e7bf9388538b34859eda26ca2203de211442614e
[linux-2.6-microblaze.git] / fs / ext4 / inode.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  64-bit file support on 64-bit platforms by Jakub Jelinek
17  *      (jj@sunsite.ms.mff.cuni.cz)
18  *
19  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20  */
21
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/dax.h>
27 #include <linux/quotaops.h>
28 #include <linux/string.h>
29 #include <linux/buffer_head.h>
30 #include <linux/writeback.h>
31 #include <linux/pagevec.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/uio.h>
35 #include <linux/bio.h>
36 #include <linux/workqueue.h>
37 #include <linux/kernel.h>
38 #include <linux/printk.h>
39 #include <linux/slab.h>
40 #include <linux/bitops.h>
41 #include <linux/iomap.h>
42 #include <linux/iversion.h>
43
44 #include "ext4_jbd2.h"
45 #include "xattr.h"
46 #include "acl.h"
47 #include "truncate.h"
48
49 #include <trace/events/ext4.h>
50
51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52                               struct ext4_inode_info *ei)
53 {
54         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55         __u32 csum;
56         __u16 dummy_csum = 0;
57         int offset = offsetof(struct ext4_inode, i_checksum_lo);
58         unsigned int csum_size = sizeof(dummy_csum);
59
60         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
61         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
62         offset += csum_size;
63         csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
64                            EXT4_GOOD_OLD_INODE_SIZE - offset);
65
66         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
67                 offset = offsetof(struct ext4_inode, i_checksum_hi);
68                 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
69                                    EXT4_GOOD_OLD_INODE_SIZE,
70                                    offset - EXT4_GOOD_OLD_INODE_SIZE);
71                 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
72                         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
73                                            csum_size);
74                         offset += csum_size;
75                 }
76                 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
77                                    EXT4_INODE_SIZE(inode->i_sb) - offset);
78         }
79
80         return csum;
81 }
82
83 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
84                                   struct ext4_inode_info *ei)
85 {
86         __u32 provided, calculated;
87
88         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
89             cpu_to_le32(EXT4_OS_LINUX) ||
90             !ext4_has_metadata_csum(inode->i_sb))
91                 return 1;
92
93         provided = le16_to_cpu(raw->i_checksum_lo);
94         calculated = ext4_inode_csum(inode, raw, ei);
95         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
96             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
97                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
98         else
99                 calculated &= 0xFFFF;
100
101         return provided == calculated;
102 }
103
104 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
105                                 struct ext4_inode_info *ei)
106 {
107         __u32 csum;
108
109         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
110             cpu_to_le32(EXT4_OS_LINUX) ||
111             !ext4_has_metadata_csum(inode->i_sb))
112                 return;
113
114         csum = ext4_inode_csum(inode, raw, ei);
115         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
116         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
117             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
118                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
119 }
120
121 static inline int ext4_begin_ordered_truncate(struct inode *inode,
122                                               loff_t new_size)
123 {
124         trace_ext4_begin_ordered_truncate(inode, new_size);
125         /*
126          * If jinode is zero, then we never opened the file for
127          * writing, so there's no need to call
128          * jbd2_journal_begin_ordered_truncate() since there's no
129          * outstanding writes we need to flush.
130          */
131         if (!EXT4_I(inode)->jinode)
132                 return 0;
133         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
134                                                    EXT4_I(inode)->jinode,
135                                                    new_size);
136 }
137
138 static void ext4_invalidatepage(struct page *page, unsigned int offset,
139                                 unsigned int length);
140 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
141 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
142 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
143                                   int pextents);
144
145 /*
146  * Test whether an inode is a fast symlink.
147  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
148  */
149 int ext4_inode_is_fast_symlink(struct inode *inode)
150 {
151         if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
152                 int ea_blocks = EXT4_I(inode)->i_file_acl ?
153                                 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
154
155                 if (ext4_has_inline_data(inode))
156                         return 0;
157
158                 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
159         }
160         return S_ISLNK(inode->i_mode) && inode->i_size &&
161                (inode->i_size < EXT4_N_BLOCKS * 4);
162 }
163
164 /*
165  * Called at the last iput() if i_nlink is zero.
166  */
167 void ext4_evict_inode(struct inode *inode)
168 {
169         handle_t *handle;
170         int err;
171         /*
172          * Credits for final inode cleanup and freeing:
173          * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
174          * (xattr block freeing), bitmap, group descriptor (inode freeing)
175          */
176         int extra_credits = 6;
177         struct ext4_xattr_inode_array *ea_inode_array = NULL;
178
179         trace_ext4_evict_inode(inode);
180
181         if (inode->i_nlink) {
182                 /*
183                  * When journalling data dirty buffers are tracked only in the
184                  * journal. So although mm thinks everything is clean and
185                  * ready for reaping the inode might still have some pages to
186                  * write in the running transaction or waiting to be
187                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
188                  * (via truncate_inode_pages()) to discard these buffers can
189                  * cause data loss. Also even if we did not discard these
190                  * buffers, we would have no way to find them after the inode
191                  * is reaped and thus user could see stale data if he tries to
192                  * read them before the transaction is checkpointed. So be
193                  * careful and force everything to disk here... We use
194                  * ei->i_datasync_tid to store the newest transaction
195                  * containing inode's data.
196                  *
197                  * Note that directories do not have this problem because they
198                  * don't use page cache.
199                  */
200                 if (inode->i_ino != EXT4_JOURNAL_INO &&
201                     ext4_should_journal_data(inode) &&
202                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
203                     inode->i_data.nrpages) {
204                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
205                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
206
207                         jbd2_complete_transaction(journal, commit_tid);
208                         filemap_write_and_wait(&inode->i_data);
209                 }
210                 truncate_inode_pages_final(&inode->i_data);
211
212                 goto no_delete;
213         }
214
215         if (is_bad_inode(inode))
216                 goto no_delete;
217         dquot_initialize(inode);
218
219         if (ext4_should_order_data(inode))
220                 ext4_begin_ordered_truncate(inode, 0);
221         truncate_inode_pages_final(&inode->i_data);
222
223         /*
224          * For inodes with journalled data, transaction commit could have
225          * dirtied the inode. Flush worker is ignoring it because of I_FREEING
226          * flag but we still need to remove the inode from the writeback lists.
227          */
228         if (!list_empty_careful(&inode->i_io_list)) {
229                 WARN_ON_ONCE(!ext4_should_journal_data(inode));
230                 inode_io_list_del(inode);
231         }
232
233         /*
234          * Protect us against freezing - iput() caller didn't have to have any
235          * protection against it
236          */
237         sb_start_intwrite(inode->i_sb);
238
239         if (!IS_NOQUOTA(inode))
240                 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
241
242         /*
243          * Block bitmap, group descriptor, and inode are accounted in both
244          * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
245          */
246         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
247                          ext4_blocks_for_truncate(inode) + extra_credits - 3);
248         if (IS_ERR(handle)) {
249                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
250                 /*
251                  * If we're going to skip the normal cleanup, we still need to
252                  * make sure that the in-core orphan linked list is properly
253                  * cleaned up.
254                  */
255                 ext4_orphan_del(NULL, inode);
256                 sb_end_intwrite(inode->i_sb);
257                 goto no_delete;
258         }
259
260         if (IS_SYNC(inode))
261                 ext4_handle_sync(handle);
262
263         /*
264          * Set inode->i_size to 0 before calling ext4_truncate(). We need
265          * special handling of symlinks here because i_size is used to
266          * determine whether ext4_inode_info->i_data contains symlink data or
267          * block mappings. Setting i_size to 0 will remove its fast symlink
268          * status. Erase i_data so that it becomes a valid empty block map.
269          */
270         if (ext4_inode_is_fast_symlink(inode))
271                 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
272         inode->i_size = 0;
273         err = ext4_mark_inode_dirty(handle, inode);
274         if (err) {
275                 ext4_warning(inode->i_sb,
276                              "couldn't mark inode dirty (err %d)", err);
277                 goto stop_handle;
278         }
279         if (inode->i_blocks) {
280                 err = ext4_truncate(inode);
281                 if (err) {
282                         ext4_error_err(inode->i_sb, -err,
283                                        "couldn't truncate inode %lu (err %d)",
284                                        inode->i_ino, err);
285                         goto stop_handle;
286                 }
287         }
288
289         /* Remove xattr references. */
290         err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
291                                       extra_credits);
292         if (err) {
293                 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
294 stop_handle:
295                 ext4_journal_stop(handle);
296                 ext4_orphan_del(NULL, inode);
297                 sb_end_intwrite(inode->i_sb);
298                 ext4_xattr_inode_array_free(ea_inode_array);
299                 goto no_delete;
300         }
301
302         /*
303          * Kill off the orphan record which ext4_truncate created.
304          * AKPM: I think this can be inside the above `if'.
305          * Note that ext4_orphan_del() has to be able to cope with the
306          * deletion of a non-existent orphan - this is because we don't
307          * know if ext4_truncate() actually created an orphan record.
308          * (Well, we could do this if we need to, but heck - it works)
309          */
310         ext4_orphan_del(handle, inode);
311         EXT4_I(inode)->i_dtime  = (__u32)ktime_get_real_seconds();
312
313         /*
314          * One subtle ordering requirement: if anything has gone wrong
315          * (transaction abort, IO errors, whatever), then we can still
316          * do these next steps (the fs will already have been marked as
317          * having errors), but we can't free the inode if the mark_dirty
318          * fails.
319          */
320         if (ext4_mark_inode_dirty(handle, inode))
321                 /* If that failed, just do the required in-core inode clear. */
322                 ext4_clear_inode(inode);
323         else
324                 ext4_free_inode(handle, inode);
325         ext4_journal_stop(handle);
326         sb_end_intwrite(inode->i_sb);
327         ext4_xattr_inode_array_free(ea_inode_array);
328         return;
329 no_delete:
330         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
331 }
332
333 #ifdef CONFIG_QUOTA
334 qsize_t *ext4_get_reserved_space(struct inode *inode)
335 {
336         return &EXT4_I(inode)->i_reserved_quota;
337 }
338 #endif
339
340 /*
341  * Called with i_data_sem down, which is important since we can call
342  * ext4_discard_preallocations() from here.
343  */
344 void ext4_da_update_reserve_space(struct inode *inode,
345                                         int used, int quota_claim)
346 {
347         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
348         struct ext4_inode_info *ei = EXT4_I(inode);
349
350         spin_lock(&ei->i_block_reservation_lock);
351         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
352         if (unlikely(used > ei->i_reserved_data_blocks)) {
353                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
354                          "with only %d reserved data blocks",
355                          __func__, inode->i_ino, used,
356                          ei->i_reserved_data_blocks);
357                 WARN_ON(1);
358                 used = ei->i_reserved_data_blocks;
359         }
360
361         /* Update per-inode reservations */
362         ei->i_reserved_data_blocks -= used;
363         percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
364
365         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
366
367         /* Update quota subsystem for data blocks */
368         if (quota_claim)
369                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
370         else {
371                 /*
372                  * We did fallocate with an offset that is already delayed
373                  * allocated. So on delayed allocated writeback we should
374                  * not re-claim the quota for fallocated blocks.
375                  */
376                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
377         }
378
379         /*
380          * If we have done all the pending block allocations and if
381          * there aren't any writers on the inode, we can discard the
382          * inode's preallocations.
383          */
384         if ((ei->i_reserved_data_blocks == 0) &&
385             !inode_is_open_for_write(inode))
386                 ext4_discard_preallocations(inode);
387 }
388
389 static int __check_block_validity(struct inode *inode, const char *func,
390                                 unsigned int line,
391                                 struct ext4_map_blocks *map)
392 {
393         if (ext4_has_feature_journal(inode->i_sb) &&
394             (inode->i_ino ==
395              le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
396                 return 0;
397         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
398                                    map->m_len)) {
399                 ext4_error_inode(inode, func, line, map->m_pblk,
400                                  "lblock %lu mapped to illegal pblock %llu "
401                                  "(length %d)", (unsigned long) map->m_lblk,
402                                  map->m_pblk, map->m_len);
403                 return -EFSCORRUPTED;
404         }
405         return 0;
406 }
407
408 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
409                        ext4_lblk_t len)
410 {
411         int ret;
412
413         if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
414                 return fscrypt_zeroout_range(inode, lblk, pblk, len);
415
416         ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
417         if (ret > 0)
418                 ret = 0;
419
420         return ret;
421 }
422
423 #define check_block_validity(inode, map)        \
424         __check_block_validity((inode), __func__, __LINE__, (map))
425
426 #ifdef ES_AGGRESSIVE_TEST
427 static void ext4_map_blocks_es_recheck(handle_t *handle,
428                                        struct inode *inode,
429                                        struct ext4_map_blocks *es_map,
430                                        struct ext4_map_blocks *map,
431                                        int flags)
432 {
433         int retval;
434
435         map->m_flags = 0;
436         /*
437          * There is a race window that the result is not the same.
438          * e.g. xfstests #223 when dioread_nolock enables.  The reason
439          * is that we lookup a block mapping in extent status tree with
440          * out taking i_data_sem.  So at the time the unwritten extent
441          * could be converted.
442          */
443         down_read(&EXT4_I(inode)->i_data_sem);
444         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
445                 retval = ext4_ext_map_blocks(handle, inode, map, 0);
446         } else {
447                 retval = ext4_ind_map_blocks(handle, inode, map, 0);
448         }
449         up_read((&EXT4_I(inode)->i_data_sem));
450
451         /*
452          * We don't check m_len because extent will be collpased in status
453          * tree.  So the m_len might not equal.
454          */
455         if (es_map->m_lblk != map->m_lblk ||
456             es_map->m_flags != map->m_flags ||
457             es_map->m_pblk != map->m_pblk) {
458                 printk("ES cache assertion failed for inode: %lu "
459                        "es_cached ex [%d/%d/%llu/%x] != "
460                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
461                        inode->i_ino, es_map->m_lblk, es_map->m_len,
462                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
463                        map->m_len, map->m_pblk, map->m_flags,
464                        retval, flags);
465         }
466 }
467 #endif /* ES_AGGRESSIVE_TEST */
468
469 /*
470  * The ext4_map_blocks() function tries to look up the requested blocks,
471  * and returns if the blocks are already mapped.
472  *
473  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
474  * and store the allocated blocks in the result buffer head and mark it
475  * mapped.
476  *
477  * If file type is extents based, it will call ext4_ext_map_blocks(),
478  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
479  * based files
480  *
481  * On success, it returns the number of blocks being mapped or allocated.  if
482  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
483  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
484  *
485  * It returns 0 if plain look up failed (blocks have not been allocated), in
486  * that case, @map is returned as unmapped but we still do fill map->m_len to
487  * indicate the length of a hole starting at map->m_lblk.
488  *
489  * It returns the error in case of allocation failure.
490  */
491 int ext4_map_blocks(handle_t *handle, struct inode *inode,
492                     struct ext4_map_blocks *map, int flags)
493 {
494         struct extent_status es;
495         int retval;
496         int ret = 0;
497 #ifdef ES_AGGRESSIVE_TEST
498         struct ext4_map_blocks orig_map;
499
500         memcpy(&orig_map, map, sizeof(*map));
501 #endif
502
503         map->m_flags = 0;
504         ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
505                   flags, map->m_len, (unsigned long) map->m_lblk);
506
507         /*
508          * ext4_map_blocks returns an int, and m_len is an unsigned int
509          */
510         if (unlikely(map->m_len > INT_MAX))
511                 map->m_len = INT_MAX;
512
513         /* We can handle the block number less than EXT_MAX_BLOCKS */
514         if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
515                 return -EFSCORRUPTED;
516
517         /* Lookup extent status tree firstly */
518         if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
519                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
520                         map->m_pblk = ext4_es_pblock(&es) +
521                                         map->m_lblk - es.es_lblk;
522                         map->m_flags |= ext4_es_is_written(&es) ?
523                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
524                         retval = es.es_len - (map->m_lblk - es.es_lblk);
525                         if (retval > map->m_len)
526                                 retval = map->m_len;
527                         map->m_len = retval;
528                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
529                         map->m_pblk = 0;
530                         retval = es.es_len - (map->m_lblk - es.es_lblk);
531                         if (retval > map->m_len)
532                                 retval = map->m_len;
533                         map->m_len = retval;
534                         retval = 0;
535                 } else {
536                         BUG();
537                 }
538 #ifdef ES_AGGRESSIVE_TEST
539                 ext4_map_blocks_es_recheck(handle, inode, map,
540                                            &orig_map, flags);
541 #endif
542                 goto found;
543         }
544
545         /*
546          * Try to see if we can get the block without requesting a new
547          * file system block.
548          */
549         down_read(&EXT4_I(inode)->i_data_sem);
550         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
551                 retval = ext4_ext_map_blocks(handle, inode, map, 0);
552         } else {
553                 retval = ext4_ind_map_blocks(handle, inode, map, 0);
554         }
555         if (retval > 0) {
556                 unsigned int status;
557
558                 if (unlikely(retval != map->m_len)) {
559                         ext4_warning(inode->i_sb,
560                                      "ES len assertion failed for inode "
561                                      "%lu: retval %d != map->m_len %d",
562                                      inode->i_ino, retval, map->m_len);
563                         WARN_ON(1);
564                 }
565
566                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
567                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
568                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
569                     !(status & EXTENT_STATUS_WRITTEN) &&
570                     ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
571                                        map->m_lblk + map->m_len - 1))
572                         status |= EXTENT_STATUS_DELAYED;
573                 ret = ext4_es_insert_extent(inode, map->m_lblk,
574                                             map->m_len, map->m_pblk, status);
575                 if (ret < 0)
576                         retval = ret;
577         }
578         up_read((&EXT4_I(inode)->i_data_sem));
579
580 found:
581         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
582                 ret = check_block_validity(inode, map);
583                 if (ret != 0)
584                         return ret;
585         }
586
587         /* If it is only a block(s) look up */
588         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
589                 return retval;
590
591         /*
592          * Returns if the blocks have already allocated
593          *
594          * Note that if blocks have been preallocated
595          * ext4_ext_get_block() returns the create = 0
596          * with buffer head unmapped.
597          */
598         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
599                 /*
600                  * If we need to convert extent to unwritten
601                  * we continue and do the actual work in
602                  * ext4_ext_map_blocks()
603                  */
604                 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
605                         return retval;
606
607         /*
608          * Here we clear m_flags because after allocating an new extent,
609          * it will be set again.
610          */
611         map->m_flags &= ~EXT4_MAP_FLAGS;
612
613         /*
614          * New blocks allocate and/or writing to unwritten extent
615          * will possibly result in updating i_data, so we take
616          * the write lock of i_data_sem, and call get_block()
617          * with create == 1 flag.
618          */
619         down_write(&EXT4_I(inode)->i_data_sem);
620
621         /*
622          * We need to check for EXT4 here because migrate
623          * could have changed the inode type in between
624          */
625         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
626                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
627         } else {
628                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
629
630                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
631                         /*
632                          * We allocated new blocks which will result in
633                          * i_data's format changing.  Force the migrate
634                          * to fail by clearing migrate flags
635                          */
636                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
637                 }
638
639                 /*
640                  * Update reserved blocks/metadata blocks after successful
641                  * block allocation which had been deferred till now. We don't
642                  * support fallocate for non extent files. So we can update
643                  * reserve space here.
644                  */
645                 if ((retval > 0) &&
646                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
647                         ext4_da_update_reserve_space(inode, retval, 1);
648         }
649
650         if (retval > 0) {
651                 unsigned int status;
652
653                 if (unlikely(retval != map->m_len)) {
654                         ext4_warning(inode->i_sb,
655                                      "ES len assertion failed for inode "
656                                      "%lu: retval %d != map->m_len %d",
657                                      inode->i_ino, retval, map->m_len);
658                         WARN_ON(1);
659                 }
660
661                 /*
662                  * We have to zeroout blocks before inserting them into extent
663                  * status tree. Otherwise someone could look them up there and
664                  * use them before they are really zeroed. We also have to
665                  * unmap metadata before zeroing as otherwise writeback can
666                  * overwrite zeros with stale data from block device.
667                  */
668                 if (flags & EXT4_GET_BLOCKS_ZERO &&
669                     map->m_flags & EXT4_MAP_MAPPED &&
670                     map->m_flags & EXT4_MAP_NEW) {
671                         ret = ext4_issue_zeroout(inode, map->m_lblk,
672                                                  map->m_pblk, map->m_len);
673                         if (ret) {
674                                 retval = ret;
675                                 goto out_sem;
676                         }
677                 }
678
679                 /*
680                  * If the extent has been zeroed out, we don't need to update
681                  * extent status tree.
682                  */
683                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
684                     ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
685                         if (ext4_es_is_written(&es))
686                                 goto out_sem;
687                 }
688                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
689                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
690                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
691                     !(status & EXTENT_STATUS_WRITTEN) &&
692                     ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
693                                        map->m_lblk + map->m_len - 1))
694                         status |= EXTENT_STATUS_DELAYED;
695                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
696                                             map->m_pblk, status);
697                 if (ret < 0) {
698                         retval = ret;
699                         goto out_sem;
700                 }
701         }
702
703 out_sem:
704         up_write((&EXT4_I(inode)->i_data_sem));
705         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
706                 ret = check_block_validity(inode, map);
707                 if (ret != 0)
708                         return ret;
709
710                 /*
711                  * Inodes with freshly allocated blocks where contents will be
712                  * visible after transaction commit must be on transaction's
713                  * ordered data list.
714                  */
715                 if (map->m_flags & EXT4_MAP_NEW &&
716                     !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
717                     !(flags & EXT4_GET_BLOCKS_ZERO) &&
718                     !ext4_is_quota_file(inode) &&
719                     ext4_should_order_data(inode)) {
720                         loff_t start_byte =
721                                 (loff_t)map->m_lblk << inode->i_blkbits;
722                         loff_t length = (loff_t)map->m_len << inode->i_blkbits;
723
724                         if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
725                                 ret = ext4_jbd2_inode_add_wait(handle, inode,
726                                                 start_byte, length);
727                         else
728                                 ret = ext4_jbd2_inode_add_write(handle, inode,
729                                                 start_byte, length);
730                         if (ret)
731                                 return ret;
732                 }
733         }
734
735         if (retval < 0)
736                 ext_debug(inode, "failed with err %d\n", retval);
737         return retval;
738 }
739
740 /*
741  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
742  * we have to be careful as someone else may be manipulating b_state as well.
743  */
744 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
745 {
746         unsigned long old_state;
747         unsigned long new_state;
748
749         flags &= EXT4_MAP_FLAGS;
750
751         /* Dummy buffer_head? Set non-atomically. */
752         if (!bh->b_page) {
753                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
754                 return;
755         }
756         /*
757          * Someone else may be modifying b_state. Be careful! This is ugly but
758          * once we get rid of using bh as a container for mapping information
759          * to pass to / from get_block functions, this can go away.
760          */
761         do {
762                 old_state = READ_ONCE(bh->b_state);
763                 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
764         } while (unlikely(
765                  cmpxchg(&bh->b_state, old_state, new_state) != old_state));
766 }
767
768 static int _ext4_get_block(struct inode *inode, sector_t iblock,
769                            struct buffer_head *bh, int flags)
770 {
771         struct ext4_map_blocks map;
772         int ret = 0;
773
774         if (ext4_has_inline_data(inode))
775                 return -ERANGE;
776
777         map.m_lblk = iblock;
778         map.m_len = bh->b_size >> inode->i_blkbits;
779
780         ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
781                               flags);
782         if (ret > 0) {
783                 map_bh(bh, inode->i_sb, map.m_pblk);
784                 ext4_update_bh_state(bh, map.m_flags);
785                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
786                 ret = 0;
787         } else if (ret == 0) {
788                 /* hole case, need to fill in bh->b_size */
789                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
790         }
791         return ret;
792 }
793
794 int ext4_get_block(struct inode *inode, sector_t iblock,
795                    struct buffer_head *bh, int create)
796 {
797         return _ext4_get_block(inode, iblock, bh,
798                                create ? EXT4_GET_BLOCKS_CREATE : 0);
799 }
800
801 /*
802  * Get block function used when preparing for buffered write if we require
803  * creating an unwritten extent if blocks haven't been allocated.  The extent
804  * will be converted to written after the IO is complete.
