Merge tag 'batadv-next-for-davem-20190627v2' of git://git.open-mesh.org/linux-merge
[linux-2.6-microblaze.git] / fs / ext4 / inode.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  64-bit file support on 64-bit platforms by Jakub Jelinek
17  *      (jj@sunsite.ms.mff.cuni.cz)
18  *
19  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20  */
21
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/dax.h>
27 #include <linux/quotaops.h>
28 #include <linux/string.h>
29 #include <linux/buffer_head.h>
30 #include <linux/writeback.h>
31 #include <linux/pagevec.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/uio.h>
35 #include <linux/bio.h>
36 #include <linux/workqueue.h>
37 #include <linux/kernel.h>
38 #include <linux/printk.h>
39 #include <linux/slab.h>
40 #include <linux/bitops.h>
41 #include <linux/iomap.h>
42 #include <linux/iversion.h>
43
44 #include "ext4_jbd2.h"
45 #include "xattr.h"
46 #include "acl.h"
47 #include "truncate.h"
48
49 #include <trace/events/ext4.h>
50
51 #define MPAGE_DA_EXTENT_TAIL 0x01
52
53 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
54                               struct ext4_inode_info *ei)
55 {
56         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
57         __u32 csum;
58         __u16 dummy_csum = 0;
59         int offset = offsetof(struct ext4_inode, i_checksum_lo);
60         unsigned int csum_size = sizeof(dummy_csum);
61
62         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
63         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
64         offset += csum_size;
65         csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
66                            EXT4_GOOD_OLD_INODE_SIZE - offset);
67
68         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
69                 offset = offsetof(struct ext4_inode, i_checksum_hi);
70                 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
71                                    EXT4_GOOD_OLD_INODE_SIZE,
72                                    offset - EXT4_GOOD_OLD_INODE_SIZE);
73                 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
74                         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
75                                            csum_size);
76                         offset += csum_size;
77                 }
78                 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
79                                    EXT4_INODE_SIZE(inode->i_sb) - offset);
80         }
81
82         return csum;
83 }
84
85 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
86                                   struct ext4_inode_info *ei)
87 {
88         __u32 provided, calculated;
89
90         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
91             cpu_to_le32(EXT4_OS_LINUX) ||
92             !ext4_has_metadata_csum(inode->i_sb))
93                 return 1;
94
95         provided = le16_to_cpu(raw->i_checksum_lo);
96         calculated = ext4_inode_csum(inode, raw, ei);
97         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
98             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
99                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
100         else
101                 calculated &= 0xFFFF;
102
103         return provided == calculated;
104 }
105
106 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
107                                 struct ext4_inode_info *ei)
108 {
109         __u32 csum;
110
111         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
112             cpu_to_le32(EXT4_OS_LINUX) ||
113             !ext4_has_metadata_csum(inode->i_sb))
114                 return;
115
116         csum = ext4_inode_csum(inode, raw, ei);
117         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
118         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
119             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
120                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
121 }
122
123 static inline int ext4_begin_ordered_truncate(struct inode *inode,
124                                               loff_t new_size)
125 {
126         trace_ext4_begin_ordered_truncate(inode, new_size);
127         /*
128          * If jinode is zero, then we never opened the file for
129          * writing, so there's no need to call
130          * jbd2_journal_begin_ordered_truncate() since there's no
131          * outstanding writes we need to flush.
132          */
133         if (!EXT4_I(inode)->jinode)
134                 return 0;
135         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
136                                                    EXT4_I(inode)->jinode,
137                                                    new_size);
138 }
139
140 static void ext4_invalidatepage(struct page *page, unsigned int offset,
141                                 unsigned int length);
142 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
143 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
144 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
145                                   int pextents);
146
147 /*
148  * Test whether an inode is a fast symlink.
149  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
150  */
151 int ext4_inode_is_fast_symlink(struct inode *inode)
152 {
153         if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
154                 int ea_blocks = EXT4_I(inode)->i_file_acl ?
155                                 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
156
157                 if (ext4_has_inline_data(inode))
158                         return 0;
159
160                 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
161         }
162         return S_ISLNK(inode->i_mode) && inode->i_size &&
163                (inode->i_size < EXT4_N_BLOCKS * 4);
164 }
165
166 /*
167  * Restart the transaction associated with *handle.  This does a commit,
168  * so before we call here everything must be consistently dirtied against
169  * this transaction.
170  */
171 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
172                                  int nblocks)
173 {
174         int ret;
175
176         /*
177          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
178          * moment, get_block can be called only for blocks inside i_size since
179          * page cache has been already dropped and writes are blocked by
180          * i_mutex. So we can safely drop the i_data_sem here.
181          */
182         BUG_ON(EXT4_JOURNAL(inode) == NULL);
183         jbd_debug(2, "restarting handle %p\n", handle);
184         up_write(&EXT4_I(inode)->i_data_sem);
185         ret = ext4_journal_restart(handle, nblocks);
186         down_write(&EXT4_I(inode)->i_data_sem);
187         ext4_discard_preallocations(inode);
188
189         return ret;
190 }
191
192 /*
193  * Called at the last iput() if i_nlink is zero.
194  */
195 void ext4_evict_inode(struct inode *inode)
196 {
197         handle_t *handle;
198         int err;
199         int extra_credits = 3;
200         struct ext4_xattr_inode_array *ea_inode_array = NULL;
201
202         trace_ext4_evict_inode(inode);
203
204         if (inode->i_nlink) {
205                 /*
206                  * When journalling data dirty buffers are tracked only in the
207                  * journal. So although mm thinks everything is clean and
208                  * ready for reaping the inode might still have some pages to
209                  * write in the running transaction or waiting to be
210                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
211                  * (via truncate_inode_pages()) to discard these buffers can
212                  * cause data loss. Also even if we did not discard these
213                  * buffers, we would have no way to find them after the inode
214                  * is reaped and thus user could see stale data if he tries to
215                  * read them before the transaction is checkpointed. So be
216                  * careful and force everything to disk here... We use
217                  * ei->i_datasync_tid to store the newest transaction
218                  * containing inode's data.
219                  *
220                  * Note that directories do not have this problem because they
221                  * don't use page cache.
222                  */
223                 if (inode->i_ino != EXT4_JOURNAL_INO &&
224                     ext4_should_journal_data(inode) &&
225                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
226                     inode->i_data.nrpages) {
227                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
228                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
229
230                         jbd2_complete_transaction(journal, commit_tid);
231                         filemap_write_and_wait(&inode->i_data);
232                 }
233                 truncate_inode_pages_final(&inode->i_data);
234
235                 goto no_delete;
236         }
237
238         if (is_bad_inode(inode))
239                 goto no_delete;
240         dquot_initialize(inode);
241
242         if (ext4_should_order_data(inode))
243                 ext4_begin_ordered_truncate(inode, 0);
244         truncate_inode_pages_final(&inode->i_data);
245
246         /*
247          * Protect us against freezing - iput() caller didn't have to have any
248          * protection against it
249          */
250         sb_start_intwrite(inode->i_sb);
251
252         if (!IS_NOQUOTA(inode))
253                 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
254
255         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
256                                  ext4_blocks_for_truncate(inode)+extra_credits);
257         if (IS_ERR(handle)) {
258                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
259                 /*
260                  * If we're going to skip the normal cleanup, we still need to
261                  * make sure that the in-core orphan linked list is properly
262                  * cleaned up.
263                  */
264                 ext4_orphan_del(NULL, inode);
265                 sb_end_intwrite(inode->i_sb);
266                 goto no_delete;
267         }
268
269         if (IS_SYNC(inode))
270                 ext4_handle_sync(handle);
271
272         /*
273          * Set inode->i_size to 0 before calling ext4_truncate(). We need
274          * special handling of symlinks here because i_size is used to
275          * determine whether ext4_inode_info->i_data contains symlink data or
276          * block mappings. Setting i_size to 0 will remove its fast symlink
277          * status. Erase i_data so that it becomes a valid empty block map.
278          */
279         if (ext4_inode_is_fast_symlink(inode))
280                 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
281         inode->i_size = 0;
282         err = ext4_mark_inode_dirty(handle, inode);
283         if (err) {
284                 ext4_warning(inode->i_sb,
285                              "couldn't mark inode dirty (err %d)", err);
286                 goto stop_handle;
287         }
288         if (inode->i_blocks) {
289                 err = ext4_truncate(inode);
290                 if (err) {
291                         ext4_error(inode->i_sb,
292                                    "couldn't truncate inode %lu (err %d)",
293                                    inode->i_ino, err);
294                         goto stop_handle;
295                 }
296         }
297
298         /* Remove xattr references. */
299         err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
300                                       extra_credits);
301         if (err) {
302                 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
303 stop_handle:
304                 ext4_journal_stop(handle);
305                 ext4_orphan_del(NULL, inode);
306                 sb_end_intwrite(inode->i_sb);
307                 ext4_xattr_inode_array_free(ea_inode_array);
308                 goto no_delete;
309         }
310
311         /*
312          * Kill off the orphan record which ext4_truncate created.
313          * AKPM: I think this can be inside the above `if'.
314          * Note that ext4_orphan_del() has to be able to cope with the
315          * deletion of a non-existent orphan - this is because we don't
316          * know if ext4_truncate() actually created an orphan record.
317          * (Well, we could do this if we need to, but heck - it works)
318          */
319         ext4_orphan_del(handle, inode);
320         EXT4_I(inode)->i_dtime  = (__u32)ktime_get_real_seconds();
321
322         /*
323          * One subtle ordering requirement: if anything has gone wrong
324          * (transaction abort, IO errors, whatever), then we can still
325          * do these next steps (the fs will already have been marked as
326          * having errors), but we can't free the inode if the mark_dirty
327          * fails.
328          */
329         if (ext4_mark_inode_dirty(handle, inode))
330                 /* If that failed, just do the required in-core inode clear. */
331                 ext4_clear_inode(inode);
332         else
333                 ext4_free_inode(handle, inode);
334         ext4_journal_stop(handle);
335         sb_end_intwrite(inode->i_sb);
336         ext4_xattr_inode_array_free(ea_inode_array);
337         return;
338 no_delete:
339         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
340 }
341
342 #ifdef CONFIG_QUOTA
343 qsize_t *ext4_get_reserved_space(struct inode *inode)
344 {
345         return &EXT4_I(inode)->i_reserved_quota;
346 }
347 #endif
348
349 /*
350  * Called with i_data_sem down, which is important since we can call
351  * ext4_discard_preallocations() from here.
352  */
353 void ext4_da_update_reserve_space(struct inode *inode,
354                                         int used, int quota_claim)
355 {
356         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
357         struct ext4_inode_info *ei = EXT4_I(inode);
358
359         spin_lock(&ei->i_block_reservation_lock);
360         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
361         if (unlikely(used > ei->i_reserved_data_blocks)) {
362                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
363                          "with only %d reserved data blocks",
364                          __func__, inode->i_ino, used,
365                          ei->i_reserved_data_blocks);
366                 WARN_ON(1);
367                 used = ei->i_reserved_data_blocks;
368         }
369
370         /* Update per-inode reservations */
371         ei->i_reserved_data_blocks -= used;
372         percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
373
374         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
375
376         /* Update quota subsystem for data blocks */
377         if (quota_claim)
378                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
379         else {
380                 /*
381                  * We did fallocate with an offset that is already delayed
382                  * allocated. So on delayed allocated writeback we should
383                  * not re-claim the quota for fallocated blocks.
384                  */
385                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
386         }
387
388         /*
389          * If we have done all the pending block allocations and if
390          * there aren't any writers on the inode, we can discard the
391          * inode's preallocations.
392          */
393         if ((ei->i_reserved_data_blocks == 0) &&
394             !inode_is_open_for_write(inode))
395                 ext4_discard_preallocations(inode);
396 }
397
398 static int __check_block_validity(struct inode *inode, const char *func,
399                                 unsigned int line,
400                                 struct ext4_map_blocks *map)
401 {
402         if (ext4_has_feature_journal(inode->i_sb) &&
403             (inode->i_ino ==
404              le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
405                 return 0;
406         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
407                                    map->m_len)) {
408                 ext4_error_inode(inode, func, line, map->m_pblk,
409                                  "lblock %lu mapped to illegal pblock %llu "
410                                  "(length %d)", (unsigned long) map->m_lblk,
411                                  map->m_pblk, map->m_len);
412                 return -EFSCORRUPTED;
413         }
414         return 0;
415 }
416
417 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
418                        ext4_lblk_t len)
419 {
420         int ret;
421
422         if (IS_ENCRYPTED(inode))
423                 return fscrypt_zeroout_range(inode, lblk, pblk, len);
424
425         ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
426         if (ret > 0)
427                 ret = 0;
428
429         return ret;
430 }
431
432 #define check_block_validity(inode, map)        \
433         __check_block_validity((inode), __func__, __LINE__, (map))
434
435 #ifdef ES_AGGRESSIVE_TEST
436 static void ext4_map_blocks_es_recheck(handle_t *handle,
437                                        struct inode *inode,
438                                        struct ext4_map_blocks *es_map,
439                                        struct ext4_map_blocks *map,
440                                        int flags)
441 {
442         int retval;
443
444         map->m_flags = 0;
445         /*
446          * There is a race window that the result is not the same.
447          * e.g. xfstests #223 when dioread_nolock enables.  The reason
448          * is that we lookup a block mapping in extent status tree with
449          * out taking i_data_sem.  So at the time the unwritten extent
450          * could be converted.
451          */
452         down_read(&EXT4_I(inode)->i_data_sem);
453         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
454                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
455                                              EXT4_GET_BLOCKS_KEEP_SIZE);
456         } else {
457                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
458                                              EXT4_GET_BLOCKS_KEEP_SIZE);
459         }
460         up_read((&EXT4_I(inode)->i_data_sem));
461
462         /*
463          * We don't check m_len because extent will be collpased in status
464          * tree.  So the m_len might not equal.
465          */
466         if (es_map->m_lblk != map->m_lblk ||
467             es_map->m_flags != map->m_flags ||
468             es_map->m_pblk != map->m_pblk) {
469                 printk("ES cache assertion failed for inode: %lu "
470                        "es_cached ex [%d/%d/%llu/%x] != "
471                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
472                        inode->i_ino, es_map->m_lblk, es_map->m_len,
473                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
474                        map->m_len, map->m_pblk, map->m_flags,
475                        retval, flags);
476         }
477 }
478 #endif /* ES_AGGRESSIVE_TEST */
479
480 /*
481  * The ext4_map_blocks() function tries to look up the requested blocks,
482  * and returns if the blocks are already mapped.
483  *
484  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
485  * and store the allocated blocks in the result buffer head and mark it
486  * mapped.
487  *
488  * If file type is extents based, it will call ext4_ext_map_blocks(),
489  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
490  * based files
491  *
492  * On success, it returns the number of blocks being mapped or allocated.  if
493  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
494  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
495  *
496  * It returns 0 if plain look up failed (blocks have not been allocated), in
497  * that case, @map is returned as unmapped but we still do fill map->m_len to
498  * indicate the length of a hole starting at map->m_lblk.
499  *
500  * It returns the error in case of allocation failure.
501  */
502 int ext4_map_blocks(handle_t *handle, struct inode *inode,
503                     struct ext4_map_blocks *map, int flags)
504 {
505         struct extent_status es;
506         int retval;
507         int ret = 0;
508 #ifdef ES_AGGRESSIVE_TEST
509         struct ext4_map_blocks orig_map;
510
511         memcpy(&orig_map, map, sizeof(*map));
512 #endif
513
514         map->m_flags = 0;
515         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
516                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
517                   (unsigned long) map->m_lblk);
518
519         /*
520          * ext4_map_blocks returns an int, and m_len is an unsigned int
521          */
522         if (unlikely(map->m_len > INT_MAX))
523                 map->m_len = INT_MAX;
524
525         /* We can handle the block number less than EXT_MAX_BLOCKS */
526         if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
527                 return -EFSCORRUPTED;
528
529         /* Lookup extent status tree firstly */
530         if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
531                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
532                         map->m_pblk = ext4_es_pblock(&es) +
533                                         map->m_lblk - es.es_lblk;
534                         map->m_flags |= ext4_es_is_written(&es) ?
535                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
536                         retval = es.es_len - (map->m_lblk - es.es_lblk);
537                         if (retval > map->m_len)
538                                 retval = map->m_len;
539                         map->m_len = retval;
540                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
541                         map->m_pblk = 0;
542                         retval = es.es_len - (map->m_lblk - es.es_lblk);
543                         if (retval > map->m_len)
544                                 retval = map->m_len;
545                         map->m_len = retval;
546                         retval = 0;
547                 } else {
548                         BUG();
549                 }
550 #ifdef ES_AGGRESSIVE_TEST
551                 ext4_map_blocks_es_recheck(handle, inode, map,
552                                            &orig_map, flags);
553 #endif
554                 goto found;
555         }
556
557         /*
558          * Try to see if we can get the block without requesting a new
559          * file system block.
560          */
561         down_read(&EXT4_I(inode)->i_data_sem);
562         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
563                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
564                                              EXT4_GET_BLOCKS_KEEP_SIZE);
565         } else {
566                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
567                                              EXT4_GET_BLOCKS_KEEP_SIZE);
568         }
569         if (retval > 0) {
570                 unsigned int status;
571
572                 if (unlikely(retval != map->m_len)) {
573                         ext4_warning(inode->i_sb,
574                                      "ES len assertion failed for inode "
575                                      "%lu: retval %d != map->m_len %d",
576                                      inode->i_ino, retval, map->m_len);
577                         WARN_ON(1);
578                 }
579
580                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
581                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
582                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
583                     !(status & EXTENT_STATUS_WRITTEN) &&
584                     ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
585                                        map->m_lblk + map->m_len - 1))
586                         status |= EXTENT_STATUS_DELAYED;
587                 ret = ext4_es_insert_extent(inode, map->m_lblk,
588                                             map->m_len, map->m_pblk, status);
589                 if (ret < 0)
590                         retval = ret;
591         }
592         up_read((&EXT4_I(inode)->i_data_sem));
593
594 found:
595         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
596                 ret = check_block_validity(inode, map);
597                 if (ret != 0)
598                         return ret;
599         }
600
601         /* If it is only a block(s) look up */
602         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
603                 return retval;
604
605         /*
606          * Returns if the blocks have already allocated
607          *
608          * Note that if blocks have been preallocated
609          * ext4_ext_get_block() returns the create = 0
610          * with buffer head unmapped.
611          */
612         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
613                 /*
614                  * If we need to convert extent to unwritten
615                  * we continue and do the actual work in
616                  * ext4_ext_map_blocks()
617                  */
618                 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
619                         return retval;
620
621         /*
622          * Here we clear m_flags because after allocating an new extent,
623          * it will be set again.
624          */
625         map->m_flags &= ~EXT4_MAP_FLAGS;
626
627         /*
628          * New blocks allocate and/or writing to unwritten extent
629          * will possibly result in updating i_data, so we take
630          * the write lock of i_data_sem, and call get_block()
631          * with create == 1 flag.
632          */
633         down_write(&EXT4_I(inode)->i_data_sem);
634
635         /*
636          * We need to check for EXT4 here because migrate
637          * could have changed the inode type in between
638          */
639         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
640                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
641         } else {
642                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
643
644                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
645                         /*
646                          * We allocated new blocks which will result in
647                          * i_data's format changing.  Force the migrate
648                          * to fail by clearing migrate flags
649                          */
650                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
651                 }
652
653                 /*
654                  * Update reserved blocks/metadata blocks after successful
655                  * block allocation which had been deferred till now. We don't
656                  * support fallocate for non extent files. So we can update
657                  * reserve space here.
658                  */
659                 if ((retval > 0) &&
660                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
661                         ext4_da_update_reserve_space(inode, retval, 1);
662         }
663
664         if (retval > 0) {
665                 unsigned int status;
666
667                 if (unlikely(retval != map->m_len)) {
668                         ext4_warning(inode->i_sb,
669                                      "ES len assertion failed for inode "
670                                      "%lu: retval %d != map->m_len %d",
671                                      inode->i_ino, retval, map->m_len);
672                         WARN_ON(1);
673                 }
674
675                 /*
676                  * We have to zeroout blocks before inserting them into extent
677                  * status tree. Otherwise someone could look them up there and
678                  * use them before they are really zeroed. We also have to
679                  * unmap metadata before zeroing as otherwise writeback can
680                  * overwrite zeros with stale data from block device.
681                  */
682                 if (flags & EXT4_GET_BLOCKS_ZERO &&
683                     map->m_flags & EXT4_MAP_MAPPED &&
684                     map->m_flags & EXT4_MAP_NEW) {
685                         ret = ext4_issue_zeroout(inode, map->m_lblk,
686                                                  map->m_pblk, map->m_len);
687                         if (ret) {
688                                 retval = ret;
689                                 goto out_sem;
690                         }
691                 }
692
693                 /*
694                  * If the extent has been zeroed out, we don't need to update
695                  * extent status tree.
696                  */
697                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
698                     ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
699                         if (ext4_es_is_written(&es))
700                                 goto out_sem;
701                 }
702                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
703                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
704                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
705                     !(status & EXTENT_STATUS_WRITTEN) &&
706                     ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
707                                        map->m_lblk + map->m_len - 1))
708                         status |= EXTENT_STATUS_DELAYED;
709                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
710                                             map->m_pblk, status);
711                 if (ret < 0) {
712                         retval = ret;
713                         goto out_sem;
714                 }
715         }
716
717 out_sem:
718         up_write((&EXT4_I(inode)->i_data_sem));
719         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
720                 ret = check_block_validity(inode, map);
721                 if (ret != 0)
722                         return ret;
723
724                 /*
725                  * Inodes with freshly allocated blocks where contents will be
726                  * visible after transaction commit must be on transaction's
727                  * ordered data list.
728                  */
729                 if (map->m_flags & EXT4_MAP_NEW &&
730                     !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
731                     !(flags & EXT4_GET_BLOCKS_ZERO) &&
732                     !ext4_is_quota_file(inode) &&
733                     ext4_should_order_data(inode)) {
734                         if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
735                                 ret = ext4_jbd2_inode_add_wait(handle, inode);
736                         else
737                                 ret = ext4_jbd2_inode_add_write(handle, inode);
738                         if (ret)
739                                 return ret;
740                 }
741         }
742         return retval;
743 }
744
745 /*
746  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
747  * we have to be careful as someone else may be manipulating b_state as well.
748  */
749 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
750 {
751         unsigned long old_state;
752         unsigned long new_state;
753
754         flags &= EXT4_MAP_FLAGS;
755
756         /* Dummy buffer_head? Set non-atomically. */
757         if (!bh->b_page) {
758                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
759                 return;
760         }
761         /*
762          * Someone else may be modifying b_state. Be careful! This is ugly but
763          * once we get rid of using bh as a container for mapping information
764          * to pass to / from get_block functions, this can go away.
765          */
766         do {
767                 old_state = READ_ONCE(bh->b_state);
768                 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
769         } while (unlikely(
770                  cmpxchg(&bh->b_state, old_state, new_state) != old_state));
771 }
772
773 static int _ext4_get_block(struct inode *inode, sector_t iblock,
774                            struct buffer_head *bh, int flags)
775 {
776         struct ext4_map_blocks map;
777         int ret = 0;
778
779         if (ext4_has_inline_data(inode))
780                 return -ERANGE;
781
782         map.m_lblk = iblock;
783         map.m_len = bh->b_size >> inode->i_blkbits;
784
785         ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
786                               flags);
787         if (ret > 0) {
788                 map_bh(bh, inode->i_sb, map.m_pblk);
789                 ext4_update_bh_state(bh, map.m_flags);
790                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
791                 ret = 0;
792         } else if (ret == 0) {
793                 /* hole case, need to fill in bh->b_size */
794                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
795         }
796         return ret;
797 }
798
799 int ext4_get_block(struct inode *inode, sector_t iblock,
800                    struct buffer_head *bh, int create)
801 {
802         return _ext4_get_block(inode, iblock, bh,
803                                create ? EXT4_GET_BLOCKS_CREATE : 0);
804 }
805
806 /*
807  * Get block function used when preparing for buffered write if we require
808  * creating an unwritten extent if blocks haven't been allocated.  The extent
809  * will be converted to written after the IO is complete.
810  */
811 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
812                              struct buffer_head *bh_result, int create)
813 {
814         ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
815                    inode->i_ino, create);
816         return _ext4_get_block(inode, iblock, bh_result,
817                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
818 }
819
820 /* Maximum number of blocks we map for direct IO at once. */
821 #define DIO_MAX_BLOCKS 4096
822
823 /*
824  * Get blocks function for the cases that need to start a transaction -
825  * generally difference cases of direct IO and DAX IO. It also handles retries
826  * in case of ENOSPC.
827  */
828 static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
829                                 struct buffer_head *bh_result, int flags)
830 {
831         int dio_credits;
832         handle_t *handle;
833         int retries = 0;
834         int ret;
835
836         /* Trim mapping request to maximum we can map at once for DIO */
837         if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
838                 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
839         dio_credits = ext4_chunk_trans_blocks(inode,
840                                       bh_result->b_size >> inode->i_blkbits);
841 retry:
842         handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
843         if (IS_ERR(handle))
844                 return PTR_ERR(handle);
845
846         ret = _ext4_get_block(inode, iblock, bh_result, flags);
847         ext4_journal_stop(handle);
848
849         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
850                 goto retry;
851         return ret;
852 }
853
854 /* Get block function for DIO reads and writes to inodes without extents */
855 int ext4_dio_get_block(struct inode *inode, sector_t iblock,
856                        struct buffer_head *bh, int create)
857 {
858         /* We don't expect handle for direct IO */
859         WARN_ON_ONCE(ext4_journal_current_handle());
860
861         if (!create)
862                 return _ext4_get_block(inode, iblock, bh, 0);
863         return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
864 }
865
866 /*
867  * Get block function for AIO DIO writes when we create unwritten extent if
868  * blocks are not allocated yet. The extent will be converted to written
869  * after IO is complete.
