1 // SPDX-License-Identifier: GPL-2.0
3 * linux/fs/ext4/inode.c
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
12 * linux/fs/minix/inode.c
14 * Copyright (C) 1991, 1992 Linus Torvalds
16 * 64-bit file support on 64-bit platforms by Jakub Jelinek
17 * (jj@sunsite.ms.mff.cuni.cz)
19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23 #include <linux/mount.h>
24 #include <linux/time.h>
25 #include <linux/highuid.h>
26 #include <linux/pagemap.h>
27 #include <linux/dax.h>
28 #include <linux/quotaops.h>
29 #include <linux/string.h>
30 #include <linux/buffer_head.h>
31 #include <linux/writeback.h>
32 #include <linux/pagevec.h>
33 #include <linux/mpage.h>
34 #include <linux/namei.h>
35 #include <linux/uio.h>
36 #include <linux/bio.h>
37 #include <linux/workqueue.h>
38 #include <linux/kernel.h>
39 #include <linux/printk.h>
40 #include <linux/slab.h>
41 #include <linux/bitops.h>
42 #include <linux/iomap.h>
43 #include <linux/iversion.h>
45 #include "ext4_jbd2.h"
50 #include <trace/events/ext4.h>
52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53 struct ext4_inode_info *ei)
55 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
58 int offset = offsetof(struct ext4_inode, i_checksum_lo);
59 unsigned int csum_size = sizeof(dummy_csum);
61 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
62 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
64 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
65 EXT4_GOOD_OLD_INODE_SIZE - offset);
67 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
68 offset = offsetof(struct ext4_inode, i_checksum_hi);
69 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
70 EXT4_GOOD_OLD_INODE_SIZE,
71 offset - EXT4_GOOD_OLD_INODE_SIZE);
72 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
73 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
77 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
78 EXT4_INODE_SIZE(inode->i_sb) - offset);
84 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
85 struct ext4_inode_info *ei)
87 __u32 provided, calculated;
89 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
90 cpu_to_le32(EXT4_OS_LINUX) ||
91 !ext4_has_metadata_csum(inode->i_sb))
94 provided = le16_to_cpu(raw->i_checksum_lo);
95 calculated = ext4_inode_csum(inode, raw, ei);
96 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
97 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
98 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
100 calculated &= 0xFFFF;
102 return provided == calculated;
105 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
106 struct ext4_inode_info *ei)
110 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
111 cpu_to_le32(EXT4_OS_LINUX) ||
112 !ext4_has_metadata_csum(inode->i_sb))
115 csum = ext4_inode_csum(inode, raw, ei);
116 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
117 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
118 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
119 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
122 static inline int ext4_begin_ordered_truncate(struct inode *inode,
125 trace_ext4_begin_ordered_truncate(inode, new_size);
127 * If jinode is zero, then we never opened the file for
128 * writing, so there's no need to call
129 * jbd2_journal_begin_ordered_truncate() since there's no
130 * outstanding writes we need to flush.
132 if (!EXT4_I(inode)->jinode)
134 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
135 EXT4_I(inode)->jinode,
139 static void ext4_invalidatepage(struct page *page, unsigned int offset,
140 unsigned int length);
141 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
142 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
146 * Test whether an inode is a fast symlink.
147 * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
149 int ext4_inode_is_fast_symlink(struct inode *inode)
151 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
152 int ea_blocks = EXT4_I(inode)->i_file_acl ?
153 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
155 if (ext4_has_inline_data(inode))
158 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
160 return S_ISLNK(inode->i_mode) && inode->i_size &&
161 (inode->i_size < EXT4_N_BLOCKS * 4);
165 * Called at the last iput() if i_nlink is zero.
167 void ext4_evict_inode(struct inode *inode)
172 * Credits for final inode cleanup and freeing:
173 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
174 * (xattr block freeing), bitmap, group descriptor (inode freeing)
176 int extra_credits = 6;
177 struct ext4_xattr_inode_array *ea_inode_array = NULL;
178 bool freeze_protected = false;
180 trace_ext4_evict_inode(inode);
182 if (inode->i_nlink) {
184 * When journalling data dirty buffers are tracked only in the
185 * journal. So although mm thinks everything is clean and
186 * ready for reaping the inode might still have some pages to
187 * write in the running transaction or waiting to be
188 * checkpointed. Thus calling jbd2_journal_invalidatepage()
189 * (via truncate_inode_pages()) to discard these buffers can
190 * cause data loss. Also even if we did not discard these
191 * buffers, we would have no way to find them after the inode
192 * is reaped and thus user could see stale data if he tries to
193 * read them before the transaction is checkpointed. So be
194 * careful and force everything to disk here... We use
195 * ei->i_datasync_tid to store the newest transaction
196 * containing inode's data.
198 * Note that directories do not have this problem because they
199 * don't use page cache.
201 if (inode->i_ino != EXT4_JOURNAL_INO &&
202 ext4_should_journal_data(inode) &&
203 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
204 inode->i_data.nrpages) {
205 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
206 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
208 jbd2_complete_transaction(journal, commit_tid);
209 filemap_write_and_wait(&inode->i_data);
211 truncate_inode_pages_final(&inode->i_data);
216 if (is_bad_inode(inode))
218 dquot_initialize(inode);
220 if (ext4_should_order_data(inode))
221 ext4_begin_ordered_truncate(inode, 0);
222 truncate_inode_pages_final(&inode->i_data);
225 * For inodes with journalled data, transaction commit could have
226 * dirtied the inode. Flush worker is ignoring it because of I_FREEING
227 * flag but we still need to remove the inode from the writeback lists.
229 if (!list_empty_careful(&inode->i_io_list)) {
230 WARN_ON_ONCE(!ext4_should_journal_data(inode));
231 inode_io_list_del(inode);
235 * Protect us against freezing - iput() caller didn't have to have any
236 * protection against it. When we are in a running transaction though,
237 * we are already protected against freezing and we cannot grab further
238 * protection due to lock ordering constraints.
240 if (!ext4_journal_current_handle()) {
241 sb_start_intwrite(inode->i_sb);
242 freeze_protected = true;
245 if (!IS_NOQUOTA(inode))
246 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
249 * Block bitmap, group descriptor, and inode are accounted in both
250 * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
252 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
253 ext4_blocks_for_truncate(inode) + extra_credits - 3);
254 if (IS_ERR(handle)) {
255 ext4_std_error(inode->i_sb, PTR_ERR(handle));
257 * If we're going to skip the normal cleanup, we still need to
258 * make sure that the in-core orphan linked list is properly
261 ext4_orphan_del(NULL, inode);
262 if (freeze_protected)
263 sb_end_intwrite(inode->i_sb);
268 ext4_handle_sync(handle);
271 * Set inode->i_size to 0 before calling ext4_truncate(). We need
272 * special handling of symlinks here because i_size is used to
273 * determine whether ext4_inode_info->i_data contains symlink data or
274 * block mappings. Setting i_size to 0 will remove its fast symlink
275 * status. Erase i_data so that it becomes a valid empty block map.
277 if (ext4_inode_is_fast_symlink(inode))
278 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
280 err = ext4_mark_inode_dirty(handle, inode);
282 ext4_warning(inode->i_sb,
283 "couldn't mark inode dirty (err %d)", err);
286 if (inode->i_blocks) {
287 err = ext4_truncate(inode);
289 ext4_error_err(inode->i_sb, -err,
290 "couldn't truncate inode %lu (err %d)",
296 /* Remove xattr references. */
297 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
300 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
302 ext4_journal_stop(handle);
303 ext4_orphan_del(NULL, inode);
304 if (freeze_protected)
305 sb_end_intwrite(inode->i_sb);
306 ext4_xattr_inode_array_free(ea_inode_array);
311 * Kill off the orphan record which ext4_truncate created.
312 * AKPM: I think this can be inside the above `if'.
313 * Note that ext4_orphan_del() has to be able to cope with the
314 * deletion of a non-existent orphan - this is because we don't
315 * know if ext4_truncate() actually created an orphan record.
316 * (Well, we could do this if we need to, but heck - it works)
318 ext4_orphan_del(handle, inode);
319 EXT4_I(inode)->i_dtime = (__u32)ktime_get_real_seconds();
322 * One subtle ordering requirement: if anything has gone wrong
323 * (transaction abort, IO errors, whatever), then we can still
324 * do these next steps (the fs will already have been marked as
325 * having errors), but we can't free the inode if the mark_dirty
328 if (ext4_mark_inode_dirty(handle, inode))
329 /* If that failed, just do the required in-core inode clear. */
330 ext4_clear_inode(inode);
332 ext4_free_inode(handle, inode);
333 ext4_journal_stop(handle);
334 if (freeze_protected)
335 sb_end_intwrite(inode->i_sb);
336 ext4_xattr_inode_array_free(ea_inode_array);
339 if (!list_empty(&EXT4_I(inode)->i_fc_list))
340 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM);
341 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
345 qsize_t *ext4_get_reserved_space(struct inode *inode)
347 return &EXT4_I(inode)->i_reserved_quota;
352 * Called with i_data_sem down, which is important since we can call
353 * ext4_discard_preallocations() from here.
355 void ext4_da_update_reserve_space(struct inode *inode,
356 int used, int quota_claim)
358 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
359 struct ext4_inode_info *ei = EXT4_I(inode);
361 spin_lock(&ei->i_block_reservation_lock);
362 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
363 if (unlikely(used > ei->i_reserved_data_blocks)) {
364 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
365 "with only %d reserved data blocks",
366 __func__, inode->i_ino, used,
367 ei->i_reserved_data_blocks);
369 used = ei->i_reserved_data_blocks;
372 /* Update per-inode reservations */
373 ei->i_reserved_data_blocks -= used;
374 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
376 spin_unlock(&ei->i_block_reservation_lock);
378 /* Update quota subsystem for data blocks */
380 dquot_claim_block(inode, EXT4_C2B(sbi, used));
383 * We did fallocate with an offset that is already delayed
384 * allocated. So on delayed allocated writeback we should
385 * not re-claim the quota for fallocated blocks.
387 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
391 * If we have done all the pending block allocations and if
392 * there aren't any writers on the inode, we can discard the
393 * inode's preallocations.
395 if ((ei->i_reserved_data_blocks == 0) &&
396 !inode_is_open_for_write(inode))
397 ext4_discard_preallocations(inode, 0);
400 static int __check_block_validity(struct inode *inode, const char *func,
402 struct ext4_map_blocks *map)
404 if (ext4_has_feature_journal(inode->i_sb) &&
406 le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
408 if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
409 ext4_error_inode(inode, func, line, map->m_pblk,
410 "lblock %lu mapped to illegal pblock %llu "
411 "(length %d)", (unsigned long) map->m_lblk,
412 map->m_pblk, map->m_len);
413 return -EFSCORRUPTED;
418 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
423 if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
424 return fscrypt_zeroout_range(inode, lblk, pblk, len);
426 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
433 #define check_block_validity(inode, map) \
434 __check_block_validity((inode), __func__, __LINE__, (map))
436 #ifdef ES_AGGRESSIVE_TEST
437 static void ext4_map_blocks_es_recheck(handle_t *handle,
439 struct ext4_map_blocks *es_map,
440 struct ext4_map_blocks *map,
447 * There is a race window that the result is not the same.
448 * e.g. xfstests #223 when dioread_nolock enables. The reason
449 * is that we lookup a block mapping in extent status tree with
450 * out taking i_data_sem. So at the time the unwritten extent
451 * could be converted.
453 down_read(&EXT4_I(inode)->i_data_sem);
454 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
455 retval = ext4_ext_map_blocks(handle, inode, map, 0);
457 retval = ext4_ind_map_blocks(handle, inode, map, 0);
459 up_read((&EXT4_I(inode)->i_data_sem));
462 * We don't check m_len because extent will be collpased in status
463 * tree. So the m_len might not equal.
465 if (es_map->m_lblk != map->m_lblk ||
466 es_map->m_flags != map->m_flags ||
467 es_map->m_pblk != map->m_pblk) {
468 printk("ES cache assertion failed for inode: %lu "
469 "es_cached ex [%d/%d/%llu/%x] != "
470 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
471 inode->i_ino, es_map->m_lblk, es_map->m_len,
472 es_map->m_pblk, es_map->m_flags, map->m_lblk,
473 map->m_len, map->m_pblk, map->m_flags,
477 #endif /* ES_AGGRESSIVE_TEST */
480 * The ext4_map_blocks() function tries to look up the requested blocks,
481 * and returns if the blocks are already mapped.
483 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
484 * and store the allocated blocks in the result buffer head and mark it
487 * If file type is extents based, it will call ext4_ext_map_blocks(),
488 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
491 * On success, it returns the number of blocks being mapped or allocated. if
492 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
493 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
495 * It returns 0 if plain look up failed (blocks have not been allocated), in
496 * that case, @map is returned as unmapped but we still do fill map->m_len to
497 * indicate the length of a hole starting at map->m_lblk.
499 * It returns the error in case of allocation failure.
501 int ext4_map_blocks(handle_t *handle, struct inode *inode,
502 struct ext4_map_blocks *map, int flags)
504 struct extent_status es;
507 #ifdef ES_AGGRESSIVE_TEST
508 struct ext4_map_blocks orig_map;
510 memcpy(&orig_map, map, sizeof(*map));
514 ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
515 flags, map->m_len, (unsigned long) map->m_lblk);
518 * ext4_map_blocks returns an int, and m_len is an unsigned int
520 if (unlikely(map->m_len > INT_MAX))
521 map->m_len = INT_MAX;
523 /* We can handle the block number less than EXT_MAX_BLOCKS */
524 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
525 return -EFSCORRUPTED;
527 /* Lookup extent status tree firstly */
528 if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) &&
529 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
530 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
531 map->m_pblk = ext4_es_pblock(&es) +
532 map->m_lblk - es.es_lblk;
533 map->m_flags |= ext4_es_is_written(&es) ?
534 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
535 retval = es.es_len - (map->m_lblk - es.es_lblk);
536 if (retval > map->m_len)
539 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
541 retval = es.es_len - (map->m_lblk - es.es_lblk);
542 if (retval > map->m_len)
549 #ifdef ES_AGGRESSIVE_TEST
550 ext4_map_blocks_es_recheck(handle, inode, map,
557 * Try to see if we can get the block without requesting a new
560 down_read(&EXT4_I(inode)->i_data_sem);
561 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
562 retval = ext4_ext_map_blocks(handle, inode, map, 0);
564 retval = ext4_ind_map_blocks(handle, inode, map, 0);
569 if (unlikely(retval != map->m_len)) {
570 ext4_warning(inode->i_sb,
571 "ES len assertion failed for inode "
572 "%lu: retval %d != map->m_len %d",
573 inode->i_ino, retval, map->m_len);
577 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
578 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
579 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
580 !(status & EXTENT_STATUS_WRITTEN) &&
581 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
582 map->m_lblk + map->m_len - 1))
583 status |= EXTENT_STATUS_DELAYED;
584 ret = ext4_es_insert_extent(inode, map->m_lblk,
585 map->m_len, map->m_pblk, status);
589 up_read((&EXT4_I(inode)->i_data_sem));
592 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
593 ret = check_block_validity(inode, map);
598 /* If it is only a block(s) look up */
599 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
603 * Returns if the blocks have already allocated
605 * Note that if blocks have been preallocated
606 * ext4_ext_get_block() returns the create = 0
607 * with buffer head unmapped.
609 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
611 * If we need to convert extent to unwritten
612 * we continue and do the actual work in
613 * ext4_ext_map_blocks()
615 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
619 * Here we clear m_flags because after allocating an new extent,
620 * it will be set again.
622 map->m_flags &= ~EXT4_MAP_FLAGS;
625 * New blocks allocate and/or writing to unwritten extent
626 * will possibly result in updating i_data, so we take
627 * the write lock of i_data_sem, and call get_block()
628 * with create == 1 flag.