805  */
806 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
807                              struct buffer_head *bh_result, int create)
808 {
809         ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
810                    inode->i_ino, create);
811         return _ext4_get_block(inode, iblock, bh_result,
812                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
813 }
814
815 /* Maximum number of blocks we map for direct IO at once. */
816 #define DIO_MAX_BLOCKS 4096
817
818 /*
819  * `handle' can be NULL if create is zero
820  */
821 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
822                                 ext4_lblk_t block, int map_flags)
823 {
824         struct ext4_map_blocks map;
825         struct buffer_head *bh;
826         int create = map_flags & EXT4_GET_BLOCKS_CREATE;
827         int err;
828
829         J_ASSERT(handle != NULL || create == 0);
830
831         map.m_lblk = block;
832         map.m_len = 1;
833         err = ext4_map_blocks(handle, inode, &map, map_flags);
834
835         if (err == 0)
836                 return create ? ERR_PTR(-ENOSPC) : NULL;
837         if (err < 0)
838                 return ERR_PTR(err);
839
840         bh = sb_getblk(inode->i_sb, map.m_pblk);
841         if (unlikely(!bh))
842                 return ERR_PTR(-ENOMEM);
843         if (map.m_flags & EXT4_MAP_NEW) {
844                 J_ASSERT(create != 0);
845                 J_ASSERT(handle != NULL);
846
847                 /*
848                  * Now that we do not always journal data, we should
849                  * keep in mind whether this should always journal the
850                  * new buffer as metadata.  For now, regular file
851                  * writes use ext4_get_block instead, so it's not a
852                  * problem.
853                  */
854                 lock_buffer(bh);
855                 BUFFER_TRACE(bh, "call get_create_access");
856                 err = ext4_journal_get_create_access(handle, bh);
857                 if (unlikely(err)) {
858                         unlock_buffer(bh);
859                         goto errout;
860                 }
861                 if (!buffer_uptodate(bh)) {
862                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
863                         set_buffer_uptodate(bh);
864                 }
865                 unlock_buffer(bh);
866                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
867                 err = ext4_handle_dirty_metadata(handle, inode, bh);
868                 if (unlikely(err))
869                         goto errout;
870         } else
871                 BUFFER_TRACE(bh, "not a new buffer");
872         return bh;
873 errout:
874         brelse(bh);
875         return ERR_PTR(err);
876 }
877
878 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
879                                ext4_lblk_t block, int map_flags)
880 {
881         struct buffer_head *bh;
882
883         bh = ext4_getblk(handle, inode, block, map_flags);
884         if (IS_ERR(bh))
885                 return bh;
886         if (!bh || ext4_buffer_uptodate(bh))
887                 return bh;
888         ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
889         wait_on_buffer(bh);
890         if (buffer_uptodate(bh))
891                 return bh;
892         put_bh(bh);
893         return ERR_PTR(-EIO);
894 }
895
896 /* Read a contiguous batch of blocks. */
897 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
898                      bool wait, struct buffer_head **bhs)
899 {
900         int i, err;
901
902         for (i = 0; i < bh_count; i++) {
903                 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
904                 if (IS_ERR(bhs[i])) {
905                         err = PTR_ERR(bhs[i]);
906                         bh_count = i;
907                         goto out_brelse;
908                 }
909         }
910
911         for (i = 0; i < bh_count; i++)
912                 /* Note that NULL bhs[i] is valid because of holes. */
913                 if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
914                         ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1,
915                                     &bhs[i]);
916
917         if (!wait)
918                 return 0;
919
920         for (i = 0; i < bh_count; i++)
921                 if (bhs[i])
922                         wait_on_buffer(bhs[i]);
923
924         for (i = 0; i < bh_count; i++) {
925                 if (bhs[i] && !buffer_uptodate(bhs[i])) {
926                         err = -EIO;
927                         goto out_brelse;
928                 }
929         }
930         return 0;
931
932 out_brelse:
933         for (i = 0; i < bh_count; i++) {
934                 brelse(bhs[i]);
935                 bhs[i] = NULL;
936         }
937         return err;
938 }
939
940 int ext4_walk_page_buffers(handle_t *handle,
941                            struct buffer_head *head,
942                            unsigned from,
943                            unsigned to,
944                            int *partial,
945                            int (*fn)(handle_t *handle,
946                                      struct buffer_head *bh))
947 {
948         struct buffer_head *bh;
949         unsigned block_start, block_end;
950         unsigned blocksize = head->b_size;
951         int err, ret = 0;
952         struct buffer_head *next;
953
954         for (bh = head, block_start = 0;
955              ret == 0 && (bh != head || !block_start);
956              block_start = block_end, bh = next) {
957                 next = bh->b_this_page;
958                 block_end = block_start + blocksize;
959                 if (block_end <= from || block_start >= to) {
960                         if (partial && !buffer_uptodate(bh))
961                                 *partial = 1;
962                         continue;
963                 }
964                 err = (*fn)(handle, bh);
965                 if (!ret)
966                         ret = err;
967         }
968         return ret;
969 }
970
971 /*
972  * To preserve ordering, it is essential that the hole instantiation and
973  * the data write be encapsulated in a single transaction.  We cannot
974  * close off a transaction and start a new one between the ext4_get_block()
975  * and the commit_write().  So doing the jbd2_journal_start at the start of
976  * prepare_write() is the right place.
977  *
978  * Also, this function can nest inside ext4_writepage().  In that case, we
979  * *know* that ext4_writepage() has generated enough buffer credits to do the
980  * whole page.  So we won't block on the journal in that case, which is good,
981  * because the caller may be PF_MEMALLOC.
982  *
983  * By accident, ext4 can be reentered when a transaction is open via
984  * quota file writes.  If we were to commit the transaction while thus
985  * reentered, there can be a deadlock - we would be holding a quota
986  * lock, and the commit would never complete if another thread had a
987  * transaction open and was blocking on the quota lock - a ranking
988  * violation.
989  *
990  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
991  * will _not_ run commit under these circumstances because handle->h_ref
992  * is elevated.  We'll still have enough credits for the tiny quotafile
993  * write.
994  */
995 int do_journal_get_write_access(handle_t *handle,
996                                 struct buffer_head *bh)
997 {
998         int dirty = buffer_dirty(bh);
999         int ret;
1000
1001         if (!buffer_mapped(bh) || buffer_freed(bh))
1002                 return 0;
1003         /*
1004          * __block_write_begin() could have dirtied some buffers. Clean
1005          * the dirty bit as jbd2_journal_get_write_access() could complain
1006          * otherwise about fs integrity issues. Setting of the dirty bit
1007          * by __block_write_begin() isn't a real problem here as we clear
1008          * the bit before releasing a page lock and thus writeback cannot
1009          * ever write the buffer.
1010          */
1011         if (dirty)
1012                 clear_buffer_dirty(bh);
1013         BUFFER_TRACE(bh, "get write access");
1014         ret = ext4_journal_get_write_access(handle, bh);
1015         if (!ret && dirty)
1016                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1017         return ret;
1018 }
1019
1020 #ifdef CONFIG_FS_ENCRYPTION
1021 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1022                                   get_block_t *get_block)
1023 {
1024         unsigned from = pos & (PAGE_SIZE - 1);
1025         unsigned to = from + len;
1026         struct inode *inode = page->mapping->host;
1027         unsigned block_start, block_end;
1028         sector_t block;
1029         int err = 0;
1030         unsigned blocksize = inode->i_sb->s_blocksize;
1031         unsigned bbits;
1032         struct buffer_head *bh, *head, *wait[2];
1033         int nr_wait = 0;
1034         int i;
1035
1036         BUG_ON(!PageLocked(page));
1037         BUG_ON(from > PAGE_SIZE);
1038         BUG_ON(to > PAGE_SIZE);
1039         BUG_ON(from > to);
1040
1041         if (!page_has_buffers(page))
1042                 create_empty_buffers(page, blocksize, 0);
1043         head = page_buffers(page);
1044         bbits = ilog2(blocksize);
1045         block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1046
1047         for (bh = head, block_start = 0; bh != head || !block_start;
1048             block++, block_start = block_end, bh = bh->b_this_page) {
1049                 block_end = block_start + blocksize;
1050                 if (block_end <= from || block_start >= to) {
1051                         if (PageUptodate(page)) {
1052                                 if (!buffer_uptodate(bh))
1053                                         set_buffer_uptodate(bh);
1054                         }
1055                         continue;
1056                 }
1057                 if (buffer_new(bh))
1058                         clear_buffer_new(bh);
1059                 if (!buffer_mapped(bh)) {
1060                         WARN_ON(bh->b_size != blocksize);
1061                         err = get_block(inode, block, bh, 1);
1062                         if (err)
1063                                 break;
1064                         if (buffer_new(bh)) {
1065                                 if (PageUptodate(page)) {
1066                                         clear_buffer_new(bh);
1067                                         set_buffer_uptodate(bh);
1068                                         mark_buffer_dirty(bh);
1069                                         continue;
1070                                 }
1071                                 if (block_end > to || block_start < from)
1072                                         zero_user_segments(page, to, block_end,
1073                                                            block_start, from);
1074                                 continue;
1075                         }
1076                 }
1077                 if (PageUptodate(page)) {
1078                         if (!buffer_uptodate(bh))
1079                                 set_buffer_uptodate(bh);
1080                         continue;
1081                 }
1082                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1083                     !buffer_unwritten(bh) &&
1084                     (block_start < from || block_end > to)) {
1085                         ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1086                         wait[nr_wait++] = bh;
1087                 }
1088         }
1089         /*
1090          * If we issued read requests, let them complete.
1091          */
1092         for (i = 0; i < nr_wait; i++) {
1093                 wait_on_buffer(wait[i]);
1094                 if (!buffer_uptodate(wait[i]))
1095                         err = -EIO;
1096         }
1097         if (unlikely(err)) {
1098                 page_zero_new_buffers(page, from, to);
1099         } else if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode)) {
1100                 for (i = 0; i < nr_wait; i++) {
1101                         int err2;
1102
1103                         err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize,
1104                                                                 bh_offset(wait[i]));
1105                         if (err2) {
1106                                 clear_buffer_uptodate(wait[i]);
1107                                 err = err2;
1108                         }
1109                 }
1110         }
1111
1112         return err;
1113 }
1114 #endif
1115
1116 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1117                             loff_t pos, unsigned len, unsigned flags,
1118                             struct page **pagep, void **fsdata)
1119 {
1120         struct inode *inode = mapping->host;
1121         int ret, needed_blocks;
1122         handle_t *handle;
1123         int retries = 0;
1124         struct page *page;
1125         pgoff_t index;
1126         unsigned from, to;
1127
1128         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1129                 return -EIO;
1130
1131         trace_ext4_write_begin(inode, pos, len, flags);
1132         /*
1133          * Reserve one block more for addition to orphan list in case
1134          * we allocate blocks but write fails for some reason
1135          */
1136         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1137         index = pos >> PAGE_SHIFT;
1138         from = pos & (PAGE_SIZE - 1);
1139         to = from + len;
1140
1141         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1142                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1143                                                     flags, pagep);
1144                 if (ret < 0)
1145                         return ret;
1146                 if (ret == 1)
1147                         return 0;
1148         }
1149
1150         /*
1151          * grab_cache_page_write_begin() can take a long time if the
1152          * system is thrashing due to memory pressure, or if the page
1153          * is being written back.  So grab it first before we start
1154          * the transaction handle.  This also allows us to allocate
1155          * the page (if needed) without using GFP_NOFS.
1156          */
1157 retry_grab:
1158         page = grab_cache_page_write_begin(mapping, index, flags);
1159         if (!page)
1160                 return -ENOMEM;
1161         unlock_page(page);
1162
1163 retry_journal:
1164         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1165         if (IS_ERR(handle)) {
1166                 put_page(page);
1167                 return PTR_ERR(handle);
1168         }
1169
1170         lock_page(page);
1171         if (page->mapping != mapping) {
1172                 /* The page got truncated from under us */
1173                 unlock_page(page);
1174                 put_page(page);
1175                 ext4_journal_stop(handle);
1176                 goto retry_grab;
1177         }
1178         /* In case writeback began while the page was unlocked */
1179         wait_for_stable_page(page);
1180
1181 #ifdef CONFIG_FS_ENCRYPTION
1182         if (ext4_should_dioread_nolock(inode))
1183                 ret = ext4_block_write_begin(page, pos, len,
1184                                              ext4_get_block_unwritten);
1185         else
1186                 ret = ext4_block_write_begin(page, pos, len,
1187                                              ext4_get_block);
1188 #else
1189         if (ext4_should_dioread_nolock(inode))
1190                 ret = __block_write_begin(page, pos, len,
1191                                           ext4_get_block_unwritten);
1192         else
1193                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1194 #endif
1195         if (!ret && ext4_should_journal_data(inode)) {
1196                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1197                                              from, to, NULL,
1198                                              do_journal_get_write_access);
1199         }
1200
1201         if (ret) {
1202                 bool extended = (pos + len > inode->i_size) &&
1203                                 !ext4_verity_in_progress(inode);
1204
1205                 unlock_page(page);
1206                 /*
1207                  * __block_write_begin may have instantiated a few blocks
1208                  * outside i_size.  Trim these off again. Don't need
1209                  * i_size_read because we hold i_mutex.
1210                  *
1211                  * Add inode to orphan list in case we crash before
1212                  * truncate finishes
1213                  */
1214                 if (extended && ext4_can_truncate(inode))
1215                         ext4_orphan_add(handle, inode);
1216
1217                 ext4_journal_stop(handle);
1218                 if (extended) {
1219                         ext4_truncate_failed_write(inode);
1220                         /*
1221                          * If truncate failed early the inode might
1222                          * still be on the orphan list; we need to
1223                          * make sure the inode is removed from the
1224                          * orphan list in that case.
1225                          */
1226                         if (inode->i_nlink)
1227                                 ext4_orphan_del(NULL, inode);
1228                 }
1229
1230                 if (ret == -ENOSPC &&
1231                     ext4_should_retry_alloc(inode->i_sb, &retries))
1232                         goto retry_journal;
1233                 put_page(page);
1234                 return ret;
1235         }
1236         *pagep = page;
1237         return ret;
1238 }
1239
1240 /* For write_end() in data=journal mode */
1241 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1242 {
1243         int ret;
1244         if (!buffer_mapped(bh) || buffer_freed(bh))
1245                 return 0;
1246         set_buffer_uptodate(bh);
1247         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1248         clear_buffer_meta(bh);
1249         clear_buffer_prio(bh);
1250         return ret;
1251 }
1252
1253 /*
1254  * We need to pick up the new inode size which generic_commit_write gave us
1255  * `file' can be NULL - eg, when called from page_symlink().
1256  *
1257  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1258  * buffers are managed internally.
1259  */
1260 static int ext4_write_end(struct file *file,
1261                           struct address_space *mapping,
1262                           loff_t pos, unsigned len, unsigned copied,
1263                           struct page *page, void *fsdata)
1264 {
1265         handle_t *handle = ext4_journal_current_handle();
1266         struct inode *inode = mapping->host;
1267         loff_t old_size = inode->i_size;
1268         int ret = 0, ret2;
1269         int i_size_changed = 0;
1270         int inline_data = ext4_has_inline_data(inode);
1271         bool verity = ext4_verity_in_progress(inode);
1272
1273         trace_ext4_write_end(inode, pos, len, copied);
1274         if (inline_data) {
1275                 ret = ext4_write_inline_data_end(inode, pos, len,
1276                                                  copied, page);
1277                 if (ret < 0) {
1278                         unlock_page(page);
1279                         put_page(page);
1280                         goto errout;
1281                 }
1282                 copied = ret;
1283         } else
1284                 copied = block_write_end(file, mapping, pos,
1285                                          len, copied, page, fsdata);
1286         /*
1287          * it's important to update i_size while still holding page lock:
1288          * page writeout could otherwise come in and zero beyond i_size.
1289          *
1290          * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1291          * blocks are being written past EOF, so skip the i_size update.
1292          */
1293         if (!verity)
1294                 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1295         unlock_page(page);
1296         put_page(page);
1297
1298         if (old_size < pos && !verity)
1299                 pagecache_isize_extended(inode, old_size, pos);
1300         /*
1301          * Don't mark the inode dirty under page lock. First, it unnecessarily
1302          * makes the holding time of page lock longer. Second, it forces lock
1303          * ordering of page lock and transaction start for journaling
1304          * filesystems.
1305          */
1306         if (i_size_changed || inline_data)
1307                 ret = ext4_mark_inode_dirty(handle, inode);
1308
1309         if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1310                 /* if we have allocated more blocks and copied
1311                  * less. We will have blocks allocated outside
1312                  * inode->i_size. So truncate them
1313                  */
1314                 ext4_orphan_add(handle, inode);
1315 errout:
1316         ret2 = ext4_journal_stop(handle);
1317         if (!ret)
1318                 ret = ret2;
1319
1320         if (pos + len > inode->i_size && !verity) {
1321                 ext4_truncate_failed_write(inode);
1322                 /*
1323                  * If truncate failed early the inode might still be
1324                  * on the orphan list; we need to make sure the inode
1325                  * is removed from the orphan list in that case.
1326                  */
1327                 if (inode->i_nlink)
1328                         ext4_orphan_del(NULL, inode);
1329         }
1330
1331         return ret ? ret : copied;
1332 }
1333
1334 /*
1335  * This is a private version of page_zero_new_buffers() which doesn't
1336  * set the buffer to be dirty, since in data=journalled mode we need
1337  * to call ext4_handle_dirty_metadata() instead.
1338  */
1339 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1340                                             struct page *page,
1341                                             unsigned from, unsigned to)
1342 {
1343         unsigned int block_start = 0, block_end;
1344         struct buffer_head *head, *bh;
1345
1346         bh = head = page_buffers(page);
1347         do {
1348                 block_end = block_start + bh->b_size;
1349                 if (buffer_new(bh)) {
1350                         if (block_end > from && block_start < to) {
1351                                 if (!PageUptodate(page)) {
1352                                         unsigned start, size;
1353
1354                                         start = max(from, block_start);
1355                                         size = min(to, block_end) - start;
1356
1357                                         zero_user(page, start, size);
1358                                         write_end_fn(handle, bh);
1359                                 }
1360                                 clear_buffer_new(bh);
1361                         }
1362                 }
1363                 block_start = block_end;
1364                 bh = bh->b_this_page;
1365         } while (bh != head);
1366 }
1367
1368 static int ext4_journalled_write_end(struct file *file,
1369                                      struct address_space *mapping,
1370                                      loff_t pos, unsigned len, unsigned copied,
1371                                      struct page *page, void *fsdata)
1372 {
1373         handle_t *handle = ext4_journal_current_handle();
1374         struct inode *inode = mapping->host;
1375         loff_t old_size = inode->i_size;
1376         int ret = 0, ret2;
1377         int partial = 0;
1378         unsigned from, to;
1379         int size_changed = 0;
1380         int inline_data = ext4_has_inline_data(inode);
1381         bool verity = ext4_verity_in_progress(inode);
1382
1383         trace_ext4_journalled_write_end(inode, pos, len, copied);
1384         from = pos & (PAGE_SIZE - 1);
1385         to = from + len;
1386
1387         BUG_ON(!ext4_handle_valid(handle));
1388
1389         if (inline_data) {
1390                 ret = ext4_write_inline_data_end(inode, pos, len,
1391                                                  copied, page);
1392                 if (ret < 0) {
1393                         unlock_page(page);
1394                         put_page(page);
1395                         goto errout;
1396                 }
1397                 copied = ret;
1398         } else if (unlikely(copied < len) && !PageUptodate(page)) {
1399                 copied = 0;
1400                 ext4_journalled_zero_new_buffers(handle, page, from, to);
1401         } else {
1402                 if (unlikely(copied < len))
1403                         ext4_journalled_zero_new_buffers(handle, page,
1404                                                          from + copied, to);
1405                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1406                                              from + copied, &partial,
1407                                              write_end_fn);
1408                 if (!partial)
1409                         SetPageUptodate(page);
1410         }
1411         if (!verity)
1412                 size_changed = ext4_update_inode_size(inode, pos + copied);
1413         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1414         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1415         unlock_page(page);
1416         put_page(page);
1417
1418         if (old_size < pos && !verity)
1419                 pagecache_isize_extended(inode, old_size, pos);
1420
1421         if (size_changed || inline_data) {
1422                 ret2 = ext4_mark_inode_dirty(handle, inode);
1423                 if (!ret)
1424                         ret = ret2;
1425         }
1426
1427         if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1428                 /* if we have allocated more blocks and copied
1429                  * less. We will have blocks allocated outside
1430                  * inode->i_size. So truncate them
1431                  */
1432                 ext4_orphan_add(handle, inode);
1433
1434 errout:
1435         ret2 = ext4_journal_stop(handle);
1436         if (!ret)
1437                 ret = ret2;
1438         if (pos + len > inode->i_size && !verity) {
1439                 ext4_truncate_failed_write(inode);
1440                 /*
1441                  * If truncate failed early the inode might still be
1442                  * on the orphan list; we need to make sure the inode
1443                  * is removed from the orphan list in that case.
1444                  */
1445                 if (inode->i_nlink)
1446                         ext4_orphan_del(NULL, inode);
1447         }
1448
1449         return ret ? ret : copied;
1450 }
1451
1452 /*
1453  * Reserve space for a single cluster
1454  */
1455 static int ext4_da_reserve_space(struct inode *inode)
1456 {
1457         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1458         struct ext4_inode_info *ei = EXT4_I(inode);
1459         int ret;
1460
1461         /*
1462          * We will charge metadata quota at writeout time; this saves
1463          * us from metadata over-estimation, though we may go over by
1464          * a small amount in the end.  Here we just reserve for data.
1465          */
1466         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1467         if (ret)
1468                 return ret;
1469
1470         spin_lock(&ei->i_block_reservation_lock);
1471         if (ext4_claim_free_clusters(sbi, 1, 0)) {
1472                 spin_unlock(&ei->i_block_reservation_lock);
1473                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1474                 return -ENOSPC;
1475         }
1476         ei->i_reserved_data_blocks++;
1477         trace_ext4_da_reserve_space(inode);
1478         spin_unlock(&ei->i_block_reservation_lock);
1479
1480         return 0;       /* success */
1481 }
1482
1483 void ext4_da_release_space(struct inode *inode, int to_free)
1484 {
1485         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1486         struct ext4_inode_info *ei = EXT4_I(inode);
1487
1488         if (!to_free)
1489                 return;         /* Nothing to release, exit */
1490
1491         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1492
1493         trace_ext4_da_release_space(inode, to_free);
1494         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1495                 /*
1496                  * if there aren't enough reserved blocks, then the
1497                  * counter is messed up somewhere.  Since this
1498                  * function is called from invalidate page, it's
1499                  * harmless to return without any action.
1500                  */
1501                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1502                          "ino %lu, to_free %d with only %d reserved "
1503                          "data blocks", inode->i_ino, to_free,
1504                          ei->i_reserved_data_blocks);
1505                 WARN_ON(1);
1506                 to_free = ei->i_reserved_data_blocks;
1507         }
1508         ei->i_reserved_data_blocks -= to_free;
1509
1510         /* update fs dirty data blocks counter */
1511         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1512
1513         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1514
1515         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1516 }
1517
1518 /*
1519  * Delayed allocation stuff
1520  */
1521
1522 struct mpage_da_data {
1523         struct inode *inode;
1524         struct writeback_control *wbc;
1525
1526         pgoff_t first_page;     /* The first page to write */
1527         pgoff_t next_page;      /* Current page to examine */
1528         pgoff_t last_page;      /* Last page to examine */
1529         /*
1530          * Extent to map - this can be after first_page because that can be
1531          * fully mapped. We somewhat abuse m_flags to store whether the extent
1532          * is delalloc or unwritten.
1533          */
1534         struct ext4_map_blocks map;
1535         struct ext4_io_submit io_submit;        /* IO submission data */
1536         unsigned int do_map:1;
1537 };
1538
1539 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1540                                        bool invalidate)
1541 {
1542         int nr_pages, i;
1543         pgoff_t index, end;
1544         struct pagevec pvec;
1545         struct inode *inode = mpd->inode;
1546         struct address_space *mapping = inode->i_mapping;
1547
1548         /* This is necessary when next_page == 0. */
1549         if (mpd->first_page >= mpd->next_page)
1550                 return;
1551
1552         index = mpd->first_page;
1553         end   = mpd->next_page - 1;
1554         if (invalidate) {
1555                 ext4_lblk_t start, last;
1556                 start = index << (PAGE_SHIFT - inode->i_blkbits);
1557                 last = end << (PAGE_SHIFT - inode->i_blkbits);
1558                 ext4_es_remove_extent(inode, start, last - start + 1);
1559         }
1560
1561         pagevec_init(&pvec);
1562         while (index <= end) {
1563                 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1564                 if (nr_pages == 0)
1565                         break;
1566                 for (i = 0; i < nr_pages; i++) {
1567                         struct page *page = pvec.pages[i];
1568
1569                         BUG_ON(!PageLocked(page));
1570                         BUG_ON(PageWriteback(page));
1571                         if (invalidate) {
1572                                 if (page_mapped(page))
1573                                         clear_page_dirty_for_io(page);
1574                                 block_invalidatepage(page, 0, PAGE_SIZE);
1575                                 ClearPageUptodate(page);
1576                         }
1577                         unlock_page(page);
1578                 }
1579                 pagevec_release(&pvec);
1580         }
1581 }
1582
1583 static void ext4_print_free_blocks(struct inode *inode)
1584 {
1585         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1586         struct super_block *sb = inode->i_sb;
1587         struct ext4_inode_info *ei = EXT4_I(inode);
1588
1589         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1590                EXT4_C2B(EXT4_SB(inode->i_sb),
1591                         ext4_count_free_clusters(sb)));
1592         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1593         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1594                (long long) EXT4_C2B(EXT4_SB(sb),
1595                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1596         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1597                (long long) EXT4_C2B(EXT4_SB(sb),
1598                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1599         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1600         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1601                  ei->i_reserved_data_blocks);
1602         return;
1603 }
1604
1605 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1606 {
1607         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1608 }
1609
1610 /*
1611  * ext4_insert_delayed_block - adds a delayed block to the extents status
1612  *                             tree, incrementing the reserved cluster/block
1613  *                             count or making a pending reservation
1614  *                             where needed
1615  *
1616  * @inode - file containing the newly added block
1617  * @lblk - logical block to be added
1618  *
1619  * Returns 0 on success, negative error code on failure.