870  */
871 static int ext4_dio_get_block_unwritten_async(struct inode *inode,
872                 sector_t iblock, struct buffer_head *bh_result, int create)
873 {
874         int ret;
875
876         /* We don't expect handle for direct IO */
877         WARN_ON_ONCE(ext4_journal_current_handle());
878
879         ret = ext4_get_block_trans(inode, iblock, bh_result,
880                                    EXT4_GET_BLOCKS_IO_CREATE_EXT);
881
882         /*
883          * When doing DIO using unwritten extents, we need io_end to convert
884          * unwritten extents to written on IO completion. We allocate io_end
885          * once we spot unwritten extent and store it in b_private. Generic
886          * DIO code keeps b_private set and furthermore passes the value to
887          * our completion callback in 'private' argument.
888          */
889         if (!ret && buffer_unwritten(bh_result)) {
890                 if (!bh_result->b_private) {
891                         ext4_io_end_t *io_end;
892
893                         io_end = ext4_init_io_end(inode, GFP_KERNEL);
894                         if (!io_end)
895                                 return -ENOMEM;
896                         bh_result->b_private = io_end;
897                         ext4_set_io_unwritten_flag(inode, io_end);
898                 }
899                 set_buffer_defer_completion(bh_result);
900         }
901
902         return ret;
903 }
904
905 /*
906  * Get block function for non-AIO DIO writes when we create unwritten extent if
907  * blocks are not allocated yet. The extent will be converted to written
908  * after IO is complete by ext4_direct_IO_write().
909  */
910 static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
911                 sector_t iblock, struct buffer_head *bh_result, int create)
912 {
913         int ret;
914
915         /* We don't expect handle for direct IO */
916         WARN_ON_ONCE(ext4_journal_current_handle());
917
918         ret = ext4_get_block_trans(inode, iblock, bh_result,
919                                    EXT4_GET_BLOCKS_IO_CREATE_EXT);
920
921         /*
922          * Mark inode as having pending DIO writes to unwritten extents.
923          * ext4_direct_IO_write() checks this flag and converts extents to
924          * written.
925          */
926         if (!ret && buffer_unwritten(bh_result))
927                 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
928
929         return ret;
930 }
931
932 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
933                    struct buffer_head *bh_result, int create)
934 {
935         int ret;
936
937         ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
938                    inode->i_ino, create);
939         /* We don't expect handle for direct IO */
940         WARN_ON_ONCE(ext4_journal_current_handle());
941
942         ret = _ext4_get_block(inode, iblock, bh_result, 0);
943         /*
944          * Blocks should have been preallocated! ext4_file_write_iter() checks
945          * that.
946          */
947         WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
948
949         return ret;
950 }
951
952
953 /*
954  * `handle' can be NULL if create is zero
955  */
956 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
957                                 ext4_lblk_t block, int map_flags)
958 {
959         struct ext4_map_blocks map;
960         struct buffer_head *bh;
961         int create = map_flags & EXT4_GET_BLOCKS_CREATE;
962         int err;
963
964         J_ASSERT(handle != NULL || create == 0);
965
966         map.m_lblk = block;
967         map.m_len = 1;
968         err = ext4_map_blocks(handle, inode, &map, map_flags);
969
970         if (err == 0)
971                 return create ? ERR_PTR(-ENOSPC) : NULL;
972         if (err < 0)
973                 return ERR_PTR(err);
974
975         bh = sb_getblk(inode->i_sb, map.m_pblk);
976         if (unlikely(!bh))
977                 return ERR_PTR(-ENOMEM);
978         if (map.m_flags & EXT4_MAP_NEW) {
979                 J_ASSERT(create != 0);
980                 J_ASSERT(handle != NULL);
981
982                 /*
983                  * Now that we do not always journal data, we should
984                  * keep in mind whether this should always journal the
985                  * new buffer as metadata.  For now, regular file
986                  * writes use ext4_get_block instead, so it's not a
987                  * problem.
988                  */
989                 lock_buffer(bh);
990                 BUFFER_TRACE(bh, "call get_create_access");
991                 err = ext4_journal_get_create_access(handle, bh);
992                 if (unlikely(err)) {
993                         unlock_buffer(bh);
994                         goto errout;
995                 }
996                 if (!buffer_uptodate(bh)) {
997                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
998                         set_buffer_uptodate(bh);
999                 }
1000                 unlock_buffer(bh);
1001                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1002                 err = ext4_handle_dirty_metadata(handle, inode, bh);
1003                 if (unlikely(err))
1004                         goto errout;
1005         } else
1006                 BUFFER_TRACE(bh, "not a new buffer");
1007         return bh;
1008 errout:
1009         brelse(bh);
1010         return ERR_PTR(err);
1011 }
1012
1013 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1014                                ext4_lblk_t block, int map_flags)
1015 {
1016         struct buffer_head *bh;
1017
1018         bh = ext4_getblk(handle, inode, block, map_flags);
1019         if (IS_ERR(bh))
1020                 return bh;
1021         if (!bh || buffer_uptodate(bh))
1022                 return bh;
1023         ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
1024         wait_on_buffer(bh);
1025         if (buffer_uptodate(bh))
1026                 return bh;
1027         put_bh(bh);
1028         return ERR_PTR(-EIO);
1029 }
1030
1031 /* Read a contiguous batch of blocks. */
1032 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
1033                      bool wait, struct buffer_head **bhs)
1034 {
1035         int i, err;
1036
1037         for (i = 0; i < bh_count; i++) {
1038                 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
1039                 if (IS_ERR(bhs[i])) {
1040                         err = PTR_ERR(bhs[i]);
1041                         bh_count = i;
1042                         goto out_brelse;
1043                 }
1044         }
1045
1046         for (i = 0; i < bh_count; i++)
1047                 /* Note that NULL bhs[i] is valid because of holes. */
1048                 if (bhs[i] && !buffer_uptodate(bhs[i]))
1049                         ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1,
1050                                     &bhs[i]);
1051
1052         if (!wait)
1053                 return 0;
1054
1055         for (i = 0; i < bh_count; i++)
1056                 if (bhs[i])
1057                         wait_on_buffer(bhs[i]);
1058
1059         for (i = 0; i < bh_count; i++) {
1060                 if (bhs[i] && !buffer_uptodate(bhs[i])) {
1061                         err = -EIO;
1062                         goto out_brelse;
1063                 }
1064         }
1065         return 0;
1066
1067 out_brelse:
1068         for (i = 0; i < bh_count; i++) {
1069                 brelse(bhs[i]);
1070                 bhs[i] = NULL;
1071         }
1072         return err;
1073 }
1074
1075 int ext4_walk_page_buffers(handle_t *handle,
1076                            struct buffer_head *head,
1077                            unsigned from,
1078                            unsigned to,
1079                            int *partial,
1080                            int (*fn)(handle_t *handle,
1081                                      struct buffer_head *bh))
1082 {
1083         struct buffer_head *bh;
1084         unsigned block_start, block_end;
1085         unsigned blocksize = head->b_size;
1086         int err, ret = 0;
1087         struct buffer_head *next;
1088
1089         for (bh = head, block_start = 0;
1090              ret == 0 && (bh != head || !block_start);
1091              block_start = block_end, bh = next) {
1092                 next = bh->b_this_page;
1093                 block_end = block_start + blocksize;
1094                 if (block_end <= from || block_start >= to) {
1095                         if (partial && !buffer_uptodate(bh))
1096                                 *partial = 1;
1097                         continue;
1098                 }
1099                 err = (*fn)(handle, bh);
1100                 if (!ret)
1101                         ret = err;
1102         }
1103         return ret;
1104 }
1105
1106 /*
1107  * To preserve ordering, it is essential that the hole instantiation and
1108  * the data write be encapsulated in a single transaction.  We cannot
1109  * close off a transaction and start a new one between the ext4_get_block()
1110  * and the commit_write().  So doing the jbd2_journal_start at the start of
1111  * prepare_write() is the right place.
1112  *
1113  * Also, this function can nest inside ext4_writepage().  In that case, we
1114  * *know* that ext4_writepage() has generated enough buffer credits to do the
1115  * whole page.  So we won't block on the journal in that case, which is good,
1116  * because the caller may be PF_MEMALLOC.
1117  *
1118  * By accident, ext4 can be reentered when a transaction is open via
1119  * quota file writes.  If we were to commit the transaction while thus
1120  * reentered, there can be a deadlock - we would be holding a quota
1121  * lock, and the commit would never complete if another thread had a
1122  * transaction open and was blocking on the quota lock - a ranking
1123  * violation.
1124  *
1125  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1126  * will _not_ run commit under these circumstances because handle->h_ref
1127  * is elevated.  We'll still have enough credits for the tiny quotafile
1128  * write.
1129  */
1130 int do_journal_get_write_access(handle_t *handle,
1131                                 struct buffer_head *bh)
1132 {
1133         int dirty = buffer_dirty(bh);
1134         int ret;
1135
1136         if (!buffer_mapped(bh) || buffer_freed(bh))
1137                 return 0;
1138         /*
1139          * __block_write_begin() could have dirtied some buffers. Clean
1140          * the dirty bit as jbd2_journal_get_write_access() could complain
1141          * otherwise about fs integrity issues. Setting of the dirty bit
1142          * by __block_write_begin() isn't a real problem here as we clear
1143          * the bit before releasing a page lock and thus writeback cannot
1144          * ever write the buffer.
1145          */
1146         if (dirty)
1147                 clear_buffer_dirty(bh);
1148         BUFFER_TRACE(bh, "get write access");
1149         ret = ext4_journal_get_write_access(handle, bh);
1150         if (!ret && dirty)
1151                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1152         return ret;
1153 }
1154
1155 #ifdef CONFIG_FS_ENCRYPTION
1156 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1157                                   get_block_t *get_block)
1158 {
1159         unsigned from = pos & (PAGE_SIZE - 1);
1160         unsigned to = from + len;
1161         struct inode *inode = page->mapping->host;
1162         unsigned block_start, block_end;
1163         sector_t block;
1164         int err = 0;
1165         unsigned blocksize = inode->i_sb->s_blocksize;
1166         unsigned bbits;
1167         struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1168         bool decrypt = false;
1169
1170         BUG_ON(!PageLocked(page));
1171         BUG_ON(from > PAGE_SIZE);
1172         BUG_ON(to > PAGE_SIZE);
1173         BUG_ON(from > to);
1174
1175         if (!page_has_buffers(page))
1176                 create_empty_buffers(page, blocksize, 0);
1177         head = page_buffers(page);
1178         bbits = ilog2(blocksize);
1179         block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1180
1181         for (bh = head, block_start = 0; bh != head || !block_start;
1182             block++, block_start = block_end, bh = bh->b_this_page) {
1183                 block_end = block_start + blocksize;
1184                 if (block_end <= from || block_start >= to) {
1185                         if (PageUptodate(page)) {
1186                                 if (!buffer_uptodate(bh))
1187                                         set_buffer_uptodate(bh);
1188                         }
1189                         continue;
1190                 }
1191                 if (buffer_new(bh))
1192                         clear_buffer_new(bh);
1193                 if (!buffer_mapped(bh)) {
1194                         WARN_ON(bh->b_size != blocksize);
1195                         err = get_block(inode, block, bh, 1);
1196                         if (err)
1197                                 break;
1198                         if (buffer_new(bh)) {
1199                                 if (PageUptodate(page)) {
1200                                         clear_buffer_new(bh);
1201                                         set_buffer_uptodate(bh);
1202                                         mark_buffer_dirty(bh);
1203                                         continue;
1204                                 }
1205                                 if (block_end > to || block_start < from)
1206                                         zero_user_segments(page, to, block_end,
1207                                                            block_start, from);
1208                                 continue;
1209                         }
1210                 }
1211                 if (PageUptodate(page)) {
1212                         if (!buffer_uptodate(bh))
1213                                 set_buffer_uptodate(bh);
1214                         continue;
1215                 }
1216                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1217                     !buffer_unwritten(bh) &&
1218                     (block_start < from || block_end > to)) {
1219                         ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1220                         *wait_bh++ = bh;
1221                         decrypt = IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
1222                 }
1223         }
1224         /*
1225          * If we issued read requests, let them complete.
1226          */
1227         while (wait_bh > wait) {
1228                 wait_on_buffer(*--wait_bh);
1229                 if (!buffer_uptodate(*wait_bh))
1230                         err = -EIO;
1231         }
1232         if (unlikely(err))
1233                 page_zero_new_buffers(page, from, to);
1234         else if (decrypt)
1235                 err = fscrypt_decrypt_page(page->mapping->host, page,
1236                                 PAGE_SIZE, 0, page->index);
1237         return err;
1238 }
1239 #endif
1240
1241 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1242                             loff_t pos, unsigned len, unsigned flags,
1243                             struct page **pagep, void **fsdata)
1244 {
1245         struct inode *inode = mapping->host;
1246         int ret, needed_blocks;
1247         handle_t *handle;
1248         int retries = 0;
1249         struct page *page;
1250         pgoff_t index;
1251         unsigned from, to;
1252
1253         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1254                 return -EIO;
1255
1256         trace_ext4_write_begin(inode, pos, len, flags);
1257         /*
1258          * Reserve one block more for addition to orphan list in case
1259          * we allocate blocks but write fails for some reason
1260          */
1261         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1262         index = pos >> PAGE_SHIFT;
1263         from = pos & (PAGE_SIZE - 1);
1264         to = from + len;
1265
1266         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1267                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1268                                                     flags, pagep);
1269                 if (ret < 0)
1270                         return ret;
1271                 if (ret == 1)
1272                         return 0;
1273         }
1274
1275         /*
1276          * grab_cache_page_write_begin() can take a long time if the
1277          * system is thrashing due to memory pressure, or if the page
1278          * is being written back.  So grab it first before we start
1279          * the transaction handle.  This also allows us to allocate
1280          * the page (if needed) without using GFP_NOFS.
1281          */
1282 retry_grab:
1283         page = grab_cache_page_write_begin(mapping, index, flags);
1284         if (!page)
1285                 return -ENOMEM;
1286         unlock_page(page);
1287
1288 retry_journal:
1289         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1290         if (IS_ERR(handle)) {
1291                 put_page(page);
1292                 return PTR_ERR(handle);
1293         }
1294
1295         lock_page(page);
1296         if (page->mapping != mapping) {
1297                 /* The page got truncated from under us */
1298                 unlock_page(page);
1299                 put_page(page);
1300                 ext4_journal_stop(handle);
1301                 goto retry_grab;
1302         }
1303         /* In case writeback began while the page was unlocked */
1304         wait_for_stable_page(page);
1305
1306 #ifdef CONFIG_FS_ENCRYPTION
1307         if (ext4_should_dioread_nolock(inode))
1308                 ret = ext4_block_write_begin(page, pos, len,
1309                                              ext4_get_block_unwritten);
1310         else
1311                 ret = ext4_block_write_begin(page, pos, len,
1312                                              ext4_get_block);
1313 #else
1314         if (ext4_should_dioread_nolock(inode))
1315                 ret = __block_write_begin(page, pos, len,
1316                                           ext4_get_block_unwritten);
1317         else
1318                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1319 #endif
1320         if (!ret && ext4_should_journal_data(inode)) {
1321                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1322                                              from, to, NULL,
1323                                              do_journal_get_write_access);
1324         }
1325
1326         if (ret) {
1327                 unlock_page(page);
1328                 /*
1329                  * __block_write_begin may have instantiated a few blocks
1330                  * outside i_size.  Trim these off again. Don't need
1331                  * i_size_read because we hold i_mutex.
1332                  *
1333                  * Add inode to orphan list in case we crash before
1334                  * truncate finishes
1335                  */
1336                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1337                         ext4_orphan_add(handle, inode);
1338
1339                 ext4_journal_stop(handle);
1340                 if (pos + len > inode->i_size) {
1341                         ext4_truncate_failed_write(inode);
1342                         /*
1343                          * If truncate failed early the inode might
1344                          * still be on the orphan list; we need to
1345                          * make sure the inode is removed from the
1346                          * orphan list in that case.
1347                          */
1348                         if (inode->i_nlink)
1349                                 ext4_orphan_del(NULL, inode);
1350                 }
1351
1352                 if (ret == -ENOSPC &&
1353                     ext4_should_retry_alloc(inode->i_sb, &retries))
1354                         goto retry_journal;
1355                 put_page(page);
1356                 return ret;
1357         }
1358         *pagep = page;
1359         return ret;
1360 }
1361
1362 /* For write_end() in data=journal mode */
1363 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1364 {
1365         int ret;
1366         if (!buffer_mapped(bh) || buffer_freed(bh))
1367                 return 0;
1368         set_buffer_uptodate(bh);
1369         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1370         clear_buffer_meta(bh);
1371         clear_buffer_prio(bh);
1372         return ret;
1373 }
1374
1375 /*
1376  * We need to pick up the new inode size which generic_commit_write gave us
1377  * `file' can be NULL - eg, when called from page_symlink().
1378  *
1379  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1380  * buffers are managed internally.
1381  */
1382 static int ext4_write_end(struct file *file,
1383                           struct address_space *mapping,
1384                           loff_t pos, unsigned len, unsigned copied,
1385                           struct page *page, void *fsdata)
1386 {
1387         handle_t *handle = ext4_journal_current_handle();
1388         struct inode *inode = mapping->host;
1389         loff_t old_size = inode->i_size;
1390         int ret = 0, ret2;
1391         int i_size_changed = 0;
1392         int inline_data = ext4_has_inline_data(inode);
1393
1394         trace_ext4_write_end(inode, pos, len, copied);
1395         if (inline_data) {
1396                 ret = ext4_write_inline_data_end(inode, pos, len,
1397                                                  copied, page);
1398                 if (ret < 0) {
1399                         unlock_page(page);
1400                         put_page(page);
1401                         goto errout;
1402                 }
1403                 copied = ret;
1404         } else
1405                 copied = block_write_end(file, mapping, pos,
1406                                          len, copied, page, fsdata);
1407         /*
1408          * it's important to update i_size while still holding page lock:
1409          * page writeout could otherwise come in and zero beyond i_size.
1410          */
1411         i_size_changed = ext4_update_inode_size(inode, pos + copied);
1412         unlock_page(page);
1413         put_page(page);
1414
1415         if (old_size < pos)
1416                 pagecache_isize_extended(inode, old_size, pos);
1417         /*
1418          * Don't mark the inode dirty under page lock. First, it unnecessarily
1419          * makes the holding time of page lock longer. Second, it forces lock
1420          * ordering of page lock and transaction start for journaling
1421          * filesystems.
1422          */
1423         if (i_size_changed || inline_data)
1424                 ext4_mark_inode_dirty(handle, inode);
1425
1426         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1427                 /* if we have allocated more blocks and copied
1428                  * less. We will have blocks allocated outside
1429                  * inode->i_size. So truncate them
1430                  */
1431                 ext4_orphan_add(handle, inode);
1432 errout:
1433         ret2 = ext4_journal_stop(handle);
1434         if (!ret)
1435                 ret = ret2;
1436
1437         if (pos + len > inode->i_size) {
1438                 ext4_truncate_failed_write(inode);
1439                 /*
1440                  * If truncate failed early the inode might still be
1441                  * on the orphan list; we need to make sure the inode
1442                  * is removed from the orphan list in that case.
1443                  */
1444                 if (inode->i_nlink)
1445                         ext4_orphan_del(NULL, inode);
1446         }
1447
1448         return ret ? ret : copied;
1449 }
1450
1451 /*
1452  * This is a private version of page_zero_new_buffers() which doesn't
1453  * set the buffer to be dirty, since in data=journalled mode we need
1454  * to call ext4_handle_dirty_metadata() instead.
1455  */
1456 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1457                                             struct page *page,
1458                                             unsigned from, unsigned to)
1459 {
1460         unsigned int block_start = 0, block_end;
1461         struct buffer_head *head, *bh;
1462
1463         bh = head = page_buffers(page);
1464         do {
1465                 block_end = block_start + bh->b_size;
1466                 if (buffer_new(bh)) {
1467                         if (block_end > from && block_start < to) {
1468                                 if (!PageUptodate(page)) {
1469                                         unsigned start, size;
1470
1471                                         start = max(from, block_start);
1472                                         size = min(to, block_end) - start;
1473
1474                                         zero_user(page, start, size);
1475                                         write_end_fn(handle, bh);
1476                                 }
1477                                 clear_buffer_new(bh);
1478                         }
1479                 }
1480                 block_start = block_end;
1481                 bh = bh->b_this_page;
1482         } while (bh != head);
1483 }
1484
1485 static int ext4_journalled_write_end(struct file *file,
1486                                      struct address_space *mapping,
1487                                      loff_t pos, unsigned len, unsigned copied,
1488                                      struct page *page, void *fsdata)
1489 {
1490         handle_t *handle = ext4_journal_current_handle();
1491         struct inode *inode = mapping->host;
1492         loff_t old_size = inode->i_size;
1493         int ret = 0, ret2;
1494         int partial = 0;
1495         unsigned from, to;
1496         int size_changed = 0;
1497         int inline_data = ext4_has_inline_data(inode);
1498
1499         trace_ext4_journalled_write_end(inode, pos, len, copied);
1500         from = pos & (PAGE_SIZE - 1);
1501         to = from + len;
1502
1503         BUG_ON(!ext4_handle_valid(handle));
1504
1505         if (inline_data) {
1506                 ret = ext4_write_inline_data_end(inode, pos, len,
1507                                                  copied, page);
1508                 if (ret < 0) {
1509                         unlock_page(page);
1510                         put_page(page);
1511                         goto errout;
1512                 }
1513                 copied = ret;
1514         } else if (unlikely(copied < len) && !PageUptodate(page)) {
1515                 copied = 0;
1516                 ext4_journalled_zero_new_buffers(handle, page, from, to);
1517         } else {
1518                 if (unlikely(copied < len))
1519                         ext4_journalled_zero_new_buffers(handle, page,
1520                                                          from + copied, to);
1521                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1522                                              from + copied, &partial,
1523                                              write_end_fn);
1524                 if (!partial)
1525                         SetPageUptodate(page);
1526         }
1527         size_changed = ext4_update_inode_size(inode, pos + copied);
1528         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1529         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1530         unlock_page(page);
1531         put_page(page);
1532
1533         if (old_size < pos)
1534                 pagecache_isize_extended(inode, old_size, pos);
1535
1536         if (size_changed || inline_data) {
1537                 ret2 = ext4_mark_inode_dirty(handle, inode);
1538                 if (!ret)
1539                         ret = ret2;
1540         }
1541
1542         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1543                 /* if we have allocated more blocks and copied
1544                  * less. We will have blocks allocated outside
1545                  * inode->i_size. So truncate them
1546                  */
1547                 ext4_orphan_add(handle, inode);
1548
1549 errout:
1550         ret2 = ext4_journal_stop(handle);
1551         if (!ret)
1552                 ret = ret2;
1553         if (pos + len > inode->i_size) {
1554                 ext4_truncate_failed_write(inode);
1555                 /*
1556                  * If truncate failed early the inode might still be
1557                  * on the orphan list; we need to make sure the inode
1558                  * is removed from the orphan list in that case.
1559                  */
1560                 if (inode->i_nlink)
1561                         ext4_orphan_del(NULL, inode);
1562         }
1563
1564         return ret ? ret : copied;
1565 }
1566
1567 /*
1568  * Reserve space for a single cluster
1569  */
1570 static int ext4_da_reserve_space(struct inode *inode)
1571 {
1572         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1573         struct ext4_inode_info *ei = EXT4_I(inode);
1574         int ret;
1575
1576         /*
1577          * We will charge metadata quota at writeout time; this saves
1578          * us from metadata over-estimation, though we may go over by
1579          * a small amount in the end.  Here we just reserve for data.
1580          */
1581         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1582         if (ret)
1583                 return ret;
1584
1585         spin_lock(&ei->i_block_reservation_lock);
1586         if (ext4_claim_free_clusters(sbi, 1, 0)) {
1587                 spin_unlock(&ei->i_block_reservation_lock);
1588                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1589                 return -ENOSPC;
1590         }
1591         ei->i_reserved_data_blocks++;
1592         trace_ext4_da_reserve_space(inode);
1593         spin_unlock(&ei->i_block_reservation_lock);
1594
1595         return 0;       /* success */
1596 }
1597
1598 void ext4_da_release_space(struct inode *inode, int to_free)
1599 {
1600         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1601         struct ext4_inode_info *ei = EXT4_I(inode);
1602
1603         if (!to_free)
1604                 return;         /* Nothing to release, exit */
1605
1606         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1607
1608         trace_ext4_da_release_space(inode, to_free);
1609         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1610                 /*
1611                  * if there aren't enough reserved blocks, then the
1612                  * counter is messed up somewhere.  Since this
1613                  * function is called from invalidate page, it's
1614                  * harmless to return without any action.
1615                  */
1616                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1617                          "ino %lu, to_free %d with only %d reserved "
1618                          "data blocks", inode->i_ino, to_free,
1619                          ei->i_reserved_data_blocks);
1620                 WARN_ON(1);
1621                 to_free = ei->i_reserved_data_blocks;
1622         }
1623         ei->i_reserved_data_blocks -= to_free;
1624
1625         /* update fs dirty data blocks counter */
1626         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1627
1628         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1629
1630         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1631 }
1632
1633 static void ext4_da_page_release_reservation(struct page *page,
1634                                              unsigned int offset,
1635                                              unsigned int length)
1636 {
1637         int contiguous_blks = 0;
1638         struct buffer_head *head, *bh;
1639         unsigned int curr_off = 0;
1640         struct inode *inode = page->mapping->host;
1641         unsigned int stop = offset + length;
1642         ext4_fsblk_t lblk;
1643
1644         BUG_ON(stop > PAGE_SIZE || stop < length);
1645
1646         head = page_buffers(page);
1647         bh = head;
1648         do {
1649                 unsigned int next_off = curr_off + bh->b_size;
1650
1651                 if (next_off > stop)
1652                         break;
1653
1654                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1655                         contiguous_blks++;
1656                         clear_buffer_delay(bh);
1657                 } else if (contiguous_blks) {
1658                         lblk = page->index <<
1659                                (PAGE_SHIFT - inode->i_blkbits);
1660                         lblk += (curr_off >> inode->i_blkbits) -
1661                                 contiguous_blks;
1662                         ext4_es_remove_blks(inode, lblk, contiguous_blks);
1663                         contiguous_blks = 0;
1664                 }
1665                 curr_off = next_off;
1666         } while ((bh = bh->b_this_page) != head);
1667
1668         if (contiguous_blks) {
1669                 lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
1670                 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1671                 ext4_es_remove_blks(inode, lblk, contiguous_blks);
1672         }
1673
1674 }
1675
1676 /*
1677  * Delayed allocation stuff
1678  */
1679
1680 struct mpage_da_data {
1681         struct inode *inode;
1682         struct writeback_control *wbc;
1683
1684         pgoff_t first_page;     /* The first page to write */
1685         pgoff_t next_page;      /* Current page to examine */
1686         pgoff_t last_page;      /* Last page to examine */
1687         /*
1688          * Extent to map - this can be after first_page because that can be
1689          * fully mapped. We somewhat abuse m_flags to store whether the extent
1690          * is delalloc or unwritten.
