpd->map.m_flags = 0;
2266                         io_end_vec->size += io_end_size;
2267
2268                         err = mpage_process_page_bufs(mpd, head, bh, lblk);
2269                         if (err > 0)
2270                                 err = 0;
2271                         if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2272                                 io_end_vec = ext4_alloc_io_end_vec(io_end);
2273                                 if (IS_ERR(io_end_vec)) {
2274                                         err = PTR_ERR(io_end_vec);
2275                                         goto out;
2276                                 }
2277                                 io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits;
2278                         }
2279                         *map_bh = true;
2280                         goto out;
2281                 }
2282                 if (buffer_delay(bh)) {
2283                         clear_buffer_delay(bh);
2284                         bh->b_blocknr = pblock++;
2285                 }
2286                 clear_buffer_unwritten(bh);
2287                 io_end_size += (1 << blkbits);
2288         } while (lblk++, (bh = bh->b_this_page) != head);
2289
2290         io_end_vec->size += io_end_size;
2291         *map_bh = false;
2292 out:
2293         *m_lblk = lblk;
2294         *m_pblk = pblock;
2295         return err;
2296 }
2297
2298 /*
2299  * mpage_map_buffers - update buffers corresponding to changed extent and
2300  *                     submit fully mapped pages for IO
2301  *
2302  * @mpd - description of extent to map, on return next extent to map
2303  *
2304  * Scan buffers corresponding to changed extent (we expect corresponding pages
2305  * to be already locked) and update buffer state according to new extent state.
2306  * We map delalloc buffers to their physical location, clear unwritten bits,
2307  * and mark buffers as uninit when we perform writes to unwritten extents
2308  * and do extent conversion after IO is finished. If the last page is not fully
2309  * mapped, we update @map to the next extent in the last page that needs
2310  * mapping. Otherwise we submit the page for IO.
2311  */
2312 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2313 {
2314         struct pagevec pvec;
2315         int nr_pages, i;
2316         struct inode *inode = mpd->inode;
2317         int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2318         pgoff_t start, end;
2319         ext4_lblk_t lblk;
2320         ext4_fsblk_t pblock;
2321         int err;
2322         bool map_bh = false;
2323
2324         start = mpd->map.m_lblk >> bpp_bits;
2325         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2326         lblk = start << bpp_bits;
2327         pblock = mpd->map.m_pblk;
2328
2329         pagevec_init(&pvec);
2330         while (start <= end) {
2331                 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2332                                                 &start, end);
2333                 if (nr_pages == 0)
2334                         break;
2335                 for (i = 0; i < nr_pages; i++) {
2336                         struct page *page = pvec.pages[i];
2337
2338                         err = mpage_process_page(mpd, page, &lblk, &pblock,
2339                                                  &map_bh);
2340                         /*
2341                          * If map_bh is true, means page may require further bh
2342                          * mapping, or maybe the page was submitted for IO.
2343                          * So we return to call further extent mapping.
2344                          */
2345                         if (err < 0 || map_bh)
2346                                 goto out;
2347                         /* Page fully mapped - let IO run! */
2348                         err = mpage_submit_page(mpd, page);
2349                         if (err < 0)
2350                                 goto out;
2351                 }
2352                 pagevec_release(&pvec);
2353         }
2354         /* Extent fully mapped and matches with page boundary. We are done. */
2355         mpd->map.m_len = 0;
2356         mpd->map.m_flags = 0;
2357         return 0;
2358 out:
2359         pagevec_release(&pvec);
2360         return err;
2361 }
2362
2363 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2364 {
2365         struct inode *inode = mpd->inode;
2366         struct ext4_map_blocks *map = &mpd->map;
2367         int get_blocks_flags;
2368         int err, dioread_nolock;
2369
2370         trace_ext4_da_write_pages_extent(inode, map);
2371         /*
2372          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2373          * to convert an unwritten extent to be initialized (in the case
2374          * where we have written into one or more preallocated blocks).  It is
2375          * possible that we're going to need more metadata blocks than
2376          * previously reserved. However we must not fail because we're in
2377          * writeback and there is nothing we can do about it so it might result
2378          * in data loss.  So use reserved blocks to allocate metadata if
2379          * possible.
2380          *
2381          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2382          * the blocks in question are delalloc blocks.  This indicates
2383          * that the blocks and quotas has already been checked when
2384          * the data was copied into the page cache.
2385          */
2386         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2387                            EXT4_GET_BLOCKS_METADATA_NOFAIL |
2388                            EXT4_GET_BLOCKS_IO_SUBMIT;
2389         dioread_nolock = ext4_should_dioread_nolock(inode);
2390         if (dioread_nolock)
2391                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2392         if (map->m_flags & BIT(BH_Delay))
2393                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2394
2395         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2396         if (err < 0)
2397                 return err;
2398         if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2399                 if (!mpd->io_submit.io_end->handle &&
2400                     ext4_handle_valid(handle)) {
2401                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2402                         handle->h_rsv_handle = NULL;
2403                 }
2404                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2405         }
2406
2407         BUG_ON(map->m_len == 0);
2408         return 0;
2409 }
2410
2411 /*
2412  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2413  *                               mpd->len and submit pages underlying it for IO
2414  *
2415  * @handle - handle for journal operations
2416  * @mpd - extent to map
2417  * @give_up_on_write - we set this to true iff there is a fatal error and there
2418  *                     is no hope of writing the data. The caller should discard
2419  *                     dirty pages to avoid infinite loops.
2420  *
2421  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2422  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2423  * them to initialized or split the described range from larger unwritten
2424  * extent. Note that we need not map all the described range since allocation
2425  * can return less blocks or the range is covered by more unwritten extents. We
2426  * cannot map more because we are limited by reserved transaction credits. On
2427  * the other hand we always make sure that the last touched page is fully
2428  * mapped so that it can be written out (and thus forward progress is
2429  * guaranteed). After mapping we submit all mapped pages for IO.
2430  */
2431 static int mpage_map_and_submit_extent(handle_t *handle,
2432                                        struct mpage_da_data *mpd,
2433                                        bool *give_up_on_write)
2434 {
2435         struct inode *inode = mpd->inode;
2436         struct ext4_map_blocks *map = &mpd->map;
2437         int err;
2438         loff_t disksize;
2439         int progress = 0;
2440         ext4_io_end_t *io_end = mpd->io_submit.io_end;
2441         struct ext4_io_end_vec *io_end_vec;
2442
2443         io_end_vec = ext4_alloc_io_end_vec(io_end);
2444         if (IS_ERR(io_end_vec))
2445                 return PTR_ERR(io_end_vec);
2446         io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2447         do {
2448                 err = mpage_map_one_extent(handle, mpd);
2449                 if (err < 0) {
2450                         struct super_block *sb = inode->i_sb;
2451
2452                         if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2453                             ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
2454                                 goto invalidate_dirty_pages;
2455                         /*
2456                          * Let the uper layers retry transient errors.
2457                          * In the case of ENOSPC, if ext4_count_free_blocks()
2458                          * is non-zero, a commit should free up blocks.
2459                          */
2460                         if ((err == -ENOMEM) ||
2461                             (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2462                                 if (progress)
2463                                         goto update_disksize;
2464                                 return err;
2465                         }
2466                         ext4_msg(sb, KERN_CRIT,
2467                                  "Delayed block allocation failed for "
2468                                  "inode %lu at logical offset %llu with"
2469                                  " max blocks %u with error %d",
2470                                  inode->i_ino,
2471                                  (unsigned long long)map->m_lblk,
2472                                  (unsigned)map->m_len, -err);
2473                         ext4_msg(sb, KERN_CRIT,
2474                                  "This should not happen!! Data will "
2475                                  "be lost\n");
2476                         if (err == -ENOSPC)
2477                                 ext4_print_free_blocks(inode);
2478                 invalidate_dirty_pages:
2479                         *give_up_on_write = true;
2480                         return err;
2481                 }
2482                 progress = 1;
2483                 /*
2484                  * Update buffer state, submit mapped pages, and get us new
2485                  * extent to map
2486                  */
2487                 err = mpage_map_and_submit_buffers(mpd);
2488                 if (err < 0)
2489                         goto update_disksize;
2490         } while (map->m_len);
2491
2492 update_disksize:
2493         /*
2494          * Update on-disk size after IO is submitted.  Races with
2495          * truncate are avoided by checking i_size under i_data_sem.
2496          */
2497         disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2498         if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2499                 int err2;
2500                 loff_t i_size;
2501
2502                 down_write(&EXT4_I(inode)->i_data_sem);
2503                 i_size = i_size_read(inode);
2504                 if (disksize > i_size)
2505                         disksize = i_size;
2506                 if (disksize > EXT4_I(inode)->i_disksize)
2507                         EXT4_I(inode)->i_disksize = disksize;
2508                 up_write(&EXT4_I(inode)->i_data_sem);
2509                 err2 = ext4_mark_inode_dirty(handle, inode);
2510                 if (err2) {
2511                         ext4_error_err(inode->i_sb, -err2,
2512                                        "Failed to mark inode %lu dirty",
2513                                        inode->i_ino);
2514                 }
2515                 if (!err)
2516                         err = err2;
2517         }
2518         return err;
2519 }
2520
2521 /*
2522  * Calculate the total number of credits to reserve for one writepages
2523  * iteration. This is called from ext4_writepages(). We map an extent of
2524  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2525  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2526  * bpp - 1 blocks in bpp different extents.
2527  */
2528 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2529 {
2530         int bpp = ext4_journal_blocks_per_page(inode);
2531
2532         return ext4_meta_trans_blocks(inode,
2533                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2534 }
2535
2536 /*
2537  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2538  *                               and underlying extent to map
2539  *
2540  * @mpd - where to look for pages
2541  *
2542  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2543  * IO immediately. When we find a page which isn't mapped we start accumulating
2544  * extent of buffers underlying these pages that needs mapping (formed by
2545  * either delayed or unwritten buffers). We also lock the pages containing
2546  * these buffers. The extent found is returned in @mpd structure (starting at
2547  * mpd->lblk with length mpd->len blocks).
2548  *
2549  * Note that this function can attach bios to one io_end structure which are
2550  * neither logically nor physically contiguous. Although it may seem as an
2551  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2552  * case as we need to track IO to all buffers underlying a page in one io_end.
2553  */
2554 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2555 {
2556         struct address_space *mapping = mpd->inode->i_mapping;
2557         struct pagevec pvec;
2558         unsigned int nr_pages;
2559         long left = mpd->wbc->nr_to_write;
2560         pgoff_t index = mpd->first_page;
2561         pgoff_t end = mpd->last_page;
2562         xa_mark_t tag;
2563         int i, err = 0;
2564         int blkbits = mpd->inode->i_blkbits;
2565         ext4_lblk_t lblk;
2566         struct buffer_head *head;
2567
2568         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2569                 tag = PAGECACHE_TAG_TOWRITE;
2570         else
2571                 tag = PAGECACHE_TAG_DIRTY;
2572
2573         pagevec_init(&pvec);
2574         mpd->map.m_len = 0;
2575         mpd->next_page = index;
2576         while (index <= end) {
2577                 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2578                                 tag);
2579                 if (nr_pages == 0)
2580                         break;
2581
2582                 for (i = 0; i < nr_pages; i++) {
2583                         struct page *page = pvec.pages[i];
2584
2585                         /*
2586                          * Accumulated enough dirty pages? This doesn't apply
2587                          * to WB_SYNC_ALL mode. For integrity sync we have to
2588                          * keep going because someone may be concurrently
2589                          * dirtying pages, and we might have synced a lot of
2590                          * newly appeared dirty pages, but have not synced all
2591                          * of the old dirty pages.
2592                          */
2593                         if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2594                                 goto out;
2595
2596                         /* If we can't merge this page, we are done. */
2597                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2598                                 goto out;
2599
2600                         lock_page(page);
2601                         /*
2602                          * If the page is no longer dirty, or its mapping no
2603                          * longer corresponds to inode we are writing (which
2604                          * means it has been truncated or invalidated), or the
2605                          * page is already under writeback and we are not doing
2606                          * a data integrity writeback, skip the page
2607                          */
2608                         if (!PageDirty(page) ||
2609                             (PageWriteback(page) &&
2610                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2611                             unlikely(page->mapping != mapping)) {
2612                                 unlock_page(page);
2613                                 continue;
2614                         }
2615
2616                         wait_on_page_writeback(page);
2617                         BUG_ON(PageWriteback(page));
2618
2619                         /*
2620                          * Should never happen but for buggy code in
2621                          * other subsystems that call
2622                          * set_page_dirty() without properly warning
2623                          * the file system first.  See [1] for more
2624                          * information.
2625                          *
2626                          * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz
2627                          */
2628                         if (!page_has_buffers(page)) {
2629                                 ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", page->index);
2630                                 ClearPageDirty(page);
2631                                 unlock_page(page);
2632                                 continue;
2633                         }
2634
2635                         if (mpd->map.m_len == 0)
2636                                 mpd->first_page = page->index;
2637                         mpd->next_page = page->index + 1;
2638                         /* Add all dirty buffers to mpd */
2639                         lblk = ((ext4_lblk_t)page->index) <<
2640                                 (PAGE_SHIFT - blkbits);
2641                         head = page_buffers(page);
2642                         err = mpage_process_page_bufs(mpd, head, head, lblk);
2643                         if (err <= 0)
2644                                 goto out;
2645                         err = 0;
2646                         left--;
2647                 }
2648                 pagevec_release(&pvec);
2649                 cond_resched();
2650         }
2651         mpd->scanned_until_end = 1;
2652         return 0;
2653 out:
2654         pagevec_release(&pvec);
2655         return err;
2656 }
2657
2658 static int ext4_writepages(struct address_space *mapping,
2659                            struct writeback_control *wbc)
2660 {
2661         pgoff_t writeback_index = 0;
2662         long nr_to_write = wbc->nr_to_write;
2663         int range_whole = 0;
2664         int cycled = 1;
2665         handle_t *handle = NULL;
2666         struct mpage_da_data mpd;
2667         struct inode *inode = mapping->host;
2668         int needed_blocks, rsv_blocks = 0, ret = 0;
2669         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2670         struct blk_plug plug;
2671         bool give_up_on_write = false;
2672
2673         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2674                 return -EIO;
2675
2676         percpu_down_read(&sbi->s_writepages_rwsem);
2677         trace_ext4_writepages(inode, wbc);
2678
2679         /*
2680          * No pages to write? This is mainly a kludge to avoid starting
2681          * a transaction for special inodes like journal inode on last iput()
2682          * because that could violate lock ordering on umount
2683          */
2684         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2685                 goto out_writepages;
2686
2687         if (ext4_should_journal_data(inode)) {
2688                 ret = generic_writepages(mapping, wbc);
2689                 goto out_writepages;
2690         }
2691
2692         /*
2693          * If the filesystem has aborted, it is read-only, so return
2694          * right away instead of dumping stack traces later on that
2695          * will obscure the real source of the problem.  We test
2696          * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2697          * the latter could be true if the filesystem is mounted
2698          * read-only, and in that case, ext4_writepages should
2699          * *never* be called, so if that ever happens, we would want
2700          * the stack trace.
2701          */
2702         if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2703                      ext4_test_mount_flag(inode->i_sb, EXT4_MF_FS_ABORTED))) {
2704                 ret = -EROFS;
2705                 goto out_writepages;
2706         }
2707
2708         /*
2709          * If we have inline data and arrive here, it means that
2710          * we will soon create the block for the 1st page, so
2711          * we'd better clear the inline data here.
2712          */
2713         if (ext4_has_inline_data(inode)) {
2714                 /* Just inode will be modified... */
2715                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2716                 if (IS_ERR(handle)) {
2717                         ret = PTR_ERR(handle);
2718                         goto out_writepages;
2719                 }
2720                 BUG_ON(ext4_test_inode_state(inode,
2721                                 EXT4_STATE_MAY_INLINE_DATA));
2722                 ext4_destroy_inline_data(handle, inode);
2723                 ext4_journal_stop(handle);
2724         }
2725
2726         if (ext4_should_dioread_nolock(inode)) {
2727                 /*
2728                  * We may need to convert up to one extent per block in
2729                  * the page and we may dirty the inode.
2730                  */
2731                 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2732                                                 PAGE_SIZE >> inode->i_blkbits);
2733         }
2734
2735         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2736                 range_whole = 1;
2737
2738         if (wbc->range_cyclic) {
2739                 writeback_index = mapping->writeback_index;
2740                 if (writeback_index)
2741                         cycled = 0;
2742                 mpd.first_page = writeback_index;
2743                 mpd.last_page = -1;
2744         } else {
2745                 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2746                 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2747         }
2748
2749         mpd.inode = inode;
2750         mpd.wbc = wbc;
2751         ext4_io_submit_init(&mpd.io_submit, wbc);
2752 retry:
2753         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2754                 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2755         blk_start_plug(&plug);
2756
2757         /*
2758          * First writeback pages that don't need mapping - we can avoid
2759          * starting a transaction unnecessarily and also avoid being blocked
2760          * in the block layer on device congestion while having transaction
2761          * started.
