Merge tag 'asoc-fix-v5.0-rc5' of https://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / fs / ext4 / inode.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  64-bit file support on 64-bit platforms by Jakub Jelinek
17  *      (jj@sunsite.ms.mff.cuni.cz)
18  *
19  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20  */
21
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/dax.h>
27 #include <linux/quotaops.h>
28 #include <linux/string.h>
29 #include <linux/buffer_head.h>
30 #include <linux/writeback.h>
31 #include <linux/pagevec.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/uio.h>
35 #include <linux/bio.h>
36 #include <linux/workqueue.h>
37 #include <linux/kernel.h>
38 #include <linux/printk.h>
39 #include <linux/slab.h>
40 #include <linux/bitops.h>
41 #include <linux/iomap.h>
42 #include <linux/iversion.h>
43
44 #include "ext4_jbd2.h"
45 #include "xattr.h"
46 #include "acl.h"
47 #include "truncate.h"
48
49 #include <trace/events/ext4.h>
50
51 #define MPAGE_DA_EXTENT_TAIL 0x01
52
53 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
54                               struct ext4_inode_info *ei)
55 {
56         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
57         __u32 csum;
58         __u16 dummy_csum = 0;
59         int offset = offsetof(struct ext4_inode, i_checksum_lo);
60         unsigned int csum_size = sizeof(dummy_csum);
61
62         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
63         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
64         offset += csum_size;
65         csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
66                            EXT4_GOOD_OLD_INODE_SIZE - offset);
67
68         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
69                 offset = offsetof(struct ext4_inode, i_checksum_hi);
70                 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
71                                    EXT4_GOOD_OLD_INODE_SIZE,
72                                    offset - EXT4_GOOD_OLD_INODE_SIZE);
73                 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
74                         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
75                                            csum_size);
76                         offset += csum_size;
77                 }
78                 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
79                                    EXT4_INODE_SIZE(inode->i_sb) - offset);
80         }
81
82         return csum;
83 }
84
85 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
86                                   struct ext4_inode_info *ei)
87 {
88         __u32 provided, calculated;
89
90         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
91             cpu_to_le32(EXT4_OS_LINUX) ||
92             !ext4_has_metadata_csum(inode->i_sb))
93                 return 1;
94
95         provided = le16_to_cpu(raw->i_checksum_lo);
96         calculated = ext4_inode_csum(inode, raw, ei);
97         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
98             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
99                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
100         else
101                 calculated &= 0xFFFF;
102
103         return provided == calculated;
104 }
105
106 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
107                                 struct ext4_inode_info *ei)
108 {
109         __u32 csum;
110
111         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
112             cpu_to_le32(EXT4_OS_LINUX) ||
113             !ext4_has_metadata_csum(inode->i_sb))
114                 return;
115
116         csum = ext4_inode_csum(inode, raw, ei);
117         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
118         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
119             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
120                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
121 }
122
123 static inline int ext4_begin_ordered_truncate(struct inode *inode,
124                                               loff_t new_size)
125 {
126         trace_ext4_begin_ordered_truncate(inode, new_size);
127         /*
128          * If jinode is zero, then we never opened the file for
129          * writing, so there's no need to call
130          * jbd2_journal_begin_ordered_truncate() since there's no
131          * outstanding writes we need to flush.
132          */
133         if (!EXT4_I(inode)->jinode)
134                 return 0;
135         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
136                                                    EXT4_I(inode)->jinode,
137                                                    new_size);
138 }
139
140 static void ext4_invalidatepage(struct page *page, unsigned int offset,
141                                 unsigned int length);
142 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
143 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
144 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
145                                   int pextents);
146
147 /*
148  * Test whether an inode is a fast symlink.
149  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
150  */
151 int ext4_inode_is_fast_symlink(struct inode *inode)
152 {
153         if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
154                 int ea_blocks = EXT4_I(inode)->i_file_acl ?
155                                 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
156
157                 if (ext4_has_inline_data(inode))
158                         return 0;
159
160                 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
161         }
162         return S_ISLNK(inode->i_mode) && inode->i_size &&
163                (inode->i_size < EXT4_N_BLOCKS * 4);
164 }
165
166 /*
167  * Restart the transaction associated with *handle.  This does a commit,
168  * so before we call here everything must be consistently dirtied against
169  * this transaction.
170  */
171 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
172                                  int nblocks)
173 {
174         int ret;
175
176         /*
177          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
178          * moment, get_block can be called only for blocks inside i_size since
179          * page cache has been already dropped and writes are blocked by
180          * i_mutex. So we can safely drop the i_data_sem here.
181          */
182         BUG_ON(EXT4_JOURNAL(inode) == NULL);
183         jbd_debug(2, "restarting handle %p\n", handle);
184         up_write(&EXT4_I(inode)->i_data_sem);
185         ret = ext4_journal_restart(handle, nblocks);
186         down_write(&EXT4_I(inode)->i_data_sem);
187         ext4_discard_preallocations(inode);
188
189         return ret;
190 }
191
192 /*
193  * Called at the last iput() if i_nlink is zero.
194  */
195 void ext4_evict_inode(struct inode *inode)
196 {
197         handle_t *handle;
198         int err;
199         int extra_credits = 3;
200         struct ext4_xattr_inode_array *ea_inode_array = NULL;
201
202         trace_ext4_evict_inode(inode);
203
204         if (inode->i_nlink) {
205                 /*
206                  * When journalling data dirty buffers are tracked only in the
207                  * journal. So although mm thinks everything is clean and
208                  * ready for reaping the inode might still have some pages to
209                  * write in the running transaction or waiting to be
210                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
211                  * (via truncate_inode_pages()) to discard these buffers can
212                  * cause data loss. Also even if we did not discard these
213                  * buffers, we would have no way to find them after the inode
214                  * is reaped and thus user could see stale data if he tries to
215                  * read them before the transaction is checkpointed. So be
216                  * careful and force everything to disk here... We use
217                  * ei->i_datasync_tid to store the newest transaction
218                  * containing inode's data.
219                  *
220                  * Note that directories do not have this problem because they
221                  * don't use page cache.
222                  */
223                 if (inode->i_ino != EXT4_JOURNAL_INO &&
224                     ext4_should_journal_data(inode) &&
225                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
226                     inode->i_data.nrpages) {
227                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
228                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
229
230                         jbd2_complete_transaction(journal, commit_tid);
231                         filemap_write_and_wait(&inode->i_data);
232                 }
233                 truncate_inode_pages_final(&inode->i_data);
234
235                 goto no_delete;
236         }
237
238         if (is_bad_inode(inode))
239                 goto no_delete;
240         dquot_initialize(inode);
241
242         if (ext4_should_order_data(inode))
243                 ext4_begin_ordered_truncate(inode, 0);
244         truncate_inode_pages_final(&inode->i_data);
245
246         /*
247          * Protect us against freezing - iput() caller didn't have to have any
248          * protection against it
249          */
250         sb_start_intwrite(inode->i_sb);
251
252         if (!IS_NOQUOTA(inode))
253                 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
254
255         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
256                                  ext4_blocks_for_truncate(inode)+extra_credits);
257         if (IS_ERR(handle)) {
258                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
259                 /*
260                  * If we're going to skip the normal cleanup, we still need to
261                  * make sure that the in-core orphan linked list is properly
262                  * cleaned up.
263                  */
264                 ext4_orphan_del(NULL, inode);
265                 sb_end_intwrite(inode->i_sb);
266                 goto no_delete;
267         }
268
269         if (IS_SYNC(inode))
270                 ext4_handle_sync(handle);
271
272         /*
273          * Set inode->i_size to 0 before calling ext4_truncate(). We need
274          * special handling of symlinks here because i_size is used to
275          * determine whether ext4_inode_info->i_data contains symlink data or
276          * block mappings. Setting i_size to 0 will remove its fast symlink
277          * status. Erase i_data so that it becomes a valid empty block map.
278          */
279         if (ext4_inode_is_fast_symlink(inode))
280                 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
281         inode->i_size = 0;
282         err = ext4_mark_inode_dirty(handle, inode);
283         if (err) {
284                 ext4_warning(inode->i_sb,
285                              "couldn't mark inode dirty (err %d)", err);
286                 goto stop_handle;
287         }
288         if (inode->i_blocks) {
289                 err = ext4_truncate(inode);
290                 if (err) {
291                         ext4_error(inode->i_sb,
292                                    "couldn't truncate inode %lu (err %d)",
293                                    inode->i_ino, err);
294                         goto stop_handle;
295                 }
296         }
297
298         /* Remove xattr references. */
299         err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
300                                       extra_credits);
301         if (err) {
302                 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
303 stop_handle:
304                 ext4_journal_stop(handle);
305                 ext4_orphan_del(NULL, inode);
306                 sb_end_intwrite(inode->i_sb);
307                 ext4_xattr_inode_array_free(ea_inode_array);
308                 goto no_delete;
309         }
310
311         /*
312          * Kill off the orphan record which ext4_truncate created.
313          * AKPM: I think this can be inside the above `if'.
314          * Note that ext4_orphan_del() has to be able to cope with the
315          * deletion of a non-existent orphan - this is because we don't
316          * know if ext4_truncate() actually created an orphan record.
317          * (Well, we could do this if we need to, but heck - it works)
318          */
319         ext4_orphan_del(handle, inode);
320         EXT4_I(inode)->i_dtime  = (__u32)ktime_get_real_seconds();
321
322         /*
323          * One subtle ordering requirement: if anything has gone wrong
324          * (transaction abort, IO errors, whatever), then we can still
325          * do these next steps (the fs will already have been marked as
326          * having errors), but we can't free the inode if the mark_dirty
327          * fails.
328          */
329         if (ext4_mark_inode_dirty(handle, inode))
330                 /* If that failed, just do the required in-core inode clear. */
331                 ext4_clear_inode(inode);
332         else
333                 ext4_free_inode(handle, inode);
334         ext4_journal_stop(handle);
335         sb_end_intwrite(inode->i_sb);
336         ext4_xattr_inode_array_free(ea_inode_array);
337         return;
338 no_delete:
339         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
340 }
341
342 #ifdef CONFIG_QUOTA
343 qsize_t *ext4_get_reserved_space(struct inode *inode)
344 {
345         return &EXT4_I(inode)->i_reserved_quota;
346 }
347 #endif
348
349 /*
350  * Called with i_data_sem down, which is important since we can call
351  * ext4_discard_preallocations() from here.
352  */
353 void ext4_da_update_reserve_space(struct inode *inode,
354                                         int used, int quota_claim)
355 {
356         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
357         struct ext4_inode_info *ei = EXT4_I(inode);
358
359         spin_lock(&ei->i_block_reservation_lock);
360         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
361         if (unlikely(used > ei->i_reserved_data_blocks)) {
362                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
363                          "with only %d reserved data blocks",
364                          __func__, inode->i_ino, used,
365                          ei->i_reserved_data_blocks);
366                 WARN_ON(1);
367                 used = ei->i_reserved_data_blocks;
368         }
369
370         /* Update per-inode reservations */
371         ei->i_reserved_data_blocks -= used;
372         percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
373
374         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
375
376         /* Update quota subsystem for data blocks */
377         if (quota_claim)
378                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
379         else {
380                 /*
381                  * We did fallocate with an offset that is already delayed
382                  * allocated. So on delayed allocated writeback we should
383                  * not re-claim the quota for fallocated blocks.
384                  */
385                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
386         }
387
388         /*
389          * If we have done all the pending block allocations and if
390          * there aren't any writers on the inode, we can discard the
391          * inode's preallocations.
392          */
393         if ((ei->i_reserved_data_blocks == 0) &&
394             (atomic_read(&inode->i_writecount) == 0))
395                 ext4_discard_preallocations(inode);
396 }
397
398 static int __check_block_validity(struct inode *inode, const char *func,
399                                 unsigned int line,
400                                 struct ext4_map_blocks *map)
401 {
402         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
403                                    map->m_len)) {
404                 ext4_error_inode(inode, func, line, map->m_pblk,
405                                  "lblock %lu mapped to illegal pblock %llu "
406                                  "(length %d)", (unsigned long) map->m_lblk,
407                                  map->m_pblk, map->m_len);
408                 return -EFSCORRUPTED;
409         }
410         return 0;
411 }
412
413 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
414                        ext4_lblk_t len)
415 {
416         int ret;
417
418         if (ext4_encrypted_inode(inode))
419                 return fscrypt_zeroout_range(inode, lblk, pblk, len);
420
421         ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
422         if (ret > 0)
423                 ret = 0;
424
425         return ret;
426 }
427
428 #define check_block_validity(inode, map)        \
429         __check_block_validity((inode), __func__, __LINE__, (map))
430
431 #ifdef ES_AGGRESSIVE_TEST
432 static void ext4_map_blocks_es_recheck(handle_t *handle,
433                                        struct inode *inode,
434                                        struct ext4_map_blocks *es_map,
435                                        struct ext4_map_blocks *map,
436                                        int flags)
437 {
438         int retval;
439
440         map->m_flags = 0;
441         /*
442          * There is a race window that the result is not the same.
443          * e.g. xfstests #223 when dioread_nolock enables.  The reason
444          * is that we lookup a block mapping in extent status tree with
445          * out taking i_data_sem.  So at the time the unwritten extent
446          * could be converted.
447          */
448         down_read(&EXT4_I(inode)->i_data_sem);
449         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
450                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
451                                              EXT4_GET_BLOCKS_KEEP_SIZE);
452         } else {
453                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
454                                              EXT4_GET_BLOCKS_KEEP_SIZE);
455         }
456         up_read((&EXT4_I(inode)->i_data_sem));
457
458         /*
459          * We don't check m_len because extent will be collpased in status
460          * tree.  So the m_len might not equal.
461          */
462         if (es_map->m_lblk != map->m_lblk ||
463             es_map->m_flags != map->m_flags ||
464             es_map->m_pblk != map->m_pblk) {
465                 printk("ES cache assertion failed for inode: %lu "
466                        "es_cached ex [%d/%d/%llu/%x] != "
467                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
468                        inode->i_ino, es_map->m_lblk, es_map->m_len,
469                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
470                        map->m_len, map->m_pblk, map->m_flags,
471                        retval, flags);
472         }
473 }
474 #endif /* ES_AGGRESSIVE_TEST */
475
476 /*
477  * The ext4_map_blocks() function tries to look up the requested blocks,
478  * and returns if the blocks are already mapped.
479  *
480  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
481  * and store the allocated blocks in the result buffer head and mark it
482  * mapped.
483  *
484  * If file type is extents based, it will call ext4_ext_map_blocks(),
485  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
486  * based files
487  *
488  * On success, it returns the number of blocks being mapped or allocated.  if
489  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
490  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
491  *
492  * It returns 0 if plain look up failed (blocks have not been allocated), in
493  * that case, @map is returned as unmapped but we still do fill map->m_len to
494  * indicate the length of a hole starting at map->m_lblk.
495  *
496  * It returns the error in case of allocation failure.
497  */
498 int ext4_map_blocks(handle_t *handle, struct inode *inode,
499                     struct ext4_map_blocks *map, int flags)
500 {
501         struct extent_status es;
502         int retval;
503         int ret = 0;
504 #ifdef ES_AGGRESSIVE_TEST
505         struct ext4_map_blocks orig_map;
506
507         memcpy(&orig_map, map, sizeof(*map));
508 #endif
509
510         map->m_flags = 0;
511         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
512                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
513                   (unsigned long) map->m_lblk);
514
515         /*
516          * ext4_map_blocks returns an int, and m_len is an unsigned int
517          */
518         if (unlikely(map->m_len > INT_MAX))
519                 map->m_len = INT_MAX;
520
521         /* We can handle the block number less than EXT_MAX_BLOCKS */
522         if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
523                 return -EFSCORRUPTED;
524
525         /* Lookup extent status tree firstly */
526         if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
527                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
528                         map->m_pblk = ext4_es_pblock(&es) +
529                                         map->m_lblk - es.es_lblk;
530                         map->m_flags |= ext4_es_is_written(&es) ?
531                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
532                         retval = es.es_len - (map->m_lblk - es.es_lblk);
533                         if (retval > map->m_len)
534                                 retval = map->m_len;
535                         map->m_len = retval;
536                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
537                         map->m_pblk = 0;
538                         retval = es.es_len - (map->m_lblk - es.es_lblk);
539                         if (retval > map->m_len)
540                                 retval = map->m_len;
541                         map->m_len = retval;
542                         retval = 0;
543                 } else {
544                         BUG_ON(1);
545                 }
546 #ifdef ES_AGGRESSIVE_TEST
547                 ext4_map_blocks_es_recheck(handle, inode, map,
548                                            &orig_map, flags);
549 #endif
550                 goto found;
551         }
552
553         /*
554          * Try to see if we can get the block without requesting a new
555          * file system block.
556          */
557         down_read(&EXT4_I(inode)->i_data_sem);
558         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
559                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
560                                              EXT4_GET_BLOCKS_KEEP_SIZE);
561         } else {
562                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
563                                              EXT4_GET_BLOCKS_KEEP_SIZE);
564         }
565         if (retval > 0) {
566                 unsigned int status;
567
568                 if (unlikely(retval != map->m_len)) {
569                         ext4_warning(inode->i_sb,
570                                      "ES len assertion failed for inode "
571                                      "%lu: retval %d != map->m_len %d",
572                                      inode->i_ino, retval, map->m_len);
573                         WARN_ON(1);
574                 }
575
576                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
577                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
578                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
579                     !(status & EXTENT_STATUS_WRITTEN) &&
580                     ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
581                                        map->m_lblk + map->m_len - 1))
582                         status |= EXTENT_STATUS_DELAYED;
583                 ret = ext4_es_insert_extent(inode, map->m_lblk,
584                                             map->m_len, map->m_pblk, status);
585                 if (ret < 0)
586                         retval = ret;
587         }
588         up_read((&EXT4_I(inode)->i_data_sem));
589
590 found:
591         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
592                 ret = check_block_validity(inode, map);
593                 if (ret != 0)
594                         return ret;
595         }
596
597         /* If it is only a block(s) look up */
598         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
599                 return retval;
600
601         /*
602          * Returns if the blocks have already allocated
603          *
604          * Note that if blocks have been preallocated
605          * ext4_ext_get_block() returns the create = 0
606          * with buffer head unmapped.
607          */
608         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
609                 /*
610                  * If we need to convert extent to unwritten
611                  * we continue and do the actual work in
612                  * ext4_ext_map_blocks()
613                  */
614                 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
615                         return retval;
616
617         /*
618          * Here we clear m_flags because after allocating an new extent,
619          * it will be set again.
620          */
621         map->m_flags &= ~EXT4_MAP_FLAGS;
622
623         /*
624          * New blocks allocate and/or writing to unwritten extent
625          * will possibly result in updating i_data, so we take
626          * the write lock of i_data_sem, and call get_block()
627          * with create == 1 flag.
628          */
629         down_write(&EXT4_I(inode)->i_data_sem);
630
631         /*
632          * We need to check for EXT4 here because migrate
633          * could have changed the inode type in between
634          */
635         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
636                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
637         } else {
638                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
639
640                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
641                         /*
642                          * We allocated new blocks which will result in
643                          * i_data's format changing.  Force the migrate
644                          * to fail by clearing migrate flags
645                          */
646                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
647                 }
648
649                 /*
650                  * Update reserved blocks/metadata blocks after successful
651                  * block allocation which had been deferred till now. We don't
652                  * support fallocate for non extent files. So we can update
653                  * reserve space here.
654                  */
655                 if ((retval > 0) &&
656                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
657                         ext4_da_update_reserve_space(inode, retval, 1);
658         }
659
660         if (retval > 0) {
661                 unsigned int status;
662
663                 if (unlikely(retval != map->m_len)) {
664                         ext4_warning(inode->i_sb,
665                                      "ES len assertion failed for inode "
666                                      "%lu: retval %d != map->m_len %d",
667                                      inode->i_ino, retval, map->m_len);
668                         WARN_ON(1);
669                 }
670
671                 /*
672                  * We have to zeroout blocks before inserting them into extent
673                  * status tree. Otherwise someone could look them up there and
674                  * use them before they are really zeroed. We also have to
675                  * unmap metadata before zeroing as otherwise writeback can
676                  * overwrite zeros with stale data from block device.
677                  */
678                 if (flags & EXT4_GET_BLOCKS_ZERO &&
679                     map->m_flags & EXT4_MAP_MAPPED &&
680                     map->m_flags & EXT4_MAP_NEW) {
681                         clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
682                                            map->m_len);
683                         ret = ext4_issue_zeroout(inode, map->m_lblk,
684                                                  map->m_pblk, map->m_len);
685                         if (ret) {
686                                 retval = ret;
687                                 goto out_sem;
688                         }
689                 }
690
691                 /*
692                  * If the extent has been zeroed out, we don't need to update
693                  * extent status tree.
694                  */
695                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
696                     ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
697                         if (ext4_es_is_written(&es))
698                                 goto out_sem;
699                 }
700                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
701                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
702                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
703                     !(status & EXTENT_STATUS_WRITTEN) &&
704                     ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
705                                        map->m_lblk + map->m_len - 1))
706                         status |= EXTENT_STATUS_DELAYED;
707                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
708                                             map->m_pblk, status);
709                 if (ret < 0) {
710                         retval = ret;
711                         goto out_sem;
712                 }
713         }
714
715 out_sem:
716         up_write((&EXT4_I(inode)->i_data_sem));
717         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
718                 ret = check_block_validity(inode, map);
719                 if (ret != 0)
720                         return ret;
721
722                 /*
723                  * Inodes with freshly allocated blocks where contents will be
724                  * visible after transaction commit must be on transaction's
725                  * ordered data list.
726                  */
727                 if (map->m_flags & EXT4_MAP_NEW &&
728                     !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
729                     !(flags & EXT4_GET_BLOCKS_ZERO) &&
730                     !ext4_is_quota_file(inode) &&
731                     ext4_should_order_data(inode)) {
732                         if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
733                                 ret = ext4_jbd2_inode_add_wait(handle, inode);
734                         else
735                                 ret = ext4_jbd2_inode_add_write(handle, inode);
736                         if (ret)
737                                 return ret;
738                 }
739         }
740         return retval;
741 }
742
743 /*
744  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
745  * we have to be careful as someone else may be manipulating b_state as well.
746  */
747 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
748 {
749         unsigned long old_state;
750         unsigned long new_state;
751
752         flags &= EXT4_MAP_FLAGS;
753
754         /* Dummy buffer_head? Set non-atomically. */
755         if (!bh->b_page) {
756                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
757                 return;
758         }
759         /*
760          * Someone else may be modifying b_state. Be careful! This is ugly but
761          * once we get rid of using bh as a container for mapping information
762          * to pass to / from get_block functions, this can go away.
763          */
764         do {
765                 old_state = READ_ONCE(bh->b_state);
766                 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
767         } while (unlikely(
768                  cmpxchg(&bh->b_state, old_state, new_state) != old_state));
769 }
770
771 static int _ext4_get_block(struct inode *inode, sector_t iblock,
772                            struct buffer_head *bh, int flags)
773 {
774         struct ext4_map_blocks map;
775         int ret = 0;
776
777         if (ext4_has_inline_data(inode))
778                 return -ERANGE;
779
780         map.m_lblk = iblock;
781         map.m_len = bh->b_size >> inode->i_blkbits;
782
783         ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
784                               flags);
785         if (ret > 0) {
786                 map_bh(bh, inode->i_sb, map.m_pblk);
787                 ext4_update_bh_state(bh, map.m_flags);
788                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
789                 ret = 0;
790         } else if (ret == 0) {
791                 /* hole case, need to fill in bh->b_size */
792                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
793         }
794         return ret;
795 }
796
797 int ext4_get_block(struct inode *inode, sector_t iblock,
798                    struct buffer_head *bh, int create)
799 {
800         return _ext4_get_block(inode, iblock, bh,
801                                create ? EXT4_GET_BLOCKS_CREATE : 0);
802 }
803
804 /*
805  * Get block function used when preparing for buffered write if we require
806  * creating an unwritten extent if blocks haven't been allocated.  The extent
807  * will be converted to written after the IO is complete.
808  */
809 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
810                              struct buffer_head *bh_result, int create)
811 {
812         ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
813                    inode->i_ino, create);
814         return _ext4_get_block(inode, iblock, bh_result,
815                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
816 }
817
818 /* Maximum number of blocks we map for direct IO at once. */
819 #define DIO_MAX_BLOCKS 4096
820
821 /*
822  * Get blocks function for the cases that need to start a transaction -
823  * generally difference cases of direct IO and DAX IO. It also handles retries
824  * in case of ENOSPC.
825  */
826 static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
827                                 struct buffer_head *bh_result, int flags)
828 {
829         int dio_credits;
830         handle_t *handle;
831         int retries = 0;
832         int ret;
833
834         /* Trim mapping request to maximum we can map at once for DIO */
835         if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
836                 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
837         dio_credits = ext4_chunk_trans_blocks(inode,
838                                       bh_result->b_size >> inode->i_blkbits);
839 retry:
840         handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
841         if (IS_ERR(handle))
842                 return PTR_ERR(handle);
843
844         ret = _ext4_get_block(inode, iblock, bh_result, flags);
845         ext4_journal_stop(handle);
846
847         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
848                 goto retry;
849         return ret;
850 }
851
852 /* Get block function for DIO reads and writes to inodes without extents */
853 int ext4_dio_get_block(struct inode *inode, sector_t iblock,
854                        struct buffer_head *bh, int create)
855 {
856         /* We don't expect handle for direct IO */
857         WARN_ON_ONCE(ext4_journal_current_handle());
858
859         if (!create)
860                 return _ext4_get_block(inode, iblock, bh, 0);
861         return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
862 }
863
864 /*
865  * Get block function for AIO DIO writes when we create unwritten extent if
866  * blocks are not allocated yet. The extent will be converted to written
867  * after IO is complete.