1691          */
1692         struct ext4_map_blocks map;
1693         struct ext4_io_submit io_submit;        /* IO submission data */
1694         unsigned int do_map:1;
1695 };
1696
1697 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1698                                        bool invalidate)
1699 {
1700         int nr_pages, i;
1701         pgoff_t index, end;
1702         struct pagevec pvec;
1703         struct inode *inode = mpd->inode;
1704         struct address_space *mapping = inode->i_mapping;
1705
1706         /* This is necessary when next_page == 0. */
1707         if (mpd->first_page >= mpd->next_page)
1708                 return;
1709
1710         index = mpd->first_page;
1711         end   = mpd->next_page - 1;
1712         if (invalidate) {
1713                 ext4_lblk_t start, last;
1714                 start = index << (PAGE_SHIFT - inode->i_blkbits);
1715                 last = end << (PAGE_SHIFT - inode->i_blkbits);
1716                 ext4_es_remove_extent(inode, start, last - start + 1);
1717         }
1718
1719         pagevec_init(&pvec);
1720         while (index <= end) {
1721                 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1722                 if (nr_pages == 0)
1723                         break;
1724                 for (i = 0; i < nr_pages; i++) {
1725                         struct page *page = pvec.pages[i];
1726
1727                         BUG_ON(!PageLocked(page));
1728                         BUG_ON(PageWriteback(page));
1729                         if (invalidate) {
1730                                 if (page_mapped(page))
1731                                         clear_page_dirty_for_io(page);
1732                                 block_invalidatepage(page, 0, PAGE_SIZE);
1733                                 ClearPageUptodate(page);
1734                         }
1735                         unlock_page(page);
1736                 }
1737                 pagevec_release(&pvec);
1738         }
1739 }
1740
1741 static void ext4_print_free_blocks(struct inode *inode)
1742 {
1743         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1744         struct super_block *sb = inode->i_sb;
1745         struct ext4_inode_info *ei = EXT4_I(inode);
1746
1747         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1748                EXT4_C2B(EXT4_SB(inode->i_sb),
1749                         ext4_count_free_clusters(sb)));
1750         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1751         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1752                (long long) EXT4_C2B(EXT4_SB(sb),
1753                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1754         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1755                (long long) EXT4_C2B(EXT4_SB(sb),
1756                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1757         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1758         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1759                  ei->i_reserved_data_blocks);
1760         return;
1761 }
1762
1763 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1764 {
1765         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1766 }
1767
1768 /*
1769  * ext4_insert_delayed_block - adds a delayed block to the extents status
1770  *                             tree, incrementing the reserved cluster/block
1771  *                             count or making a pending reservation
1772  *                             where needed
1773  *
1774  * @inode - file containing the newly added block
1775  * @lblk - logical block to be added
1776  *
1777  * Returns 0 on success, negative error code on failure.
1778  */
1779 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1780 {
1781         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1782         int ret;
1783         bool allocated = false;
1784
1785         /*
1786          * If the cluster containing lblk is shared with a delayed,
1787          * written, or unwritten extent in a bigalloc file system, it's
1788          * already been accounted for and does not need to be reserved.
1789          * A pending reservation must be made for the cluster if it's
1790          * shared with a written or unwritten extent and doesn't already
1791          * have one.  Written and unwritten extents can be purged from the
1792          * extents status tree if the system is under memory pressure, so
1793          * it's necessary to examine the extent tree if a search of the
1794          * extents status tree doesn't get a match.
1795          */
1796         if (sbi->s_cluster_ratio == 1) {
1797                 ret = ext4_da_reserve_space(inode);
1798                 if (ret != 0)   /* ENOSPC */
1799                         goto errout;
1800         } else {   /* bigalloc */
1801                 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1802                         if (!ext4_es_scan_clu(inode,
1803                                               &ext4_es_is_mapped, lblk)) {
1804                                 ret = ext4_clu_mapped(inode,
1805                                                       EXT4_B2C(sbi, lblk));
1806                                 if (ret < 0)
1807                                         goto errout;
1808                                 if (ret == 0) {
1809                                         ret = ext4_da_reserve_space(inode);
1810                                         if (ret != 0)   /* ENOSPC */
1811                                                 goto errout;
1812                                 } else {
1813                                         allocated = true;
1814                                 }
1815                         } else {
1816                                 allocated = true;
1817                         }
1818                 }
1819         }
1820
1821         ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1822
1823 errout:
1824         return ret;
1825 }
1826
1827 /*
1828  * This function is grabs code from the very beginning of
1829  * ext4_map_blocks, but assumes that the caller is from delayed write
1830  * time. This function looks up the requested blocks and sets the
1831  * buffer delay bit under the protection of i_data_sem.
1832  */
1833 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1834                               struct ext4_map_blocks *map,
1835                               struct buffer_head *bh)
1836 {
1837         struct extent_status es;
1838         int retval;
1839         sector_t invalid_block = ~((sector_t) 0xffff);
1840 #ifdef ES_AGGRESSIVE_TEST
1841         struct ext4_map_blocks orig_map;
1842
1843         memcpy(&orig_map, map, sizeof(*map));
1844 #endif
1845
1846         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1847                 invalid_block = ~0;
1848
1849         map->m_flags = 0;
1850         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1851                   "logical block %lu\n", inode->i_ino, map->m_len,
1852                   (unsigned long) map->m_lblk);
1853
1854         /* Lookup extent status tree firstly */
1855         if (ext4_es_lookup_extent(inode, iblock, &es)) {
1856                 if (ext4_es_is_hole(&es)) {
1857                         retval = 0;
1858                         down_read(&EXT4_I(inode)->i_data_sem);
1859                         goto add_delayed;
1860                 }
1861
1862                 /*
1863                  * Delayed extent could be allocated by fallocate.
1864                  * So we need to check it.
1865                  */
1866                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1867                         map_bh(bh, inode->i_sb, invalid_block);
1868                         set_buffer_new(bh);
1869                         set_buffer_delay(bh);
1870                         return 0;
1871                 }
1872
1873                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1874                 retval = es.es_len - (iblock - es.es_lblk);
1875                 if (retval > map->m_len)
1876                         retval = map->m_len;
1877                 map->m_len = retval;
1878                 if (ext4_es_is_written(&es))
1879                         map->m_flags |= EXT4_MAP_MAPPED;
1880                 else if (ext4_es_is_unwritten(&es))
1881                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1882                 else
1883                         BUG();
1884
1885 #ifdef ES_AGGRESSIVE_TEST
1886                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1887 #endif
1888                 return retval;
1889         }
1890
1891         /*
1892          * Try to see if we can get the block without requesting a new
1893          * file system block.
1894          */
1895         down_read(&EXT4_I(inode)->i_data_sem);
1896         if (ext4_has_inline_data(inode))
1897                 retval = 0;
1898         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1899                 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1900         else
1901                 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1902
1903 add_delayed:
1904         if (retval == 0) {
1905                 int ret;
1906
1907                 /*
1908                  * XXX: __block_prepare_write() unmaps passed block,
1909                  * is it OK?
1910                  */
1911
1912                 ret = ext4_insert_delayed_block(inode, map->m_lblk);
1913                 if (ret != 0) {
1914                         retval = ret;
1915                         goto out_unlock;
1916                 }
1917
1918                 map_bh(bh, inode->i_sb, invalid_block);
1919                 set_buffer_new(bh);
1920                 set_buffer_delay(bh);
1921         } else if (retval > 0) {
1922                 int ret;
1923                 unsigned int status;
1924
1925                 if (unlikely(retval != map->m_len)) {
1926                         ext4_warning(inode->i_sb,
1927                                      "ES len assertion failed for inode "
1928                                      "%lu: retval %d != map->m_len %d",
1929                                      inode->i_ino, retval, map->m_len);
1930                         WARN_ON(1);
1931                 }
1932
1933                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1934                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1935                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1936                                             map->m_pblk, status);
1937                 if (ret != 0)
1938                         retval = ret;
1939         }
1940
1941 out_unlock:
1942         up_read((&EXT4_I(inode)->i_data_sem));
1943
1944         return retval;
1945 }
1946
1947 /*
1948  * This is a special get_block_t callback which is used by
1949  * ext4_da_write_begin().  It will either return mapped block or
1950  * reserve space for a single block.
1951  *
1952  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1953  * We also have b_blocknr = -1 and b_bdev initialized properly
1954  *
1955  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1956  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1957  * initialized properly.
1958  */
1959 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1960                            struct buffer_head *bh, int create)
1961 {
1962         struct ext4_map_blocks map;
1963         int ret = 0;
1964
1965         BUG_ON(create == 0);
1966         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1967
1968         map.m_lblk = iblock;
1969         map.m_len = 1;
1970
1971         /*
1972          * first, we need to know whether the block is allocated already
1973          * preallocated blocks are unmapped but should treated
1974          * the same as allocated blocks.
1975          */
1976         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1977         if (ret <= 0)
1978                 return ret;
1979
1980         map_bh(bh, inode->i_sb, map.m_pblk);
1981         ext4_update_bh_state(bh, map.m_flags);
1982
1983         if (buffer_unwritten(bh)) {
1984                 /* A delayed write to unwritten bh should be marked
1985                  * new and mapped.  Mapped ensures that we don't do
1986                  * get_block multiple times when we write to the same
1987                  * offset and new ensures that we do proper zero out
1988                  * for partial write.
1989                  */
1990                 set_buffer_new(bh);
1991                 set_buffer_mapped(bh);
1992         }
1993         return 0;
1994 }
1995
1996 static int bget_one(handle_t *handle, struct buffer_head *bh)
1997 {
1998         get_bh(bh);
1999         return 0;
2000 }
2001
2002 static int bput_one(handle_t *handle, struct buffer_head *bh)
2003 {
2004         put_bh(bh);
2005         return 0;
2006 }
2007
2008 static int __ext4_journalled_writepage(struct page *page,
2009                                        unsigned int len)
2010 {
2011         struct address_space *mapping = page->mapping;
2012         struct inode *inode = mapping->host;
2013         struct buffer_head *page_bufs = NULL;
2014         handle_t *handle = NULL;
2015         int ret = 0, err = 0;
2016         int inline_data = ext4_has_inline_data(inode);
2017         struct buffer_head *inode_bh = NULL;
2018
2019         ClearPageChecked(page);
2020
2021         if (inline_data) {
2022                 BUG_ON(page->index != 0);
2023                 BUG_ON(len > ext4_get_max_inline_size(inode));
2024                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
2025                 if (inode_bh == NULL)
2026                         goto out;
2027         } else {
2028                 page_bufs = page_buffers(page);
2029                 if (!page_bufs) {
2030                         BUG();
2031                         goto out;
2032                 }
2033                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2034                                        NULL, bget_one);
2035         }
2036         /*
2037          * We need to release the page lock before we start the
2038          * journal, so grab a reference so the page won't disappear
2039          * out from under us.
2040          */
2041         get_page(page);
2042         unlock_page(page);
2043
2044         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2045                                     ext4_writepage_trans_blocks(inode));
2046         if (IS_ERR(handle)) {
2047                 ret = PTR_ERR(handle);
2048                 put_page(page);
2049                 goto out_no_pagelock;
2050         }
2051         BUG_ON(!ext4_handle_valid(handle));
2052
2053         lock_page(page);
2054         put_page(page);
2055         if (page->mapping != mapping) {
2056                 /* The page got truncated from under us */
2057                 ext4_journal_stop(handle);
2058                 ret = 0;
2059                 goto out;
2060         }
2061
2062         if (inline_data) {
2063                 ret = ext4_mark_inode_dirty(handle, inode);
2064         } else {
2065                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2066                                              do_journal_get_write_access);
2067
2068                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2069                                              write_end_fn);
2070         }
2071         if (ret == 0)
2072                 ret = err;
2073         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2074         err = ext4_journal_stop(handle);
2075         if (!ret)
2076                 ret = err;
2077
2078         if (!ext4_has_inline_data(inode))
2079                 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
2080                                        NULL, bput_one);
2081         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2082 out:
2083         unlock_page(page);
2084 out_no_pagelock:
2085         brelse(inode_bh);
2086         return ret;
2087 }
2088
2089 /*
2090  * Note that we don't need to start a transaction unless we're journaling data
2091  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2092  * need to file the inode to the transaction's list in ordered mode because if
2093  * we are writing back data added by write(), the inode is already there and if
2094  * we are writing back data modified via mmap(), no one guarantees in which
2095  * transaction the data will hit the disk. In case we are journaling data, we
2096  * cannot start transaction directly because transaction start ranks above page
2097  * lock so we have to do some magic.
2098  *
2099  * This function can get called via...
2100  *   - ext4_writepages after taking page lock (have journal handle)
2101  *   - journal_submit_inode_data_buffers (no journal handle)
2102  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2103  *   - grab_page_cache when doing write_begin (have journal handle)
2104  *
2105  * We don't do any block allocation in this function. If we have page with
2106  * multiple blocks we need to write those buffer_heads that are mapped. This
2107  * is important for mmaped based write. So if we do with blocksize 1K
2108  * truncate(f, 1024);
2109  * a = mmap(f, 0, 4096);
2110  * a[0] = 'a';
2111  * truncate(f, 4096);
2112  * we have in the page first buffer_head mapped via page_mkwrite call back
2113  * but other buffer_heads would be unmapped but dirty (dirty done via the
2114  * do_wp_page). So writepage should write the first block. If we modify
2115  * the mmap area beyond 1024 we will again get a page_fault and the
2116  * page_mkwrite callback will do the block allocation and mark the
2117  * buffer_heads mapped.
2118  *
2119  * We redirty the page if we have any buffer_heads that is either delay or
2120  * unwritten in the page.
2121  *
2122  * We can get recursively called as show below.
2123  *
2124  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2125  *              ext4_writepage()
2126  *
2127  * But since we don't do any block allocation we should not deadlock.
2128  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2129  */
2130 static int ext4_writepage(struct page *page,
2131                           struct writeback_control *wbc)
2132 {
2133         int ret = 0;
2134         loff_t size;
2135         unsigned int len;
2136         struct buffer_head *page_bufs = NULL;
2137         struct inode *inode = page->mapping->host;
2138         struct ext4_io_submit io_submit;
2139         bool keep_towrite = false;
2140
2141         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2142                 ext4_invalidatepage(page, 0, PAGE_SIZE);
2143                 unlock_page(page);
2144                 return -EIO;
2145         }
2146
2147         trace_ext4_writepage(page);
2148         size = i_size_read(inode);
2149         if (page->index == size >> PAGE_SHIFT)
2150                 len = size & ~PAGE_MASK;
2151         else
2152                 len = PAGE_SIZE;
2153
2154         page_bufs = page_buffers(page);
2155         /*
2156          * We cannot do block allocation or other extent handling in this
2157          * function. If there are buffers needing that, we have to redirty
2158          * the page. But we may reach here when we do a journal commit via
2159          * journal_submit_inode_data_buffers() and in that case we must write
2160          * allocated buffers to achieve data=ordered mode guarantees.
2161          *
2162          * Also, if there is only one buffer per page (the fs block
2163          * size == the page size), if one buffer needs block
2164          * allocation or needs to modify the extent tree to clear the
2165          * unwritten flag, we know that the page can't be written at
2166          * all, so we might as well refuse the write immediately.
2167          * Unfortunately if the block size != page size, we can't as
2168          * easily detect this case using ext4_walk_page_buffers(), but
2169          * for the extremely common case, this is an optimization that
2170          * skips a useless round trip through ext4_bio_write_page().
2171          */
2172         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2173                                    ext4_bh_delay_or_unwritten)) {
2174                 redirty_page_for_writepage(wbc, page);
2175                 if ((current->flags & PF_MEMALLOC) ||
2176                     (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2177                         /*
2178                          * For memory cleaning there's no point in writing only
2179                          * some buffers. So just bail out. Warn if we came here
2180                          * from direct reclaim.
2181                          */
2182                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2183                                                         == PF_MEMALLOC);
2184                         unlock_page(page);
2185                         return 0;
2186                 }
2187                 keep_towrite = true;
2188         }
2189
2190         if (PageChecked(page) && ext4_should_journal_data(inode))
2191                 /*
2192                  * It's mmapped pagecache.  Add buffers and journal it.  There
2193                  * doesn't seem much point in redirtying the page here.
2194                  */
2195                 return __ext4_journalled_writepage(page, len);
2196
2197         ext4_io_submit_init(&io_submit, wbc);
2198         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2199         if (!io_submit.io_end) {
2200                 redirty_page_for_writepage(wbc, page);
2201                 unlock_page(page);
2202                 return -ENOMEM;
2203         }
2204         ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2205         ext4_io_submit(&io_submit);
2206         /* Drop io_end reference we got from init */
2207         ext4_put_io_end_defer(io_submit.io_end);
2208         return ret;
2209 }
2210
2211 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2212 {
2213         int len;
2214         loff_t size;
2215         int err;
2216
2217         BUG_ON(page->index != mpd->first_page);
2218         clear_page_dirty_for_io(page);
2219         /*
2220          * We have to be very careful here!  Nothing protects writeback path
2221          * against i_size changes and the page can be writeably mapped into
2222          * page tables. So an application can be growing i_size and writing
2223          * data through mmap while writeback runs. clear_page_dirty_for_io()
2224          * write-protects our page in page tables and the page cannot get
2225          * written to again until we release page lock. So only after
2226          * clear_page_dirty_for_io() we are safe to sample i_size for
2227          * ext4_bio_write_page() to zero-out tail of the written page. We rely
2228          * on the barrier provided by TestClearPageDirty in
2229          * clear_page_dirty_for_io() to make sure i_size is really sampled only
2230          * after page tables are updated.
2231          */
2232         size = i_size_read(mpd->inode);
2233         if (page->index == size >> PAGE_SHIFT)
2234                 len = size & ~PAGE_MASK;
2235         else
2236                 len = PAGE_SIZE;
2237         err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2238         if (!err)
2239                 mpd->wbc->nr_to_write--;
2240         mpd->first_page++;
2241
2242         return err;
2243 }
2244
2245 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2246
2247 /*
2248  * mballoc gives us at most this number of blocks...
2249  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2250  * The rest of mballoc seems to handle chunks up to full group size.
2251  */
2252 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2253
2254 /*
2255  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2256  *
2257  * @mpd - extent of blocks
2258  * @lblk - logical number of the block in the file
2259  * @bh - buffer head we want to add to the extent
2260  *
2261  * The function is used to collect contig. blocks in the same state. If the
2262  * buffer doesn't require mapping for writeback and we haven't started the
2263  * extent of buffers to map yet, the function returns 'true' immediately - the
2264  * caller can write the buffer right away. Otherwise the function returns true
2265  * if the block has been added to the extent, false if the block couldn't be
2266  * added.
2267  */
2268 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2269                                    struct buffer_head *bh)
2270 {
2271         struct ext4_map_blocks *map = &mpd->map;
2272
2273         /* Buffer that doesn't need mapping for writeback? */
2274         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2275             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2276                 /* So far no extent to map => we write the buffer right away */
2277                 if (map->m_len == 0)
2278                         return true;
2279                 return false;
2280         }
2281
2282         /* First block in the extent? */
2283         if (map->m_len == 0) {
2284                 /* We cannot map unless handle is started... */
2285                 if (!mpd->do_map)
2286                         return false;
2287                 map->m_lblk = lblk;
2288                 map->m_len = 1;
2289                 map->m_flags = bh->b_state & BH_FLAGS;
2290                 return true;
2291         }
2292
2293         /* Don't go larger than mballoc is willing to allocate */
2294         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2295                 return false;
2296
2297         /* Can we merge the block to our big extent? */
2298         if (lblk == map->m_lblk + map->m_len &&
2299             (bh->b_state & BH_FLAGS) == map->m_flags) {
2300                 map->m_len++;
2301                 return true;
2302         }
2303         return false;
2304 }
2305
2306 /*
2307  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2308  *
2309  * @mpd - extent of blocks for mapping
2310  * @head - the first buffer in the page
2311  * @bh - buffer we should start processing from
2312  * @lblk - logical number of the block in the file corresponding to @bh
2313  *
2314  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2315  * the page for IO if all buffers in this page were mapped and there's no
2316  * accumulated extent of buffers to map or add buffers in the page to the
2317  * extent of buffers to map. The function returns 1 if the caller can continue
2318  * by processing the next page, 0 if it should stop adding buffers to the
2319  * extent to map because we cannot extend it anymore. It can also return value
2320  * < 0 in case of error during IO submission.
2321  */
2322 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2323                                    struct buffer_head *head,
2324                                    struct buffer_head *bh,
2325                                    ext4_lblk_t lblk)
2326 {
2327         struct inode *inode = mpd->inode;
2328         int err;
2329         ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2330                                                         >> inode->i_blkbits;
2331
2332         do {
2333                 BUG_ON(buffer_locked(bh));
2334
2335                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2336                         /* Found extent to map? */
2337                         if (mpd->map.m_len)
2338                                 return 0;
2339                         /* Buffer needs mapping and handle is not started? */
2340                         if (!mpd->do_map)
2341                                 return 0;
2342                         /* Everything mapped so far and we hit EOF */
2343                         break;
2344                 }
2345         } while (lblk++, (bh = bh->b_this_page) != head);
2346         /* So far everything mapped? Submit the page for IO. */
2347         if (mpd->map.m_len == 0) {
2348                 err = mpage_submit_page(mpd, head->b_page);
2349                 if (err < 0)
2350                         return err;
2351         }
2352         return lblk < blocks;
2353 }
2354
2355 /*
2356  * mpage_map_buffers - update buffers corresponding to changed extent and
2357  *                     submit fully mapped pages for IO
2358  *
2359  * @mpd - description of extent to map, on return next extent to map
2360  *
2361  * Scan buffers corresponding to changed extent (we expect corresponding pages
2362  * to be already locked) and update buffer state according to new extent state.
2363  * We map delalloc buffers to their physical location, clear unwritten bits,
2364  * and mark buffers as uninit when we perform writes to unwritten extents
2365  * and do extent conversion after IO is finished. If the last page is not fully
2366  * mapped, we update @map to the next extent in the last page that needs
2367  * mapping. Otherwise we submit the page for IO.
2368  */
2369 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2370 {
2371         struct pagevec pvec;
2372         int nr_pages, i;
2373         struct inode *inode = mpd->inode;
2374         struct buffer_head *head, *bh;
2375         int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2376         pgoff_t start, end;
2377         ext4_lblk_t lblk;
2378         sector_t pblock;
2379         int err;
2380
2381         start = mpd->map.m_lblk >> bpp_bits;
2382         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2383         lblk = start << bpp_bits;
2384         pblock = mpd->map.m_pblk;
2385
2386         pagevec_init(&pvec);
2387         while (start <= end) {
2388                 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2389                                                 &start, end);
2390                 if (nr_pages == 0)
2391                         break;
2392                 for (i = 0; i < nr_pages; i++) {
2393                         struct page *page = pvec.pages[i];
2394
2395                         bh = head = page_buffers(page);
2396                         do {
2397                                 if (lblk < mpd->map.m_lblk)
2398                                         continue;
2399                                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2400                                         /*
2401                                          * Buffer after end of mapped extent.
2402                                          * Find next buffer in the page to map.
2403                                          */
2404                                         mpd->map.m_len = 0;
2405                                         mpd->map.m_flags = 0;
2406                                         /*
2407                                          * FIXME: If dioread_nolock supports
2408                                          * blocksize < pagesize, we need to make
2409                                          * sure we add size mapped so far to
2410                                          * io_end->size as the following call
2411                                          * can submit the page for IO.
2412                                          */
2413                                         err = mpage_process_page_bufs(mpd, head,
2414                                                                       bh, lblk);
2415                                         pagevec_release(&pvec);
2416                                         if (err > 0)
2417                                                 err = 0;
2418                                         return err;
2419                                 }
2420                                 if (buffer_delay(bh)) {
2421                                         clear_buffer_delay(bh);
2422                                         bh->b_blocknr = pblock++;
2423                                 }
2424                                 clear_buffer_unwritten(bh);
2425                         } while (lblk++, (bh = bh->b_this_page) != head);
2426
2427                         /*
2428                          * FIXME: This is going to break if dioread_nolock
2429                          * supports blocksize < pagesize as we will try to
2430                          * convert potentially unmapped parts of inode.