2762          */
2763         mpd.do_map = 0;
2764         mpd.scanned_until_end = 0;
2765         mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2766         if (!mpd.io_submit.io_end) {
2767                 ret = -ENOMEM;
2768                 goto unplug;
2769         }
2770         ret = mpage_prepare_extent_to_map(&mpd);
2771         /* Unlock pages we didn't use */
2772         mpage_release_unused_pages(&mpd, false);
2773         /* Submit prepared bio */
2774         ext4_io_submit(&mpd.io_submit);
2775         ext4_put_io_end_defer(mpd.io_submit.io_end);
2776         mpd.io_submit.io_end = NULL;
2777         if (ret < 0)
2778                 goto unplug;
2779
2780         while (!mpd.scanned_until_end && wbc->nr_to_write > 0) {
2781                 /* For each extent of pages we use new io_end */
2782                 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2783                 if (!mpd.io_submit.io_end) {
2784                         ret = -ENOMEM;
2785                         break;
2786                 }
2787
2788                 /*
2789                  * We have two constraints: We find one extent to map and we
2790                  * must always write out whole page (makes a difference when
2791                  * blocksize < pagesize) so that we don't block on IO when we
2792                  * try to write out the rest of the page. Journalled mode is
2793                  * not supported by delalloc.
2794                  */
2795                 BUG_ON(ext4_should_journal_data(inode));
2796                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2797
2798                 /* start a new transaction */
2799                 handle = ext4_journal_start_with_reserve(inode,
2800                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2801                 if (IS_ERR(handle)) {
2802                         ret = PTR_ERR(handle);
2803                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2804                                "%ld pages, ino %lu; err %d", __func__,
2805                                 wbc->nr_to_write, inode->i_ino, ret);
2806                         /* Release allocated io_end */
2807                         ext4_put_io_end(mpd.io_submit.io_end);
2808                         mpd.io_submit.io_end = NULL;
2809                         break;
2810                 }
2811                 mpd.do_map = 1;
2812
2813                 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2814                 ret = mpage_prepare_extent_to_map(&mpd);
2815                 if (!ret && mpd.map.m_len)
2816                         ret = mpage_map_and_submit_extent(handle, &mpd,
2817                                         &give_up_on_write);
2818                 /*
2819                  * Caution: If the handle is synchronous,
2820                  * ext4_journal_stop() can wait for transaction commit
2821                  * to finish which may depend on writeback of pages to
2822                  * complete or on page lock to be released.  In that
2823                  * case, we have to wait until after we have
2824                  * submitted all the IO, released page locks we hold,
2825                  * and dropped io_end reference (for extent conversion
2826                  * to be able to complete) before stopping the handle.
2827                  */
2828                 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2829                         ext4_journal_stop(handle);
2830                         handle = NULL;
2831                         mpd.do_map = 0;
2832                 }
2833                 /* Unlock pages we didn't use */
2834                 mpage_release_unused_pages(&mpd, give_up_on_write);
2835                 /* Submit prepared bio */
2836                 ext4_io_submit(&mpd.io_submit);
2837
2838                 /*
2839                  * Drop our io_end reference we got from init. We have
2840                  * to be careful and use deferred io_end finishing if
2841                  * we are still holding the transaction as we can
2842                  * release the last reference to io_end which may end
2843                  * up doing unwritten extent conversion.
2844                  */
2845                 if (handle) {
2846                         ext4_put_io_end_defer(mpd.io_submit.io_end);
2847                         ext4_journal_stop(handle);
2848                 } else
2849                         ext4_put_io_end(mpd.io_submit.io_end);
2850                 mpd.io_submit.io_end = NULL;
2851
2852                 if (ret == -ENOSPC && sbi->s_journal) {
2853                         /*
2854                          * Commit the transaction which would
2855                          * free blocks released in the transaction
2856                          * and try again
2857                          */
2858                         jbd2_journal_force_commit_nested(sbi->s_journal);
2859                         ret = 0;
2860                         continue;
2861                 }
2862                 /* Fatal error - ENOMEM, EIO... */
2863                 if (ret)
2864                         break;
2865         }
2866 unplug:
2867         blk_finish_plug(&plug);
2868         if (!ret && !cycled && wbc->nr_to_write > 0) {
2869                 cycled = 1;
2870                 mpd.last_page = writeback_index - 1;
2871                 mpd.first_page = 0;
2872                 goto retry;
2873         }
2874
2875         /* Update index */
2876         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2877                 /*
2878                  * Set the writeback_index so that range_cyclic
2879                  * mode will write it back later
2880                  */
2881                 mapping->writeback_index = mpd.first_page;
2882
2883 out_writepages:
2884         trace_ext4_writepages_result(inode, wbc, ret,
2885                                      nr_to_write - wbc->nr_to_write);
2886         percpu_up_read(&sbi->s_writepages_rwsem);
2887         return ret;
2888 }
2889
2890 static int ext4_dax_writepages(struct address_space *mapping,
2891                                struct writeback_control *wbc)
2892 {
2893         int ret;
2894         long nr_to_write = wbc->nr_to_write;
2895         struct inode *inode = mapping->host;
2896         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2897
2898         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2899                 return -EIO;
2900
2901         percpu_down_read(&sbi->s_writepages_rwsem);
2902         trace_ext4_writepages(inode, wbc);
2903
2904         ret = dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc);
2905         trace_ext4_writepages_result(inode, wbc, ret,
2906                                      nr_to_write - wbc->nr_to_write);
2907         percpu_up_read(&sbi->s_writepages_rwsem);
2908         return ret;
2909 }
2910
2911 static int ext4_nonda_switch(struct super_block *sb)
2912 {
2913         s64 free_clusters, dirty_clusters;
2914         struct ext4_sb_info *sbi = EXT4_SB(sb);
2915
2916         /*
2917          * switch to non delalloc mode if we are running low
2918          * on free block. The free block accounting via percpu
2919          * counters can get slightly wrong with percpu_counter_batch getting
2920          * accumulated on each CPU without updating global counters
2921          * Delalloc need an accurate free block accounting. So switch
2922          * to non delalloc when we are near to error range.
2923          */
2924         free_clusters =
2925                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2926         dirty_clusters =
2927                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2928         /*
2929          * Start pushing delalloc when 1/2 of free blocks are dirty.
2930          */
2931         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2932                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2933
2934         if (2 * free_clusters < 3 * dirty_clusters ||
2935             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2936                 /*
2937                  * free block count is less than 150% of dirty blocks
2938                  * or free blocks is less than watermark
2939                  */
2940                 return 1;
2941         }
2942         return 0;
2943 }
2944
2945 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2946                                loff_t pos, unsigned len,
2947                                struct page **pagep, void **fsdata)
2948 {
2949         int ret, retries = 0;
2950         struct page *page;
2951         pgoff_t index;
2952         struct inode *inode = mapping->host;
2953
2954         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2955                 return -EIO;
2956
2957         index = pos >> PAGE_SHIFT;
2958
2959         if (ext4_nonda_switch(inode->i_sb) || ext4_verity_in_progress(inode)) {
2960                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2961                 return ext4_write_begin(file, mapping, pos,
2962                                         len, pagep, fsdata);
2963         }
2964         *fsdata = (void *)0;
2965         trace_ext4_da_write_begin(inode, pos, len);
2966
2967         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2968                 ret = ext4_da_write_inline_data_begin(mapping, inode, pos, len,
2969                                                       pagep, fsdata);
2970                 if (ret < 0)
2971                         return ret;
2972                 if (ret == 1)
2973                         return 0;
2974         }
2975
2976 retry:
2977         page = grab_cache_page_write_begin(mapping, index);
2978         if (!page)
2979                 return -ENOMEM;
2980
2981         /* In case writeback began while the page was unlocked */
2982         wait_for_stable_page(page);
2983
2984 #ifdef CONFIG_FS_ENCRYPTION
2985         ret = ext4_block_write_begin(page, pos, len,
2986                                      ext4_da_get_block_prep);
2987 #else
2988         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2989 #endif
2990         if (ret < 0) {
2991                 unlock_page(page);
2992                 put_page(page);
2993                 /*
2994                  * block_write_begin may have instantiated a few blocks
2995                  * outside i_size.  Trim these off again. Don't need
2996                  * i_size_read because we hold inode lock.
2997                  */
2998                 if (pos + len > inode->i_size)
2999                         ext4_truncate_failed_write(inode);
3000
3001                 if (ret == -ENOSPC &&
3002                     ext4_should_retry_alloc(inode->i_sb, &retries))
3003                         goto retry;
3004                 return ret;
3005         }
3006
3007         *pagep = page;
3008         return ret;
3009 }
3010
3011 /*
3012  * Check if we should update i_disksize
3013  * when write to the end of file but not require block allocation
3014  */
3015 static int ext4_da_should_update_i_disksize(struct page *page,
3016                                             unsigned long offset)
3017 {
3018         struct buffer_head *bh;
3019         struct inode *inode = page->mapping->host;
3020         unsigned int idx;
3021         int i;
3022
3023         bh = page_buffers(page);
3024         idx = offset >> inode->i_blkbits;
3025
3026         for (i = 0; i < idx; i++)
3027                 bh = bh->b_this_page;
3028
3029         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3030                 return 0;
3031         return 1;
3032 }
3033
3034 static int ext4_da_write_end(struct file *file,
3035                              struct address_space *mapping,
3036                              loff_t pos, unsigned len, unsigned copied,
3037                              struct page *page, void *fsdata)
3038 {
3039         struct inode *inode = mapping->host;
3040         loff_t new_i_size;
3041         unsigned long start, end;
3042         int write_mode = (int)(unsigned long)fsdata;
3043
3044         if (write_mode == FALL_BACK_TO_NONDELALLOC)
3045                 return ext4_write_end(file, mapping, pos,
3046                                       len, copied, page, fsdata);
3047
3048         trace_ext4_da_write_end(inode, pos, len, copied);
3049
3050         if (write_mode != CONVERT_INLINE_DATA &&
3051             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3052             ext4_has_inline_data(inode))
3053                 return ext4_write_inline_data_end(inode, pos, len, copied, page);
3054
3055         start = pos & (PAGE_SIZE - 1);
3056         end = start + copied - 1;
3057
3058         /*
3059          * Since we are holding inode lock, we are sure i_disksize <=
3060          * i_size. We also know that if i_disksize < i_size, there are
3061          * delalloc writes pending in the range upto i_size. If the end of
3062          * the current write is <= i_size, there's no need to touch
3063          * i_disksize since writeback will push i_disksize upto i_size
3064          * eventually. If the end of the current write is > i_size and
3065          * inside an allocated block (ext4_da_should_update_i_disksize()
3066          * check), we need to update i_disksize here as neither
3067          * ext4_writepage() nor certain ext4_writepages() paths not
3068          * allocating blocks update i_disksize.
3069          *
3070          * Note that we defer inode dirtying to generic_write_end() /
3071          * ext4_da_write_inline_data_end().
3072          */
3073         new_i_size = pos + copied;
3074         if (copied && new_i_size > inode->i_size &&
3075             ext4_da_should_update_i_disksize(page, end))
3076                 ext4_update_i_disksize(inode, new_i_size);
3077
3078         return generic_write_end(file, mapping, pos, len, copied, page, fsdata);
3079 }
3080
3081 /*
3082  * Force all delayed allocation blocks to be allocated for a given inode.
3083  */
3084 int ext4_alloc_da_blocks(struct inode *inode)
3085 {
3086         trace_ext4_alloc_da_blocks(inode);
3087
3088         if (!EXT4_I(inode)->i_reserved_data_blocks)
3089                 return 0;
3090
3091         /*
3092          * We do something simple for now.  The filemap_flush() will
3093          * also start triggering a write of the data blocks, which is
3094          * not strictly speaking necessary (and for users of
3095          * laptop_mode, not even desirable).  However, to do otherwise
3096          * would require replicating code paths in:
3097          *
3098          * ext4_writepages() ->
3099          *    write_cache_pages() ---> (via passed in callback function)
3100          *        __mpage_da_writepage() -->
3101          *           mpage_add_bh_to_extent()
3102          *           mpage_da_map_blocks()
3103          *
3104          * The problem is that write_cache_pages(), located in
3105          * mm/page-writeback.c, marks pages clean in preparation for
3106          * doing I/O, which is not desirable if we're not planning on
3107          * doing I/O at all.
3108          *
3109          * We could call write_cache_pages(), and then redirty all of
3110          * the pages by calling redirty_page_for_writepage() but that
3111          * would be ugly in the extreme.  So instead we would need to
3112          * replicate parts of the code in the above functions,
3113          * simplifying them because we wouldn't actually intend to
3114          * write out the pages, but rather only collect contiguous
3115          * logical block extents, call the multi-block allocator, and
3116          * then update the buffer heads with the block allocations.
3117          *
3118          * For now, though, we'll cheat by calling filemap_flush(),
3119          * which will map the blocks, and start the I/O, but not
3120          * actually wait for the I/O to complete.
3121          */
3122         return filemap_flush(inode->i_mapping);
3123 }
3124
3125 /*
3126  * bmap() is special.  It gets used by applications such as lilo and by
3127  * the swapper to find the on-disk block of a specific piece of data.
3128  *
3129  * Naturally, this is dangerous if the block concerned is still in the
3130  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3131  * filesystem and enables swap, then they may get a nasty shock when the
3132  * data getting swapped to that swapfile suddenly gets overwritten by
3133  * the original zero's written out previously to the journal and
3134  * awaiting writeback in the kernel's buffer cache.
3135  *
3136  * So, if we see any bmap calls here on a modified, data-journaled file,
3137  * take extra steps to flush any blocks which might be in the cache.
3138  */
3139 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3140 {
3141         struct inode *inode = mapping->host;
3142         journal_t *journal;
3143         int err;
3144
3145         /*
3146          * We can get here for an inline file via the FIBMAP ioctl
3147          */
3148         if (ext4_has_inline_data(inode))
3149                 return 0;
3150
3151         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3152                         test_opt(inode->i_sb, DELALLOC)) {
3153                 /*
3154                  * With delalloc we want to sync the file
3155                  * so that we can make sure we allocate
3156                  * blocks for file
3157                  */
3158                 filemap_write_and_wait(mapping);
3159         }
3160
3161         if (EXT4_JOURNAL(inode) &&
3162             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3163                 /*
3164                  * This is a REALLY heavyweight approach, but the use of
3165                  * bmap on dirty files is expected to be extremely rare:
3166                  * only if we run lilo or swapon on a freshly made file
3167                  * do we expect this to happen.
3168                  *
3169                  * (bmap requires CAP_SYS_RAWIO so this does not
3170                  * represent an unprivileged user DOS attack --- we'd be
3171                  * in trouble if mortal users could trigger this path at
3172                  * will.)
3173                  *
3174                  * NB. EXT4_STATE_JDATA is not set on files other than
3175                  * regular files.  If somebody wants to bmap a directory
3176                  * or symlink and gets confused because the buffer
3177                  * hasn't yet been flushed to disk, they deserve
3178                  * everything they get.