868  */
869 static int ext4_dio_get_block_unwritten_async(struct inode *inode,
870                 sector_t iblock, struct buffer_head *bh_result, int create)
871 {
872         int ret;
873
874         /* We don't expect handle for direct IO */
875         WARN_ON_ONCE(ext4_journal_current_handle());
876
877         ret = ext4_get_block_trans(inode, iblock, bh_result,
878                                    EXT4_GET_BLOCKS_IO_CREATE_EXT);
879
880         /*
881          * When doing DIO using unwritten extents, we need io_end to convert
882          * unwritten extents to written on IO completion. We allocate io_end
883          * once we spot unwritten extent and store it in b_private. Generic
884          * DIO code keeps b_private set and furthermore passes the value to
885          * our completion callback in 'private' argument.
886          */
887         if (!ret && buffer_unwritten(bh_result)) {
888                 if (!bh_result->b_private) {
889                         ext4_io_end_t *io_end;
890
891                         io_end = ext4_init_io_end(inode, GFP_KERNEL);
892                         if (!io_end)
893                                 return -ENOMEM;
894                         bh_result->b_private = io_end;
895                         ext4_set_io_unwritten_flag(inode, io_end);
896                 }
897                 set_buffer_defer_completion(bh_result);
898         }
899
900         return ret;
901 }
902
903 /*
904  * Get block function for non-AIO DIO writes when we create unwritten extent if
905  * blocks are not allocated yet. The extent will be converted to written
906  * after IO is complete by ext4_direct_IO_write().
907  */
908 static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
909                 sector_t iblock, struct buffer_head *bh_result, int create)
910 {
911         int ret;
912
913         /* We don't expect handle for direct IO */
914         WARN_ON_ONCE(ext4_journal_current_handle());
915
916         ret = ext4_get_block_trans(inode, iblock, bh_result,
917                                    EXT4_GET_BLOCKS_IO_CREATE_EXT);
918
919         /*
920          * Mark inode as having pending DIO writes to unwritten extents.
921          * ext4_direct_IO_write() checks this flag and converts extents to
922          * written.
923          */
924         if (!ret && buffer_unwritten(bh_result))
925                 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
926
927         return ret;
928 }
929
930 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
931                    struct buffer_head *bh_result, int create)
932 {
933         int ret;
934
935         ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
936                    inode->i_ino, create);
937         /* We don't expect handle for direct IO */
938         WARN_ON_ONCE(ext4_journal_current_handle());
939
940         ret = _ext4_get_block(inode, iblock, bh_result, 0);
941         /*
942          * Blocks should have been preallocated! ext4_file_write_iter() checks
943          * that.
944          */
945         WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
946
947         return ret;
948 }
949
950
951 /*
952  * `handle' can be NULL if create is zero
953  */
954 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
955                                 ext4_lblk_t block, int map_flags)
956 {
957         struct ext4_map_blocks map;
958         struct buffer_head *bh;
959         int create = map_flags & EXT4_GET_BLOCKS_CREATE;
960         int err;
961
962         J_ASSERT(handle != NULL || create == 0);
963
964         map.m_lblk = block;
965         map.m_len = 1;
966         err = ext4_map_blocks(handle, inode, &map, map_flags);
967
968         if (err == 0)
969                 return create ? ERR_PTR(-ENOSPC) : NULL;
970         if (err < 0)
971                 return ERR_PTR(err);
972
973         bh = sb_getblk(inode->i_sb, map.m_pblk);
974         if (unlikely(!bh))
975                 return ERR_PTR(-ENOMEM);
976         if (map.m_flags & EXT4_MAP_NEW) {
977                 J_ASSERT(create != 0);
978                 J_ASSERT(handle != NULL);
979
980                 /*
981                  * Now that we do not always journal data, we should
982                  * keep in mind whether this should always journal the
983                  * new buffer as metadata.  For now, regular file
984                  * writes use ext4_get_block instead, so it's not a
985                  * problem.
986                  */
987                 lock_buffer(bh);
988                 BUFFER_TRACE(bh, "call get_create_access");
989                 err = ext4_journal_get_create_access(handle, bh);
990                 if (unlikely(err)) {
991                         unlock_buffer(bh);
992                         goto errout;
993                 }
994                 if (!buffer_uptodate(bh)) {
995                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
996                         set_buffer_uptodate(bh);
997                 }
998                 unlock_buffer(bh);
999                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1000                 err = ext4_handle_dirty_metadata(handle, inode, bh);
1001                 if (unlikely(err))
1002                         goto errout;
1003         } else
1004                 BUFFER_TRACE(bh, "not a new buffer");
1005         return bh;
1006 errout:
1007         brelse(bh);
1008         return ERR_PTR(err);
1009 }
1010
1011 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1012                                ext4_lblk_t block, int map_flags)
1013 {
1014         struct buffer_head *bh;
1015
1016         bh = ext4_getblk(handle, inode, block, map_flags);
1017         if (IS_ERR(bh))
1018                 return bh;
1019         if (!bh || buffer_uptodate(bh))
1020                 return bh;
1021         ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
1022         wait_on_buffer(bh);
1023         if (buffer_uptodate(bh))
1024                 return bh;
1025         put_bh(bh);
1026         return ERR_PTR(-EIO);
1027 }
1028
1029 /* Read a contiguous batch of blocks. */
1030 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
1031                      bool wait, struct buffer_head **bhs)
1032 {
1033         int i, err;
1034
1035         for (i = 0; i < bh_count; i++) {
1036                 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
1037                 if (IS_ERR(bhs[i])) {
1038                         err = PTR_ERR(bhs[i]);
1039                         bh_count = i;
1040                         goto out_brelse;
1041                 }
1042         }
1043
1044         for (i = 0; i < bh_count; i++)
1045                 /* Note that NULL bhs[i] is valid because of holes. */
1046                 if (bhs[i] && !buffer_uptodate(bhs[i]))
1047                         ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1,
1048                                     &bhs[i]);
1049
1050         if (!wait)
1051                 return 0;
1052
1053         for (i = 0; i < bh_count; i++)
1054                 if (bhs[i])
1055                         wait_on_buffer(bhs[i]);
1056
1057         for (i = 0; i < bh_count; i++) {
1058                 if (bhs[i] && !buffer_uptodate(bhs[i])) {
1059                         err = -EIO;
1060                         goto out_brelse;
1061                 }
1062         }
1063         return 0;
1064
1065 out_brelse:
1066         for (i = 0; i < bh_count; i++) {
1067                 brelse(bhs[i]);
1068                 bhs[i] = NULL;
1069         }
1070         return err;
1071 }
1072
1073 int ext4_walk_page_buffers(handle_t *handle,
1074                            struct buffer_head *head,
1075                            unsigned from,
1076                            unsigned to,
1077                            int *partial,
1078                            int (*fn)(handle_t *handle,
1079                                      struct buffer_head *bh))
1080 {
1081         struct buffer_head *bh;
1082         unsigned block_start, block_end;
1083         unsigned blocksize = head->b_size;
1084         int err, ret = 0;
1085         struct buffer_head *next;
1086
1087         for (bh = head, block_start = 0;
1088              ret == 0 && (bh != head || !block_start);
1089              block_start = block_end, bh = next) {
1090                 next = bh->b_this_page;
1091                 block_end = block_start + blocksize;
1092                 if (block_end <= from || block_start >= to) {
1093                         if (partial && !buffer_uptodate(bh))
1094                                 *partial = 1;
1095                         continue;
1096                 }
1097                 err = (*fn)(handle, bh);
1098                 if (!ret)
1099                         ret = err;
1100         }
1101         return ret;
1102 }
1103
1104 /*
1105  * To preserve ordering, it is essential that the hole instantiation and
1106  * the data write be encapsulated in a single transaction.  We cannot
1107  * close off a transaction and start a new one between the ext4_get_block()
1108  * and the commit_write().  So doing the jbd2_journal_start at the start of
1109  * prepare_write() is the right place.
1110  *
1111  * Also, this function can nest inside ext4_writepage().  In that case, we
1112  * *know* that ext4_writepage() has generated enough buffer credits to do the
1113  * whole page.  So we won't block on the journal in that case, which is good,
1114  * because the caller may be PF_MEMALLOC.
1115  *
1116  * By accident, ext4 can be reentered when a transaction is open via
1117  * quota file writes.  If we were to commit the transaction while thus
1118  * reentered, there can be a deadlock - we would be holding a quota
1119  * lock, and the commit would never complete if another thread had a
1120  * transaction open and was blocking on the quota lock - a ranking
1121  * violation.
1122  *
1123  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1124  * will _not_ run commit under these circumstances because handle->h_ref
1125  * is elevated.  We'll still have enough credits for the tiny quotafile
1126  * write.
1127  */
1128 int do_journal_get_write_access(handle_t *handle,
1129                                 struct buffer_head *bh)
1130 {
1131         int dirty = buffer_dirty(bh);
1132         int ret;
1133
1134         if (!buffer_mapped(bh) || buffer_freed(bh))
1135                 return 0;
1136         /*
1137          * __block_write_begin() could have dirtied some buffers. Clean
1138          * the dirty bit as jbd2_journal_get_write_access() could complain
1139          * otherwise about fs integrity issues. Setting of the dirty bit
1140          * by __block_write_begin() isn't a real problem here as we clear
1141          * the bit before releasing a page lock and thus writeback cannot
1142          * ever write the buffer.
1143          */
1144         if (dirty)
1145                 clear_buffer_dirty(bh);
1146         BUFFER_TRACE(bh, "get write access");
1147         ret = ext4_journal_get_write_access(handle, bh);
1148         if (!ret && dirty)
1149                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1150         return ret;
1151 }
1152
1153 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1154 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1155                                   get_block_t *get_block)
1156 {
1157         unsigned from = pos & (PAGE_SIZE - 1);
1158         unsigned to = from + len;
1159         struct inode *inode = page->mapping->host;
1160         unsigned block_start, block_end;
1161         sector_t block;
1162         int err = 0;
1163         unsigned blocksize = inode->i_sb->s_blocksize;
1164         unsigned bbits;
1165         struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1166         bool decrypt = false;
1167
1168         BUG_ON(!PageLocked(page));
1169         BUG_ON(from > PAGE_SIZE);
1170         BUG_ON(to > PAGE_SIZE);
1171         BUG_ON(from > to);
1172
1173         if (!page_has_buffers(page))
1174                 create_empty_buffers(page, blocksize, 0);
1175         head = page_buffers(page);
1176         bbits = ilog2(blocksize);
1177         block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1178
1179         for (bh = head, block_start = 0; bh != head || !block_start;
1180             block++, block_start = block_end, bh = bh->b_this_page) {
1181                 block_end = block_start + blocksize;
1182                 if (block_end <= from || block_start >= to) {
1183                         if (PageUptodate(page)) {
1184                                 if (!buffer_uptodate(bh))
1185                                         set_buffer_uptodate(bh);
1186                         }
1187                         continue;
1188                 }
1189                 if (buffer_new(bh))
1190                         clear_buffer_new(bh);
1191                 if (!buffer_mapped(bh)) {
1192                         WARN_ON(bh->b_size != blocksize);
1193                         err = get_block(inode, block, bh, 1);
1194                         if (err)
1195                                 break;
1196                         if (buffer_new(bh)) {
1197                                 clean_bdev_bh_alias(bh);
1198                                 if (PageUptodate(page)) {
1199                                         clear_buffer_new(bh);
1200                                         set_buffer_uptodate(bh);
1201                                         mark_buffer_dirty(bh);
1202                                         continue;
1203                                 }
1204                                 if (block_end > to || block_start < from)
1205                                         zero_user_segments(page, to, block_end,
1206                                                            block_start, from);
1207                                 continue;
1208                         }
1209                 }
1210                 if (PageUptodate(page)) {
1211                         if (!buffer_uptodate(bh))
1212                                 set_buffer_uptodate(bh);
1213                         continue;
1214                 }
1215                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1216                     !buffer_unwritten(bh) &&
1217                     (block_start < from || block_end > to)) {
1218                         ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1219                         *wait_bh++ = bh;
1220                         decrypt = ext4_encrypted_inode(inode) &&
1221                                 S_ISREG(inode->i_mode);
1222                 }
1223         }
1224         /*
1225          * If we issued read requests, let them complete.
1226          */
1227         while (wait_bh > wait) {
1228                 wait_on_buffer(*--wait_bh);
1229                 if (!buffer_uptodate(*wait_bh))
1230                         err = -EIO;
1231         }
1232         if (unlikely(err))
1233                 page_zero_new_buffers(page, from, to);
1234         else if (decrypt)
1235                 err = fscrypt_decrypt_page(page->mapping->host, page,
1236                                 PAGE_SIZE, 0, page->index);
1237         return err;
1238 }
1239 #endif
1240
1241 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1242                             loff_t pos, unsigned len, unsigned flags,
1243                             struct page **pagep, void **fsdata)
1244 {
1245         struct inode *inode = mapping->host;
1246         int ret, needed_blocks;
1247         handle_t *handle;
1248         int retries = 0;
1249         struct page *page;
1250         pgoff_t index;
1251         unsigned from, to;
1252
1253         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1254                 return -EIO;
1255
1256         trace_ext4_write_begin(inode, pos, len, flags);
1257         /*
1258          * Reserve one block more for addition to orphan list in case
1259          * we allocate blocks but write fails for some reason
1260          */
1261         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1262         index = pos >> PAGE_SHIFT;
1263         from = pos & (PAGE_SIZE - 1);
1264         to = from + len;
1265
1266         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1267                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1268                                                     flags, pagep);
1269                 if (ret < 0)
1270                         return ret;
1271                 if (ret == 1)
1272                         return 0;
1273         }
1274
1275         /*
1276          * grab_cache_page_write_begin() can take a long time if the
1277          * system is thrashing due to memory pressure, or if the page
1278          * is being written back.  So grab it first before we start
1279          * the transaction handle.  This also allows us to allocate
1280          * the page (if needed) without using GFP_NOFS.
1281          */
1282 retry_grab:
1283         page = grab_cache_page_write_begin(mapping, index, flags);
1284         if (!page)
1285                 return -ENOMEM;
1286         unlock_page(page);
1287
1288 retry_journal:
1289         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1290         if (IS_ERR(handle)) {
1291                 put_page(page);
1292                 return PTR_ERR(handle);
1293         }
1294
1295         lock_page(page);
1296         if (page->mapping != mapping) {
1297                 /* The page got truncated from under us */
1298                 unlock_page(page);
1299                 put_page(page);
1300                 ext4_journal_stop(handle);
1301                 goto retry_grab;
1302         }
1303         /* In case writeback began while the page was unlocked */
1304         wait_for_stable_page(page);
1305
1306 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1307         if (ext4_should_dioread_nolock(inode))
1308                 ret = ext4_block_write_begin(page, pos, len,
1309                                              ext4_get_block_unwritten);
1310         else
1311                 ret = ext4_block_write_begin(page, pos, len,
1312                                              ext4_get_block);
1313 #else
1314         if (ext4_should_dioread_nolock(inode))
1315                 ret = __block_write_begin(page, pos, len,
1316                                           ext4_get_block_unwritten);
1317         else
1318                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1319 #endif
1320         if (!ret && ext4_should_journal_data(inode)) {
1321                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1322                                              from, to, NULL,
1323                                              do_journal_get_write_access);
1324         }
1325
1326         if (ret) {
1327                 unlock_page(page);
1328                 /*
1329                  * __block_write_begin may have instantiated a few blocks
1330                  * outside i_size.  Trim these off again. Don't need
1331                  * i_size_read because we hold i_mutex.
1332                  *
1333                  * Add inode to orphan list in case we crash before
1334                  * truncate finishes
1335                  */
1336                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1337                         ext4_orphan_add(handle, inode);
1338
1339                 ext4_journal_stop(handle);
1340                 if (pos + len > inode->i_size) {
1341                         ext4_truncate_failed_write(inode);
1342                         /*
1343                          * If truncate failed early the inode might
1344                          * still be on the orphan list; we need to
1345                          * make sure the inode is removed from the
1346                          * orphan list in that case.
1347                          */
1348                         if (inode->i_nlink)
1349                                 ext4_orphan_del(NULL, inode);
1350                 }
1351
1352                 if (ret == -ENOSPC &&
1353                     ext4_should_retry_alloc(inode->i_sb, &retries))
1354                         goto retry_journal;
1355                 put_page(page);
1356                 return ret;
1357         }
1358         *pagep = page;
1359         return ret;
1360 }
1361
1362 /* For write_end() in data=journal mode */
1363 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1364 {
1365         int ret;
1366         if (!buffer_mapped(bh) || buffer_freed(bh))
1367                 return 0;
1368         set_buffer_uptodate(bh);
1369         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1370         clear_buffer_meta(bh);
1371         clear_buffer_prio(bh);
1372         return ret;
1373 }
1374
1375 /*
1376  * We need to pick up the new inode size which generic_commit_write gave us
1377  * `file' can be NULL - eg, when called from page_symlink().
1378  *
1379  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1380  * buffers are managed internally.
1381  */
1382 static int ext4_write_end(struct file *file,
1383                           struct address_space *mapping,
1384                           loff_t pos, unsigned len, unsigned copied,
1385                           struct page *page, void *fsdata)
1386 {
1387         handle_t *handle = ext4_journal_current_handle();
1388         struct inode *inode = mapping->host;
1389         loff_t old_size = inode->i_size;
1390         int ret = 0, ret2;
1391         int i_size_changed = 0;
1392         int inline_data = ext4_has_inline_data(inode);
1393
1394         trace_ext4_write_end(inode, pos, len, copied);
1395         if (inline_data) {
1396                 ret = ext4_write_inline_data_end(inode, pos, len,
1397                                                  copied, page);
1398                 if (ret < 0) {
1399                         unlock_page(page);
1400                         put_page(page);
1401                         goto errout;
1402                 }
1403                 copied = ret;
1404         } else
1405                 copied = block_write_end(file, mapping, pos,
1406                                          len, copied, page, fsdata);
1407         /*
1408          * it's important to update i_size while still holding page lock:
1409          * page writeout could otherwise come in and zero beyond i_size.
1410          */
1411         i_size_changed = ext4_update_inode_size(inode, pos + copied);
1412         unlock_page(page);
1413         put_page(page);
1414
1415         if (old_size < pos)
1416                 pagecache_isize_extended(inode, old_size, pos);
1417         /*
1418          * Don't mark the inode dirty under page lock. First, it unnecessarily
1419          * makes the holding time of page lock longer. Second, it forces lock
1420          * ordering of page lock and transaction start for journaling
1421          * filesystems.
1422          */
1423         if (i_size_changed || inline_data)
1424                 ext4_mark_inode_dirty(handle, inode);
1425
1426         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1427                 /* if we have allocated more blocks and copied
1428                  * less. We will have blocks allocated outside
1429                  * inode->i_size. So truncate them
1430                  */
1431                 ext4_orphan_add(handle, inode);
1432 errout:
1433         ret2 = ext4_journal_stop(handle);
1434         if (!ret)
1435                 ret = ret2;
1436
1437         if (pos + len > inode->i_size) {
1438                 ext4_truncate_failed_write(inode);
1439                 /*
1440                  * If truncate failed early the inode might still be
1441                  * on the orphan list; we need to make sure the inode
1442                  * is removed from the orphan list in that case.
1443                  */
1444                 if (inode->i_nlink)
1445                         ext4_orphan_del(NULL, inode);
1446         }
1447
1448         return ret ? ret : copied;
1449 }
1450
1451 /*
1452  * This is a private version of page_zero_new_buffers() which doesn't
1453  * set the buffer to be dirty, since in data=journalled mode we need
1454  * to call ext4_handle_dirty_metadata() instead.
1455  */
1456 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1457                                             struct page *page,
1458                                             unsigned from, unsigned to)
1459 {
1460         unsigned int block_start = 0, block_end;
1461         struct buffer_head *head, *bh;
1462
1463         bh = head = page_buffers(page);
1464         do {
1465                 block_end = block_start + bh->b_size;
1466                 if (buffer_new(bh)) {
1467                         if (block_end > from && block_start < to) {
1468                                 if (!PageUptodate(page)) {
1469                                         unsigned start, size;
1470
1471                                         start = max(from, block_start);
1472                                         size = min(to, block_end) - start;
1473
1474                                         zero_user(page, start, size);
1475                                         write_end_fn(handle, bh);
1476                                 }
1477                                 clear_buffer_new(bh);
1478                         }
1479                 }
1480                 block_start = block_end;
1481                 bh = bh->b_this_page;
1482         } while (bh != head);
1483 }
1484
1485 static int ext4_journalled_write_end(struct file *file,
1486                                      struct address_space *mapping,
1487                                      loff_t pos, unsigned len, unsigned copied,
1488                                      struct page *page, void *fsdata)
1489 {
1490         handle_t *handle = ext4_journal_current_handle();
1491         struct inode *inode = mapping->host;
1492         loff_t old_size = inode->i_size;
1493         int ret = 0, ret2;
1494         int partial = 0;
1495         unsigned from, to;
1496         int size_changed = 0;
1497         int inline_data = ext4_has_inline_data(inode);
1498
1499         trace_ext4_journalled_write_end(inode, pos, len, copied);
1500         from = pos & (PAGE_SIZE - 1);
1501         to = from + len;
1502
1503         BUG_ON(!ext4_handle_valid(handle));
1504
1505         if (inline_data) {
1506                 ret = ext4_write_inline_data_end(inode, pos, len,
1507                                                  copied, page);
1508                 if (ret < 0) {
1509                         unlock_page(page);
1510                         put_page(page);
1511                         goto errout;
1512                 }
1513                 copied = ret;
1514         } else if (unlikely(copied < len) && !PageUptodate(page)) {
1515                 copied = 0;
1516                 ext4_journalled_zero_new_buffers(handle, page, from, to);
1517         } else {
1518                 if (unlikely(copied < len))
1519                         ext4_journalled_zero_new_buffers(handle, page,
1520                                                          from + copied, to);
1521                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1522                                              from + copied, &partial,
1523                                              write_end_fn);
1524                 if (!partial)
1525                         SetPageUptodate(page);
1526         }
1527         size_changed = ext4_update_inode_size(inode, pos + copied);
1528         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1529         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1530         unlock_page(page);
1531         put_page(page);
1532
1533         if (old_size < pos)
1534                 pagecache_isize_extended(inode, old_size, pos);
1535
1536         if (size_changed || inline_data) {
1537                 ret2 = ext4_mark_inode_dirty(handle, inode);
1538                 if (!ret)
1539                         ret = ret2;
1540         }
1541
1542         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1543                 /* if we have allocated more blocks and copied
1544                  * less. We will have blocks allocated outside
1545                  * inode->i_size. So truncate them
1546                  */
1547                 ext4_orphan_add(handle, inode);
1548
1549 errout:
1550         ret2 = ext4_journal_stop(handle);
1551         if (!ret)
1552                 ret = ret2;
1553         if (pos + len > inode->i_size) {
1554                 ext4_truncate_failed_write(inode);
1555                 /*
1556                  * If truncate failed early the inode might still be
1557                  * on the orphan list; we need to make sure the inode
1558                  * is removed from the orphan list in that case.
1559                  */
1560                 if (inode->i_nlink)
1561                         ext4_orphan_del(NULL, inode);
1562         }
1563
1564         return ret ? ret : copied;
1565 }
1566
1567 /*
1568  * Reserve space for a single cluster
1569  */
1570 static int ext4_da_reserve_space(struct inode *inode)
1571 {
1572         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1573         struct ext4_inode_info *ei = EXT4_I(inode);
1574         int ret;
1575
1576         /*
1577          * We will charge metadata quota at writeout time; this saves
1578          * us from metadata over-estimation, though we may go over by
1579          * a small amount in the end.  Here we just reserve for data.
1580          */
1581         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1582         if (ret)
1583                 return ret;
1584
1585         spin_lock(&ei->i_block_reservation_lock);
1586         if (ext4_claim_free_clusters(sbi, 1, 0)) {
1587                 spin_unlock(&ei->i_block_reservation_lock);
1588                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1589                 return -ENOSPC;
1590         }
1591         ei->i_reserved_data_blocks++;
1592         trace_ext4_da_reserve_space(inode);
1593         spin_unlock(&ei->i_block_reservation_lock);
1594
1595         return 0;       /* success */
1596 }
1597
1598 void ext4_da_release_space(struct inode *inode, int to_free)
1599 {
1600         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1601         struct ext4_inode_info *ei = EXT4_I(inode);
1602
1603         if (!to_free)
1604                 return;         /* Nothing to release, exit */
1605
1606         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1607
1608         trace_ext4_da_release_space(inode, to_free);
1609         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1610                 /*
1611                  * if there aren't enough reserved blocks, then the
1612                  * counter is messed up somewhere.  Since this
1613                  * function is called from invalidate page, it's
1614                  * harmless to return without any action.
1615                  */
1616                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1617                          "ino %lu, to_free %d with only %d reserved "
1618                          "data blocks", inode->i_ino, to_free,
1619                          ei->i_reserved_data_blocks);
1620                 WARN_ON(1);
1621                 to_free = ei->i_reserved_data_blocks;
1622         }
1623         ei->i_reserved_data_blocks -= to_free;
1624
1625         /* update fs dirty data blocks counter */
1626         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1627
1628         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1629
1630         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1631 }
1632
1633 static void ext4_da_page_release_reservation(struct page *page,
1634                                              unsigned int offset,
1635                                              unsigned int length)
1636 {
1637         int contiguous_blks = 0;
1638         struct buffer_head *head, *bh;
1639         unsigned int curr_off = 0;
1640         struct inode *inode = page->mapping->host;
1641         unsigned int stop = offset + length;
1642         ext4_fsblk_t lblk;
1643
1644         BUG_ON(stop > PAGE_SIZE || stop < length);
1645
1646         head = page_buffers(page);
1647         bh = head;
1648         do {
1649                 unsigned int next_off = curr_off + bh->b_size;
1650
1651                 if (next_off > stop)
1652                         break;
1653
1654                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1655                         contiguous_blks++;
1656                         clear_buffer_delay(bh);
1657                 } else if (contiguous_blks) {
1658                         lblk = page->index <<
1659                                (PAGE_SHIFT - inode->i_blkbits);
1660                         lblk += (curr_off >> inode->i_blkbits) -
1661                                 contiguous_blks;
1662                         ext4_es_remove_blks(inode, lblk, contiguous_blks);
1663                         contiguous_blks = 0;
1664                 }
1665                 curr_off = next_off;
1666         } while ((bh = bh->b_this_page) != head);
1667
1668         if (contiguous_blks) {
1669                 lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
1670                 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1671                 ext4_es_remove_blks(inode, lblk, contiguous_blks);
1672         }
1673
1674 }
1675
1676 /*
1677  * Delayed allocation stuff
1678  */
1679
1680 struct mpage_da_data {
1681         struct inode *inode;
1682         struct writeback_control *wbc;
1683
1684         pgoff_t first_page;     /* The first page to write */
1685         pgoff_t next_page;      /* Current page to examine */
1686         pgoff_t last_page;      /* Last page to examine */
1687         /*
1688          * Extent to map - this can be after first_page because that can be
1689          * fully mapped. We somewhat abuse m_flags to store whether the extent
1690          * is delalloc or unwritten.