2431                          */
2432                         mpd->io_submit.io_end->size += PAGE_SIZE;
2433                         /* Page fully mapped - let IO run! */
2434                         err = mpage_submit_page(mpd, page);
2435                         if (err < 0) {
2436                                 pagevec_release(&pvec);
2437                                 return err;
2438                         }
2439                 }
2440                 pagevec_release(&pvec);
2441         }
2442         /* Extent fully mapped and matches with page boundary. We are done. */
2443         mpd->map.m_len = 0;
2444         mpd->map.m_flags = 0;
2445         return 0;
2446 }
2447
2448 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2449 {
2450         struct inode *inode = mpd->inode;
2451         struct ext4_map_blocks *map = &mpd->map;
2452         int get_blocks_flags;
2453         int err, dioread_nolock;
2454
2455         trace_ext4_da_write_pages_extent(inode, map);
2456         /*
2457          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2458          * to convert an unwritten extent to be initialized (in the case
2459          * where we have written into one or more preallocated blocks).  It is
2460          * possible that we're going to need more metadata blocks than
2461          * previously reserved. However we must not fail because we're in
2462          * writeback and there is nothing we can do about it so it might result
2463          * in data loss.  So use reserved blocks to allocate metadata if
2464          * possible.
2465          *
2466          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2467          * the blocks in question are delalloc blocks.  This indicates
2468          * that the blocks and quotas has already been checked when
2469          * the data was copied into the page cache.
2470          */
2471         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2472                            EXT4_GET_BLOCKS_METADATA_NOFAIL |
2473                            EXT4_GET_BLOCKS_IO_SUBMIT;
2474         dioread_nolock = ext4_should_dioread_nolock(inode);
2475         if (dioread_nolock)
2476                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2477         if (map->m_flags & (1 << BH_Delay))
2478                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2479
2480         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2481         if (err < 0)
2482                 return err;
2483         if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2484                 if (!mpd->io_submit.io_end->handle &&
2485                     ext4_handle_valid(handle)) {
2486                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2487                         handle->h_rsv_handle = NULL;
2488                 }
2489                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2490         }
2491
2492         BUG_ON(map->m_len == 0);
2493         return 0;
2494 }
2495
2496 /*
2497  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2498  *                               mpd->len and submit pages underlying it for IO
2499  *
2500  * @handle - handle for journal operations
2501  * @mpd - extent to map
2502  * @give_up_on_write - we set this to true iff there is a fatal error and there
2503  *                     is no hope of writing the data. The caller should discard
2504  *                     dirty pages to avoid infinite loops.
2505  *
2506  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2507  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2508  * them to initialized or split the described range from larger unwritten
2509  * extent. Note that we need not map all the described range since allocation
2510  * can return less blocks or the range is covered by more unwritten extents. We
2511  * cannot map more because we are limited by reserved transaction credits. On
2512  * the other hand we always make sure that the last touched page is fully
2513  * mapped so that it can be written out (and thus forward progress is
2514  * guaranteed). After mapping we submit all mapped pages for IO.
2515  */
2516 static int mpage_map_and_submit_extent(handle_t *handle,
2517                                        struct mpage_da_data *mpd,
2518                                        bool *give_up_on_write)
2519 {
2520         struct inode *inode = mpd->inode;
2521         struct ext4_map_blocks *map = &mpd->map;
2522         int err;
2523         loff_t disksize;
2524         int progress = 0;
2525
2526         mpd->io_submit.io_end->offset =
2527                                 ((loff_t)map->m_lblk) << inode->i_blkbits;
2528         do {
2529                 err = mpage_map_one_extent(handle, mpd);
2530                 if (err < 0) {
2531                         struct super_block *sb = inode->i_sb;
2532
2533                         if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2534                             EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2535                                 goto invalidate_dirty_pages;
2536                         /*
2537                          * Let the uper layers retry transient errors.
2538                          * In the case of ENOSPC, if ext4_count_free_blocks()
2539                          * is non-zero, a commit should free up blocks.
2540                          */
2541                         if ((err == -ENOMEM) ||
2542                             (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2543                                 if (progress)
2544                                         goto update_disksize;
2545                                 return err;
2546                         }
2547                         ext4_msg(sb, KERN_CRIT,
2548                                  "Delayed block allocation failed for "
2549                                  "inode %lu at logical offset %llu with"
2550                                  " max blocks %u with error %d",
2551                                  inode->i_ino,
2552                                  (unsigned long long)map->m_lblk,
2553                                  (unsigned)map->m_len, -err);
2554                         ext4_msg(sb, KERN_CRIT,
2555                                  "This should not happen!! Data will "
2556                                  "be lost\n");
2557                         if (err == -ENOSPC)
2558                                 ext4_print_free_blocks(inode);
2559                 invalidate_dirty_pages:
2560                         *give_up_on_write = true;
2561                         return err;
2562                 }
2563                 progress = 1;
2564                 /*
2565                  * Update buffer state, submit mapped pages, and get us new
2566                  * extent to map
2567                  */
2568                 err = mpage_map_and_submit_buffers(mpd);
2569                 if (err < 0)
2570                         goto update_disksize;
2571         } while (map->m_len);
2572
2573 update_disksize:
2574         /*
2575          * Update on-disk size after IO is submitted.  Races with
2576          * truncate are avoided by checking i_size under i_data_sem.
2577          */
2578         disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2579         if (disksize > EXT4_I(inode)->i_disksize) {
2580                 int err2;
2581                 loff_t i_size;
2582
2583                 down_write(&EXT4_I(inode)->i_data_sem);
2584                 i_size = i_size_read(inode);
2585                 if (disksize > i_size)
2586                         disksize = i_size;
2587                 if (disksize > EXT4_I(inode)->i_disksize)
2588                         EXT4_I(inode)->i_disksize = disksize;
2589                 up_write(&EXT4_I(inode)->i_data_sem);
2590                 err2 = ext4_mark_inode_dirty(handle, inode);
2591                 if (err2)
2592                         ext4_error(inode->i_sb,
2593                                    "Failed to mark inode %lu dirty",
2594                                    inode->i_ino);
2595                 if (!err)
2596                         err = err2;
2597         }
2598         return err;
2599 }
2600
2601 /*
2602  * Calculate the total number of credits to reserve for one writepages
2603  * iteration. This is called from ext4_writepages(). We map an extent of
2604  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2605  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2606  * bpp - 1 blocks in bpp different extents.
2607  */
2608 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2609 {
2610         int bpp = ext4_journal_blocks_per_page(inode);
2611
2612         return ext4_meta_trans_blocks(inode,
2613                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2614 }
2615
2616 /*
2617  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2618  *                               and underlying extent to map
2619  *
2620  * @mpd - where to look for pages
2621  *
2622  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2623  * IO immediately. When we find a page which isn't mapped we start accumulating
2624  * extent of buffers underlying these pages that needs mapping (formed by
2625  * either delayed or unwritten buffers). We also lock the pages containing
2626  * these buffers. The extent found is returned in @mpd structure (starting at
2627  * mpd->lblk with length mpd->len blocks).
2628  *
2629  * Note that this function can attach bios to one io_end structure which are
2630  * neither logically nor physically contiguous. Although it may seem as an
2631  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2632  * case as we need to track IO to all buffers underlying a page in one io_end.
2633  */
2634 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2635 {
2636         struct address_space *mapping = mpd->inode->i_mapping;
2637         struct pagevec pvec;
2638         unsigned int nr_pages;
2639         long left = mpd->wbc->nr_to_write;
2640         pgoff_t index = mpd->first_page;
2641         pgoff_t end = mpd->last_page;
2642         xa_mark_t tag;
2643         int i, err = 0;
2644         int blkbits = mpd->inode->i_blkbits;
2645         ext4_lblk_t lblk;
2646         struct buffer_head *head;
2647
2648         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2649                 tag = PAGECACHE_TAG_TOWRITE;
2650         else
2651                 tag = PAGECACHE_TAG_DIRTY;
2652
2653         pagevec_init(&pvec);
2654         mpd->map.m_len = 0;
2655         mpd->next_page = index;
2656         while (index <= end) {
2657                 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2658                                 tag);
2659                 if (nr_pages == 0)
2660                         goto out;
2661
2662                 for (i = 0; i < nr_pages; i++) {
2663                         struct page *page = pvec.pages[i];
2664
2665                         /*
2666                          * Accumulated enough dirty pages? This doesn't apply
2667                          * to WB_SYNC_ALL mode. For integrity sync we have to
2668                          * keep going because someone may be concurrently
2669                          * dirtying pages, and we might have synced a lot of
2670                          * newly appeared dirty pages, but have not synced all
2671                          * of the old dirty pages.
2672                          */
2673                         if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2674                                 goto out;
2675
2676                         /* If we can't merge this page, we are done. */
2677                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2678                                 goto out;
2679
2680                         lock_page(page);
2681                         /*
2682                          * If the page is no longer dirty, or its mapping no
2683                          * longer corresponds to inode we are writing (which
2684                          * means it has been truncated or invalidated), or the
2685                          * page is already under writeback and we are not doing
2686                          * a data integrity writeback, skip the page
2687                          */
2688                         if (!PageDirty(page) ||
2689                             (PageWriteback(page) &&
2690                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2691                             unlikely(page->mapping != mapping)) {
2692                                 unlock_page(page);
2693                                 continue;
2694                         }
2695
2696                         wait_on_page_writeback(page);
2697                         BUG_ON(PageWriteback(page));
2698
2699                         if (mpd->map.m_len == 0)
2700                                 mpd->first_page = page->index;
2701                         mpd->next_page = page->index + 1;
2702                         /* Add all dirty buffers to mpd */
2703                         lblk = ((ext4_lblk_t)page->index) <<
2704                                 (PAGE_SHIFT - blkbits);
2705                         head = page_buffers(page);
2706                         err = mpage_process_page_bufs(mpd, head, head, lblk);
2707                         if (err <= 0)
2708                                 goto out;
2709                         err = 0;
2710                         left--;
2711                 }
2712                 pagevec_release(&pvec);
2713                 cond_resched();
2714         }
2715         return 0;
2716 out:
2717         pagevec_release(&pvec);
2718         return err;
2719 }
2720
2721 static int ext4_writepages(struct address_space *mapping,
2722                            struct writeback_control *wbc)
2723 {
2724         pgoff_t writeback_index = 0;
2725         long nr_to_write = wbc->nr_to_write;
2726         int range_whole = 0;
2727         int cycled = 1;
2728         handle_t *handle = NULL;
2729         struct mpage_da_data mpd;
2730         struct inode *inode = mapping->host;
2731         int needed_blocks, rsv_blocks = 0, ret = 0;
2732         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2733         bool done;
2734         struct blk_plug plug;
2735         bool give_up_on_write = false;
2736
2737         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2738                 return -EIO;
2739
2740         percpu_down_read(&sbi->s_journal_flag_rwsem);
2741         trace_ext4_writepages(inode, wbc);
2742
2743         /*
2744          * No pages to write? This is mainly a kludge to avoid starting
2745          * a transaction for special inodes like journal inode on last iput()
2746          * because that could violate lock ordering on umount
2747          */
2748         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2749                 goto out_writepages;
2750
2751         if (ext4_should_journal_data(inode)) {
2752                 ret = generic_writepages(mapping, wbc);
2753                 goto out_writepages;
2754         }
2755
2756         /*
2757          * If the filesystem has aborted, it is read-only, so return
2758          * right away instead of dumping stack traces later on that
2759          * will obscure the real source of the problem.  We test
2760          * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2761          * the latter could be true if the filesystem is mounted
2762          * read-only, and in that case, ext4_writepages should
2763          * *never* be called, so if that ever happens, we would want
2764          * the stack trace.
2765          */
2766         if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2767                      sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2768                 ret = -EROFS;
2769                 goto out_writepages;
2770         }
2771
2772         if (ext4_should_dioread_nolock(inode)) {
2773                 /*
2774                  * We may need to convert up to one extent per block in
2775                  * the page and we may dirty the inode.
2776                  */
2777                 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2778                                                 PAGE_SIZE >> inode->i_blkbits);
2779         }
2780
2781         /*
2782          * If we have inline data and arrive here, it means that
2783          * we will soon create the block for the 1st page, so
2784          * we'd better clear the inline data here.
2785          */
2786         if (ext4_has_inline_data(inode)) {
2787                 /* Just inode will be modified... */
2788                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2789                 if (IS_ERR(handle)) {
2790                         ret = PTR_ERR(handle);
2791                         goto out_writepages;
2792                 }
2793                 BUG_ON(ext4_test_inode_state(inode,
2794                                 EXT4_STATE_MAY_INLINE_DATA));
2795                 ext4_destroy_inline_data(handle, inode);
2796                 ext4_journal_stop(handle);
2797         }
2798
2799         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2800                 range_whole = 1;
2801
2802         if (wbc->range_cyclic) {
2803                 writeback_index = mapping->writeback_index;
2804                 if (writeback_index)
2805                         cycled = 0;
2806                 mpd.first_page = writeback_index;
2807                 mpd.last_page = -1;
2808         } else {
2809                 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2810                 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2811         }
2812
2813         mpd.inode = inode;
2814         mpd.wbc = wbc;
2815         ext4_io_submit_init(&mpd.io_submit, wbc);
2816 retry:
2817         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2818                 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2819         done = false;
2820         blk_start_plug(&plug);
2821
2822         /*
2823          * First writeback pages that don't need mapping - we can avoid
2824          * starting a transaction unnecessarily and also avoid being blocked
2825          * in the block layer on device congestion while having transaction
2826          * started.
2827          */
2828         mpd.do_map = 0;
2829         mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2830         if (!mpd.io_submit.io_end) {
2831                 ret = -ENOMEM;
2832                 goto unplug;
2833         }
2834         ret = mpage_prepare_extent_to_map(&mpd);
2835         /* Unlock pages we didn't use */
2836         mpage_release_unused_pages(&mpd, false);
2837         /* Submit prepared bio */
2838         ext4_io_submit(&mpd.io_submit);
2839         ext4_put_io_end_defer(mpd.io_submit.io_end);
2840         mpd.io_submit.io_end = NULL;
2841         if (ret < 0)
2842                 goto unplug;
2843
2844         while (!done && mpd.first_page <= mpd.last_page) {
2845                 /* For each extent of pages we use new io_end */
2846                 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2847                 if (!mpd.io_submit.io_end) {
2848                         ret = -ENOMEM;
2849                         break;
2850                 }
2851
2852                 /*
2853                  * We have two constraints: We find one extent to map and we
2854                  * must always write out whole page (makes a difference when
2855                  * blocksize < pagesize) so that we don't block on IO when we
2856                  * try to write out the rest of the page. Journalled mode is
2857                  * not supported by delalloc.
2858                  */
2859                 BUG_ON(ext4_should_journal_data(inode));
2860                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2861
2862                 /* start a new transaction */
2863                 handle = ext4_journal_start_with_reserve(inode,
2864                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2865                 if (IS_ERR(handle)) {
2866                         ret = PTR_ERR(handle);
2867                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2868                                "%ld pages, ino %lu; err %d", __func__,
2869                                 wbc->nr_to_write, inode->i_ino, ret);
2870                         /* Release allocated io_end */
2871                         ext4_put_io_end(mpd.io_submit.io_end);
2872                         mpd.io_submit.io_end = NULL;
2873                         break;
2874                 }
2875                 mpd.do_map = 1;
2876
2877                 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2878                 ret = mpage_prepare_extent_to_map(&mpd);
2879                 if (!ret) {
2880                         if (mpd.map.m_len)
2881                                 ret = mpage_map_and_submit_extent(handle, &mpd,
2882                                         &give_up_on_write);
2883                         else {
2884                                 /*
2885                                  * We scanned the whole range (or exhausted
2886                                  * nr_to_write), submitted what was mapped and
2887                                  * didn't find anything needing mapping. We are
2888                                  * done.
2889                                  */
2890                                 done = true;
2891                         }
2892                 }
2893                 /*
2894                  * Caution: If the handle is synchronous,
2895                  * ext4_journal_stop() can wait for transaction commit
2896                  * to finish which may depend on writeback of pages to
2897                  * complete or on page lock to be released.  In that
2898                  * case, we have to wait until after after we have
2899                  * submitted all the IO, released page locks we hold,
2900                  * and dropped io_end reference (for extent conversion
2901                  * to be able to complete) before stopping the handle.
2902                  */
2903                 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2904                         ext4_journal_stop(handle);
2905                         handle = NULL;
2906                         mpd.do_map = 0;
2907                 }
2908                 /* Unlock pages we didn't use */
2909                 mpage_release_unused_pages(&mpd, give_up_on_write);
2910                 /* Submit prepared bio */
2911                 ext4_io_submit(&mpd.io_submit);
2912
2913                 /*
2914                  * Drop our io_end reference we got from init. We have
2915                  * to be careful and use deferred io_end finishing if
2916                  * we are still holding the transaction as we can
2917                  * release the last reference to io_end which may end
2918                  * up doing unwritten extent conversion.
2919                  */
2920                 if (handle) {
2921                         ext4_put_io_end_defer(mpd.io_submit.io_end);
2922                         ext4_journal_stop(handle);
2923                 } else
2924                         ext4_put_io_end(mpd.io_submit.io_end);
2925                 mpd.io_submit.io_end = NULL;
2926
2927                 if (ret == -ENOSPC && sbi->s_journal) {
2928                         /*
2929                          * Commit the transaction which would
2930                          * free blocks released in the transaction
2931                          * and try again
2932                          */
2933                         jbd2_journal_force_commit_nested(sbi->s_journal);
2934                         ret = 0;
2935                         continue;
2936                 }
2937                 /* Fatal error - ENOMEM, EIO... */
2938                 if (ret)
2939                         break;
2940         }
2941 unplug:
2942         blk_finish_plug(&plug);
2943         if (!ret && !cycled && wbc->nr_to_write > 0) {
2944                 cycled = 1;
2945                 mpd.last_page = writeback_index - 1;
2946                 mpd.first_page = 0;
2947                 goto retry;
2948         }
2949
2950         /* Update index */
2951         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2952                 /*
2953                  * Set the writeback_index so that range_cyclic
2954                  * mode will write it back later
2955                  */
2956                 mapping->writeback_index = mpd.first_page;
2957
2958 out_writepages:
2959         trace_ext4_writepages_result(inode, wbc, ret,
2960                                      nr_to_write - wbc->nr_to_write);
2961         percpu_up_read(&sbi->s_journal_flag_rwsem);
2962         return ret;
2963 }
2964
2965 static int ext4_dax_writepages(struct address_space *mapping,
2966                                struct writeback_control *wbc)
2967 {
2968         int ret;
2969         long nr_to_write = wbc->nr_to_write;
2970         struct inode *inode = mapping->host;
2971         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2972
2973         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2974                 return -EIO;
2975
2976         percpu_down_read(&sbi->s_journal_flag_rwsem);
2977         trace_ext4_writepages(inode, wbc);
2978
2979         ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev, wbc);
2980         trace_ext4_writepages_result(inode, wbc, ret,
2981                                      nr_to_write - wbc->nr_to_write);
2982         percpu_up_read(&sbi->s_journal_flag_rwsem);
2983         return ret;
2984 }
2985
2986 static int ext4_nonda_switch(struct super_block *sb)
2987 {
2988         s64 free_clusters, dirty_clusters;
2989         struct ext4_sb_info *sbi = EXT4_SB(sb);
2990
2991         /*
2992          * switch to non delalloc mode if we are running low
2993          * on free block. The free block accounting via percpu
2994          * counters can get slightly wrong with percpu_counter_batch getting
2995          * accumulated on each CPU without updating global counters
2996          * Delalloc need an accurate free block accounting. So switch
2997          * to non delalloc when we are near to error range.
2998          */
2999         free_clusters =
3000                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
3001         dirty_clusters =
3002                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
3003         /*
3004          * Start pushing delalloc when 1/2 of free blocks are dirty.
3005          */
3006         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
3007                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
3008
3009         if (2 * free_clusters < 3 * dirty_clusters ||
3010             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
3011                 /*
3012                  * free block count is less than 150% of dirty blocks
3013                  * or free blocks is less than watermark
3014                  */
3015                 return 1;
3016         }
3017         return 0;
3018 }
3019
3020 /* We always reserve for an inode update; the superblock could be there too */
3021 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
3022 {
3023         if (likely(ext4_has_feature_large_file(inode->i_sb)))
3024                 return 1;
3025
3026         if (pos + len <= 0x7fffffffULL)
3027                 return 1;
3028
3029         /* We might need to update the superblock to set LARGE_FILE */
3030         return 2;
3031 }
3032
3033 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3034                                loff_t pos, unsigned len, unsigned flags,
3035                                struct page **pagep, void **fsdata)
3036 {
3037         int ret, retries = 0;
3038         struct page *page;
3039         pgoff_t index;
3040         struct inode *inode = mapping->host;
3041         handle_t *handle;
3042
3043         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
3044                 return -EIO;
3045
3046         index = pos >> PAGE_SHIFT;
3047
3048         if (ext4_nonda_switch(inode->i_sb) ||
3049             S_ISLNK(inode->i_mode)) {
3050                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3051                 return ext4_write_begin(file, mapping, pos,
3052                                         len, flags, pagep, fsdata);
3053         }
3054         *fsdata = (void *)0;
3055         trace_ext4_da_write_begin(inode, pos, len, flags);
3056
3057         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
3058                 ret = ext4_da_write_inline_data_begin(mapping, inode,
3059                                                       pos, len, flags,
3060                                                       pagep, fsdata);
3061                 if (ret < 0)
3062                         return ret;
3063                 if (ret == 1)
3064                         return 0;
3065         }
3066
3067         /*
3068          * grab_cache_page_write_begin() can take a long time if the
3069          * system is thrashing due to memory pressure, or if the page
3070          * is being written back.  So grab it first before we start
3071          * the transaction handle.  This also allows us to allocate
3072          * the page (if needed) without using GFP_NOFS.
3073          */
3074 retry_grab:
3075         page = grab_cache_page_write_begin(mapping, index, flags);
3076         if (!page)
3077                 return -ENOMEM;
3078         unlock_page(page);
3079
3080         /*
3081          * With delayed allocation, we don't log the i_disksize update
3082          * if there is delayed block allocation. But we still need
3083          * to journalling the i_disksize update if writes to the end
3084          * of file which has an already mapped buffer.
3085          */
3086 retry_journal:
3087         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
3088                                 ext4_da_write_credits(inode, pos, len));
3089         if (IS_ERR(handle)) {
3090                 put_page(page);
3091                 return PTR_ERR(handle);
3092         }
3093
3094         lock_page(page);
3095         if (page->mapping != mapping) {
3096                 /* The page got truncated from under us */
3097                 unlock_page(page);
3098                 put_page(page);
3099                 ext4_journal_stop(handle);
3100                 goto retry_grab;
3101         }
3102         /* In case writeback began while the page was unlocked */
3103         wait_for_stable_page(page);
3104
3105 #ifdef CONFIG_FS_ENCRYPTION
3106         ret = ext4_block_write_begin(page, pos, len,
3107                                      ext4_da_get_block_prep);
3108 #else
3109         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3110 #endif
3111         if (ret < 0) {
3112                 unlock_page(page);
3113                 ext4_journal_stop(handle);
3114                 /*
3115                  * block_write_begin may have instantiated a few blocks
3116                  * outside i_size.  Trim these off again. Don't need
3117                  * i_size_read because we hold i_mutex.
3118                  */
3119                 if (pos + len > inode->i_size)
3120                         ext4_truncate_failed_write(inode);
3121
3122                 if (ret == -ENOSPC &&
3123                     ext4_should_retry_alloc(inode->i_sb, &retries))
3124                         goto retry_journal;
3125
3126                 put_page(page);
3127                 return ret;
3128         }
3129
3130         *pagep = page;
3131         return ret;
3132 }
3133
3134 /*
3135  * Check if we should update i_disksize
3136  * when write to the end of file but not require block allocation
3137  */
3138 static int ext4_da_should_update_i_disksize(struct page *page,
3139                                             unsigned long offset)
3140 {
3141         struct buffer_head *bh;
3142         struct inode *inode = page->mapping->host;
3143         unsigned int idx;
3144         int i;
3145
3146         bh = page_buffers(page);
3147         idx = offset >> inode->i_blkbits;
3148
3149         for (i = 0; i < idx; i++)
3150                 bh = bh->b_this_page;
3151
3152         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3153                 return 0;
3154         return 1;
3155 }
3156
3157 static int ext4_da_write_end(struct file *file,
3158                              struct address_space *mapping,
3159                              loff_t pos, unsigned len, unsigned copied,
3160                              struct page *page, void *fsdata)
3161 {
3162         struct inode *inode = mapping->host;
3163         int ret = 0, ret2;
3164         handle_t *handle = ext4_journal_current_handle();
3165         loff_t new_i_size;
3166         unsigned long start, end;
3167         int write_mode = (int)(unsigned long)fsdata;
3168
3169         if (write_mode == FALL_BACK_TO_NONDELALLOC)
3170                 return ext4_write_end(file, mapping, pos,
3171                                       len, copied, page, fsdata);
3172
3173         trace_ext4_da_write_end(inode, pos, len, copied);
3174         start = pos & (PAGE_SIZE - 1);
3175         end = start + copied - 1;
3176
3177         /*
3178          * generic_write_end() will run mark_inode_dirty() if i_size
3179          * changes.  So let's piggyback the i_disksize mark_inode_dirty
3180          * into that.
3181          */
3182         new_i_size = pos + copied;
3183         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3184                 if (ext4_has_inline_data(inode) ||
3185                     ext4_da_should_update_i_disksize(page, end)) {
3186                         ext4_update_i_disksize(inode, new_i_size);
3187                         /* We need to mark inode dirty even if
3188                          * new_i_size is less that inode->i_size
3189                          * bu greater than i_disksize.(hint delalloc)
3190                          */
3191                         ext4_mark_inode_dirty(handle, inode);
3192                 }
3193         }
3194
3195         if (write_mode != CONVERT_INLINE_DATA &&
3196             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3197             ext4_has_inline_data(inode))
3198                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3199                                                      page);
3200         else
3201                 ret2 = generic_write_end(file, mapping, pos, len, copied,
3202                                                         page, fsdata);
3203
3204         copied = ret2;
3205         if (ret2 < 0)
3206                 ret = ret2;
3207         ret2 = ext4_journal_stop(handle);
3208         if (!ret)
3209                 ret = ret2;
3210
3211         return ret ? ret : copied;
3212 }
3213
3214 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3215                                    unsigned int length)
3216 {
3217         /*
3218          * Drop reserved blocks
3219          */
3220         BUG_ON(!PageLocked(page));
3221         if (!page_has_buffers(page))
3222                 goto out;
3223
3224         ext4_da_page_release_reservation(page, offset, length);
3225
3226 out:
3227         ext4_invalidatepage(page, offset, length);
3228
3229         return;
3230 }
3231
3232 /*
3233  * Force all delayed allocation blocks to be allocated for a given inode.