630 down_write(&EXT4_I(inode)->i_data_sem);
633 * We need to check for EXT4 here because migrate
634 * could have changed the inode type in between
636 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
637 retval = ext4_ext_map_blocks(handle, inode, map, flags);
639 retval = ext4_ind_map_blocks(handle, inode, map, flags);
641 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
643 * We allocated new blocks which will result in
644 * i_data's format changing. Force the migrate
645 * to fail by clearing migrate flags
647 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
651 * Update reserved blocks/metadata blocks after successful
652 * block allocation which had been deferred till now. We don't
653 * support fallocate for non extent files. So we can update
654 * reserve space here.
657 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
658 ext4_da_update_reserve_space(inode, retval, 1);
664 if (unlikely(retval != map->m_len)) {
665 ext4_warning(inode->i_sb,
666 "ES len assertion failed for inode "
667 "%lu: retval %d != map->m_len %d",
668 inode->i_ino, retval, map->m_len);
673 * We have to zeroout blocks before inserting them into extent
674 * status tree. Otherwise someone could look them up there and
675 * use them before they are really zeroed. We also have to
676 * unmap metadata before zeroing as otherwise writeback can
677 * overwrite zeros with stale data from block device.
679 if (flags & EXT4_GET_BLOCKS_ZERO &&
680 map->m_flags & EXT4_MAP_MAPPED &&
681 map->m_flags & EXT4_MAP_NEW) {
682 ret = ext4_issue_zeroout(inode, map->m_lblk,
683 map->m_pblk, map->m_len);
691 * If the extent has been zeroed out, we don't need to update
692 * extent status tree.
694 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
695 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
696 if (ext4_es_is_written(&es))
699 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
700 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
701 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
702 !(status & EXTENT_STATUS_WRITTEN) &&
703 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
704 map->m_lblk + map->m_len - 1))
705 status |= EXTENT_STATUS_DELAYED;
706 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
707 map->m_pblk, status);
715 up_write((&EXT4_I(inode)->i_data_sem));
716 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
717 ret = check_block_validity(inode, map);
722 * Inodes with freshly allocated blocks where contents will be
723 * visible after transaction commit must be on transaction's
726 if (map->m_flags & EXT4_MAP_NEW &&
727 !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
728 !(flags & EXT4_GET_BLOCKS_ZERO) &&
729 !ext4_is_quota_file(inode) &&
730 ext4_should_order_data(inode)) {
732 (loff_t)map->m_lblk << inode->i_blkbits;
733 loff_t length = (loff_t)map->m_len << inode->i_blkbits;
735 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
736 ret = ext4_jbd2_inode_add_wait(handle, inode,
739 ret = ext4_jbd2_inode_add_write(handle, inode,
744 ext4_fc_track_range(handle, inode, map->m_lblk,
745 map->m_lblk + map->m_len - 1);
749 ext_debug(inode, "failed with err %d\n", retval);
754 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
755 * we have to be careful as someone else may be manipulating b_state as well.
757 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
759 unsigned long old_state;
760 unsigned long new_state;
762 flags &= EXT4_MAP_FLAGS;
764 /* Dummy buffer_head? Set non-atomically. */
766 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
770 * Someone else may be modifying b_state. Be careful! This is ugly but
771 * once we get rid of using bh as a container for mapping information
772 * to pass to / from get_block functions, this can go away.
775 old_state = READ_ONCE(bh->b_state);
776 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
778 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
781 static int _ext4_get_block(struct inode *inode, sector_t iblock,
782 struct buffer_head *bh, int flags)
784 struct ext4_map_blocks map;
787 if (ext4_has_inline_data(inode))
791 map.m_len = bh->b_size >> inode->i_blkbits;
793 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
796 map_bh(bh, inode->i_sb, map.m_pblk);
797 ext4_update_bh_state(bh, map.m_flags);
798 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
800 } else if (ret == 0) {
801 /* hole case, need to fill in bh->b_size */
802 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
807 int ext4_get_block(struct inode *inode, sector_t iblock,
808 struct buffer_head *bh, int create)
810 return _ext4_get_block(inode, iblock, bh,
811 create ? EXT4_GET_BLOCKS_CREATE : 0);
815 * Get block function used when preparing for buffered write if we require
816 * creating an unwritten extent if blocks haven't been allocated. The extent
817 * will be converted to written after the IO is complete.
819 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
820 struct buffer_head *bh_result, int create)
822 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
823 inode->i_ino, create);
824 return _ext4_get_block(inode, iblock, bh_result,
825 EXT4_GET_BLOCKS_IO_CREATE_EXT);
828 /* Maximum number of blocks we map for direct IO at once. */
829 #define DIO_MAX_BLOCKS 4096
832 * `handle' can be NULL if create is zero
834 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
835 ext4_lblk_t block, int map_flags)
837 struct ext4_map_blocks map;
838 struct buffer_head *bh;
839 int create = map_flags & EXT4_GET_BLOCKS_CREATE;
842 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
843 || handle != NULL || create == 0);
847 err = ext4_map_blocks(handle, inode, &map, map_flags);
850 return create ? ERR_PTR(-ENOSPC) : NULL;
854 bh = sb_getblk(inode->i_sb, map.m_pblk);
856 return ERR_PTR(-ENOMEM);
857 if (map.m_flags & EXT4_MAP_NEW) {
859 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
860 || (handle != NULL));
863 * Now that we do not always journal data, we should
864 * keep in mind whether this should always journal the
865 * new buffer as metadata. For now, regular file
866 * writes use ext4_get_block instead, so it's not a
870 BUFFER_TRACE(bh, "call get_create_access");
871 err = ext4_journal_get_create_access(handle, inode->i_sb, bh,
877 if (!buffer_uptodate(bh)) {
878 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
879 set_buffer_uptodate(bh);
882 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
883 err = ext4_handle_dirty_metadata(handle, inode, bh);
887 BUFFER_TRACE(bh, "not a new buffer");
894 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
895 ext4_lblk_t block, int map_flags)
897 struct buffer_head *bh;
900 bh = ext4_getblk(handle, inode, block, map_flags);
903 if (!bh || ext4_buffer_uptodate(bh))
906 ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true);
914 /* Read a contiguous batch of blocks. */
915 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
916 bool wait, struct buffer_head **bhs)
920 for (i = 0; i < bh_count; i++) {
921 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
922 if (IS_ERR(bhs[i])) {
923 err = PTR_ERR(bhs[i]);
929 for (i = 0; i < bh_count; i++)
930 /* Note that NULL bhs[i] is valid because of holes. */
931 if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
932 ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false);
937 for (i = 0; i < bh_count; i++)
939 wait_on_buffer(bhs[i]);
941 for (i = 0; i < bh_count; i++) {
942 if (bhs[i] && !buffer_uptodate(bhs[i])) {
950 for (i = 0; i < bh_count; i++) {
957 int ext4_walk_page_buffers(handle_t *handle, struct inode *inode,
958 struct buffer_head *head,
962 int (*fn)(handle_t *handle, struct inode *inode,
963 struct buffer_head *bh))
965 struct buffer_head *bh;
966 unsigned block_start, block_end;
967 unsigned blocksize = head->b_size;
969 struct buffer_head *next;
971 for (bh = head, block_start = 0;
972 ret == 0 && (bh != head || !block_start);
973 block_start = block_end, bh = next) {
974 next = bh->b_this_page;
975 block_end = block_start + blocksize;
976 if (block_end <= from || block_start >= to) {
977 if (partial && !buffer_uptodate(bh))
981 err = (*fn)(handle, inode, bh);
989 * To preserve ordering, it is essential that the hole instantiation and
990 * the data write be encapsulated in a single transaction. We cannot
991 * close off a transaction and start a new one between the ext4_get_block()
992 * and the commit_write(). So doing the jbd2_journal_start at the start of
993 * prepare_write() is the right place.
995 * Also, this function can nest inside ext4_writepage(). In that case, we
996 * *know* that ext4_writepage() has generated enough buffer credits to do the
997 * whole page. So we won't block on the journal in that case, which is good,
998 * because the caller may be PF_MEMALLOC.
1000 * By accident, ext4 can be reentered when a transaction is open via
1001 * quota file writes. If we were to commit the transaction while thus
1002 * reentered, there can be a deadlock - we would be holding a quota
1003 * lock, and the commit would never complete if another thread had a
1004 * transaction open and was blocking on the quota lock - a ranking
1007 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1008 * will _not_ run commit under these circumstances because handle->h_ref
1009 * is elevated. We'll still have enough credits for the tiny quotafile
1012 int do_journal_get_write_access(handle_t *handle, struct inode *inode,
1013 struct buffer_head *bh)
1015 int dirty = buffer_dirty(bh);
1018 if (!buffer_mapped(bh) || buffer_freed(bh))
1021 * __block_write_begin() could have dirtied some buffers. Clean
1022 * the dirty bit as jbd2_journal_get_write_access() could complain
1023 * otherwise about fs integrity issues. Setting of the dirty bit
1024 * by __block_write_begin() isn't a real problem here as we clear
1025 * the bit before releasing a page lock and thus writeback cannot
1026 * ever write the buffer.
1029 clear_buffer_dirty(bh);
1030 BUFFER_TRACE(bh, "get write access");
1031 ret = ext4_journal_get_write_access(handle, inode->i_sb, bh,
1034 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1038 #ifdef CONFIG_FS_ENCRYPTION
1039 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1040 get_block_t *get_block)
1042 unsigned from = pos & (PAGE_SIZE - 1);
1043 unsigned to = from + len;
1044 struct inode *inode = page->mapping->host;
1045 unsigned block_start, block_end;
1048 unsigned blocksize = inode->i_sb->s_blocksize;
1050 struct buffer_head *bh, *head, *wait[2];
1054 BUG_ON(!PageLocked(page));
1055 BUG_ON(from > PAGE_SIZE);
1056 BUG_ON(to > PAGE_SIZE);
1059 if (!page_has_buffers(page))
1060 create_empty_buffers(page, blocksize, 0);
1061 head = page_buffers(page);
1062 bbits = ilog2(blocksize);
1063 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1065 for (bh = head, block_start = 0; bh != head || !block_start;
1066 block++, block_start = block_end, bh = bh->b_this_page) {
1067 block_end = block_start + blocksize;
1068 if (block_end <= from || block_start >= to) {
1069 if (PageUptodate(page)) {
1070 set_buffer_uptodate(bh);
1075 clear_buffer_new(bh);
1076 if (!buffer_mapped(bh)) {
1077 WARN_ON(bh->b_size != blocksize);
1078 err = get_block(inode, block, bh, 1);
1081 if (buffer_new(bh)) {
1082 if (PageUptodate(page)) {
1083 clear_buffer_new(bh);
1084 set_buffer_uptodate(bh);
1085 mark_buffer_dirty(bh);
1088 if (block_end > to || block_start < from)
1089 zero_user_segments(page, to, block_end,
1094 if (PageUptodate(page)) {
1095 set_buffer_uptodate(bh);
1098 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1099 !buffer_unwritten(bh) &&
1100 (block_start < from || block_end > to)) {
1101 ext4_read_bh_lock(bh, 0, false);
1102 wait[nr_wait++] = bh;
1106 * If we issued read requests, let them complete.
1108 for (i = 0; i < nr_wait; i++) {
1109 wait_on_buffer(wait[i]);
1110 if (!buffer_uptodate(wait[i]))
1113 if (unlikely(err)) {
1114 page_zero_new_buffers(page, from, to);
1115 } else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1116 for (i = 0; i < nr_wait; i++) {
1119 err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize,
1120 bh_offset(wait[i]));
1122 clear_buffer_uptodate(wait[i]);
1132 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1133 loff_t pos, unsigned len, unsigned flags,
1134 struct page **pagep, void **fsdata)
1136 struct inode *inode = mapping->host;
1137 int ret, needed_blocks;
1144 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1147 trace_ext4_write_begin(inode, pos, len, flags);
1149 * Reserve one block more for addition to orphan list in case
1150 * we allocate blocks but write fails for some reason
1152 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1153 index = pos >> PAGE_SHIFT;
1154 from = pos & (PAGE_SIZE - 1);
1157 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1158 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1167 * grab_cache_page_write_begin() can take a long time if the
1168 * system is thrashing due to memory pressure, or if the page
1169 * is being written back. So grab it first before we start
1170 * the transaction handle. This also allows us to allocate
1171 * the page (if needed) without using GFP_NOFS.
1174 page = grab_cache_page_write_begin(mapping, index, flags);
1180 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1181 if (IS_ERR(handle)) {
1183 return PTR_ERR(handle);
1187 if (page->mapping != mapping) {
1188 /* The page got truncated from under us */
1191 ext4_journal_stop(handle);
1194 /* In case writeback began while the page was unlocked */
1195 wait_for_stable_page(page);
1197 #ifdef CONFIG_FS_ENCRYPTION
1198 if (ext4_should_dioread_nolock(inode))
1199 ret = ext4_block_write_begin(page, pos, len,
1200 ext4_get_block_unwritten);
1202 ret = ext4_block_write_begin(page, pos, len,
1205 if (ext4_should_dioread_nolock(inode))
1206 ret = __block_write_begin(page, pos, len,
1207 ext4_get_block_unwritten);
1209 ret = __block_write_begin(page, pos, len, ext4_get_block);
1211 if (!ret && ext4_should_journal_data(inode)) {
1212 ret = ext4_walk_page_buffers(handle, inode,
1213 page_buffers(page), from, to, NULL,
1214 do_journal_get_write_access);
1218 bool extended = (pos + len > inode->i_size) &&
1219 !ext4_verity_in_progress(inode);
1223 * __block_write_begin may have instantiated a few blocks
1224 * outside i_size. Trim these off again. Don't need
1225 * i_size_read because we hold i_mutex.
1227 * Add inode to orphan list in case we crash before
1230 if (extended && ext4_can_truncate(inode))
1231 ext4_orphan_add(handle, inode);
1233 ext4_journal_stop(handle);
1235 ext4_truncate_failed_write(inode);
1237 * If truncate failed early the inode might
1238 * still be on the orphan list; we need to
1239 * make sure the inode is removed from the
1240 * orphan list in that case.
1243 ext4_orphan_del(NULL, inode);
1246 if (ret == -ENOSPC &&
1247 ext4_should_retry_alloc(inode->i_sb, &retries))
1256 /* For write_end() in data=journal mode */
1257 static int write_end_fn(handle_t *handle, struct inode *inode,
1258 struct buffer_head *bh)
1261 if (!buffer_mapped(bh) || buffer_freed(bh))
1263 set_buffer_uptodate(bh);
1264 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1265 clear_buffer_meta(bh);
1266 clear_buffer_prio(bh);
1271 * We need to pick up the new inode size which generic_commit_write gave us
1272 * `file' can be NULL - eg, when called from page_symlink().
1274 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1275 * buffers are managed internally.
1277 static int ext4_write_end(struct file *file,
1278 struct address_space *mapping,
1279 loff_t pos, unsigned len, unsigned copied,
1280 struct page *page, void *fsdata)
1282 handle_t *handle = ext4_journal_current_handle();
1283 struct inode *inode = mapping->host;
1284 loff_t old_size = inode->i_size;
1286 int i_size_changed = 0;
1287 int inline_data = ext4_has_inline_data(inode);
1288 bool verity = ext4_verity_in_progress(inode);
1290 trace_ext4_write_end(inode, pos, len, copied);
1292 ret = ext4_write_inline_data_end(inode, pos, len,
1301 copied = block_write_end(file, mapping, pos,
1302 len, copied, page, fsdata);
1304 * it's important to update i_size while still holding page lock:
1305 * page writeout could otherwise come in and zero beyond i_size.
1307 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1308 * blocks are being written past EOF, so skip the i_size update.