3179                  */
3180
3181                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3182                 journal = EXT4_JOURNAL(inode);
3183                 jbd2_journal_lock_updates(journal);
3184                 err = jbd2_journal_flush(journal, 0);
3185                 jbd2_journal_unlock_updates(journal);
3186
3187                 if (err)
3188                         return 0;
3189         }
3190
3191         return iomap_bmap(mapping, block, &ext4_iomap_ops);
3192 }
3193
3194 static int ext4_read_folio(struct file *file, struct folio *folio)
3195 {
3196         struct page *page = &folio->page;
3197         int ret = -EAGAIN;
3198         struct inode *inode = page->mapping->host;
3199
3200         trace_ext4_readpage(page);
3201
3202         if (ext4_has_inline_data(inode))
3203                 ret = ext4_readpage_inline(inode, page);
3204
3205         if (ret == -EAGAIN)
3206                 return ext4_mpage_readpages(inode, NULL, page);
3207
3208         return ret;
3209 }
3210
3211 static void ext4_readahead(struct readahead_control *rac)
3212 {
3213         struct inode *inode = rac->mapping->host;
3214
3215         /* If the file has inline data, no need to do readahead. */
3216         if (ext4_has_inline_data(inode))
3217                 return;
3218
3219         ext4_mpage_readpages(inode, rac, NULL);
3220 }
3221
3222 static void ext4_invalidate_folio(struct folio *folio, size_t offset,
3223                                 size_t length)
3224 {
3225         trace_ext4_invalidate_folio(folio, offset, length);
3226
3227         /* No journalling happens on data buffers when this function is used */
3228         WARN_ON(folio_buffers(folio) && buffer_jbd(folio_buffers(folio)));
3229
3230         block_invalidate_folio(folio, offset, length);
3231 }
3232
3233 static int __ext4_journalled_invalidate_folio(struct folio *folio,
3234                                             size_t offset, size_t length)
3235 {
3236         journal_t *journal = EXT4_JOURNAL(folio->mapping->host);
3237
3238         trace_ext4_journalled_invalidate_folio(folio, offset, length);
3239
3240         /*
3241          * If it's a full truncate we just forget about the pending dirtying
3242          */
3243         if (offset == 0 && length == folio_size(folio))
3244                 folio_clear_checked(folio);
3245
3246         return jbd2_journal_invalidate_folio(journal, folio, offset, length);
3247 }
3248
3249 /* Wrapper for aops... */
3250 static void ext4_journalled_invalidate_folio(struct folio *folio,
3251                                            size_t offset,
3252                                            size_t length)
3253 {
3254         WARN_ON(__ext4_journalled_invalidate_folio(folio, offset, length) < 0);
3255 }
3256
3257 static bool ext4_release_folio(struct folio *folio, gfp_t wait)
3258 {
3259         journal_t *journal = EXT4_JOURNAL(folio->mapping->host);
3260
3261         trace_ext4_releasepage(&folio->page);
3262
3263         /* Page has dirty journalled data -> cannot release */
3264         if (folio_test_checked(folio))
3265                 return false;
3266         if (journal)
3267                 return jbd2_journal_try_to_free_buffers(journal, folio);
3268         else
3269                 return try_to_free_buffers(folio);
3270 }
3271
3272 static bool ext4_inode_datasync_dirty(struct inode *inode)
3273 {
3274         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3275
3276         if (journal) {
3277                 if (jbd2_transaction_committed(journal,
3278                         EXT4_I(inode)->i_datasync_tid))
3279                         return false;
3280                 if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
3281                         return !list_empty(&EXT4_I(inode)->i_fc_list);
3282                 return true;
3283         }
3284
3285         /* Any metadata buffers to write? */
3286         if (!list_empty(&inode->i_mapping->private_list))
3287                 return true;
3288         return inode->i_state & I_DIRTY_DATASYNC;
3289 }
3290
3291 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3292                            struct ext4_map_blocks *map, loff_t offset,
3293                            loff_t length, unsigned int flags)
3294 {
3295         u8 blkbits = inode->i_blkbits;
3296
3297         /*
3298          * Writes that span EOF might trigger an I/O size update on completion,
3299          * so consider them to be dirty for the purpose of O_DSYNC, even if
3300          * there is no other metadata changes being made or are pending.
3301          */
3302         iomap->flags = 0;
3303         if (ext4_inode_datasync_dirty(inode) ||
3304             offset + length > i_size_read(inode))
3305                 iomap->flags |= IOMAP_F_DIRTY;
3306
3307         if (map->m_flags & EXT4_MAP_NEW)
3308                 iomap->flags |= IOMAP_F_NEW;
3309
3310         if (flags & IOMAP_DAX)
3311                 iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3312         else
3313                 iomap->bdev = inode->i_sb->s_bdev;
3314         iomap->offset = (u64) map->m_lblk << blkbits;
3315         iomap->length = (u64) map->m_len << blkbits;
3316
3317         if ((map->m_flags & EXT4_MAP_MAPPED) &&
3318             !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3319                 iomap->flags |= IOMAP_F_MERGED;
3320
3321         /*
3322          * Flags passed to ext4_map_blocks() for direct I/O writes can result
3323          * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3324          * set. In order for any allocated unwritten extents to be converted
3325          * into written extents correctly within the ->end_io() handler, we
3326          * need to ensure that the iomap->type is set appropriately. Hence, the
3327          * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3328          * been set first.
3329          */
3330         if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3331                 iomap->type = IOMAP_UNWRITTEN;
3332                 iomap->addr = (u64) map->m_pblk << blkbits;
3333                 if (flags & IOMAP_DAX)
3334                         iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3335         } else if (map->m_flags & EXT4_MAP_MAPPED) {
3336                 iomap->type = IOMAP_MAPPED;
3337                 iomap->addr = (u64) map->m_pblk << blkbits;
3338                 if (flags & IOMAP_DAX)
3339                         iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3340         } else {
3341                 iomap->type = IOMAP_HOLE;
3342                 iomap->addr = IOMAP_NULL_ADDR;
3343         }
3344 }
3345
3346 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3347                             unsigned int flags)
3348 {
3349         handle_t *handle;
3350         u8 blkbits = inode->i_blkbits;
3351         int ret, dio_credits, m_flags = 0, retries = 0;
3352
3353         /*
3354          * Trim the mapping request to the maximum value that we can map at
3355          * once for direct I/O.
3356          */
3357         if (map->m_len > DIO_MAX_BLOCKS)
3358                 map->m_len = DIO_MAX_BLOCKS;
3359         dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3360
3361 retry:
3362         /*
3363          * Either we allocate blocks and then don't get an unwritten extent, so
3364          * in that case we have reserved enough credits. Or, the blocks are
3365          * already allocated and unwritten. In that case, the extent conversion
3366          * fits into the credits as well.
3367          */
3368         handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3369         if (IS_ERR(handle))
3370                 return PTR_ERR(handle);
3371
3372         /*
3373          * DAX and direct I/O are the only two operations that are currently
3374          * supported with IOMAP_WRITE.
3375          */
3376         WARN_ON(!(flags & (IOMAP_DAX | IOMAP_DIRECT)));
3377         if (flags & IOMAP_DAX)
3378                 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3379         /*
3380          * We use i_size instead of i_disksize here because delalloc writeback
3381          * can complete at any point during the I/O and subsequently push the
3382          * i_disksize out to i_size. This could be beyond where direct I/O is
3383          * happening and thus expose allocated blocks to direct I/O reads.
3384          */
3385         else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode))
3386                 m_flags = EXT4_GET_BLOCKS_CREATE;
3387         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3388                 m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3389
3390         ret = ext4_map_blocks(handle, inode, map, m_flags);
3391
3392         /*
3393          * We cannot fill holes in indirect tree based inodes as that could
3394          * expose stale data in the case of a crash. Use the magic error code
3395          * to fallback to buffered I/O.
3396          */
3397         if (!m_flags && !ret)
3398                 ret = -ENOTBLK;
3399
3400         ext4_journal_stop(handle);
3401         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3402                 goto retry;
3403
3404         return ret;
3405 }
3406
3407
3408 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3409                 unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3410 {
3411         int ret;
3412         struct ext4_map_blocks map;
3413         u8 blkbits = inode->i_blkbits;
3414
3415         if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3416                 return -EINVAL;
3417
3418         if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3419                 return -ERANGE;
3420
3421         /*
3422          * Calculate the first and last logical blocks respectively.
3423          */
3424         map.m_lblk = offset >> blkbits;
3425         map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3426                           EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3427
3428         if (flags & IOMAP_WRITE) {
3429                 /*
3430                  * We check here if the blocks are already allocated, then we
3431                  * don't need to start a journal txn and we can directly return
3432                  * the mapping information. This could boost performance
3433                  * especially in multi-threaded overwrite requests.
3434                  */
3435                 if (offset + length <= i_size_read(inode)) {
3436                         ret = ext4_map_blocks(NULL, inode, &map, 0);
3437                         if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED))
3438                                 goto out;
3439                 }
3440                 ret = ext4_iomap_alloc(inode, &map, flags);
3441         } else {
3442                 ret = ext4_map_blocks(NULL, inode, &map, 0);
3443         }
3444
3445         if (ret < 0)
3446                 return ret;
3447 out:
3448         /*
3449          * When inline encryption is enabled, sometimes I/O to an encrypted file
3450          * has to be broken up to guarantee DUN contiguity.  Handle this by
3451          * limiting the length of the mapping returned.
3452          */
3453         map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
3454
3455         ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3456
3457         return 0;
3458 }
3459
3460 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3461                 loff_t length, unsigned flags, struct iomap *iomap,
3462                 struct iomap *srcmap)
3463 {
3464         int ret;
3465
3466         /*
3467          * Even for writes we don't need to allocate blocks, so just pretend
3468          * we are reading to save overhead of starting a transaction.
3469          */
3470         flags &= ~IOMAP_WRITE;
3471         ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3472         WARN_ON_ONCE(iomap->type != IOMAP_MAPPED);
3473         return ret;
3474 }
3475
3476 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3477                           ssize_t written, unsigned flags, struct iomap *iomap)
3478 {
3479         /*
3480          * Check to see whether an error occurred while writing out the data to
3481          * the allocated blocks. If so, return the magic error code so that we
3482          * fallback to buffered I/O and attempt to complete the remainder of
3483          * the I/O. Any blocks that may have been allocated in preparation for
3484          * the direct I/O will be reused during buffered I/O.
3485          */
3486         if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3487                 return -ENOTBLK;
3488
3489         return 0;
3490 }
3491
3492 const struct iomap_ops ext4_iomap_ops = {
3493         .iomap_begin            = ext4_iomap_begin,
3494         .iomap_end              = ext4_iomap_end,
3495 };
3496
3497 const struct iomap_ops ext4_iomap_overwrite_ops = {
3498         .iomap_begin            = ext4_iomap_overwrite_begin,
3499         .iomap_end              = ext4_iomap_end,
3500 };
3501
3502 static bool ext4_iomap_is_delalloc(struct inode *inode,
3503                                    struct ext4_map_blocks *map)
3504 {
3505         struct extent_status es;
3506         ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1;
3507
3508         ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3509                                   map->m_lblk, end, &es);
3510
3511         if (!es.es_len || es.es_lblk > end)
3512                 return false;
3513
3514         if (es.es_lblk > map->m_lblk) {
3515                 map->m_len = es.es_lblk - map->m_lblk;
3516                 return false;
3517         }
3518
3519         offset = map->m_lblk - es.es_lblk;
3520         map->m_len = es.es_len - offset;
3521
3522         return true;
3523 }
3524
3525 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3526                                    loff_t length, unsigned int flags,
3527                                    struct iomap *iomap, struct iomap *srcmap)
3528 {
3529         int ret;
3530         bool delalloc = false;
3531         struct ext4_map_blocks map;
3532         u8 blkbits = inode->i_blkbits;
3533
3534         if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3535                 return -EINVAL;
3536
3537         if (ext4_has_inline_data(inode)) {
3538                 ret = ext4_inline_data_iomap(inode, iomap);
3539                 if (ret != -EAGAIN) {
3540                         if (ret == 0 && offset >= iomap->length)
3541                                 ret = -ENOENT;
3542                         return ret;
3543                 }
3544         }
3545
3546         /*
3547          * Calculate the first and last logical block respectively.
3548          */
3549         map.m_lblk = offset >> blkbits;
3550         map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3551                           EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3552
3553         /*
3554          * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3555          * So handle it here itself instead of querying ext4_map_blocks().
3556          * Since ext4_map_blocks() will warn about it and will return
3557          * -EIO error.
3558          */
3559         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3560                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3561
3562                 if (offset >= sbi->s_bitmap_maxbytes) {
3563                         map.m_flags = 0;
3564                         goto set_iomap;
3565                 }
3566         }
3567
3568         ret = ext4_map_blocks(NULL, inode, &map, 0);
3569         if (ret < 0)
3570                 return ret;
3571         if (ret == 0)
3572                 delalloc = ext4_iomap_is_delalloc(inode, &map);
3573
3574 set_iomap:
3575         ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3576         if (delalloc && iomap->type == IOMAP_HOLE)
3577                 iomap->type = IOMAP_DELALLOC;
3578
3579         return 0;
3580 }
3581
3582 const struct iomap_ops ext4_iomap_report_ops = {
3583         .iomap_begin = ext4_iomap_begin_report,
3584 };
3585
3586 /*
3587  * Whenever the folio is being dirtied, corresponding buffers should already
3588  * be attached to the transaction (we take care of this in ext4_page_mkwrite()
3589  * and ext4_write_begin()). However we cannot move buffers to dirty transaction
3590  * lists here because ->dirty_folio is called under VFS locks and the folio
3591  * is not necessarily locked.
3592  *
3593  * We cannot just dirty the folio and leave attached buffers clean, because the
3594  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3595  * or jbddirty because all the journalling code will explode.
3596  *
3597  * So what we do is to mark the folio "pending dirty" and next time writepage
3598  * is called, propagate that into the buffers appropriately.