3234  */
3235 int ext4_alloc_da_blocks(struct inode *inode)
3236 {
3237         trace_ext4_alloc_da_blocks(inode);
3238
3239         if (!EXT4_I(inode)->i_reserved_data_blocks)
3240                 return 0;
3241
3242         /*
3243          * We do something simple for now.  The filemap_flush() will
3244          * also start triggering a write of the data blocks, which is
3245          * not strictly speaking necessary (and for users of
3246          * laptop_mode, not even desirable).  However, to do otherwise
3247          * would require replicating code paths in:
3248          *
3249          * ext4_writepages() ->
3250          *    write_cache_pages() ---> (via passed in callback function)
3251          *        __mpage_da_writepage() -->
3252          *           mpage_add_bh_to_extent()
3253          *           mpage_da_map_blocks()
3254          *
3255          * The problem is that write_cache_pages(), located in
3256          * mm/page-writeback.c, marks pages clean in preparation for
3257          * doing I/O, which is not desirable if we're not planning on
3258          * doing I/O at all.
3259          *
3260          * We could call write_cache_pages(), and then redirty all of
3261          * the pages by calling redirty_page_for_writepage() but that
3262          * would be ugly in the extreme.  So instead we would need to
3263          * replicate parts of the code in the above functions,
3264          * simplifying them because we wouldn't actually intend to
3265          * write out the pages, but rather only collect contiguous
3266          * logical block extents, call the multi-block allocator, and
3267          * then update the buffer heads with the block allocations.
3268          *
3269          * For now, though, we'll cheat by calling filemap_flush(),
3270          * which will map the blocks, and start the I/O, but not
3271          * actually wait for the I/O to complete.
3272          */
3273         return filemap_flush(inode->i_mapping);
3274 }
3275
3276 /*
3277  * bmap() is special.  It gets used by applications such as lilo and by
3278  * the swapper to find the on-disk block of a specific piece of data.
3279  *
3280  * Naturally, this is dangerous if the block concerned is still in the
3281  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3282  * filesystem and enables swap, then they may get a nasty shock when the
3283  * data getting swapped to that swapfile suddenly gets overwritten by
3284  * the original zero's written out previously to the journal and
3285  * awaiting writeback in the kernel's buffer cache.
3286  *
3287  * So, if we see any bmap calls here on a modified, data-journaled file,
3288  * take extra steps to flush any blocks which might be in the cache.
3289  */
3290 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3291 {
3292         struct inode *inode = mapping->host;
3293         journal_t *journal;
3294         int err;
3295
3296         /*
3297          * We can get here for an inline file via the FIBMAP ioctl
3298          */
3299         if (ext4_has_inline_data(inode))
3300                 return 0;
3301
3302         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3303                         test_opt(inode->i_sb, DELALLOC)) {
3304                 /*
3305                  * With delalloc we want to sync the file
3306                  * so that we can make sure we allocate
3307                  * blocks for file
3308                  */
3309                 filemap_write_and_wait(mapping);
3310         }
3311
3312         if (EXT4_JOURNAL(inode) &&
3313             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3314                 /*
3315                  * This is a REALLY heavyweight approach, but the use of
3316                  * bmap on dirty files is expected to be extremely rare:
3317                  * only if we run lilo or swapon on a freshly made file
3318                  * do we expect this to happen.
3319                  *
3320                  * (bmap requires CAP_SYS_RAWIO so this does not
3321                  * represent an unprivileged user DOS attack --- we'd be
3322                  * in trouble if mortal users could trigger this path at
3323                  * will.)
3324                  *
3325                  * NB. EXT4_STATE_JDATA is not set on files other than
3326                  * regular files.  If somebody wants to bmap a directory
3327                  * or symlink and gets confused because the buffer
3328                  * hasn't yet been flushed to disk, they deserve
3329                  * everything they get.
3330                  */
3331
3332                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3333                 journal = EXT4_JOURNAL(inode);
3334                 jbd2_journal_lock_updates(journal);
3335                 err = jbd2_journal_flush(journal);
3336                 jbd2_journal_unlock_updates(journal);
3337
3338                 if (err)
3339                         return 0;
3340         }
3341
3342         return generic_block_bmap(mapping, block, ext4_get_block);
3343 }
3344
3345 static int ext4_readpage(struct file *file, struct page *page)
3346 {
3347         int ret = -EAGAIN;
3348         struct inode *inode = page->mapping->host;
3349
3350         trace_ext4_readpage(page);
3351
3352         if (ext4_has_inline_data(inode))
3353                 ret = ext4_readpage_inline(inode, page);
3354
3355         if (ret == -EAGAIN)
3356                 return ext4_mpage_readpages(page->mapping, NULL, page, 1,
3357                                                 false);
3358
3359         return ret;
3360 }
3361
3362 static int
3363 ext4_readpages(struct file *file, struct address_space *mapping,
3364                 struct list_head *pages, unsigned nr_pages)
3365 {
3366         struct inode *inode = mapping->host;
3367
3368         /* If the file has inline data, no need to do readpages. */
3369         if (ext4_has_inline_data(inode))
3370                 return 0;
3371
3372         return ext4_mpage_readpages(mapping, pages, NULL, nr_pages, true);
3373 }
3374
3375 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3376                                 unsigned int length)
3377 {
3378         trace_ext4_invalidatepage(page, offset, length);
3379
3380         /* No journalling happens on data buffers when this function is used */
3381         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3382
3383         block_invalidatepage(page, offset, length);
3384 }
3385
3386 static int __ext4_journalled_invalidatepage(struct page *page,
3387                                             unsigned int offset,
3388                                             unsigned int length)
3389 {
3390         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3391
3392         trace_ext4_journalled_invalidatepage(page, offset, length);
3393
3394         /*
3395          * If it's a full truncate we just forget about the pending dirtying
3396          */
3397         if (offset == 0 && length == PAGE_SIZE)
3398                 ClearPageChecked(page);
3399
3400         return jbd2_journal_invalidatepage(journal, page, offset, length);
3401 }
3402
3403 /* Wrapper for aops... */
3404 static void ext4_journalled_invalidatepage(struct page *page,
3405                                            unsigned int offset,
3406                                            unsigned int length)
3407 {
3408         WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3409 }
3410
3411 static int ext4_releasepage(struct page *page, gfp_t wait)
3412 {
3413         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3414
3415         trace_ext4_releasepage(page);
3416
3417         /* Page has dirty journalled data -> cannot release */
3418         if (PageChecked(page))
3419                 return 0;
3420         if (journal)
3421                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3422         else
3423                 return try_to_free_buffers(page);
3424 }
3425
3426 static bool ext4_inode_datasync_dirty(struct inode *inode)
3427 {
3428         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3429
3430         if (journal)
3431                 return !jbd2_transaction_committed(journal,
3432                                         EXT4_I(inode)->i_datasync_tid);
3433         /* Any metadata buffers to write? */
3434         if (!list_empty(&inode->i_mapping->private_list))
3435                 return true;
3436         return inode->i_state & I_DIRTY_DATASYNC;
3437 }
3438
3439 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3440                             unsigned flags, struct iomap *iomap)
3441 {
3442         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3443         unsigned int blkbits = inode->i_blkbits;
3444         unsigned long first_block, last_block;
3445         struct ext4_map_blocks map;
3446         bool delalloc = false;
3447         int ret;
3448
3449         if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3450                 return -EINVAL;
3451         first_block = offset >> blkbits;
3452         last_block = min_t(loff_t, (offset + length - 1) >> blkbits,
3453                            EXT4_MAX_LOGICAL_BLOCK);
3454
3455         if (flags & IOMAP_REPORT) {
3456                 if (ext4_has_inline_data(inode)) {
3457                         ret = ext4_inline_data_iomap(inode, iomap);
3458                         if (ret != -EAGAIN) {
3459                                 if (ret == 0 && offset >= iomap->length)
3460                                         ret = -ENOENT;
3461                                 return ret;
3462                         }
3463                 }
3464         } else {
3465                 if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3466                         return -ERANGE;
3467         }
3468
3469         map.m_lblk = first_block;
3470         map.m_len = last_block - first_block + 1;
3471
3472         if (flags & IOMAP_REPORT) {
3473                 ret = ext4_map_blocks(NULL, inode, &map, 0);
3474                 if (ret < 0)
3475                         return ret;
3476
3477                 if (ret == 0) {
3478                         ext4_lblk_t end = map.m_lblk + map.m_len - 1;
3479                         struct extent_status es;
3480
3481                         ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3482                                                   map.m_lblk, end, &es);
3483
3484                         if (!es.es_len || es.es_lblk > end) {
3485                                 /* entire range is a hole */
3486                         } else if (es.es_lblk > map.m_lblk) {
3487                                 /* range starts with a hole */
3488                                 map.m_len = es.es_lblk - map.m_lblk;
3489                         } else {
3490                                 ext4_lblk_t offs = 0;
3491
3492                                 if (es.es_lblk < map.m_lblk)
3493                                         offs = map.m_lblk - es.es_lblk;
3494                                 map.m_lblk = es.es_lblk + offs;
3495                                 map.m_len = es.es_len - offs;
3496                                 delalloc = true;
3497                         }
3498                 }
3499         } else if (flags & IOMAP_WRITE) {
3500                 int dio_credits;
3501                 handle_t *handle;
3502                 int retries = 0;
3503
3504                 /* Trim mapping request to maximum we can map at once for DIO */
3505                 if (map.m_len > DIO_MAX_BLOCKS)
3506                         map.m_len = DIO_MAX_BLOCKS;
3507                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
3508 retry:
3509                 /*
3510                  * Either we allocate blocks and then we don't get unwritten
3511                  * extent so we have reserved enough credits, or the blocks
3512                  * are already allocated and unwritten and in that case
3513                  * extent conversion fits in the credits as well.
3514                  */
3515                 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
3516                                             dio_credits);
3517                 if (IS_ERR(handle))
3518                         return PTR_ERR(handle);
3519
3520                 ret = ext4_map_blocks(handle, inode, &map,
3521                                       EXT4_GET_BLOCKS_CREATE_ZERO);
3522                 if (ret < 0) {
3523                         ext4_journal_stop(handle);
3524                         if (ret == -ENOSPC &&
3525                             ext4_should_retry_alloc(inode->i_sb, &retries))
3526                                 goto retry;
3527                         return ret;
3528                 }
3529
3530                 /*
3531                  * If we added blocks beyond i_size, we need to make sure they
3532                  * will get truncated if we crash before updating i_size in
3533                  * ext4_iomap_end(). For faults we don't need to do that (and
3534                  * even cannot because for orphan list operations inode_lock is
3535                  * required) - if we happen to instantiate block beyond i_size,
3536                  * it is because we race with truncate which has already added
3537                  * the inode to the orphan list.
3538                  */
3539                 if (!(flags & IOMAP_FAULT) && first_block + map.m_len >
3540                     (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) {
3541                         int err;
3542
3543                         err = ext4_orphan_add(handle, inode);
3544                         if (err < 0) {
3545                                 ext4_journal_stop(handle);
3546                                 return err;
3547                         }
3548                 }
3549                 ext4_journal_stop(handle);
3550         } else {
3551                 ret = ext4_map_blocks(NULL, inode, &map, 0);
3552                 if (ret < 0)
3553                         return ret;
3554         }
3555
3556         iomap->flags = 0;
3557         if (ext4_inode_datasync_dirty(inode))
3558                 iomap->flags |= IOMAP_F_DIRTY;
3559         iomap->bdev = inode->i_sb->s_bdev;
3560         iomap->dax_dev = sbi->s_daxdev;
3561         iomap->offset = (u64)first_block << blkbits;
3562         iomap->length = (u64)map.m_len << blkbits;
3563
3564         if (ret == 0) {
3565                 iomap->type = delalloc ? IOMAP_DELALLOC : IOMAP_HOLE;
3566                 iomap->addr = IOMAP_NULL_ADDR;
3567         } else {
3568                 if (map.m_flags & EXT4_MAP_MAPPED) {
3569                         iomap->type = IOMAP_MAPPED;
3570                 } else if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3571                         iomap->type = IOMAP_UNWRITTEN;
3572                 } else {
3573                         WARN_ON_ONCE(1);
3574                         return -EIO;
3575                 }
3576                 iomap->addr = (u64)map.m_pblk << blkbits;
3577         }
3578
3579         if (map.m_flags & EXT4_MAP_NEW)
3580                 iomap->flags |= IOMAP_F_NEW;
3581
3582         return 0;
3583 }
3584
3585 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3586                           ssize_t written, unsigned flags, struct iomap *iomap)
3587 {
3588         int ret = 0;
3589         handle_t *handle;
3590         int blkbits = inode->i_blkbits;
3591         bool truncate = false;
3592
3593         if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT))
3594                 return 0;
3595
3596         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3597         if (IS_ERR(handle)) {
3598                 ret = PTR_ERR(handle);
3599                 goto orphan_del;
3600         }
3601         if (ext4_update_inode_size(inode, offset + written))
3602                 ext4_mark_inode_dirty(handle, inode);
3603         /*
3604          * We may need to truncate allocated but not written blocks beyond EOF.
3605          */
3606         if (iomap->offset + iomap->length > 
3607             ALIGN(inode->i_size, 1 << blkbits)) {
3608                 ext4_lblk_t written_blk, end_blk;
3609
3610                 written_blk = (offset + written) >> blkbits;
3611                 end_blk = (offset + length) >> blkbits;
3612                 if (written_blk < end_blk && ext4_can_truncate(inode))
3613                         truncate = true;
3614         }
3615         /*
3616          * Remove inode from orphan list if we were extending a inode and
3617          * everything went fine.
3618          */
3619         if (!truncate && inode->i_nlink &&
3620             !list_empty(&EXT4_I(inode)->i_orphan))
3621                 ext4_orphan_del(handle, inode);
3622         ext4_journal_stop(handle);
3623         if (truncate) {
3624                 ext4_truncate_failed_write(inode);
3625 orphan_del:
3626                 /*
3627                  * If truncate failed early the inode might still be on the
3628                  * orphan list; we need to make sure the inode is removed from
3629                  * the orphan list in that case.
3630                  */
3631                 if (inode->i_nlink)
3632                         ext4_orphan_del(NULL, inode);
3633         }
3634         return ret;
3635 }
3636
3637 const struct iomap_ops ext4_iomap_ops = {
3638         .iomap_begin            = ext4_iomap_begin,
3639         .iomap_end              = ext4_iomap_end,
3640 };
3641
3642 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3643                             ssize_t size, void *private)
3644 {
3645         ext4_io_end_t *io_end = private;
3646
3647         /* if not async direct IO just return */
3648         if (!io_end)
3649                 return 0;
3650
3651         ext_debug("ext4_end_io_dio(): io_end 0x%p "
3652                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3653                   io_end, io_end->inode->i_ino, iocb, offset, size);
3654
3655         /*
3656          * Error during AIO DIO. We cannot convert unwritten extents as the
3657          * data was not written. Just clear the unwritten flag and drop io_end.
3658          */
3659         if (size <= 0) {
3660                 ext4_clear_io_unwritten_flag(io_end);
3661                 size = 0;
3662         }
3663         io_end->offset = offset;
3664         io_end->size = size;
3665         ext4_put_io_end(io_end);
3666
3667         return 0;
3668 }
3669
3670 /*
3671  * Handling of direct IO writes.
3672  *
3673  * For ext4 extent files, ext4 will do direct-io write even to holes,
3674  * preallocated extents, and those write extend the file, no need to
3675  * fall back to buffered IO.
3676  *
3677  * For holes, we fallocate those blocks, mark them as unwritten
3678  * If those blocks were preallocated, we mark sure they are split, but
3679  * still keep the range to write as unwritten.
3680  *
3681  * The unwritten extents will be converted to written when DIO is completed.
3682  * For async direct IO, since the IO may still pending when return, we
3683  * set up an end_io call back function, which will do the conversion
3684  * when async direct IO completed.
3685  *
3686  * If the O_DIRECT write will extend the file then add this inode to the
3687  * orphan list.  So recovery will truncate it back to the original size
3688  * if the machine crashes during the write.
3689  *
3690  */
3691 static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
3692 {
3693         struct file *file = iocb->ki_filp;
3694         struct inode *inode = file->f_mapping->host;
3695         struct ext4_inode_info *ei = EXT4_I(inode);
3696         ssize_t ret;
3697         loff_t offset = iocb->ki_pos;
3698         size_t count = iov_iter_count(iter);
3699         int overwrite = 0;
3700         get_block_t *get_block_func = NULL;
3701         int dio_flags = 0;
3702         loff_t final_size = offset + count;
3703         int orphan = 0;
3704         handle_t *handle;
3705
3706         if (final_size > inode->i_size || final_size > ei->i_disksize) {
3707                 /* Credits for sb + inode write */
3708                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3709                 if (IS_ERR(handle)) {
3710                         ret = PTR_ERR(handle);
3711                         goto out;
3712                 }
3713                 ret = ext4_orphan_add(handle, inode);
3714                 if (ret) {
3715                         ext4_journal_stop(handle);
3716                         goto out;
3717                 }
3718                 orphan = 1;
3719                 ext4_update_i_disksize(inode, inode->i_size);
3720                 ext4_journal_stop(handle);
3721         }
3722
3723         BUG_ON(iocb->private == NULL);
3724
3725         /*
3726          * Make all waiters for direct IO properly wait also for extent
3727          * conversion. This also disallows race between truncate() and
3728          * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3729          */
3730         inode_dio_begin(inode);
3731
3732         /* If we do a overwrite dio, i_mutex locking can be released */
3733         overwrite = *((int *)iocb->private);
3734
3735         if (overwrite)
3736                 inode_unlock(inode);
3737
3738         /*
3739          * For extent mapped files we could direct write to holes and fallocate.
3740          *
3741          * Allocated blocks to fill the hole are marked as unwritten to prevent
3742          * parallel buffered read to expose the stale data before DIO complete
3743          * the data IO.
3744          *
3745          * As to previously fallocated extents, ext4 get_block will just simply
3746          * mark the buffer mapped but still keep the extents unwritten.
3747          *
3748          * For non AIO case, we will convert those unwritten extents to written
3749          * after return back from blockdev_direct_IO. That way we save us from
3750          * allocating io_end structure and also the overhead of offloading
3751          * the extent convertion to a workqueue.
3752          *
3753          * For async DIO, the conversion needs to be deferred when the
3754          * IO is completed. The ext4 end_io callback function will be
3755          * called to take care of the conversion work.  Here for async
3756          * case, we allocate an io_end structure to hook to the iocb.
3757          */
3758         iocb->private = NULL;
3759         if (overwrite)
3760                 get_block_func = ext4_dio_get_block_overwrite;
3761         else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
3762                    round_down(offset, i_blocksize(inode)) >= inode->i_size) {
3763                 get_block_func = ext4_dio_get_block;
3764                 dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3765         } else if (is_sync_kiocb(iocb)) {
3766                 get_block_func = ext4_dio_get_block_unwritten_sync;
3767                 dio_flags = DIO_LOCKING;
3768         } else {
3769                 get_block_func = ext4_dio_get_block_unwritten_async;
3770                 dio_flags = DIO_LOCKING;
3771         }
3772         ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
3773                                    get_block_func, ext4_end_io_dio, NULL,
3774                                    dio_flags);
3775
3776         if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3777                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3778                 int err;
3779                 /*
3780                  * for non AIO case, since the IO is already
3781                  * completed, we could do the conversion right here
3782                  */
3783                 err = ext4_convert_unwritten_extents(NULL, inode,
3784                                                      offset, ret);
3785                 if (err < 0)
3786                         ret = err;
3787                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3788         }
3789
3790         inode_dio_end(inode);
3791         /* take i_mutex locking again if we do a ovewrite dio */
3792         if (overwrite)
3793                 inode_lock(inode);
3794
3795         if (ret < 0 && final_size > inode->i_size)
3796                 ext4_truncate_failed_write(inode);
3797
3798         /* Handle extending of i_size after direct IO write */
3799         if (orphan) {
3800                 int err;
3801
3802                 /* Credits for sb + inode write */
3803                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3804                 if (IS_ERR(handle)) {
3805                         /*
3806                          * We wrote the data but cannot extend
3807                          * i_size. Bail out. In async io case, we do
3808                          * not return error here because we have
3809                          * already submmitted the corresponding
3810                          * bio. Returning error here makes the caller
3811                          * think that this IO is done and failed
3812                          * resulting in race with bio's completion
3813                          * handler.
3814                          */
3815                         if (!ret)
3816                                 ret = PTR_ERR(handle);
3817                         if (inode->i_nlink)
3818                                 ext4_orphan_del(NULL, inode);
3819
3820                         goto out;
3821                 }
3822                 if (inode->i_nlink)
3823                         ext4_orphan_del(handle, inode);
3824                 if (ret > 0) {
3825                         loff_t end = offset + ret;
3826                         if (end > inode->i_size || end > ei->i_disksize) {
3827                                 ext4_update_i_disksize(inode, end);
3828                                 if (end > inode->i_size)
3829                                         i_size_write(inode, end);
3830                                 /*
3831                                  * We're going to return a positive `ret'
3832                                  * here due to non-zero-length I/O, so there's
3833                                  * no way of reporting error returns from
3834                                  * ext4_mark_inode_dirty() to userspace.  So
3835                                  * ignore it.
3836                                  */
3837                                 ext4_mark_inode_dirty(handle, inode);
3838                         }
3839                 }
3840                 err = ext4_journal_stop(handle);
3841                 if (ret == 0)
3842                         ret = err;
3843         }
3844 out:
3845         return ret;
3846 }
3847
3848 static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
3849 {
3850         struct address_space *mapping = iocb->ki_filp->f_mapping;
3851         struct inode *inode = mapping->host;
3852         size_t count = iov_iter_count(iter);
3853         ssize_t ret;
3854
3855         /*
3856          * Shared inode_lock is enough for us - it protects against concurrent
3857          * writes & truncates and since we take care of writing back page cache,
3858          * we are protected against page writeback as well.
3859          */
3860         inode_lock_shared(inode);
3861         ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
3862                                            iocb->ki_pos + count - 1);
3863         if (ret)
3864                 goto out_unlock;
3865         ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3866                                    iter, ext4_dio_get_block, NULL, NULL, 0);
3867 out_unlock:
3868         inode_unlock_shared(inode);
3869         return ret;
3870 }
3871
3872 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3873 {
3874         struct file *file = iocb->ki_filp;
3875         struct inode *inode = file->f_mapping->host;
3876         size_t count = iov_iter_count(iter);
3877         loff_t offset = iocb->ki_pos;
3878         ssize_t ret;
3879
3880 #ifdef CONFIG_FS_ENCRYPTION
3881         if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
3882                 return 0;
3883 #endif
3884
3885         /*
3886          * If we are doing data journalling we don't support O_DIRECT
3887          */
3888         if (ext4_should_journal_data(inode))
3889                 return 0;
3890
3891         /* Let buffer I/O handle the inline data case. */
3892         if (ext4_has_inline_data(inode))
3893                 return 0;
3894
3895         trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3896         if (iov_iter_rw(iter) == READ)
3897                 ret = ext4_direct_IO_read(iocb, iter);
3898         else
3899                 ret = ext4_direct_IO_write(iocb, iter);
3900         trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3901         return ret;
3902 }
3903
3904 /*
3905  * Pages can be marked dirty completely asynchronously from ext4's journalling
3906  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3907  * much here because ->set_page_dirty is called under VFS locks.  The page is
3908  * not necessarily locked.
3909  *
3910  * We cannot just dirty the page and leave attached buffers clean, because the
3911  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3912  * or jbddirty because all the journalling code will explode.
3913  *
3914  * So what we do is to mark the page "pending dirty" and next time writepage
3915  * is called, propagate that into the buffers appropriately.