1311 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1315 if (old_size < pos && !verity)
1316 pagecache_isize_extended(inode, old_size, pos);
1318 * Don't mark the inode dirty under page lock. First, it unnecessarily
1319 * makes the holding time of page lock longer. Second, it forces lock
1320 * ordering of page lock and transaction start for journaling
1323 if (i_size_changed || inline_data)
1324 ret = ext4_mark_inode_dirty(handle, inode);
1326 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1327 /* if we have allocated more blocks and copied
1328 * less. We will have blocks allocated outside
1329 * inode->i_size. So truncate them
1331 ext4_orphan_add(handle, inode);
1333 ret2 = ext4_journal_stop(handle);
1337 if (pos + len > inode->i_size && !verity) {
1338 ext4_truncate_failed_write(inode);
1340 * If truncate failed early the inode might still be
1341 * on the orphan list; we need to make sure the inode
1342 * is removed from the orphan list in that case.
1345 ext4_orphan_del(NULL, inode);
1348 return ret ? ret : copied;
1352 * This is a private version of page_zero_new_buffers() which doesn't
1353 * set the buffer to be dirty, since in data=journalled mode we need
1354 * to call ext4_handle_dirty_metadata() instead.
1356 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1357 struct inode *inode,
1359 unsigned from, unsigned to)
1361 unsigned int block_start = 0, block_end;
1362 struct buffer_head *head, *bh;
1364 bh = head = page_buffers(page);
1366 block_end = block_start + bh->b_size;
1367 if (buffer_new(bh)) {
1368 if (block_end > from && block_start < to) {
1369 if (!PageUptodate(page)) {
1370 unsigned start, size;
1372 start = max(from, block_start);
1373 size = min(to, block_end) - start;
1375 zero_user(page, start, size);
1376 write_end_fn(handle, inode, bh);
1378 clear_buffer_new(bh);
1381 block_start = block_end;
1382 bh = bh->b_this_page;
1383 } while (bh != head);
1386 static int ext4_journalled_write_end(struct file *file,
1387 struct address_space *mapping,
1388 loff_t pos, unsigned len, unsigned copied,
1389 struct page *page, void *fsdata)
1391 handle_t *handle = ext4_journal_current_handle();
1392 struct inode *inode = mapping->host;
1393 loff_t old_size = inode->i_size;
1397 int size_changed = 0;
1398 int inline_data = ext4_has_inline_data(inode);
1399 bool verity = ext4_verity_in_progress(inode);
1401 trace_ext4_journalled_write_end(inode, pos, len, copied);
1402 from = pos & (PAGE_SIZE - 1);
1405 BUG_ON(!ext4_handle_valid(handle));
1408 ret = ext4_write_inline_data_end(inode, pos, len,
1416 } else if (unlikely(copied < len) && !PageUptodate(page)) {
1418 ext4_journalled_zero_new_buffers(handle, inode, page, from, to);
1420 if (unlikely(copied < len))
1421 ext4_journalled_zero_new_buffers(handle, inode, page,
1423 ret = ext4_walk_page_buffers(handle, inode, page_buffers(page),
1424 from, from + copied, &partial,
1427 SetPageUptodate(page);
1430 size_changed = ext4_update_inode_size(inode, pos + copied);
1431 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1432 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1436 if (old_size < pos && !verity)
1437 pagecache_isize_extended(inode, old_size, pos);
1439 if (size_changed || inline_data) {
1440 ret2 = ext4_mark_inode_dirty(handle, inode);
1445 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1446 /* if we have allocated more blocks and copied
1447 * less. We will have blocks allocated outside
1448 * inode->i_size. So truncate them
1450 ext4_orphan_add(handle, inode);
1453 ret2 = ext4_journal_stop(handle);
1456 if (pos + len > inode->i_size && !verity) {
1457 ext4_truncate_failed_write(inode);
1459 * If truncate failed early the inode might still be
1460 * on the orphan list; we need to make sure the inode
1461 * is removed from the orphan list in that case.
1464 ext4_orphan_del(NULL, inode);
1467 return ret ? ret : copied;
1471 * Reserve space for a single cluster
1473 static int ext4_da_reserve_space(struct inode *inode)
1475 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1476 struct ext4_inode_info *ei = EXT4_I(inode);
1480 * We will charge metadata quota at writeout time; this saves
1481 * us from metadata over-estimation, though we may go over by
1482 * a small amount in the end. Here we just reserve for data.
1484 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1488 spin_lock(&ei->i_block_reservation_lock);
1489 if (ext4_claim_free_clusters(sbi, 1, 0)) {
1490 spin_unlock(&ei->i_block_reservation_lock);
1491 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1494 ei->i_reserved_data_blocks++;
1495 trace_ext4_da_reserve_space(inode);
1496 spin_unlock(&ei->i_block_reservation_lock);
1498 return 0; /* success */
1501 void ext4_da_release_space(struct inode *inode, int to_free)
1503 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1504 struct ext4_inode_info *ei = EXT4_I(inode);
1507 return; /* Nothing to release, exit */
1509 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1511 trace_ext4_da_release_space(inode, to_free);
1512 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1514 * if there aren't enough reserved blocks, then the
1515 * counter is messed up somewhere. Since this
1516 * function is called from invalidate page, it's
1517 * harmless to return without any action.
1519 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1520 "ino %lu, to_free %d with only %d reserved "
1521 "data blocks", inode->i_ino, to_free,
1522 ei->i_reserved_data_blocks);
1524 to_free = ei->i_reserved_data_blocks;
1526 ei->i_reserved_data_blocks -= to_free;
1528 /* update fs dirty data blocks counter */
1529 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1531 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1533 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1537 * Delayed allocation stuff
1540 struct mpage_da_data {
1541 struct inode *inode;
1542 struct writeback_control *wbc;
1544 pgoff_t first_page; /* The first page to write */
1545 pgoff_t next_page; /* Current page to examine */
1546 pgoff_t last_page; /* Last page to examine */
1548 * Extent to map - this can be after first_page because that can be
1549 * fully mapped. We somewhat abuse m_flags to store whether the extent
1550 * is delalloc or unwritten.
1552 struct ext4_map_blocks map;
1553 struct ext4_io_submit io_submit; /* IO submission data */
1554 unsigned int do_map:1;
1555 unsigned int scanned_until_end:1;
1558 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1563 struct pagevec pvec;
1564 struct inode *inode = mpd->inode;
1565 struct address_space *mapping = inode->i_mapping;
1567 /* This is necessary when next_page == 0. */
1568 if (mpd->first_page >= mpd->next_page)
1571 mpd->scanned_until_end = 0;
1572 index = mpd->first_page;
1573 end = mpd->next_page - 1;
1575 ext4_lblk_t start, last;
1576 start = index << (PAGE_SHIFT - inode->i_blkbits);
1577 last = end << (PAGE_SHIFT - inode->i_blkbits);
1578 ext4_es_remove_extent(inode, start, last - start + 1);
1581 pagevec_init(&pvec);
1582 while (index <= end) {
1583 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1586 for (i = 0; i < nr_pages; i++) {
1587 struct page *page = pvec.pages[i];
1589 BUG_ON(!PageLocked(page));
1590 BUG_ON(PageWriteback(page));
1592 if (page_mapped(page))
1593 clear_page_dirty_for_io(page);
1594 block_invalidatepage(page, 0, PAGE_SIZE);
1595 ClearPageUptodate(page);
1599 pagevec_release(&pvec);
1603 static void ext4_print_free_blocks(struct inode *inode)
1605 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1606 struct super_block *sb = inode->i_sb;
1607 struct ext4_inode_info *ei = EXT4_I(inode);
1609 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1610 EXT4_C2B(EXT4_SB(inode->i_sb),
1611 ext4_count_free_clusters(sb)));
1612 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1613 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1614 (long long) EXT4_C2B(EXT4_SB(sb),
1615 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1616 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1617 (long long) EXT4_C2B(EXT4_SB(sb),
1618 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1619 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1620 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1621 ei->i_reserved_data_blocks);
1625 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct inode *inode,
1626 struct buffer_head *bh)
1628 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1632 * ext4_insert_delayed_block - adds a delayed block to the extents status
1633 * tree, incrementing the reserved cluster/block
1634 * count or making a pending reservation
1637 * @inode - file containing the newly added block
1638 * @lblk - logical block to be added
1640 * Returns 0 on success, negative error code on failure.
1642 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1644 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1646 bool allocated = false;
1649 * If the cluster containing lblk is shared with a delayed,
1650 * written, or unwritten extent in a bigalloc file system, it's
1651 * already been accounted for and does not need to be reserved.
1652 * A pending reservation must be made for the cluster if it's
1653 * shared with a written or unwritten extent and doesn't already
1654 * have one. Written and unwritten extents can be purged from the
1655 * extents status tree if the system is under memory pressure, so
1656 * it's necessary to examine the extent tree if a search of the
1657 * extents status tree doesn't get a match.
1659 if (sbi->s_cluster_ratio == 1) {
1660 ret = ext4_da_reserve_space(inode);
1661 if (ret != 0) /* ENOSPC */
1663 } else { /* bigalloc */
1664 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1665 if (!ext4_es_scan_clu(inode,
1666 &ext4_es_is_mapped, lblk)) {
1667 ret = ext4_clu_mapped(inode,
1668 EXT4_B2C(sbi, lblk));
1672 ret = ext4_da_reserve_space(inode);
1673 if (ret != 0) /* ENOSPC */
1684 ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1691 * This function is grabs code from the very beginning of
1692 * ext4_map_blocks, but assumes that the caller is from delayed write
1693 * time. This function looks up the requested blocks and sets the
1694 * buffer delay bit under the protection of i_data_sem.
1696 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1697 struct ext4_map_blocks *map,
1698 struct buffer_head *bh)
1700 struct extent_status es;
1702 sector_t invalid_block = ~((sector_t) 0xffff);
1703 #ifdef ES_AGGRESSIVE_TEST
1704 struct ext4_map_blocks orig_map;
1706 memcpy(&orig_map, map, sizeof(*map));
1709 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1713 ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1714 (unsigned long) map->m_lblk);
1716 /* Lookup extent status tree firstly */
1717 if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1718 if (ext4_es_is_hole(&es)) {
1720 down_read(&EXT4_I(inode)->i_data_sem);
1725 * Delayed extent could be allocated by fallocate.
1726 * So we need to check it.
1728 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1729 map_bh(bh, inode->i_sb, invalid_block);
1731 set_buffer_delay(bh);
1735 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1736 retval = es.es_len - (iblock - es.es_lblk);
1737 if (retval > map->m_len)
1738 retval = map->m_len;
1739 map->m_len = retval;
1740 if (ext4_es_is_written(&es))
1741 map->m_flags |= EXT4_MAP_MAPPED;
1742 else if (ext4_es_is_unwritten(&es))
1743 map->m_flags |= EXT4_MAP_UNWRITTEN;
1747 #ifdef ES_AGGRESSIVE_TEST
1748 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1754 * Try to see if we can get the block without requesting a new
1755 * file system block.
1757 down_read(&EXT4_I(inode)->i_data_sem);
1758 if (ext4_has_inline_data(inode))
1760 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1761 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1763 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1770 * XXX: __block_prepare_write() unmaps passed block,
1774 ret = ext4_insert_delayed_block(inode, map->m_lblk);
1780 map_bh(bh, inode->i_sb, invalid_block);
1782 set_buffer_delay(bh);
1783 } else if (retval > 0) {
1785 unsigned int status;
1787 if (unlikely(retval != map->m_len)) {
1788 ext4_warning(inode->i_sb,
1789 "ES len assertion failed for inode "
1790 "%lu: retval %d != map->m_len %d",
1791 inode->i_ino, retval, map->m_len);
1795 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1796 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1797 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1798 map->m_pblk, status);
1804 up_read((&EXT4_I(inode)->i_data_sem));
1810 * This is a special get_block_t callback which is used by
1811 * ext4_da_write_begin(). It will either return mapped block or
1812 * reserve space for a single block.
1814 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1815 * We also have b_blocknr = -1 and b_bdev initialized properly
1817 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1818 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1819 * initialized properly.
1821 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1822 struct buffer_head *bh, int create)
1824 struct ext4_map_blocks map;
1827 BUG_ON(create == 0);
1828 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1830 map.m_lblk = iblock;
1834 * first, we need to know whether the block is allocated already
1835 * preallocated blocks are unmapped but should treated
1836 * the same as allocated blocks.
1838 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1842 map_bh(bh, inode->i_sb, map.m_pblk);
1843 ext4_update_bh_state(bh, map.m_flags);
1845 if (buffer_unwritten(bh)) {
1846 /* A delayed write to unwritten bh should be marked
1847 * new and mapped. Mapped ensures that we don't do
1848 * get_block multiple times when we write to the same
1849 * offset and new ensures that we do proper zero out
1850 * for partial write.
1853 set_buffer_mapped(bh);
1858 static int bget_one(handle_t *handle, struct inode *inode,
1859 struct buffer_head *bh)
1865 static int bput_one(handle_t *handle, struct inode *inode,
1866 struct buffer_head *bh)
1872 static int __ext4_journalled_writepage(struct page *page,
1875 struct address_space *mapping = page->mapping;
1876 struct inode *inode = mapping->host;
1877 struct buffer_head *page_bufs = NULL;
1878 handle_t *handle = NULL;
1879 int ret = 0, err = 0;
1880 int inline_data = ext4_has_inline_data(inode);
1881 struct buffer_head *inode_bh = NULL;
1883 ClearPageChecked(page);
1886 BUG_ON(page->index != 0);
1887 BUG_ON(len > ext4_get_max_inline_size(inode));
1888 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1889 if (inode_bh == NULL)
1892 page_bufs = page_buffers(page);
1897 ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
1901 * We need to release the page lock before we start the
1902 * journal, so grab a reference so the page won't disappear
1903 * out from under us.
1908 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1909 ext4_writepage_trans_blocks(inode));
1910 if (IS_ERR(handle)) {
1911 ret = PTR_ERR(handle);
1913 goto out_no_pagelock;
1915 BUG_ON(!ext4_handle_valid(handle));
1919 if (page->mapping != mapping) {
1920 /* The page got truncated from under us */
1921 ext4_journal_stop(handle);
1927 ret = ext4_mark_inode_dirty(handle, inode);
1929 ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
1930 NULL, do_journal_get_write_access);
1932 err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
1933 NULL, write_end_fn);
1937 err = ext4_jbd2_inode_add_write(handle, inode, page_offset(page), len);
1940 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1941 err = ext4_journal_stop(handle);
1945 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1949 if (!inline_data && page_bufs)
1950 ext4_walk_page_buffers(NULL, inode, page_bufs, 0, len,
1957 * Note that we don't need to start a transaction unless we're journaling data
1958 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1959 * need to file the inode to the transaction's list in ordered mode because if
1960 * we are writing back data added by write(), the inode is already there and if
1961 * we are writing back data modified via mmap(), no one guarantees in which
1962 * transaction the data will hit the disk. In case we are journaling data, we
1963 * cannot start transaction directly because transaction start ranks above page
1964 * lock so we have to do some magic.
1966 * This function can get called via...
1967 * - ext4_writepages after taking page lock (have journal handle)
1968 * - journal_submit_inode_data_buffers (no journal handle)
1969 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1970 * - grab_page_cache when doing write_begin (have journal handle)
1972 * We don't do any block allocation in this function. If we have page with
1973 * multiple blocks we need to write those buffer_heads that are mapped. This
1974 * is important for mmaped based write. So if we do with blocksize 1K
1975 * truncate(f, 1024);
1976 * a = mmap(f, 0, 4096);
1978 * truncate(f, 4096);
1979 * we have in the page first buffer_head mapped via page_mkwrite call back
1980 * but other buffer_heads would be unmapped but dirty (dirty done via the
1981 * do_wp_page). So writepage should write the first block. If we modify
1982 * the mmap area beyond 1024 we will again get a page_fault and the
1983 * page_mkwrite callback will do the block allocation and mark the
1984 * buffer_heads mapped.