1620  */
1621 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1622 {
1623         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1624         int ret;
1625         bool allocated = false;
1626
1627         /*
1628          * If the cluster containing lblk is shared with a delayed,
1629          * written, or unwritten extent in a bigalloc file system, it's
1630          * already been accounted for and does not need to be reserved.
1631          * A pending reservation must be made for the cluster if it's
1632          * shared with a written or unwritten extent and doesn't already
1633          * have one.  Written and unwritten extents can be purged from the
1634          * extents status tree if the system is under memory pressure, so
1635          * it's necessary to examine the extent tree if a search of the
1636          * extents status tree doesn't get a match.
1637          */
1638         if (sbi->s_cluster_ratio == 1) {
1639                 ret = ext4_da_reserve_space(inode);
1640                 if (ret != 0)   /* ENOSPC */
1641                         goto errout;
1642         } else {   /* bigalloc */
1643                 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1644                         if (!ext4_es_scan_clu(inode,
1645                                               &ext4_es_is_mapped, lblk)) {
1646                                 ret = ext4_clu_mapped(inode,
1647                                                       EXT4_B2C(sbi, lblk));
1648                                 if (ret < 0)
1649                                         goto errout;
1650                                 if (ret == 0) {
1651                                         ret = ext4_da_reserve_space(inode);
1652                                         if (ret != 0)   /* ENOSPC */
1653                                                 goto errout;
1654                                 } else {
1655                                         allocated = true;
1656                                 }
1657                         } else {
1658                                 allocated = true;
1659                         }
1660                 }
1661         }
1662
1663         ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1664
1665 errout:
1666         return ret;
1667 }
1668
1669 /*
1670  * This function is grabs code from the very beginning of
1671  * ext4_map_blocks, but assumes that the caller is from delayed write
1672  * time. This function looks up the requested blocks and sets the
1673  * buffer delay bit under the protection of i_data_sem.
1674  */
1675 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1676                               struct ext4_map_blocks *map,
1677                               struct buffer_head *bh)
1678 {
1679         struct extent_status es;
1680         int retval;
1681         sector_t invalid_block = ~((sector_t) 0xffff);
1682 #ifdef ES_AGGRESSIVE_TEST
1683         struct ext4_map_blocks orig_map;
1684
1685         memcpy(&orig_map, map, sizeof(*map));
1686 #endif
1687
1688         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1689                 invalid_block = ~0;
1690
1691         map->m_flags = 0;
1692         ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1693                   (unsigned long) map->m_lblk);
1694
1695         /* Lookup extent status tree firstly */
1696         if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1697                 if (ext4_es_is_hole(&es)) {
1698                         retval = 0;
1699                         down_read(&EXT4_I(inode)->i_data_sem);
1700                         goto add_delayed;
1701                 }
1702
1703                 /*
1704                  * Delayed extent could be allocated by fallocate.
1705                  * So we need to check it.
1706                  */
1707                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1708                         map_bh(bh, inode->i_sb, invalid_block);
1709                         set_buffer_new(bh);
1710                         set_buffer_delay(bh);
1711                         return 0;
1712                 }
1713
1714                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1715                 retval = es.es_len - (iblock - es.es_lblk);
1716                 if (retval > map->m_len)
1717                         retval = map->m_len;
1718                 map->m_len = retval;
1719                 if (ext4_es_is_written(&es))
1720                         map->m_flags |= EXT4_MAP_MAPPED;
1721                 else if (ext4_es_is_unwritten(&es))
1722                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1723                 else
1724                         BUG();
1725
1726 #ifdef ES_AGGRESSIVE_TEST
1727                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1728 #endif
1729                 return retval;
1730         }
1731
1732         /*
1733          * Try to see if we can get the block without requesting a new
1734          * file system block.
1735          */
1736         down_read(&EXT4_I(inode)->i_data_sem);
1737         if (ext4_has_inline_data(inode))
1738                 retval = 0;
1739         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1740                 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1741         else
1742                 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1743
1744 add_delayed:
1745         if (retval == 0) {
1746                 int ret;
1747
1748                 /*
1749                  * XXX: __block_prepare_write() unmaps passed block,
1750                  * is it OK?
1751                  */
1752
1753                 ret = ext4_insert_delayed_block(inode, map->m_lblk);
1754                 if (ret != 0) {
1755                         retval = ret;
1756                         goto out_unlock;
1757                 }
1758
1759                 map_bh(bh, inode->i_sb, invalid_block);
1760                 set_buffer_new(bh);
1761                 set_buffer_delay(bh);
1762         } else if (retval > 0) {
1763                 int ret;
1764                 unsigned int status;
1765
1766                 if (unlikely(retval != map->m_len)) {
1767                         ext4_warning(inode->i_sb,
1768                                      "ES len assertion failed for inode "
1769                                      "%lu: retval %d != map->m_len %d",
1770                                      inode->i_ino, retval, map->m_len);
1771                         WARN_ON(1);
1772                 }
1773
1774                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1775                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1776                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1777                                             map->m_pblk, status);
1778                 if (ret != 0)
1779                         retval = ret;
1780         }
1781
1782 out_unlock:
1783         up_read((&EXT4_I(inode)->i_data_sem));
1784
1785         return retval;
1786 }
1787
1788 /*
1789  * This is a special get_block_t callback which is used by
1790  * ext4_da_write_begin().  It will either return mapped block or
1791  * reserve space for a single block.
1792  *
1793  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1794  * We also have b_blocknr = -1 and b_bdev initialized properly
1795  *
1796  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1797  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1798  * initialized properly.
1799  */
1800 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1801                            struct buffer_head *bh, int create)
1802 {
1803         struct ext4_map_blocks map;
1804         int ret = 0;
1805
1806         BUG_ON(create == 0);
1807         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1808
1809         map.m_lblk = iblock;
1810         map.m_len = 1;
1811
1812         /*
1813          * first, we need to know whether the block is allocated already
1814          * preallocated blocks are unmapped but should treated
1815          * the same as allocated blocks.
1816          */
1817         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1818         if (ret <= 0)
1819                 return ret;
1820
1821         map_bh(bh, inode->i_sb, map.m_pblk);
1822         ext4_update_bh_state(bh, map.m_flags);
1823
1824         if (buffer_unwritten(bh)) {
1825                 /* A delayed write to unwritten bh should be marked
1826                  * new and mapped.  Mapped ensures that we don't do
1827                  * get_block multiple times when we write to the same
1828                  * offset and new ensures that we do proper zero out
1829                  * for partial write.
1830                  */
1831                 set_buffer_new(bh);
1832                 set_buffer_mapped(bh);
1833         }
1834         return 0;
1835 }
1836
1837 static int bget_one(handle_t *handle, struct buffer_head *bh)
1838 {
1839         get_bh(bh);
1840         return 0;
1841 }
1842
1843 static int bput_one(handle_t *handle, struct buffer_head *bh)
1844 {
1845         put_bh(bh);
1846         return 0;
1847 }
1848
1849 static int __ext4_journalled_writepage(struct page *page,
1850                                        unsigned int len)
1851 {
1852         struct address_space *mapping = page->mapping;
1853         struct inode *inode = mapping->host;
1854         struct buffer_head *page_bufs = NULL;
1855         handle_t *handle = NULL;
1856         int ret = 0, err = 0;
1857         int inline_data = ext4_has_inline_data(inode);
1858         struct buffer_head *inode_bh = NULL;
1859
1860         ClearPageChecked(page);
1861
1862         if (inline_data) {
1863                 BUG_ON(page->index != 0);
1864                 BUG_ON(len > ext4_get_max_inline_size(inode));
1865                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1866                 if (inode_bh == NULL)
1867                         goto out;
1868         } else {
1869                 page_bufs = page_buffers(page);
1870                 if (!page_bufs) {
1871                         BUG();
1872                         goto out;
1873                 }
1874                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1875                                        NULL, bget_one);
1876         }
1877         /*
1878          * We need to release the page lock before we start the
1879          * journal, so grab a reference so the page won't disappear
1880          * out from under us.
1881          */
1882         get_page(page);
1883         unlock_page(page);
1884
1885         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1886                                     ext4_writepage_trans_blocks(inode));
1887         if (IS_ERR(handle)) {
1888                 ret = PTR_ERR(handle);
1889                 put_page(page);
1890                 goto out_no_pagelock;
1891         }
1892         BUG_ON(!ext4_handle_valid(handle));
1893
1894         lock_page(page);
1895         put_page(page);
1896         if (page->mapping != mapping) {
1897                 /* The page got truncated from under us */
1898                 ext4_journal_stop(handle);
1899                 ret = 0;
1900                 goto out;
1901         }
1902
1903         if (inline_data) {
1904                 ret = ext4_mark_inode_dirty(handle, inode);
1905         } else {
1906                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1907                                              do_journal_get_write_access);
1908
1909                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1910                                              write_end_fn);
1911         }
1912         if (ret == 0)
1913                 ret = err;
1914         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1915         err = ext4_journal_stop(handle);
1916         if (!ret)
1917                 ret = err;
1918
1919         if (!ext4_has_inline_data(inode))
1920                 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1921                                        NULL, bput_one);
1922         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1923 out:
1924         unlock_page(page);
1925 out_no_pagelock:
1926         brelse(inode_bh);
1927         return ret;
1928 }
1929
1930 /*
1931  * Note that we don't need to start a transaction unless we're journaling data
1932  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1933  * need to file the inode to the transaction's list in ordered mode because if
1934  * we are writing back data added by write(), the inode is already there and if
1935  * we are writing back data modified via mmap(), no one guarantees in which
1936  * transaction the data will hit the disk. In case we are journaling data, we
1937  * cannot start transaction directly because transaction start ranks above page
1938  * lock so we have to do some magic.
1939  *
1940  * This function can get called via...
1941  *   - ext4_writepages after taking page lock (have journal handle)
1942  *   - journal_submit_inode_data_buffers (no journal handle)
1943  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1944  *   - grab_page_cache when doing write_begin (have journal handle)
1945  *
1946  * We don't do any block allocation in this function. If we have page with
1947  * multiple blocks we need to write those buffer_heads that are mapped. This
1948  * is important for mmaped based write. So if we do with blocksize 1K
1949  * truncate(f, 1024);
1950  * a = mmap(f, 0, 4096);
1951  * a[0] = 'a';
1952  * truncate(f, 4096);
1953  * we have in the page first buffer_head mapped via page_mkwrite call back
1954  * but other buffer_heads would be unmapped but dirty (dirty done via the
1955  * do_wp_page). So writepage should write the first block. If we modify
1956  * the mmap area beyond 1024 we will again get a page_fault and the
1957  * page_mkwrite callback will do the block allocation and mark the
1958  * buffer_heads mapped.
1959  *
1960  * We redirty the page if we have any buffer_heads that is either delay or
1961  * unwritten in the page.
1962  *
1963  * We can get recursively called as show below.
1964  *
1965  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1966  *              ext4_writepage()
1967  *
1968  * But since we don't do any block allocation we should not deadlock.
1969  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1970  */
1971 static int ext4_writepage(struct page *page,
1972                           struct writeback_control *wbc)
1973 {
1974         int ret = 0;
1975         loff_t size;
1976         unsigned int len;
1977         struct buffer_head *page_bufs = NULL;
1978         struct inode *inode = page->mapping->host;
1979         struct ext4_io_submit io_submit;
1980         bool keep_towrite = false;
1981
1982         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
1983                 inode->i_mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
1984                 unlock_page(page);
1985                 return -EIO;
1986         }
1987
1988         trace_ext4_writepage(page);
1989         size = i_size_read(inode);
1990         if (page->index == size >> PAGE_SHIFT &&
1991             !ext4_verity_in_progress(inode))
1992                 len = size & ~PAGE_MASK;
1993         else
1994                 len = PAGE_SIZE;
1995
1996         page_bufs = page_buffers(page);
1997         /*
1998          * We cannot do block allocation or other extent handling in this
1999          * function. If there are buffers needing that, we have to redirty
2000          * the page. But we may reach here when we do a journal commit via
2001          * journal_submit_inode_data_buffers() and in that case we must write
2002          * allocated buffers to achieve data=ordered mode guarantees.
2003          *
2004          * Also, if there is only one buffer per page (the fs block
2005          * size == the page size), if one buffer needs block
2006          * allocation or needs to modify the extent tree to clear the
2007          * unwritten flag, we know that the page can't be written at
2008          * all, so we might as well refuse the write immediately.
2009          * Unfortunately if the block size != page size, we can't as
2010          * easily detect this case using ext4_walk_page_buffers(), but
2011          * for the extremely common case, this is an optimization that
2012          * skips a useless round trip through ext4_bio_write_page().
2013          */
2014         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2015                                    ext4_bh_delay_or_unwritten)) {
2016                 redirty_page_for_writepage(wbc, page);
2017                 if ((current->flags & PF_MEMALLOC) ||
2018                     (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2019                         /*
2020                          * For memory cleaning there's no point in writing only
2021                          * some buffers. So just bail out. Warn if we came here
2022                          * from direct reclaim.
2023                          */
2024                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2025                                                         == PF_MEMALLOC);
2026                         unlock_page(page);
2027                         return 0;
2028                 }
2029                 keep_towrite = true;
2030         }
2031
2032         if (PageChecked(page) && ext4_should_journal_data(inode))
2033                 /*
2034                  * It's mmapped pagecache.  Add buffers and journal it.  There
2035                  * doesn't seem much point in redirtying the page here.
2036                  */
2037                 return __ext4_journalled_writepage(page, len);
2038
2039         ext4_io_submit_init(&io_submit, wbc);
2040         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2041         if (!io_submit.io_end) {
2042                 redirty_page_for_writepage(wbc, page);
2043                 unlock_page(page);
2044                 return -ENOMEM;
2045         }
2046         ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2047         ext4_io_submit(&io_submit);
2048         /* Drop io_end reference we got from init */
2049         ext4_put_io_end_defer(io_submit.io_end);
2050         return ret;
2051 }
2052
2053 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2054 {
2055         int len;
2056         loff_t size;
2057         int err;
2058
2059         BUG_ON(page->index != mpd->first_page);
2060         clear_page_dirty_for_io(page);
2061         /*
2062          * We have to be very careful here!  Nothing protects writeback path
2063          * against i_size changes and the page can be writeably mapped into
2064          * page tables. So an application can be growing i_size and writing
2065          * data through mmap while writeback runs. clear_page_dirty_for_io()
2066          * write-protects our page in page tables and the page cannot get
2067          * written to again until we release page lock. So only after
2068          * clear_page_dirty_for_io() we are safe to sample i_size for
2069          * ext4_bio_write_page() to zero-out tail of the written page. We rely
2070          * on the barrier provided by TestClearPageDirty in
2071          * clear_page_dirty_for_io() to make sure i_size is really sampled only
2072          * after page tables are updated.
2073          */
2074         size = i_size_read(mpd->inode);
2075         if (page->index == size >> PAGE_SHIFT &&
2076             !ext4_verity_in_progress(mpd->inode))
2077                 len = size & ~PAGE_MASK;
2078         else
2079                 len = PAGE_SIZE;
2080         err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2081         if (!err)
2082                 mpd->wbc->nr_to_write--;
2083         mpd->first_page++;
2084
2085         return err;
2086 }
2087
2088 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
2089
2090 /*
2091  * mballoc gives us at most this number of blocks...
2092  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2093  * The rest of mballoc seems to handle chunks up to full group size.
2094  */
2095 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2096
2097 /*
2098  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2099  *
2100  * @mpd - extent of blocks
2101  * @lblk - logical number of the block in the file
2102  * @bh - buffer head we want to add to the extent
2103  *
2104  * The function is used to collect contig. blocks in the same state. If the
2105  * buffer doesn't require mapping for writeback and we haven't started the
2106  * extent of buffers to map yet, the function returns 'true' immediately - the
2107  * caller can write the buffer right away. Otherwise the function returns true
2108  * if the block has been added to the extent, false if the block couldn't be
2109  * added.
2110  */
2111 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2112                                    struct buffer_head *bh)
2113 {
2114         struct ext4_map_blocks *map = &mpd->map;
2115
2116         /* Buffer that doesn't need mapping for writeback? */
2117         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2118             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2119                 /* So far no extent to map => we write the buffer right away */
2120                 if (map->m_len == 0)
2121                         return true;
2122                 return false;
2123         }
2124
2125         /* First block in the extent? */
2126         if (map->m_len == 0) {
2127                 /* We cannot map unless handle is started... */
2128                 if (!mpd->do_map)
2129                         return false;
2130                 map->m_lblk = lblk;
2131                 map->m_len = 1;
2132                 map->m_flags = bh->b_state & BH_FLAGS;
2133                 return true;
2134         }
2135
2136         /* Don't go larger than mballoc is willing to allocate */
2137         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2138                 return false;
2139
2140         /* Can we merge the block to our big extent? */
2141         if (lblk == map->m_lblk + map->m_len &&
2142             (bh->b_state & BH_FLAGS) == map->m_flags) {
2143                 map->m_len++;
2144                 return true;
2145         }
2146         return false;
2147 }
2148
2149 /*
2150  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2151  *
2152  * @mpd - extent of blocks for mapping
2153  * @head - the first buffer in the page
2154  * @bh - buffer we should start processing from
2155  * @lblk - logical number of the block in the file corresponding to @bh
2156  *
2157  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2158  * the page for IO if all buffers in this page were mapped and there's no
2159  * accumulated extent of buffers to map or add buffers in the page to the
2160  * extent of buffers to map. The function returns 1 if the caller can continue
2161  * by processing the next page, 0 if it should stop adding buffers to the
2162  * extent to map because we cannot extend it anymore. It can also return value
2163  * < 0 in case of error during IO submission.
2164  */
2165 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2166                                    struct buffer_head *head,
2167                                    struct buffer_head *bh,
2168                                    ext4_lblk_t lblk)
2169 {
2170         struct inode *inode = mpd->inode;
2171         int err;
2172         ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2173                                                         >> inode->i_blkbits;
2174
2175         if (ext4_verity_in_progress(inode))
2176                 blocks = EXT_MAX_BLOCKS;
2177
2178         do {
2179                 BUG_ON(buffer_locked(bh));
2180
2181                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2182                         /* Found extent to map? */
2183                         if (mpd->map.m_len)
2184                                 return 0;
2185                         /* Buffer needs mapping and handle is not started? */
2186                         if (!mpd->do_map)
2187                                 return 0;
2188                         /* Everything mapped so far and we hit EOF */
2189                         break;
2190                 }
2191         } while (lblk++, (bh = bh->b_this_page) != head);
2192         /* So far everything mapped? Submit the page for IO. */
2193         if (mpd->map.m_len == 0) {
2194                 err = mpage_submit_page(mpd, head->b_page);
2195                 if (err < 0)
2196                         return err;
2197         }
2198         return lblk < blocks;
2199 }
2200
2201 /*
2202  * mpage_process_page - update page buffers corresponding to changed extent and
2203  *                     may submit fully mapped page for IO
2204  *
2205  * @mpd         - description of extent to map, on return next extent to map
2206  * @m_lblk      - logical block mapping.
2207  * @m_pblk      - corresponding physical mapping.
2208  * @map_bh      - determines on return whether this page requires any further
2209  *                mapping or not.
2210  * Scan given page buffers corresponding to changed extent and update buffer
2211  * state according to new extent state.
2212  * We map delalloc buffers to their physical location, clear unwritten bits.
2213  * If the given page is not fully mapped, we update @map to the next extent in
2214  * the given page that needs mapping & return @map_bh as true.
2215  */
2216 static int mpage_process_page(struct mpage_da_data *mpd, struct page *page,
2217                               ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2218                               bool *map_bh)
2219 {
2220         struct buffer_head *head, *bh;
2221         ext4_io_end_t *io_end = mpd->io_submit.io_end;
2222         ext4_lblk_t lblk = *m_lblk;
2223         ext4_fsblk_t pblock = *m_pblk;
2224         int err = 0;
2225         int blkbits = mpd->inode->i_blkbits;
2226         ssize_t io_end_size = 0;
2227         struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2228
2229         bh = head = page_buffers(page);
2230         do {
2231                 if (lblk < mpd->map.m_lblk)
2232                         continue;
2233                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2234                         /*
2235                          * Buffer after end of mapped extent.
2236                          * Find next buffer in the page to map.
2237                          */
2238                         mpd->map.m_len = 0;
2239                         mpd->map.m_flags = 0;
2240                         io_end_vec->size += io_end_size;
2241                         io_end_size = 0;
2242
2243                         err = mpage_process_page_bufs(mpd, head, bh, lblk);
2244                         if (err > 0)
2245                                 err = 0;
2246                         if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2247                                 io_end_vec = ext4_alloc_io_end_vec(io_end);
2248                                 if (IS_ERR(io_end_vec)) {
2249                                         err = PTR_ERR(io_end_vec);
2250                                         goto out;
2251                                 }
2252                                 io_end_vec->offset = mpd->map.m_lblk << blkbits;
2253                         }
2254                         *map_bh = true;
2255                         goto out;
2256                 }
2257                 if (buffer_delay(bh)) {
2258                         clear_buffer_delay(bh);
2259                         bh->b_blocknr = pblock++;
2260                 }
2261                 clear_buffer_unwritten(bh);
2262                 io_end_size += (1 << blkbits);
2263         } while (lblk++, (bh = bh->b_this_page) != head);
2264
2265         io_end_vec->size += io_end_size;
2266         io_end_size = 0;
2267         *map_bh = false;
2268 out:
2269         *m_lblk = lblk;
2270         *m_pblk = pblock;
2271         return err;
2272 }
2273
2274 /*
2275  * mpage_map_buffers - update buffers corresponding to changed extent and
2276  *                     submit fully mapped pages for IO
2277  *
2278  * @mpd - description of extent to map, on return next extent to map
2279  *
2280  * Scan buffers corresponding to changed extent (we expect corresponding pages
2281  * to be already locked) and update buffer state according to new extent state.
2282  * We map delalloc buffers to their physical location, clear unwritten bits,
2283  * and mark buffers as uninit when we perform writes to unwritten extents
2284  * and do extent conversion after IO is finished. If the last page is not fully
2285  * mapped, we update @map to the next extent in the last page that needs
2286  * mapping. Otherwise we submit the page for IO.
2287  */
2288 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2289 {
2290         struct pagevec pvec;
2291         int nr_pages, i;
2292         struct inode *inode = mpd->inode;
2293         int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2294         pgoff_t start, end;
2295         ext4_lblk_t lblk;
2296         ext4_fsblk_t pblock;
2297         int err;
2298         bool map_bh = false;
2299
2300         start = mpd->map.m_lblk >> bpp_bits;
2301         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2302         lblk = start << bpp_bits;
2303         pblock = mpd->map.m_pblk;
2304
2305         pagevec_init(&pvec);
2306         while (start <= end) {
2307                 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2308                                                 &start, end);
2309                 if (nr_pages == 0)
2310                         break;
2311                 for (i = 0; i < nr_pages; i++) {
2312                         struct page *page = pvec.pages[i];
2313
2314                         err = mpage_process_page(mpd, page, &lblk, &pblock,
2315                                                  &map_bh);
2316                         /*
2317                          * If map_bh is true, means page may require further bh
2318                          * mapping, or maybe the page was submitted for IO.
2319                          * So we return to call further extent mapping.
2320                          */
2321                         if (err < 0 || map_bh)
2322                                 goto out;
2323                         /* Page fully mapped - let IO run! */
2324                         err = mpage_submit_page(mpd, page);
2325                         if (err < 0)
2326                                 goto out;
2327                 }
2328                 pagevec_release(&pvec);
2329         }
2330         /* Extent fully mapped and matches with page boundary. We are done. */
2331         mpd->map.m_len = 0;
2332         mpd->map.m_flags = 0;
2333         return 0;
2334 out:
2335         pagevec_release(&pvec);
2336         return err;
2337 }
2338
2339 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2340 {
2341         struct inode *inode = mpd->inode;
2342         struct ext4_map_blocks *map = &mpd->map;
2343         int get_blocks_flags;
2344         int err, dioread_nolock;
2345
2346         trace_ext4_da_write_pages_extent(inode, map);
2347         /*
2348          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2349          * to convert an unwritten extent to be initialized (in the case
2350          * where we have written into one or more preallocated blocks).  It is
2351          * possible that we're going to need more metadata blocks than
2352          * previously reserved. However we must not fail because we're in
2353          * writeback and there is nothing we can do about it so it might result
2354          * in data loss.  So use reserved blocks to allocate metadata if
2355          * possible.