3599  */
3600 static bool ext4_journalled_dirty_folio(struct address_space *mapping,
3601                 struct folio *folio)
3602 {
3603         WARN_ON_ONCE(!folio_buffers(folio));
3604         folio_set_checked(folio);
3605         return filemap_dirty_folio(mapping, folio);
3606 }
3607
3608 static bool ext4_dirty_folio(struct address_space *mapping, struct folio *folio)
3609 {
3610         WARN_ON_ONCE(!folio_test_locked(folio) && !folio_test_dirty(folio));
3611         WARN_ON_ONCE(!folio_buffers(folio));
3612         return block_dirty_folio(mapping, folio);
3613 }
3614
3615 static int ext4_iomap_swap_activate(struct swap_info_struct *sis,
3616                                     struct file *file, sector_t *span)
3617 {
3618         return iomap_swapfile_activate(sis, file, span,
3619                                        &ext4_iomap_report_ops);
3620 }
3621
3622 static const struct address_space_operations ext4_aops = {
3623         .read_folio             = ext4_read_folio,
3624         .readahead              = ext4_readahead,
3625         .writepage              = ext4_writepage,
3626         .writepages             = ext4_writepages,
3627         .write_begin            = ext4_write_begin,
3628         .write_end              = ext4_write_end,
3629         .dirty_folio            = ext4_dirty_folio,
3630         .bmap                   = ext4_bmap,
3631         .invalidate_folio       = ext4_invalidate_folio,
3632         .release_folio          = ext4_release_folio,
3633         .direct_IO              = noop_direct_IO,
3634         .migratepage            = buffer_migrate_page,
3635         .is_partially_uptodate  = block_is_partially_uptodate,
3636         .error_remove_page      = generic_error_remove_page,
3637         .swap_activate          = ext4_iomap_swap_activate,
3638 };
3639
3640 static const struct address_space_operations ext4_journalled_aops = {
3641         .read_folio             = ext4_read_folio,
3642         .readahead              = ext4_readahead,
3643         .writepage              = ext4_writepage,
3644         .writepages             = ext4_writepages,
3645         .write_begin            = ext4_write_begin,
3646         .write_end              = ext4_journalled_write_end,
3647         .dirty_folio            = ext4_journalled_dirty_folio,
3648         .bmap                   = ext4_bmap,
3649         .invalidate_folio       = ext4_journalled_invalidate_folio,
3650         .release_folio          = ext4_release_folio,
3651         .direct_IO              = noop_direct_IO,
3652         .is_partially_uptodate  = block_is_partially_uptodate,
3653         .error_remove_page      = generic_error_remove_page,
3654         .swap_activate          = ext4_iomap_swap_activate,
3655 };
3656
3657 static const struct address_space_operations ext4_da_aops = {
3658         .read_folio             = ext4_read_folio,
3659         .readahead              = ext4_readahead,
3660         .writepage              = ext4_writepage,
3661         .writepages             = ext4_writepages,
3662         .write_begin            = ext4_da_write_begin,
3663         .write_end              = ext4_da_write_end,
3664         .dirty_folio            = ext4_dirty_folio,
3665         .bmap                   = ext4_bmap,
3666         .invalidate_folio       = ext4_invalidate_folio,
3667         .release_folio          = ext4_release_folio,
3668         .direct_IO              = noop_direct_IO,
3669         .migratepage            = buffer_migrate_page,
3670         .is_partially_uptodate  = block_is_partially_uptodate,
3671         .error_remove_page      = generic_error_remove_page,
3672         .swap_activate          = ext4_iomap_swap_activate,
3673 };
3674
3675 static const struct address_space_operations ext4_dax_aops = {
3676         .writepages             = ext4_dax_writepages,
3677         .direct_IO              = noop_direct_IO,
3678         .dirty_folio            = noop_dirty_folio,
3679         .bmap                   = ext4_bmap,
3680         .swap_activate          = ext4_iomap_swap_activate,
3681 };
3682
3683 void ext4_set_aops(struct inode *inode)
3684 {
3685         switch (ext4_inode_journal_mode(inode)) {
3686         case EXT4_INODE_ORDERED_DATA_MODE:
3687         case EXT4_INODE_WRITEBACK_DATA_MODE:
3688                 break;
3689         case EXT4_INODE_JOURNAL_DATA_MODE:
3690                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3691                 return;
3692         default:
3693                 BUG();
3694         }
3695         if (IS_DAX(inode))
3696                 inode->i_mapping->a_ops = &ext4_dax_aops;
3697         else if (test_opt(inode->i_sb, DELALLOC))
3698                 inode->i_mapping->a_ops = &ext4_da_aops;
3699         else
3700                 inode->i_mapping->a_ops = &ext4_aops;
3701 }
3702
3703 static int __ext4_block_zero_page_range(handle_t *handle,
3704                 struct address_space *mapping, loff_t from, loff_t length)
3705 {
3706         ext4_fsblk_t index = from >> PAGE_SHIFT;
3707         unsigned offset = from & (PAGE_SIZE-1);
3708         unsigned blocksize, pos;
3709         ext4_lblk_t iblock;
3710         struct inode *inode = mapping->host;
3711         struct buffer_head *bh;
3712         struct page *page;
3713         int err = 0;
3714
3715         page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3716                                    mapping_gfp_constraint(mapping, ~__GFP_FS));
3717         if (!page)
3718                 return -ENOMEM;
3719
3720         blocksize = inode->i_sb->s_blocksize;
3721
3722         iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3723
3724         if (!page_has_buffers(page))
3725                 create_empty_buffers(page, blocksize, 0);
3726
3727         /* Find the buffer that contains "offset" */
3728         bh = page_buffers(page);
3729         pos = blocksize;
3730         while (offset >= pos) {
3731                 bh = bh->b_this_page;
3732                 iblock++;
3733                 pos += blocksize;
3734         }
3735         if (buffer_freed(bh)) {
3736                 BUFFER_TRACE(bh, "freed: skip");
3737                 goto unlock;
3738         }
3739         if (!buffer_mapped(bh)) {
3740                 BUFFER_TRACE(bh, "unmapped");
3741                 ext4_get_block(inode, iblock, bh, 0);
3742                 /* unmapped? It's a hole - nothing to do */
3743                 if (!buffer_mapped(bh)) {
3744                         BUFFER_TRACE(bh, "still unmapped");
3745                         goto unlock;
3746                 }
3747         }
3748
3749         /* Ok, it's mapped. Make sure it's up-to-date */
3750         if (PageUptodate(page))
3751                 set_buffer_uptodate(bh);
3752
3753         if (!buffer_uptodate(bh)) {
3754                 err = ext4_read_bh_lock(bh, 0, true);
3755                 if (err)
3756                         goto unlock;
3757                 if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
3758                         /* We expect the key to be set. */
3759                         BUG_ON(!fscrypt_has_encryption_key(inode));
3760                         err = fscrypt_decrypt_pagecache_blocks(page, blocksize,
3761                                                                bh_offset(bh));
3762                         if (err) {
3763                                 clear_buffer_uptodate(bh);
3764                                 goto unlock;
3765                         }
3766                 }
3767         }
3768         if (ext4_should_journal_data(inode)) {
3769                 BUFFER_TRACE(bh, "get write access");
3770                 err = ext4_journal_get_write_access(handle, inode->i_sb, bh,
3771                                                     EXT4_JTR_NONE);
3772                 if (err)
3773                         goto unlock;
3774         }
3775         zero_user(page, offset, length);
3776         BUFFER_TRACE(bh, "zeroed end of block");
3777
3778         if (ext4_should_journal_data(inode)) {
3779                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3780         } else {
3781                 err = 0;
3782                 mark_buffer_dirty(bh);
3783                 if (ext4_should_order_data(inode))
3784                         err = ext4_jbd2_inode_add_write(handle, inode, from,
3785                                         length);
3786         }
3787
3788 unlock:
3789         unlock_page(page);
3790         put_page(page);
3791         return err;
3792 }
3793
3794 /*
3795  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3796  * starting from file offset 'from'.  The range to be zero'd must
3797  * be contained with in one block.  If the specified range exceeds
3798  * the end of the block it will be shortened to end of the block
3799  * that corresponds to 'from'
3800  */
3801 static int ext4_block_zero_page_range(handle_t *handle,
3802                 struct address_space *mapping, loff_t from, loff_t length)
3803 {
3804         struct inode *inode = mapping->host;
3805         unsigned offset = from & (PAGE_SIZE-1);
3806         unsigned blocksize = inode->i_sb->s_blocksize;
3807         unsigned max = blocksize - (offset & (blocksize - 1));
3808
3809         /*
3810          * correct length if it does not fall between
3811          * 'from' and the end of the block
3812          */
3813         if (length > max || length < 0)
3814                 length = max;
3815
3816         if (IS_DAX(inode)) {
3817                 return dax_zero_range(inode, from, length, NULL,
3818                                       &ext4_iomap_ops);
3819         }
3820         return __ext4_block_zero_page_range(handle, mapping, from, length);
3821 }
3822
3823 /*
3824  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3825  * up to the end of the block which corresponds to `from'.
3826  * This required during truncate. We need to physically zero the tail end
3827  * of that block so it doesn't yield old data if the file is later grown.
3828  */
3829 static int ext4_block_truncate_page(handle_t *handle,
3830                 struct address_space *mapping, loff_t from)
3831 {
3832         unsigned offset = from & (PAGE_SIZE-1);
3833         unsigned length;
3834         unsigned blocksize;
3835         struct inode *inode = mapping->host;
3836
3837         /* If we are processing an encrypted inode during orphan list handling */
3838         if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3839                 return 0;
3840
3841         blocksize = inode->i_sb->s_blocksize;
3842         length = blocksize - (offset & (blocksize - 1));
3843
3844         return ext4_block_zero_page_range(handle, mapping, from, length);
3845 }
3846
3847 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3848                              loff_t lstart, loff_t length)
3849 {
3850         struct super_block *sb = inode->i_sb;
3851         struct address_space *mapping = inode->i_mapping;
3852         unsigned partial_start, partial_end;
3853         ext4_fsblk_t start, end;
3854         loff_t byte_end = (lstart + length - 1);
3855         int err = 0;
3856
3857         partial_start = lstart & (sb->s_blocksize - 1);
3858         partial_end = byte_end & (sb->s_blocksize - 1);
3859
3860         start = lstart >> sb->s_blocksize_bits;
3861         end = byte_end >> sb->s_blocksize_bits;
3862
3863         /* Handle partial zero within the single block */
3864         if (start == end &&
3865             (partial_start || (partial_end != sb->s_blocksize - 1))) {
3866                 err = ext4_block_zero_page_range(handle, mapping,
3867                                                  lstart, length);
3868                 return err;
3869         }
3870         /* Handle partial zero out on the start of the range */
3871         if (partial_start) {
3872                 err = ext4_block_zero_page_range(handle, mapping,
3873                                                  lstart, sb->s_blocksize);
3874                 if (err)
3875                         return err;
3876         }
3877         /* Handle partial zero out on the end of the range */
3878         if (partial_end != sb->s_blocksize - 1)
3879                 err = ext4_block_zero_page_range(handle, mapping,
3880                                                  byte_end - partial_end,
3881                                                  partial_end + 1);
3882         return err;
3883 }
3884
3885 int ext4_can_truncate(struct inode *inode)
3886 {
3887         if (S_ISREG(inode->i_mode))
3888                 return 1;
3889         if (S_ISDIR(inode->i_mode))
3890                 return 1;
3891         if (S_ISLNK(inode->i_mode))
3892                 return !ext4_inode_is_fast_symlink(inode);
3893         return 0;
3894 }
3895
3896 /*
3897  * We have to make sure i_disksize gets properly updated before we truncate
3898  * page cache due to hole punching or zero range. Otherwise i_disksize update
3899  * can get lost as it may have been postponed to submission of writeback but
3900  * that will never happen after we truncate page cache.
3901  */
3902 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3903                                       loff_t len)
3904 {
3905         handle_t *handle;
3906         int ret;
3907
3908         loff_t size = i_size_read(inode);
3909
3910         WARN_ON(!inode_is_locked(inode));
3911         if (offset > size || offset + len < size)
3912                 return 0;
3913
3914         if (EXT4_I(inode)->i_disksize >= size)
3915                 return 0;
3916
3917         handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3918         if (IS_ERR(handle))
3919                 return PTR_ERR(handle);
3920         ext4_update_i_disksize(inode, size);
3921         ret = ext4_mark_inode_dirty(handle, inode);
3922         ext4_journal_stop(handle);
3923
3924         return ret;
3925 }
3926
3927 static void ext4_wait_dax_page(struct inode *inode)
3928 {
3929         filemap_invalidate_unlock(inode->i_mapping);
3930         schedule();
3931         filemap_invalidate_lock(inode->i_mapping);
3932 }
3933
3934 int ext4_break_layouts(struct inode *inode)
3935 {
3936         struct page *page;
3937         int error;
3938
3939         if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock)))
3940                 return -EINVAL;
3941
3942         do {
3943                 page = dax_layout_busy_page(inode->i_mapping);
3944                 if (!page)
3945                         return 0;
3946
3947                 error = ___wait_var_event(&page->_refcount,
3948                                 atomic_read(&page->_refcount) == 1,
3949                                 TASK_INTERRUPTIBLE, 0, 0,
3950                                 ext4_wait_dax_page(inode));
3951         } while (error == 0);
3952
3953         return error;
3954 }
3955
3956 /*
3957  * ext4_punch_hole: punches a hole in a file by releasing the blocks
3958  * associated with the given offset and length
3959  *
3960  * @inode:  File inode
3961  * @offset: The offset where the hole will begin
3962  * @len:    The length of the hole
3963  *
3964  * Returns: 0 on success or negative on failure
3965  */
3966
3967 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3968 {
3969         struct inode *inode = file_inode(file);
3970         struct super_block *sb = inode->i_sb;
3971         ext4_lblk_t first_block, stop_block;
3972         struct address_space *mapping = inode->i_mapping;
3973         loff_t first_block_offset, last_block_offset, max_length;
3974         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3975         handle_t *handle;
3976         unsigned int credits;
3977         int ret = 0, ret2 = 0;
3978
3979         trace_ext4_punch_hole(inode, offset, length, 0);
3980
3981         /*
3982          * Write out all dirty pages to avoid race conditions
3983          * Then release them.
3984          */
3985         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3986                 ret = filemap_write_and_wait_range(mapping, offset,
3987                                                    offset + length - 1);
3988                 if (ret)
3989                         return ret;
3990         }
3991
3992         inode_lock(inode);
3993
3994         /* No need to punch hole beyond i_size */
3995         if (offset >= inode->i_size)
3996                 goto out_mutex;
3997
3998         /*
3999          * If the hole extends beyond i_size, set the hole
4000          * to end after the page that contains i_size
4001          */
4002         if (offset + length > inode->i_size) {
4003                 length = inode->i_size +
4004                    PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4005                    offset;
4006         }
4007
4008         /*
4009          * For punch hole the length + offset needs to be within one block
4010          * before last range. Adjust the length if it goes beyond that limit.
4011          */
4012         max_length = sbi->s_bitmap_maxbytes - inode->i_sb->s_blocksize;
4013         if (offset + length > max_length)
4014                 length = max_length - offset;
4015
4016         if (offset & (sb->s_blocksize - 1) ||
4017             (offset + length) & (sb->s_blocksize - 1)) {
4018                 /*
4019                  * Attach jinode to inode for jbd2 if we do any zeroing of
4020                  * partial block
4021                  */
4022                 ret = ext4_inode_attach_jinode(inode);
4023                 if (ret < 0)
4024                         goto out_mutex;
4025
4026         }
4027
4028         /* Wait all existing dio workers, newcomers will block on i_rwsem */
4029         inode_dio_wait(inode);
4030
4031         ret = file_modified(file);
4032         if (ret)
4033                 goto out_mutex;
4034
4035         /*
4036          * Prevent page faults from reinstantiating pages we have released from
4037          * page cache.
4038          */
4039         filemap_invalidate_lock(mapping);
4040
4041         ret = ext4_break_layouts(inode);
4042         if (ret)
4043                 goto out_dio;
4044
4045         first_block_offset = round_up(offset, sb->s_blocksize);
4046         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4047
4048         /* Now release the pages and zero block aligned part of pages*/
4049         if (last_block_offset > first_block_offset) {
4050                 ret = ext4_update_disksize_before_punch(inode, offset, length);
4051                 if (ret)
4052                         goto out_dio;
4053                 truncate_pagecache_range(inode, first_block_offset,
4054                                          last_block_offset);
4055         }
4056
4057         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4058                 credits = ext4_writepage_trans_blocks(inode);
4059         else
4060                 credits = ext4_blocks_for_truncate(inode);
4061         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4062         if (IS_ERR(handle)) {
4063                 ret = PTR_ERR(handle);
4064                 ext4_std_error(sb, ret);
4065                 goto out_dio;
4066         }
4067
4068         ret = ext4_zero_partial_blocks(handle, inode, offset,
4069                                        length);
4070         if (ret)
4071                 goto out_stop;
4072
4073         first_block = (offset + sb->s_blocksize - 1) >>
4074                 EXT4_BLOCK_SIZE_BITS(sb);
4075         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4076
4077         /* If there are blocks to remove, do it */
4078         if (stop_block > first_block) {
4079
4080                 down_write(&EXT4_I(inode)->i_data_sem);
4081                 ext4_discard_preallocations(inode, 0);
4082
4083                 ret = ext4_es_remove_extent(inode, first_block,
4084                                             stop_block - first_block);
4085                 if (ret) {
4086                         up_write(&EXT4_I(inode)->i_data_sem);
4087                         goto out_stop;
4088                 }
4089
4090                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4091                         ret = ext4_ext_remove_space(inode, first_block,
4092                                                     stop_block - 1);
4093                 else
4094                         ret = ext4_ind_remove_space(handle, inode, first_block,
4095                                                     stop_block);
4096
4097                 up_write(&EXT4_I(inode)->i_data_sem);
4098         }
4099         ext4_fc_track_range(handle, inode, first_block, stop_block);
4100         if (IS_SYNC(inode))
4101                 ext4_handle_sync(handle);
4102
4103         inode->i_mtime = inode->i_ctime = current_time(inode);
4104         ret2 = ext4_mark_inode_dirty(handle, inode);
4105         if (unlikely(ret2))
4106                 ret = ret2;
4107         if (ret >= 0)
4108                 ext4_update_inode_fsync_trans(handle, inode, 1);
4109 out_stop:
4110         ext4_journal_stop(handle);
4111 out_dio:
4112         filemap_invalidate_unlock(mapping);
4113 out_mutex:
4114         inode_unlock(inode);
4115         return ret;
4116 }
4117
4118 int ext4_inode_attach_jinode(struct inode *inode)
4119 {
4120         struct ext4_inode_info *ei = EXT4_I(inode);
4121         struct jbd2_inode *jinode;
4122
4123         if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4124                 return 0;
4125
4126         jinode = jbd2_alloc_inode(GFP_KERNEL);
4127         spin_lock(&inode->i_lock);
4128         if (!ei->jinode) {
4129                 if (!jinode) {
4130                         spin_unlock(&inode->i_lock);
4131                         return -ENOMEM;
4132                 }
4133                 ei->jinode = jinode;
4134                 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4135                 jinode = NULL;
4136         }
4137         spin_unlock(&inode->i_lock);
4138         if (unlikely(jinode != NULL))
4139                 jbd2_free_inode(jinode);
4140         return 0;
4141 }
4142
4143 /*
4144  * ext4_truncate()
4145  *
4146  * We block out ext4_get_block() block instantiations across the entire
4147  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4148  * simultaneously on behalf of the same inode.
4149  *
4150  * As we work through the truncate and commit bits of it to the journal there
4151  * is one core, guiding principle: the file's tree must always be consistent on
4152  * disk.  We must be able to restart the truncate after a crash.
4153  *
4154  * The file's tree may be transiently inconsistent in memory (although it
4155  * probably isn't), but whenever we close off and commit a journal transaction,
4156  * the contents of (the filesystem + the journal) must be consistent and
4157  * restartable.  It's pretty simple, really: bottom up, right to left (although
4158  * left-to-right works OK too).
4159  *
4160  * Note that at recovery time, journal replay occurs *before* the restart of
4161  * truncate against the orphan inode list.
4162  *
4163  * The committed inode has the new, desired i_size (which is the same as
4164  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4165  * that this inode's truncate did not complete and it will again call
4166  * ext4_truncate() to have another go.  So there will be instantiated blocks
4167  * to the right of the truncation point in a crashed ext4 filesystem.  But
4168  * that's fine - as long as they are linked from the inode, the post-crash
4169  * ext4_truncate() run will find them and release them.
4170  */
4171 int ext4_truncate(struct inode *inode)
4172 {
4173         struct ext4_inode_info *ei = EXT4_I(inode);
4174         unsigned int credits;
4175         int err = 0, err2;
4176         handle_t *handle;
4177         struct address_space *mapping = inode->i_mapping;
4178
4179         /*
4180          * There is a possibility that we're either freeing the inode
4181          * or it's a completely new inode. In those cases we might not
4182          * have i_rwsem locked because it's not necessary.