1691          */
1692         struct ext4_map_blocks map;
1693         struct ext4_io_submit io_submit;        /* IO submission data */
1694         unsigned int do_map:1;
1695 };
1696
1697 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1698                                        bool invalidate)
1699 {
1700         int nr_pages, i;
1701         pgoff_t index, end;
1702         struct pagevec pvec;
1703         struct inode *inode = mpd->inode;
1704         struct address_space *mapping = inode->i_mapping;
1705
1706         /* This is necessary when next_page == 0. */
1707         if (mpd->first_page >= mpd->next_page)
1708                 return;
1709
1710         index = mpd->first_page;
1711         end   = mpd->next_page - 1;
1712         if (invalidate) {
1713                 ext4_lblk_t start, last;
1714                 start = index << (PAGE_SHIFT - inode->i_blkbits);
1715                 last = end << (PAGE_SHIFT - inode->i_blkbits);
1716                 ext4_es_remove_extent(inode, start, last - start + 1);
1717         }
1718
1719         pagevec_init(&pvec);
1720         while (index <= end) {
1721                 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1722                 if (nr_pages == 0)
1723                         break;
1724                 for (i = 0; i < nr_pages; i++) {
1725                         struct page *page = pvec.pages[i];
1726
1727                         BUG_ON(!PageLocked(page));
1728                         BUG_ON(PageWriteback(page));
1729                         if (invalidate) {
1730                                 if (page_mapped(page))
1731                                         clear_page_dirty_for_io(page);
1732                                 block_invalidatepage(page, 0, PAGE_SIZE);
1733                                 ClearPageUptodate(page);
1734                         }
1735                         unlock_page(page);
1736                 }
1737                 pagevec_release(&pvec);
1738         }
1739 }
1740
1741 static void ext4_print_free_blocks(struct inode *inode)
1742 {
1743         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1744         struct super_block *sb = inode->i_sb;
1745         struct ext4_inode_info *ei = EXT4_I(inode);
1746
1747         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1748                EXT4_C2B(EXT4_SB(inode->i_sb),
1749                         ext4_count_free_clusters(sb)));
1750         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1751         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1752                (long long) EXT4_C2B(EXT4_SB(sb),
1753                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1754         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1755                (long long) EXT4_C2B(EXT4_SB(sb),
1756                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1757         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1758         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1759                  ei->i_reserved_data_blocks);
1760         return;
1761 }
1762
1763 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1764 {
1765         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1766 }
1767
1768 /*
1769  * ext4_insert_delayed_block - adds a delayed block to the extents status
1770  *                             tree, incrementing the reserved cluster/block
1771  *                             count or making a pending reservation
1772  *                             where needed
1773  *
1774  * @inode - file containing the newly added block
1775  * @lblk - logical block to be added
1776  *
1777  * Returns 0 on success, negative error code on failure.
1778  */
1779 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1780 {
1781         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1782         int ret;
1783         bool allocated = false;
1784
1785         /*
1786          * If the cluster containing lblk is shared with a delayed,
1787          * written, or unwritten extent in a bigalloc file system, it's
1788          * already been accounted for and does not need to be reserved.
1789          * A pending reservation must be made for the cluster if it's
1790          * shared with a written or unwritten extent and doesn't already
1791          * have one.  Written and unwritten extents can be purged from the
1792          * extents status tree if the system is under memory pressure, so
1793          * it's necessary to examine the extent tree if a search of the
1794          * extents status tree doesn't get a match.
1795          */
1796         if (sbi->s_cluster_ratio == 1) {
1797                 ret = ext4_da_reserve_space(inode);
1798                 if (ret != 0)   /* ENOSPC */
1799                         goto errout;
1800         } else {   /* bigalloc */
1801                 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1802                         if (!ext4_es_scan_clu(inode,
1803                                               &ext4_es_is_mapped, lblk)) {
1804                                 ret = ext4_clu_mapped(inode,
1805                                                       EXT4_B2C(sbi, lblk));
1806                                 if (ret < 0)
1807                                         goto errout;
1808                                 if (ret == 0) {
1809                                         ret = ext4_da_reserve_space(inode);
1810                                         if (ret != 0)   /* ENOSPC */
1811                                                 goto errout;
1812                                 } else {
1813                                         allocated = true;
1814                                 }
1815                         } else {
1816                                 allocated = true;
1817                         }
1818                 }
1819         }
1820
1821         ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1822
1823 errout:
1824         return ret;
1825 }
1826
1827 /*
1828  * This function is grabs code from the very beginning of
1829  * ext4_map_blocks, but assumes that the caller is from delayed write
1830  * time. This function looks up the requested blocks and sets the
1831  * buffer delay bit under the protection of i_data_sem.
1832  */
1833 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1834                               struct ext4_map_blocks *map,
1835                               struct buffer_head *bh)
1836 {
1837         struct extent_status es;
1838         int retval;
1839         sector_t invalid_block = ~((sector_t) 0xffff);
1840 #ifdef ES_AGGRESSIVE_TEST
1841         struct ext4_map_blocks orig_map;
1842
1843         memcpy(&orig_map, map, sizeof(*map));
1844 #endif
1845
1846         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1847                 invalid_block = ~0;
1848
1849         map->m_flags = 0;
1850         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1851                   "logical block %lu\n", inode->i_ino, map->m_len,
1852                   (unsigned long) map->m_lblk);
1853
1854         /* Lookup extent status tree firstly */
1855         if (ext4_es_lookup_extent(inode, iblock, &es)) {
1856                 if (ext4_es_is_hole(&es)) {
1857                         retval = 0;
1858                         down_read(&EXT4_I(inode)->i_data_sem);
1859                         goto add_delayed;
1860                 }
1861
1862                 /*
1863                  * Delayed extent could be allocated by fallocate.
1864                  * So we need to check it.
1865                  */
1866                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1867                         map_bh(bh, inode->i_sb, invalid_block);
1868                         set_buffer_new(bh);
1869                         set_buffer_delay(bh);
1870                         return 0;
1871                 }
1872
1873                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1874                 retval = es.es_len - (iblock - es.es_lblk);
1875                 if (retval > map->m_len)
1876                         retval = map->m_len;
1877                 map->m_len = retval;
1878                 if (ext4_es_is_written(&es))
1879                         map->m_flags |= EXT4_MAP_MAPPED;
1880                 else if (ext4_es_is_unwritten(&es))
1881                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1882                 else
1883                         BUG_ON(1);
1884
1885 #ifdef ES_AGGRESSIVE_TEST
1886                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1887 #endif
1888                 return retval;
1889         }
1890
1891         /*
1892          * Try to see if we can get the block without requesting a new
1893          * file system block.
1894          */
1895         down_read(&EXT4_I(inode)->i_data_sem);
1896         if (ext4_has_inline_data(inode))
1897                 retval = 0;
1898         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1899                 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1900         else
1901                 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1902
1903 add_delayed:
1904         if (retval == 0) {
1905                 int ret;
1906
1907                 /*
1908                  * XXX: __block_prepare_write() unmaps passed block,
1909                  * is it OK?
1910                  */
1911
1912                 ret = ext4_insert_delayed_block(inode, map->m_lblk);
1913                 if (ret != 0) {
1914                         retval = ret;
1915                         goto out_unlock;
1916                 }
1917
1918                 map_bh(bh, inode->i_sb, invalid_block);
1919                 set_buffer_new(bh);
1920                 set_buffer_delay(bh);
1921         } else if (retval > 0) {
1922                 int ret;
1923                 unsigned int status;
1924
1925                 if (unlikely(retval != map->m_len)) {
1926                         ext4_warning(inode->i_sb,
1927                                      "ES len assertion failed for inode "
1928                                      "%lu: retval %d != map->m_len %d",
1929                                      inode->i_ino, retval, map->m_len);
1930                         WARN_ON(1);
1931                 }
1932
1933                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1934                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1935                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1936                                             map->m_pblk, status);
1937                 if (ret != 0)
1938                         retval = ret;
1939         }
1940
1941 out_unlock:
1942         up_read((&EXT4_I(inode)->i_data_sem));
1943
1944         return retval;
1945 }
1946
1947 /*
1948  * This is a special get_block_t callback which is used by
1949  * ext4_da_write_begin().  It will either return mapped block or
1950  * reserve space for a single block.
1951  *
1952  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1953  * We also have b_blocknr = -1 and b_bdev initialized properly
1954  *
1955  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1956  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1957  * initialized properly.
1958  */
1959 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1960                            struct buffer_head *bh, int create)
1961 {
1962         struct ext4_map_blocks map;
1963         int ret = 0;
1964
1965         BUG_ON(create == 0);
1966         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1967
1968         map.m_lblk = iblock;
1969         map.m_len = 1;
1970
1971         /*
1972          * first, we need to know whether the block is allocated already
1973          * preallocated blocks are unmapped but should treated
1974          * the same as allocated blocks.
1975          */
1976         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1977         if (ret <= 0)
1978                 return ret;
1979
1980         map_bh(bh, inode->i_sb, map.m_pblk);
1981         ext4_update_bh_state(bh, map.m_flags);
1982
1983         if (buffer_unwritten(bh)) {
1984                 /* A delayed write to unwritten bh should be marked
1985                  * new and mapped.  Mapped ensures that we don't do
1986                  * get_block multiple times when we write to the same
1987                  * offset and new ensures that we do proper zero out
1988                  * for partial write.
1989                  */
1990                 set_buffer_new(bh);
1991                 set_buffer_mapped(bh);
1992         }
1993         return 0;
1994 }
1995
1996 static int bget_one(handle_t *handle, struct buffer_head *bh)
1997 {
1998         get_bh(bh);
1999         return 0;
2000 }
2001
2002 static int bput_one(handle_t *handle, struct buffer_head *bh)
2003 {
2004         put_bh(bh);
2005         return 0;
2006 }
2007
2008 static int __ext4_journalled_writepage(struct page *page,
2009                                        unsigned int len)
2010 {
2011         struct address_space *mapping = page->mapping;
2012         struct inode *inode = mapping->host;
2013         struct buffer_head *page_bufs = NULL;
2014         handle_t *handle = NULL;
2015         int ret = 0, err = 0;
2016         int inline_data = ext4_has_inline_data(inode);
2017         struct buffer_head *inode_bh = NULL;
2018
2019         ClearPageChecked(page);
2020
2021         if (inline_data) {
2022                 BUG_ON(page->index != 0);
2023                 BUG_ON(len > ext4_get_max_inline_size(inode));
2024                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
2025                 if (inode_bh == NULL)
2026                         goto out;
2027         } else {
2028                 page_bufs = page_buffers(page);
2029                 if (!page_bufs) {
2030                         BUG();
2031                         goto out;
2032                 }
2033                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2034                                        NULL, bget_one);
2035         }
2036         /*
2037          * We need to release the page lock before we start the
2038          * journal, so grab a reference so the page won't disappear
2039          * out from under us.
2040          */
2041         get_page(page);
2042         unlock_page(page);
2043
2044         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2045                                     ext4_writepage_trans_blocks(inode));
2046         if (IS_ERR(handle)) {
2047                 ret = PTR_ERR(handle);
2048                 put_page(page);
2049                 goto out_no_pagelock;
2050         }
2051         BUG_ON(!ext4_handle_valid(handle));
2052
2053         lock_page(page);
2054         put_page(page);
2055         if (page->mapping != mapping) {
2056                 /* The page got truncated from under us */
2057                 ext4_journal_stop(handle);
2058                 ret = 0;
2059                 goto out;
2060         }
2061
2062         if (inline_data) {
2063                 ret = ext4_mark_inode_dirty(handle, inode);
2064         } else {
2065                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2066                                              do_journal_get_write_access);
2067
2068                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2069                                              write_end_fn);
2070         }
2071         if (ret == 0)
2072                 ret = err;
2073         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2074         err = ext4_journal_stop(handle);
2075         if (!ret)
2076                 ret = err;
2077
2078         if (!ext4_has_inline_data(inode))
2079                 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
2080                                        NULL, bput_one);
2081         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2082 out:
2083         unlock_page(page);
2084 out_no_pagelock:
2085         brelse(inode_bh);
2086         return ret;
2087 }
2088
2089 /*
2090  * Note that we don't need to start a transaction unless we're journaling data
2091  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2092  * need to file the inode to the transaction's list in ordered mode because if
2093  * we are writing back data added by write(), the inode is already there and if
2094  * we are writing back data modified via mmap(), no one guarantees in which
2095  * transaction the data will hit the disk. In case we are journaling data, we
2096  * cannot start transaction directly because transaction start ranks above page
2097  * lock so we have to do some magic.
2098  *
2099  * This function can get called via...
2100  *   - ext4_writepages after taking page lock (have journal handle)
2101  *   - journal_submit_inode_data_buffers (no journal handle)
2102  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2103  *   - grab_page_cache when doing write_begin (have journal handle)
2104  *
2105  * We don't do any block allocation in this function. If we have page with
2106  * multiple blocks we need to write those buffer_heads that are mapped. This
2107  * is important for mmaped based write. So if we do with blocksize 1K
2108  * truncate(f, 1024);
2109  * a = mmap(f, 0, 4096);
2110  * a[0] = 'a';
2111  * truncate(f, 4096);
2112  * we have in the page first buffer_head mapped via page_mkwrite call back
2113  * but other buffer_heads would be unmapped but dirty (dirty done via the
2114  * do_wp_page). So writepage should write the first block. If we modify
2115  * the mmap area beyond 1024 we will again get a page_fault and the
2116  * page_mkwrite callback will do the block allocation and mark the
2117  * buffer_heads mapped.
2118  *
2119  * We redirty the page if we have any buffer_heads that is either delay or
2120  * unwritten in the page.
2121  *
2122  * We can get recursively called as show below.
2123  *
2124  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2125  *              ext4_writepage()
2126  *
2127  * But since we don't do any block allocation we should not deadlock.
2128  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2129  */
2130 static int ext4_writepage(struct page *page,
2131                           struct writeback_control *wbc)
2132 {
2133         int ret = 0;
2134         loff_t size;
2135         unsigned int len;
2136         struct buffer_head *page_bufs = NULL;
2137         struct inode *inode = page->mapping->host;
2138         struct ext4_io_submit io_submit;
2139         bool keep_towrite = false;
2140
2141         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2142                 ext4_invalidatepage(page, 0, PAGE_SIZE);
2143                 unlock_page(page);
2144                 return -EIO;
2145         }
2146
2147         trace_ext4_writepage(page);
2148         size = i_size_read(inode);
2149         if (page->index == size >> PAGE_SHIFT)
2150                 len = size & ~PAGE_MASK;
2151         else
2152                 len = PAGE_SIZE;
2153
2154         page_bufs = page_buffers(page);
2155         /*
2156          * We cannot do block allocation or other extent handling in this
2157          * function. If there are buffers needing that, we have to redirty
2158          * the page. But we may reach here when we do a journal commit via
2159          * journal_submit_inode_data_buffers() and in that case we must write
2160          * allocated buffers to achieve data=ordered mode guarantees.
2161          *
2162          * Also, if there is only one buffer per page (the fs block
2163          * size == the page size), if one buffer needs block
2164          * allocation or needs to modify the extent tree to clear the
2165          * unwritten flag, we know that the page can't be written at
2166          * all, so we might as well refuse the write immediately.
2167          * Unfortunately if the block size != page size, we can't as
2168          * easily detect this case using ext4_walk_page_buffers(), but
2169          * for the extremely common case, this is an optimization that
2170          * skips a useless round trip through ext4_bio_write_page().
2171          */
2172         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2173                                    ext4_bh_delay_or_unwritten)) {
2174                 redirty_page_for_writepage(wbc, page);
2175                 if ((current->flags & PF_MEMALLOC) ||
2176                     (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2177                         /*
2178                          * For memory cleaning there's no point in writing only
2179                          * some buffers. So just bail out. Warn if we came here
2180                          * from direct reclaim.
2181                          */
2182                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2183                                                         == PF_MEMALLOC);
2184                         unlock_page(page);
2185                         return 0;
2186                 }
2187                 keep_towrite = true;
2188         }
2189
2190         if (PageChecked(page) && ext4_should_journal_data(inode))
2191                 /*
2192                  * It's mmapped pagecache.  Add buffers and journal it.  There
2193                  * doesn't seem much point in redirtying the page here.
2194                  */
2195                 return __ext4_journalled_writepage(page, len);
2196
2197         ext4_io_submit_init(&io_submit, wbc);
2198         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2199         if (!io_submit.io_end) {
2200                 redirty_page_for_writepage(wbc, page);
2201                 unlock_page(page);
2202                 return -ENOMEM;
2203         }
2204         ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2205         ext4_io_submit(&io_submit);
2206         /* Drop io_end reference we got from init */
2207         ext4_put_io_end_defer(io_submit.io_end);
2208         return ret;
2209 }
2210
2211 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2212 {
2213         int len;
2214         loff_t size;
2215         int err;
2216
2217         BUG_ON(page->index != mpd->first_page);
2218         clear_page_dirty_for_io(page);
2219         /*
2220          * We have to be very careful here!  Nothing protects writeback path
2221          * against i_size changes and the page can be writeably mapped into
2222          * page tables. So an application can be growing i_size and writing
2223          * data through mmap while writeback runs. clear_page_dirty_for_io()
2224          * write-protects our page in page tables and the page cannot get
2225          * written to again until we release page lock. So only after
2226          * clear_page_dirty_for_io() we are safe to sample i_size for
2227          * ext4_bio_write_page() to zero-out tail of the written page. We rely
2228          * on the barrier provided by TestClearPageDirty in
2229          * clear_page_dirty_for_io() to make sure i_size is really sampled only
2230          * after page tables are updated.
2231          */
2232         size = i_size_read(mpd->inode);
2233         if (page->index == size >> PAGE_SHIFT)
2234                 len = size & ~PAGE_MASK;
2235         else
2236                 len = PAGE_SIZE;
2237         err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2238         if (!err)
2239                 mpd->wbc->nr_to_write--;
2240         mpd->first_page++;
2241
2242         return err;
2243 }
2244
2245 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2246
2247 /*
2248  * mballoc gives us at most this number of blocks...
2249  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2250  * The rest of mballoc seems to handle chunks up to full group size.
2251  */
2252 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2253
2254 /*
2255  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2256  *
2257  * @mpd - extent of blocks
2258  * @lblk - logical number of the block in the file
2259  * @bh - buffer head we want to add to the extent
2260  *
2261  * The function is used to collect contig. blocks in the same state. If the
2262  * buffer doesn't require mapping for writeback and we haven't started the
2263  * extent of buffers to map yet, the function returns 'true' immediately - the
2264  * caller can write the buffer right away. Otherwise the function returns true
2265  * if the block has been added to the extent, false if the block couldn't be
2266  * added.
2267  */
2268 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2269                                    struct buffer_head *bh)
2270 {
2271         struct ext4_map_blocks *map = &mpd->map;
2272
2273         /* Buffer that doesn't need mapping for writeback? */
2274         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2275             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2276                 /* So far no extent to map => we write the buffer right away */
2277                 if (map->m_len == 0)
2278                         return true;
2279                 return false;
2280         }
2281
2282         /* First block in the extent? */
2283         if (map->m_len == 0) {
2284                 /* We cannot map unless handle is started... */
2285                 if (!mpd->do_map)
2286                         return false;
2287                 map->m_lblk = lblk;
2288                 map->m_len = 1;
2289                 map->m_flags = bh->b_state & BH_FLAGS;
2290                 return true;
2291         }
2292
2293         /* Don't go larger than mballoc is willing to allocate */
2294         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2295                 return false;
2296
2297         /* Can we merge the block to our big extent? */
2298         if (lblk == map->m_lblk + map->m_len &&
2299             (bh->b_state & BH_FLAGS) == map->m_flags) {
2300                 map->m_len++;
2301                 return true;
2302         }
2303         return false;
2304 }
2305
2306 /*
2307  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2308  *
2309  * @mpd - extent of blocks for mapping
2310  * @head - the first buffer in the page
2311  * @bh - buffer we should start processing from
2312  * @lblk - logical number of the block in the file corresponding to @bh
2313  *
2314  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2315  * the page for IO if all buffers in this page were mapped and there's no
2316  * accumulated extent of buffers to map or add buffers in the page to the
2317  * extent of buffers to map. The function returns 1 if the caller can continue
2318  * by processing the next page, 0 if it should stop adding buffers to the
2319  * extent to map because we cannot extend it anymore. It can also return value
2320  * < 0 in case of error during IO submission.
2321  */
2322 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2323                                    struct buffer_head *head,
2324                                    struct buffer_head *bh,
2325                                    ext4_lblk_t lblk)
2326 {
2327         struct inode *inode = mpd->inode;
2328         int err;
2329         ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2330                                                         >> inode->i_blkbits;
2331
2332         do {
2333                 BUG_ON(buffer_locked(bh));
2334
2335                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2336                         /* Found extent to map? */
2337                         if (mpd->map.m_len)
2338                                 return 0;
2339                         /* Buffer needs mapping and handle is not started? */
2340                         if (!mpd->do_map)
2341                                 return 0;
2342                         /* Everything mapped so far and we hit EOF */
2343                         break;
2344                 }
2345         } while (lblk++, (bh = bh->b_this_page) != head);
2346         /* So far everything mapped? Submit the page for IO. */
2347         if (mpd->map.m_len == 0) {
2348                 err = mpage_submit_page(mpd, head->b_page);
2349                 if (err < 0)
2350                         return err;
2351         }
2352         return lblk < blocks;
2353 }
2354
2355 /*
2356  * mpage_map_buffers - update buffers corresponding to changed extent and
2357  *                     submit fully mapped pages for IO
2358  *
2359  * @mpd - description of extent to map, on return next extent to map
2360  *
2361  * Scan buffers corresponding to changed extent (we expect corresponding pages
2362  * to be already locked) and update buffer state according to new extent state.
2363  * We map delalloc buffers to their physical location, clear unwritten bits,
2364  * and mark buffers as uninit when we perform writes to unwritten extents
2365  * and do extent conversion after IO is finished. If the last page is not fully
2366  * mapped, we update @map to the next extent in the last page that needs
2367  * mapping. Otherwise we submit the page for IO.
2368  */
2369 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2370 {
2371         struct pagevec pvec;
2372         int nr_pages, i;
2373         struct inode *inode = mpd->inode;
2374         struct buffer_head *head, *bh;
2375         int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2376         pgoff_t start, end;
2377         ext4_lblk_t lblk;
2378         sector_t pblock;
2379         int err;
2380
2381         start = mpd->map.m_lblk >> bpp_bits;
2382         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2383         lblk = start << bpp_bits;
2384         pblock = mpd->map.m_pblk;
2385
2386         pagevec_init(&pvec);
2387         while (start <= end) {
2388                 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2389                                                 &start, end);
2390                 if (nr_pages == 0)
2391                         break;
2392                 for (i = 0; i < nr_pages; i++) {
2393                         struct page *page = pvec.pages[i];
2394
2395                         bh = head = page_buffers(page);
2396                         do {
2397                                 if (lblk < mpd->map.m_lblk)
2398                                         continue;
2399                                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2400                                         /*
2401                                          * Buffer after end of mapped extent.
2402                                          * Find next buffer in the page to map.
2403                                          */
2404                                         mpd->map.m_len = 0;
2405                                         mpd->map.m_flags = 0;
2406                                         /*
2407                                          * FIXME: If dioread_nolock supports
2408                                          * blocksize < pagesize, we need to make
2409                                          * sure we add size mapped so far to
2410                                          * io_end->size as the following call
2411                                          * can submit the page for IO.
2412                                          */
2413                                         err = mpage_process_page_bufs(mpd, head,
2414                                                                       bh, lblk);
2415                                         pagevec_release(&pvec);
2416                                         if (err > 0)
2417                                                 err = 0;
2418                                         return err;
2419                                 }
2420                                 if (buffer_delay(bh)) {
2421                                         clear_buffer_delay(bh);
2422                                         bh->b_blocknr = pblock++;
2423                                 }
2424                                 clear_buffer_unwritten(bh);
2425                         } while (lblk++, (bh = bh->b_this_page) != head);
2426
2427                         /*
2428                          * FIXME: This is going to break if dioread_nolock
2429                          * supports blocksize < pagesize as we will try to
2430                          * convert potentially unmapped parts of inode.
2431                          */
2432                         mpd->io_submit.io_end->size += PAGE_SIZE;
2433                         /* Page fully mapped - let IO run! */
2434                         err = mpage_submit_page(mpd, page);
2435                         if (err < 0) {
2436                                 pagevec_release(&pvec);
2437                                 return err;
2438                         }
2439                 }
2440                 pagevec_release(&pvec);
2441         }
2442         /* Extent fully mapped and matches with page boundary. We are done. */
2443         mpd->map.m_len = 0;
2444         mpd->map.m_flags = 0;
2445         return 0;
2446 }
2447
2448 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2449 {
2450         struct inode *inode = mpd->inode;
2451         struct ext4_map_blocks *map = &mpd->map;
2452         int get_blocks_flags;
2453         int err, dioread_nolock;
2454
2455         trace_ext4_da_write_pages_extent(inode, map);
2456         /*
2457          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2458          * to convert an unwritten extent to be initialized (in the case
2459          * where we have written into one or more preallocated blocks).  It is
2460          * possible that we're going to need more metadata blocks than
2461          * previously reserved. However we must not fail because we're in
2462          * writeback and there is nothing we can do about it so it might result
2463          * in data loss.  So use reserved blocks to allocate metadata if
2464          * possible.