2356          *
2357          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2358          * the blocks in question are delalloc blocks.  This indicates
2359          * that the blocks and quotas has already been checked when
2360          * the data was copied into the page cache.
2361          */
2362         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2363                            EXT4_GET_BLOCKS_METADATA_NOFAIL |
2364                            EXT4_GET_BLOCKS_IO_SUBMIT;
2365         dioread_nolock = ext4_should_dioread_nolock(inode);
2366         if (dioread_nolock)
2367                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2368         if (map->m_flags & BIT(BH_Delay))
2369                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2370
2371         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2372         if (err < 0)
2373                 return err;
2374         if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2375                 if (!mpd->io_submit.io_end->handle &&
2376                     ext4_handle_valid(handle)) {
2377                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2378                         handle->h_rsv_handle = NULL;
2379                 }
2380                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2381         }
2382
2383         BUG_ON(map->m_len == 0);
2384         return 0;
2385 }
2386
2387 /*
2388  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2389  *                               mpd->len and submit pages underlying it for IO
2390  *
2391  * @handle - handle for journal operations
2392  * @mpd - extent to map
2393  * @give_up_on_write - we set this to true iff there is a fatal error and there
2394  *                     is no hope of writing the data. The caller should discard
2395  *                     dirty pages to avoid infinite loops.
2396  *
2397  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2398  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2399  * them to initialized or split the described range from larger unwritten
2400  * extent. Note that we need not map all the described range since allocation
2401  * can return less blocks or the range is covered by more unwritten extents. We
2402  * cannot map more because we are limited by reserved transaction credits. On
2403  * the other hand we always make sure that the last touched page is fully
2404  * mapped so that it can be written out (and thus forward progress is
2405  * guaranteed). After mapping we submit all mapped pages for IO.
2406  */
2407 static int mpage_map_and_submit_extent(handle_t *handle,
2408                                        struct mpage_da_data *mpd,
2409                                        bool *give_up_on_write)
2410 {
2411         struct inode *inode = mpd->inode;
2412         struct ext4_map_blocks *map = &mpd->map;
2413         int err;
2414         loff_t disksize;
2415         int progress = 0;
2416         ext4_io_end_t *io_end = mpd->io_submit.io_end;
2417         struct ext4_io_end_vec *io_end_vec;
2418
2419         io_end_vec = ext4_alloc_io_end_vec(io_end);
2420         if (IS_ERR(io_end_vec))
2421                 return PTR_ERR(io_end_vec);
2422         io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2423         do {
2424                 err = mpage_map_one_extent(handle, mpd);
2425                 if (err < 0) {
2426                         struct super_block *sb = inode->i_sb;
2427
2428                         if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2429                             EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2430                                 goto invalidate_dirty_pages;
2431                         /*
2432                          * Let the uper layers retry transient errors.
2433                          * In the case of ENOSPC, if ext4_count_free_blocks()
2434                          * is non-zero, a commit should free up blocks.
2435                          */
2436                         if ((err == -ENOMEM) ||
2437                             (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2438                                 if (progress)
2439                                         goto update_disksize;
2440                                 return err;
2441                         }
2442                         ext4_msg(sb, KERN_CRIT,
2443                                  "Delayed block allocation failed for "
2444                                  "inode %lu at logical offset %llu with"
2445                                  " max blocks %u with error %d",
2446                                  inode->i_ino,
2447                                  (unsigned long long)map->m_lblk,
2448                                  (unsigned)map->m_len, -err);
2449                         ext4_msg(sb, KERN_CRIT,
2450                                  "This should not happen!! Data will "
2451                                  "be lost\n");
2452                         if (err == -ENOSPC)
2453                                 ext4_print_free_blocks(inode);
2454                 invalidate_dirty_pages:
2455                         *give_up_on_write = true;
2456                         return err;
2457                 }
2458                 progress = 1;
2459                 /*
2460                  * Update buffer state, submit mapped pages, and get us new
2461                  * extent to map
2462                  */
2463                 err = mpage_map_and_submit_buffers(mpd);
2464                 if (err < 0)
2465                         goto update_disksize;
2466         } while (map->m_len);
2467
2468 update_disksize:
2469         /*
2470          * Update on-disk size after IO is submitted.  Races with
2471          * truncate are avoided by checking i_size under i_data_sem.
2472          */
2473         disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2474         if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2475                 int err2;
2476                 loff_t i_size;
2477
2478                 down_write(&EXT4_I(inode)->i_data_sem);
2479                 i_size = i_size_read(inode);
2480                 if (disksize > i_size)
2481                         disksize = i_size;
2482                 if (disksize > EXT4_I(inode)->i_disksize)
2483                         EXT4_I(inode)->i_disksize = disksize;
2484                 up_write(&EXT4_I(inode)->i_data_sem);
2485                 err2 = ext4_mark_inode_dirty(handle, inode);
2486                 if (err2) {
2487                         ext4_error_err(inode->i_sb, -err2,
2488                                        "Failed to mark inode %lu dirty",
2489                                        inode->i_ino);
2490                 }
2491                 if (!err)
2492                         err = err2;
2493         }
2494         return err;
2495 }
2496
2497 /*
2498  * Calculate the total number of credits to reserve for one writepages
2499  * iteration. This is called from ext4_writepages(). We map an extent of
2500  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2501  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2502  * bpp - 1 blocks in bpp different extents.
2503  */
2504 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2505 {
2506         int bpp = ext4_journal_blocks_per_page(inode);
2507
2508         return ext4_meta_trans_blocks(inode,
2509                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2510 }
2511
2512 /*
2513  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2514  *                               and underlying extent to map
2515  *
2516  * @mpd - where to look for pages
2517  *
2518  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2519  * IO immediately. When we find a page which isn't mapped we start accumulating
2520  * extent of buffers underlying these pages that needs mapping (formed by
2521  * either delayed or unwritten buffers). We also lock the pages containing
2522  * these buffers. The extent found is returned in @mpd structure (starting at
2523  * mpd->lblk with length mpd->len blocks).
2524  *
2525  * Note that this function can attach bios to one io_end structure which are
2526  * neither logically nor physically contiguous. Although it may seem as an
2527  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2528  * case as we need to track IO to all buffers underlying a page in one io_end.
2529  */
2530 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2531 {
2532         struct address_space *mapping = mpd->inode->i_mapping;
2533         struct pagevec pvec;
2534         unsigned int nr_pages;
2535         long left = mpd->wbc->nr_to_write;
2536         pgoff_t index = mpd->first_page;
2537         pgoff_t end = mpd->last_page;
2538         xa_mark_t tag;
2539         int i, err = 0;
2540         int blkbits = mpd->inode->i_blkbits;
2541         ext4_lblk_t lblk;
2542         struct buffer_head *head;
2543
2544         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2545                 tag = PAGECACHE_TAG_TOWRITE;
2546         else
2547                 tag = PAGECACHE_TAG_DIRTY;
2548
2549         pagevec_init(&pvec);
2550         mpd->map.m_len = 0;
2551         mpd->next_page = index;
2552         while (index <= end) {
2553                 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2554                                 tag);
2555                 if (nr_pages == 0)
2556                         goto out;
2557
2558                 for (i = 0; i < nr_pages; i++) {
2559                         struct page *page = pvec.pages[i];
2560
2561                         /*
2562                          * Accumulated enough dirty pages? This doesn't apply
2563                          * to WB_SYNC_ALL mode. For integrity sync we have to
2564                          * keep going because someone may be concurrently
2565                          * dirtying pages, and we might have synced a lot of
2566                          * newly appeared dirty pages, but have not synced all
2567                          * of the old dirty pages.
2568                          */
2569                         if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2570                                 goto out;
2571
2572                         /* If we can't merge this page, we are done. */
2573                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2574                                 goto out;
2575
2576                         lock_page(page);
2577                         /*
2578                          * If the page is no longer dirty, or its mapping no
2579                          * longer corresponds to inode we are writing (which
2580                          * means it has been truncated or invalidated), or the
2581                          * page is already under writeback and we are not doing
2582                          * a data integrity writeback, skip the page
2583                          */
2584                         if (!PageDirty(page) ||
2585                             (PageWriteback(page) &&
2586                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2587                             unlikely(page->mapping != mapping)) {
2588                                 unlock_page(page);
2589                                 continue;
2590                         }
2591
2592                         wait_on_page_writeback(page);
2593                         BUG_ON(PageWriteback(page));
2594
2595                         if (mpd->map.m_len == 0)
2596                                 mpd->first_page = page->index;
2597                         mpd->next_page = page->index + 1;
2598                         /* Add all dirty buffers to mpd */
2599                         lblk = ((ext4_lblk_t)page->index) <<
2600                                 (PAGE_SHIFT - blkbits);
2601                         head = page_buffers(page);
2602                         err = mpage_process_page_bufs(mpd, head, head, lblk);
2603                         if (err <= 0)
2604                                 goto out;
2605                         err = 0;
2606                         left--;
2607                 }
2608                 pagevec_release(&pvec);
2609                 cond_resched();
2610         }
2611         return 0;
2612 out:
2613         pagevec_release(&pvec);
2614         return err;
2615 }
2616
2617 static int ext4_writepages(struct address_space *mapping,
2618                            struct writeback_control *wbc)
2619 {
2620         pgoff_t writeback_index = 0;
2621         long nr_to_write = wbc->nr_to_write;
2622         int range_whole = 0;
2623         int cycled = 1;
2624         handle_t *handle = NULL;
2625         struct mpage_da_data mpd;
2626         struct inode *inode = mapping->host;
2627         int needed_blocks, rsv_blocks = 0, ret = 0;
2628         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2629         bool done;
2630         struct blk_plug plug;
2631         bool give_up_on_write = false;
2632
2633         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2634                 return -EIO;
2635
2636         percpu_down_read(&sbi->s_writepages_rwsem);
2637         trace_ext4_writepages(inode, wbc);
2638
2639         /*
2640          * No pages to write? This is mainly a kludge to avoid starting
2641          * a transaction for special inodes like journal inode on last iput()
2642          * because that could violate lock ordering on umount
2643          */
2644         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2645                 goto out_writepages;
2646
2647         if (ext4_should_journal_data(inode)) {
2648                 ret = generic_writepages(mapping, wbc);
2649                 goto out_writepages;
2650         }
2651
2652         /*
2653          * If the filesystem has aborted, it is read-only, so return
2654          * right away instead of dumping stack traces later on that
2655          * will obscure the real source of the problem.  We test
2656          * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2657          * the latter could be true if the filesystem is mounted
2658          * read-only, and in that case, ext4_writepages should
2659          * *never* be called, so if that ever happens, we would want
2660          * the stack trace.
2661          */
2662         if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2663                      sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2664                 ret = -EROFS;
2665                 goto out_writepages;
2666         }
2667
2668         /*
2669          * If we have inline data and arrive here, it means that
2670          * we will soon create the block for the 1st page, so
2671          * we'd better clear the inline data here.
2672          */
2673         if (ext4_has_inline_data(inode)) {
2674                 /* Just inode will be modified... */
2675                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2676                 if (IS_ERR(handle)) {
2677                         ret = PTR_ERR(handle);
2678                         goto out_writepages;
2679                 }
2680                 BUG_ON(ext4_test_inode_state(inode,
2681                                 EXT4_STATE_MAY_INLINE_DATA));
2682                 ext4_destroy_inline_data(handle, inode);
2683                 ext4_journal_stop(handle);
2684         }
2685
2686         if (ext4_should_dioread_nolock(inode)) {
2687                 /*
2688                  * We may need to convert up to one extent per block in
2689                  * the page and we may dirty the inode.
2690                  */
2691                 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2692                                                 PAGE_SIZE >> inode->i_blkbits);
2693         }
2694
2695         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2696                 range_whole = 1;
2697
2698         if (wbc->range_cyclic) {
2699                 writeback_index = mapping->writeback_index;
2700                 if (writeback_index)
2701                         cycled = 0;
2702                 mpd.first_page = writeback_index;
2703                 mpd.last_page = -1;
2704         } else {
2705                 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2706                 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2707         }
2708
2709         mpd.inode = inode;
2710         mpd.wbc = wbc;
2711         ext4_io_submit_init(&mpd.io_submit, wbc);
2712 retry:
2713         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2714                 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2715         done = false;
2716         blk_start_plug(&plug);
2717
2718         /*
2719          * First writeback pages that don't need mapping - we can avoid
2720          * starting a transaction unnecessarily and also avoid being blocked
2721          * in the block layer on device congestion while having transaction
2722          * started.
2723          */
2724         mpd.do_map = 0;
2725         mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2726         if (!mpd.io_submit.io_end) {
2727                 ret = -ENOMEM;
2728                 goto unplug;
2729         }
2730         ret = mpage_prepare_extent_to_map(&mpd);
2731         /* Unlock pages we didn't use */
2732         mpage_release_unused_pages(&mpd, false);
2733         /* Submit prepared bio */
2734         ext4_io_submit(&mpd.io_submit);
2735         ext4_put_io_end_defer(mpd.io_submit.io_end);
2736         mpd.io_submit.io_end = NULL;
2737         if (ret < 0)
2738                 goto unplug;
2739
2740         while (!done && mpd.first_page <= mpd.last_page) {
2741                 /* For each extent of pages we use new io_end */
2742                 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2743                 if (!mpd.io_submit.io_end) {
2744                         ret = -ENOMEM;
2745                         break;
2746                 }
2747
2748                 /*
2749                  * We have two constraints: We find one extent to map and we
2750                  * must always write out whole page (makes a difference when
2751                  * blocksize < pagesize) so that we don't block on IO when we
2752                  * try to write out the rest of the page. Journalled mode is
2753                  * not supported by delalloc.
2754                  */
2755                 BUG_ON(ext4_should_journal_data(inode));
2756                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2757
2758                 /* start a new transaction */
2759                 handle = ext4_journal_start_with_reserve(inode,
2760                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2761                 if (IS_ERR(handle)) {
2762                         ret = PTR_ERR(handle);
2763                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2764                                "%ld pages, ino %lu; err %d", __func__,
2765                                 wbc->nr_to_write, inode->i_ino, ret);
2766                         /* Release allocated io_end */
2767                         ext4_put_io_end(mpd.io_submit.io_end);
2768                         mpd.io_submit.io_end = NULL;
2769                         break;
2770                 }
2771                 mpd.do_map = 1;
2772
2773                 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2774                 ret = mpage_prepare_extent_to_map(&mpd);
2775                 if (!ret) {
2776                         if (mpd.map.m_len)
2777                                 ret = mpage_map_and_submit_extent(handle, &mpd,
2778                                         &give_up_on_write);
2779                         else {
2780                                 /*
2781                                  * We scanned the whole range (or exhausted
2782                                  * nr_to_write), submitted what was mapped and
2783                                  * didn't find anything needing mapping. We are
2784                                  * done.
2785                                  */
2786                                 done = true;
2787                         }
2788                 }
2789                 /*
2790                  * Caution: If the handle is synchronous,
2791                  * ext4_journal_stop() can wait for transaction commit
2792                  * to finish which may depend on writeback of pages to
2793                  * complete or on page lock to be released.  In that
2794                  * case, we have to wait until after after we have
2795                  * submitted all the IO, released page locks we hold,
2796                  * and dropped io_end reference (for extent conversion
2797                  * to be able to complete) before stopping the handle.
2798                  */
2799                 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2800                         ext4_journal_stop(handle);
2801                         handle = NULL;
2802                         mpd.do_map = 0;
2803                 }
2804                 /* Unlock pages we didn't use */
2805                 mpage_release_unused_pages(&mpd, give_up_on_write);
2806                 /* Submit prepared bio */
2807                 ext4_io_submit(&mpd.io_submit);
2808
2809                 /*
2810                  * Drop our io_end reference we got from init. We have
2811                  * to be careful and use deferred io_end finishing if
2812                  * we are still holding the transaction as we can
2813                  * release the last reference to io_end which may end
2814                  * up doing unwritten extent conversion.
2815                  */
2816                 if (handle) {
2817                         ext4_put_io_end_defer(mpd.io_submit.io_end);
2818                         ext4_journal_stop(handle);
2819                 } else
2820                         ext4_put_io_end(mpd.io_submit.io_end);
2821                 mpd.io_submit.io_end = NULL;
2822
2823                 if (ret == -ENOSPC && sbi->s_journal) {
2824                         /*
2825                          * Commit the transaction which would
2826                          * free blocks released in the transaction
2827                          * and try again
2828                          */
2829                         jbd2_journal_force_commit_nested(sbi->s_journal);
2830                         ret = 0;
2831                         continue;
2832                 }
2833                 /* Fatal error - ENOMEM, EIO... */
2834                 if (ret)
2835                         break;
2836         }
2837 unplug:
2838         blk_finish_plug(&plug);
2839         if (!ret && !cycled && wbc->nr_to_write > 0) {
2840                 cycled = 1;
2841                 mpd.last_page = writeback_index - 1;
2842                 mpd.first_page = 0;
2843                 goto retry;
2844         }
2845
2846         /* Update index */
2847         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2848                 /*
2849                  * Set the writeback_index so that range_cyclic
2850                  * mode will write it back later
2851                  */
2852                 mapping->writeback_index = mpd.first_page;
2853
2854 out_writepages:
2855         trace_ext4_writepages_result(inode, wbc, ret,
2856                                      nr_to_write - wbc->nr_to_write);
2857         percpu_up_read(&sbi->s_writepages_rwsem);
2858         return ret;
2859 }
2860
2861 static int ext4_dax_writepages(struct address_space *mapping,
2862                                struct writeback_control *wbc)
2863 {
2864         int ret;
2865         long nr_to_write = wbc->nr_to_write;
2866         struct inode *inode = mapping->host;
2867         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2868
2869         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2870                 return -EIO;
2871
2872         percpu_down_read(&sbi->s_writepages_rwsem);
2873         trace_ext4_writepages(inode, wbc);
2874
2875         ret = dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc);
2876         trace_ext4_writepages_result(inode, wbc, ret,
2877                                      nr_to_write - wbc->nr_to_write);
2878         percpu_up_read(&sbi->s_writepages_rwsem);
2879         return ret;
2880 }
2881
2882 static int ext4_nonda_switch(struct super_block *sb)
2883 {
2884         s64 free_clusters, dirty_clusters;
2885         struct ext4_sb_info *sbi = EXT4_SB(sb);
2886
2887         /*
2888          * switch to non delalloc mode if we are running low
2889          * on free block. The free block accounting via percpu
2890          * counters can get slightly wrong with percpu_counter_batch getting
2891          * accumulated on each CPU without updating global counters
2892          * Delalloc need an accurate free block accounting. So switch
2893          * to non delalloc when we are near to error range.
2894          */
2895         free_clusters =
2896                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2897         dirty_clusters =
2898                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2899         /*
2900          * Start pushing delalloc when 1/2 of free blocks are dirty.
2901          */
2902         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2903                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2904
2905         if (2 * free_clusters < 3 * dirty_clusters ||
2906             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2907                 /*
2908                  * free block count is less than 150% of dirty blocks
2909                  * or free blocks is less than watermark
2910                  */
2911                 return 1;
2912         }
2913         return 0;
2914 }
2915
2916 /* We always reserve for an inode update; the superblock could be there too */
2917 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2918 {
2919         if (likely(ext4_has_feature_large_file(inode->i_sb)))
2920                 return 1;
2921
2922         if (pos + len <= 0x7fffffffULL)
2923                 return 1;
2924
2925         /* We might need to update the superblock to set LARGE_FILE */
2926         return 2;
2927 }
2928
2929 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2930                                loff_t pos, unsigned len, unsigned flags,
2931                                struct page **pagep, void **fsdata)
2932 {
2933         int ret, retries = 0;
2934         struct page *page;
2935         pgoff_t index;
2936         struct inode *inode = mapping->host;
2937         handle_t *handle;
2938
2939         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2940                 return -EIO;
2941
2942         index = pos >> PAGE_SHIFT;
2943
2944         if (ext4_nonda_switch(inode->i_sb) || S_ISLNK(inode->i_mode) ||
2945             ext4_verity_in_progress(inode)) {
2946                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2947                 return ext4_write_begin(file, mapping, pos,
2948                                         len, flags, pagep, fsdata);
2949         }
2950         *fsdata = (void *)0;
2951         trace_ext4_da_write_begin(inode, pos, len, flags);
2952
2953         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2954                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2955                                                       pos, len, flags,
2956                                                       pagep, fsdata);
2957                 if (ret < 0)
2958                         return ret;
2959                 if (ret == 1)
2960                         return 0;
2961         }
2962
2963         /*
2964          * grab_cache_page_write_begin() can take a long time if the
2965          * system is thrashing due to memory pressure, or if the page
2966          * is being written back.  So grab it first before we start
2967          * the transaction handle.  This also allows us to allocate
2968          * the page (if needed) without using GFP_NOFS.
2969          */
2970 retry_grab:
2971         page = grab_cache_page_write_begin(mapping, index, flags);
2972         if (!page)
2973                 return -ENOMEM;
2974         unlock_page(page);
2975
2976         /*
2977          * With delayed allocation, we don't log the i_disksize update
2978          * if there is delayed block allocation. But we still need
2979          * to journalling the i_disksize update if writes to the end
2980          * of file which has an already mapped buffer.
2981          */
2982 retry_journal:
2983         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2984                                 ext4_da_write_credits(inode, pos, len));
2985         if (IS_ERR(handle)) {
2986                 put_page(page);
2987                 return PTR_ERR(handle);
2988         }
2989
2990         lock_page(page);
2991         if (page->mapping != mapping) {
2992                 /* The page got truncated from under us */
2993                 unlock_page(page);
2994                 put_page(page);
2995                 ext4_journal_stop(handle);
2996                 goto retry_grab;
2997         }
2998         /* In case writeback began while the page was unlocked */
2999         wait_for_stable_page(page);
3000
3001 #ifdef CONFIG_FS_ENCRYPTION
3002         ret = ext4_block_write_begin(page, pos, len,
3003                                      ext4_da_get_block_prep);
3004 #else
3005         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3006 #endif
3007         if (ret < 0) {
3008                 unlock_page(page);
3009                 ext4_journal_stop(handle);
3010                 /*
3011                  * block_write_begin may have instantiated a few blocks
3012                  * outside i_size.  Trim these off again. Don't need
3013                  * i_size_read because we hold i_mutex.
3014                  */
3015                 if (pos + len > inode->i_size)
3016                         ext4_truncate_failed_write(inode);
3017
3018                 if (ret == -ENOSPC &&
3019                     ext4_should_retry_alloc(inode->i_sb, &retries))
3020                         goto retry_journal;
3021
3022                 put_page(page);
3023                 return ret;
3024         }
3025
3026         *pagep = page;
3027         return ret;
3028 }
3029
3030 /*
3031  * Check if we should update i_disksize
3032  * when write to the end of file but not require block allocation
3033  */
3034 static int ext4_da_should_update_i_disksize(struct page *page,
3035                                             unsigned long offset)
3036 {
3037         struct buffer_head *bh;
3038         struct inode *inode = page->mapping->host;
3039         unsigned int idx;
3040         int i;
3041
3042         bh = page_buffers(page);
3043         idx = offset >> inode->i_blkbits;
3044
3045         for (i = 0; i < idx; i++)
3046                 bh = bh->b_this_page;
3047
3048         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3049                 return 0;
3050         return 1;
3051 }
3052
3053 static int ext4_da_write_end(struct file *file,
3054                              struct address_space *mapping,
3055                              loff_t pos, unsigned len, unsigned copied,
3056                              struct page *page, void *fsdata)
3057 {
3058         struct inode *inode = mapping->host;
3059         int ret = 0, ret2;
3060         handle_t *handle = ext4_journal_current_handle();
3061         loff_t new_i_size;
3062         unsigned long start, end;
3063         int write_mode = (int)(unsigned long)fsdata;
3064
3065         if (write_mode == FALL_BACK_TO_NONDELALLOC)
3066                 return ext4_write_end(file, mapping, pos,
3067                                       len, copied, page, fsdata);
3068
3069         trace_ext4_da_write_end(inode, pos, len, copied);
3070         start = pos & (PAGE_SIZE - 1);
3071         end = start + copied - 1;
3072
3073         /*
3074          * generic_write_end() will run mark_inode_dirty() if i_size
3075          * changes.  So let's piggyback the i_disksize mark_inode_dirty
3076          * into that.