1986 * We redirty the page if we have any buffer_heads that is either delay or
1987 * unwritten in the page.
1989 * We can get recursively called as show below.
1991 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1994 * But since we don't do any block allocation we should not deadlock.
1995 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1997 static int ext4_writepage(struct page *page,
1998 struct writeback_control *wbc)
2003 struct buffer_head *page_bufs = NULL;
2004 struct inode *inode = page->mapping->host;
2005 struct ext4_io_submit io_submit;
2006 bool keep_towrite = false;
2008 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2009 inode->i_mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
2014 trace_ext4_writepage(page);
2015 size = i_size_read(inode);
2016 if (page->index == size >> PAGE_SHIFT &&
2017 !ext4_verity_in_progress(inode))
2018 len = size & ~PAGE_MASK;
2022 page_bufs = page_buffers(page);
2024 * We cannot do block allocation or other extent handling in this
2025 * function. If there are buffers needing that, we have to redirty
2026 * the page. But we may reach here when we do a journal commit via
2027 * journal_submit_inode_data_buffers() and in that case we must write
2028 * allocated buffers to achieve data=ordered mode guarantees.
2030 * Also, if there is only one buffer per page (the fs block
2031 * size == the page size), if one buffer needs block
2032 * allocation or needs to modify the extent tree to clear the
2033 * unwritten flag, we know that the page can't be written at
2034 * all, so we might as well refuse the write immediately.
2035 * Unfortunately if the block size != page size, we can't as
2036 * easily detect this case using ext4_walk_page_buffers(), but
2037 * for the extremely common case, this is an optimization that
2038 * skips a useless round trip through ext4_bio_write_page().
2040 if (ext4_walk_page_buffers(NULL, inode, page_bufs, 0, len, NULL,
2041 ext4_bh_delay_or_unwritten)) {
2042 redirty_page_for_writepage(wbc, page);
2043 if ((current->flags & PF_MEMALLOC) ||
2044 (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2046 * For memory cleaning there's no point in writing only
2047 * some buffers. So just bail out. Warn if we came here
2048 * from direct reclaim.
2050 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2055 keep_towrite = true;
2058 if (PageChecked(page) && ext4_should_journal_data(inode))
2060 * It's mmapped pagecache. Add buffers and journal it. There
2061 * doesn't seem much point in redirtying the page here.
2063 return __ext4_journalled_writepage(page, len);
2065 ext4_io_submit_init(&io_submit, wbc);
2066 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2067 if (!io_submit.io_end) {
2068 redirty_page_for_writepage(wbc, page);
2072 ret = ext4_bio_write_page(&io_submit, page, len, keep_towrite);
2073 ext4_io_submit(&io_submit);
2074 /* Drop io_end reference we got from init */
2075 ext4_put_io_end_defer(io_submit.io_end);
2079 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2085 BUG_ON(page->index != mpd->first_page);
2086 clear_page_dirty_for_io(page);
2088 * We have to be very careful here! Nothing protects writeback path
2089 * against i_size changes and the page can be writeably mapped into
2090 * page tables. So an application can be growing i_size and writing
2091 * data through mmap while writeback runs. clear_page_dirty_for_io()
2092 * write-protects our page in page tables and the page cannot get
2093 * written to again until we release page lock. So only after
2094 * clear_page_dirty_for_io() we are safe to sample i_size for
2095 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2096 * on the barrier provided by TestClearPageDirty in
2097 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2098 * after page tables are updated.
2100 size = i_size_read(mpd->inode);
2101 if (page->index == size >> PAGE_SHIFT &&
2102 !ext4_verity_in_progress(mpd->inode))
2103 len = size & ~PAGE_MASK;
2106 err = ext4_bio_write_page(&mpd->io_submit, page, len, false);
2108 mpd->wbc->nr_to_write--;
2114 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
2117 * mballoc gives us at most this number of blocks...
2118 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2119 * The rest of mballoc seems to handle chunks up to full group size.
2121 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2124 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2126 * @mpd - extent of blocks
2127 * @lblk - logical number of the block in the file
2128 * @bh - buffer head we want to add to the extent
2130 * The function is used to collect contig. blocks in the same state. If the
2131 * buffer doesn't require mapping for writeback and we haven't started the
2132 * extent of buffers to map yet, the function returns 'true' immediately - the
2133 * caller can write the buffer right away. Otherwise the function returns true
2134 * if the block has been added to the extent, false if the block couldn't be
2137 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2138 struct buffer_head *bh)
2140 struct ext4_map_blocks *map = &mpd->map;
2142 /* Buffer that doesn't need mapping for writeback? */
2143 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2144 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2145 /* So far no extent to map => we write the buffer right away */
2146 if (map->m_len == 0)
2151 /* First block in the extent? */
2152 if (map->m_len == 0) {
2153 /* We cannot map unless handle is started... */
2158 map->m_flags = bh->b_state & BH_FLAGS;
2162 /* Don't go larger than mballoc is willing to allocate */
2163 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2166 /* Can we merge the block to our big extent? */
2167 if (lblk == map->m_lblk + map->m_len &&
2168 (bh->b_state & BH_FLAGS) == map->m_flags) {
2176 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2178 * @mpd - extent of blocks for mapping
2179 * @head - the first buffer in the page
2180 * @bh - buffer we should start processing from
2181 * @lblk - logical number of the block in the file corresponding to @bh
2183 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2184 * the page for IO if all buffers in this page were mapped and there's no
2185 * accumulated extent of buffers to map or add buffers in the page to the
2186 * extent of buffers to map. The function returns 1 if the caller can continue
2187 * by processing the next page, 0 if it should stop adding buffers to the
2188 * extent to map because we cannot extend it anymore. It can also return value
2189 * < 0 in case of error during IO submission.
2191 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2192 struct buffer_head *head,
2193 struct buffer_head *bh,
2196 struct inode *inode = mpd->inode;
2198 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2199 >> inode->i_blkbits;
2201 if (ext4_verity_in_progress(inode))
2202 blocks = EXT_MAX_BLOCKS;
2205 BUG_ON(buffer_locked(bh));
2207 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2208 /* Found extent to map? */
2211 /* Buffer needs mapping and handle is not started? */
2214 /* Everything mapped so far and we hit EOF */
2217 } while (lblk++, (bh = bh->b_this_page) != head);
2218 /* So far everything mapped? Submit the page for IO. */
2219 if (mpd->map.m_len == 0) {
2220 err = mpage_submit_page(mpd, head->b_page);
2224 if (lblk >= blocks) {
2225 mpd->scanned_until_end = 1;
2232 * mpage_process_page - update page buffers corresponding to changed extent and
2233 * may submit fully mapped page for IO
2235 * @mpd - description of extent to map, on return next extent to map
2236 * @m_lblk - logical block mapping.
2237 * @m_pblk - corresponding physical mapping.
2238 * @map_bh - determines on return whether this page requires any further
2240 * Scan given page buffers corresponding to changed extent and update buffer
2241 * state according to new extent state.
2242 * We map delalloc buffers to their physical location, clear unwritten bits.
2243 * If the given page is not fully mapped, we update @map to the next extent in
2244 * the given page that needs mapping & return @map_bh as true.
2246 static int mpage_process_page(struct mpage_da_data *mpd, struct page *page,
2247 ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2250 struct buffer_head *head, *bh;
2251 ext4_io_end_t *io_end = mpd->io_submit.io_end;
2252 ext4_lblk_t lblk = *m_lblk;
2253 ext4_fsblk_t pblock = *m_pblk;
2255 int blkbits = mpd->inode->i_blkbits;
2256 ssize_t io_end_size = 0;
2257 struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2259 bh = head = page_buffers(page);
2261 if (lblk < mpd->map.m_lblk)
2263 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2265 * Buffer after end of mapped extent.
2266 * Find next buffer in the page to map.
2269 mpd->map.m_flags = 0;
2270 io_end_vec->size += io_end_size;
2273 err = mpage_process_page_bufs(mpd, head, bh, lblk);
2276 if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2277 io_end_vec = ext4_alloc_io_end_vec(io_end);
2278 if (IS_ERR(io_end_vec)) {
2279 err = PTR_ERR(io_end_vec);
2282 io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits;
2287 if (buffer_delay(bh)) {
2288 clear_buffer_delay(bh);
2289 bh->b_blocknr = pblock++;
2291 clear_buffer_unwritten(bh);
2292 io_end_size += (1 << blkbits);
2293 } while (lblk++, (bh = bh->b_this_page) != head);
2295 io_end_vec->size += io_end_size;
2305 * mpage_map_buffers - update buffers corresponding to changed extent and
2306 * submit fully mapped pages for IO
2308 * @mpd - description of extent to map, on return next extent to map
2310 * Scan buffers corresponding to changed extent (we expect corresponding pages
2311 * to be already locked) and update buffer state according to new extent state.
2312 * We map delalloc buffers to their physical location, clear unwritten bits,
2313 * and mark buffers as uninit when we perform writes to unwritten extents
2314 * and do extent conversion after IO is finished. If the last page is not fully
2315 * mapped, we update @map to the next extent in the last page that needs
2316 * mapping. Otherwise we submit the page for IO.
2318 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2320 struct pagevec pvec;
2322 struct inode *inode = mpd->inode;
2323 int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2326 ext4_fsblk_t pblock;
2328 bool map_bh = false;
2330 start = mpd->map.m_lblk >> bpp_bits;
2331 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2332 lblk = start << bpp_bits;
2333 pblock = mpd->map.m_pblk;
2335 pagevec_init(&pvec);
2336 while (start <= end) {
2337 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2341 for (i = 0; i < nr_pages; i++) {
2342 struct page *page = pvec.pages[i];
2344 err = mpage_process_page(mpd, page, &lblk, &pblock,
2347 * If map_bh is true, means page may require further bh
2348 * mapping, or maybe the page was submitted for IO.
2349 * So we return to call further extent mapping.
2351 if (err < 0 || map_bh)
2353 /* Page fully mapped - let IO run! */
2354 err = mpage_submit_page(mpd, page);
2358 pagevec_release(&pvec);
2360 /* Extent fully mapped and matches with page boundary. We are done. */
2362 mpd->map.m_flags = 0;
2365 pagevec_release(&pvec);
2369 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2371 struct inode *inode = mpd->inode;
2372 struct ext4_map_blocks *map = &mpd->map;
2373 int get_blocks_flags;
2374 int err, dioread_nolock;
2376 trace_ext4_da_write_pages_extent(inode, map);
2378 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2379 * to convert an unwritten extent to be initialized (in the case
2380 * where we have written into one or more preallocated blocks). It is
2381 * possible that we're going to need more metadata blocks than
2382 * previously reserved. However we must not fail because we're in
2383 * writeback and there is nothing we can do about it so it might result
2384 * in data loss. So use reserved blocks to allocate metadata if
2387 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2388 * the blocks in question are delalloc blocks. This indicates
2389 * that the blocks and quotas has already been checked when
2390 * the data was copied into the page cache.
2392 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2393 EXT4_GET_BLOCKS_METADATA_NOFAIL |
2394 EXT4_GET_BLOCKS_IO_SUBMIT;
2395 dioread_nolock = ext4_should_dioread_nolock(inode);
2397 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2398 if (map->m_flags & BIT(BH_Delay))
2399 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2401 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2404 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2405 if (!mpd->io_submit.io_end->handle &&
2406 ext4_handle_valid(handle)) {
2407 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2408 handle->h_rsv_handle = NULL;
2410 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2413 BUG_ON(map->m_len == 0);
2418 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2419 * mpd->len and submit pages underlying it for IO
2421 * @handle - handle for journal operations
2422 * @mpd - extent to map
2423 * @give_up_on_write - we set this to true iff there is a fatal error and there
2424 * is no hope of writing the data. The caller should discard
2425 * dirty pages to avoid infinite loops.
2427 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2428 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2429 * them to initialized or split the described range from larger unwritten
2430 * extent. Note that we need not map all the described range since allocation
2431 * can return less blocks or the range is covered by more unwritten extents. We
2432 * cannot map more because we are limited by reserved transaction credits. On
2433 * the other hand we always make sure that the last touched page is fully
2434 * mapped so that it can be written out (and thus forward progress is
2435 * guaranteed). After mapping we submit all mapped pages for IO.
2437 static int mpage_map_and_submit_extent(handle_t *handle,
2438 struct mpage_da_data *mpd,
2439 bool *give_up_on_write)
2441 struct inode *inode = mpd->inode;
2442 struct ext4_map_blocks *map = &mpd->map;
2446 ext4_io_end_t *io_end = mpd->io_submit.io_end;
2447 struct ext4_io_end_vec *io_end_vec;
2449 io_end_vec = ext4_alloc_io_end_vec(io_end);
2450 if (IS_ERR(io_end_vec))
2451 return PTR_ERR(io_end_vec);
2452 io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2454 err = mpage_map_one_extent(handle, mpd);
2456 struct super_block *sb = inode->i_sb;
2458 if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2459 ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
2460 goto invalidate_dirty_pages;
2462 * Let the uper layers retry transient errors.
2463 * In the case of ENOSPC, if ext4_count_free_blocks()
2464 * is non-zero, a commit should free up blocks.
2466 if ((err == -ENOMEM) ||
2467 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2469 goto update_disksize;
2472 ext4_msg(sb, KERN_CRIT,
2473 "Delayed block allocation failed for "
2474 "inode %lu at logical offset %llu with"
2475 " max blocks %u with error %d",
2477 (unsigned long long)map->m_lblk,
2478 (unsigned)map->m_len, -err);
2479 ext4_msg(sb, KERN_CRIT,
2480 "This should not happen!! Data will "
2483 ext4_print_free_blocks(inode);
2484 invalidate_dirty_pages:
2485 *give_up_on_write = true;
2490 * Update buffer state, submit mapped pages, and get us new
2493 err = mpage_map_and_submit_buffers(mpd);
2495 goto update_disksize;
2496 } while (map->m_len);
2500 * Update on-disk size after IO is submitted. Races with
2501 * truncate are avoided by checking i_size under i_data_sem.
2503 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2504 if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2508 down_write(&EXT4_I(inode)->i_data_sem);
2509 i_size = i_size_read(inode);
2510 if (disksize > i_size)
2512 if (disksize > EXT4_I(inode)->i_disksize)
2513 EXT4_I(inode)->i_disksize = disksize;
2514 up_write(&EXT4_I(inode)->i_data_sem);
2515 err2 = ext4_mark_inode_dirty(handle, inode);
2517 ext4_error_err(inode->i_sb, -err2,
2518 "Failed to mark inode %lu dirty",
2528 * Calculate the total number of credits to reserve for one writepages
2529 * iteration. This is called from ext4_writepages(). We map an extent of
2530 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2531 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2532 * bpp - 1 blocks in bpp different extents.
2534 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2536 int bpp = ext4_journal_blocks_per_page(inode);
2538 return ext4_meta_trans_blocks(inode,
2539 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2543 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2544 * and underlying extent to map
2546 * @mpd - where to look for pages
2548 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2549 * IO immediately. When we find a page which isn't mapped we start accumulating
2550 * extent of buffers underlying these pages that needs mapping (formed by
2551 * either delayed or unwritten buffers). We also lock the pages containing
2552 * these buffers. The extent found is returned in @mpd structure (starting at
2553 * mpd->lblk with length mpd->len blocks).
2555 * Note that this function can attach bios to one io_end structure which are
2556 * neither logically nor physically contiguous. Although it may seem as an
2557 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2558 * case as we need to track IO to all buffers underlying a page in one io_end.