2465          *
2466          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2467          * the blocks in question are delalloc blocks.  This indicates
2468          * that the blocks and quotas has already been checked when
2469          * the data was copied into the page cache.
2470          */
2471         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2472                            EXT4_GET_BLOCKS_METADATA_NOFAIL |
2473                            EXT4_GET_BLOCKS_IO_SUBMIT;
2474         dioread_nolock = ext4_should_dioread_nolock(inode);
2475         if (dioread_nolock)
2476                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2477         if (map->m_flags & (1 << BH_Delay))
2478                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2479
2480         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2481         if (err < 0)
2482                 return err;
2483         if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2484                 if (!mpd->io_submit.io_end->handle &&
2485                     ext4_handle_valid(handle)) {
2486                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2487                         handle->h_rsv_handle = NULL;
2488                 }
2489                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2490         }
2491
2492         BUG_ON(map->m_len == 0);
2493         if (map->m_flags & EXT4_MAP_NEW) {
2494                 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
2495                                    map->m_len);
2496         }
2497         return 0;
2498 }
2499
2500 /*
2501  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2502  *                               mpd->len and submit pages underlying it for IO
2503  *
2504  * @handle - handle for journal operations
2505  * @mpd - extent to map
2506  * @give_up_on_write - we set this to true iff there is a fatal error and there
2507  *                     is no hope of writing the data. The caller should discard
2508  *                     dirty pages to avoid infinite loops.
2509  *
2510  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2511  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2512  * them to initialized or split the described range from larger unwritten
2513  * extent. Note that we need not map all the described range since allocation
2514  * can return less blocks or the range is covered by more unwritten extents. We
2515  * cannot map more because we are limited by reserved transaction credits. On
2516  * the other hand we always make sure that the last touched page is fully
2517  * mapped so that it can be written out (and thus forward progress is
2518  * guaranteed). After mapping we submit all mapped pages for IO.
2519  */
2520 static int mpage_map_and_submit_extent(handle_t *handle,
2521                                        struct mpage_da_data *mpd,
2522                                        bool *give_up_on_write)
2523 {
2524         struct inode *inode = mpd->inode;
2525         struct ext4_map_blocks *map = &mpd->map;
2526         int err;
2527         loff_t disksize;
2528         int progress = 0;
2529
2530         mpd->io_submit.io_end->offset =
2531                                 ((loff_t)map->m_lblk) << inode->i_blkbits;
2532         do {
2533                 err = mpage_map_one_extent(handle, mpd);
2534                 if (err < 0) {
2535                         struct super_block *sb = inode->i_sb;
2536
2537                         if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2538                             EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2539                                 goto invalidate_dirty_pages;
2540                         /*
2541                          * Let the uper layers retry transient errors.
2542                          * In the case of ENOSPC, if ext4_count_free_blocks()
2543                          * is non-zero, a commit should free up blocks.
2544                          */
2545                         if ((err == -ENOMEM) ||
2546                             (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2547                                 if (progress)
2548                                         goto update_disksize;
2549                                 return err;
2550                         }
2551                         ext4_msg(sb, KERN_CRIT,
2552                                  "Delayed block allocation failed for "
2553                                  "inode %lu at logical offset %llu with"
2554                                  " max blocks %u with error %d",
2555                                  inode->i_ino,
2556                                  (unsigned long long)map->m_lblk,
2557                                  (unsigned)map->m_len, -err);
2558                         ext4_msg(sb, KERN_CRIT,
2559                                  "This should not happen!! Data will "
2560                                  "be lost\n");
2561                         if (err == -ENOSPC)
2562                                 ext4_print_free_blocks(inode);
2563                 invalidate_dirty_pages:
2564                         *give_up_on_write = true;
2565                         return err;
2566                 }
2567                 progress = 1;
2568                 /*
2569                  * Update buffer state, submit mapped pages, and get us new
2570                  * extent to map
2571                  */
2572                 err = mpage_map_and_submit_buffers(mpd);
2573                 if (err < 0)
2574                         goto update_disksize;
2575         } while (map->m_len);
2576
2577 update_disksize:
2578         /*
2579          * Update on-disk size after IO is submitted.  Races with
2580          * truncate are avoided by checking i_size under i_data_sem.
2581          */
2582         disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2583         if (disksize > EXT4_I(inode)->i_disksize) {
2584                 int err2;
2585                 loff_t i_size;
2586
2587                 down_write(&EXT4_I(inode)->i_data_sem);
2588                 i_size = i_size_read(inode);
2589                 if (disksize > i_size)
2590                         disksize = i_size;
2591                 if (disksize > EXT4_I(inode)->i_disksize)
2592                         EXT4_I(inode)->i_disksize = disksize;
2593                 up_write(&EXT4_I(inode)->i_data_sem);
2594                 err2 = ext4_mark_inode_dirty(handle, inode);
2595                 if (err2)
2596                         ext4_error(inode->i_sb,
2597                                    "Failed to mark inode %lu dirty",
2598                                    inode->i_ino);
2599                 if (!err)
2600                         err = err2;
2601         }
2602         return err;
2603 }
2604
2605 /*
2606  * Calculate the total number of credits to reserve for one writepages
2607  * iteration. This is called from ext4_writepages(). We map an extent of
2608  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2609  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2610  * bpp - 1 blocks in bpp different extents.
2611  */
2612 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2613 {
2614         int bpp = ext4_journal_blocks_per_page(inode);
2615
2616         return ext4_meta_trans_blocks(inode,
2617                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2618 }
2619
2620 /*
2621  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2622  *                               and underlying extent to map
2623  *
2624  * @mpd - where to look for pages
2625  *
2626  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2627  * IO immediately. When we find a page which isn't mapped we start accumulating
2628  * extent of buffers underlying these pages that needs mapping (formed by
2629  * either delayed or unwritten buffers). We also lock the pages containing
2630  * these buffers. The extent found is returned in @mpd structure (starting at
2631  * mpd->lblk with length mpd->len blocks).
2632  *
2633  * Note that this function can attach bios to one io_end structure which are
2634  * neither logically nor physically contiguous. Although it may seem as an
2635  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2636  * case as we need to track IO to all buffers underlying a page in one io_end.
2637  */
2638 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2639 {
2640         struct address_space *mapping = mpd->inode->i_mapping;
2641         struct pagevec pvec;
2642         unsigned int nr_pages;
2643         long left = mpd->wbc->nr_to_write;
2644         pgoff_t index = mpd->first_page;
2645         pgoff_t end = mpd->last_page;
2646         xa_mark_t tag;
2647         int i, err = 0;
2648         int blkbits = mpd->inode->i_blkbits;
2649         ext4_lblk_t lblk;
2650         struct buffer_head *head;
2651
2652         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2653                 tag = PAGECACHE_TAG_TOWRITE;
2654         else
2655                 tag = PAGECACHE_TAG_DIRTY;
2656
2657         pagevec_init(&pvec);
2658         mpd->map.m_len = 0;
2659         mpd->next_page = index;
2660         while (index <= end) {
2661                 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2662                                 tag);
2663                 if (nr_pages == 0)
2664                         goto out;
2665
2666                 for (i = 0; i < nr_pages; i++) {
2667                         struct page *page = pvec.pages[i];
2668
2669                         /*
2670                          * Accumulated enough dirty pages? This doesn't apply
2671                          * to WB_SYNC_ALL mode. For integrity sync we have to
2672                          * keep going because someone may be concurrently
2673                          * dirtying pages, and we might have synced a lot of
2674                          * newly appeared dirty pages, but have not synced all
2675                          * of the old dirty pages.
2676                          */
2677                         if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2678                                 goto out;
2679
2680                         /* If we can't merge this page, we are done. */
2681                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2682                                 goto out;
2683
2684                         lock_page(page);
2685                         /*
2686                          * If the page is no longer dirty, or its mapping no
2687                          * longer corresponds to inode we are writing (which
2688                          * means it has been truncated or invalidated), or the
2689                          * page is already under writeback and we are not doing
2690                          * a data integrity writeback, skip the page
2691                          */
2692                         if (!PageDirty(page) ||
2693                             (PageWriteback(page) &&
2694                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2695                             unlikely(page->mapping != mapping)) {
2696                                 unlock_page(page);
2697                                 continue;
2698                         }
2699
2700                         wait_on_page_writeback(page);
2701                         BUG_ON(PageWriteback(page));
2702
2703                         if (mpd->map.m_len == 0)
2704                                 mpd->first_page = page->index;
2705                         mpd->next_page = page->index + 1;
2706                         /* Add all dirty buffers to mpd */
2707                         lblk = ((ext4_lblk_t)page->index) <<
2708                                 (PAGE_SHIFT - blkbits);
2709                         head = page_buffers(page);
2710                         err = mpage_process_page_bufs(mpd, head, head, lblk);
2711                         if (err <= 0)
2712                                 goto out;
2713                         err = 0;
2714                         left--;
2715                 }
2716                 pagevec_release(&pvec);
2717                 cond_resched();
2718         }
2719         return 0;
2720 out:
2721         pagevec_release(&pvec);
2722         return err;
2723 }
2724
2725 static int ext4_writepages(struct address_space *mapping,
2726                            struct writeback_control *wbc)
2727 {
2728         pgoff_t writeback_index = 0;
2729         long nr_to_write = wbc->nr_to_write;
2730         int range_whole = 0;
2731         int cycled = 1;
2732         handle_t *handle = NULL;
2733         struct mpage_da_data mpd;
2734         struct inode *inode = mapping->host;
2735         int needed_blocks, rsv_blocks = 0, ret = 0;
2736         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2737         bool done;
2738         struct blk_plug plug;
2739         bool give_up_on_write = false;
2740
2741         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2742                 return -EIO;
2743
2744         percpu_down_read(&sbi->s_journal_flag_rwsem);
2745         trace_ext4_writepages(inode, wbc);
2746
2747         /*
2748          * No pages to write? This is mainly a kludge to avoid starting
2749          * a transaction for special inodes like journal inode on last iput()
2750          * because that could violate lock ordering on umount
2751          */
2752         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2753                 goto out_writepages;
2754
2755         if (ext4_should_journal_data(inode)) {
2756                 ret = generic_writepages(mapping, wbc);
2757                 goto out_writepages;
2758         }
2759
2760         /*
2761          * If the filesystem has aborted, it is read-only, so return
2762          * right away instead of dumping stack traces later on that
2763          * will obscure the real source of the problem.  We test
2764          * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2765          * the latter could be true if the filesystem is mounted
2766          * read-only, and in that case, ext4_writepages should
2767          * *never* be called, so if that ever happens, we would want
2768          * the stack trace.
2769          */
2770         if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2771                      sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2772                 ret = -EROFS;
2773                 goto out_writepages;
2774         }
2775
2776         if (ext4_should_dioread_nolock(inode)) {
2777                 /*
2778                  * We may need to convert up to one extent per block in
2779                  * the page and we may dirty the inode.
2780                  */
2781                 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2782                                                 PAGE_SIZE >> inode->i_blkbits);
2783         }
2784
2785         /*
2786          * If we have inline data and arrive here, it means that
2787          * we will soon create the block for the 1st page, so
2788          * we'd better clear the inline data here.
2789          */
2790         if (ext4_has_inline_data(inode)) {
2791                 /* Just inode will be modified... */
2792                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2793                 if (IS_ERR(handle)) {
2794                         ret = PTR_ERR(handle);
2795                         goto out_writepages;
2796                 }
2797                 BUG_ON(ext4_test_inode_state(inode,
2798                                 EXT4_STATE_MAY_INLINE_DATA));
2799                 ext4_destroy_inline_data(handle, inode);
2800                 ext4_journal_stop(handle);
2801         }
2802
2803         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2804                 range_whole = 1;
2805
2806         if (wbc->range_cyclic) {
2807                 writeback_index = mapping->writeback_index;
2808                 if (writeback_index)
2809                         cycled = 0;
2810                 mpd.first_page = writeback_index;
2811                 mpd.last_page = -1;
2812         } else {
2813                 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2814                 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2815         }
2816
2817         mpd.inode = inode;
2818         mpd.wbc = wbc;
2819         ext4_io_submit_init(&mpd.io_submit, wbc);
2820 retry:
2821         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2822                 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2823         done = false;
2824         blk_start_plug(&plug);
2825
2826         /*
2827          * First writeback pages that don't need mapping - we can avoid
2828          * starting a transaction unnecessarily and also avoid being blocked
2829          * in the block layer on device congestion while having transaction
2830          * started.
2831          */
2832         mpd.do_map = 0;
2833         mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2834         if (!mpd.io_submit.io_end) {
2835                 ret = -ENOMEM;
2836                 goto unplug;
2837         }
2838         ret = mpage_prepare_extent_to_map(&mpd);
2839         /* Submit prepared bio */
2840         ext4_io_submit(&mpd.io_submit);
2841         ext4_put_io_end_defer(mpd.io_submit.io_end);
2842         mpd.io_submit.io_end = NULL;
2843         /* Unlock pages we didn't use */
2844         mpage_release_unused_pages(&mpd, false);
2845         if (ret < 0)
2846                 goto unplug;
2847
2848         while (!done && mpd.first_page <= mpd.last_page) {
2849                 /* For each extent of pages we use new io_end */
2850                 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2851                 if (!mpd.io_submit.io_end) {
2852                         ret = -ENOMEM;
2853                         break;
2854                 }
2855
2856                 /*
2857                  * We have two constraints: We find one extent to map and we
2858                  * must always write out whole page (makes a difference when
2859                  * blocksize < pagesize) so that we don't block on IO when we
2860                  * try to write out the rest of the page. Journalled mode is
2861                  * not supported by delalloc.
2862                  */
2863                 BUG_ON(ext4_should_journal_data(inode));
2864                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2865
2866                 /* start a new transaction */
2867                 handle = ext4_journal_start_with_reserve(inode,
2868                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2869                 if (IS_ERR(handle)) {
2870                         ret = PTR_ERR(handle);
2871                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2872                                "%ld pages, ino %lu; err %d", __func__,
2873                                 wbc->nr_to_write, inode->i_ino, ret);
2874                         /* Release allocated io_end */
2875                         ext4_put_io_end(mpd.io_submit.io_end);
2876                         mpd.io_submit.io_end = NULL;
2877                         break;
2878                 }
2879                 mpd.do_map = 1;
2880
2881                 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2882                 ret = mpage_prepare_extent_to_map(&mpd);
2883                 if (!ret) {
2884                         if (mpd.map.m_len)
2885                                 ret = mpage_map_and_submit_extent(handle, &mpd,
2886                                         &give_up_on_write);
2887                         else {
2888                                 /*
2889                                  * We scanned the whole range (or exhausted
2890                                  * nr_to_write), submitted what was mapped and
2891                                  * didn't find anything needing mapping. We are
2892                                  * done.
2893                                  */
2894                                 done = true;
2895                         }
2896                 }
2897                 /*
2898                  * Caution: If the handle is synchronous,
2899                  * ext4_journal_stop() can wait for transaction commit
2900                  * to finish which may depend on writeback of pages to
2901                  * complete or on page lock to be released.  In that
2902                  * case, we have to wait until after after we have
2903                  * submitted all the IO, released page locks we hold,
2904                  * and dropped io_end reference (for extent conversion
2905                  * to be able to complete) before stopping the handle.
2906                  */
2907                 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2908                         ext4_journal_stop(handle);
2909                         handle = NULL;
2910                         mpd.do_map = 0;
2911                 }
2912                 /* Submit prepared bio */
2913                 ext4_io_submit(&mpd.io_submit);
2914                 /* Unlock pages we didn't use */
2915                 mpage_release_unused_pages(&mpd, give_up_on_write);
2916                 /*
2917                  * Drop our io_end reference we got from init. We have
2918                  * to be careful and use deferred io_end finishing if
2919                  * we are still holding the transaction as we can
2920                  * release the last reference to io_end which may end
2921                  * up doing unwritten extent conversion.
2922                  */
2923                 if (handle) {
2924                         ext4_put_io_end_defer(mpd.io_submit.io_end);
2925                         ext4_journal_stop(handle);
2926                 } else
2927                         ext4_put_io_end(mpd.io_submit.io_end);
2928                 mpd.io_submit.io_end = NULL;
2929
2930                 if (ret == -ENOSPC && sbi->s_journal) {
2931                         /*
2932                          * Commit the transaction which would
2933                          * free blocks released in the transaction
2934                          * and try again
2935                          */
2936                         jbd2_journal_force_commit_nested(sbi->s_journal);
2937                         ret = 0;
2938                         continue;
2939                 }
2940                 /* Fatal error - ENOMEM, EIO... */
2941                 if (ret)
2942                         break;
2943         }
2944 unplug:
2945         blk_finish_plug(&plug);
2946         if (!ret && !cycled && wbc->nr_to_write > 0) {
2947                 cycled = 1;
2948                 mpd.last_page = writeback_index - 1;
2949                 mpd.first_page = 0;
2950                 goto retry;
2951         }
2952
2953         /* Update index */
2954         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2955                 /*
2956                  * Set the writeback_index so that range_cyclic
2957                  * mode will write it back later
2958                  */
2959                 mapping->writeback_index = mpd.first_page;
2960
2961 out_writepages:
2962         trace_ext4_writepages_result(inode, wbc, ret,
2963                                      nr_to_write - wbc->nr_to_write);
2964         percpu_up_read(&sbi->s_journal_flag_rwsem);
2965         return ret;
2966 }
2967
2968 static int ext4_dax_writepages(struct address_space *mapping,
2969                                struct writeback_control *wbc)
2970 {
2971         int ret;
2972         long nr_to_write = wbc->nr_to_write;
2973         struct inode *inode = mapping->host;
2974         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2975
2976         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2977                 return -EIO;
2978
2979         percpu_down_read(&sbi->s_journal_flag_rwsem);
2980         trace_ext4_writepages(inode, wbc);
2981
2982         ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev, wbc);
2983         trace_ext4_writepages_result(inode, wbc, ret,
2984                                      nr_to_write - wbc->nr_to_write);
2985         percpu_up_read(&sbi->s_journal_flag_rwsem);
2986         return ret;
2987 }
2988
2989 static int ext4_nonda_switch(struct super_block *sb)
2990 {
2991         s64 free_clusters, dirty_clusters;
2992         struct ext4_sb_info *sbi = EXT4_SB(sb);
2993
2994         /*
2995          * switch to non delalloc mode if we are running low
2996          * on free block. The free block accounting via percpu
2997          * counters can get slightly wrong with percpu_counter_batch getting
2998          * accumulated on each CPU without updating global counters
2999          * Delalloc need an accurate free block accounting. So switch
3000          * to non delalloc when we are near to error range.
3001          */
3002         free_clusters =
3003                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
3004         dirty_clusters =
3005                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
3006         /*
3007          * Start pushing delalloc when 1/2 of free blocks are dirty.
3008          */
3009         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
3010                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
3011
3012         if (2 * free_clusters < 3 * dirty_clusters ||
3013             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
3014                 /*
3015                  * free block count is less than 150% of dirty blocks
3016                  * or free blocks is less than watermark
3017                  */
3018                 return 1;
3019         }
3020         return 0;
3021 }
3022
3023 /* We always reserve for an inode update; the superblock could be there too */
3024 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
3025 {
3026         if (likely(ext4_has_feature_large_file(inode->i_sb)))
3027                 return 1;
3028
3029         if (pos + len <= 0x7fffffffULL)
3030                 return 1;
3031
3032         /* We might need to update the superblock to set LARGE_FILE */
3033         return 2;
3034 }
3035
3036 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3037                                loff_t pos, unsigned len, unsigned flags,
3038                                struct page **pagep, void **fsdata)
3039 {
3040         int ret, retries = 0;
3041         struct page *page;
3042         pgoff_t index;
3043         struct inode *inode = mapping->host;
3044         handle_t *handle;
3045
3046         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
3047                 return -EIO;
3048
3049         index = pos >> PAGE_SHIFT;
3050
3051         if (ext4_nonda_switch(inode->i_sb) ||
3052             S_ISLNK(inode->i_mode)) {
3053                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3054                 return ext4_write_begin(file, mapping, pos,
3055                                         len, flags, pagep, fsdata);
3056         }
3057         *fsdata = (void *)0;
3058         trace_ext4_da_write_begin(inode, pos, len, flags);
3059
3060         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
3061                 ret = ext4_da_write_inline_data_begin(mapping, inode,
3062                                                       pos, len, flags,
3063                                                       pagep, fsdata);
3064                 if (ret < 0)
3065                         return ret;
3066                 if (ret == 1)
3067                         return 0;
3068         }
3069
3070         /*
3071          * grab_cache_page_write_begin() can take a long time if the
3072          * system is thrashing due to memory pressure, or if the page
3073          * is being written back.  So grab it first before we start
3074          * the transaction handle.  This also allows us to allocate
3075          * the page (if needed) without using GFP_NOFS.
3076          */
3077 retry_grab:
3078         page = grab_cache_page_write_begin(mapping, index, flags);
3079         if (!page)
3080                 return -ENOMEM;
3081         unlock_page(page);
3082
3083         /*
3084          * With delayed allocation, we don't log the i_disksize update
3085          * if there is delayed block allocation. But we still need
3086          * to journalling the i_disksize update if writes to the end
3087          * of file which has an already mapped buffer.
3088          */
3089 retry_journal:
3090         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
3091                                 ext4_da_write_credits(inode, pos, len));
3092         if (IS_ERR(handle)) {
3093                 put_page(page);
3094                 return PTR_ERR(handle);
3095         }
3096
3097         lock_page(page);
3098         if (page->mapping != mapping) {
3099                 /* The page got truncated from under us */
3100                 unlock_page(page);
3101                 put_page(page);
3102                 ext4_journal_stop(handle);
3103                 goto retry_grab;
3104         }
3105         /* In case writeback began while the page was unlocked */
3106         wait_for_stable_page(page);
3107
3108 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3109         ret = ext4_block_write_begin(page, pos, len,
3110                                      ext4_da_get_block_prep);
3111 #else
3112         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3113 #endif
3114         if (ret < 0) {
3115                 unlock_page(page);
3116                 ext4_journal_stop(handle);
3117                 /*
3118                  * block_write_begin may have instantiated a few blocks
3119                  * outside i_size.  Trim these off again. Don't need
3120                  * i_size_read because we hold i_mutex.
3121                  */
3122                 if (pos + len > inode->i_size)
3123                         ext4_truncate_failed_write(inode);
3124
3125                 if (ret == -ENOSPC &&
3126                     ext4_should_retry_alloc(inode->i_sb, &retries))
3127                         goto retry_journal;
3128
3129                 put_page(page);
3130                 return ret;
3131         }
3132
3133         *pagep = page;
3134         return ret;
3135 }
3136
3137 /*
3138  * Check if we should update i_disksize
3139  * when write to the end of file but not require block allocation
3140  */
3141 static int ext4_da_should_update_i_disksize(struct page *page,
3142                                             unsigned long offset)
3143 {
3144         struct buffer_head *bh;
3145         struct inode *inode = page->mapping->host;
3146         unsigned int idx;
3147         int i;
3148
3149         bh = page_buffers(page);
3150         idx = offset >> inode->i_blkbits;
3151
3152         for (i = 0; i < idx; i++)
3153                 bh = bh->b_this_page;
3154
3155         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3156                 return 0;
3157         return 1;
3158 }
3159
3160 static int ext4_da_write_end(struct file *file,
3161                              struct address_space *mapping,
3162                              loff_t pos, unsigned len, unsigned copied,
3163                              struct page *page, void *fsdata)
3164 {
3165         struct inode *inode = mapping->host;
3166         int ret = 0, ret2;
3167         handle_t *handle = ext4_journal_current_handle();
3168         loff_t new_i_size;
3169         unsigned long start, end;
3170         int write_mode = (int)(unsigned long)fsdata;
3171
3172         if (write_mode == FALL_BACK_TO_NONDELALLOC)
3173                 return ext4_write_end(file, mapping, pos,
3174                                       len, copied, page, fsdata);
3175
3176         trace_ext4_da_write_end(inode, pos, len, copied);
3177         start = pos & (PAGE_SIZE - 1);
3178         end = start + copied - 1;
3179
3180         /*
3181          * generic_write_end() will run mark_inode_dirty() if i_size
3182          * changes.  So let's piggyback the i_disksize mark_inode_dirty
3183          * into that.
3184          */
3185         new_i_size = pos + copied;
3186         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3187                 if (ext4_has_inline_data(inode) ||
3188                     ext4_da_should_update_i_disksize(page, end)) {
3189                         ext4_update_i_disksize(inode, new_i_size);
3190                         /* We need to mark inode dirty even if
3191                          * new_i_size is less that inode->i_size
3192                          * bu greater than i_disksize.(hint delalloc)
3193                          */
3194                         ext4_mark_inode_dirty(handle, inode);
3195                 }
3196         }
3197
3198         if (write_mode != CONVERT_INLINE_DATA &&
3199             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3200             ext4_has_inline_data(inode))
3201                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3202                                                      page);
3203         else
3204                 ret2 = generic_write_end(file, mapping, pos, len, copied,
3205                                                         page, fsdata);
3206
3207         copied = ret2;
3208         if (ret2 < 0)
3209                 ret = ret2;
3210         ret2 = ext4_journal_stop(handle);
3211         if (!ret)
3212                 ret = ret2;
3213
3214         return ret ? ret : copied;
3215 }
3216
3217 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3218                                    unsigned int length)
3219 {
3220         /*
3221          * Drop reserved blocks
3222          */
3223         BUG_ON(!PageLocked(page));
3224         if (!page_has_buffers(page))
3225                 goto out;
3226
3227         ext4_da_page_release_reservation(page, offset, length);
3228
3229 out:
3230         ext4_invalidatepage(page, offset, length);
3231
3232         return;
3233 }
3234
3235 /*
3236  * Force all delayed allocation blocks to be allocated for a given inode.