4183          */
4184         if (!(inode->i_state & (I_NEW|I_FREEING)))
4185                 WARN_ON(!inode_is_locked(inode));
4186         trace_ext4_truncate_enter(inode);
4187
4188         if (!ext4_can_truncate(inode))
4189                 goto out_trace;
4190
4191         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4192                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4193
4194         if (ext4_has_inline_data(inode)) {
4195                 int has_inline = 1;
4196
4197                 err = ext4_inline_data_truncate(inode, &has_inline);
4198                 if (err || has_inline)
4199                         goto out_trace;
4200         }
4201
4202         /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4203         if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4204                 if (ext4_inode_attach_jinode(inode) < 0)
4205                         goto out_trace;
4206         }
4207
4208         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4209                 credits = ext4_writepage_trans_blocks(inode);
4210         else
4211                 credits = ext4_blocks_for_truncate(inode);
4212
4213         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4214         if (IS_ERR(handle)) {
4215                 err = PTR_ERR(handle);
4216                 goto out_trace;
4217         }
4218
4219         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4220                 ext4_block_truncate_page(handle, mapping, inode->i_size);
4221
4222         /*
4223          * We add the inode to the orphan list, so that if this
4224          * truncate spans multiple transactions, and we crash, we will
4225          * resume the truncate when the filesystem recovers.  It also
4226          * marks the inode dirty, to catch the new size.
4227          *
4228          * Implication: the file must always be in a sane, consistent
4229          * truncatable state while each transaction commits.
4230          */
4231         err = ext4_orphan_add(handle, inode);
4232         if (err)
4233                 goto out_stop;
4234
4235         down_write(&EXT4_I(inode)->i_data_sem);
4236
4237         ext4_discard_preallocations(inode, 0);
4238
4239         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4240                 err = ext4_ext_truncate(handle, inode);
4241         else
4242                 ext4_ind_truncate(handle, inode);
4243
4244         up_write(&ei->i_data_sem);
4245         if (err)
4246                 goto out_stop;
4247
4248         if (IS_SYNC(inode))
4249                 ext4_handle_sync(handle);
4250
4251 out_stop:
4252         /*
4253          * If this was a simple ftruncate() and the file will remain alive,
4254          * then we need to clear up the orphan record which we created above.
4255          * However, if this was a real unlink then we were called by
4256          * ext4_evict_inode(), and we allow that function to clean up the
4257          * orphan info for us.
4258          */
4259         if (inode->i_nlink)
4260                 ext4_orphan_del(handle, inode);
4261
4262         inode->i_mtime = inode->i_ctime = current_time(inode);
4263         err2 = ext4_mark_inode_dirty(handle, inode);
4264         if (unlikely(err2 && !err))
4265                 err = err2;
4266         ext4_journal_stop(handle);
4267
4268 out_trace:
4269         trace_ext4_truncate_exit(inode);
4270         return err;
4271 }
4272
4273 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4274 {
4275         if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4276                 return inode_peek_iversion_raw(inode);
4277         else
4278                 return inode_peek_iversion(inode);
4279 }
4280
4281 static int ext4_inode_blocks_set(struct ext4_inode *raw_inode,
4282                                  struct ext4_inode_info *ei)
4283 {
4284         struct inode *inode = &(ei->vfs_inode);
4285         u64 i_blocks = READ_ONCE(inode->i_blocks);
4286         struct super_block *sb = inode->i_sb;
4287
4288         if (i_blocks <= ~0U) {
4289                 /*
4290                  * i_blocks can be represented in a 32 bit variable
4291                  * as multiple of 512 bytes
4292                  */
4293                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4294                 raw_inode->i_blocks_high = 0;
4295                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4296                 return 0;
4297         }
4298
4299         /*
4300          * This should never happen since sb->s_maxbytes should not have
4301          * allowed this, sb->s_maxbytes was set according to the huge_file
4302          * feature in ext4_fill_super().
4303          */
4304         if (!ext4_has_feature_huge_file(sb))
4305                 return -EFSCORRUPTED;
4306
4307         if (i_blocks <= 0xffffffffffffULL) {
4308                 /*
4309                  * i_blocks can be represented in a 48 bit variable
4310                  * as multiple of 512 bytes
4311                  */
4312                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4313                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4314                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4315         } else {
4316                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4317                 /* i_block is stored in file system block size */
4318                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4319                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4320                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4321         }
4322         return 0;
4323 }
4324
4325 static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode)
4326 {
4327         struct ext4_inode_info *ei = EXT4_I(inode);
4328         uid_t i_uid;
4329         gid_t i_gid;
4330         projid_t i_projid;
4331         int block;
4332         int err;
4333
4334         err = ext4_inode_blocks_set(raw_inode, ei);
4335
4336         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4337         i_uid = i_uid_read(inode);
4338         i_gid = i_gid_read(inode);
4339         i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4340         if (!(test_opt(inode->i_sb, NO_UID32))) {
4341                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4342                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4343                 /*
4344                  * Fix up interoperability with old kernels. Otherwise,
4345                  * old inodes get re-used with the upper 16 bits of the
4346                  * uid/gid intact.
4347                  */
4348                 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4349                         raw_inode->i_uid_high = 0;
4350                         raw_inode->i_gid_high = 0;
4351                 } else {
4352                         raw_inode->i_uid_high =
4353                                 cpu_to_le16(high_16_bits(i_uid));
4354                         raw_inode->i_gid_high =
4355                                 cpu_to_le16(high_16_bits(i_gid));
4356                 }
4357         } else {
4358                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4359                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4360                 raw_inode->i_uid_high = 0;
4361                 raw_inode->i_gid_high = 0;
4362         }
4363         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4364
4365         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4366         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4367         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4368         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4369
4370         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4371         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4372         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4373                 raw_inode->i_file_acl_high =
4374                         cpu_to_le16(ei->i_file_acl >> 32);
4375         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4376         ext4_isize_set(raw_inode, ei->i_disksize);
4377
4378         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4379         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4380                 if (old_valid_dev(inode->i_rdev)) {
4381                         raw_inode->i_block[0] =
4382                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4383                         raw_inode->i_block[1] = 0;
4384                 } else {
4385                         raw_inode->i_block[0] = 0;
4386                         raw_inode->i_block[1] =
4387                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4388                         raw_inode->i_block[2] = 0;
4389                 }
4390         } else if (!ext4_has_inline_data(inode)) {
4391                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4392                         raw_inode->i_block[block] = ei->i_data[block];
4393         }
4394
4395         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4396                 u64 ivers = ext4_inode_peek_iversion(inode);
4397
4398                 raw_inode->i_disk_version = cpu_to_le32(ivers);
4399                 if (ei->i_extra_isize) {
4400                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4401                                 raw_inode->i_version_hi =
4402                                         cpu_to_le32(ivers >> 32);
4403                         raw_inode->i_extra_isize =
4404                                 cpu_to_le16(ei->i_extra_isize);
4405                 }
4406         }
4407
4408         if (i_projid != EXT4_DEF_PROJID &&
4409             !ext4_has_feature_project(inode->i_sb))
4410                 err = err ?: -EFSCORRUPTED;
4411
4412         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4413             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4414                 raw_inode->i_projid = cpu_to_le32(i_projid);
4415
4416         ext4_inode_csum_set(inode, raw_inode, ei);
4417         return err;
4418 }
4419
4420 /*
4421  * ext4_get_inode_loc returns with an extra refcount against the inode's
4422  * underlying buffer_head on success. If we pass 'inode' and it does not
4423  * have in-inode xattr, we have all inode data in memory that is needed
4424  * to recreate the on-disk version of this inode.
4425  */
4426 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino,
4427                                 struct inode *inode, struct ext4_iloc *iloc,
4428                                 ext4_fsblk_t *ret_block)
4429 {
4430         struct ext4_group_desc  *gdp;
4431         struct buffer_head      *bh;
4432         ext4_fsblk_t            block;
4433         struct blk_plug         plug;
4434         int                     inodes_per_block, inode_offset;
4435
4436         iloc->bh = NULL;
4437         if (ino < EXT4_ROOT_INO ||
4438             ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4439                 return -EFSCORRUPTED;
4440
4441         iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
4442         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4443         if (!gdp)
4444                 return -EIO;
4445
4446         /*
4447          * Figure out the offset within the block group inode table
4448          */
4449         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4450         inode_offset = ((ino - 1) %
4451                         EXT4_INODES_PER_GROUP(sb));
4452         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4453         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4454
4455         bh = sb_getblk(sb, block);
4456         if (unlikely(!bh))
4457                 return -ENOMEM;
4458         if (ext4_buffer_uptodate(bh))
4459                 goto has_buffer;
4460
4461         lock_buffer(bh);
4462         if (ext4_buffer_uptodate(bh)) {
4463                 /* Someone brought it uptodate while we waited */
4464                 unlock_buffer(bh);
4465                 goto has_buffer;
4466         }
4467
4468         /*
4469          * If we have all information of the inode in memory and this
4470          * is the only valid inode in the block, we need not read the
4471          * block.
4472          */
4473         if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4474                 struct buffer_head *bitmap_bh;
4475                 int i, start;
4476
4477                 start = inode_offset & ~(inodes_per_block - 1);
4478
4479                 /* Is the inode bitmap in cache? */
4480                 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4481                 if (unlikely(!bitmap_bh))
4482                         goto make_io;
4483
4484                 /*
4485                  * If the inode bitmap isn't in cache then the
4486                  * optimisation may end up performing two reads instead
4487                  * of one, so skip it.
4488                  */
4489                 if (!buffer_uptodate(bitmap_bh)) {
4490                         brelse(bitmap_bh);
4491                         goto make_io;
4492                 }
4493                 for (i = start; i < start + inodes_per_block; i++) {
4494                         if (i == inode_offset)
4495                                 continue;
4496                         if (ext4_test_bit(i, bitmap_bh->b_data))
4497                                 break;
4498                 }
4499                 brelse(bitmap_bh);
4500                 if (i == start + inodes_per_block) {
4501                         struct ext4_inode *raw_inode =
4502                                 (struct ext4_inode *) (bh->b_data + iloc->offset);
4503
4504                         /* all other inodes are free, so skip I/O */
4505                         memset(bh->b_data, 0, bh->b_size);
4506                         if (!ext4_test_inode_state(inode, EXT4_STATE_NEW))
4507                                 ext4_fill_raw_inode(inode, raw_inode);
4508                         set_buffer_uptodate(bh);
4509                         unlock_buffer(bh);
4510                         goto has_buffer;
4511                 }
4512         }
4513
4514 make_io:
4515         /*
4516          * If we need to do any I/O, try to pre-readahead extra
4517          * blocks from the inode table.
4518          */
4519         blk_start_plug(&plug);
4520         if (EXT4_SB(sb)->s_inode_readahead_blks) {
4521                 ext4_fsblk_t b, end, table;
4522                 unsigned num;
4523                 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4524
4525                 table = ext4_inode_table(sb, gdp);
4526                 /* s_inode_readahead_blks is always a power of 2 */
4527                 b = block & ~((ext4_fsblk_t) ra_blks - 1);
4528                 if (table > b)
4529                         b = table;
4530                 end = b + ra_blks;
4531                 num = EXT4_INODES_PER_GROUP(sb);
4532                 if (ext4_has_group_desc_csum(sb))
4533                         num -= ext4_itable_unused_count(sb, gdp);
4534                 table += num / inodes_per_block;
4535                 if (end > table)
4536                         end = table;
4537                 while (b <= end)
4538                         ext4_sb_breadahead_unmovable(sb, b++);
4539         }
4540
4541         /*
4542          * There are other valid inodes in the buffer, this inode
4543          * has in-inode xattrs, or we don't have this inode in memory.
4544          * Read the block from disk.
4545          */
4546         trace_ext4_load_inode(sb, ino);
4547         ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL);
4548         blk_finish_plug(&plug);
4549         wait_on_buffer(bh);
4550         ext4_simulate_fail_bh(sb, bh, EXT4_SIM_INODE_EIO);
4551         if (!buffer_uptodate(bh)) {
4552                 if (ret_block)
4553                         *ret_block = block;
4554                 brelse(bh);
4555                 return -EIO;
4556         }
4557 has_buffer:
4558         iloc->bh = bh;
4559         return 0;
4560 }
4561
4562 static int __ext4_get_inode_loc_noinmem(struct inode *inode,
4563                                         struct ext4_iloc *iloc)
4564 {
4565         ext4_fsblk_t err_blk = 0;
4566         int ret;
4567
4568         ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc,
4569                                         &err_blk);
4570
4571         if (ret == -EIO)
4572                 ext4_error_inode_block(inode, err_blk, EIO,
4573                                         "unable to read itable block");
4574
4575         return ret;
4576 }
4577
4578 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4579 {
4580         ext4_fsblk_t err_blk = 0;
4581         int ret;
4582
4583         ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc,
4584                                         &err_blk);
4585
4586         if (ret == -EIO)
4587                 ext4_error_inode_block(inode, err_blk, EIO,
4588                                         "unable to read itable block");
4589
4590         return ret;
4591 }
4592
4593
4594 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino,
4595                           struct ext4_iloc *iloc)
4596 {
4597         return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL);
4598 }
4599
4600 static bool ext4_should_enable_dax(struct inode *inode)
4601 {
4602         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4603
4604         if (test_opt2(inode->i_sb, DAX_NEVER))
4605                 return false;
4606         if (!S_ISREG(inode->i_mode))
4607                 return false;
4608         if (ext4_should_journal_data(inode))
4609                 return false;
4610         if (ext4_has_inline_data(inode))
4611                 return false;
4612         if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4613                 return false;
4614         if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4615                 return false;
4616         if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4617                 return false;
4618         if (test_opt(inode->i_sb, DAX_ALWAYS))
4619                 return true;
4620
4621         return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
4622 }
4623
4624 void ext4_set_inode_flags(struct inode *inode, bool init)
4625 {
4626         unsigned int flags = EXT4_I(inode)->i_flags;
4627         unsigned int new_fl = 0;
4628
4629         WARN_ON_ONCE(IS_DAX(inode) && init);
4630
4631         if (flags & EXT4_SYNC_FL)
4632                 new_fl |= S_SYNC;
4633         if (flags & EXT4_APPEND_FL)
4634                 new_fl |= S_APPEND;
4635         if (flags & EXT4_IMMUTABLE_FL)
4636                 new_fl |= S_IMMUTABLE;
4637         if (flags & EXT4_NOATIME_FL)
4638                 new_fl |= S_NOATIME;
4639         if (flags & EXT4_DIRSYNC_FL)
4640                 new_fl |= S_DIRSYNC;
4641
4642         /* Because of the way inode_set_flags() works we must preserve S_DAX
4643          * here if already set. */
4644         new_fl |= (inode->i_flags & S_DAX);
4645         if (init && ext4_should_enable_dax(inode))
4646                 new_fl |= S_DAX;
4647
4648         if (flags & EXT4_ENCRYPT_FL)
4649                 new_fl |= S_ENCRYPTED;
4650         if (flags & EXT4_CASEFOLD_FL)
4651                 new_fl |= S_CASEFOLD;
4652         if (flags & EXT4_VERITY_FL)
4653                 new_fl |= S_VERITY;
4654         inode_set_flags(inode, new_fl,
4655                         S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4656                         S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4657 }
4658
4659 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4660                                   struct ext4_inode_info *ei)
4661 {
4662         blkcnt_t i_blocks ;
4663         struct inode *inode = &(ei->vfs_inode);
4664         struct super_block *sb = inode->i_sb;
4665
4666         if (ext4_has_feature_huge_file(sb)) {
4667                 /* we are using combined 48 bit field */
4668                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4669                                         le32_to_cpu(raw_inode->i_blocks_lo);
4670                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4671                         /* i_blocks represent file system block size */
4672                         return i_blocks  << (inode->i_blkbits - 9);
4673                 } else {
4674                         return i_blocks;
4675                 }
4676         } else {
4677                 return le32_to_cpu(raw_inode->i_blocks_lo);
4678         }
4679 }
4680
4681 static inline int ext4_iget_extra_inode(struct inode *inode,
4682                                          struct ext4_inode *raw_inode,
4683                                          struct ext4_inode_info *ei)
4684 {
4685         __le32 *magic = (void *)raw_inode +
4686                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4687
4688         if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4689             EXT4_INODE_SIZE(inode->i_sb) &&
4690             *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4691                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4692                 return ext4_find_inline_data_nolock(inode);
4693         } else
4694                 EXT4_I(inode)->i_inline_off = 0;
4695         return 0;
4696 }
4697
4698 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4699 {
4700         if (!ext4_has_feature_project(inode->i_sb))
4701                 return -EOPNOTSUPP;
4702         *projid = EXT4_I(inode)->i_projid;
4703         return 0;
4704 }
4705
4706 /*
4707  * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4708  * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4709  * set.