3077          */
3078         new_i_size = pos + copied;
3079         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3080                 if (ext4_has_inline_data(inode) ||
3081                     ext4_da_should_update_i_disksize(page, end)) {
3082                         ext4_update_i_disksize(inode, new_i_size);
3083                         /* We need to mark inode dirty even if
3084                          * new_i_size is less that inode->i_size
3085                          * bu greater than i_disksize.(hint delalloc)
3086                          */
3087                         ret = ext4_mark_inode_dirty(handle, inode);
3088                 }
3089         }
3090
3091         if (write_mode != CONVERT_INLINE_DATA &&
3092             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3093             ext4_has_inline_data(inode))
3094                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3095                                                      page);
3096         else
3097                 ret2 = generic_write_end(file, mapping, pos, len, copied,
3098                                                         page, fsdata);
3099
3100         copied = ret2;
3101         if (ret2 < 0)
3102                 ret = ret2;
3103         ret2 = ext4_journal_stop(handle);
3104         if (unlikely(ret2 && !ret))
3105                 ret = ret2;
3106
3107         return ret ? ret : copied;
3108 }
3109
3110 /*
3111  * Force all delayed allocation blocks to be allocated for a given inode.
3112  */
3113 int ext4_alloc_da_blocks(struct inode *inode)
3114 {
3115         trace_ext4_alloc_da_blocks(inode);
3116
3117         if (!EXT4_I(inode)->i_reserved_data_blocks)
3118                 return 0;
3119
3120         /*
3121          * We do something simple for now.  The filemap_flush() will
3122          * also start triggering a write of the data blocks, which is
3123          * not strictly speaking necessary (and for users of
3124          * laptop_mode, not even desirable).  However, to do otherwise
3125          * would require replicating code paths in:
3126          *
3127          * ext4_writepages() ->
3128          *    write_cache_pages() ---> (via passed in callback function)
3129          *        __mpage_da_writepage() -->
3130          *           mpage_add_bh_to_extent()
3131          *           mpage_da_map_blocks()
3132          *
3133          * The problem is that write_cache_pages(), located in
3134          * mm/page-writeback.c, marks pages clean in preparation for
3135          * doing I/O, which is not desirable if we're not planning on
3136          * doing I/O at all.
3137          *
3138          * We could call write_cache_pages(), and then redirty all of
3139          * the pages by calling redirty_page_for_writepage() but that
3140          * would be ugly in the extreme.  So instead we would need to
3141          * replicate parts of the code in the above functions,
3142          * simplifying them because we wouldn't actually intend to
3143          * write out the pages, but rather only collect contiguous
3144          * logical block extents, call the multi-block allocator, and
3145          * then update the buffer heads with the block allocations.
3146          *
3147          * For now, though, we'll cheat by calling filemap_flush(),
3148          * which will map the blocks, and start the I/O, but not
3149          * actually wait for the I/O to complete.
3150          */
3151         return filemap_flush(inode->i_mapping);
3152 }
3153
3154 /*
3155  * bmap() is special.  It gets used by applications such as lilo and by
3156  * the swapper to find the on-disk block of a specific piece of data.
3157  *
3158  * Naturally, this is dangerous if the block concerned is still in the
3159  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3160  * filesystem and enables swap, then they may get a nasty shock when the
3161  * data getting swapped to that swapfile suddenly gets overwritten by
3162  * the original zero's written out previously to the journal and
3163  * awaiting writeback in the kernel's buffer cache.
3164  *
3165  * So, if we see any bmap calls here on a modified, data-journaled file,
3166  * take extra steps to flush any blocks which might be in the cache.
3167  */
3168 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3169 {
3170         struct inode *inode = mapping->host;
3171         journal_t *journal;
3172         int err;
3173
3174         /*
3175          * We can get here for an inline file via the FIBMAP ioctl
3176          */
3177         if (ext4_has_inline_data(inode))
3178                 return 0;
3179
3180         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3181                         test_opt(inode->i_sb, DELALLOC)) {
3182                 /*
3183                  * With delalloc we want to sync the file
3184                  * so that we can make sure we allocate
3185                  * blocks for file
3186                  */
3187                 filemap_write_and_wait(mapping);
3188         }
3189
3190         if (EXT4_JOURNAL(inode) &&
3191             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3192                 /*
3193                  * This is a REALLY heavyweight approach, but the use of
3194                  * bmap on dirty files is expected to be extremely rare:
3195                  * only if we run lilo or swapon on a freshly made file
3196                  * do we expect this to happen.
3197                  *
3198                  * (bmap requires CAP_SYS_RAWIO so this does not
3199                  * represent an unprivileged user DOS attack --- we'd be
3200                  * in trouble if mortal users could trigger this path at
3201                  * will.)
3202                  *
3203                  * NB. EXT4_STATE_JDATA is not set on files other than
3204                  * regular files.  If somebody wants to bmap a directory
3205                  * or symlink and gets confused because the buffer
3206                  * hasn't yet been flushed to disk, they deserve
3207                  * everything they get.
3208                  */
3209
3210                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3211                 journal = EXT4_JOURNAL(inode);
3212                 jbd2_journal_lock_updates(journal);
3213                 err = jbd2_journal_flush(journal);
3214                 jbd2_journal_unlock_updates(journal);
3215
3216                 if (err)
3217                         return 0;
3218         }
3219
3220         return iomap_bmap(mapping, block, &ext4_iomap_ops);
3221 }
3222
3223 static int ext4_readpage(struct file *file, struct page *page)
3224 {
3225         int ret = -EAGAIN;
3226         struct inode *inode = page->mapping->host;
3227
3228         trace_ext4_readpage(page);
3229
3230         if (ext4_has_inline_data(inode))
3231                 ret = ext4_readpage_inline(inode, page);
3232
3233         if (ret == -EAGAIN)
3234                 return ext4_mpage_readpages(page->mapping, NULL, page, 1,
3235                                                 false);
3236
3237         return ret;
3238 }
3239
3240 static int
3241 ext4_readpages(struct file *file, struct address_space *mapping,
3242                 struct list_head *pages, unsigned nr_pages)
3243 {
3244         struct inode *inode = mapping->host;
3245
3246         /* If the file has inline data, no need to do readpages. */
3247         if (ext4_has_inline_data(inode))
3248                 return 0;
3249
3250         return ext4_mpage_readpages(mapping, pages, NULL, nr_pages, true);
3251 }
3252
3253 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3254                                 unsigned int length)
3255 {
3256         trace_ext4_invalidatepage(page, offset, length);
3257
3258         /* No journalling happens on data buffers when this function is used */
3259         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3260
3261         block_invalidatepage(page, offset, length);
3262 }
3263
3264 static int __ext4_journalled_invalidatepage(struct page *page,
3265                                             unsigned int offset,
3266                                             unsigned int length)
3267 {
3268         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3269
3270         trace_ext4_journalled_invalidatepage(page, offset, length);
3271
3272         /*
3273          * If it's a full truncate we just forget about the pending dirtying
3274          */
3275         if (offset == 0 && length == PAGE_SIZE)
3276                 ClearPageChecked(page);
3277
3278         return jbd2_journal_invalidatepage(journal, page, offset, length);
3279 }
3280
3281 /* Wrapper for aops... */
3282 static void ext4_journalled_invalidatepage(struct page *page,
3283                                            unsigned int offset,
3284                                            unsigned int length)
3285 {
3286         WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3287 }
3288
3289 static int ext4_releasepage(struct page *page, gfp_t wait)
3290 {
3291         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3292
3293         trace_ext4_releasepage(page);
3294
3295         /* Page has dirty journalled data -> cannot release */
3296         if (PageChecked(page))
3297                 return 0;
3298         if (journal)
3299                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3300         else
3301                 return try_to_free_buffers(page);
3302 }
3303
3304 static bool ext4_inode_datasync_dirty(struct inode *inode)
3305 {
3306         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3307
3308         if (journal)
3309                 return !jbd2_transaction_committed(journal,
3310                                         EXT4_I(inode)->i_datasync_tid);
3311         /* Any metadata buffers to write? */
3312         if (!list_empty(&inode->i_mapping->private_list))
3313                 return true;
3314         return inode->i_state & I_DIRTY_DATASYNC;
3315 }
3316
3317 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3318                            struct ext4_map_blocks *map, loff_t offset,
3319                            loff_t length)
3320 {
3321         u8 blkbits = inode->i_blkbits;
3322
3323         /*
3324          * Writes that span EOF might trigger an I/O size update on completion,
3325          * so consider them to be dirty for the purpose of O_DSYNC, even if
3326          * there is no other metadata changes being made or are pending.
3327          */
3328         iomap->flags = 0;
3329         if (ext4_inode_datasync_dirty(inode) ||
3330             offset + length > i_size_read(inode))
3331                 iomap->flags |= IOMAP_F_DIRTY;
3332
3333         if (map->m_flags & EXT4_MAP_NEW)
3334                 iomap->flags |= IOMAP_F_NEW;
3335
3336         iomap->bdev = inode->i_sb->s_bdev;
3337         iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3338         iomap->offset = (u64) map->m_lblk << blkbits;
3339         iomap->length = (u64) map->m_len << blkbits;
3340
3341         if ((map->m_flags & EXT4_MAP_MAPPED) &&
3342             !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3343                 iomap->flags |= IOMAP_F_MERGED;
3344
3345         /*
3346          * Flags passed to ext4_map_blocks() for direct I/O writes can result
3347          * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3348          * set. In order for any allocated unwritten extents to be converted
3349          * into written extents correctly within the ->end_io() handler, we
3350          * need to ensure that the iomap->type is set appropriately. Hence, the
3351          * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3352          * been set first.
3353          */
3354         if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3355                 iomap->type = IOMAP_UNWRITTEN;
3356                 iomap->addr = (u64) map->m_pblk << blkbits;
3357         } else if (map->m_flags & EXT4_MAP_MAPPED) {
3358                 iomap->type = IOMAP_MAPPED;
3359                 iomap->addr = (u64) map->m_pblk << blkbits;
3360         } else {
3361                 iomap->type = IOMAP_HOLE;
3362                 iomap->addr = IOMAP_NULL_ADDR;
3363         }
3364 }
3365
3366 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3367                             unsigned int flags)
3368 {
3369         handle_t *handle;
3370         u8 blkbits = inode->i_blkbits;
3371         int ret, dio_credits, m_flags = 0, retries = 0;
3372
3373         /*
3374          * Trim the mapping request to the maximum value that we can map at
3375          * once for direct I/O.
3376          */
3377         if (map->m_len > DIO_MAX_BLOCKS)
3378                 map->m_len = DIO_MAX_BLOCKS;
3379         dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3380
3381 retry:
3382         /*
3383          * Either we allocate blocks and then don't get an unwritten extent, so
3384          * in that case we have reserved enough credits. Or, the blocks are
3385          * already allocated and unwritten. In that case, the extent conversion
3386          * fits into the credits as well.
3387          */
3388         handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3389         if (IS_ERR(handle))
3390                 return PTR_ERR(handle);
3391
3392         /*
3393          * DAX and direct I/O are the only two operations that are currently
3394          * supported with IOMAP_WRITE.
3395          */
3396         WARN_ON(!IS_DAX(inode) && !(flags & IOMAP_DIRECT));
3397         if (IS_DAX(inode))
3398                 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3399         /*
3400          * We use i_size instead of i_disksize here because delalloc writeback
3401          * can complete at any point during the I/O and subsequently push the
3402          * i_disksize out to i_size. This could be beyond where direct I/O is
3403          * happening and thus expose allocated blocks to direct I/O reads.
3404          */
3405         else if ((map->m_lblk * (1 << blkbits)) >= i_size_read(inode))
3406                 m_flags = EXT4_GET_BLOCKS_CREATE;
3407         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3408                 m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3409
3410         ret = ext4_map_blocks(handle, inode, map, m_flags);
3411
3412         /*
3413          * We cannot fill holes in indirect tree based inodes as that could
3414          * expose stale data in the case of a crash. Use the magic error code
3415          * to fallback to buffered I/O.
3416          */
3417         if (!m_flags && !ret)
3418                 ret = -ENOTBLK;
3419
3420         ext4_journal_stop(handle);
3421         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3422                 goto retry;
3423
3424         return ret;
3425 }
3426
3427
3428 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3429                 unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3430 {
3431         int ret;
3432         struct ext4_map_blocks map;
3433         u8 blkbits = inode->i_blkbits;
3434
3435         if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3436                 return -EINVAL;
3437
3438         if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3439                 return -ERANGE;
3440
3441         /*
3442          * Calculate the first and last logical blocks respectively.
3443          */
3444         map.m_lblk = offset >> blkbits;
3445         map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3446                           EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3447
3448         if (flags & IOMAP_WRITE)
3449                 ret = ext4_iomap_alloc(inode, &map, flags);
3450         else
3451                 ret = ext4_map_blocks(NULL, inode, &map, 0);
3452
3453         if (ret < 0)
3454                 return ret;
3455
3456         ext4_set_iomap(inode, iomap, &map, offset, length);
3457
3458         return 0;
3459 }
3460
3461 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3462                 loff_t length, unsigned flags, struct iomap *iomap,
3463                 struct iomap *srcmap)
3464 {
3465         int ret;
3466
3467         /*
3468          * Even for writes we don't need to allocate blocks, so just pretend
3469          * we are reading to save overhead of starting a transaction.
3470          */
3471         flags &= ~IOMAP_WRITE;
3472         ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3473         WARN_ON_ONCE(iomap->type != IOMAP_MAPPED);
3474         return ret;
3475 }
3476
3477 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3478                           ssize_t written, unsigned flags, struct iomap *iomap)
3479 {
3480         /*
3481          * Check to see whether an error occurred while writing out the data to
3482          * the allocated blocks. If so, return the magic error code so that we
3483          * fallback to buffered I/O and attempt to complete the remainder of
3484          * the I/O. Any blocks that may have been allocated in preparation for
3485          * the direct I/O will be reused during buffered I/O.
3486          */
3487         if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3488                 return -ENOTBLK;
3489
3490         return 0;
3491 }
3492
3493 const struct iomap_ops ext4_iomap_ops = {
3494         .iomap_begin            = ext4_iomap_begin,
3495         .iomap_end              = ext4_iomap_end,
3496 };
3497
3498 const struct iomap_ops ext4_iomap_overwrite_ops = {
3499         .iomap_begin            = ext4_iomap_overwrite_begin,
3500         .iomap_end              = ext4_iomap_end,
3501 };
3502
3503 static bool ext4_iomap_is_delalloc(struct inode *inode,
3504                                    struct ext4_map_blocks *map)
3505 {
3506         struct extent_status es;
3507         ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1;
3508
3509         ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3510                                   map->m_lblk, end, &es);
3511
3512         if (!es.es_len || es.es_lblk > end)
3513                 return false;
3514
3515         if (es.es_lblk > map->m_lblk) {
3516                 map->m_len = es.es_lblk - map->m_lblk;
3517                 return false;
3518         }
3519
3520         offset = map->m_lblk - es.es_lblk;
3521         map->m_len = es.es_len - offset;
3522
3523         return true;
3524 }
3525
3526 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3527                                    loff_t length, unsigned int flags,
3528                                    struct iomap *iomap, struct iomap *srcmap)
3529 {
3530         int ret;
3531         bool delalloc = false;
3532         struct ext4_map_blocks map;
3533         u8 blkbits = inode->i_blkbits;
3534
3535         if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3536                 return -EINVAL;
3537
3538         if (ext4_has_inline_data(inode)) {
3539                 ret = ext4_inline_data_iomap(inode, iomap);
3540                 if (ret != -EAGAIN) {
3541                         if (ret == 0 && offset >= iomap->length)
3542                                 ret = -ENOENT;
3543                         return ret;
3544                 }
3545         }
3546
3547         /*
3548          * Calculate the first and last logical block respectively.
3549          */
3550         map.m_lblk = offset >> blkbits;
3551         map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3552                           EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3553
3554         /*
3555          * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3556          * So handle it here itself instead of querying ext4_map_blocks().
3557          * Since ext4_map_blocks() will warn about it and will return
3558          * -EIO error.
3559          */
3560         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3561                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3562
3563                 if (offset >= sbi->s_bitmap_maxbytes) {
3564                         map.m_flags = 0;
3565                         goto set_iomap;
3566                 }
3567         }
3568
3569         ret = ext4_map_blocks(NULL, inode, &map, 0);
3570         if (ret < 0)
3571                 return ret;
3572         if (ret == 0)
3573                 delalloc = ext4_iomap_is_delalloc(inode, &map);
3574
3575 set_iomap:
3576         ext4_set_iomap(inode, iomap, &map, offset, length);
3577         if (delalloc && iomap->type == IOMAP_HOLE)
3578                 iomap->type = IOMAP_DELALLOC;
3579
3580         return 0;
3581 }
3582
3583 const struct iomap_ops ext4_iomap_report_ops = {
3584         .iomap_begin = ext4_iomap_begin_report,
3585 };
3586
3587 /*
3588  * Pages can be marked dirty completely asynchronously from ext4's journalling
3589  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3590  * much here because ->set_page_dirty is called under VFS locks.  The page is
3591  * not necessarily locked.
3592  *
3593  * We cannot just dirty the page and leave attached buffers clean, because the
3594  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3595  * or jbddirty because all the journalling code will explode.
3596  *
3597  * So what we do is to mark the page "pending dirty" and next time writepage
3598  * is called, propagate that into the buffers appropriately.
3599  */
3600 static int ext4_journalled_set_page_dirty(struct page *page)
3601 {
3602         SetPageChecked(page);
3603         return __set_page_dirty_nobuffers(page);
3604 }
3605
3606 static int ext4_set_page_dirty(struct page *page)
3607 {
3608         WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3609         WARN_ON_ONCE(!page_has_buffers(page));
3610         return __set_page_dirty_buffers(page);
3611 }
3612
3613 static const struct address_space_operations ext4_aops = {
3614         .readpage               = ext4_readpage,
3615         .readpages              = ext4_readpages,
3616         .writepage              = ext4_writepage,
3617         .writepages             = ext4_writepages,
3618         .write_begin            = ext4_write_begin,
3619         .write_end              = ext4_write_end,
3620         .set_page_dirty         = ext4_set_page_dirty,
3621         .bmap                   = ext4_bmap,
3622         .invalidatepage         = ext4_invalidatepage,
3623         .releasepage            = ext4_releasepage,
3624         .direct_IO              = noop_direct_IO,
3625         .migratepage            = buffer_migrate_page,
3626         .is_partially_uptodate  = block_is_partially_uptodate,
3627         .error_remove_page      = generic_error_remove_page,
3628 };
3629
3630 static const struct address_space_operations ext4_journalled_aops = {
3631         .readpage               = ext4_readpage,
3632         .readpages              = ext4_readpages,
3633         .writepage              = ext4_writepage,
3634         .writepages             = ext4_writepages,
3635         .write_begin            = ext4_write_begin,
3636         .write_end              = ext4_journalled_write_end,
3637         .set_page_dirty         = ext4_journalled_set_page_dirty,
3638         .bmap                   = ext4_bmap,
3639         .invalidatepage         = ext4_journalled_invalidatepage,
3640         .releasepage            = ext4_releasepage,
3641         .direct_IO              = noop_direct_IO,
3642         .is_partially_uptodate  = block_is_partially_uptodate,
3643         .error_remove_page      = generic_error_remove_page,
3644 };
3645
3646 static const struct address_space_operations ext4_da_aops = {
3647         .readpage               = ext4_readpage,
3648         .readpages              = ext4_readpages,
3649         .writepage              = ext4_writepage,
3650         .writepages             = ext4_writepages,
3651         .write_begin            = ext4_da_write_begin,
3652         .write_end              = ext4_da_write_end,
3653         .set_page_dirty         = ext4_set_page_dirty,
3654         .bmap                   = ext4_bmap,
3655         .invalidatepage         = ext4_invalidatepage,
3656         .releasepage            = ext4_releasepage,
3657         .direct_IO              = noop_direct_IO,
3658         .migratepage            = buffer_migrate_page,
3659         .is_partially_uptodate  = block_is_partially_uptodate,
3660         .error_remove_page      = generic_error_remove_page,
3661 };
3662
3663 static const struct address_space_operations ext4_dax_aops = {
3664         .writepages             = ext4_dax_writepages,
3665         .direct_IO              = noop_direct_IO,
3666         .set_page_dirty         = noop_set_page_dirty,
3667         .bmap                   = ext4_bmap,
3668         .invalidatepage         = noop_invalidatepage,
3669 };
3670
3671 void ext4_set_aops(struct inode *inode)
3672 {
3673         switch (ext4_inode_journal_mode(inode)) {
3674         case EXT4_INODE_ORDERED_DATA_MODE:
3675         case EXT4_INODE_WRITEBACK_DATA_MODE:
3676                 break;
3677         case EXT4_INODE_JOURNAL_DATA_MODE:
3678                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3679                 return;
3680         default:
3681                 BUG();
3682         }
3683         if (IS_DAX(inode))
3684                 inode->i_mapping->a_ops = &ext4_dax_aops;
3685         else if (test_opt(inode->i_sb, DELALLOC))
3686                 inode->i_mapping->a_ops = &ext4_da_aops;
3687         else
3688                 inode->i_mapping->a_ops = &ext4_aops;
3689 }
3690
3691 static int __ext4_block_zero_page_range(handle_t *handle,
3692                 struct address_space *mapping, loff_t from, loff_t length)
3693 {
3694         ext4_fsblk_t index = from >> PAGE_SHIFT;
3695         unsigned offset = from & (PAGE_SIZE-1);
3696         unsigned blocksize, pos;
3697         ext4_lblk_t iblock;
3698         struct inode *inode = mapping->host;
3699         struct buffer_head *bh;
3700         struct page *page;
3701         int err = 0;
3702
3703         page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3704                                    mapping_gfp_constraint(mapping, ~__GFP_FS));
3705         if (!page)
3706                 return -ENOMEM;
3707
3708         blocksize = inode->i_sb->s_blocksize;
3709
3710         iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3711
3712         if (!page_has_buffers(page))
3713                 create_empty_buffers(page, blocksize, 0);
3714
3715         /* Find the buffer that contains "offset" */
3716         bh = page_buffers(page);
3717         pos = blocksize;
3718         while (offset >= pos) {
3719                 bh = bh->b_this_page;
3720                 iblock++;
3721                 pos += blocksize;
3722         }
3723         if (buffer_freed(bh)) {
3724                 BUFFER_TRACE(bh, "freed: skip");
3725                 goto unlock;
3726         }
3727         if (!buffer_mapped(bh)) {
3728                 BUFFER_TRACE(bh, "unmapped");
3729                 ext4_get_block(inode, iblock, bh, 0);
3730                 /* unmapped? It's a hole - nothing to do */
3731                 if (!buffer_mapped(bh)) {
3732                         BUFFER_TRACE(bh, "still unmapped");
3733                         goto unlock;
3734                 }
3735         }
3736
3737         /* Ok, it's mapped. Make sure it's up-to-date */
3738         if (PageUptodate(page))
3739                 set_buffer_uptodate(bh);
3740
3741         if (!buffer_uptodate(bh)) {
3742                 err = -EIO;
3743                 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
3744                 wait_on_buffer(bh);
3745                 /* Uhhuh. Read error. Complain and punt. */
3746                 if (!buffer_uptodate(bh))
3747                         goto unlock;
3748                 if (S_ISREG(inode->i_mode) && IS_ENCRYPTED(inode)) {
3749                         /* We expect the key to be set. */
3750                         BUG_ON(!fscrypt_has_encryption_key(inode));
3751                         err = fscrypt_decrypt_pagecache_blocks(page, blocksize,
3752                                                                bh_offset(bh));
3753                         if (err) {
3754                                 clear_buffer_uptodate(bh);
3755                                 goto unlock;
3756                         }
3757                 }
3758         }
3759         if (ext4_should_journal_data(inode)) {
3760                 BUFFER_TRACE(bh, "get write access");
3761                 err = ext4_journal_get_write_access(handle, bh);
3762                 if (err)
3763                         goto unlock;
3764         }
3765         zero_user(page, offset, length);
3766         BUFFER_TRACE(bh, "zeroed end of block");
3767
3768         if (ext4_should_journal_data(inode)) {
3769                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3770         } else {
3771                 err = 0;
3772                 mark_buffer_dirty(bh);
3773                 if (ext4_should_order_data(inode))
3774                         err = ext4_jbd2_inode_add_write(handle, inode, from,
3775                                         length);
3776         }
3777
3778 unlock:
3779         unlock_page(page);
3780         put_page(page);
3781         return err;
3782 }
3783
3784 /*
3785  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3786  * starting from file offset 'from'.  The range to be zero'd must
3787  * be contained with in one block.  If the specified range exceeds
3788  * the end of the block it will be shortened to end of the block
3789  * that cooresponds to 'from'
3790  */
3791 static int ext4_block_zero_page_range(handle_t *handle,
3792                 struct address_space *mapping, loff_t from, loff_t length)
3793 {
3794         struct inode *inode = mapping->host;
3795         unsigned offset = from & (PAGE_SIZE-1);
3796         unsigned blocksize = inode->i_sb->s_blocksize;
3797         unsigned max = blocksize - (offset & (blocksize - 1));
3798
3799         /*
3800          * correct length if it does not fall between
3801          * 'from' and the end of the block
3802          */
3803         if (length > max || length < 0)
3804                 length = max;
3805
3806         if (IS_DAX(inode)) {
3807                 return iomap_zero_range(inode, from, length, NULL,
3808                                         &ext4_iomap_ops);
3809         }
3810         return __ext4_block_zero_page_range(handle, mapping, from, length);
3811 }
3812
3813 /*
3814  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3815  * up to the end of the block which corresponds to `from'.