3237  */
3238 int ext4_alloc_da_blocks(struct inode *inode)
3239 {
3240         trace_ext4_alloc_da_blocks(inode);
3241
3242         if (!EXT4_I(inode)->i_reserved_data_blocks)
3243                 return 0;
3244
3245         /*
3246          * We do something simple for now.  The filemap_flush() will
3247          * also start triggering a write of the data blocks, which is
3248          * not strictly speaking necessary (and for users of
3249          * laptop_mode, not even desirable).  However, to do otherwise
3250          * would require replicating code paths in:
3251          *
3252          * ext4_writepages() ->
3253          *    write_cache_pages() ---> (via passed in callback function)
3254          *        __mpage_da_writepage() -->
3255          *           mpage_add_bh_to_extent()
3256          *           mpage_da_map_blocks()
3257          *
3258          * The problem is that write_cache_pages(), located in
3259          * mm/page-writeback.c, marks pages clean in preparation for
3260          * doing I/O, which is not desirable if we're not planning on
3261          * doing I/O at all.
3262          *
3263          * We could call write_cache_pages(), and then redirty all of
3264          * the pages by calling redirty_page_for_writepage() but that
3265          * would be ugly in the extreme.  So instead we would need to
3266          * replicate parts of the code in the above functions,
3267          * simplifying them because we wouldn't actually intend to
3268          * write out the pages, but rather only collect contiguous
3269          * logical block extents, call the multi-block allocator, and
3270          * then update the buffer heads with the block allocations.
3271          *
3272          * For now, though, we'll cheat by calling filemap_flush(),
3273          * which will map the blocks, and start the I/O, but not
3274          * actually wait for the I/O to complete.
3275          */
3276         return filemap_flush(inode->i_mapping);
3277 }
3278
3279 /*
3280  * bmap() is special.  It gets used by applications such as lilo and by
3281  * the swapper to find the on-disk block of a specific piece of data.
3282  *
3283  * Naturally, this is dangerous if the block concerned is still in the
3284  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3285  * filesystem and enables swap, then they may get a nasty shock when the
3286  * data getting swapped to that swapfile suddenly gets overwritten by
3287  * the original zero's written out previously to the journal and
3288  * awaiting writeback in the kernel's buffer cache.
3289  *
3290  * So, if we see any bmap calls here on a modified, data-journaled file,
3291  * take extra steps to flush any blocks which might be in the cache.
3292  */
3293 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3294 {
3295         struct inode *inode = mapping->host;
3296         journal_t *journal;
3297         int err;
3298
3299         /*
3300          * We can get here for an inline file via the FIBMAP ioctl
3301          */
3302         if (ext4_has_inline_data(inode))
3303                 return 0;
3304
3305         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3306                         test_opt(inode->i_sb, DELALLOC)) {
3307                 /*
3308                  * With delalloc we want to sync the file
3309                  * so that we can make sure we allocate
3310                  * blocks for file
3311                  */
3312                 filemap_write_and_wait(mapping);
3313         }
3314
3315         if (EXT4_JOURNAL(inode) &&
3316             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3317                 /*
3318                  * This is a REALLY heavyweight approach, but the use of
3319                  * bmap on dirty files is expected to be extremely rare:
3320                  * only if we run lilo or swapon on a freshly made file
3321                  * do we expect this to happen.
3322                  *
3323                  * (bmap requires CAP_SYS_RAWIO so this does not
3324                  * represent an unprivileged user DOS attack --- we'd be
3325                  * in trouble if mortal users could trigger this path at
3326                  * will.)
3327                  *
3328                  * NB. EXT4_STATE_JDATA is not set on files other than
3329                  * regular files.  If somebody wants to bmap a directory
3330                  * or symlink and gets confused because the buffer
3331                  * hasn't yet been flushed to disk, they deserve
3332                  * everything they get.
3333                  */
3334
3335                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3336                 journal = EXT4_JOURNAL(inode);
3337                 jbd2_journal_lock_updates(journal);
3338                 err = jbd2_journal_flush(journal);
3339                 jbd2_journal_unlock_updates(journal);
3340
3341                 if (err)
3342                         return 0;
3343         }
3344
3345         return generic_block_bmap(mapping, block, ext4_get_block);
3346 }
3347
3348 static int ext4_readpage(struct file *file, struct page *page)
3349 {
3350         int ret = -EAGAIN;
3351         struct inode *inode = page->mapping->host;
3352
3353         trace_ext4_readpage(page);
3354
3355         if (ext4_has_inline_data(inode))
3356                 ret = ext4_readpage_inline(inode, page);
3357
3358         if (ret == -EAGAIN)
3359                 return ext4_mpage_readpages(page->mapping, NULL, page, 1,
3360                                                 false);
3361
3362         return ret;
3363 }
3364
3365 static int
3366 ext4_readpages(struct file *file, struct address_space *mapping,
3367                 struct list_head *pages, unsigned nr_pages)
3368 {
3369         struct inode *inode = mapping->host;
3370
3371         /* If the file has inline data, no need to do readpages. */
3372         if (ext4_has_inline_data(inode))
3373                 return 0;
3374
3375         return ext4_mpage_readpages(mapping, pages, NULL, nr_pages, true);
3376 }
3377
3378 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3379                                 unsigned int length)
3380 {
3381         trace_ext4_invalidatepage(page, offset, length);
3382
3383         /* No journalling happens on data buffers when this function is used */
3384         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3385
3386         block_invalidatepage(page, offset, length);
3387 }
3388
3389 static int __ext4_journalled_invalidatepage(struct page *page,
3390                                             unsigned int offset,
3391                                             unsigned int length)
3392 {
3393         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3394
3395         trace_ext4_journalled_invalidatepage(page, offset, length);
3396
3397         /*
3398          * If it's a full truncate we just forget about the pending dirtying
3399          */
3400         if (offset == 0 && length == PAGE_SIZE)
3401                 ClearPageChecked(page);
3402
3403         return jbd2_journal_invalidatepage(journal, page, offset, length);
3404 }
3405
3406 /* Wrapper for aops... */
3407 static void ext4_journalled_invalidatepage(struct page *page,
3408                                            unsigned int offset,
3409                                            unsigned int length)
3410 {
3411         WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3412 }
3413
3414 static int ext4_releasepage(struct page *page, gfp_t wait)
3415 {
3416         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3417
3418         trace_ext4_releasepage(page);
3419
3420         /* Page has dirty journalled data -> cannot release */
3421         if (PageChecked(page))
3422                 return 0;
3423         if (journal)
3424                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3425         else
3426                 return try_to_free_buffers(page);
3427 }
3428
3429 static bool ext4_inode_datasync_dirty(struct inode *inode)
3430 {
3431         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3432
3433         if (journal)
3434                 return !jbd2_transaction_committed(journal,
3435                                         EXT4_I(inode)->i_datasync_tid);
3436         /* Any metadata buffers to write? */
3437         if (!list_empty(&inode->i_mapping->private_list))
3438                 return true;
3439         return inode->i_state & I_DIRTY_DATASYNC;
3440 }
3441
3442 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3443                             unsigned flags, struct iomap *iomap)
3444 {
3445         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3446         unsigned int blkbits = inode->i_blkbits;
3447         unsigned long first_block, last_block;
3448         struct ext4_map_blocks map;
3449         bool delalloc = false;
3450         int ret;
3451
3452         if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3453                 return -EINVAL;
3454         first_block = offset >> blkbits;
3455         last_block = min_t(loff_t, (offset + length - 1) >> blkbits,
3456                            EXT4_MAX_LOGICAL_BLOCK);
3457
3458         if (flags & IOMAP_REPORT) {
3459                 if (ext4_has_inline_data(inode)) {
3460                         ret = ext4_inline_data_iomap(inode, iomap);
3461                         if (ret != -EAGAIN) {
3462                                 if (ret == 0 && offset >= iomap->length)
3463                                         ret = -ENOENT;
3464                                 return ret;
3465                         }
3466                 }
3467         } else {
3468                 if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3469                         return -ERANGE;
3470         }
3471
3472         map.m_lblk = first_block;
3473         map.m_len = last_block - first_block + 1;
3474
3475         if (flags & IOMAP_REPORT) {
3476                 ret = ext4_map_blocks(NULL, inode, &map, 0);
3477                 if (ret < 0)
3478                         return ret;
3479
3480                 if (ret == 0) {
3481                         ext4_lblk_t end = map.m_lblk + map.m_len - 1;
3482                         struct extent_status es;
3483
3484                         ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3485                                                   map.m_lblk, end, &es);
3486
3487                         if (!es.es_len || es.es_lblk > end) {
3488                                 /* entire range is a hole */
3489                         } else if (es.es_lblk > map.m_lblk) {
3490                                 /* range starts with a hole */
3491                                 map.m_len = es.es_lblk - map.m_lblk;
3492                         } else {
3493                                 ext4_lblk_t offs = 0;
3494
3495                                 if (es.es_lblk < map.m_lblk)
3496                                         offs = map.m_lblk - es.es_lblk;
3497                                 map.m_lblk = es.es_lblk + offs;
3498                                 map.m_len = es.es_len - offs;
3499                                 delalloc = true;
3500                         }
3501                 }
3502         } else if (flags & IOMAP_WRITE) {
3503                 int dio_credits;
3504                 handle_t *handle;
3505                 int retries = 0;
3506
3507                 /* Trim mapping request to maximum we can map at once for DIO */
3508                 if (map.m_len > DIO_MAX_BLOCKS)
3509                         map.m_len = DIO_MAX_BLOCKS;
3510                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
3511 retry:
3512                 /*
3513                  * Either we allocate blocks and then we don't get unwritten
3514                  * extent so we have reserved enough credits, or the blocks
3515                  * are already allocated and unwritten and in that case
3516                  * extent conversion fits in the credits as well.
3517                  */
3518                 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
3519                                             dio_credits);
3520                 if (IS_ERR(handle))
3521                         return PTR_ERR(handle);
3522
3523                 ret = ext4_map_blocks(handle, inode, &map,
3524                                       EXT4_GET_BLOCKS_CREATE_ZERO);
3525                 if (ret < 0) {
3526                         ext4_journal_stop(handle);
3527                         if (ret == -ENOSPC &&
3528                             ext4_should_retry_alloc(inode->i_sb, &retries))
3529                                 goto retry;
3530                         return ret;
3531                 }
3532
3533                 /*
3534                  * If we added blocks beyond i_size, we need to make sure they
3535                  * will get truncated if we crash before updating i_size in
3536                  * ext4_iomap_end(). For faults we don't need to do that (and
3537                  * even cannot because for orphan list operations inode_lock is
3538                  * required) - if we happen to instantiate block beyond i_size,
3539                  * it is because we race with truncate which has already added
3540                  * the inode to the orphan list.
3541                  */
3542                 if (!(flags & IOMAP_FAULT) && first_block + map.m_len >
3543                     (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) {
3544                         int err;
3545
3546                         err = ext4_orphan_add(handle, inode);
3547                         if (err < 0) {
3548                                 ext4_journal_stop(handle);
3549                                 return err;
3550                         }
3551                 }
3552                 ext4_journal_stop(handle);
3553         } else {
3554                 ret = ext4_map_blocks(NULL, inode, &map, 0);
3555                 if (ret < 0)
3556                         return ret;
3557         }
3558
3559         iomap->flags = 0;
3560         if (ext4_inode_datasync_dirty(inode))
3561                 iomap->flags |= IOMAP_F_DIRTY;
3562         iomap->bdev = inode->i_sb->s_bdev;
3563         iomap->dax_dev = sbi->s_daxdev;
3564         iomap->offset = (u64)first_block << blkbits;
3565         iomap->length = (u64)map.m_len << blkbits;
3566
3567         if (ret == 0) {
3568                 iomap->type = delalloc ? IOMAP_DELALLOC : IOMAP_HOLE;
3569                 iomap->addr = IOMAP_NULL_ADDR;
3570         } else {
3571                 if (map.m_flags & EXT4_MAP_MAPPED) {
3572                         iomap->type = IOMAP_MAPPED;
3573                 } else if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3574                         iomap->type = IOMAP_UNWRITTEN;
3575                 } else {
3576                         WARN_ON_ONCE(1);
3577                         return -EIO;
3578                 }
3579                 iomap->addr = (u64)map.m_pblk << blkbits;
3580         }
3581
3582         if (map.m_flags & EXT4_MAP_NEW)
3583                 iomap->flags |= IOMAP_F_NEW;
3584
3585         return 0;
3586 }
3587
3588 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3589                           ssize_t written, unsigned flags, struct iomap *iomap)
3590 {
3591         int ret = 0;
3592         handle_t *handle;
3593         int blkbits = inode->i_blkbits;
3594         bool truncate = false;
3595
3596         if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT))
3597                 return 0;
3598
3599         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3600         if (IS_ERR(handle)) {
3601                 ret = PTR_ERR(handle);
3602                 goto orphan_del;
3603         }
3604         if (ext4_update_inode_size(inode, offset + written))
3605                 ext4_mark_inode_dirty(handle, inode);
3606         /*
3607          * We may need to truncate allocated but not written blocks beyond EOF.
3608          */
3609         if (iomap->offset + iomap->length > 
3610             ALIGN(inode->i_size, 1 << blkbits)) {
3611                 ext4_lblk_t written_blk, end_blk;
3612
3613                 written_blk = (offset + written) >> blkbits;
3614                 end_blk = (offset + length) >> blkbits;
3615                 if (written_blk < end_blk && ext4_can_truncate(inode))
3616                         truncate = true;
3617         }
3618         /*
3619          * Remove inode from orphan list if we were extending a inode and
3620          * everything went fine.
3621          */
3622         if (!truncate && inode->i_nlink &&
3623             !list_empty(&EXT4_I(inode)->i_orphan))
3624                 ext4_orphan_del(handle, inode);
3625         ext4_journal_stop(handle);
3626         if (truncate) {
3627                 ext4_truncate_failed_write(inode);
3628 orphan_del:
3629                 /*
3630                  * If truncate failed early the inode might still be on the
3631                  * orphan list; we need to make sure the inode is removed from
3632                  * the orphan list in that case.
3633                  */
3634                 if (inode->i_nlink)
3635                         ext4_orphan_del(NULL, inode);
3636         }
3637         return ret;
3638 }
3639
3640 const struct iomap_ops ext4_iomap_ops = {
3641         .iomap_begin            = ext4_iomap_begin,
3642         .iomap_end              = ext4_iomap_end,
3643 };
3644
3645 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3646                             ssize_t size, void *private)
3647 {
3648         ext4_io_end_t *io_end = private;
3649
3650         /* if not async direct IO just return */
3651         if (!io_end)
3652                 return 0;
3653
3654         ext_debug("ext4_end_io_dio(): io_end 0x%p "
3655                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3656                   io_end, io_end->inode->i_ino, iocb, offset, size);
3657
3658         /*
3659          * Error during AIO DIO. We cannot convert unwritten extents as the
3660          * data was not written. Just clear the unwritten flag and drop io_end.
3661          */
3662         if (size <= 0) {
3663                 ext4_clear_io_unwritten_flag(io_end);
3664                 size = 0;
3665         }
3666         io_end->offset = offset;
3667         io_end->size = size;
3668         ext4_put_io_end(io_end);
3669
3670         return 0;
3671 }
3672
3673 /*
3674  * Handling of direct IO writes.
3675  *
3676  * For ext4 extent files, ext4 will do direct-io write even to holes,
3677  * preallocated extents, and those write extend the file, no need to
3678  * fall back to buffered IO.
3679  *
3680  * For holes, we fallocate those blocks, mark them as unwritten
3681  * If those blocks were preallocated, we mark sure they are split, but
3682  * still keep the range to write as unwritten.
3683  *
3684  * The unwritten extents will be converted to written when DIO is completed.
3685  * For async direct IO, since the IO may still pending when return, we
3686  * set up an end_io call back function, which will do the conversion
3687  * when async direct IO completed.
3688  *
3689  * If the O_DIRECT write will extend the file then add this inode to the
3690  * orphan list.  So recovery will truncate it back to the original size
3691  * if the machine crashes during the write.
3692  *
3693  */
3694 static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
3695 {
3696         struct file *file = iocb->ki_filp;
3697         struct inode *inode = file->f_mapping->host;
3698         struct ext4_inode_info *ei = EXT4_I(inode);
3699         ssize_t ret;
3700         loff_t offset = iocb->ki_pos;
3701         size_t count = iov_iter_count(iter);
3702         int overwrite = 0;
3703         get_block_t *get_block_func = NULL;
3704         int dio_flags = 0;
3705         loff_t final_size = offset + count;
3706         int orphan = 0;
3707         handle_t *handle;
3708
3709         if (final_size > inode->i_size || final_size > ei->i_disksize) {
3710                 /* Credits for sb + inode write */
3711                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3712                 if (IS_ERR(handle)) {
3713                         ret = PTR_ERR(handle);
3714                         goto out;
3715                 }
3716                 ret = ext4_orphan_add(handle, inode);
3717                 if (ret) {
3718                         ext4_journal_stop(handle);
3719                         goto out;
3720                 }
3721                 orphan = 1;
3722                 ext4_update_i_disksize(inode, inode->i_size);
3723                 ext4_journal_stop(handle);
3724         }
3725
3726         BUG_ON(iocb->private == NULL);
3727
3728         /*
3729          * Make all waiters for direct IO properly wait also for extent
3730          * conversion. This also disallows race between truncate() and
3731          * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3732          */
3733         inode_dio_begin(inode);
3734
3735         /* If we do a overwrite dio, i_mutex locking can be released */
3736         overwrite = *((int *)iocb->private);
3737
3738         if (overwrite)
3739                 inode_unlock(inode);
3740
3741         /*
3742          * For extent mapped files we could direct write to holes and fallocate.
3743          *
3744          * Allocated blocks to fill the hole are marked as unwritten to prevent
3745          * parallel buffered read to expose the stale data before DIO complete
3746          * the data IO.
3747          *
3748          * As to previously fallocated extents, ext4 get_block will just simply
3749          * mark the buffer mapped but still keep the extents unwritten.
3750          *
3751          * For non AIO case, we will convert those unwritten extents to written
3752          * after return back from blockdev_direct_IO. That way we save us from
3753          * allocating io_end structure and also the overhead of offloading
3754          * the extent convertion to a workqueue.
3755          *
3756          * For async DIO, the conversion needs to be deferred when the
3757          * IO is completed. The ext4 end_io callback function will be
3758          * called to take care of the conversion work.  Here for async
3759          * case, we allocate an io_end structure to hook to the iocb.
3760          */
3761         iocb->private = NULL;
3762         if (overwrite)
3763                 get_block_func = ext4_dio_get_block_overwrite;
3764         else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
3765                    round_down(offset, i_blocksize(inode)) >= inode->i_size) {
3766                 get_block_func = ext4_dio_get_block;
3767                 dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3768         } else if (is_sync_kiocb(iocb)) {
3769                 get_block_func = ext4_dio_get_block_unwritten_sync;
3770                 dio_flags = DIO_LOCKING;
3771         } else {
3772                 get_block_func = ext4_dio_get_block_unwritten_async;
3773                 dio_flags = DIO_LOCKING;
3774         }
3775         ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
3776                                    get_block_func, ext4_end_io_dio, NULL,
3777                                    dio_flags);
3778
3779         if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3780                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3781                 int err;
3782                 /*
3783                  * for non AIO case, since the IO is already
3784                  * completed, we could do the conversion right here
3785                  */
3786                 err = ext4_convert_unwritten_extents(NULL, inode,
3787                                                      offset, ret);
3788                 if (err < 0)
3789                         ret = err;
3790                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3791         }
3792
3793         inode_dio_end(inode);
3794         /* take i_mutex locking again if we do a ovewrite dio */
3795         if (overwrite)
3796                 inode_lock(inode);
3797
3798         if (ret < 0 && final_size > inode->i_size)
3799                 ext4_truncate_failed_write(inode);
3800
3801         /* Handle extending of i_size after direct IO write */
3802         if (orphan) {
3803                 int err;
3804
3805                 /* Credits for sb + inode write */
3806                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3807                 if (IS_ERR(handle)) {
3808                         /*
3809                          * We wrote the data but cannot extend
3810                          * i_size. Bail out. In async io case, we do
3811                          * not return error here because we have
3812                          * already submmitted the corresponding
3813                          * bio. Returning error here makes the caller
3814                          * think that this IO is done and failed
3815                          * resulting in race with bio's completion
3816                          * handler.
3817                          */
3818                         if (!ret)
3819                                 ret = PTR_ERR(handle);
3820                         if (inode->i_nlink)
3821                                 ext4_orphan_del(NULL, inode);
3822
3823                         goto out;
3824                 }
3825                 if (inode->i_nlink)
3826                         ext4_orphan_del(handle, inode);
3827                 if (ret > 0) {
3828                         loff_t end = offset + ret;
3829                         if (end > inode->i_size || end > ei->i_disksize) {
3830                                 ext4_update_i_disksize(inode, end);
3831                                 if (end > inode->i_size)
3832                                         i_size_write(inode, end);
3833                                 /*
3834                                  * We're going to return a positive `ret'
3835                                  * here due to non-zero-length I/O, so there's
3836                                  * no way of reporting error returns from
3837                                  * ext4_mark_inode_dirty() to userspace.  So
3838                                  * ignore it.
3839                                  */
3840                                 ext4_mark_inode_dirty(handle, inode);
3841                         }
3842                 }
3843                 err = ext4_journal_stop(handle);
3844                 if (ret == 0)
3845                         ret = err;
3846         }
3847 out:
3848         return ret;
3849 }
3850
3851 static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
3852 {
3853         struct address_space *mapping = iocb->ki_filp->f_mapping;
3854         struct inode *inode = mapping->host;
3855         size_t count = iov_iter_count(iter);
3856         ssize_t ret;
3857
3858         /*
3859          * Shared inode_lock is enough for us - it protects against concurrent
3860          * writes & truncates and since we take care of writing back page cache,
3861          * we are protected against page writeback as well.
3862          */
3863         inode_lock_shared(inode);
3864         ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
3865                                            iocb->ki_pos + count - 1);
3866         if (ret)
3867                 goto out_unlock;
3868         ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3869                                    iter, ext4_dio_get_block, NULL, NULL, 0);
3870 out_unlock:
3871         inode_unlock_shared(inode);
3872         return ret;
3873 }
3874
3875 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3876 {
3877         struct file *file = iocb->ki_filp;
3878         struct inode *inode = file->f_mapping->host;
3879         size_t count = iov_iter_count(iter);
3880         loff_t offset = iocb->ki_pos;
3881         ssize_t ret;
3882
3883 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3884         if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3885                 return 0;
3886 #endif
3887
3888         /*
3889          * If we are doing data journalling we don't support O_DIRECT
3890          */
3891         if (ext4_should_journal_data(inode))
3892                 return 0;
3893
3894         /* Let buffer I/O handle the inline data case. */
3895         if (ext4_has_inline_data(inode))
3896                 return 0;
3897
3898         trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3899         if (iov_iter_rw(iter) == READ)
3900                 ret = ext4_direct_IO_read(iocb, iter);
3901         else
3902                 ret = ext4_direct_IO_write(iocb, iter);
3903         trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3904         return ret;
3905 }
3906
3907 /*
3908  * Pages can be marked dirty completely asynchronously from ext4's journalling
3909  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3910  * much here because ->set_page_dirty is called under VFS locks.  The page is
3911  * not necessarily locked.
3912  *
3913  * We cannot just dirty the page and leave attached buffers clean, because the
3914  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3915  * or jbddirty because all the journalling code will explode.
3916  *
3917  * So what we do is to mark the page "pending dirty" and next time writepage
3918  * is called, propagate that into the buffers appropriately.