4710  */
4711 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4712 {
4713         if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4714                 inode_set_iversion_raw(inode, val);
4715         else
4716                 inode_set_iversion_queried(inode, val);
4717 }
4718
4719 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4720                           ext4_iget_flags flags, const char *function,
4721                           unsigned int line)
4722 {
4723         struct ext4_iloc iloc;
4724         struct ext4_inode *raw_inode;
4725         struct ext4_inode_info *ei;
4726         struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4727         struct inode *inode;
4728         journal_t *journal = EXT4_SB(sb)->s_journal;
4729         long ret;
4730         loff_t size;
4731         int block;
4732         uid_t i_uid;
4733         gid_t i_gid;
4734         projid_t i_projid;
4735
4736         if ((!(flags & EXT4_IGET_SPECIAL) &&
4737              ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) ||
4738               ino == le32_to_cpu(es->s_usr_quota_inum) ||
4739               ino == le32_to_cpu(es->s_grp_quota_inum) ||
4740               ino == le32_to_cpu(es->s_prj_quota_inum) ||
4741               ino == le32_to_cpu(es->s_orphan_file_inum))) ||
4742             (ino < EXT4_ROOT_INO) ||
4743             (ino > le32_to_cpu(es->s_inodes_count))) {
4744                 if (flags & EXT4_IGET_HANDLE)
4745                         return ERR_PTR(-ESTALE);
4746                 __ext4_error(sb, function, line, false, EFSCORRUPTED, 0,
4747                              "inode #%lu: comm %s: iget: illegal inode #",
4748                              ino, current->comm);
4749                 return ERR_PTR(-EFSCORRUPTED);
4750         }
4751
4752         inode = iget_locked(sb, ino);
4753         if (!inode)
4754                 return ERR_PTR(-ENOMEM);
4755         if (!(inode->i_state & I_NEW))
4756                 return inode;
4757
4758         ei = EXT4_I(inode);
4759         iloc.bh = NULL;
4760
4761         ret = __ext4_get_inode_loc_noinmem(inode, &iloc);
4762         if (ret < 0)
4763                 goto bad_inode;
4764         raw_inode = ext4_raw_inode(&iloc);
4765
4766         if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4767                 ext4_error_inode(inode, function, line, 0,
4768                                  "iget: root inode unallocated");
4769                 ret = -EFSCORRUPTED;
4770                 goto bad_inode;
4771         }
4772
4773         if ((flags & EXT4_IGET_HANDLE) &&
4774             (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4775                 ret = -ESTALE;
4776                 goto bad_inode;
4777         }
4778
4779         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4780                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4781                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4782                         EXT4_INODE_SIZE(inode->i_sb) ||
4783                     (ei->i_extra_isize & 3)) {
4784                         ext4_error_inode(inode, function, line, 0,
4785                                          "iget: bad extra_isize %u "
4786                                          "(inode size %u)",
4787                                          ei->i_extra_isize,
4788                                          EXT4_INODE_SIZE(inode->i_sb));
4789                         ret = -EFSCORRUPTED;
4790                         goto bad_inode;
4791                 }
4792         } else
4793                 ei->i_extra_isize = 0;
4794
4795         /* Precompute checksum seed for inode metadata */
4796         if (ext4_has_metadata_csum(sb)) {
4797                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4798                 __u32 csum;
4799                 __le32 inum = cpu_to_le32(inode->i_ino);
4800                 __le32 gen = raw_inode->i_generation;
4801                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4802                                    sizeof(inum));
4803                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4804                                               sizeof(gen));
4805         }
4806
4807         if ((!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4808             ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) &&
4809              (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) {
4810                 ext4_error_inode_err(inode, function, line, 0,
4811                                 EFSBADCRC, "iget: checksum invalid");
4812                 ret = -EFSBADCRC;
4813                 goto bad_inode;
4814         }
4815
4816         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4817         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4818         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4819         if (ext4_has_feature_project(sb) &&
4820             EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4821             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4822                 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4823         else
4824                 i_projid = EXT4_DEF_PROJID;
4825
4826         if (!(test_opt(inode->i_sb, NO_UID32))) {
4827                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4828                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4829         }
4830         i_uid_write(inode, i_uid);
4831         i_gid_write(inode, i_gid);
4832         ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4833         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4834
4835         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4836         ei->i_inline_off = 0;
4837         ei->i_dir_start_lookup = 0;
4838         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4839         /* We now have enough fields to check if the inode was active or not.
4840          * This is needed because nfsd might try to access dead inodes
4841          * the test is that same one that e2fsck uses
4842          * NeilBrown 1999oct15
4843          */
4844         if (inode->i_nlink == 0) {
4845                 if ((inode->i_mode == 0 ||
4846                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4847                     ino != EXT4_BOOT_LOADER_INO) {
4848                         /* this inode is deleted */
4849                         ret = -ESTALE;
4850                         goto bad_inode;
4851                 }
4852                 /* The only unlinked inodes we let through here have
4853                  * valid i_mode and are being read by the orphan
4854                  * recovery code: that's fine, we're about to complete
4855                  * the process of deleting those.
4856                  * OR it is the EXT4_BOOT_LOADER_INO which is
4857                  * not initialized on a new filesystem. */
4858         }
4859         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4860         ext4_set_inode_flags(inode, true);
4861         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4862         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4863         if (ext4_has_feature_64bit(sb))
4864                 ei->i_file_acl |=
4865                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4866         inode->i_size = ext4_isize(sb, raw_inode);
4867         if ((size = i_size_read(inode)) < 0) {
4868                 ext4_error_inode(inode, function, line, 0,
4869                                  "iget: bad i_size value: %lld", size);
4870                 ret = -EFSCORRUPTED;
4871                 goto bad_inode;
4872         }
4873         /*
4874          * If dir_index is not enabled but there's dir with INDEX flag set,
4875          * we'd normally treat htree data as empty space. But with metadata
4876          * checksumming that corrupts checksums so forbid that.
4877          */
4878         if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4879             ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4880                 ext4_error_inode(inode, function, line, 0,
4881                          "iget: Dir with htree data on filesystem without dir_index feature.");
4882                 ret = -EFSCORRUPTED;
4883                 goto bad_inode;
4884         }
4885         ei->i_disksize = inode->i_size;
4886 #ifdef CONFIG_QUOTA
4887         ei->i_reserved_quota = 0;
4888 #endif
4889         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4890         ei->i_block_group = iloc.block_group;
4891         ei->i_last_alloc_group = ~0;
4892         /*
4893          * NOTE! The in-memory inode i_data array is in little-endian order
4894          * even on big-endian machines: we do NOT byteswap the block numbers!
4895          */
4896         for (block = 0; block < EXT4_N_BLOCKS; block++)
4897                 ei->i_data[block] = raw_inode->i_block[block];
4898         INIT_LIST_HEAD(&ei->i_orphan);
4899         ext4_fc_init_inode(&ei->vfs_inode);
4900
4901         /*
4902          * Set transaction id's of transactions that have to be committed
4903          * to finish f[data]sync. We set them to currently running transaction
4904          * as we cannot be sure that the inode or some of its metadata isn't
4905          * part of the transaction - the inode could have been reclaimed and
4906          * now it is reread from disk.
4907          */
4908         if (journal) {
4909                 transaction_t *transaction;
4910                 tid_t tid;
4911
4912                 read_lock(&journal->j_state_lock);
4913                 if (journal->j_running_transaction)
4914                         transaction = journal->j_running_transaction;
4915                 else
4916                         transaction = journal->j_committing_transaction;
4917                 if (transaction)
4918                         tid = transaction->t_tid;
4919                 else
4920                         tid = journal->j_commit_sequence;
4921                 read_unlock(&journal->j_state_lock);
4922                 ei->i_sync_tid = tid;
4923                 ei->i_datasync_tid = tid;
4924         }
4925
4926         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4927                 if (ei->i_extra_isize == 0) {
4928                         /* The extra space is currently unused. Use it. */
4929                         BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4930                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4931                                             EXT4_GOOD_OLD_INODE_SIZE;
4932                 } else {
4933                         ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4934                         if (ret)
4935                                 goto bad_inode;
4936                 }
4937         }
4938
4939         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4940         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4941         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4942         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4943
4944         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4945                 u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4946
4947                 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4948                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4949                                 ivers |=
4950                     (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4951                 }
4952                 ext4_inode_set_iversion_queried(inode, ivers);
4953         }
4954
4955         ret = 0;
4956         if (ei->i_file_acl &&
4957             !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
4958                 ext4_error_inode(inode, function, line, 0,
4959                                  "iget: bad extended attribute block %llu",
4960                                  ei->i_file_acl);
4961                 ret = -EFSCORRUPTED;
4962                 goto bad_inode;
4963         } else if (!ext4_has_inline_data(inode)) {
4964                 /* validate the block references in the inode */
4965                 if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) &&
4966                         (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4967                         (S_ISLNK(inode->i_mode) &&
4968                         !ext4_inode_is_fast_symlink(inode)))) {
4969                         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4970                                 ret = ext4_ext_check_inode(inode);
4971                         else
4972                                 ret = ext4_ind_check_inode(inode);
4973                 }
4974         }
4975         if (ret)
4976                 goto bad_inode;
4977
4978         if (S_ISREG(inode->i_mode)) {
4979                 inode->i_op = &ext4_file_inode_operations;
4980                 inode->i_fop = &ext4_file_operations;
4981                 ext4_set_aops(inode);
4982         } else if (S_ISDIR(inode->i_mode)) {
4983                 inode->i_op = &ext4_dir_inode_operations;
4984                 inode->i_fop = &ext4_dir_operations;
4985         } else if (S_ISLNK(inode->i_mode)) {
4986                 /* VFS does not allow setting these so must be corruption */
4987                 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
4988                         ext4_error_inode(inode, function, line, 0,
4989                                          "iget: immutable or append flags "
4990                                          "not allowed on symlinks");
4991                         ret = -EFSCORRUPTED;
4992                         goto bad_inode;
4993                 }
4994                 if (IS_ENCRYPTED(inode)) {
4995                         inode->i_op = &ext4_encrypted_symlink_inode_operations;
4996                 } else if (ext4_inode_is_fast_symlink(inode)) {
4997                         inode->i_link = (char *)ei->i_data;
4998                         inode->i_op = &ext4_fast_symlink_inode_operations;
4999                         nd_terminate_link(ei->i_data, inode->i_size,
5000                                 sizeof(ei->i_data) - 1);
5001                 } else {
5002                         inode->i_op = &ext4_symlink_inode_operations;
5003                 }
5004         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5005               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5006                 inode->i_op = &ext4_special_inode_operations;
5007                 if (raw_inode->i_block[0])
5008                         init_special_inode(inode, inode->i_mode,
5009                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5010                 else
5011                         init_special_inode(inode, inode->i_mode,
5012                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5013         } else if (ino == EXT4_BOOT_LOADER_INO) {
5014                 make_bad_inode(inode);
5015         } else {
5016                 ret = -EFSCORRUPTED;
5017                 ext4_error_inode(inode, function, line, 0,
5018                                  "iget: bogus i_mode (%o)", inode->i_mode);
5019                 goto bad_inode;
5020         }
5021         if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb))
5022                 ext4_error_inode(inode, function, line, 0,
5023                                  "casefold flag without casefold feature");
5024         brelse(iloc.bh);
5025
5026         unlock_new_inode(inode);
5027         return inode;
5028
5029 bad_inode:
5030         brelse(iloc.bh);
5031         iget_failed(inode);
5032         return ERR_PTR(ret);
5033 }
5034
5035 static void __ext4_update_other_inode_time(struct super_block *sb,
5036                                            unsigned long orig_ino,
5037                                            unsigned long ino,
5038                                            struct ext4_inode *raw_inode)
5039 {
5040         struct inode *inode;
5041
5042         inode = find_inode_by_ino_rcu(sb, ino);
5043         if (!inode)
5044                 return;
5045
5046         if (!inode_is_dirtytime_only(inode))
5047                 return;
5048
5049         spin_lock(&inode->i_lock);
5050         if (inode_is_dirtytime_only(inode)) {
5051                 struct ext4_inode_info  *ei = EXT4_I(inode);
5052
5053                 inode->i_state &= ~I_DIRTY_TIME;
5054                 spin_unlock(&inode->i_lock);
5055
5056                 spin_lock(&ei->i_raw_lock);
5057                 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5058                 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5059                 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5060                 ext4_inode_csum_set(inode, raw_inode, ei);
5061                 spin_unlock(&ei->i_raw_lock);
5062                 trace_ext4_other_inode_update_time(inode, orig_ino);
5063                 return;
5064         }
5065         spin_unlock(&inode->i_lock);
5066 }
5067
5068 /*
5069  * Opportunistically update the other time fields for other inodes in
5070  * the same inode table block.
5071  */
5072 static void ext4_update_other_inodes_time(struct super_block *sb,
5073                                           unsigned long orig_ino, char *buf)
5074 {
5075         unsigned long ino;
5076         int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5077         int inode_size = EXT4_INODE_SIZE(sb);
5078
5079         /*
5080          * Calculate the first inode in the inode table block.  Inode
5081          * numbers are one-based.  That is, the first inode in a block
5082          * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5083          */
5084         ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5085         rcu_read_lock();
5086         for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5087                 if (ino == orig_ino)
5088                         continue;
5089                 __ext4_update_other_inode_time(sb, orig_ino, ino,
5090                                                (struct ext4_inode *)buf);
5091         }
5092         rcu_read_unlock();
5093 }
5094
5095 /*
5096  * Post the struct inode info into an on-disk inode location in the
5097  * buffer-cache.  This gobbles the caller's reference to the
5098  * buffer_head in the inode location struct.
5099  *
5100  * The caller must have write access to iloc->bh.
5101  */
5102 static int ext4_do_update_inode(handle_t *handle,
5103                                 struct inode *inode,
5104                                 struct ext4_iloc *iloc)
5105 {
5106         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5107         struct ext4_inode_info *ei = EXT4_I(inode);
5108         struct buffer_head *bh = iloc->bh;
5109         struct super_block *sb = inode->i_sb;
5110         int err;
5111         int need_datasync = 0, set_large_file = 0;
5112
5113         spin_lock(&ei->i_raw_lock);
5114
5115         /*
5116          * For fields not tracked in the in-memory inode, initialise them
5117          * to zero for new inodes.
5118          */
5119         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5120                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5121
5122         if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode))
5123                 need_datasync = 1;
5124         if (ei->i_disksize > 0x7fffffffULL) {
5125                 if (!ext4_has_feature_large_file(sb) ||
5126                     EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV))
5127                         set_large_file = 1;
5128         }
5129
5130         err = ext4_fill_raw_inode(inode, raw_inode);
5131         spin_unlock(&ei->i_raw_lock);
5132         if (err) {
5133                 EXT4_ERROR_INODE(inode, "corrupted inode contents");
5134                 goto out_brelse;
5135         }
5136
5137         if (inode->i_sb->s_flags & SB_LAZYTIME)
5138                 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5139                                               bh->b_data);
5140
5141         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5142         err = ext4_handle_dirty_metadata(handle, NULL, bh);
5143         if (err)
5144                 goto out_error;
5145         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5146         if (set_large_file) {
5147                 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5148                 err = ext4_journal_get_write_access(handle, sb,
5149                                                     EXT4_SB(sb)->s_sbh,
5150                                                     EXT4_JTR_NONE);
5151                 if (err)
5152                         goto out_error;
5153                 lock_buffer(EXT4_SB(sb)->s_sbh);
5154                 ext4_set_feature_large_file(sb);
5155                 ext4_superblock_csum_set(sb);
5156                 unlock_buffer(EXT4_SB(sb)->s_sbh);
5157                 ext4_handle_sync(handle);
5158                 err = ext4_handle_dirty_metadata(handle, NULL,
5159                                                  EXT4_SB(sb)->s_sbh);
5160         }
5161         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5162 out_error:
5163         ext4_std_error(inode->i_sb, err);
5164 out_brelse:
5165         brelse(bh);
5166         return err;
5167 }
5168
5169 /*
5170  * ext4_write_inode()
5171  *
5172  * We are called from a few places:
5173  *
5174  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5175  *   Here, there will be no transaction running. We wait for any running
5176  *   transaction to commit.
5177  *
5178  * - Within flush work (sys_sync(), kupdate and such).
5179  *   We wait on commit, if told to.
5180  *
5181  * - Within iput_final() -> write_inode_now()
5182  *   We wait on commit, if told to.
5183  *
5184  * In all cases it is actually safe for us to return without doing anything,
5185  * because the inode has been copied into a raw inode buffer in
5186  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5187  * writeback.
5188  *
5189  * Note that we are absolutely dependent upon all inode dirtiers doing the
5190  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5191  * which we are interested.