3816  * This required during truncate. We need to physically zero the tail end
3817  * of that block so it doesn't yield old data if the file is later grown.
3818  */
3819 static int ext4_block_truncate_page(handle_t *handle,
3820                 struct address_space *mapping, loff_t from)
3821 {
3822         unsigned offset = from & (PAGE_SIZE-1);
3823         unsigned length;
3824         unsigned blocksize;
3825         struct inode *inode = mapping->host;
3826
3827         /* If we are processing an encrypted inode during orphan list handling */
3828         if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3829                 return 0;
3830
3831         blocksize = inode->i_sb->s_blocksize;
3832         length = blocksize - (offset & (blocksize - 1));
3833
3834         return ext4_block_zero_page_range(handle, mapping, from, length);
3835 }
3836
3837 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3838                              loff_t lstart, loff_t length)
3839 {
3840         struct super_block *sb = inode->i_sb;
3841         struct address_space *mapping = inode->i_mapping;
3842         unsigned partial_start, partial_end;
3843         ext4_fsblk_t start, end;
3844         loff_t byte_end = (lstart + length - 1);
3845         int err = 0;
3846
3847         partial_start = lstart & (sb->s_blocksize - 1);
3848         partial_end = byte_end & (sb->s_blocksize - 1);
3849
3850         start = lstart >> sb->s_blocksize_bits;
3851         end = byte_end >> sb->s_blocksize_bits;
3852
3853         /* Handle partial zero within the single block */
3854         if (start == end &&
3855             (partial_start || (partial_end != sb->s_blocksize - 1))) {
3856                 err = ext4_block_zero_page_range(handle, mapping,
3857                                                  lstart, length);
3858                 return err;
3859         }
3860         /* Handle partial zero out on the start of the range */
3861         if (partial_start) {
3862                 err = ext4_block_zero_page_range(handle, mapping,
3863                                                  lstart, sb->s_blocksize);
3864                 if (err)
3865                         return err;
3866         }
3867         /* Handle partial zero out on the end of the range */
3868         if (partial_end != sb->s_blocksize - 1)
3869                 err = ext4_block_zero_page_range(handle, mapping,
3870                                                  byte_end - partial_end,
3871                                                  partial_end + 1);
3872         return err;
3873 }
3874
3875 int ext4_can_truncate(struct inode *inode)
3876 {
3877         if (S_ISREG(inode->i_mode))
3878                 return 1;
3879         if (S_ISDIR(inode->i_mode))
3880                 return 1;
3881         if (S_ISLNK(inode->i_mode))
3882                 return !ext4_inode_is_fast_symlink(inode);
3883         return 0;
3884 }
3885
3886 /*
3887  * We have to make sure i_disksize gets properly updated before we truncate
3888  * page cache due to hole punching or zero range. Otherwise i_disksize update
3889  * can get lost as it may have been postponed to submission of writeback but
3890  * that will never happen after we truncate page cache.
3891  */
3892 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3893                                       loff_t len)
3894 {
3895         handle_t *handle;
3896         int ret;
3897
3898         loff_t size = i_size_read(inode);
3899
3900         WARN_ON(!inode_is_locked(inode));
3901         if (offset > size || offset + len < size)
3902                 return 0;
3903
3904         if (EXT4_I(inode)->i_disksize >= size)
3905                 return 0;
3906
3907         handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3908         if (IS_ERR(handle))
3909                 return PTR_ERR(handle);
3910         ext4_update_i_disksize(inode, size);
3911         ret = ext4_mark_inode_dirty(handle, inode);
3912         ext4_journal_stop(handle);
3913
3914         return ret;
3915 }
3916
3917 static void ext4_wait_dax_page(struct ext4_inode_info *ei)
3918 {
3919         up_write(&ei->i_mmap_sem);
3920         schedule();
3921         down_write(&ei->i_mmap_sem);
3922 }
3923
3924 int ext4_break_layouts(struct inode *inode)
3925 {
3926         struct ext4_inode_info *ei = EXT4_I(inode);
3927         struct page *page;
3928         int error;
3929
3930         if (WARN_ON_ONCE(!rwsem_is_locked(&ei->i_mmap_sem)))
3931                 return -EINVAL;
3932
3933         do {
3934                 page = dax_layout_busy_page(inode->i_mapping);
3935                 if (!page)
3936                         return 0;
3937
3938                 error = ___wait_var_event(&page->_refcount,
3939                                 atomic_read(&page->_refcount) == 1,
3940                                 TASK_INTERRUPTIBLE, 0, 0,
3941                                 ext4_wait_dax_page(ei));
3942         } while (error == 0);
3943
3944         return error;
3945 }
3946
3947 /*
3948  * ext4_punch_hole: punches a hole in a file by releasing the blocks
3949  * associated with the given offset and length
3950  *
3951  * @inode:  File inode
3952  * @offset: The offset where the hole will begin
3953  * @len:    The length of the hole
3954  *
3955  * Returns: 0 on success or negative on failure
3956  */
3957
3958 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3959 {
3960         struct super_block *sb = inode->i_sb;
3961         ext4_lblk_t first_block, stop_block;
3962         struct address_space *mapping = inode->i_mapping;
3963         loff_t first_block_offset, last_block_offset;
3964         handle_t *handle;
3965         unsigned int credits;
3966         int ret = 0, ret2 = 0;
3967
3968         trace_ext4_punch_hole(inode, offset, length, 0);
3969
3970         ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
3971         if (ext4_has_inline_data(inode)) {
3972                 down_write(&EXT4_I(inode)->i_mmap_sem);
3973                 ret = ext4_convert_inline_data(inode);
3974                 up_write(&EXT4_I(inode)->i_mmap_sem);
3975                 if (ret)
3976                         return ret;
3977         }
3978
3979         /*
3980          * Write out all dirty pages to avoid race conditions
3981          * Then release them.
3982          */
3983         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3984                 ret = filemap_write_and_wait_range(mapping, offset,
3985                                                    offset + length - 1);
3986                 if (ret)
3987                         return ret;
3988         }
3989
3990         inode_lock(inode);
3991
3992         /* No need to punch hole beyond i_size */
3993         if (offset >= inode->i_size)
3994                 goto out_mutex;
3995
3996         /*
3997          * If the hole extends beyond i_size, set the hole
3998          * to end after the page that contains i_size
3999          */
4000         if (offset + length > inode->i_size) {
4001                 length = inode->i_size +
4002                    PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4003                    offset;
4004         }
4005
4006         if (offset & (sb->s_blocksize - 1) ||
4007             (offset + length) & (sb->s_blocksize - 1)) {
4008                 /*
4009                  * Attach jinode to inode for jbd2 if we do any zeroing of
4010                  * partial block
4011                  */
4012                 ret = ext4_inode_attach_jinode(inode);
4013                 if (ret < 0)
4014                         goto out_mutex;
4015
4016         }
4017
4018         /* Wait all existing dio workers, newcomers will block on i_mutex */
4019         inode_dio_wait(inode);
4020
4021         /*
4022          * Prevent page faults from reinstantiating pages we have released from
4023          * page cache.
4024          */
4025         down_write(&EXT4_I(inode)->i_mmap_sem);
4026
4027         ret = ext4_break_layouts(inode);
4028         if (ret)
4029                 goto out_dio;
4030
4031         first_block_offset = round_up(offset, sb->s_blocksize);
4032         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4033
4034         /* Now release the pages and zero block aligned part of pages*/
4035         if (last_block_offset > first_block_offset) {
4036                 ret = ext4_update_disksize_before_punch(inode, offset, length);
4037                 if (ret)
4038                         goto out_dio;
4039                 truncate_pagecache_range(inode, first_block_offset,
4040                                          last_block_offset);
4041         }
4042
4043         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4044                 credits = ext4_writepage_trans_blocks(inode);
4045         else
4046                 credits = ext4_blocks_for_truncate(inode);
4047         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4048         if (IS_ERR(handle)) {
4049                 ret = PTR_ERR(handle);
4050                 ext4_std_error(sb, ret);
4051                 goto out_dio;
4052         }
4053
4054         ret = ext4_zero_partial_blocks(handle, inode, offset,
4055                                        length);
4056         if (ret)
4057                 goto out_stop;
4058
4059         first_block = (offset + sb->s_blocksize - 1) >>
4060                 EXT4_BLOCK_SIZE_BITS(sb);
4061         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4062
4063         /* If there are blocks to remove, do it */
4064         if (stop_block > first_block) {
4065
4066                 down_write(&EXT4_I(inode)->i_data_sem);
4067                 ext4_discard_preallocations(inode);
4068
4069                 ret = ext4_es_remove_extent(inode, first_block,
4070                                             stop_block - first_block);
4071                 if (ret) {
4072                         up_write(&EXT4_I(inode)->i_data_sem);
4073                         goto out_stop;
4074                 }
4075
4076                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4077                         ret = ext4_ext_remove_space(inode, first_block,
4078                                                     stop_block - 1);
4079                 else
4080                         ret = ext4_ind_remove_space(handle, inode, first_block,
4081                                                     stop_block);
4082
4083                 up_write(&EXT4_I(inode)->i_data_sem);
4084         }
4085         if (IS_SYNC(inode))
4086                 ext4_handle_sync(handle);
4087
4088         inode->i_mtime = inode->i_ctime = current_time(inode);
4089         ret2 = ext4_mark_inode_dirty(handle, inode);
4090         if (unlikely(ret2))
4091                 ret = ret2;
4092         if (ret >= 0)
4093                 ext4_update_inode_fsync_trans(handle, inode, 1);
4094 out_stop:
4095         ext4_journal_stop(handle);
4096 out_dio:
4097         up_write(&EXT4_I(inode)->i_mmap_sem);
4098 out_mutex:
4099         inode_unlock(inode);
4100         return ret;
4101 }
4102
4103 int ext4_inode_attach_jinode(struct inode *inode)
4104 {
4105         struct ext4_inode_info *ei = EXT4_I(inode);
4106         struct jbd2_inode *jinode;
4107
4108         if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4109                 return 0;
4110
4111         jinode = jbd2_alloc_inode(GFP_KERNEL);
4112         spin_lock(&inode->i_lock);
4113         if (!ei->jinode) {
4114                 if (!jinode) {
4115                         spin_unlock(&inode->i_lock);
4116                         return -ENOMEM;
4117                 }
4118                 ei->jinode = jinode;
4119                 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4120                 jinode = NULL;
4121         }
4122         spin_unlock(&inode->i_lock);
4123         if (unlikely(jinode != NULL))
4124                 jbd2_free_inode(jinode);
4125         return 0;
4126 }
4127
4128 /*
4129  * ext4_truncate()
4130  *
4131  * We block out ext4_get_block() block instantiations across the entire
4132  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4133  * simultaneously on behalf of the same inode.
4134  *
4135  * As we work through the truncate and commit bits of it to the journal there
4136  * is one core, guiding principle: the file's tree must always be consistent on
4137  * disk.  We must be able to restart the truncate after a crash.
4138  *
4139  * The file's tree may be transiently inconsistent in memory (although it
4140  * probably isn't), but whenever we close off and commit a journal transaction,
4141  * the contents of (the filesystem + the journal) must be consistent and
4142  * restartable.  It's pretty simple, really: bottom up, right to left (although
4143  * left-to-right works OK too).
4144  *
4145  * Note that at recovery time, journal replay occurs *before* the restart of
4146  * truncate against the orphan inode list.
4147  *
4148  * The committed inode has the new, desired i_size (which is the same as
4149  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4150  * that this inode's truncate did not complete and it will again call
4151  * ext4_truncate() to have another go.  So there will be instantiated blocks
4152  * to the right of the truncation point in a crashed ext4 filesystem.  But
4153  * that's fine - as long as they are linked from the inode, the post-crash
4154  * ext4_truncate() run will find them and release them.
4155  */
4156 int ext4_truncate(struct inode *inode)
4157 {
4158         struct ext4_inode_info *ei = EXT4_I(inode);
4159         unsigned int credits;
4160         int err = 0, err2;
4161         handle_t *handle;
4162         struct address_space *mapping = inode->i_mapping;
4163
4164         /*
4165          * There is a possibility that we're either freeing the inode
4166          * or it's a completely new inode. In those cases we might not
4167          * have i_mutex locked because it's not necessary.
4168          */
4169         if (!(inode->i_state & (I_NEW|I_FREEING)))
4170                 WARN_ON(!inode_is_locked(inode));
4171         trace_ext4_truncate_enter(inode);
4172
4173         if (!ext4_can_truncate(inode))
4174                 return 0;
4175
4176         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4177                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4178
4179         if (ext4_has_inline_data(inode)) {
4180                 int has_inline = 1;
4181
4182                 err = ext4_inline_data_truncate(inode, &has_inline);
4183                 if (err)
4184                         return err;
4185                 if (has_inline)
4186                         return 0;
4187         }
4188
4189         /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4190         if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4191                 if (ext4_inode_attach_jinode(inode) < 0)
4192                         return 0;
4193         }
4194
4195         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4196                 credits = ext4_writepage_trans_blocks(inode);
4197         else
4198                 credits = ext4_blocks_for_truncate(inode);
4199
4200         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4201         if (IS_ERR(handle))
4202                 return PTR_ERR(handle);
4203
4204         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4205                 ext4_block_truncate_page(handle, mapping, inode->i_size);
4206
4207         /*
4208          * We add the inode to the orphan list, so that if this
4209          * truncate spans multiple transactions, and we crash, we will
4210          * resume the truncate when the filesystem recovers.  It also
4211          * marks the inode dirty, to catch the new size.
4212          *
4213          * Implication: the file must always be in a sane, consistent
4214          * truncatable state while each transaction commits.
4215          */
4216         err = ext4_orphan_add(handle, inode);
4217         if (err)
4218                 goto out_stop;
4219
4220         down_write(&EXT4_I(inode)->i_data_sem);
4221
4222         ext4_discard_preallocations(inode);
4223
4224         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4225                 err = ext4_ext_truncate(handle, inode);
4226         else
4227                 ext4_ind_truncate(handle, inode);
4228
4229         up_write(&ei->i_data_sem);
4230         if (err)
4231                 goto out_stop;
4232
4233         if (IS_SYNC(inode))
4234                 ext4_handle_sync(handle);
4235
4236 out_stop:
4237         /*
4238          * If this was a simple ftruncate() and the file will remain alive,
4239          * then we need to clear up the orphan record which we created above.
4240          * However, if this was a real unlink then we were called by
4241          * ext4_evict_inode(), and we allow that function to clean up the
4242          * orphan info for us.
4243          */
4244         if (inode->i_nlink)
4245                 ext4_orphan_del(handle, inode);
4246
4247         inode->i_mtime = inode->i_ctime = current_time(inode);
4248         err2 = ext4_mark_inode_dirty(handle, inode);
4249         if (unlikely(err2 && !err))
4250                 err = err2;
4251         ext4_journal_stop(handle);
4252
4253         trace_ext4_truncate_exit(inode);
4254         return err;
4255 }
4256
4257 /*
4258  * ext4_get_inode_loc returns with an extra refcount against the inode's
4259  * underlying buffer_head on success. If 'in_mem' is true, we have all
4260  * data in memory that is needed to recreate the on-disk version of this
4261  * inode.
4262  */
4263 static int __ext4_get_inode_loc(struct inode *inode,
4264                                 struct ext4_iloc *iloc, int in_mem)
4265 {
4266         struct ext4_group_desc  *gdp;
4267         struct buffer_head      *bh;
4268         struct super_block      *sb = inode->i_sb;
4269         ext4_fsblk_t            block;
4270         struct blk_plug         plug;
4271         int                     inodes_per_block, inode_offset;
4272
4273         iloc->bh = NULL;
4274         if (inode->i_ino < EXT4_ROOT_INO ||
4275             inode->i_ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4276                 return -EFSCORRUPTED;
4277
4278         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4279         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4280         if (!gdp)
4281                 return -EIO;
4282
4283         /*
4284          * Figure out the offset within the block group inode table
4285          */
4286         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4287         inode_offset = ((inode->i_ino - 1) %
4288                         EXT4_INODES_PER_GROUP(sb));
4289         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4290         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4291
4292         bh = sb_getblk(sb, block);
4293         if (unlikely(!bh))
4294                 return -ENOMEM;
4295         if (ext4_simulate_fail(sb, EXT4_SIM_INODE_EIO))
4296                 goto simulate_eio;
4297         if (!buffer_uptodate(bh)) {
4298                 lock_buffer(bh);
4299
4300                 /*
4301                  * If the buffer has the write error flag, we have failed
4302                  * to write out another inode in the same block.  In this
4303                  * case, we don't have to read the block because we may
4304                  * read the old inode data successfully.
4305                  */
4306                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4307                         set_buffer_uptodate(bh);
4308
4309                 if (buffer_uptodate(bh)) {
4310                         /* someone brought it uptodate while we waited */
4311                         unlock_buffer(bh);
4312                         goto has_buffer;
4313                 }
4314
4315                 /*
4316                  * If we have all information of the inode in memory and this
4317                  * is the only valid inode in the block, we need not read the
4318                  * block.
4319                  */
4320                 if (in_mem) {
4321                         struct buffer_head *bitmap_bh;
4322                         int i, start;
4323
4324                         start = inode_offset & ~(inodes_per_block - 1);
4325
4326                         /* Is the inode bitmap in cache? */
4327                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4328                         if (unlikely(!bitmap_bh))
4329                                 goto make_io;
4330
4331                         /*
4332                          * If the inode bitmap isn't in cache then the
4333                          * optimisation may end up performing two reads instead
4334                          * of one, so skip it.
4335                          */
4336                         if (!buffer_uptodate(bitmap_bh)) {
4337                                 brelse(bitmap_bh);
4338                                 goto make_io;
4339                         }
4340                         for (i = start; i < start + inodes_per_block; i++) {
4341                                 if (i == inode_offset)
4342                                         continue;
4343                                 if (ext4_test_bit(i, bitmap_bh->b_data))
4344                                         break;
4345                         }
4346                         brelse(bitmap_bh);
4347                         if (i == start + inodes_per_block) {
4348                                 /* all other inodes are free, so skip I/O */
4349                                 memset(bh->b_data, 0, bh->b_size);
4350                                 set_buffer_uptodate(bh);
4351                                 unlock_buffer(bh);
4352                                 goto has_buffer;
4353                         }
4354                 }
4355
4356 make_io:
4357                 /*
4358                  * If we need to do any I/O, try to pre-readahead extra
4359                  * blocks from the inode table.
4360                  */
4361                 blk_start_plug(&plug);
4362                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4363                         ext4_fsblk_t b, end, table;
4364                         unsigned num;
4365                         __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4366
4367                         table = ext4_inode_table(sb, gdp);
4368                         /* s_inode_readahead_blks is always a power of 2 */
4369                         b = block & ~((ext4_fsblk_t) ra_blks - 1);
4370                         if (table > b)
4371                                 b = table;
4372                         end = b + ra_blks;
4373                         num = EXT4_INODES_PER_GROUP(sb);
4374                         if (ext4_has_group_desc_csum(sb))
4375                                 num -= ext4_itable_unused_count(sb, gdp);
4376                         table += num / inodes_per_block;
4377                         if (end > table)
4378                                 end = table;
4379                         while (b <= end)
4380                                 sb_breadahead_unmovable(sb, b++);
4381                 }
4382
4383                 /*
4384                  * There are other valid inodes in the buffer, this inode
4385                  * has in-inode xattrs, or we don't have this inode in memory.
4386                  * Read the block from disk.
4387                  */
4388                 trace_ext4_load_inode(inode);
4389                 get_bh(bh);
4390                 bh->b_end_io = end_buffer_read_sync;
4391                 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4392                 blk_finish_plug(&plug);
4393                 wait_on_buffer(bh);
4394                 if (!buffer_uptodate(bh)) {
4395                 simulate_eio:
4396                         ext4_error_inode_block(inode, block, EIO,
4397                                                "unable to read itable block");
4398                         brelse(bh);
4399                         return -EIO;
4400                 }
4401         }
4402 has_buffer:
4403         iloc->bh = bh;
4404         return 0;
4405 }
4406
4407 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4408 {
4409         /* We have all inode data except xattrs in memory here. */
4410         return __ext4_get_inode_loc(inode, iloc,
4411                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4412 }
4413
4414 static bool ext4_should_use_dax(struct inode *inode)
4415 {
4416         if (!test_opt(inode->i_sb, DAX))
4417                 return false;
4418         if (!S_ISREG(inode->i_mode))
4419                 return false;
4420         if (ext4_should_journal_data(inode))
4421                 return false;
4422         if (ext4_has_inline_data(inode))
4423                 return false;
4424         if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4425                 return false;
4426         if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4427                 return false;
4428         return true;
4429 }
4430
4431 void ext4_set_inode_flags(struct inode *inode)
4432 {
4433         unsigned int flags = EXT4_I(inode)->i_flags;
4434         unsigned int new_fl = 0;
4435
4436         if (flags & EXT4_SYNC_FL)
4437                 new_fl |= S_SYNC;
4438         if (flags & EXT4_APPEND_FL)
4439                 new_fl |= S_APPEND;
4440         if (flags & EXT4_IMMUTABLE_FL)
4441                 new_fl |= S_IMMUTABLE;
4442         if (flags & EXT4_NOATIME_FL)
4443                 new_fl |= S_NOATIME;
4444         if (flags & EXT4_DIRSYNC_FL)
4445                 new_fl |= S_DIRSYNC;
4446         if (ext4_should_use_dax(inode))
4447                 new_fl |= S_DAX;
4448         if (flags & EXT4_ENCRYPT_FL)
4449                 new_fl |= S_ENCRYPTED;
4450         if (flags & EXT4_CASEFOLD_FL)
4451                 new_fl |= S_CASEFOLD;
4452         if (flags & EXT4_VERITY_FL)
4453                 new_fl |= S_VERITY;
4454         inode_set_flags(inode, new_fl,
4455                         S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4456                         S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4457 }
4458
4459 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4460                                   struct ext4_inode_info *ei)
4461 {
4462         blkcnt_t i_blocks ;
4463         struct inode *inode = &(ei->vfs_inode);
4464         struct super_block *sb = inode->i_sb;
4465
4466         if (ext4_has_feature_huge_file(sb)) {
4467                 /* we are using combined 48 bit field */
4468                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4469                                         le32_to_cpu(raw_inode->i_blocks_lo);
4470                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4471                         /* i_blocks represent file system block size */
4472                         return i_blocks  << (inode->i_blkbits - 9);
4473                 } else {
4474                         return i_blocks;
4475                 }
4476         } else {
4477                 return le32_to_cpu(raw_inode->i_blocks_lo);
4478         }
4479 }
4480
4481 static inline int ext4_iget_extra_inode(struct inode *inode,
4482                                          struct ext4_inode *raw_inode,
4483                                          struct ext4_inode_info *ei)
4484 {
4485         __le32 *magic = (void *)raw_inode +
4486                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4487
4488         if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4489             EXT4_INODE_SIZE(inode->i_sb) &&
4490             *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4491                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4492                 return ext4_find_inline_data_nolock(inode);
4493         } else
4494                 EXT4_I(inode)->i_inline_off = 0;
4495         return 0;
4496 }
4497
4498 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4499 {
4500         if (!ext4_has_feature_project(inode->i_sb))
4501                 return -EOPNOTSUPP;
4502         *projid = EXT4_I(inode)->i_projid;
4503         return 0;
4504 }
4505
4506 /*
4507  * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4508  * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4509  * set.