3919  */
3920 static int ext4_journalled_set_page_dirty(struct page *page)
3921 {
3922         SetPageChecked(page);
3923         return __set_page_dirty_nobuffers(page);
3924 }
3925
3926 static int ext4_set_page_dirty(struct page *page)
3927 {
3928         WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3929         WARN_ON_ONCE(!page_has_buffers(page));
3930         return __set_page_dirty_buffers(page);
3931 }
3932
3933 static const struct address_space_operations ext4_aops = {
3934         .readpage               = ext4_readpage,
3935         .readpages              = ext4_readpages,
3936         .writepage              = ext4_writepage,
3937         .writepages             = ext4_writepages,
3938         .write_begin            = ext4_write_begin,
3939         .write_end              = ext4_write_end,
3940         .set_page_dirty         = ext4_set_page_dirty,
3941         .bmap                   = ext4_bmap,
3942         .invalidatepage         = ext4_invalidatepage,
3943         .releasepage            = ext4_releasepage,
3944         .direct_IO              = ext4_direct_IO,
3945         .migratepage            = buffer_migrate_page,
3946         .is_partially_uptodate  = block_is_partially_uptodate,
3947         .error_remove_page      = generic_error_remove_page,
3948 };
3949
3950 static const struct address_space_operations ext4_journalled_aops = {
3951         .readpage               = ext4_readpage,
3952         .readpages              = ext4_readpages,
3953         .writepage              = ext4_writepage,
3954         .writepages             = ext4_writepages,
3955         .write_begin            = ext4_write_begin,
3956         .write_end              = ext4_journalled_write_end,
3957         .set_page_dirty         = ext4_journalled_set_page_dirty,
3958         .bmap                   = ext4_bmap,
3959         .invalidatepage         = ext4_journalled_invalidatepage,
3960         .releasepage            = ext4_releasepage,
3961         .direct_IO              = ext4_direct_IO,
3962         .is_partially_uptodate  = block_is_partially_uptodate,
3963         .error_remove_page      = generic_error_remove_page,
3964 };
3965
3966 static const struct address_space_operations ext4_da_aops = {
3967         .readpage               = ext4_readpage,
3968         .readpages              = ext4_readpages,
3969         .writepage              = ext4_writepage,
3970         .writepages             = ext4_writepages,
3971         .write_begin            = ext4_da_write_begin,
3972         .write_end              = ext4_da_write_end,
3973         .set_page_dirty         = ext4_set_page_dirty,
3974         .bmap                   = ext4_bmap,
3975         .invalidatepage         = ext4_da_invalidatepage,
3976         .releasepage            = ext4_releasepage,
3977         .direct_IO              = ext4_direct_IO,
3978         .migratepage            = buffer_migrate_page,
3979         .is_partially_uptodate  = block_is_partially_uptodate,
3980         .error_remove_page      = generic_error_remove_page,
3981 };
3982
3983 static const struct address_space_operations ext4_dax_aops = {
3984         .writepages             = ext4_dax_writepages,
3985         .direct_IO              = noop_direct_IO,
3986         .set_page_dirty         = noop_set_page_dirty,
3987         .bmap                   = ext4_bmap,
3988         .invalidatepage         = noop_invalidatepage,
3989 };
3990
3991 void ext4_set_aops(struct inode *inode)
3992 {
3993         switch (ext4_inode_journal_mode(inode)) {
3994         case EXT4_INODE_ORDERED_DATA_MODE:
3995         case EXT4_INODE_WRITEBACK_DATA_MODE:
3996                 break;
3997         case EXT4_INODE_JOURNAL_DATA_MODE:
3998                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3999                 return;
4000         default:
4001                 BUG();
4002         }
4003         if (IS_DAX(inode))
4004                 inode->i_mapping->a_ops = &ext4_dax_aops;
4005         else if (test_opt(inode->i_sb, DELALLOC))
4006                 inode->i_mapping->a_ops = &ext4_da_aops;
4007         else
4008                 inode->i_mapping->a_ops = &ext4_aops;
4009 }
4010
4011 static int __ext4_block_zero_page_range(handle_t *handle,
4012                 struct address_space *mapping, loff_t from, loff_t length)
4013 {
4014         ext4_fsblk_t index = from >> PAGE_SHIFT;
4015         unsigned offset = from & (PAGE_SIZE-1);
4016         unsigned blocksize, pos;
4017         ext4_lblk_t iblock;
4018         struct inode *inode = mapping->host;
4019         struct buffer_head *bh;
4020         struct page *page;
4021         int err = 0;
4022
4023         page = find_or_create_page(mapping, from >> PAGE_SHIFT,
4024                                    mapping_gfp_constraint(mapping, ~__GFP_FS));
4025         if (!page)
4026                 return -ENOMEM;
4027
4028         blocksize = inode->i_sb->s_blocksize;
4029
4030         iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
4031
4032         if (!page_has_buffers(page))
4033                 create_empty_buffers(page, blocksize, 0);
4034
4035         /* Find the buffer that contains "offset" */
4036         bh = page_buffers(page);
4037         pos = blocksize;
4038         while (offset >= pos) {
4039                 bh = bh->b_this_page;
4040                 iblock++;
4041                 pos += blocksize;
4042         }
4043         if (buffer_freed(bh)) {
4044                 BUFFER_TRACE(bh, "freed: skip");
4045                 goto unlock;
4046         }
4047         if (!buffer_mapped(bh)) {
4048                 BUFFER_TRACE(bh, "unmapped");
4049                 ext4_get_block(inode, iblock, bh, 0);
4050                 /* unmapped? It's a hole - nothing to do */
4051                 if (!buffer_mapped(bh)) {
4052                         BUFFER_TRACE(bh, "still unmapped");
4053                         goto unlock;
4054                 }
4055         }
4056
4057         /* Ok, it's mapped. Make sure it's up-to-date */
4058         if (PageUptodate(page))
4059                 set_buffer_uptodate(bh);
4060
4061         if (!buffer_uptodate(bh)) {
4062                 err = -EIO;
4063                 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
4064                 wait_on_buffer(bh);
4065                 /* Uhhuh. Read error. Complain and punt. */
4066                 if (!buffer_uptodate(bh))
4067                         goto unlock;
4068                 if (S_ISREG(inode->i_mode) &&
4069                     ext4_encrypted_inode(inode)) {
4070                         /* We expect the key to be set. */
4071                         BUG_ON(!fscrypt_has_encryption_key(inode));
4072                         BUG_ON(blocksize != PAGE_SIZE);
4073                         WARN_ON_ONCE(fscrypt_decrypt_page(page->mapping->host,
4074                                                 page, PAGE_SIZE, 0, page->index));
4075                 }
4076         }
4077         if (ext4_should_journal_data(inode)) {
4078                 BUFFER_TRACE(bh, "get write access");
4079                 err = ext4_journal_get_write_access(handle, bh);
4080                 if (err)
4081                         goto unlock;
4082         }
4083         zero_user(page, offset, length);
4084         BUFFER_TRACE(bh, "zeroed end of block");
4085
4086         if (ext4_should_journal_data(inode)) {
4087                 err = ext4_handle_dirty_metadata(handle, inode, bh);
4088         } else {
4089                 err = 0;
4090                 mark_buffer_dirty(bh);
4091                 if (ext4_should_order_data(inode))
4092                         err = ext4_jbd2_inode_add_write(handle, inode);
4093         }
4094
4095 unlock:
4096         unlock_page(page);
4097         put_page(page);
4098         return err;
4099 }
4100
4101 /*
4102  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
4103  * starting from file offset 'from'.  The range to be zero'd must
4104  * be contained with in one block.  If the specified range exceeds
4105  * the end of the block it will be shortened to end of the block
4106  * that cooresponds to 'from'
4107  */
4108 static int ext4_block_zero_page_range(handle_t *handle,
4109                 struct address_space *mapping, loff_t from, loff_t length)
4110 {
4111         struct inode *inode = mapping->host;
4112         unsigned offset = from & (PAGE_SIZE-1);
4113         unsigned blocksize = inode->i_sb->s_blocksize;
4114         unsigned max = blocksize - (offset & (blocksize - 1));
4115
4116         /*
4117          * correct length if it does not fall between
4118          * 'from' and the end of the block
4119          */
4120         if (length > max || length < 0)
4121                 length = max;
4122
4123         if (IS_DAX(inode)) {
4124                 return iomap_zero_range(inode, from, length, NULL,
4125                                         &ext4_iomap_ops);
4126         }
4127         return __ext4_block_zero_page_range(handle, mapping, from, length);
4128 }
4129
4130 /*
4131  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
4132  * up to the end of the block which corresponds to `from'.
4133  * This required during truncate. We need to physically zero the tail end
4134  * of that block so it doesn't yield old data if the file is later grown.
4135  */
4136 static int ext4_block_truncate_page(handle_t *handle,
4137                 struct address_space *mapping, loff_t from)
4138 {
4139         unsigned offset = from & (PAGE_SIZE-1);
4140         unsigned length;
4141         unsigned blocksize;
4142         struct inode *inode = mapping->host;
4143
4144         /* If we are processing an encrypted inode during orphan list handling */
4145         if (ext4_encrypted_inode(inode) && !fscrypt_has_encryption_key(inode))
4146                 return 0;
4147
4148         blocksize = inode->i_sb->s_blocksize;
4149         length = blocksize - (offset & (blocksize - 1));
4150
4151         return ext4_block_zero_page_range(handle, mapping, from, length);
4152 }
4153
4154 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
4155                              loff_t lstart, loff_t length)
4156 {
4157         struct super_block *sb = inode->i_sb;
4158         struct address_space *mapping = inode->i_mapping;
4159         unsigned partial_start, partial_end;
4160         ext4_fsblk_t start, end;
4161         loff_t byte_end = (lstart + length - 1);
4162         int err = 0;
4163
4164         partial_start = lstart & (sb->s_blocksize - 1);
4165         partial_end = byte_end & (sb->s_blocksize - 1);
4166
4167         start = lstart >> sb->s_blocksize_bits;
4168         end = byte_end >> sb->s_blocksize_bits;
4169
4170         /* Handle partial zero within the single block */
4171         if (start == end &&
4172             (partial_start || (partial_end != sb->s_blocksize - 1))) {
4173                 err = ext4_block_zero_page_range(handle, mapping,
4174                                                  lstart, length);
4175                 return err;
4176         }
4177         /* Handle partial zero out on the start of the range */
4178         if (partial_start) {
4179                 err = ext4_block_zero_page_range(handle, mapping,
4180                                                  lstart, sb->s_blocksize);
4181                 if (err)
4182                         return err;
4183         }
4184         /* Handle partial zero out on the end of the range */
4185         if (partial_end != sb->s_blocksize - 1)
4186                 err = ext4_block_zero_page_range(handle, mapping,
4187                                                  byte_end - partial_end,
4188                                                  partial_end + 1);
4189         return err;
4190 }
4191
4192 int ext4_can_truncate(struct inode *inode)
4193 {
4194         if (S_ISREG(inode->i_mode))
4195                 return 1;
4196         if (S_ISDIR(inode->i_mode))
4197                 return 1;
4198         if (S_ISLNK(inode->i_mode))
4199                 return !ext4_inode_is_fast_symlink(inode);
4200         return 0;
4201 }
4202
4203 /*
4204  * We have to make sure i_disksize gets properly updated before we truncate
4205  * page cache due to hole punching or zero range. Otherwise i_disksize update
4206  * can get lost as it may have been postponed to submission of writeback but
4207  * that will never happen after we truncate page cache.
4208  */
4209 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
4210                                       loff_t len)
4211 {
4212         handle_t *handle;
4213         loff_t size = i_size_read(inode);
4214
4215         WARN_ON(!inode_is_locked(inode));
4216         if (offset > size || offset + len < size)
4217                 return 0;
4218
4219         if (EXT4_I(inode)->i_disksize >= size)
4220                 return 0;
4221
4222         handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
4223         if (IS_ERR(handle))
4224                 return PTR_ERR(handle);
4225         ext4_update_i_disksize(inode, size);
4226         ext4_mark_inode_dirty(handle, inode);
4227         ext4_journal_stop(handle);
4228
4229         return 0;
4230 }
4231
4232 static void ext4_wait_dax_page(struct ext4_inode_info *ei)
4233 {
4234         up_write(&ei->i_mmap_sem);
4235         schedule();
4236         down_write(&ei->i_mmap_sem);
4237 }
4238
4239 int ext4_break_layouts(struct inode *inode)
4240 {
4241         struct ext4_inode_info *ei = EXT4_I(inode);
4242         struct page *page;
4243         int error;
4244
4245         if (WARN_ON_ONCE(!rwsem_is_locked(&ei->i_mmap_sem)))
4246                 return -EINVAL;
4247
4248         do {
4249                 page = dax_layout_busy_page(inode->i_mapping);
4250                 if (!page)
4251                         return 0;
4252
4253                 error = ___wait_var_event(&page->_refcount,
4254                                 atomic_read(&page->_refcount) == 1,
4255                                 TASK_INTERRUPTIBLE, 0, 0,
4256                                 ext4_wait_dax_page(ei));
4257         } while (error == 0);
4258
4259         return error;
4260 }
4261
4262 /*
4263  * ext4_punch_hole: punches a hole in a file by releasing the blocks
4264  * associated with the given offset and length
4265  *
4266  * @inode:  File inode
4267  * @offset: The offset where the hole will begin
4268  * @len:    The length of the hole
4269  *
4270  * Returns: 0 on success or negative on failure
4271  */
4272
4273 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
4274 {
4275         struct super_block *sb = inode->i_sb;
4276         ext4_lblk_t first_block, stop_block;
4277         struct address_space *mapping = inode->i_mapping;
4278         loff_t first_block_offset, last_block_offset;
4279         handle_t *handle;
4280         unsigned int credits;
4281         int ret = 0;
4282
4283         if (!S_ISREG(inode->i_mode))
4284                 return -EOPNOTSUPP;
4285
4286         trace_ext4_punch_hole(inode, offset, length, 0);
4287
4288         /*
4289          * Write out all dirty pages to avoid race conditions
4290          * Then release them.
4291          */
4292         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4293                 ret = filemap_write_and_wait_range(mapping, offset,
4294                                                    offset + length - 1);
4295                 if (ret)
4296                         return ret;
4297         }
4298
4299         inode_lock(inode);
4300
4301         /* No need to punch hole beyond i_size */
4302         if (offset >= inode->i_size)
4303                 goto out_mutex;
4304
4305         /*
4306          * If the hole extends beyond i_size, set the hole
4307          * to end after the page that contains i_size
4308          */
4309         if (offset + length > inode->i_size) {
4310                 length = inode->i_size +
4311                    PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4312                    offset;
4313         }
4314
4315         if (offset & (sb->s_blocksize - 1) ||
4316             (offset + length) & (sb->s_blocksize - 1)) {
4317                 /*
4318                  * Attach jinode to inode for jbd2 if we do any zeroing of
4319                  * partial block
4320                  */
4321                 ret = ext4_inode_attach_jinode(inode);
4322                 if (ret < 0)
4323                         goto out_mutex;
4324
4325         }
4326
4327         /* Wait all existing dio workers, newcomers will block on i_mutex */
4328         inode_dio_wait(inode);
4329
4330         /*
4331          * Prevent page faults from reinstantiating pages we have released from
4332          * page cache.
4333          */
4334         down_write(&EXT4_I(inode)->i_mmap_sem);
4335
4336         ret = ext4_break_layouts(inode);
4337         if (ret)
4338                 goto out_dio;
4339
4340         first_block_offset = round_up(offset, sb->s_blocksize);
4341         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4342
4343         /* Now release the pages and zero block aligned part of pages*/
4344         if (last_block_offset > first_block_offset) {
4345                 ret = ext4_update_disksize_before_punch(inode, offset, length);
4346                 if (ret)
4347                         goto out_dio;
4348                 truncate_pagecache_range(inode, first_block_offset,
4349                                          last_block_offset);
4350         }
4351
4352         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4353                 credits = ext4_writepage_trans_blocks(inode);
4354         else
4355                 credits = ext4_blocks_for_truncate(inode);
4356         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4357         if (IS_ERR(handle)) {
4358                 ret = PTR_ERR(handle);
4359                 ext4_std_error(sb, ret);
4360                 goto out_dio;
4361         }
4362
4363         ret = ext4_zero_partial_blocks(handle, inode, offset,
4364                                        length);
4365         if (ret)
4366                 goto out_stop;
4367
4368         first_block = (offset + sb->s_blocksize - 1) >>
4369                 EXT4_BLOCK_SIZE_BITS(sb);
4370         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4371
4372         /* If there are blocks to remove, do it */
4373         if (stop_block > first_block) {
4374
4375                 down_write(&EXT4_I(inode)->i_data_sem);
4376                 ext4_discard_preallocations(inode);
4377
4378                 ret = ext4_es_remove_extent(inode, first_block,
4379                                             stop_block - first_block);
4380                 if (ret) {
4381                         up_write(&EXT4_I(inode)->i_data_sem);
4382                         goto out_stop;
4383                 }
4384
4385                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4386                         ret = ext4_ext_remove_space(inode, first_block,
4387                                                     stop_block - 1);
4388                 else
4389                         ret = ext4_ind_remove_space(handle, inode, first_block,
4390                                                     stop_block);
4391
4392                 up_write(&EXT4_I(inode)->i_data_sem);
4393         }
4394         if (IS_SYNC(inode))
4395                 ext4_handle_sync(handle);
4396
4397         inode->i_mtime = inode->i_ctime = current_time(inode);
4398         ext4_mark_inode_dirty(handle, inode);
4399         if (ret >= 0)
4400                 ext4_update_inode_fsync_trans(handle, inode, 1);
4401 out_stop:
4402         ext4_journal_stop(handle);
4403 out_dio:
4404         up_write(&EXT4_I(inode)->i_mmap_sem);
4405 out_mutex:
4406         inode_unlock(inode);
4407         return ret;
4408 }
4409
4410 int ext4_inode_attach_jinode(struct inode *inode)
4411 {
4412         struct ext4_inode_info *ei = EXT4_I(inode);
4413         struct jbd2_inode *jinode;
4414
4415         if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4416                 return 0;
4417
4418         jinode = jbd2_alloc_inode(GFP_KERNEL);
4419         spin_lock(&inode->i_lock);
4420         if (!ei->jinode) {
4421                 if (!jinode) {
4422                         spin_unlock(&inode->i_lock);
4423                         return -ENOMEM;
4424                 }
4425                 ei->jinode = jinode;
4426                 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4427                 jinode = NULL;
4428         }
4429         spin_unlock(&inode->i_lock);
4430         if (unlikely(jinode != NULL))
4431                 jbd2_free_inode(jinode);
4432         return 0;
4433 }
4434
4435 /*
4436  * ext4_truncate()
4437  *
4438  * We block out ext4_get_block() block instantiations across the entire
4439  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4440  * simultaneously on behalf of the same inode.
4441  *
4442  * As we work through the truncate and commit bits of it to the journal there
4443  * is one core, guiding principle: the file's tree must always be consistent on
4444  * disk.  We must be able to restart the truncate after a crash.
4445  *
4446  * The file's tree may be transiently inconsistent in memory (although it
4447  * probably isn't), but whenever we close off and commit a journal transaction,
4448  * the contents of (the filesystem + the journal) must be consistent and
4449  * restartable.  It's pretty simple, really: bottom up, right to left (although
4450  * left-to-right works OK too).
4451  *
4452  * Note that at recovery time, journal replay occurs *before* the restart of
4453  * truncate against the orphan inode list.
4454  *
4455  * The committed inode has the new, desired i_size (which is the same as
4456  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4457  * that this inode's truncate did not complete and it will again call
4458  * ext4_truncate() to have another go.  So there will be instantiated blocks
4459  * to the right of the truncation point in a crashed ext4 filesystem.  But
4460  * that's fine - as long as they are linked from the inode, the post-crash
4461  * ext4_truncate() run will find them and release them.
4462  */
4463 int ext4_truncate(struct inode *inode)
4464 {
4465         struct ext4_inode_info *ei = EXT4_I(inode);
4466         unsigned int credits;
4467         int err = 0;
4468         handle_t *handle;
4469         struct address_space *mapping = inode->i_mapping;
4470
4471         /*
4472          * There is a possibility that we're either freeing the inode
4473          * or it's a completely new inode. In those cases we might not
4474          * have i_mutex locked because it's not necessary.
4475          */
4476         if (!(inode->i_state & (I_NEW|I_FREEING)))
4477                 WARN_ON(!inode_is_locked(inode));
4478         trace_ext4_truncate_enter(inode);
4479
4480         if (!ext4_can_truncate(inode))
4481                 return 0;
4482
4483         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4484
4485         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4486                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4487
4488         if (ext4_has_inline_data(inode)) {
4489                 int has_inline = 1;
4490
4491                 err = ext4_inline_data_truncate(inode, &has_inline);
4492                 if (err)
4493                         return err;
4494                 if (has_inline)
4495                         return 0;
4496         }
4497
4498         /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4499         if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4500                 if (ext4_inode_attach_jinode(inode) < 0)
4501                         return 0;
4502         }
4503
4504         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4505                 credits = ext4_writepage_trans_blocks(inode);
4506         else
4507                 credits = ext4_blocks_for_truncate(inode);
4508
4509         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4510         if (IS_ERR(handle))
4511                 return PTR_ERR(handle);
4512
4513         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4514                 ext4_block_truncate_page(handle, mapping, inode->i_size);
4515
4516         /*
4517          * We add the inode to the orphan list, so that if this
4518          * truncate spans multiple transactions, and we crash, we will
4519          * resume the truncate when the filesystem recovers.  It also
4520          * marks the inode dirty, to catch the new size.
4521          *
4522          * Implication: the file must always be in a sane, consistent
4523          * truncatable state while each transaction commits.
4524          */
4525         err = ext4_orphan_add(handle, inode);
4526         if (err)
4527                 goto out_stop;
4528
4529         down_write(&EXT4_I(inode)->i_data_sem);
4530
4531         ext4_discard_preallocations(inode);
4532
4533         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4534                 err = ext4_ext_truncate(handle, inode);
4535         else
4536                 ext4_ind_truncate(handle, inode);
4537
4538         up_write(&ei->i_data_sem);
4539         if (err)
4540                 goto out_stop;
4541
4542         if (IS_SYNC(inode))
4543                 ext4_handle_sync(handle);
4544
4545 out_stop:
4546         /*
4547          * If this was a simple ftruncate() and the file will remain alive,
4548          * then we need to clear up the orphan record which we created above.
4549          * However, if this was a real unlink then we were called by
4550          * ext4_evict_inode(), and we allow that function to clean up the
4551          * orphan info for us.
4552          */
4553         if (inode->i_nlink)
4554                 ext4_orphan_del(handle, inode);
4555
4556         inode->i_mtime = inode->i_ctime = current_time(inode);
4557         ext4_mark_inode_dirty(handle, inode);
4558         ext4_journal_stop(handle);
4559
4560         trace_ext4_truncate_exit(inode);
4561         return err;
4562 }
4563
4564 /*
4565  * ext4_get_inode_loc returns with an extra refcount against the inode's
4566  * underlying buffer_head on success. If 'in_mem' is true, we have all
4567  * data in memory that is needed to recreate the on-disk version of this
4568  * inode.
4569  */
4570 static int __ext4_get_inode_loc(struct inode *inode,
4571                                 struct ext4_iloc *iloc, int in_mem)
4572 {
4573         struct ext4_group_desc  *gdp;
4574         struct buffer_head      *bh;
4575         struct super_block      *sb = inode->i_sb;
4576         ext4_fsblk_t            block;
4577         int                     inodes_per_block, inode_offset;
4578
4579         iloc->bh = NULL;
4580         if (inode->i_ino < EXT4_ROOT_INO ||
4581             inode->i_ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4582                 return -EFSCORRUPTED;
4583
4584         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4585         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4586         if (!gdp)
4587                 return -EIO;
4588
4589         /*
4590          * Figure out the offset within the block group inode table
4591          */
4592         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4593         inode_offset = ((inode->i_ino - 1) %
4594                         EXT4_INODES_PER_GROUP(sb));
4595         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4596         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4597
4598         bh = sb_getblk(sb, block);
4599         if (unlikely(!bh))
4600                 return -ENOMEM;
4601         if (!buffer_uptodate(bh)) {
4602                 lock_buffer(bh);
4603
4604                 /*
4605                  * If the buffer has the write error flag, we have failed
4606                  * to write out another inode in the same block.  In this
4607                  * case, we don't have to read the block because we may
4608                  * read the old inode data successfully.
4609                  */
4610                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4611                         set_buffer_uptodate(bh);
4612
4613                 if (buffer_uptodate(bh)) {
4614                         /* someone brought it uptodate while we waited */
4615                         unlock_buffer(bh);
4616                         goto has_buffer;
4617                 }
4618
4619                 /*
4620                  * If we have all information of the inode in memory and this
4621                  * is the only valid inode in the block, we need not read the
4622                  * block.
4623                  */
4624                 if (in_mem) {
4625                         struct buffer_head *bitmap_bh;
4626                         int i, start;
4627
4628                         start = inode_offset & ~(inodes_per_block - 1);
4629
4630                         /* Is the inode bitmap in cache? */
4631                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4632                         if (unlikely(!bitmap_bh))
4633                                 goto make_io;
4634
4635                         /*
4636                          * If the inode bitmap isn't in cache then the
4637                          * optimisation may end up performing two reads instead
4638                          * of one, so skip it.
4639                          */
4640                         if (!buffer_uptodate(bitmap_bh)) {
4641                                 brelse(bitmap_bh);
4642                                 goto make_io;
4643                         }
4644                         for (i = start; i < start + inodes_per_block; i++) {
4645                                 if (i == inode_offset)
4646                                         continue;
4647                                 if (ext4_test_bit(i, bitmap_bh->b_data))
4648                                         break;
4649                         }
4650                         brelse(bitmap_bh);
4651                         if (i == start + inodes_per_block) {
4652                                 /* all other inodes are free, so skip I/O */
4653                                 memset(bh->b_data, 0, bh->b_size);
4654                                 set_buffer_uptodate(bh);
4655                                 unlock_buffer(bh);
4656                                 goto has_buffer;
4657                         }
4658                 }
4659
4660 make_io:
4661                 /*
4662                  * If we need to do any I/O, try to pre-readahead extra
4663                  * blocks from the inode table.
4664                  */
4665                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4666                         ext4_fsblk_t b, end, table;
4667                         unsigned num;
4668                         __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4669
4670                         table = ext4_inode_table(sb, gdp);
4671                         /* s_inode_readahead_blks is always a power of 2 */
4672                         b = block & ~((ext4_fsblk_t) ra_blks - 1);
4673                         if (table > b)
4674                                 b = table;
4675                         end = b + ra_blks;
4676                         num = EXT4_INODES_PER_GROUP(sb);
4677                         if (ext4_has_group_desc_csum(sb))
4678                                 num -= ext4_itable_unused_count(sb, gdp);
4679                         table += num / inodes_per_block;
4680                         if (end > table)
4681                                 end = table;
4682                         while (b <= end)
4683                                 sb_breadahead(sb, b++);
4684                 }
4685
4686                 /*
4687                  * There are other valid inodes in the buffer, this inode
4688                  * has in-inode xattrs, or we don't have this inode in memory.
4689                  * Read the block from disk.