5192  *
5193  * It would be a bug for them to not do this.  The code:
5194  *
5195  *      mark_inode_dirty(inode)
5196  *      stuff();
5197  *      inode->i_size = expr;
5198  *
5199  * is in error because write_inode() could occur while `stuff()' is running,
5200  * and the new i_size will be lost.  Plus the inode will no longer be on the
5201  * superblock's dirty inode list.
5202  */
5203 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5204 {
5205         int err;
5206
5207         if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5208             sb_rdonly(inode->i_sb))
5209                 return 0;
5210
5211         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5212                 return -EIO;
5213
5214         if (EXT4_SB(inode->i_sb)->s_journal) {
5215                 if (ext4_journal_current_handle()) {
5216                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5217                         dump_stack();
5218                         return -EIO;
5219                 }
5220
5221                 /*
5222                  * No need to force transaction in WB_SYNC_NONE mode. Also
5223                  * ext4_sync_fs() will force the commit after everything is
5224                  * written.
5225                  */
5226                 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5227                         return 0;
5228
5229                 err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal,
5230                                                 EXT4_I(inode)->i_sync_tid);
5231         } else {
5232                 struct ext4_iloc iloc;
5233
5234                 err = __ext4_get_inode_loc_noinmem(inode, &iloc);
5235                 if (err)
5236                         return err;
5237                 /*
5238                  * sync(2) will flush the whole buffer cache. No need to do
5239                  * it here separately for each inode.
5240                  */
5241                 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5242                         sync_dirty_buffer(iloc.bh);
5243                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5244                         ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5245                                                "IO error syncing inode");
5246                         err = -EIO;
5247                 }
5248                 brelse(iloc.bh);
5249         }
5250         return err;
5251 }
5252
5253 /*
5254  * In data=journal mode ext4_journalled_invalidate_folio() may fail to invalidate
5255  * buffers that are attached to a folio straddling i_size and are undergoing
5256  * commit. In that case we have to wait for commit to finish and try again.
5257  */
5258 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5259 {
5260         unsigned offset;
5261         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5262         tid_t commit_tid = 0;
5263         int ret;
5264
5265         offset = inode->i_size & (PAGE_SIZE - 1);
5266         /*
5267          * If the folio is fully truncated, we don't need to wait for any commit
5268          * (and we even should not as __ext4_journalled_invalidate_folio() may
5269          * strip all buffers from the folio but keep the folio dirty which can then
5270          * confuse e.g. concurrent ext4_writepage() seeing dirty folio without
5271          * buffers). Also we don't need to wait for any commit if all buffers in
5272          * the folio remain valid. This is most beneficial for the common case of
5273          * blocksize == PAGESIZE.
5274          */
5275         if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5276                 return;
5277         while (1) {
5278                 struct folio *folio = filemap_lock_folio(inode->i_mapping,
5279                                       inode->i_size >> PAGE_SHIFT);
5280                 if (!folio)
5281                         return;
5282                 ret = __ext4_journalled_invalidate_folio(folio, offset,
5283                                                 folio_size(folio) - offset);
5284                 folio_unlock(folio);
5285                 folio_put(folio);
5286                 if (ret != -EBUSY)
5287                         return;
5288                 commit_tid = 0;
5289                 read_lock(&journal->j_state_lock);
5290                 if (journal->j_committing_transaction)
5291                         commit_tid = journal->j_committing_transaction->t_tid;
5292                 read_unlock(&journal->j_state_lock);
5293                 if (commit_tid)
5294                         jbd2_log_wait_commit(journal, commit_tid);
5295         }
5296 }
5297
5298 /*
5299  * ext4_setattr()
5300  *
5301  * Called from notify_change.
5302  *
5303  * We want to trap VFS attempts to truncate the file as soon as
5304  * possible.  In particular, we want to make sure that when the VFS
5305  * shrinks i_size, we put the inode on the orphan list and modify
5306  * i_disksize immediately, so that during the subsequent flushing of
5307  * dirty pages and freeing of disk blocks, we can guarantee that any
5308  * commit will leave the blocks being flushed in an unused state on
5309  * disk.  (On recovery, the inode will get truncated and the blocks will
5310  * be freed, so we have a strong guarantee that no future commit will
5311  * leave these blocks visible to the user.)
5312  *
5313  * Another thing we have to assure is that if we are in ordered mode
5314  * and inode is still attached to the committing transaction, we must
5315  * we start writeout of all the dirty pages which are being truncated.
5316  * This way we are sure that all the data written in the previous
5317  * transaction are already on disk (truncate waits for pages under
5318  * writeback).
5319  *
5320  * Called with inode->i_rwsem down.
5321  */
5322 int ext4_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
5323                  struct iattr *attr)
5324 {
5325         struct inode *inode = d_inode(dentry);
5326         int error, rc = 0;
5327         int orphan = 0;
5328         const unsigned int ia_valid = attr->ia_valid;
5329
5330         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5331                 return -EIO;
5332
5333         if (unlikely(IS_IMMUTABLE(inode)))
5334                 return -EPERM;
5335
5336         if (unlikely(IS_APPEND(inode) &&
5337                      (ia_valid & (ATTR_MODE | ATTR_UID |
5338                                   ATTR_GID | ATTR_TIMES_SET))))
5339                 return -EPERM;
5340
5341         error = setattr_prepare(mnt_userns, dentry, attr);
5342         if (error)
5343                 return error;
5344
5345         error = fscrypt_prepare_setattr(dentry, attr);
5346         if (error)
5347                 return error;
5348
5349         error = fsverity_prepare_setattr(dentry, attr);
5350         if (error)
5351                 return error;
5352
5353         if (is_quota_modification(inode, attr)) {
5354                 error = dquot_initialize(inode);
5355                 if (error)
5356                         return error;
5357         }
5358
5359         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5360             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5361                 handle_t *handle;
5362
5363                 /* (user+group)*(old+new) structure, inode write (sb,
5364                  * inode block, ? - but truncate inode update has it) */
5365                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5366                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5367                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5368                 if (IS_ERR(handle)) {
5369                         error = PTR_ERR(handle);
5370                         goto err_out;
5371                 }
5372
5373                 /* dquot_transfer() calls back ext4_get_inode_usage() which
5374                  * counts xattr inode references.
5375                  */
5376                 down_read(&EXT4_I(inode)->xattr_sem);
5377                 error = dquot_transfer(inode, attr);
5378                 up_read(&EXT4_I(inode)->xattr_sem);
5379
5380                 if (error) {
5381                         ext4_journal_stop(handle);
5382                         return error;
5383                 }
5384                 /* Update corresponding info in inode so that everything is in
5385                  * one transaction */
5386                 if (attr->ia_valid & ATTR_UID)
5387                         inode->i_uid = attr->ia_uid;
5388                 if (attr->ia_valid & ATTR_GID)
5389                         inode->i_gid = attr->ia_gid;
5390                 error = ext4_mark_inode_dirty(handle, inode);
5391                 ext4_journal_stop(handle);
5392                 if (unlikely(error)) {
5393                         return error;
5394                 }
5395         }
5396
5397         if (attr->ia_valid & ATTR_SIZE) {
5398                 handle_t *handle;
5399                 loff_t oldsize = inode->i_size;
5400                 loff_t old_disksize;
5401                 int shrink = (attr->ia_size < inode->i_size);
5402
5403                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5404                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5405
5406                         if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5407                                 return -EFBIG;
5408                         }
5409                 }
5410                 if (!S_ISREG(inode->i_mode)) {
5411                         return -EINVAL;
5412                 }
5413
5414                 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5415                         inode_inc_iversion(inode);
5416
5417                 if (shrink) {
5418                         if (ext4_should_order_data(inode)) {
5419                                 error = ext4_begin_ordered_truncate(inode,
5420                                                             attr->ia_size);
5421                                 if (error)
5422                                         goto err_out;
5423                         }
5424                         /*
5425                          * Blocks are going to be removed from the inode. Wait
5426                          * for dio in flight.
5427                          */
5428                         inode_dio_wait(inode);
5429                 }
5430
5431                 filemap_invalidate_lock(inode->i_mapping);
5432
5433                 rc = ext4_break_layouts(inode);
5434                 if (rc) {
5435                         filemap_invalidate_unlock(inode->i_mapping);
5436                         goto err_out;
5437                 }
5438
5439                 if (attr->ia_size != inode->i_size) {
5440                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5441                         if (IS_ERR(handle)) {
5442                                 error = PTR_ERR(handle);
5443                                 goto out_mmap_sem;
5444                         }
5445                         if (ext4_handle_valid(handle) && shrink) {
5446                                 error = ext4_orphan_add(handle, inode);
5447                                 orphan = 1;
5448                         }
5449                         /*
5450                          * Update c/mtime on truncate up, ext4_truncate() will
5451                          * update c/mtime in shrink case below
5452                          */
5453                         if (!shrink) {
5454                                 inode->i_mtime = current_time(inode);
5455                                 inode->i_ctime = inode->i_mtime;
5456                         }
5457
5458                         if (shrink)
5459                                 ext4_fc_track_range(handle, inode,
5460                                         (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5461                                         inode->i_sb->s_blocksize_bits,
5462                                         EXT_MAX_BLOCKS - 1);
5463                         else
5464                                 ext4_fc_track_range(
5465                                         handle, inode,
5466                                         (oldsize > 0 ? oldsize - 1 : oldsize) >>
5467                                         inode->i_sb->s_blocksize_bits,
5468                                         (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5469                                         inode->i_sb->s_blocksize_bits);
5470
5471                         down_write(&EXT4_I(inode)->i_data_sem);
5472                         old_disksize = EXT4_I(inode)->i_disksize;
5473                         EXT4_I(inode)->i_disksize = attr->ia_size;
5474                         rc = ext4_mark_inode_dirty(handle, inode);
5475                         if (!error)
5476                                 error = rc;
5477                         /*
5478                          * We have to update i_size under i_data_sem together
5479                          * with i_disksize to avoid races with writeback code
5480                          * running ext4_wb_update_i_disksize().
5481                          */
5482                         if (!error)
5483                                 i_size_write(inode, attr->ia_size);
5484                         else
5485                                 EXT4_I(inode)->i_disksize = old_disksize;
5486                         up_write(&EXT4_I(inode)->i_data_sem);
5487                         ext4_journal_stop(handle);
5488                         if (error)
5489                                 goto out_mmap_sem;
5490                         if (!shrink) {
5491                                 pagecache_isize_extended(inode, oldsize,
5492                                                          inode->i_size);
5493                         } else if (ext4_should_journal_data(inode)) {
5494                                 ext4_wait_for_tail_page_commit(inode);
5495                         }
5496                 }
5497
5498                 /*
5499                  * Truncate pagecache after we've waited for commit
5500                  * in data=journal mode to make pages freeable.
5501                  */
5502                 truncate_pagecache(inode, inode->i_size);
5503                 /*
5504                  * Call ext4_truncate() even if i_size didn't change to
5505                  * truncate possible preallocated blocks.
5506                  */
5507                 if (attr->ia_size <= oldsize) {
5508                         rc = ext4_truncate(inode);
5509                         if (rc)
5510                                 error = rc;
5511                 }
5512 out_mmap_sem:
5513                 filemap_invalidate_unlock(inode->i_mapping);
5514         }
5515
5516         if (!error) {
5517                 setattr_copy(mnt_userns, inode, attr);
5518                 mark_inode_dirty(inode);
5519         }
5520
5521         /*
5522          * If the call to ext4_truncate failed to get a transaction handle at
5523          * all, we need to clean up the in-core orphan list manually.
5524          */
5525         if (orphan && inode->i_nlink)
5526                 ext4_orphan_del(NULL, inode);
5527
5528         if (!error && (ia_valid & ATTR_MODE))
5529                 rc = posix_acl_chmod(mnt_userns, inode, inode->i_mode);
5530
5531 err_out:
5532         if  (error)
5533                 ext4_std_error(inode->i_sb, error);
5534         if (!error)
5535                 error = rc;
5536         return error;
5537 }
5538
5539 int ext4_getattr(struct user_namespace *mnt_userns, const struct path *path,
5540                  struct kstat *stat, u32 request_mask, unsigned int query_flags)
5541 {
5542         struct inode *inode = d_inode(path->dentry);
5543         struct ext4_inode *raw_inode;
5544         struct ext4_inode_info *ei = EXT4_I(inode);
5545         unsigned int flags;
5546
5547         if ((request_mask & STATX_BTIME) &&
5548             EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5549                 stat->result_mask |= STATX_BTIME;
5550                 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5551                 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5552         }
5553
5554         flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5555         if (flags & EXT4_APPEND_FL)
5556                 stat->attributes |= STATX_ATTR_APPEND;
5557         if (flags & EXT4_COMPR_FL)
5558                 stat->attributes |= STATX_ATTR_COMPRESSED;
5559         if (flags & EXT4_ENCRYPT_FL)
5560                 stat->attributes |= STATX_ATTR_ENCRYPTED;
5561         if (flags & EXT4_IMMUTABLE_FL)
5562                 stat->attributes |= STATX_ATTR_IMMUTABLE;
5563         if (flags & EXT4_NODUMP_FL)
5564                 stat->attributes |= STATX_ATTR_NODUMP;
5565         if (flags & EXT4_VERITY_FL)
5566                 stat->attributes |= STATX_ATTR_VERITY;
5567
5568         stat->attributes_mask |= (STATX_ATTR_APPEND |
5569                                   STATX_ATTR_COMPRESSED |
5570                                   STATX_ATTR_ENCRYPTED |
5571                                   STATX_ATTR_IMMUTABLE |
5572                                   STATX_ATTR_NODUMP |
5573                                   STATX_ATTR_VERITY);
5574
5575         generic_fillattr(mnt_userns, inode, stat);
5576         return 0;
5577 }
5578
5579 int ext4_file_getattr(struct user_namespace *mnt_userns,
5580                       const struct path *path, struct kstat *stat,
5581                       u32 request_mask, unsigned int query_flags)
5582 {
5583         struct inode *inode = d_inode(path->dentry);
5584         u64 delalloc_blocks;
5585
5586         ext4_getattr(mnt_userns, path, stat, request_mask, query_flags);
5587
5588         /*
5589          * If there is inline data in the inode, the inode will normally not
5590          * have data blocks allocated (it may have an external xattr block).
5591          * Report at least one sector for such files, so tools like tar, rsync,
5592          * others don't incorrectly think the file is completely sparse.
5593          */
5594         if (unlikely(ext4_has_inline_data(inode)))
5595                 stat->blocks += (stat->size + 511) >> 9;
5596
5597         /*
5598          * We can't update i_blocks if the block allocation is delayed
5599          * otherwise in the case of system crash before the real block
5600          * allocation is done, we will have i_blocks inconsistent with
5601          * on-disk file blocks.
5602          * We always keep i_blocks updated together with real
5603          * allocation. But to not confuse with user, stat
5604          * will return the blocks that include the delayed allocation
5605          * blocks for this file.
5606          */
5607         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5608                                    EXT4_I(inode)->i_reserved_data_blocks);
5609         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5610         return 0;
5611 }
5612
5613 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5614                                    int pextents)
5615 {
5616         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5617                 return ext4_ind_trans_blocks(inode, lblocks);
5618         return ext4_ext_index_trans_blocks(inode, pextents);
5619 }
5620
5621 /*
5622  * Account for index blocks, block groups bitmaps and block group
5623  * descriptor blocks if modify datablocks and index blocks
5624  * worse case, the indexs blocks spread over different block groups
5625  *
5626  * If datablocks are discontiguous, they are possible to spread over
5627  * different block groups too. If they are contiguous, with flexbg,
5628  * they could still across block group boundary.
5629  *
5630  * Also account for superblock, inode, quota and xattr blocks
5631  */
5632 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5633                                   int pextents)
5634 {
5635         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5636         int gdpblocks;
5637         int idxblocks;
5638         int ret = 0;
5639
5640         /*
5641          * How many index blocks need to touch to map @lblocks logical blocks
5642          * to @pextents physical extents?
5643          */
5644         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5645
5646         ret = idxblocks;
5647
5648         /*
5649          * Now let's see how many group bitmaps and group descriptors need
5650          * to account
5651          */
5652         groups = idxblocks + pextents;
5653         gdpblocks = groups;
5654         if (groups > ngroups)
5655                 groups = ngroups;
5656         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5657                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5658
5659         /* bitmaps and block group descriptor blocks */
5660         ret += groups + gdpblocks;
5661
5662         /* Blocks for super block, inode, quota and xattr blocks */
5663         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5664
5665         return ret;
5666 }
5667
5668 /*
5669  * Calculate the total number of credits to reserve to fit
5670  * the modification of a single pages into a single transaction,
5671  * which may include multiple chunks of block allocations.
5672  *
5673  * This could be called via ext4_write_begin()
5674  *
5675  * We need to consider the worse case, when
5676  * one new block per extent.