4510  */
4511 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4512 {
4513         if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4514                 inode_set_iversion_raw(inode, val);
4515         else
4516                 inode_set_iversion_queried(inode, val);
4517 }
4518 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4519 {
4520         if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4521                 return inode_peek_iversion_raw(inode);
4522         else
4523                 return inode_peek_iversion(inode);
4524 }
4525
4526 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4527                           ext4_iget_flags flags, const char *function,
4528                           unsigned int line)
4529 {
4530         struct ext4_iloc iloc;
4531         struct ext4_inode *raw_inode;
4532         struct ext4_inode_info *ei;
4533         struct inode *inode;
4534         journal_t *journal = EXT4_SB(sb)->s_journal;
4535         long ret;
4536         loff_t size;
4537         int block;
4538         uid_t i_uid;
4539         gid_t i_gid;
4540         projid_t i_projid;
4541
4542         if ((!(flags & EXT4_IGET_SPECIAL) &&
4543              (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)) ||
4544             (ino < EXT4_ROOT_INO) ||
4545             (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))) {
4546                 if (flags & EXT4_IGET_HANDLE)
4547                         return ERR_PTR(-ESTALE);
4548                 __ext4_error(sb, function, line, EFSCORRUPTED, 0,
4549                              "inode #%lu: comm %s: iget: illegal inode #",
4550                              ino, current->comm);
4551                 return ERR_PTR(-EFSCORRUPTED);
4552         }
4553
4554         inode = iget_locked(sb, ino);
4555         if (!inode)
4556                 return ERR_PTR(-ENOMEM);
4557         if (!(inode->i_state & I_NEW))
4558                 return inode;
4559
4560         ei = EXT4_I(inode);
4561         iloc.bh = NULL;
4562
4563         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4564         if (ret < 0)
4565                 goto bad_inode;
4566         raw_inode = ext4_raw_inode(&iloc);
4567
4568         if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4569                 ext4_error_inode(inode, function, line, 0,
4570                                  "iget: root inode unallocated");
4571                 ret = -EFSCORRUPTED;
4572                 goto bad_inode;
4573         }
4574
4575         if ((flags & EXT4_IGET_HANDLE) &&
4576             (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4577                 ret = -ESTALE;
4578                 goto bad_inode;
4579         }
4580
4581         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4582                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4583                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4584                         EXT4_INODE_SIZE(inode->i_sb) ||
4585                     (ei->i_extra_isize & 3)) {
4586                         ext4_error_inode(inode, function, line, 0,
4587                                          "iget: bad extra_isize %u "
4588                                          "(inode size %u)",
4589                                          ei->i_extra_isize,
4590                                          EXT4_INODE_SIZE(inode->i_sb));
4591                         ret = -EFSCORRUPTED;
4592                         goto bad_inode;
4593                 }
4594         } else
4595                 ei->i_extra_isize = 0;
4596
4597         /* Precompute checksum seed for inode metadata */
4598         if (ext4_has_metadata_csum(sb)) {
4599                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4600                 __u32 csum;
4601                 __le32 inum = cpu_to_le32(inode->i_ino);
4602                 __le32 gen = raw_inode->i_generation;
4603                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4604                                    sizeof(inum));
4605                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4606                                               sizeof(gen));
4607         }
4608
4609         if (!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4610             ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) {
4611                 ext4_error_inode_err(inode, function, line, 0, EFSBADCRC,
4612                                      "iget: checksum invalid");
4613                 ret = -EFSBADCRC;
4614                 goto bad_inode;
4615         }
4616
4617         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4618         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4619         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4620         if (ext4_has_feature_project(sb) &&
4621             EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4622             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4623                 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4624         else
4625                 i_projid = EXT4_DEF_PROJID;
4626
4627         if (!(test_opt(inode->i_sb, NO_UID32))) {
4628                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4629                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4630         }
4631         i_uid_write(inode, i_uid);
4632         i_gid_write(inode, i_gid);
4633         ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4634         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4635
4636         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4637         ei->i_inline_off = 0;
4638         ei->i_dir_start_lookup = 0;
4639         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4640         /* We now have enough fields to check if the inode was active or not.
4641          * This is needed because nfsd might try to access dead inodes
4642          * the test is that same one that e2fsck uses
4643          * NeilBrown 1999oct15
4644          */
4645         if (inode->i_nlink == 0) {
4646                 if ((inode->i_mode == 0 ||
4647                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4648                     ino != EXT4_BOOT_LOADER_INO) {
4649                         /* this inode is deleted */
4650                         ret = -ESTALE;
4651                         goto bad_inode;
4652                 }
4653                 /* The only unlinked inodes we let through here have
4654                  * valid i_mode and are being read by the orphan
4655                  * recovery code: that's fine, we're about to complete
4656                  * the process of deleting those.
4657                  * OR it is the EXT4_BOOT_LOADER_INO which is
4658                  * not initialized on a new filesystem. */
4659         }
4660         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4661         ext4_set_inode_flags(inode);
4662         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4663         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4664         if (ext4_has_feature_64bit(sb))
4665                 ei->i_file_acl |=
4666                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4667         inode->i_size = ext4_isize(sb, raw_inode);
4668         if ((size = i_size_read(inode)) < 0) {
4669                 ext4_error_inode(inode, function, line, 0,
4670                                  "iget: bad i_size value: %lld", size);
4671                 ret = -EFSCORRUPTED;
4672                 goto bad_inode;
4673         }
4674         /*
4675          * If dir_index is not enabled but there's dir with INDEX flag set,
4676          * we'd normally treat htree data as empty space. But with metadata
4677          * checksumming that corrupts checksums so forbid that.
4678          */
4679         if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4680             ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4681                 ext4_error_inode(inode, function, line, 0,
4682                          "iget: Dir with htree data on filesystem without dir_index feature.");
4683                 ret = -EFSCORRUPTED;
4684                 goto bad_inode;
4685         }
4686         ei->i_disksize = inode->i_size;
4687 #ifdef CONFIG_QUOTA
4688         ei->i_reserved_quota = 0;
4689 #endif
4690         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4691         ei->i_block_group = iloc.block_group;
4692         ei->i_last_alloc_group = ~0;
4693         /*
4694          * NOTE! The in-memory inode i_data array is in little-endian order
4695          * even on big-endian machines: we do NOT byteswap the block numbers!
4696          */
4697         for (block = 0; block < EXT4_N_BLOCKS; block++)
4698                 ei->i_data[block] = raw_inode->i_block[block];
4699         INIT_LIST_HEAD(&ei->i_orphan);
4700
4701         /*
4702          * Set transaction id's of transactions that have to be committed
4703          * to finish f[data]sync. We set them to currently running transaction
4704          * as we cannot be sure that the inode or some of its metadata isn't
4705          * part of the transaction - the inode could have been reclaimed and
4706          * now it is reread from disk.
4707          */
4708         if (journal) {
4709                 transaction_t *transaction;
4710                 tid_t tid;
4711
4712                 read_lock(&journal->j_state_lock);
4713                 if (journal->j_running_transaction)
4714                         transaction = journal->j_running_transaction;
4715                 else
4716                         transaction = journal->j_committing_transaction;
4717                 if (transaction)
4718                         tid = transaction->t_tid;
4719                 else
4720                         tid = journal->j_commit_sequence;
4721                 read_unlock(&journal->j_state_lock);
4722                 ei->i_sync_tid = tid;
4723                 ei->i_datasync_tid = tid;
4724         }
4725
4726         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4727                 if (ei->i_extra_isize == 0) {
4728                         /* The extra space is currently unused. Use it. */
4729                         BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4730                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4731                                             EXT4_GOOD_OLD_INODE_SIZE;
4732                 } else {
4733                         ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4734                         if (ret)
4735                                 goto bad_inode;
4736                 }
4737         }
4738
4739         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4740         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4741         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4742         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4743
4744         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4745                 u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4746
4747                 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4748                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4749                                 ivers |=
4750                     (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4751                 }
4752                 ext4_inode_set_iversion_queried(inode, ivers);
4753         }
4754
4755         ret = 0;
4756         if (ei->i_file_acl &&
4757             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4758                 ext4_error_inode(inode, function, line, 0,
4759                                  "iget: bad extended attribute block %llu",
4760                                  ei->i_file_acl);
4761                 ret = -EFSCORRUPTED;
4762                 goto bad_inode;
4763         } else if (!ext4_has_inline_data(inode)) {
4764                 /* validate the block references in the inode */
4765                 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4766                    (S_ISLNK(inode->i_mode) &&
4767                     !ext4_inode_is_fast_symlink(inode))) {
4768                         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4769                                 ret = ext4_ext_check_inode(inode);
4770                         else
4771                                 ret = ext4_ind_check_inode(inode);
4772                 }
4773         }
4774         if (ret)
4775                 goto bad_inode;
4776
4777         if (S_ISREG(inode->i_mode)) {
4778                 inode->i_op = &ext4_file_inode_operations;
4779                 inode->i_fop = &ext4_file_operations;
4780                 ext4_set_aops(inode);
4781         } else if (S_ISDIR(inode->i_mode)) {
4782                 inode->i_op = &ext4_dir_inode_operations;
4783                 inode->i_fop = &ext4_dir_operations;
4784         } else if (S_ISLNK(inode->i_mode)) {
4785                 /* VFS does not allow setting these so must be corruption */
4786                 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
4787                         ext4_error_inode(inode, function, line, 0,
4788                                          "iget: immutable or append flags "
4789                                          "not allowed on symlinks");
4790                         ret = -EFSCORRUPTED;
4791                         goto bad_inode;
4792                 }
4793                 if (IS_ENCRYPTED(inode)) {
4794                         inode->i_op = &ext4_encrypted_symlink_inode_operations;
4795                         ext4_set_aops(inode);
4796                 } else if (ext4_inode_is_fast_symlink(inode)) {
4797                         inode->i_link = (char *)ei->i_data;
4798                         inode->i_op = &ext4_fast_symlink_inode_operations;
4799                         nd_terminate_link(ei->i_data, inode->i_size,
4800                                 sizeof(ei->i_data) - 1);
4801                 } else {
4802                         inode->i_op = &ext4_symlink_inode_operations;
4803                         ext4_set_aops(inode);
4804                 }
4805                 inode_nohighmem(inode);
4806         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4807               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4808                 inode->i_op = &ext4_special_inode_operations;
4809                 if (raw_inode->i_block[0])
4810                         init_special_inode(inode, inode->i_mode,
4811                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4812                 else
4813                         init_special_inode(inode, inode->i_mode,
4814                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4815         } else if (ino == EXT4_BOOT_LOADER_INO) {
4816                 make_bad_inode(inode);
4817         } else {
4818                 ret = -EFSCORRUPTED;
4819                 ext4_error_inode(inode, function, line, 0,
4820                                  "iget: bogus i_mode (%o)", inode->i_mode);
4821                 goto bad_inode;
4822         }
4823         if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb))
4824                 ext4_error_inode(inode, function, line, 0,
4825                                  "casefold flag without casefold feature");
4826         brelse(iloc.bh);
4827
4828         unlock_new_inode(inode);
4829         return inode;
4830
4831 bad_inode:
4832         brelse(iloc.bh);
4833         iget_failed(inode);
4834         return ERR_PTR(ret);
4835 }
4836
4837 static int ext4_inode_blocks_set(handle_t *handle,
4838                                 struct ext4_inode *raw_inode,
4839                                 struct ext4_inode_info *ei)
4840 {
4841         struct inode *inode = &(ei->vfs_inode);
4842         u64 i_blocks = READ_ONCE(inode->i_blocks);
4843         struct super_block *sb = inode->i_sb;
4844
4845         if (i_blocks <= ~0U) {
4846                 /*
4847                  * i_blocks can be represented in a 32 bit variable
4848                  * as multiple of 512 bytes
4849                  */
4850                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4851                 raw_inode->i_blocks_high = 0;
4852                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4853                 return 0;
4854         }
4855         if (!ext4_has_feature_huge_file(sb))
4856                 return -EFBIG;
4857
4858         if (i_blocks <= 0xffffffffffffULL) {
4859                 /*
4860                  * i_blocks can be represented in a 48 bit variable
4861                  * as multiple of 512 bytes
4862                  */
4863                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4864                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4865                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4866         } else {
4867                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4868                 /* i_block is stored in file system block size */
4869                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4870                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4871                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4872         }
4873         return 0;
4874 }
4875
4876 struct other_inode {
4877         unsigned long           orig_ino;
4878         struct ext4_inode       *raw_inode;
4879 };
4880
4881 static int other_inode_match(struct inode * inode, unsigned long ino,
4882                              void *data)
4883 {
4884         struct other_inode *oi = (struct other_inode *) data;
4885
4886         if ((inode->i_ino != ino) ||
4887             (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4888                                I_DIRTY_INODE)) ||
4889             ((inode->i_state & I_DIRTY_TIME) == 0))
4890                 return 0;
4891         spin_lock(&inode->i_lock);
4892         if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4893                                 I_DIRTY_INODE)) == 0) &&
4894             (inode->i_state & I_DIRTY_TIME)) {
4895                 struct ext4_inode_info  *ei = EXT4_I(inode);
4896
4897                 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4898                 spin_unlock(&inode->i_lock);
4899
4900                 spin_lock(&ei->i_raw_lock);
4901                 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4902                 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4903                 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4904                 ext4_inode_csum_set(inode, oi->raw_inode, ei);
4905                 spin_unlock(&ei->i_raw_lock);
4906                 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4907                 return -1;
4908         }
4909         spin_unlock(&inode->i_lock);
4910         return -1;
4911 }
4912
4913 /*
4914  * Opportunistically update the other time fields for other inodes in
4915  * the same inode table block.
4916  */
4917 static void ext4_update_other_inodes_time(struct super_block *sb,
4918                                           unsigned long orig_ino, char *buf)
4919 {
4920         struct other_inode oi;
4921         unsigned long ino;
4922         int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4923         int inode_size = EXT4_INODE_SIZE(sb);
4924
4925         oi.orig_ino = orig_ino;
4926         /*
4927          * Calculate the first inode in the inode table block.  Inode
4928          * numbers are one-based.  That is, the first inode in a block
4929          * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4930          */
4931         ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4932         for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4933                 if (ino == orig_ino)
4934                         continue;
4935                 oi.raw_inode = (struct ext4_inode *) buf;
4936                 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4937         }
4938 }
4939
4940 /*
4941  * Post the struct inode info into an on-disk inode location in the
4942  * buffer-cache.  This gobbles the caller's reference to the
4943  * buffer_head in the inode location struct.
4944  *
4945  * The caller must have write access to iloc->bh.
4946  */
4947 static int ext4_do_update_inode(handle_t *handle,
4948                                 struct inode *inode,
4949                                 struct ext4_iloc *iloc)
4950 {
4951         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4952         struct ext4_inode_info *ei = EXT4_I(inode);
4953         struct buffer_head *bh = iloc->bh;
4954         struct super_block *sb = inode->i_sb;
4955         int err = 0, rc, block;
4956         int need_datasync = 0, set_large_file = 0;
4957         uid_t i_uid;
4958         gid_t i_gid;
4959         projid_t i_projid;
4960
4961         spin_lock(&ei->i_raw_lock);
4962
4963         /* For fields not tracked in the in-memory inode,
4964          * initialise them to zero for new inodes. */
4965         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4966                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4967
4968         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4969         i_uid = i_uid_read(inode);
4970         i_gid = i_gid_read(inode);
4971         i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4972         if (!(test_opt(inode->i_sb, NO_UID32))) {
4973                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4974                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4975 /*
4976  * Fix up interoperability with old kernels. Otherwise, old inodes get
4977  * re-used with the upper 16 bits of the uid/gid intact
4978  */
4979                 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4980                         raw_inode->i_uid_high = 0;
4981                         raw_inode->i_gid_high = 0;
4982                 } else {
4983                         raw_inode->i_uid_high =
4984                                 cpu_to_le16(high_16_bits(i_uid));
4985                         raw_inode->i_gid_high =
4986                                 cpu_to_le16(high_16_bits(i_gid));
4987                 }
4988         } else {
4989                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4990                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4991                 raw_inode->i_uid_high = 0;
4992                 raw_inode->i_gid_high = 0;
4993         }
4994         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4995
4996         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4997         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4998         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4999         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5000
5001         err = ext4_inode_blocks_set(handle, raw_inode, ei);
5002         if (err) {
5003                 spin_unlock(&ei->i_raw_lock);
5004                 goto out_brelse;
5005         }
5006         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5007         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5008         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
5009                 raw_inode->i_file_acl_high =
5010                         cpu_to_le16(ei->i_file_acl >> 32);
5011         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5012         if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode)) {
5013                 ext4_isize_set(raw_inode, ei->i_disksize);
5014                 need_datasync = 1;
5015         }
5016         if (ei->i_disksize > 0x7fffffffULL) {
5017                 if (!ext4_has_feature_large_file(sb) ||
5018                                 EXT4_SB(sb)->s_es->s_rev_level ==
5019                     cpu_to_le32(EXT4_GOOD_OLD_REV))
5020                         set_large_file = 1;
5021         }
5022         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5023         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5024                 if (old_valid_dev(inode->i_rdev)) {
5025                         raw_inode->i_block[0] =
5026                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
5027                         raw_inode->i_block[1] = 0;
5028                 } else {
5029                         raw_inode->i_block[0] = 0;
5030                         raw_inode->i_block[1] =
5031                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
5032                         raw_inode->i_block[2] = 0;
5033                 }
5034         } else if (!ext4_has_inline_data(inode)) {
5035                 for (block = 0; block < EXT4_N_BLOCKS; block++)
5036                         raw_inode->i_block[block] = ei->i_data[block];
5037         }
5038
5039         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5040                 u64 ivers = ext4_inode_peek_iversion(inode);
5041
5042                 raw_inode->i_disk_version = cpu_to_le32(ivers);
5043                 if (ei->i_extra_isize) {
5044                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5045                                 raw_inode->i_version_hi =
5046                                         cpu_to_le32(ivers >> 32);
5047                         raw_inode->i_extra_isize =
5048                                 cpu_to_le16(ei->i_extra_isize);
5049                 }
5050         }
5051
5052         BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5053                i_projid != EXT4_DEF_PROJID);
5054
5055         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5056             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5057                 raw_inode->i_projid = cpu_to_le32(i_projid);
5058
5059         ext4_inode_csum_set(inode, raw_inode, ei);
5060         spin_unlock(&ei->i_raw_lock);
5061         if (inode->i_sb->s_flags & SB_LAZYTIME)
5062                 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5063                                               bh->b_data);
5064
5065         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5066         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5067         if (!err)
5068                 err = rc;
5069         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5070         if (set_large_file) {
5071                 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5072                 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5073                 if (err)
5074                         goto out_brelse;
5075                 ext4_set_feature_large_file(sb);
5076                 ext4_handle_sync(handle);
5077                 err = ext4_handle_dirty_super(handle, sb);
5078         }
5079         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5080 out_brelse:
5081         brelse(bh);
5082         ext4_std_error(inode->i_sb, err);
5083         return err;
5084 }
5085
5086 /*
5087  * ext4_write_inode()
5088  *
5089  * We are called from a few places:
5090  *
5091  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5092  *   Here, there will be no transaction running. We wait for any running
5093  *   transaction to commit.
5094  *
5095  * - Within flush work (sys_sync(), kupdate and such).
5096  *   We wait on commit, if told to.
5097  *
5098  * - Within iput_final() -> write_inode_now()
5099  *   We wait on commit, if told to.
5100  *
5101  * In all cases it is actually safe for us to return without doing anything,
5102  * because the inode has been copied into a raw inode buffer in
5103  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5104  * writeback.
5105  *
5106  * Note that we are absolutely dependent upon all inode dirtiers doing the
5107  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5108  * which we are interested.
5109  *
5110  * It would be a bug for them to not do this.  The code:
5111  *
5112  *      mark_inode_dirty(inode)
5113  *      stuff();
5114  *      inode->i_size = expr;
5115  *
5116  * is in error because write_inode() could occur while `stuff()' is running,
5117  * and the new i_size will be lost.  Plus the inode will no longer be on the
5118  * superblock's dirty inode list.
5119  */
5120 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5121 {
5122         int err;
5123
5124         if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5125             sb_rdonly(inode->i_sb))
5126                 return 0;
5127
5128         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5129                 return -EIO;
5130
5131         if (EXT4_SB(inode->i_sb)->s_journal) {
5132                 if (ext4_journal_current_handle()) {
5133                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5134                         dump_stack();
5135                         return -EIO;
5136                 }
5137
5138                 /*
5139                  * No need to force transaction in WB_SYNC_NONE mode. Also
5140                  * ext4_sync_fs() will force the commit after everything is
5141                  * written.
5142                  */
5143                 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5144                         return 0;
5145
5146                 err = jbd2_complete_transaction(EXT4_SB(inode->i_sb)->s_journal,
5147                                                 EXT4_I(inode)->i_sync_tid);
5148         } else {
5149                 struct ext4_iloc iloc;
5150
5151                 err = __ext4_get_inode_loc(inode, &iloc, 0);
5152                 if (err)
5153                         return err;
5154                 /*
5155                  * sync(2) will flush the whole buffer cache. No need to do
5156                  * it here separately for each inode.
5157                  */
5158                 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5159                         sync_dirty_buffer(iloc.bh);
5160                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5161                         ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5162                                                "IO error syncing inode");
5163                         err = -EIO;
5164                 }
5165                 brelse(iloc.bh);
5166         }
5167         return err;
5168 }
5169
5170 /*
5171  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5172  * buffers that are attached to a page stradding i_size and are undergoing
5173  * commit. In that case we have to wait for commit to finish and try again.
5174  */
5175 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5176 {
5177         struct page *page;
5178         unsigned offset;
5179         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5180         tid_t commit_tid = 0;
5181         int ret;
5182
5183         offset = inode->i_size & (PAGE_SIZE - 1);
5184         /*
5185          * If the page is fully truncated, we don't need to wait for any commit
5186          * (and we even should not as __ext4_journalled_invalidatepage() may
5187          * strip all buffers from the page but keep the page dirty which can then
5188          * confuse e.g. concurrent ext4_writepage() seeing dirty page without
5189          * buffers). Also we don't need to wait for any commit if all buffers in
5190          * the page remain valid. This is most beneficial for the common case of
5191          * blocksize == PAGESIZE.
5192          */
5193         if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5194                 return;
5195         while (1) {
5196                 page = find_lock_page(inode->i_mapping,
5197                                       inode->i_size >> PAGE_SHIFT);
5198                 if (!page)
5199                         return;
5200                 ret = __ext4_journalled_invalidatepage(page, offset,
5201                                                 PAGE_SIZE - offset);
5202                 unlock_page(page);
5203                 put_page(page);
5204                 if (ret != -EBUSY)
5205                         return;
5206                 commit_tid = 0;
5207                 read_lock(&journal->j_state_lock);
5208                 if (journal->j_committing_transaction)
5209                         commit_tid = journal->j_committing_transaction->t_tid;
5210                 read_unlock(&journal->j_state_lock);
5211                 if (commit_tid)
5212                         jbd2_log_wait_commit(journal, commit_tid);
5213         }
5214 }
5215
5216 /*
5217  * ext4_setattr()
5218  *
5219  * Called from notify_change.
5220  *
5221  * We want to trap VFS attempts to truncate the file as soon as
5222  * possible.  In particular, we want to make sure that when the VFS
5223  * shrinks i_size, we put the inode on the orphan list and modify
5224  * i_disksize immediately, so that during the subsequent flushing of
5225  * dirty pages and freeing of disk blocks, we can guarantee that any
5226  * commit will leave the blocks being flushed in an unused state on
5227  * disk.  (On recovery, the inode will get truncated and the blocks will
5228  * be freed, so we have a strong guarantee that no future commit will
5229  * leave these blocks visible to the user.)
5230  *
5231  * Another thing we have to assure is that if we are in ordered mode
5232  * and inode is still attached to the committing transaction, we must
5233  * we start writeout of all the dirty pages which are being truncated.
5234  * This way we are sure that all the data written in the previous
5235  * transaction are already on disk (truncate waits for pages under
5236  * writeback).
5237  *
5238  * Called with inode->i_mutex down.
5239  */
5240 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5241 {
5242         struct inode *inode = d_inode(dentry);
5243         int error, rc = 0;
5244         int orphan = 0;
5245         const unsigned int ia_valid = attr->ia_valid;
5246
5247         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5248                 return -EIO;
5249
5250         if (unlikely(IS_IMMUTABLE(inode)))
5251                 return -EPERM;
5252
5253         if (unlikely(IS_APPEND(inode) &&
5254                      (ia_valid & (ATTR_MODE | ATTR_UID |
5255                                   ATTR_GID | ATTR_TIMES_SET))))
5256                 return -EPERM;
5257
5258         error = setattr_prepare(dentry, attr);
5259         if (error)
5260                 return error;
5261
5262         error = fscrypt_prepare_setattr(dentry, attr);
5263         if (error)
5264                 return error;
5265
5266         error = fsverity_prepare_setattr(dentry, attr);
5267         if (error)
5268                 return error;
5269
5270         if (is_quota_modification(inode, attr)) {
5271                 error = dquot_initialize(inode);
5272                 if (error)
5273                         return error;
5274         }
5275         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5276             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5277                 handle_t *handle;
5278
5279                 /* (user+group)*(old+new) structure, inode write (sb,
5280                  * inode block, ? - but truncate inode update has it) */
5281                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5282                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5283                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5284                 if (IS_ERR(handle)) {
5285                         error = PTR_ERR(handle);
5286                         goto err_out;
5287                 }
5288
5289                 /* dquot_transfer() calls back ext4_get_inode_usage() which
5290                  * counts xattr inode references.