3916  */
3917 static int ext4_journalled_set_page_dirty(struct page *page)
3918 {
3919         SetPageChecked(page);
3920         return __set_page_dirty_nobuffers(page);
3921 }
3922
3923 static int ext4_set_page_dirty(struct page *page)
3924 {
3925         WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3926         WARN_ON_ONCE(!page_has_buffers(page));
3927         return __set_page_dirty_buffers(page);
3928 }
3929
3930 static const struct address_space_operations ext4_aops = {
3931         .readpage               = ext4_readpage,
3932         .readpages              = ext4_readpages,
3933         .writepage              = ext4_writepage,
3934         .writepages             = ext4_writepages,
3935         .write_begin            = ext4_write_begin,
3936         .write_end              = ext4_write_end,
3937         .set_page_dirty         = ext4_set_page_dirty,
3938         .bmap                   = ext4_bmap,
3939         .invalidatepage         = ext4_invalidatepage,
3940         .releasepage            = ext4_releasepage,
3941         .direct_IO              = ext4_direct_IO,
3942         .migratepage            = buffer_migrate_page,
3943         .is_partially_uptodate  = block_is_partially_uptodate,
3944         .error_remove_page      = generic_error_remove_page,
3945 };
3946
3947 static const struct address_space_operations ext4_journalled_aops = {
3948         .readpage               = ext4_readpage,
3949         .readpages              = ext4_readpages,
3950         .writepage              = ext4_writepage,
3951         .writepages             = ext4_writepages,
3952         .write_begin            = ext4_write_begin,
3953         .write_end              = ext4_journalled_write_end,
3954         .set_page_dirty         = ext4_journalled_set_page_dirty,
3955         .bmap                   = ext4_bmap,
3956         .invalidatepage         = ext4_journalled_invalidatepage,
3957         .releasepage            = ext4_releasepage,
3958         .direct_IO              = ext4_direct_IO,
3959         .is_partially_uptodate  = block_is_partially_uptodate,
3960         .error_remove_page      = generic_error_remove_page,
3961 };
3962
3963 static const struct address_space_operations ext4_da_aops = {
3964         .readpage               = ext4_readpage,
3965         .readpages              = ext4_readpages,
3966         .writepage              = ext4_writepage,
3967         .writepages             = ext4_writepages,
3968         .write_begin            = ext4_da_write_begin,
3969         .write_end              = ext4_da_write_end,
3970         .set_page_dirty         = ext4_set_page_dirty,
3971         .bmap                   = ext4_bmap,
3972         .invalidatepage         = ext4_da_invalidatepage,
3973         .releasepage            = ext4_releasepage,
3974         .direct_IO              = ext4_direct_IO,
3975         .migratepage            = buffer_migrate_page,
3976         .is_partially_uptodate  = block_is_partially_uptodate,
3977         .error_remove_page      = generic_error_remove_page,
3978 };
3979
3980 static const struct address_space_operations ext4_dax_aops = {
3981         .writepages             = ext4_dax_writepages,
3982         .direct_IO              = noop_direct_IO,
3983         .set_page_dirty         = noop_set_page_dirty,
3984         .bmap                   = ext4_bmap,
3985         .invalidatepage         = noop_invalidatepage,
3986 };
3987
3988 void ext4_set_aops(struct inode *inode)
3989 {
3990         switch (ext4_inode_journal_mode(inode)) {
3991         case EXT4_INODE_ORDERED_DATA_MODE:
3992         case EXT4_INODE_WRITEBACK_DATA_MODE:
3993                 break;
3994         case EXT4_INODE_JOURNAL_DATA_MODE:
3995                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3996                 return;
3997         default:
3998                 BUG();
3999         }
4000         if (IS_DAX(inode))
4001                 inode->i_mapping->a_ops = &ext4_dax_aops;
4002         else if (test_opt(inode->i_sb, DELALLOC))
4003                 inode->i_mapping->a_ops = &ext4_da_aops;
4004         else
4005                 inode->i_mapping->a_ops = &ext4_aops;
4006 }
4007
4008 static int __ext4_block_zero_page_range(handle_t *handle,
4009                 struct address_space *mapping, loff_t from, loff_t length)
4010 {
4011         ext4_fsblk_t index = from >> PAGE_SHIFT;
4012         unsigned offset = from & (PAGE_SIZE-1);
4013         unsigned blocksize, pos;
4014         ext4_lblk_t iblock;
4015         struct inode *inode = mapping->host;
4016         struct buffer_head *bh;
4017         struct page *page;
4018         int err = 0;
4019
4020         page = find_or_create_page(mapping, from >> PAGE_SHIFT,
4021                                    mapping_gfp_constraint(mapping, ~__GFP_FS));
4022         if (!page)
4023                 return -ENOMEM;
4024
4025         blocksize = inode->i_sb->s_blocksize;
4026
4027         iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
4028
4029         if (!page_has_buffers(page))
4030                 create_empty_buffers(page, blocksize, 0);
4031
4032         /* Find the buffer that contains "offset" */
4033         bh = page_buffers(page);
4034         pos = blocksize;
4035         while (offset >= pos) {
4036                 bh = bh->b_this_page;
4037                 iblock++;
4038                 pos += blocksize;
4039         }
4040         if (buffer_freed(bh)) {
4041                 BUFFER_TRACE(bh, "freed: skip");
4042                 goto unlock;
4043         }
4044         if (!buffer_mapped(bh)) {
4045                 BUFFER_TRACE(bh, "unmapped");
4046                 ext4_get_block(inode, iblock, bh, 0);
4047                 /* unmapped? It's a hole - nothing to do */
4048                 if (!buffer_mapped(bh)) {
4049                         BUFFER_TRACE(bh, "still unmapped");
4050                         goto unlock;
4051                 }
4052         }
4053
4054         /* Ok, it's mapped. Make sure it's up-to-date */
4055         if (PageUptodate(page))
4056                 set_buffer_uptodate(bh);
4057
4058         if (!buffer_uptodate(bh)) {
4059                 err = -EIO;
4060                 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
4061                 wait_on_buffer(bh);
4062                 /* Uhhuh. Read error. Complain and punt. */
4063                 if (!buffer_uptodate(bh))
4064                         goto unlock;
4065                 if (S_ISREG(inode->i_mode) && IS_ENCRYPTED(inode)) {
4066                         /* We expect the key to be set. */
4067                         BUG_ON(!fscrypt_has_encryption_key(inode));
4068                         BUG_ON(blocksize != PAGE_SIZE);
4069                         WARN_ON_ONCE(fscrypt_decrypt_page(page->mapping->host,
4070                                                 page, PAGE_SIZE, 0, page->index));
4071                 }
4072         }
4073         if (ext4_should_journal_data(inode)) {
4074                 BUFFER_TRACE(bh, "get write access");
4075                 err = ext4_journal_get_write_access(handle, bh);
4076                 if (err)
4077                         goto unlock;
4078         }
4079         zero_user(page, offset, length);
4080         BUFFER_TRACE(bh, "zeroed end of block");
4081
4082         if (ext4_should_journal_data(inode)) {
4083                 err = ext4_handle_dirty_metadata(handle, inode, bh);
4084         } else {
4085                 err = 0;
4086                 mark_buffer_dirty(bh);
4087                 if (ext4_should_order_data(inode))
4088                         err = ext4_jbd2_inode_add_write(handle, inode);
4089         }
4090
4091 unlock:
4092         unlock_page(page);
4093         put_page(page);
4094         return err;
4095 }
4096
4097 /*
4098  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
4099  * starting from file offset 'from'.  The range to be zero'd must
4100  * be contained with in one block.  If the specified range exceeds
4101  * the end of the block it will be shortened to end of the block
4102  * that cooresponds to 'from'
4103  */
4104 static int ext4_block_zero_page_range(handle_t *handle,
4105                 struct address_space *mapping, loff_t from, loff_t length)
4106 {
4107         struct inode *inode = mapping->host;
4108         unsigned offset = from & (PAGE_SIZE-1);
4109         unsigned blocksize = inode->i_sb->s_blocksize;
4110         unsigned max = blocksize - (offset & (blocksize - 1));
4111
4112         /*
4113          * correct length if it does not fall between
4114          * 'from' and the end of the block
4115          */
4116         if (length > max || length < 0)
4117                 length = max;
4118
4119         if (IS_DAX(inode)) {
4120                 return iomap_zero_range(inode, from, length, NULL,
4121                                         &ext4_iomap_ops);
4122         }
4123         return __ext4_block_zero_page_range(handle, mapping, from, length);
4124 }
4125
4126 /*
4127  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
4128  * up to the end of the block which corresponds to `from'.
4129  * This required during truncate. We need to physically zero the tail end
4130  * of that block so it doesn't yield old data if the file is later grown.
4131  */
4132 static int ext4_block_truncate_page(handle_t *handle,
4133                 struct address_space *mapping, loff_t from)
4134 {
4135         unsigned offset = from & (PAGE_SIZE-1);
4136         unsigned length;
4137         unsigned blocksize;
4138         struct inode *inode = mapping->host;
4139
4140         /* If we are processing an encrypted inode during orphan list handling */
4141         if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
4142                 return 0;
4143
4144         blocksize = inode->i_sb->s_blocksize;
4145         length = blocksize - (offset & (blocksize - 1));
4146
4147         return ext4_block_zero_page_range(handle, mapping, from, length);
4148 }
4149
4150 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
4151                              loff_t lstart, loff_t length)
4152 {
4153         struct super_block *sb = inode->i_sb;
4154         struct address_space *mapping = inode->i_mapping;
4155         unsigned partial_start, partial_end;
4156         ext4_fsblk_t start, end;
4157         loff_t byte_end = (lstart + length - 1);
4158         int err = 0;
4159
4160         partial_start = lstart & (sb->s_blocksize - 1);
4161         partial_end = byte_end & (sb->s_blocksize - 1);
4162
4163         start = lstart >> sb->s_blocksize_bits;
4164         end = byte_end >> sb->s_blocksize_bits;
4165
4166         /* Handle partial zero within the single block */
4167         if (start == end &&
4168             (partial_start || (partial_end != sb->s_blocksize - 1))) {
4169                 err = ext4_block_zero_page_range(handle, mapping,
4170                                                  lstart, length);
4171                 return err;
4172         }
4173         /* Handle partial zero out on the start of the range */
4174         if (partial_start) {
4175                 err = ext4_block_zero_page_range(handle, mapping,
4176                                                  lstart, sb->s_blocksize);
4177                 if (err)
4178                         return err;
4179         }
4180         /* Handle partial zero out on the end of the range */
4181         if (partial_end != sb->s_blocksize - 1)
4182                 err = ext4_block_zero_page_range(handle, mapping,
4183                                                  byte_end - partial_end,
4184                                                  partial_end + 1);
4185         return err;
4186 }
4187
4188 int ext4_can_truncate(struct inode *inode)
4189 {
4190         if (S_ISREG(inode->i_mode))
4191                 return 1;
4192         if (S_ISDIR(inode->i_mode))
4193                 return 1;
4194         if (S_ISLNK(inode->i_mode))
4195                 return !ext4_inode_is_fast_symlink(inode);
4196         return 0;
4197 }
4198
4199 /*
4200  * We have to make sure i_disksize gets properly updated before we truncate
4201  * page cache due to hole punching or zero range. Otherwise i_disksize update
4202  * can get lost as it may have been postponed to submission of writeback but
4203  * that will never happen after we truncate page cache.
4204  */
4205 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
4206                                       loff_t len)
4207 {
4208         handle_t *handle;
4209         loff_t size = i_size_read(inode);
4210
4211         WARN_ON(!inode_is_locked(inode));
4212         if (offset > size || offset + len < size)
4213                 return 0;
4214
4215         if (EXT4_I(inode)->i_disksize >= size)
4216                 return 0;
4217
4218         handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
4219         if (IS_ERR(handle))
4220                 return PTR_ERR(handle);
4221         ext4_update_i_disksize(inode, size);
4222         ext4_mark_inode_dirty(handle, inode);
4223         ext4_journal_stop(handle);
4224
4225         return 0;
4226 }
4227
4228 static void ext4_wait_dax_page(struct ext4_inode_info *ei)
4229 {
4230         up_write(&ei->i_mmap_sem);
4231         schedule();
4232         down_write(&ei->i_mmap_sem);
4233 }
4234
4235 int ext4_break_layouts(struct inode *inode)
4236 {
4237         struct ext4_inode_info *ei = EXT4_I(inode);
4238         struct page *page;
4239         int error;
4240
4241         if (WARN_ON_ONCE(!rwsem_is_locked(&ei->i_mmap_sem)))
4242                 return -EINVAL;
4243
4244         do {
4245                 page = dax_layout_busy_page(inode->i_mapping);
4246                 if (!page)
4247                         return 0;
4248
4249                 error = ___wait_var_event(&page->_refcount,
4250                                 atomic_read(&page->_refcount) == 1,
4251                                 TASK_INTERRUPTIBLE, 0, 0,
4252                                 ext4_wait_dax_page(ei));
4253         } while (error == 0);
4254
4255         return error;
4256 }
4257
4258 /*
4259  * ext4_punch_hole: punches a hole in a file by releasing the blocks
4260  * associated with the given offset and length
4261  *
4262  * @inode:  File inode
4263  * @offset: The offset where the hole will begin
4264  * @len:    The length of the hole
4265  *
4266  * Returns: 0 on success or negative on failure
4267  */
4268
4269 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
4270 {
4271         struct super_block *sb = inode->i_sb;
4272         ext4_lblk_t first_block, stop_block;
4273         struct address_space *mapping = inode->i_mapping;
4274         loff_t first_block_offset, last_block_offset;
4275         handle_t *handle;
4276         unsigned int credits;
4277         int ret = 0;
4278
4279         if (!S_ISREG(inode->i_mode))
4280                 return -EOPNOTSUPP;
4281
4282         trace_ext4_punch_hole(inode, offset, length, 0);
4283
4284         /*
4285          * Write out all dirty pages to avoid race conditions
4286          * Then release them.
4287          */
4288         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4289                 ret = filemap_write_and_wait_range(mapping, offset,
4290                                                    offset + length - 1);
4291                 if (ret)
4292                         return ret;
4293         }
4294
4295         inode_lock(inode);
4296
4297         /* No need to punch hole beyond i_size */
4298         if (offset >= inode->i_size)
4299                 goto out_mutex;
4300
4301         /*
4302          * If the hole extends beyond i_size, set the hole
4303          * to end after the page that contains i_size
4304          */
4305         if (offset + length > inode->i_size) {
4306                 length = inode->i_size +
4307                    PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4308                    offset;
4309         }
4310
4311         if (offset & (sb->s_blocksize - 1) ||
4312             (offset + length) & (sb->s_blocksize - 1)) {
4313                 /*
4314                  * Attach jinode to inode for jbd2 if we do any zeroing of
4315                  * partial block
4316                  */
4317                 ret = ext4_inode_attach_jinode(inode);
4318                 if (ret < 0)
4319                         goto out_mutex;
4320
4321         }
4322
4323         /* Wait all existing dio workers, newcomers will block on i_mutex */
4324         inode_dio_wait(inode);
4325
4326         /*
4327          * Prevent page faults from reinstantiating pages we have released from
4328          * page cache.
4329          */
4330         down_write(&EXT4_I(inode)->i_mmap_sem);
4331
4332         ret = ext4_break_layouts(inode);
4333         if (ret)
4334                 goto out_dio;
4335
4336         first_block_offset = round_up(offset, sb->s_blocksize);
4337         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4338
4339         /* Now release the pages and zero block aligned part of pages*/
4340         if (last_block_offset > first_block_offset) {
4341                 ret = ext4_update_disksize_before_punch(inode, offset, length);
4342                 if (ret)
4343                         goto out_dio;
4344                 truncate_pagecache_range(inode, first_block_offset,
4345                                          last_block_offset);
4346         }
4347
4348         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4349                 credits = ext4_writepage_trans_blocks(inode);
4350         else
4351                 credits = ext4_blocks_for_truncate(inode);
4352         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4353         if (IS_ERR(handle)) {
4354                 ret = PTR_ERR(handle);
4355                 ext4_std_error(sb, ret);
4356                 goto out_dio;
4357         }
4358
4359         ret = ext4_zero_partial_blocks(handle, inode, offset,
4360                                        length);
4361         if (ret)
4362                 goto out_stop;
4363
4364         first_block = (offset + sb->s_blocksize - 1) >>
4365                 EXT4_BLOCK_SIZE_BITS(sb);
4366         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4367
4368         /* If there are blocks to remove, do it */
4369         if (stop_block > first_block) {
4370
4371                 down_write(&EXT4_I(inode)->i_data_sem);
4372                 ext4_discard_preallocations(inode);
4373
4374                 ret = ext4_es_remove_extent(inode, first_block,
4375                                             stop_block - first_block);
4376                 if (ret) {
4377                         up_write(&EXT4_I(inode)->i_data_sem);
4378                         goto out_stop;
4379                 }
4380
4381                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4382                         ret = ext4_ext_remove_space(inode, first_block,
4383                                                     stop_block - 1);
4384                 else
4385                         ret = ext4_ind_remove_space(handle, inode, first_block,
4386                                                     stop_block);
4387
4388                 up_write(&EXT4_I(inode)->i_data_sem);
4389         }
4390         if (IS_SYNC(inode))
4391                 ext4_handle_sync(handle);
4392
4393         inode->i_mtime = inode->i_ctime = current_time(inode);
4394         ext4_mark_inode_dirty(handle, inode);
4395         if (ret >= 0)
4396                 ext4_update_inode_fsync_trans(handle, inode, 1);
4397 out_stop:
4398         ext4_journal_stop(handle);
4399 out_dio:
4400         up_write(&EXT4_I(inode)->i_mmap_sem);
4401 out_mutex:
4402         inode_unlock(inode);
4403         return ret;
4404 }
4405
4406 int ext4_inode_attach_jinode(struct inode *inode)
4407 {
4408         struct ext4_inode_info *ei = EXT4_I(inode);
4409         struct jbd2_inode *jinode;
4410
4411         if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4412                 return 0;
4413
4414         jinode = jbd2_alloc_inode(GFP_KERNEL);
4415         spin_lock(&inode->i_lock);
4416         if (!ei->jinode) {
4417                 if (!jinode) {
4418                         spin_unlock(&inode->i_lock);
4419                         return -ENOMEM;
4420                 }
4421                 ei->jinode = jinode;
4422                 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4423                 jinode = NULL;
4424         }
4425         spin_unlock(&inode->i_lock);
4426         if (unlikely(jinode != NULL))
4427                 jbd2_free_inode(jinode);
4428         return 0;
4429 }
4430
4431 /*
4432  * ext4_truncate()
4433  *
4434  * We block out ext4_get_block() block instantiations across the entire
4435  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4436  * simultaneously on behalf of the same inode.
4437  *
4438  * As we work through the truncate and commit bits of it to the journal there
4439  * is one core, guiding principle: the file's tree must always be consistent on
4440  * disk.  We must be able to restart the truncate after a crash.
4441  *
4442  * The file's tree may be transiently inconsistent in memory (although it
4443  * probably isn't), but whenever we close off and commit a journal transaction,
4444  * the contents of (the filesystem + the journal) must be consistent and
4445  * restartable.  It's pretty simple, really: bottom up, right to left (although
4446  * left-to-right works OK too).
4447  *
4448  * Note that at recovery time, journal replay occurs *before* the restart of
4449  * truncate against the orphan inode list.
4450  *
4451  * The committed inode has the new, desired i_size (which is the same as
4452  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4453  * that this inode's truncate did not complete and it will again call
4454  * ext4_truncate() to have another go.  So there will be instantiated blocks
4455  * to the right of the truncation point in a crashed ext4 filesystem.  But
4456  * that's fine - as long as they are linked from the inode, the post-crash
4457  * ext4_truncate() run will find them and release them.
4458  */
4459 int ext4_truncate(struct inode *inode)
4460 {
4461         struct ext4_inode_info *ei = EXT4_I(inode);
4462         unsigned int credits;
4463         int err = 0;
4464         handle_t *handle;
4465         struct address_space *mapping = inode->i_mapping;
4466
4467         /*
4468          * There is a possibility that we're either freeing the inode
4469          * or it's a completely new inode. In those cases we might not
4470          * have i_mutex locked because it's not necessary.
4471          */
4472         if (!(inode->i_state & (I_NEW|I_FREEING)))
4473                 WARN_ON(!inode_is_locked(inode));
4474         trace_ext4_truncate_enter(inode);
4475
4476         if (!ext4_can_truncate(inode))
4477                 return 0;
4478
4479         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4480
4481         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4482                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4483
4484         if (ext4_has_inline_data(inode)) {
4485                 int has_inline = 1;
4486
4487                 err = ext4_inline_data_truncate(inode, &has_inline);
4488                 if (err)
4489                         return err;
4490                 if (has_inline)
4491                         return 0;
4492         }
4493
4494         /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4495         if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4496                 if (ext4_inode_attach_jinode(inode) < 0)
4497                         return 0;
4498         }
4499
4500         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4501                 credits = ext4_writepage_trans_blocks(inode);
4502         else
4503                 credits = ext4_blocks_for_truncate(inode);
4504
4505         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4506         if (IS_ERR(handle))
4507                 return PTR_ERR(handle);
4508
4509         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4510                 ext4_block_truncate_page(handle, mapping, inode->i_size);
4511
4512         /*
4513          * We add the inode to the orphan list, so that if this
4514          * truncate spans multiple transactions, and we crash, we will
4515          * resume the truncate when the filesystem recovers.  It also
4516          * marks the inode dirty, to catch the new size.
4517          *
4518          * Implication: the file must always be in a sane, consistent
4519          * truncatable state while each transaction commits.
4520          */
4521         err = ext4_orphan_add(handle, inode);
4522         if (err)
4523                 goto out_stop;
4524
4525         down_write(&EXT4_I(inode)->i_data_sem);
4526
4527         ext4_discard_preallocations(inode);
4528
4529         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4530                 err = ext4_ext_truncate(handle, inode);
4531         else
4532                 ext4_ind_truncate(handle, inode);
4533
4534         up_write(&ei->i_data_sem);
4535         if (err)
4536                 goto out_stop;
4537
4538         if (IS_SYNC(inode))
4539                 ext4_handle_sync(handle);
4540
4541 out_stop:
4542         /*
4543          * If this was a simple ftruncate() and the file will remain alive,
4544          * then we need to clear up the orphan record which we created above.
4545          * However, if this was a real unlink then we were called by
4546          * ext4_evict_inode(), and we allow that function to clean up the
4547          * orphan info for us.
4548          */
4549         if (inode->i_nlink)
4550                 ext4_orphan_del(handle, inode);
4551
4552         inode->i_mtime = inode->i_ctime = current_time(inode);
4553         ext4_mark_inode_dirty(handle, inode);
4554         ext4_journal_stop(handle);
4555
4556         trace_ext4_truncate_exit(inode);
4557         return err;
4558 }
4559
4560 /*
4561  * ext4_get_inode_loc returns with an extra refcount against the inode's
4562  * underlying buffer_head on success. If 'in_mem' is true, we have all
4563  * data in memory that is needed to recreate the on-disk version of this
4564  * inode.
4565  */
4566 static int __ext4_get_inode_loc(struct inode *inode,
4567                                 struct ext4_iloc *iloc, int in_mem)
4568 {
4569         struct ext4_group_desc  *gdp;
4570         struct buffer_head      *bh;
4571         struct super_block      *sb = inode->i_sb;
4572         ext4_fsblk_t            block;
4573         int                     inodes_per_block, inode_offset;
4574
4575         iloc->bh = NULL;
4576         if (inode->i_ino < EXT4_ROOT_INO ||
4577             inode->i_ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4578                 return -EFSCORRUPTED;
4579
4580         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4581         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4582         if (!gdp)
4583                 return -EIO;
4584
4585         /*
4586          * Figure out the offset within the block group inode table
4587          */
4588         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4589         inode_offset = ((inode->i_ino - 1) %
4590                         EXT4_INODES_PER_GROUP(sb));
4591         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4592         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4593
4594         bh = sb_getblk(sb, block);
4595         if (unlikely(!bh))
4596                 return -ENOMEM;
4597         if (!buffer_uptodate(bh)) {
4598                 lock_buffer(bh);
4599
4600                 /*
4601                  * If the buffer has the write error flag, we have failed
4602                  * to write out another inode in the same block.  In this
4603                  * case, we don't have to read the block because we may
4604                  * read the old inode data successfully.
4605                  */
4606                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4607                         set_buffer_uptodate(bh);
4608
4609                 if (buffer_uptodate(bh)) {
4610                         /* someone brought it uptodate while we waited */
4611                         unlock_buffer(bh);
4612                         goto has_buffer;
4613                 }
4614
4615                 /*
4616                  * If we have all information of the inode in memory and this
4617                  * is the only valid inode in the block, we need not read the
4618                  * block.
4619                  */
4620                 if (in_mem) {
4621                         struct buffer_head *bitmap_bh;
4622                         int i, start;
4623
4624                         start = inode_offset & ~(inodes_per_block - 1);
4625
4626                         /* Is the inode bitmap in cache? */
4627                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4628                         if (unlikely(!bitmap_bh))
4629                                 goto make_io;
4630
4631                         /*
4632                          * If the inode bitmap isn't in cache then the
4633                          * optimisation may end up performing two reads instead
4634                          * of one, so skip it.
4635                          */
4636                         if (!buffer_uptodate(bitmap_bh)) {
4637                                 brelse(bitmap_bh);
4638                                 goto make_io;
4639                         }
4640                         for (i = start; i < start + inodes_per_block; i++) {
4641                                 if (i == inode_offset)
4642                                         continue;
4643                                 if (ext4_test_bit(i, bitmap_bh->b_data))
4644                                         break;
4645                         }
4646                         brelse(bitmap_bh);
4647                         if (i == start + inodes_per_block) {
4648                                 /* all other inodes are free, so skip I/O */
4649                                 memset(bh->b_data, 0, bh->b_size);
4650                                 set_buffer_uptodate(bh);
4651                                 unlock_buffer(bh);
4652                                 goto has_buffer;
4653                         }
4654                 }
4655
4656 make_io:
4657                 /*
4658                  * If we need to do any I/O, try to pre-readahead extra
4659                  * blocks from the inode table.
4660                  */
4661                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4662                         ext4_fsblk_t b, end, table;
4663                         unsigned num;
4664                         __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4665
4666                         table = ext4_inode_table(sb, gdp);
4667                         /* s_inode_readahead_blks is always a power of 2 */
4668                         b = block & ~((ext4_fsblk_t) ra_blks - 1);
4669                         if (table > b)
4670                                 b = table;
4671                         end = b + ra_blks;
4672                         num = EXT4_INODES_PER_GROUP(sb);
4673                         if (ext4_has_group_desc_csum(sb))
4674                                 num -= ext4_itable_unused_count(sb, gdp);
4675                         table += num / inodes_per_block;
4676                         if (end > table)
4677                                 end = table;
4678                         while (b <= end)
4679                                 sb_breadahead(sb, b++);
4680                 }
4681
4682                 /*
4683                  * There are other valid inodes in the buffer, this inode
4684                  * has in-inode xattrs, or we don't have this inode in memory.
4685                  * Read the block from disk.