2560 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2562 struct address_space *mapping = mpd->inode->i_mapping;
2563 struct pagevec pvec;
2564 unsigned int nr_pages;
2565 long left = mpd->wbc->nr_to_write;
2566 pgoff_t index = mpd->first_page;
2567 pgoff_t end = mpd->last_page;
2570 int blkbits = mpd->inode->i_blkbits;
2572 struct buffer_head *head;
2574 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2575 tag = PAGECACHE_TAG_TOWRITE;
2577 tag = PAGECACHE_TAG_DIRTY;
2579 pagevec_init(&pvec);
2581 mpd->next_page = index;
2582 while (index <= end) {
2583 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2588 for (i = 0; i < nr_pages; i++) {
2589 struct page *page = pvec.pages[i];
2592 * Accumulated enough dirty pages? This doesn't apply
2593 * to WB_SYNC_ALL mode. For integrity sync we have to
2594 * keep going because someone may be concurrently
2595 * dirtying pages, and we might have synced a lot of
2596 * newly appeared dirty pages, but have not synced all
2597 * of the old dirty pages.
2599 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2602 /* If we can't merge this page, we are done. */
2603 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2608 * If the page is no longer dirty, or its mapping no
2609 * longer corresponds to inode we are writing (which
2610 * means it has been truncated or invalidated), or the
2611 * page is already under writeback and we are not doing
2612 * a data integrity writeback, skip the page
2614 if (!PageDirty(page) ||
2615 (PageWriteback(page) &&
2616 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2617 unlikely(page->mapping != mapping)) {
2622 wait_on_page_writeback(page);
2623 BUG_ON(PageWriteback(page));
2625 if (mpd->map.m_len == 0)
2626 mpd->first_page = page->index;
2627 mpd->next_page = page->index + 1;
2628 /* Add all dirty buffers to mpd */
2629 lblk = ((ext4_lblk_t)page->index) <<
2630 (PAGE_SHIFT - blkbits);
2631 head = page_buffers(page);
2632 err = mpage_process_page_bufs(mpd, head, head, lblk);
2638 pagevec_release(&pvec);
2641 mpd->scanned_until_end = 1;
2644 pagevec_release(&pvec);
2648 static int ext4_writepages(struct address_space *mapping,
2649 struct writeback_control *wbc)
2651 pgoff_t writeback_index = 0;
2652 long nr_to_write = wbc->nr_to_write;
2653 int range_whole = 0;
2655 handle_t *handle = NULL;
2656 struct mpage_da_data mpd;
2657 struct inode *inode = mapping->host;
2658 int needed_blocks, rsv_blocks = 0, ret = 0;
2659 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2660 struct blk_plug plug;
2661 bool give_up_on_write = false;
2663 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2666 percpu_down_read(&sbi->s_writepages_rwsem);
2667 trace_ext4_writepages(inode, wbc);
2670 * No pages to write? This is mainly a kludge to avoid starting
2671 * a transaction for special inodes like journal inode on last iput()
2672 * because that could violate lock ordering on umount
2674 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2675 goto out_writepages;
2677 if (ext4_should_journal_data(inode)) {
2678 ret = generic_writepages(mapping, wbc);
2679 goto out_writepages;
2683 * If the filesystem has aborted, it is read-only, so return
2684 * right away instead of dumping stack traces later on that
2685 * will obscure the real source of the problem. We test
2686 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2687 * the latter could be true if the filesystem is mounted
2688 * read-only, and in that case, ext4_writepages should
2689 * *never* be called, so if that ever happens, we would want
2692 if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2693 ext4_test_mount_flag(inode->i_sb, EXT4_MF_FS_ABORTED))) {
2695 goto out_writepages;
2699 * If we have inline data and arrive here, it means that
2700 * we will soon create the block for the 1st page, so
2701 * we'd better clear the inline data here.
2703 if (ext4_has_inline_data(inode)) {
2704 /* Just inode will be modified... */
2705 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2706 if (IS_ERR(handle)) {
2707 ret = PTR_ERR(handle);
2708 goto out_writepages;
2710 BUG_ON(ext4_test_inode_state(inode,
2711 EXT4_STATE_MAY_INLINE_DATA));
2712 ext4_destroy_inline_data(handle, inode);
2713 ext4_journal_stop(handle);
2716 if (ext4_should_dioread_nolock(inode)) {
2718 * We may need to convert up to one extent per block in
2719 * the page and we may dirty the inode.
2721 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2722 PAGE_SIZE >> inode->i_blkbits);
2725 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2728 if (wbc->range_cyclic) {
2729 writeback_index = mapping->writeback_index;
2730 if (writeback_index)
2732 mpd.first_page = writeback_index;
2735 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2736 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2741 ext4_io_submit_init(&mpd.io_submit, wbc);
2743 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2744 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2745 blk_start_plug(&plug);
2748 * First writeback pages that don't need mapping - we can avoid
2749 * starting a transaction unnecessarily and also avoid being blocked
2750 * in the block layer on device congestion while having transaction
2754 mpd.scanned_until_end = 0;
2755 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2756 if (!mpd.io_submit.io_end) {
2760 ret = mpage_prepare_extent_to_map(&mpd);
2761 /* Unlock pages we didn't use */
2762 mpage_release_unused_pages(&mpd, false);
2763 /* Submit prepared bio */
2764 ext4_io_submit(&mpd.io_submit);
2765 ext4_put_io_end_defer(mpd.io_submit.io_end);
2766 mpd.io_submit.io_end = NULL;
2770 while (!mpd.scanned_until_end && wbc->nr_to_write > 0) {
2771 /* For each extent of pages we use new io_end */
2772 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2773 if (!mpd.io_submit.io_end) {
2779 * We have two constraints: We find one extent to map and we
2780 * must always write out whole page (makes a difference when
2781 * blocksize < pagesize) so that we don't block on IO when we
2782 * try to write out the rest of the page. Journalled mode is
2783 * not supported by delalloc.
2785 BUG_ON(ext4_should_journal_data(inode));
2786 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2788 /* start a new transaction */
2789 handle = ext4_journal_start_with_reserve(inode,
2790 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2791 if (IS_ERR(handle)) {
2792 ret = PTR_ERR(handle);
2793 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2794 "%ld pages, ino %lu; err %d", __func__,
2795 wbc->nr_to_write, inode->i_ino, ret);
2796 /* Release allocated io_end */
2797 ext4_put_io_end(mpd.io_submit.io_end);
2798 mpd.io_submit.io_end = NULL;
2803 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2804 ret = mpage_prepare_extent_to_map(&mpd);
2805 if (!ret && mpd.map.m_len)
2806 ret = mpage_map_and_submit_extent(handle, &mpd,
2809 * Caution: If the handle is synchronous,
2810 * ext4_journal_stop() can wait for transaction commit
2811 * to finish which may depend on writeback of pages to
2812 * complete or on page lock to be released. In that
2813 * case, we have to wait until after we have
2814 * submitted all the IO, released page locks we hold,
2815 * and dropped io_end reference (for extent conversion
2816 * to be able to complete) before stopping the handle.
2818 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2819 ext4_journal_stop(handle);
2823 /* Unlock pages we didn't use */
2824 mpage_release_unused_pages(&mpd, give_up_on_write);
2825 /* Submit prepared bio */
2826 ext4_io_submit(&mpd.io_submit);
2829 * Drop our io_end reference we got from init. We have
2830 * to be careful and use deferred io_end finishing if
2831 * we are still holding the transaction as we can
2832 * release the last reference to io_end which may end
2833 * up doing unwritten extent conversion.
2836 ext4_put_io_end_defer(mpd.io_submit.io_end);
2837 ext4_journal_stop(handle);
2839 ext4_put_io_end(mpd.io_submit.io_end);
2840 mpd.io_submit.io_end = NULL;
2842 if (ret == -ENOSPC && sbi->s_journal) {
2844 * Commit the transaction which would
2845 * free blocks released in the transaction
2848 jbd2_journal_force_commit_nested(sbi->s_journal);
2852 /* Fatal error - ENOMEM, EIO... */
2857 blk_finish_plug(&plug);
2858 if (!ret && !cycled && wbc->nr_to_write > 0) {
2860 mpd.last_page = writeback_index - 1;
2866 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2868 * Set the writeback_index so that range_cyclic
2869 * mode will write it back later
2871 mapping->writeback_index = mpd.first_page;
2874 trace_ext4_writepages_result(inode, wbc, ret,
2875 nr_to_write - wbc->nr_to_write);
2876 percpu_up_read(&sbi->s_writepages_rwsem);
2880 static int ext4_dax_writepages(struct address_space *mapping,
2881 struct writeback_control *wbc)
2884 long nr_to_write = wbc->nr_to_write;
2885 struct inode *inode = mapping->host;
2886 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2888 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2891 percpu_down_read(&sbi->s_writepages_rwsem);
2892 trace_ext4_writepages(inode, wbc);
2894 ret = dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc);
2895 trace_ext4_writepages_result(inode, wbc, ret,
2896 nr_to_write - wbc->nr_to_write);
2897 percpu_up_read(&sbi->s_writepages_rwsem);
2901 static int ext4_nonda_switch(struct super_block *sb)
2903 s64 free_clusters, dirty_clusters;
2904 struct ext4_sb_info *sbi = EXT4_SB(sb);
2907 * switch to non delalloc mode if we are running low
2908 * on free block. The free block accounting via percpu
2909 * counters can get slightly wrong with percpu_counter_batch getting
2910 * accumulated on each CPU without updating global counters
2911 * Delalloc need an accurate free block accounting. So switch
2912 * to non delalloc when we are near to error range.
2915 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2917 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2919 * Start pushing delalloc when 1/2 of free blocks are dirty.
2921 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2922 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2924 if (2 * free_clusters < 3 * dirty_clusters ||
2925 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2927 * free block count is less than 150% of dirty blocks
2928 * or free blocks is less than watermark
2935 /* We always reserve for an inode update; the superblock could be there too */
2936 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2938 if (likely(ext4_has_feature_large_file(inode->i_sb)))
2941 if (pos + len <= 0x7fffffffULL)
2944 /* We might need to update the superblock to set LARGE_FILE */
2948 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2949 loff_t pos, unsigned len, unsigned flags,
2950 struct page **pagep, void **fsdata)
2952 int ret, retries = 0;
2955 struct inode *inode = mapping->host;
2958 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2961 index = pos >> PAGE_SHIFT;
2963 if (ext4_nonda_switch(inode->i_sb) || S_ISLNK(inode->i_mode) ||
2964 ext4_verity_in_progress(inode)) {
2965 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2966 return ext4_write_begin(file, mapping, pos,
2967 len, flags, pagep, fsdata);
2969 *fsdata = (void *)0;
2970 trace_ext4_da_write_begin(inode, pos, len, flags);
2972 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2973 ret = ext4_da_write_inline_data_begin(mapping, inode,
2983 * grab_cache_page_write_begin() can take a long time if the
2984 * system is thrashing due to memory pressure, or if the page
2985 * is being written back. So grab it first before we start
2986 * the transaction handle. This also allows us to allocate
2987 * the page (if needed) without using GFP_NOFS.
2990 page = grab_cache_page_write_begin(mapping, index, flags);
2996 * With delayed allocation, we don't log the i_disksize update
2997 * if there is delayed block allocation. But we still need
2998 * to journalling the i_disksize update if writes to the end
2999 * of file which has an already mapped buffer.
3002 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
3003 ext4_da_write_credits(inode, pos, len));
3004 if (IS_ERR(handle)) {
3006 return PTR_ERR(handle);
3010 if (page->mapping != mapping) {
3011 /* The page got truncated from under us */
3014 ext4_journal_stop(handle);
3017 /* In case writeback began while the page was unlocked */
3018 wait_for_stable_page(page);
3020 #ifdef CONFIG_FS_ENCRYPTION
3021 ret = ext4_block_write_begin(page, pos, len,
3022 ext4_da_get_block_prep);
3024 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3028 ext4_journal_stop(handle);
3030 * block_write_begin may have instantiated a few blocks
3031 * outside i_size. Trim these off again. Don't need
3032 * i_size_read because we hold i_mutex.
3034 if (pos + len > inode->i_size)
3035 ext4_truncate_failed_write(inode);
3037 if (ret == -ENOSPC &&
3038 ext4_should_retry_alloc(inode->i_sb, &retries))
3050 * Check if we should update i_disksize
3051 * when write to the end of file but not require block allocation
3053 static int ext4_da_should_update_i_disksize(struct page *page,
3054 unsigned long offset)
3056 struct buffer_head *bh;
3057 struct inode *inode = page->mapping->host;
3061 bh = page_buffers(page);
3062 idx = offset >> inode->i_blkbits;
3064 for (i = 0; i < idx; i++)
3065 bh = bh->b_this_page;
3067 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3072 static int ext4_da_write_end(struct file *file,
3073 struct address_space *mapping,
3074 loff_t pos, unsigned len, unsigned copied,
3075 struct page *page, void *fsdata)
3077 struct inode *inode = mapping->host;
3079 handle_t *handle = ext4_journal_current_handle();
3081 unsigned long start, end;
3082 int write_mode = (int)(unsigned long)fsdata;
3084 if (write_mode == FALL_BACK_TO_NONDELALLOC)
3085 return ext4_write_end(file, mapping, pos,
3086 len, copied, page, fsdata);
3088 trace_ext4_da_write_end(inode, pos, len, copied);
3089 start = pos & (PAGE_SIZE - 1);
3090 end = start + copied - 1;
3093 * generic_write_end() will run mark_inode_dirty() if i_size
3094 * changes. So let's piggyback the i_disksize mark_inode_dirty
3097 new_i_size = pos + copied;
3098 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3099 if (ext4_has_inline_data(inode) ||
3100 ext4_da_should_update_i_disksize(page, end)) {
3101 ext4_update_i_disksize(inode, new_i_size);
3102 /* We need to mark inode dirty even if
3103 * new_i_size is less that inode->i_size
3104 * bu greater than i_disksize.(hint delalloc)
3106 ret = ext4_mark_inode_dirty(handle, inode);
3110 if (write_mode != CONVERT_INLINE_DATA &&
3111 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3112 ext4_has_inline_data(inode))
3113 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3116 ret2 = generic_write_end(file, mapping, pos, len, copied,
3122 ret2 = ext4_journal_stop(handle);
3123 if (unlikely(ret2 && !ret))
3126 return ret ? ret : copied;
3130 * Force all delayed allocation blocks to be allocated for a given inode.
3132 int ext4_alloc_da_blocks(struct inode *inode)
3134 trace_ext4_alloc_da_blocks(inode);
3136 if (!EXT4_I(inode)->i_reserved_data_blocks)
3140 * We do something simple for now. The filemap_flush() will
3141 * also start triggering a write of the data blocks, which is
3142 * not strictly speaking necessary (and for users of
3143 * laptop_mode, not even desirable). However, to do otherwise
3144 * would require replicating code paths in:
3146 * ext4_writepages() ->
3147 * write_cache_pages() ---> (via passed in callback function)
3148 * __mpage_da_writepage() -->
3149 * mpage_add_bh_to_extent()
3150 * mpage_da_map_blocks()
3152 * The problem is that write_cache_pages(), located in
3153 * mm/page-writeback.c, marks pages clean in preparation for
3154 * doing I/O, which is not desirable if we're not planning on
3157 * We could call write_cache_pages(), and then redirty all of
3158 * the pages by calling redirty_page_for_writepage() but that
3159 * would be ugly in the extreme. So instead we would need to
3160 * replicate parts of the code in the above functions,
3161 * simplifying them because we wouldn't actually intend to
3162 * write out the pages, but rather only collect contiguous
3163 * logical block extents, call the multi-block allocator, and
3164 * then update the buffer heads with the block allocations.
3166 * For now, though, we'll cheat by calling filemap_flush(),
3167 * which will map the blocks, and start the I/O, but not
3168 * actually wait for the I/O to complete.
3170 return filemap_flush(inode->i_mapping);
3174 * bmap() is special. It gets used by applications such as lilo and by
3175 * the swapper to find the on-disk block of a specific piece of data.