5291                  */
5292                 down_read(&EXT4_I(inode)->xattr_sem);
5293                 error = dquot_transfer(inode, attr);
5294                 up_read(&EXT4_I(inode)->xattr_sem);
5295
5296                 if (error) {
5297                         ext4_journal_stop(handle);
5298                         return error;
5299                 }
5300                 /* Update corresponding info in inode so that everything is in
5301                  * one transaction */
5302                 if (attr->ia_valid & ATTR_UID)
5303                         inode->i_uid = attr->ia_uid;
5304                 if (attr->ia_valid & ATTR_GID)
5305                         inode->i_gid = attr->ia_gid;
5306                 error = ext4_mark_inode_dirty(handle, inode);
5307                 ext4_journal_stop(handle);
5308                 if (unlikely(error))
5309                         return error;
5310         }
5311
5312         if (attr->ia_valid & ATTR_SIZE) {
5313                 handle_t *handle;
5314                 loff_t oldsize = inode->i_size;
5315                 int shrink = (attr->ia_size < inode->i_size);
5316
5317                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5318                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5319
5320                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
5321                                 return -EFBIG;
5322                 }
5323                 if (!S_ISREG(inode->i_mode))
5324                         return -EINVAL;
5325
5326                 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5327                         inode_inc_iversion(inode);
5328
5329                 if (shrink) {
5330                         if (ext4_should_order_data(inode)) {
5331                                 error = ext4_begin_ordered_truncate(inode,
5332                                                             attr->ia_size);
5333                                 if (error)
5334                                         goto err_out;
5335                         }
5336                         /*
5337                          * Blocks are going to be removed from the inode. Wait
5338                          * for dio in flight.
5339                          */
5340                         inode_dio_wait(inode);
5341                 }
5342
5343                 down_write(&EXT4_I(inode)->i_mmap_sem);
5344
5345                 rc = ext4_break_layouts(inode);
5346                 if (rc) {
5347                         up_write(&EXT4_I(inode)->i_mmap_sem);
5348                         return rc;
5349                 }
5350
5351                 if (attr->ia_size != inode->i_size) {
5352                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5353                         if (IS_ERR(handle)) {
5354                                 error = PTR_ERR(handle);
5355                                 goto out_mmap_sem;
5356                         }
5357                         if (ext4_handle_valid(handle) && shrink) {
5358                                 error = ext4_orphan_add(handle, inode);
5359                                 orphan = 1;
5360                         }
5361                         /*
5362                          * Update c/mtime on truncate up, ext4_truncate() will
5363                          * update c/mtime in shrink case below
5364                          */
5365                         if (!shrink) {
5366                                 inode->i_mtime = current_time(inode);
5367                                 inode->i_ctime = inode->i_mtime;
5368                         }
5369                         down_write(&EXT4_I(inode)->i_data_sem);
5370                         EXT4_I(inode)->i_disksize = attr->ia_size;
5371                         rc = ext4_mark_inode_dirty(handle, inode);
5372                         if (!error)
5373                                 error = rc;
5374                         /*
5375                          * We have to update i_size under i_data_sem together
5376                          * with i_disksize to avoid races with writeback code
5377                          * running ext4_wb_update_i_disksize().
5378                          */
5379                         if (!error)
5380                                 i_size_write(inode, attr->ia_size);
5381                         up_write(&EXT4_I(inode)->i_data_sem);
5382                         ext4_journal_stop(handle);
5383                         if (error)
5384                                 goto out_mmap_sem;
5385                         if (!shrink) {
5386                                 pagecache_isize_extended(inode, oldsize,
5387                                                          inode->i_size);
5388                         } else if (ext4_should_journal_data(inode)) {
5389                                 ext4_wait_for_tail_page_commit(inode);
5390                         }
5391                 }
5392
5393                 /*
5394                  * Truncate pagecache after we've waited for commit
5395                  * in data=journal mode to make pages freeable.
5396                  */
5397                 truncate_pagecache(inode, inode->i_size);
5398                 /*
5399                  * Call ext4_truncate() even if i_size didn't change to
5400                  * truncate possible preallocated blocks.
5401                  */
5402                 if (attr->ia_size <= oldsize) {
5403                         rc = ext4_truncate(inode);
5404                         if (rc)
5405                                 error = rc;
5406                 }
5407 out_mmap_sem:
5408                 up_write(&EXT4_I(inode)->i_mmap_sem);
5409         }
5410
5411         if (!error) {
5412                 setattr_copy(inode, attr);
5413                 mark_inode_dirty(inode);
5414         }
5415
5416         /*
5417          * If the call to ext4_truncate failed to get a transaction handle at
5418          * all, we need to clean up the in-core orphan list manually.
5419          */
5420         if (orphan && inode->i_nlink)
5421                 ext4_orphan_del(NULL, inode);
5422
5423         if (!error && (ia_valid & ATTR_MODE))
5424                 rc = posix_acl_chmod(inode, inode->i_mode);
5425
5426 err_out:
5427         ext4_std_error(inode->i_sb, error);
5428         if (!error)
5429                 error = rc;
5430         return error;
5431 }
5432
5433 int ext4_getattr(const struct path *path, struct kstat *stat,
5434                  u32 request_mask, unsigned int query_flags)
5435 {
5436         struct inode *inode = d_inode(path->dentry);
5437         struct ext4_inode *raw_inode;
5438         struct ext4_inode_info *ei = EXT4_I(inode);
5439         unsigned int flags;
5440
5441         if ((request_mask & STATX_BTIME) &&
5442             EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5443                 stat->result_mask |= STATX_BTIME;
5444                 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5445                 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5446         }
5447
5448         flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5449         if (flags & EXT4_APPEND_FL)
5450                 stat->attributes |= STATX_ATTR_APPEND;
5451         if (flags & EXT4_COMPR_FL)
5452                 stat->attributes |= STATX_ATTR_COMPRESSED;
5453         if (flags & EXT4_ENCRYPT_FL)
5454                 stat->attributes |= STATX_ATTR_ENCRYPTED;
5455         if (flags & EXT4_IMMUTABLE_FL)
5456                 stat->attributes |= STATX_ATTR_IMMUTABLE;
5457         if (flags & EXT4_NODUMP_FL)
5458                 stat->attributes |= STATX_ATTR_NODUMP;
5459         if (flags & EXT4_VERITY_FL)
5460                 stat->attributes |= STATX_ATTR_VERITY;
5461
5462         stat->attributes_mask |= (STATX_ATTR_APPEND |
5463                                   STATX_ATTR_COMPRESSED |
5464                                   STATX_ATTR_ENCRYPTED |
5465                                   STATX_ATTR_IMMUTABLE |
5466                                   STATX_ATTR_NODUMP |
5467                                   STATX_ATTR_VERITY);
5468
5469         generic_fillattr(inode, stat);
5470         return 0;
5471 }
5472
5473 int ext4_file_getattr(const struct path *path, struct kstat *stat,
5474                       u32 request_mask, unsigned int query_flags)
5475 {
5476         struct inode *inode = d_inode(path->dentry);
5477         u64 delalloc_blocks;
5478
5479         ext4_getattr(path, stat, request_mask, query_flags);
5480
5481         /*
5482          * If there is inline data in the inode, the inode will normally not
5483          * have data blocks allocated (it may have an external xattr block).
5484          * Report at least one sector for such files, so tools like tar, rsync,
5485          * others don't incorrectly think the file is completely sparse.
5486          */
5487         if (unlikely(ext4_has_inline_data(inode)))
5488                 stat->blocks += (stat->size + 511) >> 9;
5489
5490         /*
5491          * We can't update i_blocks if the block allocation is delayed
5492          * otherwise in the case of system crash before the real block
5493          * allocation is done, we will have i_blocks inconsistent with
5494          * on-disk file blocks.
5495          * We always keep i_blocks updated together with real
5496          * allocation. But to not confuse with user, stat
5497          * will return the blocks that include the delayed allocation
5498          * blocks for this file.
5499          */
5500         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5501                                    EXT4_I(inode)->i_reserved_data_blocks);
5502         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5503         return 0;
5504 }
5505
5506 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5507                                    int pextents)
5508 {
5509         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5510                 return ext4_ind_trans_blocks(inode, lblocks);
5511         return ext4_ext_index_trans_blocks(inode, pextents);
5512 }
5513
5514 /*
5515  * Account for index blocks, block groups bitmaps and block group
5516  * descriptor blocks if modify datablocks and index blocks
5517  * worse case, the indexs blocks spread over different block groups
5518  *
5519  * If datablocks are discontiguous, they are possible to spread over
5520  * different block groups too. If they are contiguous, with flexbg,
5521  * they could still across block group boundary.
5522  *
5523  * Also account for superblock, inode, quota and xattr blocks
5524  */
5525 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5526                                   int pextents)
5527 {
5528         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5529         int gdpblocks;
5530         int idxblocks;
5531         int ret = 0;
5532
5533         /*
5534          * How many index blocks need to touch to map @lblocks logical blocks
5535          * to @pextents physical extents?
5536          */
5537         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5538
5539         ret = idxblocks;
5540
5541         /*
5542          * Now let's see how many group bitmaps and group descriptors need
5543          * to account
5544          */
5545         groups = idxblocks + pextents;
5546         gdpblocks = groups;
5547         if (groups > ngroups)
5548                 groups = ngroups;
5549         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5550                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5551
5552         /* bitmaps and block group descriptor blocks */
5553         ret += groups + gdpblocks;
5554
5555         /* Blocks for super block, inode, quota and xattr blocks */
5556         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5557
5558         return ret;
5559 }
5560
5561 /*
5562  * Calculate the total number of credits to reserve to fit
5563  * the modification of a single pages into a single transaction,
5564  * which may include multiple chunks of block allocations.
5565  *
5566  * This could be called via ext4_write_begin()
5567  *
5568  * We need to consider the worse case, when
5569  * one new block per extent.
5570  */
5571 int ext4_writepage_trans_blocks(struct inode *inode)
5572 {
5573         int bpp = ext4_journal_blocks_per_page(inode);
5574         int ret;
5575
5576         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5577
5578         /* Account for data blocks for journalled mode */
5579         if (ext4_should_journal_data(inode))
5580                 ret += bpp;
5581         return ret;
5582 }
5583
5584 /*
5585  * Calculate the journal credits for a chunk of data modification.
5586  *
5587  * This is called from DIO, fallocate or whoever calling
5588  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5589  *
5590  * journal buffers for data blocks are not included here, as DIO
5591  * and fallocate do no need to journal data buffers.
5592  */
5593 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5594 {
5595         return ext4_meta_trans_blocks(inode, nrblocks, 1);
5596 }
5597
5598 /*
5599  * The caller must have previously called ext4_reserve_inode_write().
5600  * Give this, we know that the caller already has write access to iloc->bh.
5601  */
5602 int ext4_mark_iloc_dirty(handle_t *handle,
5603                          struct inode *inode, struct ext4_iloc *iloc)
5604 {
5605         int err = 0;
5606
5607         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5608                 put_bh(iloc->bh);
5609                 return -EIO;
5610         }
5611         if (IS_I_VERSION(inode))
5612                 inode_inc_iversion(inode);
5613
5614         /* the do_update_inode consumes one bh->b_count */
5615         get_bh(iloc->bh);
5616
5617         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5618         err = ext4_do_update_inode(handle, inode, iloc);
5619         put_bh(iloc->bh);
5620         return err;
5621 }
5622
5623 /*
5624  * On success, We end up with an outstanding reference count against
5625  * iloc->bh.  This _must_ be cleaned up later.
5626  */
5627
5628 int
5629 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5630                          struct ext4_iloc *iloc)
5631 {
5632         int err;
5633
5634         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5635                 return -EIO;
5636
5637         err = ext4_get_inode_loc(inode, iloc);
5638         if (!err) {
5639                 BUFFER_TRACE(iloc->bh, "get_write_access");
5640                 err = ext4_journal_get_write_access(handle, iloc->bh);
5641                 if (err) {
5642                         brelse(iloc->bh);
5643                         iloc->bh = NULL;
5644                 }
5645         }
5646         ext4_std_error(inode->i_sb, err);
5647         return err;
5648 }
5649
5650 static int __ext4_expand_extra_isize(struct inode *inode,
5651                                      unsigned int new_extra_isize,
5652                                      struct ext4_iloc *iloc,
5653                                      handle_t *handle, int *no_expand)
5654 {
5655         struct ext4_inode *raw_inode;
5656         struct ext4_xattr_ibody_header *header;
5657         unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5658         struct ext4_inode_info *ei = EXT4_I(inode);
5659         int error;
5660
5661         /* this was checked at iget time, but double check for good measure */
5662         if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5663             (ei->i_extra_isize & 3)) {
5664                 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5665                                  ei->i_extra_isize,
5666                                  EXT4_INODE_SIZE(inode->i_sb));
5667                 return -EFSCORRUPTED;
5668         }
5669         if ((new_extra_isize < ei->i_extra_isize) ||
5670             (new_extra_isize < 4) ||
5671             (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5672                 return -EINVAL; /* Should never happen */
5673
5674         raw_inode = ext4_raw_inode(iloc);
5675
5676         header = IHDR(inode, raw_inode);
5677
5678         /* No extended attributes present */
5679         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5680             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5681                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5682                        EXT4_I(inode)->i_extra_isize, 0,
5683                        new_extra_isize - EXT4_I(inode)->i_extra_isize);
5684                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5685                 return 0;
5686         }
5687
5688         /* try to expand with EAs present */
5689         error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5690                                            raw_inode, handle);
5691         if (error) {
5692                 /*
5693                  * Inode size expansion failed; don't try again
5694                  */
5695                 *no_expand = 1;
5696         }
5697
5698         return error;
5699 }
5700
5701 /*
5702  * Expand an inode by new_extra_isize bytes.
5703  * Returns 0 on success or negative error number on failure.
5704  */
5705 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5706                                           unsigned int new_extra_isize,
5707                                           struct ext4_iloc iloc,
5708                                           handle_t *handle)
5709 {
5710         int no_expand;
5711         int error;
5712
5713         if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5714                 return -EOVERFLOW;
5715
5716         /*
5717          * In nojournal mode, we can immediately attempt to expand
5718          * the inode.  When journaled, we first need to obtain extra
5719          * buffer credits since we may write into the EA block
5720          * with this same handle. If journal_extend fails, then it will
5721          * only result in a minor loss of functionality for that inode.
5722          * If this is felt to be critical, then e2fsck should be run to
5723          * force a large enough s_min_extra_isize.
5724          */
5725         if (ext4_journal_extend(handle,
5726                                 EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5727                 return -ENOSPC;
5728
5729         if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5730                 return -EBUSY;
5731
5732         error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5733                                           handle, &no_expand);
5734         ext4_write_unlock_xattr(inode, &no_expand);
5735
5736         return error;
5737 }
5738
5739 int ext4_expand_extra_isize(struct inode *inode,
5740                             unsigned int new_extra_isize,
5741                             struct ext4_iloc *iloc)
5742 {
5743         handle_t *handle;
5744         int no_expand;
5745         int error, rc;
5746
5747         if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5748                 brelse(iloc->bh);
5749                 return -EOVERFLOW;
5750         }
5751
5752         handle = ext4_journal_start(inode, EXT4_HT_INODE,
5753                                     EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5754         if (IS_ERR(handle)) {
5755                 error = PTR_ERR(handle);
5756                 brelse(iloc->bh);
5757                 return error;
5758         }
5759
5760         ext4_write_lock_xattr(inode, &no_expand);
5761
5762         BUFFER_TRACE(iloc->bh, "get_write_access");
5763         error = ext4_journal_get_write_access(handle, iloc->bh);
5764         if (error) {
5765                 brelse(iloc->bh);
5766                 goto out_unlock;
5767         }
5768
5769         error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5770                                           handle, &no_expand);
5771
5772         rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5773         if (!error)
5774                 error = rc;
5775
5776 out_unlock:
5777         ext4_write_unlock_xattr(inode, &no_expand);
5778         ext4_journal_stop(handle);
5779         return error;
5780 }
5781
5782 /*
5783  * What we do here is to mark the in-core inode as clean with respect to inode
5784  * dirtiness (it may still be data-dirty).
5785  * This means that the in-core inode may be reaped by prune_icache
5786  * without having to perform any I/O.  This is a very good thing,
5787  * because *any* task may call prune_icache - even ones which
5788  * have a transaction open against a different journal.
5789  *
5790  * Is this cheating?  Not really.  Sure, we haven't written the
5791  * inode out, but prune_icache isn't a user-visible syncing function.
5792  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5793  * we start and wait on commits.
5794  */
5795 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
5796                                 const char *func, unsigned int line)
5797 {
5798         struct ext4_iloc iloc;
5799         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5800         int err;
5801
5802         might_sleep();
5803         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5804         err = ext4_reserve_inode_write(handle, inode, &iloc);
5805         if (err)
5806                 goto out;
5807
5808         if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5809                 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5810                                                iloc, handle);
5811
5812         err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5813 out:
5814         if (unlikely(err))
5815                 ext4_error_inode_err(inode, func, line, 0, err,
5816                                         "mark_inode_dirty error");
5817         return err;
5818 }
5819
5820 /*
5821  * ext4_dirty_inode() is called from __mark_inode_dirty()
5822  *
5823  * We're really interested in the case where a file is being extended.
5824  * i_size has been changed by generic_commit_write() and we thus need
5825  * to include the updated inode in the current transaction.
5826  *
5827  * Also, dquot_alloc_block() will always dirty the inode when blocks
5828  * are allocated to the file.
5829  *
5830  * If the inode is marked synchronous, we don't honour that here - doing
5831  * so would cause a commit on atime updates, which we don't bother doing.
5832  * We handle synchronous inodes at the highest possible level.
5833  *
5834  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
5835  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5836  * to copy into the on-disk inode structure are the timestamp files.
5837  */
5838 void ext4_dirty_inode(struct inode *inode, int flags)
5839 {
5840         handle_t *handle;
5841
5842         if (flags == I_DIRTY_TIME)
5843                 return;
5844         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5845         if (IS_ERR(handle))
5846                 goto out;
5847
5848         ext4_mark_inode_dirty(handle, inode);
5849
5850         ext4_journal_stop(handle);
5851 out:
5852         return;
5853 }
5854
5855 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5856 {
5857         journal_t *journal;
5858         handle_t *handle;
5859         int err;
5860         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5861
5862         /*
5863          * We have to be very careful here: changing a data block's
5864          * journaling status dynamically is dangerous.  If we write a
5865          * data block to the journal, change the status and then delete
5866          * that block, we risk forgetting to revoke the old log record
5867          * from the journal and so a subsequent replay can corrupt data.
5868          * So, first we make sure that the journal is empty and that
5869          * nobody is changing anything.
5870          */
5871
5872         journal = EXT4_JOURNAL(inode);
5873         if (!journal)
5874                 return 0;
5875         if (is_journal_aborted(journal))
5876                 return -EROFS;
5877
5878         /* Wait for all existing dio workers */
5879         inode_dio_wait(inode);
5880
5881         /*
5882          * Before flushing the journal and switching inode's aops, we have
5883          * to flush all dirty data the inode has. There can be outstanding
5884          * delayed allocations, there can be unwritten extents created by
5885          * fallocate or buffered writes in dioread_nolock mode covered by
5886          * dirty data which can be converted only after flushing the dirty
5887          * data (and journalled aops don't know how to handle these cases).
5888          */
5889         if (val) {
5890                 down_write(&EXT4_I(inode)->i_mmap_sem);
5891                 err = filemap_write_and_wait(inode->i_mapping);
5892                 if (err < 0) {
5893                         up_write(&EXT4_I(inode)->i_mmap_sem);
5894                         return err;
5895                 }
5896         }
5897
5898         percpu_down_write(&sbi->s_writepages_rwsem);
5899         jbd2_journal_lock_updates(journal);
5900
5901         /*
5902          * OK, there are no updates running now, and all cached data is
5903          * synced to disk.  We are now in a completely consistent state
5904          * which doesn't have anything in the journal, and we know that
5905          * no filesystem updates are running, so it is safe to modify
5906          * the inode's in-core data-journaling state flag now.
5907          */
5908
5909         if (val)
5910                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5911         else {
5912                 err = jbd2_journal_flush(journal);
5913                 if (err < 0) {
5914                         jbd2_journal_unlock_updates(journal);
5915                         percpu_up_write(&sbi->s_writepages_rwsem);
5916                         return err;
5917                 }
5918                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5919         }
5920         ext4_set_aops(inode);
5921
5922         jbd2_journal_unlock_updates(journal);
5923         percpu_up_write(&sbi->s_writepages_rwsem);
5924
5925         if (val)
5926                 up_write(&EXT4_I(inode)->i_mmap_sem);
5927
5928         /* Finally we can mark the inode as dirty. */
5929
5930         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5931         if (IS_ERR(handle))
5932                 return PTR_ERR(handle);
5933
5934         err = ext4_mark_inode_dirty(handle, inode);
5935         ext4_handle_sync(handle);
5936         ext4_journal_stop(handle);
5937         ext4_std_error(inode->i_sb, err);
5938
5939         return err;
5940 }
5941
5942 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5943 {
5944         return !buffer_mapped(bh);
5945 }
5946
5947 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
5948 {
5949         struct vm_area_struct *vma = vmf->vma;
5950         struct page *page = vmf->page;
5951         loff_t size;
5952         unsigned long len;
5953         int err;
5954         vm_fault_t ret;
5955         struct file *file = vma->vm_file;
5956         struct inode *inode = file_inode(file);
5957         struct address_space *mapping = inode->i_mapping;
5958         handle_t *handle;
5959         get_block_t *get_block;
5960         int retries = 0;
5961
5962         if (unlikely(IS_IMMUTABLE(inode)))
5963                 return VM_FAULT_SIGBUS;
5964
5965         sb_start_pagefault(inode->i_sb);
5966         file_update_time(vma->vm_file);
5967
5968         down_read(&EXT4_I(inode)->i_mmap_sem);
5969
5970         err = ext4_convert_inline_data(inode);
5971         if (err)
5972                 goto out_ret;
5973
5974         /* Delalloc case is easy... */
5975         if (test_opt(inode->i_sb, DELALLOC) &&
5976             !ext4_should_journal_data(inode) &&
5977             !ext4_nonda_switch(inode->i_sb)) {
5978                 do {
5979                         err = block_page_mkwrite(vma, vmf,
5980                                                    ext4_da_get_block_prep);
5981                 } while (err == -ENOSPC &&
5982                        ext4_should_retry_alloc(inode->i_sb, &retries));
5983                 goto out_ret;
5984         }
5985
5986         lock_page(page);
5987         size = i_size_read(inode);
5988         /* Page got truncated from under us? */
5989         if (page->mapping != mapping || page_offset(page) > size) {
5990                 unlock_page(page);
5991                 ret = VM_FAULT_NOPAGE;
5992                 goto out;
5993         }
5994
5995         if (page->index == size >> PAGE_SHIFT)
5996                 len = size & ~PAGE_MASK;
5997         else
5998                 len = PAGE_SIZE;
5999         /*
6000          * Return if we have all the buffers mapped. This avoids the need to do
6001          * journal_start/journal_stop which can block and take a long time
6002          */
6003         if (page_has_buffers(page)) {
6004                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
6005                                             0, len, NULL,
6006                                             ext4_bh_unmapped)) {
6007                         /* Wait so that we don't change page under IO */
6008                         wait_for_stable_page(page);
6009                         ret = VM_FAULT_LOCKED;
6010                         goto out;
6011                 }
6012         }
6013         unlock_page(page);
6014         /* OK, we need to fill the hole... */
6015         if (ext4_should_dioread_nolock(inode))
6016                 get_block = ext4_get_block_unwritten;
6017         else
6018                 get_block = ext4_get_block;
6019 retry_alloc:
6020         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6021                                     ext4_writepage_trans_blocks(inode));
6022         if (IS_ERR(handle)) {
6023                 ret = VM_FAULT_SIGBUS;
6024                 goto out;
6025         }
6026         err = block_page_mkwrite(vma, vmf, get_block);
6027         if (!err && ext4_should_journal_data(inode)) {
6028                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
6029                           PAGE_SIZE, NULL, do_journal_get_write_access)) {
6030                         unlock_page(page);
6031                         ret = VM_FAULT_SIGBUS;
6032                         ext4_journal_stop(handle);
6033                         goto out;
6034                 }
6035                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6036         }
6037         ext4_journal_stop(handle);
6038         if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6039                 goto retry_alloc;
6040 out_ret:
6041         ret = block_page_mkwrite_return(err);
6042 out:
6043         up_read(&EXT4_I(inode)->i_mmap_sem);
6044         sb_end_pagefault(inode->i_sb);
6045         return ret;
6046 }
6047
6048 vm_fault_t ext4_filemap_fault(struct vm_fault *vmf)
6049 {
6050         struct inode *inode = file_inode(vmf->vma->vm_file);
6051         vm_fault_t ret;
6052
6053         down_read(&EXT4_I(inode)->i_mmap_sem);
6054         ret = filemap_fault(vmf);
6055         up_read(&EXT4_I(inode)->i_mmap_sem);
6056
6057         return ret;
6058 }