4686                  */
4687                 trace_ext4_load_inode(inode);
4688                 get_bh(bh);
4689                 bh->b_end_io = end_buffer_read_sync;
4690                 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4691                 wait_on_buffer(bh);
4692                 if (!buffer_uptodate(bh)) {
4693                         EXT4_ERROR_INODE_BLOCK(inode, block,
4694                                                "unable to read itable block");
4695                         brelse(bh);
4696                         return -EIO;
4697                 }
4698         }
4699 has_buffer:
4700         iloc->bh = bh;
4701         return 0;
4702 }
4703
4704 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4705 {
4706         /* We have all inode data except xattrs in memory here. */
4707         return __ext4_get_inode_loc(inode, iloc,
4708                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4709 }
4710
4711 static bool ext4_should_use_dax(struct inode *inode)
4712 {
4713         if (!test_opt(inode->i_sb, DAX))
4714                 return false;
4715         if (!S_ISREG(inode->i_mode))
4716                 return false;
4717         if (ext4_should_journal_data(inode))
4718                 return false;
4719         if (ext4_has_inline_data(inode))
4720                 return false;
4721         if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4722                 return false;
4723         return true;
4724 }
4725
4726 void ext4_set_inode_flags(struct inode *inode)
4727 {
4728         unsigned int flags = EXT4_I(inode)->i_flags;
4729         unsigned int new_fl = 0;
4730
4731         if (flags & EXT4_SYNC_FL)
4732                 new_fl |= S_SYNC;
4733         if (flags & EXT4_APPEND_FL)
4734                 new_fl |= S_APPEND;
4735         if (flags & EXT4_IMMUTABLE_FL)
4736                 new_fl |= S_IMMUTABLE;
4737         if (flags & EXT4_NOATIME_FL)
4738                 new_fl |= S_NOATIME;
4739         if (flags & EXT4_DIRSYNC_FL)
4740                 new_fl |= S_DIRSYNC;
4741         if (ext4_should_use_dax(inode))
4742                 new_fl |= S_DAX;
4743         if (flags & EXT4_ENCRYPT_FL)
4744                 new_fl |= S_ENCRYPTED;
4745         if (flags & EXT4_CASEFOLD_FL)
4746                 new_fl |= S_CASEFOLD;
4747         inode_set_flags(inode, new_fl,
4748                         S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4749                         S_ENCRYPTED|S_CASEFOLD);
4750 }
4751
4752 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4753                                   struct ext4_inode_info *ei)
4754 {
4755         blkcnt_t i_blocks ;
4756         struct inode *inode = &(ei->vfs_inode);
4757         struct super_block *sb = inode->i_sb;
4758
4759         if (ext4_has_feature_huge_file(sb)) {
4760                 /* we are using combined 48 bit field */
4761                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4762                                         le32_to_cpu(raw_inode->i_blocks_lo);
4763                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4764                         /* i_blocks represent file system block size */
4765                         return i_blocks  << (inode->i_blkbits - 9);
4766                 } else {
4767                         return i_blocks;
4768                 }
4769         } else {
4770                 return le32_to_cpu(raw_inode->i_blocks_lo);
4771         }
4772 }
4773
4774 static inline int ext4_iget_extra_inode(struct inode *inode,
4775                                          struct ext4_inode *raw_inode,
4776                                          struct ext4_inode_info *ei)
4777 {
4778         __le32 *magic = (void *)raw_inode +
4779                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4780
4781         if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4782             EXT4_INODE_SIZE(inode->i_sb) &&
4783             *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4784                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4785                 return ext4_find_inline_data_nolock(inode);
4786         } else
4787                 EXT4_I(inode)->i_inline_off = 0;
4788         return 0;
4789 }
4790
4791 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4792 {
4793         if (!ext4_has_feature_project(inode->i_sb))
4794                 return -EOPNOTSUPP;
4795         *projid = EXT4_I(inode)->i_projid;
4796         return 0;
4797 }
4798
4799 /*
4800  * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4801  * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4802  * set.
4803  */
4804 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4805 {
4806         if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4807                 inode_set_iversion_raw(inode, val);
4808         else
4809                 inode_set_iversion_queried(inode, val);
4810 }
4811 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4812 {
4813         if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4814                 return inode_peek_iversion_raw(inode);
4815         else
4816                 return inode_peek_iversion(inode);
4817 }
4818
4819 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4820                           ext4_iget_flags flags, const char *function,
4821                           unsigned int line)
4822 {
4823         struct ext4_iloc iloc;
4824         struct ext4_inode *raw_inode;
4825         struct ext4_inode_info *ei;
4826         struct inode *inode;
4827         journal_t *journal = EXT4_SB(sb)->s_journal;
4828         long ret;
4829         loff_t size;
4830         int block;
4831         uid_t i_uid;
4832         gid_t i_gid;
4833         projid_t i_projid;
4834
4835         if ((!(flags & EXT4_IGET_SPECIAL) &&
4836              (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)) ||
4837             (ino < EXT4_ROOT_INO) ||
4838             (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))) {
4839                 if (flags & EXT4_IGET_HANDLE)
4840                         return ERR_PTR(-ESTALE);
4841                 __ext4_error(sb, function, line,
4842                              "inode #%lu: comm %s: iget: illegal inode #",
4843                              ino, current->comm);
4844                 return ERR_PTR(-EFSCORRUPTED);
4845         }
4846
4847         inode = iget_locked(sb, ino);
4848         if (!inode)
4849                 return ERR_PTR(-ENOMEM);
4850         if (!(inode->i_state & I_NEW))
4851                 return inode;
4852
4853         ei = EXT4_I(inode);
4854         iloc.bh = NULL;
4855
4856         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4857         if (ret < 0)
4858                 goto bad_inode;
4859         raw_inode = ext4_raw_inode(&iloc);
4860
4861         if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4862                 ext4_error_inode(inode, function, line, 0,
4863                                  "iget: root inode unallocated");
4864                 ret = -EFSCORRUPTED;
4865                 goto bad_inode;
4866         }
4867
4868         if ((flags & EXT4_IGET_HANDLE) &&
4869             (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4870                 ret = -ESTALE;
4871                 goto bad_inode;
4872         }
4873
4874         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4875                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4876                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4877                         EXT4_INODE_SIZE(inode->i_sb) ||
4878                     (ei->i_extra_isize & 3)) {
4879                         ext4_error_inode(inode, function, line, 0,
4880                                          "iget: bad extra_isize %u "
4881                                          "(inode size %u)",
4882                                          ei->i_extra_isize,
4883                                          EXT4_INODE_SIZE(inode->i_sb));
4884                         ret = -EFSCORRUPTED;
4885                         goto bad_inode;
4886                 }
4887         } else
4888                 ei->i_extra_isize = 0;
4889
4890         /* Precompute checksum seed for inode metadata */
4891         if (ext4_has_metadata_csum(sb)) {
4892                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4893                 __u32 csum;
4894                 __le32 inum = cpu_to_le32(inode->i_ino);
4895                 __le32 gen = raw_inode->i_generation;
4896                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4897                                    sizeof(inum));
4898                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4899                                               sizeof(gen));
4900         }
4901
4902         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4903                 ext4_error_inode(inode, function, line, 0,
4904                                  "iget: checksum invalid");
4905                 ret = -EFSBADCRC;
4906                 goto bad_inode;
4907         }
4908
4909         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4910         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4911         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4912         if (ext4_has_feature_project(sb) &&
4913             EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4914             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4915                 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4916         else
4917                 i_projid = EXT4_DEF_PROJID;
4918
4919         if (!(test_opt(inode->i_sb, NO_UID32))) {
4920                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4921                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4922         }
4923         i_uid_write(inode, i_uid);
4924         i_gid_write(inode, i_gid);
4925         ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4926         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4927
4928         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4929         ei->i_inline_off = 0;
4930         ei->i_dir_start_lookup = 0;
4931         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4932         /* We now have enough fields to check if the inode was active or not.
4933          * This is needed because nfsd might try to access dead inodes
4934          * the test is that same one that e2fsck uses
4935          * NeilBrown 1999oct15
4936          */
4937         if (inode->i_nlink == 0) {
4938                 if ((inode->i_mode == 0 ||
4939                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4940                     ino != EXT4_BOOT_LOADER_INO) {
4941                         /* this inode is deleted */
4942                         ret = -ESTALE;
4943                         goto bad_inode;
4944                 }
4945                 /* The only unlinked inodes we let through here have
4946                  * valid i_mode and are being read by the orphan
4947                  * recovery code: that's fine, we're about to complete
4948                  * the process of deleting those.
4949                  * OR it is the EXT4_BOOT_LOADER_INO which is
4950                  * not initialized on a new filesystem. */
4951         }
4952         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4953         ext4_set_inode_flags(inode);
4954         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4955         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4956         if (ext4_has_feature_64bit(sb))
4957                 ei->i_file_acl |=
4958                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4959         inode->i_size = ext4_isize(sb, raw_inode);
4960         if ((size = i_size_read(inode)) < 0) {
4961                 ext4_error_inode(inode, function, line, 0,
4962                                  "iget: bad i_size value: %lld", size);
4963                 ret = -EFSCORRUPTED;
4964                 goto bad_inode;
4965         }
4966         ei->i_disksize = inode->i_size;
4967 #ifdef CONFIG_QUOTA
4968         ei->i_reserved_quota = 0;
4969 #endif
4970         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4971         ei->i_block_group = iloc.block_group;
4972         ei->i_last_alloc_group = ~0;
4973         /*
4974          * NOTE! The in-memory inode i_data array is in little-endian order
4975          * even on big-endian machines: we do NOT byteswap the block numbers!
4976          */
4977         for (block = 0; block < EXT4_N_BLOCKS; block++)
4978                 ei->i_data[block] = raw_inode->i_block[block];
4979         INIT_LIST_HEAD(&ei->i_orphan);
4980
4981         /*
4982          * Set transaction id's of transactions that have to be committed
4983          * to finish f[data]sync. We set them to currently running transaction
4984          * as we cannot be sure that the inode or some of its metadata isn't
4985          * part of the transaction - the inode could have been reclaimed and
4986          * now it is reread from disk.
4987          */
4988         if (journal) {
4989                 transaction_t *transaction;
4990                 tid_t tid;
4991
4992                 read_lock(&journal->j_state_lock);
4993                 if (journal->j_running_transaction)
4994                         transaction = journal->j_running_transaction;
4995                 else
4996                         transaction = journal->j_committing_transaction;
4997                 if (transaction)
4998                         tid = transaction->t_tid;
4999                 else
5000                         tid = journal->j_commit_sequence;
5001                 read_unlock(&journal->j_state_lock);
5002                 ei->i_sync_tid = tid;
5003                 ei->i_datasync_tid = tid;
5004         }
5005
5006         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5007                 if (ei->i_extra_isize == 0) {
5008                         /* The extra space is currently unused. Use it. */
5009                         BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
5010                         ei->i_extra_isize = sizeof(struct ext4_inode) -
5011                                             EXT4_GOOD_OLD_INODE_SIZE;
5012                 } else {
5013                         ret = ext4_iget_extra_inode(inode, raw_inode, ei);
5014                         if (ret)
5015                                 goto bad_inode;
5016                 }
5017         }
5018
5019         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
5020         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
5021         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
5022         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
5023
5024         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5025                 u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
5026
5027                 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5028                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5029                                 ivers |=
5030                     (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
5031                 }
5032                 ext4_inode_set_iversion_queried(inode, ivers);
5033         }
5034
5035         ret = 0;
5036         if (ei->i_file_acl &&
5037             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
5038                 ext4_error_inode(inode, function, line, 0,
5039                                  "iget: bad extended attribute block %llu",
5040                                  ei->i_file_acl);
5041                 ret = -EFSCORRUPTED;
5042                 goto bad_inode;
5043         } else if (!ext4_has_inline_data(inode)) {
5044                 /* validate the block references in the inode */
5045                 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5046                    (S_ISLNK(inode->i_mode) &&
5047                     !ext4_inode_is_fast_symlink(inode))) {
5048                         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
5049                                 ret = ext4_ext_check_inode(inode);
5050                         else
5051                                 ret = ext4_ind_check_inode(inode);
5052                 }
5053         }
5054         if (ret)
5055                 goto bad_inode;
5056
5057         if (S_ISREG(inode->i_mode)) {
5058                 inode->i_op = &ext4_file_inode_operations;
5059                 inode->i_fop = &ext4_file_operations;
5060                 ext4_set_aops(inode);
5061         } else if (S_ISDIR(inode->i_mode)) {
5062                 inode->i_op = &ext4_dir_inode_operations;
5063                 inode->i_fop = &ext4_dir_operations;
5064         } else if (S_ISLNK(inode->i_mode)) {
5065                 /* VFS does not allow setting these so must be corruption */
5066                 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
5067                         ext4_error_inode(inode, function, line, 0,
5068                                          "iget: immutable or append flags "
5069                                          "not allowed on symlinks");
5070                         ret = -EFSCORRUPTED;
5071                         goto bad_inode;
5072                 }
5073                 if (IS_ENCRYPTED(inode)) {
5074                         inode->i_op = &ext4_encrypted_symlink_inode_operations;
5075                         ext4_set_aops(inode);
5076                 } else if (ext4_inode_is_fast_symlink(inode)) {
5077                         inode->i_link = (char *)ei->i_data;
5078                         inode->i_op = &ext4_fast_symlink_inode_operations;
5079                         nd_terminate_link(ei->i_data, inode->i_size,
5080                                 sizeof(ei->i_data) - 1);
5081                 } else {
5082                         inode->i_op = &ext4_symlink_inode_operations;
5083                         ext4_set_aops(inode);
5084                 }
5085                 inode_nohighmem(inode);
5086         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5087               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5088                 inode->i_op = &ext4_special_inode_operations;
5089                 if (raw_inode->i_block[0])
5090                         init_special_inode(inode, inode->i_mode,
5091                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5092                 else
5093                         init_special_inode(inode, inode->i_mode,
5094                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5095         } else if (ino == EXT4_BOOT_LOADER_INO) {
5096                 make_bad_inode(inode);
5097         } else {
5098                 ret = -EFSCORRUPTED;
5099                 ext4_error_inode(inode, function, line, 0,
5100                                  "iget: bogus i_mode (%o)", inode->i_mode);
5101                 goto bad_inode;
5102         }
5103         brelse(iloc.bh);
5104
5105         unlock_new_inode(inode);
5106         return inode;
5107
5108 bad_inode:
5109         brelse(iloc.bh);
5110         iget_failed(inode);
5111         return ERR_PTR(ret);
5112 }
5113
5114 static int ext4_inode_blocks_set(handle_t *handle,
5115                                 struct ext4_inode *raw_inode,
5116                                 struct ext4_inode_info *ei)
5117 {
5118         struct inode *inode = &(ei->vfs_inode);
5119         u64 i_blocks = inode->i_blocks;
5120         struct super_block *sb = inode->i_sb;
5121
5122         if (i_blocks <= ~0U) {
5123                 /*
5124                  * i_blocks can be represented in a 32 bit variable
5125                  * as multiple of 512 bytes
5126                  */
5127                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5128                 raw_inode->i_blocks_high = 0;
5129                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5130                 return 0;
5131         }
5132         if (!ext4_has_feature_huge_file(sb))
5133                 return -EFBIG;
5134
5135         if (i_blocks <= 0xffffffffffffULL) {
5136                 /*
5137                  * i_blocks can be represented in a 48 bit variable
5138                  * as multiple of 512 bytes
5139                  */
5140                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5141                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5142                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5143         } else {
5144                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5145                 /* i_block is stored in file system block size */
5146                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
5147                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5148                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5149         }
5150         return 0;
5151 }
5152
5153 struct other_inode {
5154         unsigned long           orig_ino;
5155         struct ext4_inode       *raw_inode;
5156 };
5157
5158 static int other_inode_match(struct inode * inode, unsigned long ino,
5159                              void *data)
5160 {
5161         struct other_inode *oi = (struct other_inode *) data;
5162
5163         if ((inode->i_ino != ino) ||
5164             (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5165                                I_DIRTY_INODE)) ||
5166             ((inode->i_state & I_DIRTY_TIME) == 0))
5167                 return 0;
5168         spin_lock(&inode->i_lock);
5169         if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5170                                 I_DIRTY_INODE)) == 0) &&
5171             (inode->i_state & I_DIRTY_TIME)) {
5172                 struct ext4_inode_info  *ei = EXT4_I(inode);
5173
5174                 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
5175                 spin_unlock(&inode->i_lock);
5176
5177                 spin_lock(&ei->i_raw_lock);
5178                 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
5179                 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
5180                 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
5181                 ext4_inode_csum_set(inode, oi->raw_inode, ei);
5182                 spin_unlock(&ei->i_raw_lock);
5183                 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
5184                 return -1;
5185         }
5186         spin_unlock(&inode->i_lock);
5187         return -1;
5188 }
5189
5190 /*
5191  * Opportunistically update the other time fields for other inodes in
5192  * the same inode table block.
5193  */
5194 static void ext4_update_other_inodes_time(struct super_block *sb,
5195                                           unsigned long orig_ino, char *buf)
5196 {
5197         struct other_inode oi;
5198         unsigned long ino;
5199         int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5200         int inode_size = EXT4_INODE_SIZE(sb);
5201
5202         oi.orig_ino = orig_ino;
5203         /*
5204          * Calculate the first inode in the inode table block.  Inode
5205          * numbers are one-based.  That is, the first inode in a block
5206          * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5207          */
5208         ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5209         for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5210                 if (ino == orig_ino)
5211                         continue;
5212                 oi.raw_inode = (struct ext4_inode *) buf;
5213                 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
5214         }
5215 }
5216
5217 /*
5218  * Post the struct inode info into an on-disk inode location in the
5219  * buffer-cache.  This gobbles the caller's reference to the
5220  * buffer_head in the inode location struct.
5221  *
5222  * The caller must have write access to iloc->bh.
5223  */
5224 static int ext4_do_update_inode(handle_t *handle,
5225                                 struct inode *inode,
5226                                 struct ext4_iloc *iloc)
5227 {
5228         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5229         struct ext4_inode_info *ei = EXT4_I(inode);
5230         struct buffer_head *bh = iloc->bh;
5231         struct super_block *sb = inode->i_sb;
5232         int err = 0, rc, block;
5233         int need_datasync = 0, set_large_file = 0;
5234         uid_t i_uid;
5235         gid_t i_gid;
5236         projid_t i_projid;
5237
5238         spin_lock(&ei->i_raw_lock);
5239
5240         /* For fields not tracked in the in-memory inode,
5241          * initialise them to zero for new inodes. */
5242         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5243                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5244
5245         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5246         i_uid = i_uid_read(inode);
5247         i_gid = i_gid_read(inode);
5248         i_projid = from_kprojid(&init_user_ns, ei->i_projid);
5249         if (!(test_opt(inode->i_sb, NO_UID32))) {
5250                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
5251                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
5252 /*
5253  * Fix up interoperability with old kernels. Otherwise, old inodes get
5254  * re-used with the upper 16 bits of the uid/gid intact
5255  */
5256                 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
5257                         raw_inode->i_uid_high = 0;
5258                         raw_inode->i_gid_high = 0;
5259                 } else {
5260                         raw_inode->i_uid_high =
5261                                 cpu_to_le16(high_16_bits(i_uid));
5262                         raw_inode->i_gid_high =
5263                                 cpu_to_le16(high_16_bits(i_gid));
5264                 }
5265         } else {
5266                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
5267                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
5268                 raw_inode->i_uid_high = 0;
5269                 raw_inode->i_gid_high = 0;
5270         }
5271         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5272
5273         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5274         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5275         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5276         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5277
5278         err = ext4_inode_blocks_set(handle, raw_inode, ei);
5279         if (err) {
5280                 spin_unlock(&ei->i_raw_lock);
5281                 goto out_brelse;
5282         }
5283         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5284         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5285         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
5286                 raw_inode->i_file_acl_high =
5287                         cpu_to_le16(ei->i_file_acl >> 32);
5288         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5289         if (ei->i_disksize != ext4_isize(inode->i_sb, raw_inode)) {
5290                 ext4_isize_set(raw_inode, ei->i_disksize);
5291                 need_datasync = 1;
5292         }
5293         if (ei->i_disksize > 0x7fffffffULL) {
5294                 if (!ext4_has_feature_large_file(sb) ||
5295                                 EXT4_SB(sb)->s_es->s_rev_level ==
5296                     cpu_to_le32(EXT4_GOOD_OLD_REV))
5297                         set_large_file = 1;
5298         }
5299         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5300         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5301                 if (old_valid_dev(inode->i_rdev)) {
5302                         raw_inode->i_block[0] =
5303                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
5304                         raw_inode->i_block[1] = 0;
5305                 } else {
5306                         raw_inode->i_block[0] = 0;
5307                         raw_inode->i_block[1] =
5308                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
5309                         raw_inode->i_block[2] = 0;
5310                 }
5311         } else if (!ext4_has_inline_data(inode)) {
5312                 for (block = 0; block < EXT4_N_BLOCKS; block++)
5313                         raw_inode->i_block[block] = ei->i_data[block];
5314         }
5315
5316         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5317                 u64 ivers = ext4_inode_peek_iversion(inode);
5318
5319                 raw_inode->i_disk_version = cpu_to_le32(ivers);
5320                 if (ei->i_extra_isize) {
5321                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5322                                 raw_inode->i_version_hi =
5323                                         cpu_to_le32(ivers >> 32);
5324                         raw_inode->i_extra_isize =
5325                                 cpu_to_le16(ei->i_extra_isize);
5326                 }
5327         }
5328
5329         BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5330                i_projid != EXT4_DEF_PROJID);
5331
5332         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5333             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5334                 raw_inode->i_projid = cpu_to_le32(i_projid);
5335
5336         ext4_inode_csum_set(inode, raw_inode, ei);
5337         spin_unlock(&ei->i_raw_lock);
5338         if (inode->i_sb->s_flags & SB_LAZYTIME)
5339                 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5340                                               bh->b_data);
5341
5342         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5343         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5344         if (!err)
5345                 err = rc;
5346         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5347         if (set_large_file) {
5348                 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5349                 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5350                 if (err)
5351                         goto out_brelse;
5352                 ext4_set_feature_large_file(sb);
5353                 ext4_handle_sync(handle);
5354                 err = ext4_handle_dirty_super(handle, sb);
5355         }
5356         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5357 out_brelse:
5358         brelse(bh);
5359         ext4_std_error(inode->i_sb, err);
5360         return err;
5361 }
5362
5363 /*
5364  * ext4_write_inode()
5365  *
5366  * We are called from a few places:
5367  *
5368  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5369  *   Here, there will be no transaction running. We wait for any running
5370  *   transaction to commit.
5371  *
5372  * - Within flush work (sys_sync(), kupdate and such).
5373  *   We wait on commit, if told to.
5374  *
5375  * - Within iput_final() -> write_inode_now()
5376  *   We wait on commit, if told to.
5377  *
5378  * In all cases it is actually safe for us to return without doing anything,
5379  * because the inode has been copied into a raw inode buffer in
5380  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5381  * writeback.
5382  *
5383  * Note that we are absolutely dependent upon all inode dirtiers doing the
5384  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5385  * which we are interested.
5386  *
5387  * It would be a bug for them to not do this.  The code:
5388  *
5389  *      mark_inode_dirty(inode)
5390  *      stuff();
5391  *      inode->i_size = expr;
5392  *
5393  * is in error because write_inode() could occur while `stuff()' is running,
5394  * and the new i_size will be lost.  Plus the inode will no longer be on the
5395  * superblock's dirty inode list.
5396  */
5397 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5398 {
5399         int err;
5400
5401         if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5402             sb_rdonly(inode->i_sb))
5403                 return 0;
5404
5405         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5406                 return -EIO;
5407
5408         if (EXT4_SB(inode->i_sb)->s_journal) {
5409                 if (ext4_journal_current_handle()) {
5410                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5411                         dump_stack();
5412                         return -EIO;
5413                 }
5414
5415                 /*
5416                  * No need to force transaction in WB_SYNC_NONE mode. Also
5417                  * ext4_sync_fs() will force the commit after everything is
5418                  * written.
5419                  */
5420                 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5421                         return 0;
5422
5423                 err = jbd2_complete_transaction(EXT4_SB(inode->i_sb)->s_journal,
5424                                                 EXT4_I(inode)->i_sync_tid);
5425         } else {
5426                 struct ext4_iloc iloc;
5427
5428                 err = __ext4_get_inode_loc(inode, &iloc, 0);
5429                 if (err)
5430                         return err;
5431                 /*
5432                  * sync(2) will flush the whole buffer cache. No need to do
5433                  * it here separately for each inode.
5434                  */
5435                 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5436                         sync_dirty_buffer(iloc.bh);
5437                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5438                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5439                                          "IO error syncing inode");
5440                         err = -EIO;
5441                 }
5442                 brelse(iloc.bh);
5443         }
5444         return err;
5445 }
5446
5447 /*
5448  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5449  * buffers that are attached to a page stradding i_size and are undergoing
5450  * commit. In that case we have to wait for commit to finish and try again.
5451  */
5452 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5453 {
5454         struct page *page;
5455         unsigned offset;
5456         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5457         tid_t commit_tid = 0;
5458         int ret;
5459
5460         offset = inode->i_size & (PAGE_SIZE - 1);
5461         /*
5462          * All buffers in the last page remain valid? Then there's nothing to
5463          * do. We do the check mainly to optimize the common PAGE_SIZE ==
5464          * blocksize case
5465          */
5466         if (offset > PAGE_SIZE - i_blocksize(inode))
5467                 return;
5468         while (1) {
5469                 page = find_lock_page(inode->i_mapping,
5470                                       inode->i_size >> PAGE_SHIFT);
5471                 if (!page)
5472                         return;
5473                 ret = __ext4_journalled_invalidatepage(page, offset,
5474                                                 PAGE_SIZE - offset);
5475                 unlock_page(page);
5476                 put_page(page);
5477                 if (ret != -EBUSY)
5478                         return;
5479                 commit_tid = 0;
5480                 read_lock(&journal->j_state_lock);
5481                 if (journal->j_committing_transaction)
5482                         commit_tid = journal->j_committing_transaction->t_tid;
5483                 read_unlock(&journal->j_state_lock);
5484                 if (commit_tid)
5485                         jbd2_log_wait_commit(journal, commit_tid);
5486         }
5487 }
5488
5489 /*
5490  * ext4_setattr()
5491  *
5492  * Called from notify_change.