3177 * Naturally, this is dangerous if the block concerned is still in the
3178 * journal. If somebody makes a swapfile on an ext4 data-journaling
3179 * filesystem and enables swap, then they may get a nasty shock when the
3180 * data getting swapped to that swapfile suddenly gets overwritten by
3181 * the original zero's written out previously to the journal and
3182 * awaiting writeback in the kernel's buffer cache.
3184 * So, if we see any bmap calls here on a modified, data-journaled file,
3185 * take extra steps to flush any blocks which might be in the cache.
3187 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3189 struct inode *inode = mapping->host;
3194 * We can get here for an inline file via the FIBMAP ioctl
3196 if (ext4_has_inline_data(inode))
3199 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3200 test_opt(inode->i_sb, DELALLOC)) {
3202 * With delalloc we want to sync the file
3203 * so that we can make sure we allocate
3206 filemap_write_and_wait(mapping);
3209 if (EXT4_JOURNAL(inode) &&
3210 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3212 * This is a REALLY heavyweight approach, but the use of
3213 * bmap on dirty files is expected to be extremely rare:
3214 * only if we run lilo or swapon on a freshly made file
3215 * do we expect this to happen.
3217 * (bmap requires CAP_SYS_RAWIO so this does not
3218 * represent an unprivileged user DOS attack --- we'd be
3219 * in trouble if mortal users could trigger this path at
3222 * NB. EXT4_STATE_JDATA is not set on files other than
3223 * regular files. If somebody wants to bmap a directory
3224 * or symlink and gets confused because the buffer
3225 * hasn't yet been flushed to disk, they deserve
3226 * everything they get.
3229 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3230 journal = EXT4_JOURNAL(inode);
3231 jbd2_journal_lock_updates(journal);
3232 err = jbd2_journal_flush(journal, 0);
3233 jbd2_journal_unlock_updates(journal);
3239 return iomap_bmap(mapping, block, &ext4_iomap_ops);
3242 static int ext4_readpage(struct file *file, struct page *page)
3245 struct inode *inode = page->mapping->host;
3247 trace_ext4_readpage(page);
3249 if (ext4_has_inline_data(inode))
3250 ret = ext4_readpage_inline(inode, page);
3253 return ext4_mpage_readpages(inode, NULL, page);
3258 static void ext4_readahead(struct readahead_control *rac)
3260 struct inode *inode = rac->mapping->host;
3262 /* If the file has inline data, no need to do readahead. */
3263 if (ext4_has_inline_data(inode))
3266 ext4_mpage_readpages(inode, rac, NULL);
3269 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3270 unsigned int length)
3272 trace_ext4_invalidatepage(page, offset, length);
3274 /* No journalling happens on data buffers when this function is used */
3275 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3277 block_invalidatepage(page, offset, length);
3280 static int __ext4_journalled_invalidatepage(struct page *page,
3281 unsigned int offset,
3282 unsigned int length)
3284 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3286 trace_ext4_journalled_invalidatepage(page, offset, length);
3289 * If it's a full truncate we just forget about the pending dirtying
3291 if (offset == 0 && length == PAGE_SIZE)
3292 ClearPageChecked(page);
3294 return jbd2_journal_invalidatepage(journal, page, offset, length);
3297 /* Wrapper for aops... */
3298 static void ext4_journalled_invalidatepage(struct page *page,
3299 unsigned int offset,
3300 unsigned int length)
3302 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3305 static int ext4_releasepage(struct page *page, gfp_t wait)
3307 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3309 trace_ext4_releasepage(page);
3311 /* Page has dirty journalled data -> cannot release */
3312 if (PageChecked(page))
3315 return jbd2_journal_try_to_free_buffers(journal, page);
3317 return try_to_free_buffers(page);
3320 static bool ext4_inode_datasync_dirty(struct inode *inode)
3322 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3325 if (jbd2_transaction_committed(journal,
3326 EXT4_I(inode)->i_datasync_tid))
3328 if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
3329 return !list_empty(&EXT4_I(inode)->i_fc_list);
3333 /* Any metadata buffers to write? */
3334 if (!list_empty(&inode->i_mapping->private_list))
3336 return inode->i_state & I_DIRTY_DATASYNC;
3339 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3340 struct ext4_map_blocks *map, loff_t offset,
3343 u8 blkbits = inode->i_blkbits;
3346 * Writes that span EOF might trigger an I/O size update on completion,
3347 * so consider them to be dirty for the purpose of O_DSYNC, even if
3348 * there is no other metadata changes being made or are pending.
3351 if (ext4_inode_datasync_dirty(inode) ||
3352 offset + length > i_size_read(inode))
3353 iomap->flags |= IOMAP_F_DIRTY;
3355 if (map->m_flags & EXT4_MAP_NEW)
3356 iomap->flags |= IOMAP_F_NEW;
3358 iomap->bdev = inode->i_sb->s_bdev;
3359 iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3360 iomap->offset = (u64) map->m_lblk << blkbits;
3361 iomap->length = (u64) map->m_len << blkbits;
3363 if ((map->m_flags & EXT4_MAP_MAPPED) &&
3364 !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3365 iomap->flags |= IOMAP_F_MERGED;
3368 * Flags passed to ext4_map_blocks() for direct I/O writes can result
3369 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3370 * set. In order for any allocated unwritten extents to be converted
3371 * into written extents correctly within the ->end_io() handler, we
3372 * need to ensure that the iomap->type is set appropriately. Hence, the
3373 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3376 if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3377 iomap->type = IOMAP_UNWRITTEN;
3378 iomap->addr = (u64) map->m_pblk << blkbits;
3379 } else if (map->m_flags & EXT4_MAP_MAPPED) {
3380 iomap->type = IOMAP_MAPPED;
3381 iomap->addr = (u64) map->m_pblk << blkbits;
3383 iomap->type = IOMAP_HOLE;
3384 iomap->addr = IOMAP_NULL_ADDR;
3388 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3392 u8 blkbits = inode->i_blkbits;
3393 int ret, dio_credits, m_flags = 0, retries = 0;
3396 * Trim the mapping request to the maximum value that we can map at
3397 * once for direct I/O.
3399 if (map->m_len > DIO_MAX_BLOCKS)
3400 map->m_len = DIO_MAX_BLOCKS;
3401 dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3405 * Either we allocate blocks and then don't get an unwritten extent, so
3406 * in that case we have reserved enough credits. Or, the blocks are
3407 * already allocated and unwritten. In that case, the extent conversion
3408 * fits into the credits as well.
3410 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3412 return PTR_ERR(handle);
3415 * DAX and direct I/O are the only two operations that are currently
3416 * supported with IOMAP_WRITE.
3418 WARN_ON(!IS_DAX(inode) && !(flags & IOMAP_DIRECT));
3420 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3422 * We use i_size instead of i_disksize here because delalloc writeback
3423 * can complete at any point during the I/O and subsequently push the
3424 * i_disksize out to i_size. This could be beyond where direct I/O is
3425 * happening and thus expose allocated blocks to direct I/O reads.
3427 else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode))
3428 m_flags = EXT4_GET_BLOCKS_CREATE;
3429 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3430 m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3432 ret = ext4_map_blocks(handle, inode, map, m_flags);
3435 * We cannot fill holes in indirect tree based inodes as that could
3436 * expose stale data in the case of a crash. Use the magic error code
3437 * to fallback to buffered I/O.
3439 if (!m_flags && !ret)
3442 ext4_journal_stop(handle);
3443 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3450 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3451 unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3454 struct ext4_map_blocks map;
3455 u8 blkbits = inode->i_blkbits;
3457 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3460 if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3464 * Calculate the first and last logical blocks respectively.
3466 map.m_lblk = offset >> blkbits;
3467 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3468 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3470 if (flags & IOMAP_WRITE) {
3472 * We check here if the blocks are already allocated, then we
3473 * don't need to start a journal txn and we can directly return
3474 * the mapping information. This could boost performance
3475 * especially in multi-threaded overwrite requests.
3477 if (offset + length <= i_size_read(inode)) {
3478 ret = ext4_map_blocks(NULL, inode, &map, 0);
3479 if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED))
3482 ret = ext4_iomap_alloc(inode, &map, flags);
3484 ret = ext4_map_blocks(NULL, inode, &map, 0);
3490 ext4_set_iomap(inode, iomap, &map, offset, length);
3495 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3496 loff_t length, unsigned flags, struct iomap *iomap,
3497 struct iomap *srcmap)
3502 * Even for writes we don't need to allocate blocks, so just pretend
3503 * we are reading to save overhead of starting a transaction.
3505 flags &= ~IOMAP_WRITE;
3506 ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3507 WARN_ON_ONCE(iomap->type != IOMAP_MAPPED);
3511 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3512 ssize_t written, unsigned flags, struct iomap *iomap)
3515 * Check to see whether an error occurred while writing out the data to
3516 * the allocated blocks. If so, return the magic error code so that we
3517 * fallback to buffered I/O and attempt to complete the remainder of
3518 * the I/O. Any blocks that may have been allocated in preparation for
3519 * the direct I/O will be reused during buffered I/O.
3521 if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3527 const struct iomap_ops ext4_iomap_ops = {
3528 .iomap_begin = ext4_iomap_begin,
3529 .iomap_end = ext4_iomap_end,
3532 const struct iomap_ops ext4_iomap_overwrite_ops = {
3533 .iomap_begin = ext4_iomap_overwrite_begin,
3534 .iomap_end = ext4_iomap_end,
3537 static bool ext4_iomap_is_delalloc(struct inode *inode,
3538 struct ext4_map_blocks *map)
3540 struct extent_status es;
3541 ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1;
3543 ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3544 map->m_lblk, end, &es);
3546 if (!es.es_len || es.es_lblk > end)
3549 if (es.es_lblk > map->m_lblk) {
3550 map->m_len = es.es_lblk - map->m_lblk;
3554 offset = map->m_lblk - es.es_lblk;
3555 map->m_len = es.es_len - offset;
3560 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3561 loff_t length, unsigned int flags,
3562 struct iomap *iomap, struct iomap *srcmap)
3565 bool delalloc = false;
3566 struct ext4_map_blocks map;
3567 u8 blkbits = inode->i_blkbits;
3569 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3572 if (ext4_has_inline_data(inode)) {
3573 ret = ext4_inline_data_iomap(inode, iomap);
3574 if (ret != -EAGAIN) {
3575 if (ret == 0 && offset >= iomap->length)
3582 * Calculate the first and last logical block respectively.
3584 map.m_lblk = offset >> blkbits;
3585 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3586 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3589 * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3590 * So handle it here itself instead of querying ext4_map_blocks().
3591 * Since ext4_map_blocks() will warn about it and will return
3594 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3595 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3597 if (offset >= sbi->s_bitmap_maxbytes) {
3603 ret = ext4_map_blocks(NULL, inode, &map, 0);
3607 delalloc = ext4_iomap_is_delalloc(inode, &map);
3610 ext4_set_iomap(inode, iomap, &map, offset, length);
3611 if (delalloc && iomap->type == IOMAP_HOLE)
3612 iomap->type = IOMAP_DELALLOC;
3617 const struct iomap_ops ext4_iomap_report_ops = {
3618 .iomap_begin = ext4_iomap_begin_report,
3622 * Pages can be marked dirty completely asynchronously from ext4's journalling
3623 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3624 * much here because ->set_page_dirty is called under VFS locks. The page is
3625 * not necessarily locked.
3627 * We cannot just dirty the page and leave attached buffers clean, because the
3628 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3629 * or jbddirty because all the journalling code will explode.
3631 * So what we do is to mark the page "pending dirty" and next time writepage
3632 * is called, propagate that into the buffers appropriately.
3634 static int ext4_journalled_set_page_dirty(struct page *page)
3636 SetPageChecked(page);
3637 return __set_page_dirty_nobuffers(page);
3640 static int ext4_set_page_dirty(struct page *page)
3642 WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3643 WARN_ON_ONCE(!page_has_buffers(page));
3644 return __set_page_dirty_buffers(page);
3647 static int ext4_iomap_swap_activate(struct swap_info_struct *sis,
3648 struct file *file, sector_t *span)
3650 return iomap_swapfile_activate(sis, file, span,
3651 &ext4_iomap_report_ops);
3654 static const struct address_space_operations ext4_aops = {
3655 .readpage = ext4_readpage,
3656 .readahead = ext4_readahead,
3657 .writepage = ext4_writepage,
3658 .writepages = ext4_writepages,
3659 .write_begin = ext4_write_begin,
3660 .write_end = ext4_write_end,
3661 .set_page_dirty = ext4_set_page_dirty,
3663 .invalidatepage = ext4_invalidatepage,
3664 .releasepage = ext4_releasepage,
3665 .direct_IO = noop_direct_IO,
3666 .migratepage = buffer_migrate_page,
3667 .is_partially_uptodate = block_is_partially_uptodate,
3668 .error_remove_page = generic_error_remove_page,
3669 .swap_activate = ext4_iomap_swap_activate,
3672 static const struct address_space_operations ext4_journalled_aops = {
3673 .readpage = ext4_readpage,
3674 .readahead = ext4_readahead,
3675 .writepage = ext4_writepage,
3676 .writepages = ext4_writepages,
3677 .write_begin = ext4_write_begin,
3678 .write_end = ext4_journalled_write_end,
3679 .set_page_dirty = ext4_journalled_set_page_dirty,
3681 .invalidatepage = ext4_journalled_invalidatepage,
3682 .releasepage = ext4_releasepage,
3683 .direct_IO = noop_direct_IO,
3684 .is_partially_uptodate = block_is_partially_uptodate,
3685 .error_remove_page = generic_error_remove_page,
3686 .swap_activate = ext4_iomap_swap_activate,
3689 static const struct address_space_operations ext4_da_aops = {
3690 .readpage = ext4_readpage,
3691 .readahead = ext4_readahead,
3692 .writepage = ext4_writepage,
3693 .writepages = ext4_writepages,
3694 .write_begin = ext4_da_write_begin,
3695 .write_end = ext4_da_write_end,
3696 .set_page_dirty = ext4_set_page_dirty,
3698 .invalidatepage = ext4_invalidatepage,
3699 .releasepage = ext4_releasepage,
3700 .direct_IO = noop_direct_IO,
3701 .migratepage = buffer_migrate_page,
3702 .is_partially_uptodate = block_is_partially_uptodate,
3703 .error_remove_page = generic_error_remove_page,
3704 .swap_activate = ext4_iomap_swap_activate,
3707 static const struct address_space_operations ext4_dax_aops = {
3708 .writepages = ext4_dax_writepages,
3709 .direct_IO = noop_direct_IO,
3710 .set_page_dirty = __set_page_dirty_no_writeback,
3712 .invalidatepage = noop_invalidatepage,
3713 .swap_activate = ext4_iomap_swap_activate,
3716 void ext4_set_aops(struct inode *inode)
3718 switch (ext4_inode_journal_mode(inode)) {
3719 case EXT4_INODE_ORDERED_DATA_MODE:
3720 case EXT4_INODE_WRITEBACK_DATA_MODE:
3722 case EXT4_INODE_JOURNAL_DATA_MODE:
3723 inode->i_mapping->a_ops = &ext4_journalled_aops;
3729 inode->i_mapping->a_ops = &ext4_dax_aops;
3730 else if (test_opt(inode->i_sb, DELALLOC))
3731 inode->i_mapping->a_ops = &ext4_da_aops;
3733 inode->i_mapping->a_ops = &ext4_aops;
3736 static int __ext4_block_zero_page_range(handle_t *handle,
3737 struct address_space *mapping, loff_t from, loff_t length)
3739 ext4_fsblk_t index = from >> PAGE_SHIFT;
3740 unsigned offset = from & (PAGE_SIZE-1);
3741 unsigned blocksize, pos;
3743 struct inode *inode = mapping->host;
3744 struct buffer_head *bh;
3748 page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3749 mapping_gfp_constraint(mapping, ~__GFP_FS));
3753 blocksize = inode->i_sb->s_blocksize;
3755 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3757 if (!page_has_buffers(page))
3758 create_empty_buffers(page, blocksize, 0);
3760 /* Find the buffer that contains "offset" */
3761 bh = page_buffers(page);
3763 while (offset >= pos) {
3764 bh = bh->b_this_page;
3768 if (buffer_freed(bh)) {
3769 BUFFER_TRACE(bh, "freed: skip");
3772 if (!buffer_mapped(bh)) {
3773 BUFFER_TRACE(bh, "unmapped");
3774 ext4_get_block(inode, iblock, bh, 0);
3775 /* unmapped? It's a hole - nothing to do */
3776 if (!buffer_mapped(bh)) {
3777 BUFFER_TRACE(bh, "still unmapped");
3782 /* Ok, it's mapped. Make sure it's up-to-date */
3783 if (PageUptodate(page))
3784 set_buffer_uptodate(bh);
3786 if (!buffer_uptodate(bh)) {
3787 err = ext4_read_bh_lock(bh, 0, true);
3790 if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
3791 /* We expect the key to be set. */
3792 BUG_ON(!fscrypt_has_encryption_key(inode));
3793 err = fscrypt_decrypt_pagecache_blocks(page, blocksize,
3796 clear_buffer_uptodate(bh);
3801 if (ext4_should_journal_data(inode)) {
3802 BUFFER_TRACE(bh, "get write access");
3803 err = ext4_journal_get_write_access(handle, inode->i_sb, bh,
3808 zero_user(page, offset, length);
3809 BUFFER_TRACE(bh, "zeroed end of block");
3811 if (ext4_should_journal_data(inode)) {
3812 err = ext4_handle_dirty_metadata(handle, inode, bh);
3815 mark_buffer_dirty(bh);
3816 if (ext4_should_order_data(inode))
3817 err = ext4_jbd2_inode_add_write(handle, inode, from,
3828 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3829 * starting from file offset 'from'. The range to be zero'd must
3830 * be contained with in one block. If the specified range exceeds
3831 * the end of the block it will be shortened to end of the block
3832 * that corresponds to 'from'
3834 static int ext4_block_zero_page_range(handle_t *handle,
3835 struct address_space *mapping, loff_t from, loff_t length)
3837 struct inode *inode = mapping->host;
3838 unsigned offset = from & (PAGE_SIZE-1);
3839 unsigned blocksize = inode->i_sb->s_blocksize;
3840 unsigned max = blocksize - (offset & (blocksize - 1));
3843 * correct length if it does not fall between
3844 * 'from' and the end of the block
3846 if (length > max || length < 0)
3849 if (IS_DAX(inode)) {
3850 return iomap_zero_range(inode, from, length, NULL,
3853 return __ext4_block_zero_page_range(handle, mapping, from, length);
3857 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3858 * up to the end of the block which corresponds to `from'.