4690                  */
4691                 trace_ext4_load_inode(inode);
4692                 get_bh(bh);
4693                 bh->b_end_io = end_buffer_read_sync;
4694                 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4695                 wait_on_buffer(bh);
4696                 if (!buffer_uptodate(bh)) {
4697                         EXT4_ERROR_INODE_BLOCK(inode, block,
4698                                                "unable to read itable block");
4699                         brelse(bh);
4700                         return -EIO;
4701                 }
4702         }
4703 has_buffer:
4704         iloc->bh = bh;
4705         return 0;
4706 }
4707
4708 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4709 {
4710         /* We have all inode data except xattrs in memory here. */
4711         return __ext4_get_inode_loc(inode, iloc,
4712                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4713 }
4714
4715 static bool ext4_should_use_dax(struct inode *inode)
4716 {
4717         if (!test_opt(inode->i_sb, DAX))
4718                 return false;
4719         if (!S_ISREG(inode->i_mode))
4720                 return false;
4721         if (ext4_should_journal_data(inode))
4722                 return false;
4723         if (ext4_has_inline_data(inode))
4724                 return false;
4725         if (ext4_encrypted_inode(inode))
4726                 return false;
4727         return true;
4728 }
4729
4730 void ext4_set_inode_flags(struct inode *inode)
4731 {
4732         unsigned int flags = EXT4_I(inode)->i_flags;
4733         unsigned int new_fl = 0;
4734
4735         if (flags & EXT4_SYNC_FL)
4736                 new_fl |= S_SYNC;
4737         if (flags & EXT4_APPEND_FL)
4738                 new_fl |= S_APPEND;
4739         if (flags & EXT4_IMMUTABLE_FL)
4740                 new_fl |= S_IMMUTABLE;
4741         if (flags & EXT4_NOATIME_FL)
4742                 new_fl |= S_NOATIME;
4743         if (flags & EXT4_DIRSYNC_FL)
4744                 new_fl |= S_DIRSYNC;
4745         if (ext4_should_use_dax(inode))
4746                 new_fl |= S_DAX;
4747         if (flags & EXT4_ENCRYPT_FL)
4748                 new_fl |= S_ENCRYPTED;
4749         inode_set_flags(inode, new_fl,
4750                         S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4751                         S_ENCRYPTED);
4752 }
4753
4754 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4755                                   struct ext4_inode_info *ei)
4756 {
4757         blkcnt_t i_blocks ;
4758         struct inode *inode = &(ei->vfs_inode);
4759         struct super_block *sb = inode->i_sb;
4760
4761         if (ext4_has_feature_huge_file(sb)) {
4762                 /* we are using combined 48 bit field */
4763                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4764                                         le32_to_cpu(raw_inode->i_blocks_lo);
4765                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4766                         /* i_blocks represent file system block size */
4767                         return i_blocks  << (inode->i_blkbits - 9);
4768                 } else {
4769                         return i_blocks;
4770                 }
4771         } else {
4772                 return le32_to_cpu(raw_inode->i_blocks_lo);
4773         }
4774 }
4775
4776 static inline int ext4_iget_extra_inode(struct inode *inode,
4777                                          struct ext4_inode *raw_inode,
4778                                          struct ext4_inode_info *ei)
4779 {
4780         __le32 *magic = (void *)raw_inode +
4781                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4782
4783         if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4784             EXT4_INODE_SIZE(inode->i_sb) &&
4785             *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4786                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4787                 return ext4_find_inline_data_nolock(inode);
4788         } else
4789                 EXT4_I(inode)->i_inline_off = 0;
4790         return 0;
4791 }
4792
4793 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4794 {
4795         if (!ext4_has_feature_project(inode->i_sb))
4796                 return -EOPNOTSUPP;
4797         *projid = EXT4_I(inode)->i_projid;
4798         return 0;
4799 }
4800
4801 /*
4802  * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4803  * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4804  * set.
4805  */
4806 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4807 {
4808         if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4809                 inode_set_iversion_raw(inode, val);
4810         else
4811                 inode_set_iversion_queried(inode, val);
4812 }
4813 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4814 {
4815         if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4816                 return inode_peek_iversion_raw(inode);
4817         else
4818                 return inode_peek_iversion(inode);
4819 }
4820
4821 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4822                           ext4_iget_flags flags, const char *function,
4823                           unsigned int line)
4824 {
4825         struct ext4_iloc iloc;
4826         struct ext4_inode *raw_inode;
4827         struct ext4_inode_info *ei;
4828         struct inode *inode;
4829         journal_t *journal = EXT4_SB(sb)->s_journal;
4830         long ret;
4831         loff_t size;
4832         int block;
4833         uid_t i_uid;
4834         gid_t i_gid;
4835         projid_t i_projid;
4836
4837         if ((!(flags & EXT4_IGET_SPECIAL) &&
4838              (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)) ||
4839             (ino < EXT4_ROOT_INO) ||
4840             (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))) {
4841                 if (flags & EXT4_IGET_HANDLE)
4842                         return ERR_PTR(-ESTALE);
4843                 __ext4_error(sb, function, line,
4844                              "inode #%lu: comm %s: iget: illegal inode #",
4845                              ino, current->comm);
4846                 return ERR_PTR(-EFSCORRUPTED);
4847         }
4848
4849         inode = iget_locked(sb, ino);
4850         if (!inode)
4851                 return ERR_PTR(-ENOMEM);
4852         if (!(inode->i_state & I_NEW))
4853                 return inode;
4854
4855         ei = EXT4_I(inode);
4856         iloc.bh = NULL;
4857
4858         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4859         if (ret < 0)
4860                 goto bad_inode;
4861         raw_inode = ext4_raw_inode(&iloc);
4862
4863         if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4864                 ext4_error_inode(inode, function, line, 0,
4865                                  "iget: root inode unallocated");
4866                 ret = -EFSCORRUPTED;
4867                 goto bad_inode;
4868         }
4869
4870         if ((flags & EXT4_IGET_HANDLE) &&
4871             (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4872                 ret = -ESTALE;
4873                 goto bad_inode;
4874         }
4875
4876         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4877                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4878                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4879                         EXT4_INODE_SIZE(inode->i_sb) ||
4880                     (ei->i_extra_isize & 3)) {
4881                         ext4_error_inode(inode, function, line, 0,
4882                                          "iget: bad extra_isize %u "
4883                                          "(inode size %u)",
4884                                          ei->i_extra_isize,
4885                                          EXT4_INODE_SIZE(inode->i_sb));
4886                         ret = -EFSCORRUPTED;
4887                         goto bad_inode;
4888                 }
4889         } else
4890                 ei->i_extra_isize = 0;
4891
4892         /* Precompute checksum seed for inode metadata */
4893         if (ext4_has_metadata_csum(sb)) {
4894                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4895                 __u32 csum;
4896                 __le32 inum = cpu_to_le32(inode->i_ino);
4897                 __le32 gen = raw_inode->i_generation;
4898                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4899                                    sizeof(inum));
4900                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4901                                               sizeof(gen));
4902         }
4903
4904         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4905                 ext4_error_inode(inode, function, line, 0,
4906                                  "iget: checksum invalid");
4907                 ret = -EFSBADCRC;
4908                 goto bad_inode;
4909         }
4910
4911         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4912         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4913         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4914         if (ext4_has_feature_project(sb) &&
4915             EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4916             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4917                 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4918         else
4919                 i_projid = EXT4_DEF_PROJID;
4920
4921         if (!(test_opt(inode->i_sb, NO_UID32))) {
4922                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4923                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4924         }
4925         i_uid_write(inode, i_uid);
4926         i_gid_write(inode, i_gid);
4927         ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4928         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4929
4930         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4931         ei->i_inline_off = 0;
4932         ei->i_dir_start_lookup = 0;
4933         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4934         /* We now have enough fields to check if the inode was active or not.
4935          * This is needed because nfsd might try to access dead inodes
4936          * the test is that same one that e2fsck uses
4937          * NeilBrown 1999oct15
4938          */
4939         if (inode->i_nlink == 0) {
4940                 if ((inode->i_mode == 0 ||
4941                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4942                     ino != EXT4_BOOT_LOADER_INO) {
4943                         /* this inode is deleted */
4944                         ret = -ESTALE;
4945                         goto bad_inode;
4946                 }
4947                 /* The only unlinked inodes we let through here have
4948                  * valid i_mode and are being read by the orphan
4949                  * recovery code: that's fine, we're about to complete
4950                  * the process of deleting those.
4951                  * OR it is the EXT4_BOOT_LOADER_INO which is
4952                  * not initialized on a new filesystem. */
4953         }
4954         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4955         ext4_set_inode_flags(inode);
4956         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4957         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4958         if (ext4_has_feature_64bit(sb))
4959                 ei->i_file_acl |=
4960                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4961         inode->i_size = ext4_isize(sb, raw_inode);
4962         if ((size = i_size_read(inode)) < 0) {
4963                 ext4_error_inode(inode, function, line, 0,
4964                                  "iget: bad i_size value: %lld", size);
4965                 ret = -EFSCORRUPTED;
4966                 goto bad_inode;
4967         }
4968         ei->i_disksize = inode->i_size;
4969 #ifdef CONFIG_QUOTA
4970         ei->i_reserved_quota = 0;
4971 #endif
4972         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4973         ei->i_block_group = iloc.block_group;
4974         ei->i_last_alloc_group = ~0;
4975         /*
4976          * NOTE! The in-memory inode i_data array is in little-endian order
4977          * even on big-endian machines: we do NOT byteswap the block numbers!
4978          */
4979         for (block = 0; block < EXT4_N_BLOCKS; block++)
4980                 ei->i_data[block] = raw_inode->i_block[block];
4981         INIT_LIST_HEAD(&ei->i_orphan);
4982
4983         /*
4984          * Set transaction id's of transactions that have to be committed
4985          * to finish f[data]sync. We set them to currently running transaction
4986          * as we cannot be sure that the inode or some of its metadata isn't
4987          * part of the transaction - the inode could have been reclaimed and
4988          * now it is reread from disk.
4989          */
4990         if (journal) {
4991                 transaction_t *transaction;
4992                 tid_t tid;
4993
4994                 read_lock(&journal->j_state_lock);
4995                 if (journal->j_running_transaction)
4996                         transaction = journal->j_running_transaction;
4997                 else
4998                         transaction = journal->j_committing_transaction;
4999                 if (transaction)
5000                         tid = transaction->t_tid;
5001                 else
5002                         tid = journal->j_commit_sequence;
5003                 read_unlock(&journal->j_state_lock);
5004                 ei->i_sync_tid = tid;
5005                 ei->i_datasync_tid = tid;
5006         }
5007
5008         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5009                 if (ei->i_extra_isize == 0) {
5010                         /* The extra space is currently unused. Use it. */
5011                         BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
5012                         ei->i_extra_isize = sizeof(struct ext4_inode) -
5013                                             EXT4_GOOD_OLD_INODE_SIZE;
5014                 } else {
5015                         ret = ext4_iget_extra_inode(inode, raw_inode, ei);
5016                         if (ret)
5017                                 goto bad_inode;
5018                 }
5019         }
5020
5021         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
5022         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
5023         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
5024         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
5025
5026         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5027                 u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
5028
5029                 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5030                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5031                                 ivers |=
5032                     (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
5033                 }
5034                 ext4_inode_set_iversion_queried(inode, ivers);
5035         }
5036
5037         ret = 0;
5038         if (ei->i_file_acl &&
5039             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
5040                 ext4_error_inode(inode, function, line, 0,
5041                                  "iget: bad extended attribute block %llu",
5042                                  ei->i_file_acl);
5043                 ret = -EFSCORRUPTED;
5044                 goto bad_inode;
5045         } else if (!ext4_has_inline_data(inode)) {
5046                 /* validate the block references in the inode */
5047                 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5048                    (S_ISLNK(inode->i_mode) &&
5049                     !ext4_inode_is_fast_symlink(inode))) {
5050                         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
5051                                 ret = ext4_ext_check_inode(inode);
5052                         else
5053                                 ret = ext4_ind_check_inode(inode);
5054                 }
5055         }
5056         if (ret)
5057                 goto bad_inode;
5058
5059         if (S_ISREG(inode->i_mode)) {
5060                 inode->i_op = &ext4_file_inode_operations;
5061                 inode->i_fop = &ext4_file_operations;
5062                 ext4_set_aops(inode);
5063         } else if (S_ISDIR(inode->i_mode)) {
5064                 inode->i_op = &ext4_dir_inode_operations;
5065                 inode->i_fop = &ext4_dir_operations;
5066         } else if (S_ISLNK(inode->i_mode)) {
5067                 /* VFS does not allow setting these so must be corruption */
5068                 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
5069                         ext4_error_inode(inode, function, line, 0,
5070                                          "iget: immutable or append flags "
5071                                          "not allowed on symlinks");
5072                         ret = -EFSCORRUPTED;
5073                         goto bad_inode;
5074                 }
5075                 if (ext4_encrypted_inode(inode)) {
5076                         inode->i_op = &ext4_encrypted_symlink_inode_operations;
5077                         ext4_set_aops(inode);
5078                 } else if (ext4_inode_is_fast_symlink(inode)) {
5079                         inode->i_link = (char *)ei->i_data;
5080                         inode->i_op = &ext4_fast_symlink_inode_operations;
5081                         nd_terminate_link(ei->i_data, inode->i_size,
5082                                 sizeof(ei->i_data) - 1);
5083                 } else {
5084                         inode->i_op = &ext4_symlink_inode_operations;
5085                         ext4_set_aops(inode);
5086                 }
5087                 inode_nohighmem(inode);
5088         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5089               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5090                 inode->i_op = &ext4_special_inode_operations;
5091                 if (raw_inode->i_block[0])
5092                         init_special_inode(inode, inode->i_mode,
5093                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5094                 else
5095                         init_special_inode(inode, inode->i_mode,
5096                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5097         } else if (ino == EXT4_BOOT_LOADER_INO) {
5098                 make_bad_inode(inode);
5099         } else {
5100                 ret = -EFSCORRUPTED;
5101                 ext4_error_inode(inode, function, line, 0,
5102                                  "iget: bogus i_mode (%o)", inode->i_mode);
5103                 goto bad_inode;
5104         }
5105         brelse(iloc.bh);
5106
5107         unlock_new_inode(inode);
5108         return inode;
5109
5110 bad_inode:
5111         brelse(iloc.bh);
5112         iget_failed(inode);
5113         return ERR_PTR(ret);
5114 }
5115
5116 static int ext4_inode_blocks_set(handle_t *handle,
5117                                 struct ext4_inode *raw_inode,
5118                                 struct ext4_inode_info *ei)
5119 {
5120         struct inode *inode = &(ei->vfs_inode);
5121         u64 i_blocks = inode->i_blocks;
5122         struct super_block *sb = inode->i_sb;
5123
5124         if (i_blocks <= ~0U) {
5125                 /*
5126                  * i_blocks can be represented in a 32 bit variable
5127                  * as multiple of 512 bytes
5128                  */
5129                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5130                 raw_inode->i_blocks_high = 0;
5131                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5132                 return 0;
5133         }
5134         if (!ext4_has_feature_huge_file(sb))
5135                 return -EFBIG;
5136
5137         if (i_blocks <= 0xffffffffffffULL) {
5138                 /*
5139                  * i_blocks can be represented in a 48 bit variable
5140                  * as multiple of 512 bytes
5141                  */
5142                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5143                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5144                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5145         } else {
5146                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5147                 /* i_block is stored in file system block size */
5148                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
5149                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5150                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5151         }
5152         return 0;
5153 }
5154
5155 struct other_inode {
5156         unsigned long           orig_ino;
5157         struct ext4_inode       *raw_inode;
5158 };
5159
5160 static int other_inode_match(struct inode * inode, unsigned long ino,
5161                              void *data)
5162 {
5163         struct other_inode *oi = (struct other_inode *) data;
5164
5165         if ((inode->i_ino != ino) ||
5166             (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5167                                I_DIRTY_INODE)) ||
5168             ((inode->i_state & I_DIRTY_TIME) == 0))
5169                 return 0;
5170         spin_lock(&inode->i_lock);
5171         if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5172                                 I_DIRTY_INODE)) == 0) &&
5173             (inode->i_state & I_DIRTY_TIME)) {
5174                 struct ext4_inode_info  *ei = EXT4_I(inode);
5175
5176                 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
5177                 spin_unlock(&inode->i_lock);
5178
5179                 spin_lock(&ei->i_raw_lock);
5180                 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
5181                 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
5182                 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
5183                 ext4_inode_csum_set(inode, oi->raw_inode, ei);
5184                 spin_unlock(&ei->i_raw_lock);
5185                 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
5186                 return -1;
5187         }
5188         spin_unlock(&inode->i_lock);
5189         return -1;
5190 }
5191
5192 /*
5193  * Opportunistically update the other time fields for other inodes in
5194  * the same inode table block.
5195  */
5196 static void ext4_update_other_inodes_time(struct super_block *sb,
5197                                           unsigned long orig_ino, char *buf)
5198 {
5199         struct other_inode oi;
5200         unsigned long ino;
5201         int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5202         int inode_size = EXT4_INODE_SIZE(sb);
5203
5204         oi.orig_ino = orig_ino;
5205         /*
5206          * Calculate the first inode in the inode table block.  Inode
5207          * numbers are one-based.  That is, the first inode in a block
5208          * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5209          */
5210         ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5211         for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5212                 if (ino == orig_ino)
5213                         continue;
5214                 oi.raw_inode = (struct ext4_inode *) buf;
5215                 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
5216         }
5217 }
5218
5219 /*
5220  * Post the struct inode info into an on-disk inode location in the
5221  * buffer-cache.  This gobbles the caller's reference to the
5222  * buffer_head in the inode location struct.
5223  *
5224  * The caller must have write access to iloc->bh.
5225  */
5226 static int ext4_do_update_inode(handle_t *handle,
5227                                 struct inode *inode,
5228                                 struct ext4_iloc *iloc)
5229 {
5230         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5231         struct ext4_inode_info *ei = EXT4_I(inode);
5232         struct buffer_head *bh = iloc->bh;
5233         struct super_block *sb = inode->i_sb;
5234         int err = 0, rc, block;
5235         int need_datasync = 0, set_large_file = 0;
5236         uid_t i_uid;
5237         gid_t i_gid;
5238         projid_t i_projid;
5239
5240         spin_lock(&ei->i_raw_lock);
5241
5242         /* For fields not tracked in the in-memory inode,
5243          * initialise them to zero for new inodes. */
5244         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5245                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5246
5247         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5248         i_uid = i_uid_read(inode);
5249         i_gid = i_gid_read(inode);
5250         i_projid = from_kprojid(&init_user_ns, ei->i_projid);
5251         if (!(test_opt(inode->i_sb, NO_UID32))) {
5252                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
5253                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
5254 /*
5255  * Fix up interoperability with old kernels. Otherwise, old inodes get
5256  * re-used with the upper 16 bits of the uid/gid intact
5257  */
5258                 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
5259                         raw_inode->i_uid_high = 0;
5260                         raw_inode->i_gid_high = 0;
5261                 } else {
5262                         raw_inode->i_uid_high =
5263                                 cpu_to_le16(high_16_bits(i_uid));
5264                         raw_inode->i_gid_high =
5265                                 cpu_to_le16(high_16_bits(i_gid));
5266                 }
5267         } else {
5268                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
5269                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
5270                 raw_inode->i_uid_high = 0;
5271                 raw_inode->i_gid_high = 0;
5272         }
5273         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5274
5275         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5276         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5277         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5278         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5279
5280         err = ext4_inode_blocks_set(handle, raw_inode, ei);
5281         if (err) {
5282                 spin_unlock(&ei->i_raw_lock);
5283                 goto out_brelse;
5284         }
5285         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5286         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5287         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
5288                 raw_inode->i_file_acl_high =
5289                         cpu_to_le16(ei->i_file_acl >> 32);
5290         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5291         if (ei->i_disksize != ext4_isize(inode->i_sb, raw_inode)) {
5292                 ext4_isize_set(raw_inode, ei->i_disksize);
5293                 need_datasync = 1;
5294         }
5295         if (ei->i_disksize > 0x7fffffffULL) {
5296                 if (!ext4_has_feature_large_file(sb) ||
5297                                 EXT4_SB(sb)->s_es->s_rev_level ==
5298                     cpu_to_le32(EXT4_GOOD_OLD_REV))
5299                         set_large_file = 1;
5300         }
5301         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5302         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5303                 if (old_valid_dev(inode->i_rdev)) {
5304                         raw_inode->i_block[0] =
5305                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
5306                         raw_inode->i_block[1] = 0;
5307                 } else {
5308                         raw_inode->i_block[0] = 0;
5309                         raw_inode->i_block[1] =
5310                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
5311                         raw_inode->i_block[2] = 0;
5312                 }
5313         } else if (!ext4_has_inline_data(inode)) {
5314                 for (block = 0; block < EXT4_N_BLOCKS; block++)
5315                         raw_inode->i_block[block] = ei->i_data[block];
5316         }
5317
5318         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5319                 u64 ivers = ext4_inode_peek_iversion(inode);
5320
5321                 raw_inode->i_disk_version = cpu_to_le32(ivers);
5322                 if (ei->i_extra_isize) {
5323                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5324                                 raw_inode->i_version_hi =
5325                                         cpu_to_le32(ivers >> 32);
5326                         raw_inode->i_extra_isize =
5327                                 cpu_to_le16(ei->i_extra_isize);
5328                 }
5329         }
5330
5331         BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5332                i_projid != EXT4_DEF_PROJID);
5333
5334         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5335             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5336                 raw_inode->i_projid = cpu_to_le32(i_projid);
5337
5338         ext4_inode_csum_set(inode, raw_inode, ei);
5339         spin_unlock(&ei->i_raw_lock);
5340         if (inode->i_sb->s_flags & SB_LAZYTIME)
5341                 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5342                                               bh->b_data);
5343
5344         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5345         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5346         if (!err)
5347                 err = rc;
5348         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5349         if (set_large_file) {
5350                 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5351                 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5352                 if (err)
5353                         goto out_brelse;
5354                 ext4_update_dynamic_rev(sb);
5355                 ext4_set_feature_large_file(sb);
5356                 ext4_handle_sync(handle);
5357                 err = ext4_handle_dirty_super(handle, sb);
5358         }
5359         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5360 out_brelse:
5361         brelse(bh);
5362         ext4_std_error(inode->i_sb, err);
5363         return err;
5364 }
5365
5366 /*
5367  * ext4_write_inode()
5368  *
5369  * We are called from a few places:
5370  *
5371  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5372  *   Here, there will be no transaction running. We wait for any running
5373  *   transaction to commit.
5374  *
5375  * - Within flush work (sys_sync(), kupdate and such).
5376  *   We wait on commit, if told to.
5377  *
5378  * - Within iput_final() -> write_inode_now()
5379  *   We wait on commit, if told to.
5380  *
5381  * In all cases it is actually safe for us to return without doing anything,
5382  * because the inode has been copied into a raw inode buffer in
5383  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5384  * writeback.
5385  *
5386  * Note that we are absolutely dependent upon all inode dirtiers doing the
5387  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5388  * which we are interested.
5389  *
5390  * It would be a bug for them to not do this.  The code:
5391  *
5392  *      mark_inode_dirty(inode)
5393  *      stuff();
5394  *      inode->i_size = expr;
5395  *
5396  * is in error because write_inode() could occur while `stuff()' is running,
5397  * and the new i_size will be lost.  Plus the inode will no longer be on the
5398  * superblock's dirty inode list.
5399  */
5400 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5401 {
5402         int err;
5403
5404         if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5405             sb_rdonly(inode->i_sb))
5406                 return 0;
5407
5408         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5409                 return -EIO;
5410
5411         if (EXT4_SB(inode->i_sb)->s_journal) {
5412                 if (ext4_journal_current_handle()) {
5413                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5414                         dump_stack();
5415                         return -EIO;
5416                 }
5417
5418                 /*
5419                  * No need to force transaction in WB_SYNC_NONE mode. Also
5420                  * ext4_sync_fs() will force the commit after everything is
5421                  * written.
5422                  */
5423                 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5424                         return 0;
5425
5426                 err = jbd2_complete_transaction(EXT4_SB(inode->i_sb)->s_journal,
5427                                                 EXT4_I(inode)->i_sync_tid);
5428         } else {
5429                 struct ext4_iloc iloc;
5430
5431                 err = __ext4_get_inode_loc(inode, &iloc, 0);
5432                 if (err)
5433                         return err;
5434                 /*
5435                  * sync(2) will flush the whole buffer cache. No need to do
5436                  * it here separately for each inode.
5437                  */
5438                 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5439                         sync_dirty_buffer(iloc.bh);
5440                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5441                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5442                                          "IO error syncing inode");
5443                         err = -EIO;
5444                 }
5445                 brelse(iloc.bh);
5446         }
5447         return err;
5448 }
5449
5450 /*
5451  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5452  * buffers that are attached to a page stradding i_size and are undergoing
5453  * commit. In that case we have to wait for commit to finish and try again.
5454  */
5455 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5456 {
5457         struct page *page;
5458         unsigned offset;
5459         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5460         tid_t commit_tid = 0;
5461         int ret;
5462
5463         offset = inode->i_size & (PAGE_SIZE - 1);
5464         /*
5465          * All buffers in the last page remain valid? Then there's nothing to
5466          * do. We do the check mainly to optimize the common PAGE_SIZE ==
5467          * blocksize case
5468          */
5469         if (offset > PAGE_SIZE - i_blocksize(inode))
5470                 return;
5471         while (1) {
5472                 page = find_lock_page(inode->i_mapping,
5473                                       inode->i_size >> PAGE_SHIFT);
5474                 if (!page)
5475                         return;
5476                 ret = __ext4_journalled_invalidatepage(page, offset,
5477                                                 PAGE_SIZE - offset);
5478                 unlock_page(page);
5479                 put_page(page);
5480                 if (ret != -EBUSY)
5481                         return;
5482                 commit_tid = 0;
5483                 read_lock(&journal->j_state_lock);
5484                 if (journal->j_committing_transaction)
5485                         commit_tid = journal->j_committing_transaction->t_tid;
5486                 read_unlock(&journal->j_state_lock);
5487                 if (commit_tid)
5488                         jbd2_log_wait_commit(journal, commit_tid);
5489         }
5490 }
5491
5492 /*
5493  * ext4_setattr()
5494  *
5495  * Called from notify_change.
5496  *
5497  * We want to trap VFS attempts to truncate the file as soon as
5498  * possible.  In particular, we want to make sure that when the VFS
5499  * shrinks i_size, we put the inode on the orphan list and modify
5500  * i_disksize immediately, so that during the subsequent flushing of
5501  * dirty pages and freeing of disk blocks, we can guarantee that any
5502  * commit will leave the blocks being flushed in an unused state on
5503  * disk.  (On recovery, the inode will get truncated and the blocks will
5504  * be freed, so we have a strong guarantee that no future commit will
5505  * leave these blocks visible to the user.)
5506  *
5507  * Another thing we have to assure is that if we are in ordered mode
5508  * and inode is still attached to the committing transaction, we must
5509  * we start writeout of all the dirty pages which are being truncated.
5510  * This way we are sure that all the data written in the previous
5511  * transaction are already on disk (truncate waits for pages under
5512  * writeback).
5513  *
5514  * Called with inode->i_mutex down.