5677  */
5678 int ext4_writepage_trans_blocks(struct inode *inode)
5679 {
5680         int bpp = ext4_journal_blocks_per_page(inode);
5681         int ret;
5682
5683         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5684
5685         /* Account for data blocks for journalled mode */
5686         if (ext4_should_journal_data(inode))
5687                 ret += bpp;
5688         return ret;
5689 }
5690
5691 /*
5692  * Calculate the journal credits for a chunk of data modification.
5693  *
5694  * This is called from DIO, fallocate or whoever calling
5695  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5696  *
5697  * journal buffers for data blocks are not included here, as DIO
5698  * and fallocate do no need to journal data buffers.
5699  */
5700 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5701 {
5702         return ext4_meta_trans_blocks(inode, nrblocks, 1);
5703 }
5704
5705 /*
5706  * The caller must have previously called ext4_reserve_inode_write().
5707  * Give this, we know that the caller already has write access to iloc->bh.
5708  */
5709 int ext4_mark_iloc_dirty(handle_t *handle,
5710                          struct inode *inode, struct ext4_iloc *iloc)
5711 {
5712         int err = 0;
5713
5714         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5715                 put_bh(iloc->bh);
5716                 return -EIO;
5717         }
5718         ext4_fc_track_inode(handle, inode);
5719
5720         if (IS_I_VERSION(inode))
5721                 inode_inc_iversion(inode);
5722
5723         /* the do_update_inode consumes one bh->b_count */
5724         get_bh(iloc->bh);
5725
5726         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5727         err = ext4_do_update_inode(handle, inode, iloc);
5728         put_bh(iloc->bh);
5729         return err;
5730 }
5731
5732 /*
5733  * On success, We end up with an outstanding reference count against
5734  * iloc->bh.  This _must_ be cleaned up later.
5735  */
5736
5737 int
5738 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5739                          struct ext4_iloc *iloc)
5740 {
5741         int err;
5742
5743         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5744                 return -EIO;
5745
5746         err = ext4_get_inode_loc(inode, iloc);
5747         if (!err) {
5748                 BUFFER_TRACE(iloc->bh, "get_write_access");
5749                 err = ext4_journal_get_write_access(handle, inode->i_sb,
5750                                                     iloc->bh, EXT4_JTR_NONE);
5751                 if (err) {
5752                         brelse(iloc->bh);
5753                         iloc->bh = NULL;
5754                 }
5755         }
5756         ext4_std_error(inode->i_sb, err);
5757         return err;
5758 }
5759
5760 static int __ext4_expand_extra_isize(struct inode *inode,
5761                                      unsigned int new_extra_isize,
5762                                      struct ext4_iloc *iloc,
5763                                      handle_t *handle, int *no_expand)
5764 {
5765         struct ext4_inode *raw_inode;
5766         struct ext4_xattr_ibody_header *header;
5767         unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5768         struct ext4_inode_info *ei = EXT4_I(inode);
5769         int error;
5770
5771         /* this was checked at iget time, but double check for good measure */
5772         if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5773             (ei->i_extra_isize & 3)) {
5774                 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5775                                  ei->i_extra_isize,
5776                                  EXT4_INODE_SIZE(inode->i_sb));
5777                 return -EFSCORRUPTED;
5778         }
5779         if ((new_extra_isize < ei->i_extra_isize) ||
5780             (new_extra_isize < 4) ||
5781             (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5782                 return -EINVAL; /* Should never happen */
5783
5784         raw_inode = ext4_raw_inode(iloc);
5785
5786         header = IHDR(inode, raw_inode);
5787
5788         /* No extended attributes present */
5789         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5790             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5791                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5792                        EXT4_I(inode)->i_extra_isize, 0,
5793                        new_extra_isize - EXT4_I(inode)->i_extra_isize);
5794                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5795                 return 0;
5796         }
5797
5798         /* try to expand with EAs present */
5799         error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5800                                            raw_inode, handle);
5801         if (error) {
5802                 /*
5803                  * Inode size expansion failed; don't try again
5804                  */
5805                 *no_expand = 1;
5806         }
5807
5808         return error;
5809 }
5810
5811 /*
5812  * Expand an inode by new_extra_isize bytes.
5813  * Returns 0 on success or negative error number on failure.
5814  */
5815 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5816                                           unsigned int new_extra_isize,
5817                                           struct ext4_iloc iloc,
5818                                           handle_t *handle)
5819 {
5820         int no_expand;
5821         int error;
5822
5823         if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5824                 return -EOVERFLOW;
5825
5826         /*
5827          * In nojournal mode, we can immediately attempt to expand
5828          * the inode.  When journaled, we first need to obtain extra
5829          * buffer credits since we may write into the EA block
5830          * with this same handle. If journal_extend fails, then it will
5831          * only result in a minor loss of functionality for that inode.
5832          * If this is felt to be critical, then e2fsck should be run to
5833          * force a large enough s_min_extra_isize.
5834          */
5835         if (ext4_journal_extend(handle,
5836                                 EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5837                 return -ENOSPC;
5838
5839         if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5840                 return -EBUSY;
5841
5842         error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5843                                           handle, &no_expand);
5844         ext4_write_unlock_xattr(inode, &no_expand);
5845
5846         return error;
5847 }
5848
5849 int ext4_expand_extra_isize(struct inode *inode,
5850                             unsigned int new_extra_isize,
5851                             struct ext4_iloc *iloc)
5852 {
5853         handle_t *handle;
5854         int no_expand;
5855         int error, rc;
5856
5857         if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5858                 brelse(iloc->bh);
5859                 return -EOVERFLOW;
5860         }
5861
5862         handle = ext4_journal_start(inode, EXT4_HT_INODE,
5863                                     EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5864         if (IS_ERR(handle)) {
5865                 error = PTR_ERR(handle);
5866                 brelse(iloc->bh);
5867                 return error;
5868         }
5869
5870         ext4_write_lock_xattr(inode, &no_expand);
5871
5872         BUFFER_TRACE(iloc->bh, "get_write_access");
5873         error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh,
5874                                               EXT4_JTR_NONE);
5875         if (error) {
5876                 brelse(iloc->bh);
5877                 goto out_unlock;
5878         }
5879
5880         error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5881                                           handle, &no_expand);
5882
5883         rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5884         if (!error)
5885                 error = rc;
5886
5887 out_unlock:
5888         ext4_write_unlock_xattr(inode, &no_expand);
5889         ext4_journal_stop(handle);
5890         return error;
5891 }
5892
5893 /*
5894  * What we do here is to mark the in-core inode as clean with respect to inode
5895  * dirtiness (it may still be data-dirty).
5896  * This means that the in-core inode may be reaped by prune_icache
5897  * without having to perform any I/O.  This is a very good thing,
5898  * because *any* task may call prune_icache - even ones which
5899  * have a transaction open against a different journal.
5900  *
5901  * Is this cheating?  Not really.  Sure, we haven't written the
5902  * inode out, but prune_icache isn't a user-visible syncing function.
5903  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5904  * we start and wait on commits.
5905  */
5906 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
5907                                 const char *func, unsigned int line)
5908 {
5909         struct ext4_iloc iloc;
5910         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5911         int err;
5912
5913         might_sleep();
5914         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5915         err = ext4_reserve_inode_write(handle, inode, &iloc);
5916         if (err)
5917                 goto out;
5918
5919         if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5920                 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5921                                                iloc, handle);
5922
5923         err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5924 out:
5925         if (unlikely(err))
5926                 ext4_error_inode_err(inode, func, line, 0, err,
5927                                         "mark_inode_dirty error");
5928         return err;
5929 }
5930
5931 /*
5932  * ext4_dirty_inode() is called from __mark_inode_dirty()
5933  *
5934  * We're really interested in the case where a file is being extended.
5935  * i_size has been changed by generic_commit_write() and we thus need
5936  * to include the updated inode in the current transaction.
5937  *
5938  * Also, dquot_alloc_block() will always dirty the inode when blocks
5939  * are allocated to the file.
5940  *
5941  * If the inode is marked synchronous, we don't honour that here - doing
5942  * so would cause a commit on atime updates, which we don't bother doing.
5943  * We handle synchronous inodes at the highest possible level.
5944  */
5945 void ext4_dirty_inode(struct inode *inode, int flags)
5946 {
5947         handle_t *handle;
5948
5949         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5950         if (IS_ERR(handle))
5951                 return;
5952         ext4_mark_inode_dirty(handle, inode);
5953         ext4_journal_stop(handle);
5954 }
5955
5956 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5957 {
5958         journal_t *journal;
5959         handle_t *handle;
5960         int err;
5961         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5962
5963         /*
5964          * We have to be very careful here: changing a data block's
5965          * journaling status dynamically is dangerous.  If we write a
5966          * data block to the journal, change the status and then delete
5967          * that block, we risk forgetting to revoke the old log record
5968          * from the journal and so a subsequent replay can corrupt data.
5969          * So, first we make sure that the journal is empty and that
5970          * nobody is changing anything.
5971          */
5972
5973         journal = EXT4_JOURNAL(inode);
5974         if (!journal)
5975                 return 0;
5976         if (is_journal_aborted(journal))
5977                 return -EROFS;
5978
5979         /* Wait for all existing dio workers */
5980         inode_dio_wait(inode);
5981
5982         /*
5983          * Before flushing the journal and switching inode's aops, we have
5984          * to flush all dirty data the inode has. There can be outstanding
5985          * delayed allocations, there can be unwritten extents created by
5986          * fallocate or buffered writes in dioread_nolock mode covered by
5987          * dirty data which can be converted only after flushing the dirty
5988          * data (and journalled aops don't know how to handle these cases).
5989          */
5990         if (val) {
5991                 filemap_invalidate_lock(inode->i_mapping);
5992                 err = filemap_write_and_wait(inode->i_mapping);
5993                 if (err < 0) {
5994                         filemap_invalidate_unlock(inode->i_mapping);
5995                         return err;
5996                 }
5997         }
5998
5999         percpu_down_write(&sbi->s_writepages_rwsem);
6000         jbd2_journal_lock_updates(journal);
6001
6002         /*
6003          * OK, there are no updates running now, and all cached data is
6004          * synced to disk.  We are now in a completely consistent state
6005          * which doesn't have anything in the journal, and we know that
6006          * no filesystem updates are running, so it is safe to modify
6007          * the inode's in-core data-journaling state flag now.
6008          */
6009
6010         if (val)
6011                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6012         else {
6013                 err = jbd2_journal_flush(journal, 0);
6014                 if (err < 0) {
6015                         jbd2_journal_unlock_updates(journal);
6016                         percpu_up_write(&sbi->s_writepages_rwsem);
6017                         return err;
6018                 }
6019                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6020         }
6021         ext4_set_aops(inode);
6022
6023         jbd2_journal_unlock_updates(journal);
6024         percpu_up_write(&sbi->s_writepages_rwsem);
6025
6026         if (val)
6027                 filemap_invalidate_unlock(inode->i_mapping);
6028
6029         /* Finally we can mark the inode as dirty. */
6030
6031         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6032         if (IS_ERR(handle))
6033                 return PTR_ERR(handle);
6034
6035         ext4_fc_mark_ineligible(inode->i_sb,
6036                 EXT4_FC_REASON_JOURNAL_FLAG_CHANGE, handle);
6037         err = ext4_mark_inode_dirty(handle, inode);
6038         ext4_handle_sync(handle);
6039         ext4_journal_stop(handle);
6040         ext4_std_error(inode->i_sb, err);
6041
6042         return err;
6043 }
6044
6045 static int ext4_bh_unmapped(handle_t *handle, struct inode *inode,
6046                             struct buffer_head *bh)
6047 {
6048         return !buffer_mapped(bh);
6049 }
6050
6051 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6052 {
6053         struct vm_area_struct *vma = vmf->vma;
6054         struct page *page = vmf->page;
6055         loff_t size;
6056         unsigned long len;
6057         int err;
6058         vm_fault_t ret;
6059         struct file *file = vma->vm_file;
6060         struct inode *inode = file_inode(file);
6061         struct address_space *mapping = inode->i_mapping;
6062         handle_t *handle;
6063         get_block_t *get_block;
6064         int retries = 0;
6065
6066         if (unlikely(IS_IMMUTABLE(inode)))
6067                 return VM_FAULT_SIGBUS;
6068
6069         sb_start_pagefault(inode->i_sb);
6070         file_update_time(vma->vm_file);
6071
6072         filemap_invalidate_lock_shared(mapping);
6073
6074         err = ext4_convert_inline_data(inode);
6075         if (err)
6076                 goto out_ret;
6077
6078         /*
6079          * On data journalling we skip straight to the transaction handle:
6080          * there's no delalloc; page truncated will be checked later; the
6081          * early return w/ all buffers mapped (calculates size/len) can't
6082          * be used; and there's no dioread_nolock, so only ext4_get_block.
6083          */
6084         if (ext4_should_journal_data(inode))
6085                 goto retry_alloc;
6086
6087         /* Delalloc case is easy... */
6088         if (test_opt(inode->i_sb, DELALLOC) &&
6089             !ext4_nonda_switch(inode->i_sb)) {
6090                 do {
6091                         err = block_page_mkwrite(vma, vmf,
6092                                                    ext4_da_get_block_prep);
6093                 } while (err == -ENOSPC &&
6094                        ext4_should_retry_alloc(inode->i_sb, &retries));
6095                 goto out_ret;
6096         }
6097
6098         lock_page(page);
6099         size = i_size_read(inode);
6100         /* Page got truncated from under us? */
6101         if (page->mapping != mapping || page_offset(page) > size) {
6102                 unlock_page(page);
6103                 ret = VM_FAULT_NOPAGE;
6104                 goto out;
6105         }
6106
6107         if (page->index == size >> PAGE_SHIFT)
6108                 len = size & ~PAGE_MASK;
6109         else
6110                 len = PAGE_SIZE;
6111         /*
6112          * Return if we have all the buffers mapped. This avoids the need to do
6113          * journal_start/journal_stop which can block and take a long time
6114          *
6115          * This cannot be done for data journalling, as we have to add the
6116          * inode to the transaction's list to writeprotect pages on commit.
6117          */
6118         if (page_has_buffers(page)) {
6119                 if (!ext4_walk_page_buffers(NULL, inode, page_buffers(page),
6120                                             0, len, NULL,
6121                                             ext4_bh_unmapped)) {
6122                         /* Wait so that we don't change page under IO */
6123                         wait_for_stable_page(page);
6124                         ret = VM_FAULT_LOCKED;
6125                         goto out;
6126                 }
6127         }
6128         unlock_page(page);
6129         /* OK, we need to fill the hole... */
6130         if (ext4_should_dioread_nolock(inode))
6131                 get_block = ext4_get_block_unwritten;
6132         else
6133                 get_block = ext4_get_block;
6134 retry_alloc:
6135         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6136                                     ext4_writepage_trans_blocks(inode));
6137         if (IS_ERR(handle)) {
6138                 ret = VM_FAULT_SIGBUS;
6139                 goto out;
6140         }
6141         /*
6142          * Data journalling can't use block_page_mkwrite() because it
6143          * will set_buffer_dirty() before do_journal_get_write_access()
6144          * thus might hit warning messages for dirty metadata buffers.
6145          */
6146         if (!ext4_should_journal_data(inode)) {
6147                 err = block_page_mkwrite(vma, vmf, get_block);
6148         } else {
6149                 lock_page(page);
6150                 size = i_size_read(inode);
6151                 /* Page got truncated from under us? */
6152                 if (page->mapping != mapping || page_offset(page) > size) {
6153                         ret = VM_FAULT_NOPAGE;
6154                         goto out_error;
6155                 }
6156
6157                 if (page->index == size >> PAGE_SHIFT)
6158                         len = size & ~PAGE_MASK;
6159                 else
6160                         len = PAGE_SIZE;
6161
6162                 err = __block_write_begin(page, 0, len, ext4_get_block);
6163                 if (!err) {
6164                         ret = VM_FAULT_SIGBUS;
6165                         if (ext4_walk_page_buffers(handle, inode,
6166                                         page_buffers(page), 0, len, NULL,
6167                                         do_journal_get_write_access))
6168                                 goto out_error;
6169                         if (ext4_walk_page_buffers(handle, inode,
6170                                         page_buffers(page), 0, len, NULL,
6171                                         write_end_fn))
6172                                 goto out_error;
6173                         if (ext4_jbd2_inode_add_write(handle, inode,
6174                                                       page_offset(page), len))
6175                                 goto out_error;
6176                         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6177                 } else {
6178                         unlock_page(page);
6179                 }
6180         }
6181         ext4_journal_stop(handle);
6182         if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6183                 goto retry_alloc;
6184 out_ret:
6185         ret = block_page_mkwrite_return(err);
6186 out:
6187         filemap_invalidate_unlock_shared(mapping);
6188         sb_end_pagefault(inode->i_sb);
6189         return ret;
6190 out_error:
6191         unlock_page(page);
6192         ext4_journal_stop(handle);
6193         goto out;
6194 }