3859 * This required during truncate. We need to physically zero the tail end
3860 * of that block so it doesn't yield old data if the file is later grown.
3862 static int ext4_block_truncate_page(handle_t *handle,
3863 struct address_space *mapping, loff_t from)
3865 unsigned offset = from & (PAGE_SIZE-1);
3868 struct inode *inode = mapping->host;
3870 /* If we are processing an encrypted inode during orphan list handling */
3871 if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3874 blocksize = inode->i_sb->s_blocksize;
3875 length = blocksize - (offset & (blocksize - 1));
3877 return ext4_block_zero_page_range(handle, mapping, from, length);
3880 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3881 loff_t lstart, loff_t length)
3883 struct super_block *sb = inode->i_sb;
3884 struct address_space *mapping = inode->i_mapping;
3885 unsigned partial_start, partial_end;
3886 ext4_fsblk_t start, end;
3887 loff_t byte_end = (lstart + length - 1);
3890 partial_start = lstart & (sb->s_blocksize - 1);
3891 partial_end = byte_end & (sb->s_blocksize - 1);
3893 start = lstart >> sb->s_blocksize_bits;
3894 end = byte_end >> sb->s_blocksize_bits;
3896 /* Handle partial zero within the single block */
3898 (partial_start || (partial_end != sb->s_blocksize - 1))) {
3899 err = ext4_block_zero_page_range(handle, mapping,
3903 /* Handle partial zero out on the start of the range */
3904 if (partial_start) {
3905 err = ext4_block_zero_page_range(handle, mapping,
3906 lstart, sb->s_blocksize);
3910 /* Handle partial zero out on the end of the range */
3911 if (partial_end != sb->s_blocksize - 1)
3912 err = ext4_block_zero_page_range(handle, mapping,
3913 byte_end - partial_end,
3918 int ext4_can_truncate(struct inode *inode)
3920 if (S_ISREG(inode->i_mode))
3922 if (S_ISDIR(inode->i_mode))
3924 if (S_ISLNK(inode->i_mode))
3925 return !ext4_inode_is_fast_symlink(inode);
3930 * We have to make sure i_disksize gets properly updated before we truncate
3931 * page cache due to hole punching or zero range. Otherwise i_disksize update
3932 * can get lost as it may have been postponed to submission of writeback but
3933 * that will never happen after we truncate page cache.
3935 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3941 loff_t size = i_size_read(inode);
3943 WARN_ON(!inode_is_locked(inode));
3944 if (offset > size || offset + len < size)
3947 if (EXT4_I(inode)->i_disksize >= size)
3950 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3952 return PTR_ERR(handle);
3953 ext4_update_i_disksize(inode, size);
3954 ret = ext4_mark_inode_dirty(handle, inode);
3955 ext4_journal_stop(handle);
3960 static void ext4_wait_dax_page(struct inode *inode)
3962 filemap_invalidate_unlock(inode->i_mapping);
3964 filemap_invalidate_lock(inode->i_mapping);
3967 int ext4_break_layouts(struct inode *inode)
3972 if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock)))
3976 page = dax_layout_busy_page(inode->i_mapping);
3980 error = ___wait_var_event(&page->_refcount,
3981 atomic_read(&page->_refcount) == 1,
3982 TASK_INTERRUPTIBLE, 0, 0,
3983 ext4_wait_dax_page(inode));
3984 } while (error == 0);
3990 * ext4_punch_hole: punches a hole in a file by releasing the blocks
3991 * associated with the given offset and length
3993 * @inode: File inode
3994 * @offset: The offset where the hole will begin
3995 * @len: The length of the hole
3997 * Returns: 0 on success or negative on failure
4000 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
4002 struct super_block *sb = inode->i_sb;
4003 ext4_lblk_t first_block, stop_block;
4004 struct address_space *mapping = inode->i_mapping;
4005 loff_t first_block_offset, last_block_offset;
4007 unsigned int credits;
4008 int ret = 0, ret2 = 0;
4010 trace_ext4_punch_hole(inode, offset, length, 0);
4012 ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
4013 if (ext4_has_inline_data(inode)) {
4014 filemap_invalidate_lock(mapping);
4015 ret = ext4_convert_inline_data(inode);
4016 filemap_invalidate_unlock(mapping);
4022 * Write out all dirty pages to avoid race conditions
4023 * Then release them.
4025 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4026 ret = filemap_write_and_wait_range(mapping, offset,
4027 offset + length - 1);
4034 /* No need to punch hole beyond i_size */
4035 if (offset >= inode->i_size)
4039 * If the hole extends beyond i_size, set the hole
4040 * to end after the page that contains i_size
4042 if (offset + length > inode->i_size) {
4043 length = inode->i_size +
4044 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4048 if (offset & (sb->s_blocksize - 1) ||
4049 (offset + length) & (sb->s_blocksize - 1)) {
4051 * Attach jinode to inode for jbd2 if we do any zeroing of
4054 ret = ext4_inode_attach_jinode(inode);
4060 /* Wait all existing dio workers, newcomers will block on i_mutex */
4061 inode_dio_wait(inode);
4064 * Prevent page faults from reinstantiating pages we have released from
4067 filemap_invalidate_lock(mapping);
4069 ret = ext4_break_layouts(inode);
4073 first_block_offset = round_up(offset, sb->s_blocksize);
4074 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4076 /* Now release the pages and zero block aligned part of pages*/
4077 if (last_block_offset > first_block_offset) {
4078 ret = ext4_update_disksize_before_punch(inode, offset, length);
4081 truncate_pagecache_range(inode, first_block_offset,
4085 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4086 credits = ext4_writepage_trans_blocks(inode);
4088 credits = ext4_blocks_for_truncate(inode);
4089 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4090 if (IS_ERR(handle)) {
4091 ret = PTR_ERR(handle);
4092 ext4_std_error(sb, ret);
4096 ret = ext4_zero_partial_blocks(handle, inode, offset,
4101 first_block = (offset + sb->s_blocksize - 1) >>
4102 EXT4_BLOCK_SIZE_BITS(sb);
4103 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4105 /* If there are blocks to remove, do it */
4106 if (stop_block > first_block) {
4108 down_write(&EXT4_I(inode)->i_data_sem);
4109 ext4_discard_preallocations(inode, 0);
4111 ret = ext4_es_remove_extent(inode, first_block,
4112 stop_block - first_block);
4114 up_write(&EXT4_I(inode)->i_data_sem);
4118 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4119 ret = ext4_ext_remove_space(inode, first_block,
4122 ret = ext4_ind_remove_space(handle, inode, first_block,
4125 up_write(&EXT4_I(inode)->i_data_sem);
4127 ext4_fc_track_range(handle, inode, first_block, stop_block);
4129 ext4_handle_sync(handle);
4131 inode->i_mtime = inode->i_ctime = current_time(inode);
4132 ret2 = ext4_mark_inode_dirty(handle, inode);
4136 ext4_update_inode_fsync_trans(handle, inode, 1);
4138 ext4_journal_stop(handle);
4140 filemap_invalidate_unlock(mapping);
4142 inode_unlock(inode);
4146 int ext4_inode_attach_jinode(struct inode *inode)
4148 struct ext4_inode_info *ei = EXT4_I(inode);
4149 struct jbd2_inode *jinode;
4151 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4154 jinode = jbd2_alloc_inode(GFP_KERNEL);
4155 spin_lock(&inode->i_lock);
4158 spin_unlock(&inode->i_lock);
4161 ei->jinode = jinode;
4162 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4165 spin_unlock(&inode->i_lock);
4166 if (unlikely(jinode != NULL))
4167 jbd2_free_inode(jinode);
4174 * We block out ext4_get_block() block instantiations across the entire
4175 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4176 * simultaneously on behalf of the same inode.
4178 * As we work through the truncate and commit bits of it to the journal there
4179 * is one core, guiding principle: the file's tree must always be consistent on
4180 * disk. We must be able to restart the truncate after a crash.
4182 * The file's tree may be transiently inconsistent in memory (although it
4183 * probably isn't), but whenever we close off and commit a journal transaction,
4184 * the contents of (the filesystem + the journal) must be consistent and
4185 * restartable. It's pretty simple, really: bottom up, right to left (although
4186 * left-to-right works OK too).
4188 * Note that at recovery time, journal replay occurs *before* the restart of
4189 * truncate against the orphan inode list.
4191 * The committed inode has the new, desired i_size (which is the same as
4192 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4193 * that this inode's truncate did not complete and it will again call
4194 * ext4_truncate() to have another go. So there will be instantiated blocks
4195 * to the right of the truncation point in a crashed ext4 filesystem. But
4196 * that's fine - as long as they are linked from the inode, the post-crash
4197 * ext4_truncate() run will find them and release them.
4199 int ext4_truncate(struct inode *inode)
4201 struct ext4_inode_info *ei = EXT4_I(inode);
4202 unsigned int credits;
4205 struct address_space *mapping = inode->i_mapping;
4208 * There is a possibility that we're either freeing the inode
4209 * or it's a completely new inode. In those cases we might not
4210 * have i_mutex locked because it's not necessary.
4212 if (!(inode->i_state & (I_NEW|I_FREEING)))
4213 WARN_ON(!inode_is_locked(inode));
4214 trace_ext4_truncate_enter(inode);
4216 if (!ext4_can_truncate(inode))
4219 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4220 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4222 if (ext4_has_inline_data(inode)) {
4225 err = ext4_inline_data_truncate(inode, &has_inline);
4226 if (err || has_inline)
4230 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4231 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4232 if (ext4_inode_attach_jinode(inode) < 0)
4236 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4237 credits = ext4_writepage_trans_blocks(inode);
4239 credits = ext4_blocks_for_truncate(inode);
4241 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4242 if (IS_ERR(handle)) {
4243 err = PTR_ERR(handle);
4247 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4248 ext4_block_truncate_page(handle, mapping, inode->i_size);
4251 * We add the inode to the orphan list, so that if this
4252 * truncate spans multiple transactions, and we crash, we will
4253 * resume the truncate when the filesystem recovers. It also
4254 * marks the inode dirty, to catch the new size.
4256 * Implication: the file must always be in a sane, consistent
4257 * truncatable state while each transaction commits.
4259 err = ext4_orphan_add(handle, inode);
4263 down_write(&EXT4_I(inode)->i_data_sem);
4265 ext4_discard_preallocations(inode, 0);
4267 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4268 err = ext4_ext_truncate(handle, inode);
4270 ext4_ind_truncate(handle, inode);
4272 up_write(&ei->i_data_sem);
4277 ext4_handle_sync(handle);
4281 * If this was a simple ftruncate() and the file will remain alive,
4282 * then we need to clear up the orphan record which we created above.
4283 * However, if this was a real unlink then we were called by
4284 * ext4_evict_inode(), and we allow that function to clean up the
4285 * orphan info for us.
4288 ext4_orphan_del(handle, inode);
4290 inode->i_mtime = inode->i_ctime = current_time(inode);
4291 err2 = ext4_mark_inode_dirty(handle, inode);
4292 if (unlikely(err2 && !err))
4294 ext4_journal_stop(handle);
4297 trace_ext4_truncate_exit(inode);
4302 * ext4_get_inode_loc returns with an extra refcount against the inode's
4303 * underlying buffer_head on success. If 'in_mem' is true, we have all
4304 * data in memory that is needed to recreate the on-disk version of this
4307 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino,
4308 struct ext4_iloc *iloc, int in_mem,
4309 ext4_fsblk_t *ret_block)
4311 struct ext4_group_desc *gdp;
4312 struct buffer_head *bh;
4314 struct blk_plug plug;
4315 int inodes_per_block, inode_offset;
4318 if (ino < EXT4_ROOT_INO ||
4319 ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4320 return -EFSCORRUPTED;
4322 iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
4323 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4328 * Figure out the offset within the block group inode table
4330 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4331 inode_offset = ((ino - 1) %
4332 EXT4_INODES_PER_GROUP(sb));
4333 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4334 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4336 bh = sb_getblk(sb, block);
4339 if (ext4_buffer_uptodate(bh))
4344 * If we have all information of the inode in memory and this
4345 * is the only valid inode in the block, we need not read the
4349 struct buffer_head *bitmap_bh;
4352 start = inode_offset & ~(inodes_per_block - 1);
4354 /* Is the inode bitmap in cache? */
4355 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4356 if (unlikely(!bitmap_bh))
4360 * If the inode bitmap isn't in cache then the
4361 * optimisation may end up performing two reads instead
4362 * of one, so skip it.
4364 if (!buffer_uptodate(bitmap_bh)) {
4368 for (i = start; i < start + inodes_per_block; i++) {
4369 if (i == inode_offset)
4371 if (ext4_test_bit(i, bitmap_bh->b_data))
4375 if (i == start + inodes_per_block) {
4376 /* all other inodes are free, so skip I/O */
4377 memset(bh->b_data, 0, bh->b_size);
4378 set_buffer_uptodate(bh);
4386 * If we need to do any I/O, try to pre-readahead extra
4387 * blocks from the inode table.