5493  *
5494  * We want to trap VFS attempts to truncate the file as soon as
5495  * possible.  In particular, we want to make sure that when the VFS
5496  * shrinks i_size, we put the inode on the orphan list and modify
5497  * i_disksize immediately, so that during the subsequent flushing of
5498  * dirty pages and freeing of disk blocks, we can guarantee that any
5499  * commit will leave the blocks being flushed in an unused state on
5500  * disk.  (On recovery, the inode will get truncated and the blocks will
5501  * be freed, so we have a strong guarantee that no future commit will
5502  * leave these blocks visible to the user.)
5503  *
5504  * Another thing we have to assure is that if we are in ordered mode
5505  * and inode is still attached to the committing transaction, we must
5506  * we start writeout of all the dirty pages which are being truncated.
5507  * This way we are sure that all the data written in the previous
5508  * transaction are already on disk (truncate waits for pages under
5509  * writeback).
5510  *
5511  * Called with inode->i_mutex down.
5512  */
5513 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5514 {
5515         struct inode *inode = d_inode(dentry);
5516         int error, rc = 0;
5517         int orphan = 0;
5518         const unsigned int ia_valid = attr->ia_valid;
5519
5520         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5521                 return -EIO;
5522
5523         error = setattr_prepare(dentry, attr);
5524         if (error)
5525                 return error;
5526
5527         error = fscrypt_prepare_setattr(dentry, attr);
5528         if (error)
5529                 return error;
5530
5531         if (is_quota_modification(inode, attr)) {
5532                 error = dquot_initialize(inode);
5533                 if (error)
5534                         return error;
5535         }
5536         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5537             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5538                 handle_t *handle;
5539
5540                 /* (user+group)*(old+new) structure, inode write (sb,
5541                  * inode block, ? - but truncate inode update has it) */
5542                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5543                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5544                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5545                 if (IS_ERR(handle)) {
5546                         error = PTR_ERR(handle);
5547                         goto err_out;
5548                 }
5549
5550                 /* dquot_transfer() calls back ext4_get_inode_usage() which
5551                  * counts xattr inode references.
5552                  */
5553                 down_read(&EXT4_I(inode)->xattr_sem);
5554                 error = dquot_transfer(inode, attr);
5555                 up_read(&EXT4_I(inode)->xattr_sem);
5556
5557                 if (error) {
5558                         ext4_journal_stop(handle);
5559                         return error;
5560                 }
5561                 /* Update corresponding info in inode so that everything is in
5562                  * one transaction */
5563                 if (attr->ia_valid & ATTR_UID)
5564                         inode->i_uid = attr->ia_uid;
5565                 if (attr->ia_valid & ATTR_GID)
5566                         inode->i_gid = attr->ia_gid;
5567                 error = ext4_mark_inode_dirty(handle, inode);
5568                 ext4_journal_stop(handle);
5569         }
5570
5571         if (attr->ia_valid & ATTR_SIZE) {
5572                 handle_t *handle;
5573                 loff_t oldsize = inode->i_size;
5574                 int shrink = (attr->ia_size <= inode->i_size);
5575
5576                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5577                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5578
5579                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
5580                                 return -EFBIG;
5581                 }
5582                 if (!S_ISREG(inode->i_mode))
5583                         return -EINVAL;
5584
5585                 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5586                         inode_inc_iversion(inode);
5587
5588                 if (ext4_should_order_data(inode) &&
5589                     (attr->ia_size < inode->i_size)) {
5590                         error = ext4_begin_ordered_truncate(inode,
5591                                                             attr->ia_size);
5592                         if (error)
5593                                 goto err_out;
5594                 }
5595                 if (attr->ia_size != inode->i_size) {
5596                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5597                         if (IS_ERR(handle)) {
5598                                 error = PTR_ERR(handle);
5599                                 goto err_out;
5600                         }
5601                         if (ext4_handle_valid(handle) && shrink) {
5602                                 error = ext4_orphan_add(handle, inode);
5603                                 orphan = 1;
5604                         }
5605                         /*
5606                          * Update c/mtime on truncate up, ext4_truncate() will
5607                          * update c/mtime in shrink case below
5608                          */
5609                         if (!shrink) {
5610                                 inode->i_mtime = current_time(inode);
5611                                 inode->i_ctime = inode->i_mtime;
5612                         }
5613                         down_write(&EXT4_I(inode)->i_data_sem);
5614                         EXT4_I(inode)->i_disksize = attr->ia_size;
5615                         rc = ext4_mark_inode_dirty(handle, inode);
5616                         if (!error)
5617                                 error = rc;
5618                         /*
5619                          * We have to update i_size under i_data_sem together
5620                          * with i_disksize to avoid races with writeback code
5621                          * running ext4_wb_update_i_disksize().
5622                          */
5623                         if (!error)
5624                                 i_size_write(inode, attr->ia_size);
5625                         up_write(&EXT4_I(inode)->i_data_sem);
5626                         ext4_journal_stop(handle);
5627                         if (error) {
5628                                 if (orphan && inode->i_nlink)
5629                                         ext4_orphan_del(NULL, inode);
5630                                 goto err_out;
5631                         }
5632                 }
5633                 if (!shrink) {
5634                         pagecache_isize_extended(inode, oldsize, inode->i_size);
5635                 } else {
5636                         /*
5637                          * Blocks are going to be removed from the inode. Wait
5638                          * for dio in flight.
5639                          */
5640                         inode_dio_wait(inode);
5641                 }
5642                 if (orphan && ext4_should_journal_data(inode))
5643                         ext4_wait_for_tail_page_commit(inode);
5644                 down_write(&EXT4_I(inode)->i_mmap_sem);
5645
5646                 rc = ext4_break_layouts(inode);
5647                 if (rc) {
5648                         up_write(&EXT4_I(inode)->i_mmap_sem);
5649                         error = rc;
5650                         goto err_out;
5651                 }
5652
5653                 /*
5654                  * Truncate pagecache after we've waited for commit
5655                  * in data=journal mode to make pages freeable.
5656                  */
5657                 truncate_pagecache(inode, inode->i_size);
5658                 if (shrink) {
5659                         rc = ext4_truncate(inode);
5660                         if (rc)
5661                                 error = rc;
5662                 }
5663                 up_write(&EXT4_I(inode)->i_mmap_sem);
5664         }
5665
5666         if (!error) {
5667                 setattr_copy(inode, attr);
5668                 mark_inode_dirty(inode);
5669         }
5670
5671         /*
5672          * If the call to ext4_truncate failed to get a transaction handle at
5673          * all, we need to clean up the in-core orphan list manually.
5674          */
5675         if (orphan && inode->i_nlink)
5676                 ext4_orphan_del(NULL, inode);
5677
5678         if (!error && (ia_valid & ATTR_MODE))
5679                 rc = posix_acl_chmod(inode, inode->i_mode);
5680
5681 err_out:
5682         ext4_std_error(inode->i_sb, error);
5683         if (!error)
5684                 error = rc;
5685         return error;
5686 }
5687
5688 int ext4_getattr(const struct path *path, struct kstat *stat,
5689                  u32 request_mask, unsigned int query_flags)
5690 {
5691         struct inode *inode = d_inode(path->dentry);
5692         struct ext4_inode *raw_inode;
5693         struct ext4_inode_info *ei = EXT4_I(inode);
5694         unsigned int flags;
5695
5696         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5697                 stat->result_mask |= STATX_BTIME;
5698                 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5699                 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5700         }
5701
5702         flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5703         if (flags & EXT4_APPEND_FL)
5704                 stat->attributes |= STATX_ATTR_APPEND;
5705         if (flags & EXT4_COMPR_FL)
5706                 stat->attributes |= STATX_ATTR_COMPRESSED;
5707         if (flags & EXT4_ENCRYPT_FL)
5708                 stat->attributes |= STATX_ATTR_ENCRYPTED;
5709         if (flags & EXT4_IMMUTABLE_FL)
5710                 stat->attributes |= STATX_ATTR_IMMUTABLE;
5711         if (flags & EXT4_NODUMP_FL)
5712                 stat->attributes |= STATX_ATTR_NODUMP;
5713
5714         stat->attributes_mask |= (STATX_ATTR_APPEND |
5715                                   STATX_ATTR_COMPRESSED |
5716                                   STATX_ATTR_ENCRYPTED |
5717                                   STATX_ATTR_IMMUTABLE |
5718                                   STATX_ATTR_NODUMP);
5719
5720         generic_fillattr(inode, stat);
5721         return 0;
5722 }
5723
5724 int ext4_file_getattr(const struct path *path, struct kstat *stat,
5725                       u32 request_mask, unsigned int query_flags)
5726 {
5727         struct inode *inode = d_inode(path->dentry);
5728         u64 delalloc_blocks;
5729
5730         ext4_getattr(path, stat, request_mask, query_flags);
5731
5732         /*
5733          * If there is inline data in the inode, the inode will normally not
5734          * have data blocks allocated (it may have an external xattr block).
5735          * Report at least one sector for such files, so tools like tar, rsync,
5736          * others don't incorrectly think the file is completely sparse.
5737          */
5738         if (unlikely(ext4_has_inline_data(inode)))
5739                 stat->blocks += (stat->size + 511) >> 9;
5740
5741         /*
5742          * We can't update i_blocks if the block allocation is delayed
5743          * otherwise in the case of system crash before the real block
5744          * allocation is done, we will have i_blocks inconsistent with
5745          * on-disk file blocks.
5746          * We always keep i_blocks updated together with real
5747          * allocation. But to not confuse with user, stat
5748          * will return the blocks that include the delayed allocation
5749          * blocks for this file.
5750          */
5751         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5752                                    EXT4_I(inode)->i_reserved_data_blocks);
5753         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5754         return 0;
5755 }
5756
5757 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5758                                    int pextents)
5759 {
5760         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5761                 return ext4_ind_trans_blocks(inode, lblocks);
5762         return ext4_ext_index_trans_blocks(inode, pextents);
5763 }
5764
5765 /*
5766  * Account for index blocks, block groups bitmaps and block group
5767  * descriptor blocks if modify datablocks and index blocks
5768  * worse case, the indexs blocks spread over different block groups
5769  *
5770  * If datablocks are discontiguous, they are possible to spread over
5771  * different block groups too. If they are contiguous, with flexbg,
5772  * they could still across block group boundary.
5773  *
5774  * Also account for superblock, inode, quota and xattr blocks
5775  */
5776 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5777                                   int pextents)
5778 {
5779         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5780         int gdpblocks;
5781         int idxblocks;
5782         int ret = 0;
5783
5784         /*
5785          * How many index blocks need to touch to map @lblocks logical blocks
5786          * to @pextents physical extents?
5787          */
5788         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5789
5790         ret = idxblocks;
5791
5792         /*
5793          * Now let's see how many group bitmaps and group descriptors need
5794          * to account
5795          */
5796         groups = idxblocks + pextents;
5797         gdpblocks = groups;
5798         if (groups > ngroups)
5799                 groups = ngroups;
5800         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5801                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5802
5803         /* bitmaps and block group descriptor blocks */
5804         ret += groups + gdpblocks;
5805
5806         /* Blocks for super block, inode, quota and xattr blocks */
5807         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5808
5809         return ret;
5810 }
5811
5812 /*
5813  * Calculate the total number of credits to reserve to fit
5814  * the modification of a single pages into a single transaction,
5815  * which may include multiple chunks of block allocations.
5816  *
5817  * This could be called via ext4_write_begin()
5818  *
5819  * We need to consider the worse case, when
5820  * one new block per extent.
5821  */
5822 int ext4_writepage_trans_blocks(struct inode *inode)
5823 {
5824         int bpp = ext4_journal_blocks_per_page(inode);
5825         int ret;
5826
5827         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5828
5829         /* Account for data blocks for journalled mode */
5830         if (ext4_should_journal_data(inode))
5831                 ret += bpp;
5832         return ret;
5833 }
5834
5835 /*
5836  * Calculate the journal credits for a chunk of data modification.
5837  *
5838  * This is called from DIO, fallocate or whoever calling
5839  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5840  *
5841  * journal buffers for data blocks are not included here, as DIO
5842  * and fallocate do no need to journal data buffers.
5843  */
5844 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5845 {
5846         return ext4_meta_trans_blocks(inode, nrblocks, 1);
5847 }
5848
5849 /*
5850  * The caller must have previously called ext4_reserve_inode_write().
5851  * Give this, we know that the caller already has write access to iloc->bh.
5852  */
5853 int ext4_mark_iloc_dirty(handle_t *handle,
5854                          struct inode *inode, struct ext4_iloc *iloc)
5855 {
5856         int err = 0;
5857
5858         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5859                 put_bh(iloc->bh);
5860                 return -EIO;
5861         }
5862         if (IS_I_VERSION(inode))
5863                 inode_inc_iversion(inode);
5864
5865         /* the do_update_inode consumes one bh->b_count */
5866         get_bh(iloc->bh);
5867
5868         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5869         err = ext4_do_update_inode(handle, inode, iloc);
5870         put_bh(iloc->bh);
5871         return err;
5872 }
5873
5874 /*
5875  * On success, We end up with an outstanding reference count against
5876  * iloc->bh.  This _must_ be cleaned up later.
5877  */
5878
5879 int
5880 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5881                          struct ext4_iloc *iloc)
5882 {
5883         int err;
5884
5885         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5886                 return -EIO;
5887
5888         err = ext4_get_inode_loc(inode, iloc);
5889         if (!err) {
5890                 BUFFER_TRACE(iloc->bh, "get_write_access");
5891                 err = ext4_journal_get_write_access(handle, iloc->bh);
5892                 if (err) {
5893                         brelse(iloc->bh);
5894                         iloc->bh = NULL;
5895                 }
5896         }
5897         ext4_std_error(inode->i_sb, err);
5898         return err;
5899 }
5900
5901 static int __ext4_expand_extra_isize(struct inode *inode,
5902                                      unsigned int new_extra_isize,
5903                                      struct ext4_iloc *iloc,
5904                                      handle_t *handle, int *no_expand)
5905 {
5906         struct ext4_inode *raw_inode;
5907         struct ext4_xattr_ibody_header *header;
5908         int error;
5909
5910         raw_inode = ext4_raw_inode(iloc);
5911
5912         header = IHDR(inode, raw_inode);
5913
5914         /* No extended attributes present */
5915         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5916             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5917                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5918                        EXT4_I(inode)->i_extra_isize, 0,
5919                        new_extra_isize - EXT4_I(inode)->i_extra_isize);
5920                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5921                 return 0;
5922         }
5923
5924         /* try to expand with EAs present */
5925         error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5926                                            raw_inode, handle);
5927         if (error) {
5928                 /*
5929                  * Inode size expansion failed; don't try again
5930                  */
5931                 *no_expand = 1;
5932         }
5933
5934         return error;
5935 }
5936
5937 /*
5938  * Expand an inode by new_extra_isize bytes.
5939  * Returns 0 on success or negative error number on failure.
5940  */
5941 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5942                                           unsigned int new_extra_isize,
5943                                           struct ext4_iloc iloc,
5944                                           handle_t *handle)
5945 {
5946         int no_expand;
5947         int error;
5948
5949         if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5950                 return -EOVERFLOW;
5951
5952         /*
5953          * In nojournal mode, we can immediately attempt to expand
5954          * the inode.  When journaled, we first need to obtain extra
5955          * buffer credits since we may write into the EA block
5956          * with this same handle. If journal_extend fails, then it will
5957          * only result in a minor loss of functionality for that inode.
5958          * If this is felt to be critical, then e2fsck should be run to
5959          * force a large enough s_min_extra_isize.
5960          */
5961         if (ext4_handle_valid(handle) &&
5962             jbd2_journal_extend(handle,
5963                                 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) != 0)
5964                 return -ENOSPC;
5965
5966         if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5967                 return -EBUSY;
5968
5969         error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5970                                           handle, &no_expand);
5971         ext4_write_unlock_xattr(inode, &no_expand);
5972
5973         return error;
5974 }
5975
5976 int ext4_expand_extra_isize(struct inode *inode,
5977                             unsigned int new_extra_isize,
5978                             struct ext4_iloc *iloc)
5979 {
5980         handle_t *handle;
5981         int no_expand;
5982         int error, rc;
5983
5984         if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5985                 brelse(iloc->bh);
5986                 return -EOVERFLOW;
5987         }
5988
5989         handle = ext4_journal_start(inode, EXT4_HT_INODE,
5990                                     EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5991         if (IS_ERR(handle)) {
5992                 error = PTR_ERR(handle);
5993                 brelse(iloc->bh);
5994                 return error;
5995         }
5996
5997         ext4_write_lock_xattr(inode, &no_expand);
5998
5999         BUFFER_TRACE(iloc->bh, "get_write_access");
6000         error = ext4_journal_get_write_access(handle, iloc->bh);
6001         if (error) {
6002                 brelse(iloc->bh);
6003                 goto out_stop;
6004         }
6005
6006         error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
6007                                           handle, &no_expand);
6008
6009         rc = ext4_mark_iloc_dirty(handle, inode, iloc);
6010         if (!error)
6011                 error = rc;
6012
6013         ext4_write_unlock_xattr(inode, &no_expand);
6014 out_stop:
6015         ext4_journal_stop(handle);
6016         return error;
6017 }
6018
6019 /*
6020  * What we do here is to mark the in-core inode as clean with respect to inode
6021  * dirtiness (it may still be data-dirty).
6022  * This means that the in-core inode may be reaped by prune_icache
6023  * without having to perform any I/O.  This is a very good thing,
6024  * because *any* task may call prune_icache - even ones which
6025  * have a transaction open against a different journal.
6026  *
6027  * Is this cheating?  Not really.  Sure, we haven't written the
6028  * inode out, but prune_icache isn't a user-visible syncing function.
6029  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
6030  * we start and wait on commits.
6031  */
6032 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
6033 {
6034         struct ext4_iloc iloc;
6035         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6036         int err;
6037
6038         might_sleep();
6039         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
6040         err = ext4_reserve_inode_write(handle, inode, &iloc);
6041         if (err)
6042                 return err;
6043
6044         if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
6045                 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
6046                                                iloc, handle);
6047
6048         return ext4_mark_iloc_dirty(handle, inode, &iloc);
6049 }
6050
6051 /*
6052  * ext4_dirty_inode() is called from __mark_inode_dirty()
6053  *
6054  * We're really interested in the case where a file is being extended.
6055  * i_size has been changed by generic_commit_write() and we thus need
6056  * to include the updated inode in the current transaction.
6057  *
6058  * Also, dquot_alloc_block() will always dirty the inode when blocks
6059  * are allocated to the file.
6060  *
6061  * If the inode is marked synchronous, we don't honour that here - doing
6062  * so would cause a commit on atime updates, which we don't bother doing.
6063  * We handle synchronous inodes at the highest possible level.
6064  *
6065  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
6066  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
6067  * to copy into the on-disk inode structure are the timestamp files.
6068  */
6069 void ext4_dirty_inode(struct inode *inode, int flags)
6070 {
6071         handle_t *handle;
6072
6073         if (flags == I_DIRTY_TIME)
6074                 return;
6075         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
6076         if (IS_ERR(handle))
6077                 goto out;
6078
6079         ext4_mark_inode_dirty(handle, inode);
6080
6081         ext4_journal_stop(handle);
6082 out:
6083         return;
6084 }
6085
6086 int ext4_change_inode_journal_flag(struct inode *inode, int val)
6087 {
6088         journal_t *journal;
6089         handle_t *handle;
6090         int err;
6091         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6092
6093         /*
6094          * We have to be very careful here: changing a data block's
6095          * journaling status dynamically is dangerous.  If we write a
6096          * data block to the journal, change the status and then delete
6097          * that block, we risk forgetting to revoke the old log record
6098          * from the journal and so a subsequent replay can corrupt data.
6099          * So, first we make sure that the journal is empty and that
6100          * nobody is changing anything.
6101          */
6102
6103         journal = EXT4_JOURNAL(inode);
6104         if (!journal)
6105                 return 0;
6106         if (is_journal_aborted(journal))
6107                 return -EROFS;
6108
6109         /* Wait for all existing dio workers */
6110         inode_dio_wait(inode);
6111
6112         /*
6113          * Before flushing the journal and switching inode's aops, we have
6114          * to flush all dirty data the inode has. There can be outstanding
6115          * delayed allocations, there can be unwritten extents created by
6116          * fallocate or buffered writes in dioread_nolock mode covered by
6117          * dirty data which can be converted only after flushing the dirty
6118          * data (and journalled aops don't know how to handle these cases).
6119          */
6120         if (val) {
6121                 down_write(&EXT4_I(inode)->i_mmap_sem);
6122                 err = filemap_write_and_wait(inode->i_mapping);
6123                 if (err < 0) {
6124                         up_write(&EXT4_I(inode)->i_mmap_sem);
6125                         return err;
6126                 }
6127         }
6128
6129         percpu_down_write(&sbi->s_journal_flag_rwsem);
6130         jbd2_journal_lock_updates(journal);
6131
6132         /*
6133          * OK, there are no updates running now, and all cached data is
6134          * synced to disk.  We are now in a completely consistent state
6135          * which doesn't have anything in the journal, and we know that
6136          * no filesystem updates are running, so it is safe to modify
6137          * the inode's in-core data-journaling state flag now.
6138          */
6139
6140         if (val)
6141                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6142         else {
6143                 err = jbd2_journal_flush(journal);
6144                 if (err < 0) {
6145                         jbd2_journal_unlock_updates(journal);
6146                         percpu_up_write(&sbi->s_journal_flag_rwsem);
6147                         return err;
6148                 }
6149                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6150         }
6151         ext4_set_aops(inode);
6152
6153         jbd2_journal_unlock_updates(journal);
6154         percpu_up_write(&sbi->s_journal_flag_rwsem);
6155
6156         if (val)
6157                 up_write(&EXT4_I(inode)->i_mmap_sem);
6158
6159         /* Finally we can mark the inode as dirty. */
6160
6161         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6162         if (IS_ERR(handle))
6163                 return PTR_ERR(handle);
6164
6165         err = ext4_mark_inode_dirty(handle, inode);
6166         ext4_handle_sync(handle);
6167         ext4_journal_stop(handle);
6168         ext4_std_error(inode->i_sb, err);
6169
6170         return err;
6171 }
6172
6173 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
6174 {
6175         return !buffer_mapped(bh);
6176 }
6177
6178 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6179 {
6180         struct vm_area_struct *vma = vmf->vma;
6181         struct page *page = vmf->page;
6182         loff_t size;
6183         unsigned long len;
6184         int err;
6185         vm_fault_t ret;
6186         struct file *file = vma->vm_file;
6187         struct inode *inode = file_inode(file);
6188         struct address_space *mapping = inode->i_mapping;
6189         handle_t *handle;
6190         get_block_t *get_block;
6191         int retries = 0;
6192
6193         sb_start_pagefault(inode->i_sb);
6194         file_update_time(vma->vm_file);
6195
6196         down_read(&EXT4_I(inode)->i_mmap_sem);
6197
6198         err = ext4_convert_inline_data(inode);
6199         if (err)
6200                 goto out_ret;
6201
6202         /* Delalloc case is easy... */
6203         if (test_opt(inode->i_sb, DELALLOC) &&
6204             !ext4_should_journal_data(inode) &&
6205             !ext4_nonda_switch(inode->i_sb)) {
6206                 do {
6207                         err = block_page_mkwrite(vma, vmf,
6208                                                    ext4_da_get_block_prep);
6209                 } while (err == -ENOSPC &&
6210                        ext4_should_retry_alloc(inode->i_sb, &retries));
6211                 goto out_ret;
6212         }
6213
6214         lock_page(page);
6215         size = i_size_read(inode);
6216         /* Page got truncated from under us? */
6217         if (page->mapping != mapping || page_offset(page) > size) {
6218                 unlock_page(page);
6219                 ret = VM_FAULT_NOPAGE;
6220                 goto out;
6221         }
6222
6223         if (page->index == size >> PAGE_SHIFT)
6224                 len = size & ~PAGE_MASK;
6225         else
6226                 len = PAGE_SIZE;
6227         /*
6228          * Return if we have all the buffers mapped. This avoids the need to do
6229          * journal_start/journal_stop which can block and take a long time
6230          */
6231         if (page_has_buffers(page)) {
6232                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
6233                                             0, len, NULL,
6234                                             ext4_bh_unmapped)) {
6235                         /* Wait so that we don't change page under IO */
6236                         wait_for_stable_page(page);
6237                         ret = VM_FAULT_LOCKED;
6238                         goto out;
6239                 }
6240         }
6241         unlock_page(page);
6242         /* OK, we need to fill the hole... */
6243         if (ext4_should_dioread_nolock(inode))
6244                 get_block = ext4_get_block_unwritten;
6245         else
6246                 get_block = ext4_get_block;
6247 retry_alloc:
6248         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6249                                     ext4_writepage_trans_blocks(inode));
6250         if (IS_ERR(handle)) {
6251                 ret = VM_FAULT_SIGBUS;
6252                 goto out;
6253         }
6254         err = block_page_mkwrite(vma, vmf, get_block);
6255         if (!err && ext4_should_journal_data(inode)) {
6256                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
6257                           PAGE_SIZE, NULL, do_journal_get_write_access)) {
6258                         unlock_page(page);
6259                         ret = VM_FAULT_SIGBUS;
6260                         ext4_journal_stop(handle);
6261                         goto out;
6262                 }
6263                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6264         }
6265         ext4_journal_stop(handle);
6266         if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6267                 goto retry_alloc;
6268 out_ret:
6269         ret = block_page_mkwrite_return(err);
6270 out:
6271         up_read(&EXT4_I(inode)->i_mmap_sem);
6272         sb_end_pagefault(inode->i_sb);
6273         return ret;
6274 }
6275
6276 vm_fault_t ext4_filemap_fault(struct vm_fault *vmf)
6277 {
6278         struct inode *inode = file_inode(vmf->vma->vm_file);
6279         vm_fault_t ret;
6280
6281         down_read(&EXT4_I(inode)->i_mmap_sem);
6282         ret = filemap_fault(vmf);
6283         up_read(&EXT4_I(inode)->i_mmap_sem);
6284
6285         return ret;
6286 }