5515  */
5516 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5517 {
5518         struct inode *inode = d_inode(dentry);
5519         int error, rc = 0;
5520         int orphan = 0;
5521         const unsigned int ia_valid = attr->ia_valid;
5522
5523         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5524                 return -EIO;
5525
5526         error = setattr_prepare(dentry, attr);
5527         if (error)
5528                 return error;
5529
5530         error = fscrypt_prepare_setattr(dentry, attr);
5531         if (error)
5532                 return error;
5533
5534         if (is_quota_modification(inode, attr)) {
5535                 error = dquot_initialize(inode);
5536                 if (error)
5537                         return error;
5538         }
5539         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5540             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5541                 handle_t *handle;
5542
5543                 /* (user+group)*(old+new) structure, inode write (sb,
5544                  * inode block, ? - but truncate inode update has it) */
5545                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5546                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5547                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5548                 if (IS_ERR(handle)) {
5549                         error = PTR_ERR(handle);
5550                         goto err_out;
5551                 }
5552
5553                 /* dquot_transfer() calls back ext4_get_inode_usage() which
5554                  * counts xattr inode references.
5555                  */
5556                 down_read(&EXT4_I(inode)->xattr_sem);
5557                 error = dquot_transfer(inode, attr);
5558                 up_read(&EXT4_I(inode)->xattr_sem);
5559
5560                 if (error) {
5561                         ext4_journal_stop(handle);
5562                         return error;
5563                 }
5564                 /* Update corresponding info in inode so that everything is in
5565                  * one transaction */
5566                 if (attr->ia_valid & ATTR_UID)
5567                         inode->i_uid = attr->ia_uid;
5568                 if (attr->ia_valid & ATTR_GID)
5569                         inode->i_gid = attr->ia_gid;
5570                 error = ext4_mark_inode_dirty(handle, inode);
5571                 ext4_journal_stop(handle);
5572         }
5573
5574         if (attr->ia_valid & ATTR_SIZE) {
5575                 handle_t *handle;
5576                 loff_t oldsize = inode->i_size;
5577                 int shrink = (attr->ia_size <= inode->i_size);
5578
5579                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5580                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5581
5582                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
5583                                 return -EFBIG;
5584                 }
5585                 if (!S_ISREG(inode->i_mode))
5586                         return -EINVAL;
5587
5588                 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5589                         inode_inc_iversion(inode);
5590
5591                 if (ext4_should_order_data(inode) &&
5592                     (attr->ia_size < inode->i_size)) {
5593                         error = ext4_begin_ordered_truncate(inode,
5594                                                             attr->ia_size);
5595                         if (error)
5596                                 goto err_out;
5597                 }
5598                 if (attr->ia_size != inode->i_size) {
5599                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5600                         if (IS_ERR(handle)) {
5601                                 error = PTR_ERR(handle);
5602                                 goto err_out;
5603                         }
5604                         if (ext4_handle_valid(handle) && shrink) {
5605                                 error = ext4_orphan_add(handle, inode);
5606                                 orphan = 1;
5607                         }
5608                         /*
5609                          * Update c/mtime on truncate up, ext4_truncate() will
5610                          * update c/mtime in shrink case below
5611                          */
5612                         if (!shrink) {
5613                                 inode->i_mtime = current_time(inode);
5614                                 inode->i_ctime = inode->i_mtime;
5615                         }
5616                         down_write(&EXT4_I(inode)->i_data_sem);
5617                         EXT4_I(inode)->i_disksize = attr->ia_size;
5618                         rc = ext4_mark_inode_dirty(handle, inode);
5619                         if (!error)
5620                                 error = rc;
5621                         /*
5622                          * We have to update i_size under i_data_sem together
5623                          * with i_disksize to avoid races with writeback code
5624                          * running ext4_wb_update_i_disksize().
5625                          */
5626                         if (!error)
5627                                 i_size_write(inode, attr->ia_size);
5628                         up_write(&EXT4_I(inode)->i_data_sem);
5629                         ext4_journal_stop(handle);
5630                         if (error) {
5631                                 if (orphan)
5632                                         ext4_orphan_del(NULL, inode);
5633                                 goto err_out;
5634                         }
5635                 }
5636                 if (!shrink)
5637                         pagecache_isize_extended(inode, oldsize, inode->i_size);
5638
5639                 /*
5640                  * Blocks are going to be removed from the inode. Wait
5641                  * for dio in flight.  Temporarily disable
5642                  * dioread_nolock to prevent livelock.
5643                  */
5644                 if (orphan) {
5645                         if (!ext4_should_journal_data(inode)) {
5646                                 inode_dio_wait(inode);
5647                         } else
5648                                 ext4_wait_for_tail_page_commit(inode);
5649                 }
5650                 down_write(&EXT4_I(inode)->i_mmap_sem);
5651
5652                 rc = ext4_break_layouts(inode);
5653                 if (rc) {
5654                         up_write(&EXT4_I(inode)->i_mmap_sem);
5655                         error = rc;
5656                         goto err_out;
5657                 }
5658
5659                 /*
5660                  * Truncate pagecache after we've waited for commit
5661                  * in data=journal mode to make pages freeable.
5662                  */
5663                 truncate_pagecache(inode, inode->i_size);
5664                 if (shrink) {
5665                         rc = ext4_truncate(inode);
5666                         if (rc)
5667                                 error = rc;
5668                 }
5669                 up_write(&EXT4_I(inode)->i_mmap_sem);
5670         }
5671
5672         if (!error) {
5673                 setattr_copy(inode, attr);
5674                 mark_inode_dirty(inode);
5675         }
5676
5677         /*
5678          * If the call to ext4_truncate failed to get a transaction handle at
5679          * all, we need to clean up the in-core orphan list manually.
5680          */
5681         if (orphan && inode->i_nlink)
5682                 ext4_orphan_del(NULL, inode);
5683
5684         if (!error && (ia_valid & ATTR_MODE))
5685                 rc = posix_acl_chmod(inode, inode->i_mode);
5686
5687 err_out:
5688         ext4_std_error(inode->i_sb, error);
5689         if (!error)
5690                 error = rc;
5691         return error;
5692 }
5693
5694 int ext4_getattr(const struct path *path, struct kstat *stat,
5695                  u32 request_mask, unsigned int query_flags)
5696 {
5697         struct inode *inode = d_inode(path->dentry);
5698         struct ext4_inode *raw_inode;
5699         struct ext4_inode_info *ei = EXT4_I(inode);
5700         unsigned int flags;
5701
5702         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5703                 stat->result_mask |= STATX_BTIME;
5704                 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5705                 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5706         }
5707
5708         flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5709         if (flags & EXT4_APPEND_FL)
5710                 stat->attributes |= STATX_ATTR_APPEND;
5711         if (flags & EXT4_COMPR_FL)
5712                 stat->attributes |= STATX_ATTR_COMPRESSED;
5713         if (flags & EXT4_ENCRYPT_FL)
5714                 stat->attributes |= STATX_ATTR_ENCRYPTED;
5715         if (flags & EXT4_IMMUTABLE_FL)
5716                 stat->attributes |= STATX_ATTR_IMMUTABLE;
5717         if (flags & EXT4_NODUMP_FL)
5718                 stat->attributes |= STATX_ATTR_NODUMP;
5719
5720         stat->attributes_mask |= (STATX_ATTR_APPEND |
5721                                   STATX_ATTR_COMPRESSED |
5722                                   STATX_ATTR_ENCRYPTED |
5723                                   STATX_ATTR_IMMUTABLE |
5724                                   STATX_ATTR_NODUMP);
5725
5726         generic_fillattr(inode, stat);
5727         return 0;
5728 }
5729
5730 int ext4_file_getattr(const struct path *path, struct kstat *stat,
5731                       u32 request_mask, unsigned int query_flags)
5732 {
5733         struct inode *inode = d_inode(path->dentry);
5734         u64 delalloc_blocks;
5735
5736         ext4_getattr(path, stat, request_mask, query_flags);
5737
5738         /*
5739          * If there is inline data in the inode, the inode will normally not
5740          * have data blocks allocated (it may have an external xattr block).
5741          * Report at least one sector for such files, so tools like tar, rsync,
5742          * others don't incorrectly think the file is completely sparse.
5743          */
5744         if (unlikely(ext4_has_inline_data(inode)))
5745                 stat->blocks += (stat->size + 511) >> 9;
5746
5747         /*
5748          * We can't update i_blocks if the block allocation is delayed
5749          * otherwise in the case of system crash before the real block
5750          * allocation is done, we will have i_blocks inconsistent with
5751          * on-disk file blocks.
5752          * We always keep i_blocks updated together with real
5753          * allocation. But to not confuse with user, stat
5754          * will return the blocks that include the delayed allocation
5755          * blocks for this file.
5756          */
5757         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5758                                    EXT4_I(inode)->i_reserved_data_blocks);
5759         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5760         return 0;
5761 }
5762
5763 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5764                                    int pextents)
5765 {
5766         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5767                 return ext4_ind_trans_blocks(inode, lblocks);
5768         return ext4_ext_index_trans_blocks(inode, pextents);
5769 }
5770
5771 /*
5772  * Account for index blocks, block groups bitmaps and block group
5773  * descriptor blocks if modify datablocks and index blocks
5774  * worse case, the indexs blocks spread over different block groups
5775  *
5776  * If datablocks are discontiguous, they are possible to spread over
5777  * different block groups too. If they are contiguous, with flexbg,
5778  * they could still across block group boundary.
5779  *
5780  * Also account for superblock, inode, quota and xattr blocks
5781  */
5782 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5783                                   int pextents)
5784 {
5785         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5786         int gdpblocks;
5787         int idxblocks;
5788         int ret = 0;
5789
5790         /*
5791          * How many index blocks need to touch to map @lblocks logical blocks
5792          * to @pextents physical extents?
5793          */
5794         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5795
5796         ret = idxblocks;
5797
5798         /*
5799          * Now let's see how many group bitmaps and group descriptors need
5800          * to account
5801          */
5802         groups = idxblocks + pextents;
5803         gdpblocks = groups;
5804         if (groups > ngroups)
5805                 groups = ngroups;
5806         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5807                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5808
5809         /* bitmaps and block group descriptor blocks */
5810         ret += groups + gdpblocks;
5811
5812         /* Blocks for super block, inode, quota and xattr blocks */
5813         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5814
5815         return ret;
5816 }
5817
5818 /*
5819  * Calculate the total number of credits to reserve to fit
5820  * the modification of a single pages into a single transaction,
5821  * which may include multiple chunks of block allocations.
5822  *
5823  * This could be called via ext4_write_begin()
5824  *
5825  * We need to consider the worse case, when
5826  * one new block per extent.
5827  */
5828 int ext4_writepage_trans_blocks(struct inode *inode)
5829 {
5830         int bpp = ext4_journal_blocks_per_page(inode);
5831         int ret;
5832
5833         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5834
5835         /* Account for data blocks for journalled mode */
5836         if (ext4_should_journal_data(inode))
5837                 ret += bpp;
5838         return ret;
5839 }
5840
5841 /*
5842  * Calculate the journal credits for a chunk of data modification.
5843  *
5844  * This is called from DIO, fallocate or whoever calling
5845  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5846  *
5847  * journal buffers for data blocks are not included here, as DIO
5848  * and fallocate do no need to journal data buffers.
5849  */
5850 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5851 {
5852         return ext4_meta_trans_blocks(inode, nrblocks, 1);
5853 }
5854
5855 /*
5856  * The caller must have previously called ext4_reserve_inode_write().
5857  * Give this, we know that the caller already has write access to iloc->bh.
5858  */
5859 int ext4_mark_iloc_dirty(handle_t *handle,
5860                          struct inode *inode, struct ext4_iloc *iloc)
5861 {
5862         int err = 0;
5863
5864         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5865                 put_bh(iloc->bh);
5866                 return -EIO;
5867         }
5868         if (IS_I_VERSION(inode))
5869                 inode_inc_iversion(inode);
5870
5871         /* the do_update_inode consumes one bh->b_count */
5872         get_bh(iloc->bh);
5873
5874         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5875         err = ext4_do_update_inode(handle, inode, iloc);
5876         put_bh(iloc->bh);
5877         return err;
5878 }
5879
5880 /*
5881  * On success, We end up with an outstanding reference count against
5882  * iloc->bh.  This _must_ be cleaned up later.
5883  */
5884
5885 int
5886 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5887                          struct ext4_iloc *iloc)
5888 {
5889         int err;
5890
5891         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5892                 return -EIO;
5893
5894         err = ext4_get_inode_loc(inode, iloc);
5895         if (!err) {
5896                 BUFFER_TRACE(iloc->bh, "get_write_access");
5897                 err = ext4_journal_get_write_access(handle, iloc->bh);
5898                 if (err) {
5899                         brelse(iloc->bh);
5900                         iloc->bh = NULL;
5901                 }
5902         }
5903         ext4_std_error(inode->i_sb, err);
5904         return err;
5905 }
5906
5907 static int __ext4_expand_extra_isize(struct inode *inode,
5908                                      unsigned int new_extra_isize,
5909                                      struct ext4_iloc *iloc,
5910                                      handle_t *handle, int *no_expand)
5911 {
5912         struct ext4_inode *raw_inode;
5913         struct ext4_xattr_ibody_header *header;
5914         int error;
5915
5916         raw_inode = ext4_raw_inode(iloc);
5917
5918         header = IHDR(inode, raw_inode);
5919
5920         /* No extended attributes present */
5921         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5922             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5923                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5924                        EXT4_I(inode)->i_extra_isize, 0,
5925                        new_extra_isize - EXT4_I(inode)->i_extra_isize);
5926                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5927                 return 0;
5928         }
5929
5930         /* try to expand with EAs present */
5931         error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5932                                            raw_inode, handle);
5933         if (error) {
5934                 /*
5935                  * Inode size expansion failed; don't try again
5936                  */
5937                 *no_expand = 1;
5938         }
5939
5940         return error;
5941 }
5942
5943 /*
5944  * Expand an inode by new_extra_isize bytes.
5945  * Returns 0 on success or negative error number on failure.
5946  */
5947 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5948                                           unsigned int new_extra_isize,
5949                                           struct ext4_iloc iloc,
5950                                           handle_t *handle)
5951 {
5952         int no_expand;
5953         int error;
5954
5955         if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5956                 return -EOVERFLOW;
5957
5958         /*
5959          * In nojournal mode, we can immediately attempt to expand
5960          * the inode.  When journaled, we first need to obtain extra
5961          * buffer credits since we may write into the EA block
5962          * with this same handle. If journal_extend fails, then it will
5963          * only result in a minor loss of functionality for that inode.
5964          * If this is felt to be critical, then e2fsck should be run to
5965          * force a large enough s_min_extra_isize.
5966          */
5967         if (ext4_handle_valid(handle) &&
5968             jbd2_journal_extend(handle,
5969                                 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) != 0)
5970                 return -ENOSPC;
5971
5972         if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5973                 return -EBUSY;
5974
5975         error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5976                                           handle, &no_expand);
5977         ext4_write_unlock_xattr(inode, &no_expand);
5978
5979         return error;
5980 }
5981
5982 int ext4_expand_extra_isize(struct inode *inode,
5983                             unsigned int new_extra_isize,
5984                             struct ext4_iloc *iloc)
5985 {
5986         handle_t *handle;
5987         int no_expand;
5988         int error, rc;
5989
5990         if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5991                 brelse(iloc->bh);
5992                 return -EOVERFLOW;
5993         }
5994
5995         handle = ext4_journal_start(inode, EXT4_HT_INODE,
5996                                     EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5997         if (IS_ERR(handle)) {
5998                 error = PTR_ERR(handle);
5999                 brelse(iloc->bh);
6000                 return error;
6001         }
6002
6003         ext4_write_lock_xattr(inode, &no_expand);
6004
6005         BUFFER_TRACE(iloc.bh, "get_write_access");
6006         error = ext4_journal_get_write_access(handle, iloc->bh);
6007         if (error) {
6008                 brelse(iloc->bh);
6009                 goto out_stop;
6010         }
6011
6012         error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
6013                                           handle, &no_expand);
6014
6015         rc = ext4_mark_iloc_dirty(handle, inode, iloc);
6016         if (!error)
6017                 error = rc;
6018
6019         ext4_write_unlock_xattr(inode, &no_expand);
6020 out_stop:
6021         ext4_journal_stop(handle);
6022         return error;
6023 }
6024
6025 /*
6026  * What we do here is to mark the in-core inode as clean with respect to inode
6027  * dirtiness (it may still be data-dirty).
6028  * This means that the in-core inode may be reaped by prune_icache
6029  * without having to perform any I/O.  This is a very good thing,
6030  * because *any* task may call prune_icache - even ones which
6031  * have a transaction open against a different journal.
6032  *
6033  * Is this cheating?  Not really.  Sure, we haven't written the
6034  * inode out, but prune_icache isn't a user-visible syncing function.
6035  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
6036  * we start and wait on commits.
6037  */
6038 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
6039 {
6040         struct ext4_iloc iloc;
6041         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6042         int err;
6043
6044         might_sleep();
6045         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
6046         err = ext4_reserve_inode_write(handle, inode, &iloc);
6047         if (err)
6048                 return err;
6049
6050         if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
6051                 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
6052                                                iloc, handle);
6053
6054         return ext4_mark_iloc_dirty(handle, inode, &iloc);
6055 }
6056
6057 /*
6058  * ext4_dirty_inode() is called from __mark_inode_dirty()
6059  *
6060  * We're really interested in the case where a file is being extended.
6061  * i_size has been changed by generic_commit_write() and we thus need
6062  * to include the updated inode in the current transaction.
6063  *
6064  * Also, dquot_alloc_block() will always dirty the inode when blocks
6065  * are allocated to the file.
6066  *
6067  * If the inode is marked synchronous, we don't honour that here - doing
6068  * so would cause a commit on atime updates, which we don't bother doing.
6069  * We handle synchronous inodes at the highest possible level.
6070  *
6071  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
6072  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
6073  * to copy into the on-disk inode structure are the timestamp files.
6074  */
6075 void ext4_dirty_inode(struct inode *inode, int flags)
6076 {
6077         handle_t *handle;
6078
6079         if (flags == I_DIRTY_TIME)
6080                 return;
6081         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
6082         if (IS_ERR(handle))
6083                 goto out;
6084
6085         ext4_mark_inode_dirty(handle, inode);
6086
6087         ext4_journal_stop(handle);
6088 out:
6089         return;
6090 }
6091
6092 #if 0
6093 /*
6094  * Bind an inode's backing buffer_head into this transaction, to prevent
6095  * it from being flushed to disk early.  Unlike
6096  * ext4_reserve_inode_write, this leaves behind no bh reference and
6097  * returns no iloc structure, so the caller needs to repeat the iloc
6098  * lookup to mark the inode dirty later.
6099  */
6100 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
6101 {
6102         struct ext4_iloc iloc;
6103
6104         int err = 0;
6105         if (handle) {
6106                 err = ext4_get_inode_loc(inode, &iloc);
6107                 if (!err) {
6108                         BUFFER_TRACE(iloc.bh, "get_write_access");
6109                         err = jbd2_journal_get_write_access(handle, iloc.bh);
6110                         if (!err)
6111                                 err = ext4_handle_dirty_metadata(handle,
6112                                                                  NULL,
6113                                                                  iloc.bh);
6114                         brelse(iloc.bh);
6115                 }
6116         }
6117         ext4_std_error(inode->i_sb, err);
6118         return err;
6119 }
6120 #endif
6121
6122 int ext4_change_inode_journal_flag(struct inode *inode, int val)
6123 {
6124         journal_t *journal;
6125         handle_t *handle;
6126         int err;
6127         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6128
6129         /*
6130          * We have to be very careful here: changing a data block's
6131          * journaling status dynamically is dangerous.  If we write a
6132          * data block to the journal, change the status and then delete
6133          * that block, we risk forgetting to revoke the old log record
6134          * from the journal and so a subsequent replay can corrupt data.
6135          * So, first we make sure that the journal is empty and that
6136          * nobody is changing anything.
6137          */
6138
6139         journal = EXT4_JOURNAL(inode);
6140         if (!journal)
6141                 return 0;
6142         if (is_journal_aborted(journal))
6143                 return -EROFS;
6144
6145         /* Wait for all existing dio workers */
6146         inode_dio_wait(inode);
6147
6148         /*
6149          * Before flushing the journal and switching inode's aops, we have
6150          * to flush all dirty data the inode has. There can be outstanding
6151          * delayed allocations, there can be unwritten extents created by
6152          * fallocate or buffered writes in dioread_nolock mode covered by
6153          * dirty data which can be converted only after flushing the dirty
6154          * data (and journalled aops don't know how to handle these cases).
6155          */
6156         if (val) {
6157                 down_write(&EXT4_I(inode)->i_mmap_sem);
6158                 err = filemap_write_and_wait(inode->i_mapping);
6159                 if (err < 0) {
6160                         up_write(&EXT4_I(inode)->i_mmap_sem);
6161                         return err;
6162                 }
6163         }
6164
6165         percpu_down_write(&sbi->s_journal_flag_rwsem);
6166         jbd2_journal_lock_updates(journal);
6167
6168         /*
6169          * OK, there are no updates running now, and all cached data is
6170          * synced to disk.  We are now in a completely consistent state
6171          * which doesn't have anything in the journal, and we know that
6172          * no filesystem updates are running, so it is safe to modify
6173          * the inode's in-core data-journaling state flag now.
6174          */
6175
6176         if (val)
6177                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6178         else {
6179                 err = jbd2_journal_flush(journal);
6180                 if (err < 0) {
6181                         jbd2_journal_unlock_updates(journal);
6182                         percpu_up_write(&sbi->s_journal_flag_rwsem);
6183                         return err;
6184                 }
6185                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6186         }
6187         ext4_set_aops(inode);
6188
6189         jbd2_journal_unlock_updates(journal);
6190         percpu_up_write(&sbi->s_journal_flag_rwsem);
6191
6192         if (val)
6193                 up_write(&EXT4_I(inode)->i_mmap_sem);
6194
6195         /* Finally we can mark the inode as dirty. */
6196
6197         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6198         if (IS_ERR(handle))
6199                 return PTR_ERR(handle);
6200
6201         err = ext4_mark_inode_dirty(handle, inode);
6202         ext4_handle_sync(handle);
6203         ext4_journal_stop(handle);
6204         ext4_std_error(inode->i_sb, err);
6205
6206         return err;
6207 }
6208
6209 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
6210 {
6211         return !buffer_mapped(bh);
6212 }
6213
6214 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6215 {
6216         struct vm_area_struct *vma = vmf->vma;
6217         struct page *page = vmf->page;
6218         loff_t size;
6219         unsigned long len;
6220         int err;
6221         vm_fault_t ret;
6222         struct file *file = vma->vm_file;
6223         struct inode *inode = file_inode(file);
6224         struct address_space *mapping = inode->i_mapping;
6225         handle_t *handle;
6226         get_block_t *get_block;
6227         int retries = 0;
6228
6229         sb_start_pagefault(inode->i_sb);
6230         file_update_time(vma->vm_file);
6231
6232         down_read(&EXT4_I(inode)->i_mmap_sem);
6233
6234         err = ext4_convert_inline_data(inode);
6235         if (err)
6236                 goto out_ret;
6237
6238         /* Delalloc case is easy... */
6239         if (test_opt(inode->i_sb, DELALLOC) &&
6240             !ext4_should_journal_data(inode) &&
6241             !ext4_nonda_switch(inode->i_sb)) {
6242                 do {
6243                         err = block_page_mkwrite(vma, vmf,
6244                                                    ext4_da_get_block_prep);
6245                 } while (err == -ENOSPC &&
6246                        ext4_should_retry_alloc(inode->i_sb, &retries));
6247                 goto out_ret;
6248         }
6249
6250         lock_page(page);
6251         size = i_size_read(inode);
6252         /* Page got truncated from under us? */
6253         if (page->mapping != mapping || page_offset(page) > size) {
6254                 unlock_page(page);
6255                 ret = VM_FAULT_NOPAGE;
6256                 goto out;
6257         }
6258
6259         if (page->index == size >> PAGE_SHIFT)
6260                 len = size & ~PAGE_MASK;
6261         else
6262                 len = PAGE_SIZE;
6263         /*
6264          * Return if we have all the buffers mapped. This avoids the need to do
6265          * journal_start/journal_stop which can block and take a long time
6266          */
6267         if (page_has_buffers(page)) {
6268                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
6269                                             0, len, NULL,
6270                                             ext4_bh_unmapped)) {
6271                         /* Wait so that we don't change page under IO */
6272                         wait_for_stable_page(page);
6273                         ret = VM_FAULT_LOCKED;
6274                         goto out;
6275                 }
6276         }
6277         unlock_page(page);
6278         /* OK, we need to fill the hole... */
6279         if (ext4_should_dioread_nolock(inode))
6280                 get_block = ext4_get_block_unwritten;
6281         else
6282                 get_block = ext4_get_block;
6283 retry_alloc:
6284         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6285                                     ext4_writepage_trans_blocks(inode));
6286         if (IS_ERR(handle)) {
6287                 ret = VM_FAULT_SIGBUS;
6288                 goto out;
6289         }
6290         err = block_page_mkwrite(vma, vmf, get_block);
6291         if (!err && ext4_should_journal_data(inode)) {
6292                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
6293                           PAGE_SIZE, NULL, do_journal_get_write_access)) {
6294                         unlock_page(page);
6295                         ret = VM_FAULT_SIGBUS;
6296                         ext4_journal_stop(handle);
6297                         goto out;
6298                 }
6299                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6300         }
6301         ext4_journal_stop(handle);
6302         if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6303                 goto retry_alloc;
6304 out_ret:
6305         ret = block_page_mkwrite_return(err);
6306 out:
6307         up_read(&EXT4_I(inode)->i_mmap_sem);
6308         sb_end_pagefault(inode->i_sb);
6309         return ret;
6310 }
6311
6312 vm_fault_t ext4_filemap_fault(struct vm_fault *vmf)
6313 {
6314         struct inode *inode = file_inode(vmf->vma->vm_file);
6315         vm_fault_t ret;
6316
6317         down_read(&EXT4_I(inode)->i_mmap_sem);
6318         ret = filemap_fault(vmf);
6319         up_read(&EXT4_I(inode)->i_mmap_sem);
6320
6321         return ret;
6322 }