4389 blk_start_plug(&plug);
4390 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4391 ext4_fsblk_t b, end, table;
4393 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4395 table = ext4_inode_table(sb, gdp);
4396 /* s_inode_readahead_blks is always a power of 2 */
4397 b = block & ~((ext4_fsblk_t) ra_blks - 1);
4401 num = EXT4_INODES_PER_GROUP(sb);
4402 if (ext4_has_group_desc_csum(sb))
4403 num -= ext4_itable_unused_count(sb, gdp);
4404 table += num / inodes_per_block;
4408 ext4_sb_breadahead_unmovable(sb, b++);
4412 * There are other valid inodes in the buffer, this inode
4413 * has in-inode xattrs, or we don't have this inode in memory.
4414 * Read the block from disk.
4416 trace_ext4_load_inode(sb, ino);
4417 ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL);
4418 blk_finish_plug(&plug);
4420 ext4_simulate_fail_bh(sb, bh, EXT4_SIM_INODE_EIO);
4421 if (!buffer_uptodate(bh)) {
4432 static int __ext4_get_inode_loc_noinmem(struct inode *inode,
4433 struct ext4_iloc *iloc)
4435 ext4_fsblk_t err_blk;
4438 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, iloc, 0,
4442 ext4_error_inode_block(inode, err_blk, EIO,
4443 "unable to read itable block");
4448 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4450 ext4_fsblk_t err_blk;
4453 /* We have all inode data except xattrs in memory here. */
4454 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, iloc,
4455 !ext4_test_inode_state(inode, EXT4_STATE_XATTR), &err_blk);
4458 ext4_error_inode_block(inode, err_blk, EIO,
4459 "unable to read itable block");
4465 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino,
4466 struct ext4_iloc *iloc)
4468 return __ext4_get_inode_loc(sb, ino, iloc, 0, NULL);
4471 static bool ext4_should_enable_dax(struct inode *inode)
4473 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4475 if (test_opt2(inode->i_sb, DAX_NEVER))
4477 if (!S_ISREG(inode->i_mode))
4479 if (ext4_should_journal_data(inode))
4481 if (ext4_has_inline_data(inode))
4483 if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4485 if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4487 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4489 if (test_opt(inode->i_sb, DAX_ALWAYS))
4492 return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
4495 void ext4_set_inode_flags(struct inode *inode, bool init)
4497 unsigned int flags = EXT4_I(inode)->i_flags;
4498 unsigned int new_fl = 0;
4500 WARN_ON_ONCE(IS_DAX(inode) && init);
4502 if (flags & EXT4_SYNC_FL)
4504 if (flags & EXT4_APPEND_FL)
4506 if (flags & EXT4_IMMUTABLE_FL)
4507 new_fl |= S_IMMUTABLE;
4508 if (flags & EXT4_NOATIME_FL)
4509 new_fl |= S_NOATIME;
4510 if (flags & EXT4_DIRSYNC_FL)
4511 new_fl |= S_DIRSYNC;
4513 /* Because of the way inode_set_flags() works we must preserve S_DAX
4514 * here if already set. */
4515 new_fl |= (inode->i_flags & S_DAX);
4516 if (init && ext4_should_enable_dax(inode))
4519 if (flags & EXT4_ENCRYPT_FL)
4520 new_fl |= S_ENCRYPTED;
4521 if (flags & EXT4_CASEFOLD_FL)
4522 new_fl |= S_CASEFOLD;
4523 if (flags & EXT4_VERITY_FL)
4525 inode_set_flags(inode, new_fl,
4526 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4527 S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4530 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4531 struct ext4_inode_info *ei)
4534 struct inode *inode = &(ei->vfs_inode);
4535 struct super_block *sb = inode->i_sb;
4537 if (ext4_has_feature_huge_file(sb)) {
4538 /* we are using combined 48 bit field */
4539 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4540 le32_to_cpu(raw_inode->i_blocks_lo);
4541 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4542 /* i_blocks represent file system block size */
4543 return i_blocks << (inode->i_blkbits - 9);
4548 return le32_to_cpu(raw_inode->i_blocks_lo);
4552 static inline int ext4_iget_extra_inode(struct inode *inode,
4553 struct ext4_inode *raw_inode,
4554 struct ext4_inode_info *ei)
4556 __le32 *magic = (void *)raw_inode +
4557 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4559 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4560 EXT4_INODE_SIZE(inode->i_sb) &&
4561 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4562 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4563 return ext4_find_inline_data_nolock(inode);
4565 EXT4_I(inode)->i_inline_off = 0;
4569 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4571 if (!ext4_has_feature_project(inode->i_sb))
4573 *projid = EXT4_I(inode)->i_projid;
4578 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4579 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4582 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4584 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4585 inode_set_iversion_raw(inode, val);
4587 inode_set_iversion_queried(inode, val);
4589 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4591 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4592 return inode_peek_iversion_raw(inode);
4594 return inode_peek_iversion(inode);
4597 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4598 ext4_iget_flags flags, const char *function,
4601 struct ext4_iloc iloc;
4602 struct ext4_inode *raw_inode;
4603 struct ext4_inode_info *ei;
4604 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4605 struct inode *inode;
4606 journal_t *journal = EXT4_SB(sb)->s_journal;
4614 if ((!(flags & EXT4_IGET_SPECIAL) &&
4615 ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) ||
4616 ino == le32_to_cpu(es->s_usr_quota_inum) ||
4617 ino == le32_to_cpu(es->s_grp_quota_inum) ||
4618 ino == le32_to_cpu(es->s_prj_quota_inum) ||
4619 ino == le32_to_cpu(es->s_orphan_file_inum))) ||
4620 (ino < EXT4_ROOT_INO) ||
4621 (ino > le32_to_cpu(es->s_inodes_count))) {
4622 if (flags & EXT4_IGET_HANDLE)
4623 return ERR_PTR(-ESTALE);
4624 __ext4_error(sb, function, line, false, EFSCORRUPTED, 0,
4625 "inode #%lu: comm %s: iget: illegal inode #",
4626 ino, current->comm);
4627 return ERR_PTR(-EFSCORRUPTED);
4630 inode = iget_locked(sb, ino);
4632 return ERR_PTR(-ENOMEM);
4633 if (!(inode->i_state & I_NEW))
4639 ret = __ext4_get_inode_loc_noinmem(inode, &iloc);
4642 raw_inode = ext4_raw_inode(&iloc);
4644 if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4645 ext4_error_inode(inode, function, line, 0,
4646 "iget: root inode unallocated");
4647 ret = -EFSCORRUPTED;
4651 if ((flags & EXT4_IGET_HANDLE) &&
4652 (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4657 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4658 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4659 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4660 EXT4_INODE_SIZE(inode->i_sb) ||
4661 (ei->i_extra_isize & 3)) {
4662 ext4_error_inode(inode, function, line, 0,
4663 "iget: bad extra_isize %u "
4666 EXT4_INODE_SIZE(inode->i_sb));
4667 ret = -EFSCORRUPTED;
4671 ei->i_extra_isize = 0;
4673 /* Precompute checksum seed for inode metadata */
4674 if (ext4_has_metadata_csum(sb)) {
4675 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4677 __le32 inum = cpu_to_le32(inode->i_ino);
4678 __le32 gen = raw_inode->i_generation;
4679 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4681 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4685 if ((!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4686 ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) &&
4687 (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) {
4688 ext4_error_inode_err(inode, function, line, 0,
4689 EFSBADCRC, "iget: checksum invalid");
4694 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4695 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4696 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4697 if (ext4_has_feature_project(sb) &&
4698 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4699 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4700 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4702 i_projid = EXT4_DEF_PROJID;
4704 if (!(test_opt(inode->i_sb, NO_UID32))) {
4705 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4706 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4708 i_uid_write(inode, i_uid);
4709 i_gid_write(inode, i_gid);
4710 ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4711 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4713 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
4714 ei->i_inline_off = 0;
4715 ei->i_dir_start_lookup = 0;
4716 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4717 /* We now have enough fields to check if the inode was active or not.
4718 * This is needed because nfsd might try to access dead inodes
4719 * the test is that same one that e2fsck uses
4720 * NeilBrown 1999oct15
4722 if (inode->i_nlink == 0) {
4723 if ((inode->i_mode == 0 ||
4724 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4725 ino != EXT4_BOOT_LOADER_INO) {
4726 /* this inode is deleted */
4730 /* The only unlinked inodes we let through here have
4731 * valid i_mode and are being read by the orphan
4732 * recovery code: that's fine, we're about to complete
4733 * the process of deleting those.
4734 * OR it is the EXT4_BOOT_LOADER_INO which is
4735 * not initialized on a new filesystem. */
4737 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4738 ext4_set_inode_flags(inode, true);
4739 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4740 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4741 if (ext4_has_feature_64bit(sb))
4743 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4744 inode->i_size = ext4_isize(sb, raw_inode);
4745 if ((size = i_size_read(inode)) < 0) {
4746 ext4_error_inode(inode, function, line, 0,
4747 "iget: bad i_size value: %lld", size);
4748 ret = -EFSCORRUPTED;
4752 * If dir_index is not enabled but there's dir with INDEX flag set,
4753 * we'd normally treat htree data as empty space. But with metadata
4754 * checksumming that corrupts checksums so forbid that.
4756 if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4757 ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4758 ext4_error_inode(inode, function, line, 0,
4759 "iget: Dir with htree data on filesystem without dir_index feature.");
4760 ret = -EFSCORRUPTED;
4763 ei->i_disksize = inode->i_size;
4765 ei->i_reserved_quota = 0;
4767 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4768 ei->i_block_group = iloc.block_group;
4769 ei->i_last_alloc_group = ~0;
4771 * NOTE! The in-memory inode i_data array is in little-endian order
4772 * even on big-endian machines: we do NOT byteswap the block numbers!
4774 for (block = 0; block < EXT4_N_BLOCKS; block++)
4775 ei->i_data[block] = raw_inode->i_block[block];
4776 INIT_LIST_HEAD(&ei->i_orphan);
4777 ext4_fc_init_inode(&ei->vfs_inode);
4780 * Set transaction id's of transactions that have to be committed
4781 * to finish f[data]sync. We set them to currently running transaction
4782 * as we cannot be sure that the inode or some of its metadata isn't
4783 * part of the transaction - the inode could have been reclaimed and
4784 * now it is reread from disk.
4787 transaction_t *transaction;
4790 read_lock(&journal->j_state_lock);
4791 if (journal->j_running_transaction)
4792 transaction = journal->j_running_transaction;
4794 transaction = journal->j_committing_transaction;
4796 tid = transaction->t_tid;
4798 tid = journal->j_commit_sequence;
4799 read_unlock(&journal->j_state_lock);
4800 ei->i_sync_tid = tid;
4801 ei->i_datasync_tid = tid;
4804 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4805 if (ei->i_extra_isize == 0) {
4806 /* The extra space is currently unused. Use it. */
4807 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4808 ei->i_extra_isize = sizeof(struct ext4_inode) -
4809 EXT4_GOOD_OLD_INODE_SIZE;
4811 ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4817 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4818 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4819 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4820 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4822 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4823 u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4825 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4826 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4828 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4830 ext4_inode_set_iversion_queried(inode, ivers);
4834 if (ei->i_file_acl &&
4835 !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
4836 ext4_error_inode(inode, function, line, 0,
4837 "iget: bad extended attribute block %llu",
4839 ret = -EFSCORRUPTED;
4841 } else if (!ext4_has_inline_data(inode)) {
4842 /* validate the block references in the inode */
4843 if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) &&
4844 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4845 (S_ISLNK(inode->i_mode) &&
4846 !ext4_inode_is_fast_symlink(inode)))) {
4847 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4848 ret = ext4_ext_check_inode(inode);
4850 ret = ext4_ind_check_inode(inode);
4856 if (S_ISREG(inode->i_mode)) {
4857 inode->i_op = &ext4_file_inode_operations;
4858 inode->i_fop = &ext4_file_operations;
4859 ext4_set_aops(inode);
4860 } else if (S_ISDIR(inode->i_mode)) {
4861 inode->i_op = &ext4_dir_inode_operations;
4862 inode->i_fop = &ext4_dir_operations;
4863 } else if (S_ISLNK(inode->i_mode)) {
4864 /* VFS does not allow setting these so must be corruption */
4865 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
4866 ext4_error_inode(inode, function, line, 0,
4867 "iget: immutable or append flags "
4868 "not allowed on symlinks");
4869 ret = -EFSCORRUPTED;
4872 if (IS_ENCRYPTED(inode)) {
4873 inode->i_op = &ext4_encrypted_symlink_inode_operations;
4874 ext4_set_aops(inode);
4875 } else if (ext4_inode_is_fast_symlink(inode)) {
4876 inode->i_link = (char *)ei->i_data;
4877 inode->i_op = &ext4_fast_symlink_inode_operations;
4878 nd_terminate_link(ei->i_data, inode->i_size,
4879 sizeof(ei->i_data) - 1);
4881 inode->i_op = &ext4_symlink_inode_operations;
4882 ext4_set_aops(inode);
4884 inode_nohighmem(inode);
4885 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4886 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4887 inode->i_op = &ext4_special_inode_operations;
4888 if (raw_inode->i_block[0])
4889 init_special_inode(inode, inode->i_mode,
4890 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4892 init_special_inode(inode, inode->i_mode,
4893 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4894 } else if (ino == EXT4_BOOT_LOADER_INO) {
4895 make_bad_inode(inode);
4897 ret = -EFSCORRUPTED;
4898 ext4_error_inode(inode, function, line, 0,
4899 "iget: bogus i_mode (%o)", inode->i_mode);
4902 if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb))
4903 ext4_error_inode(inode, function, line, 0,
4904 "casefold flag without casefold feature");
4907 unlock_new_inode(inode);
4913 return ERR_PTR(ret);
4916 static int ext4_inode_blocks_set(handle_t *handle,
4917 struct ext4_inode *raw_inode,
4918 struct ext4_inode_info *ei)
4920 struct inode *inode = &(ei->vfs_inode);
4921 u64 i_blocks = READ_ONCE(inode->i_blocks);
4922 struct super_block *sb = inode->i_sb;
4924 if (i_blocks <= ~0U) {
4926 * i_blocks can be represented in a 32 bit variable
4927 * as multiple of 512 bytes
4929 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4930 raw_inode->i_blocks_high = 0;
4931 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4936 * This should never happen since sb->s_maxbytes should not have
4937 * allowed this, sb->s_maxbytes was set according to the huge_file
4938 * feature in ext4_fill_super().
4940 if (!ext4_has_feature_huge_file(sb))
4941 return -EFSCORRUPTED;
4943 if (i_blocks <= 0xffffffffffffULL) {
4945 * i_blocks can be represented in a 48 bit variable
4946 * as multiple of 512 bytes
4948 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4949 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4950 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4952 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4953 /* i_block is stored in file system block size */
4954 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4955 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4956 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4961 static void __ext4_update_other_inode_time(struct super_block *sb,
4962 unsigned long orig_ino,
4964 struct ext4_inode *raw_inode)
4966 struct inode *inode;
4968 inode = find_inode_by_ino_rcu(sb, ino);
4972 if (!inode_is_dirtytime_only(inode))
4975 spin_lock(&inode->i_lock);
4976 if (inode_is_dirtytime_only(inode)) {
4977 struct ext4_inode_info *ei = EXT4_I(inode);
4979 inode->i_state &= ~I_DIRTY_TIME;
4980 spin_unlock(&inode->i_lock);
4982 spin_lock(&ei->i_raw_lock);
4983 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4984 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4985 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4986 ext4_inode_csum_set(inode, raw_inode, ei);
4987 spin_unlock(&ei->i_raw_lock);
4988 trace_ext4_other_inode_update_time(inode, orig_ino);
4991 spin_unlock(&inode->i_lock);
4995 * Opportunistically update the other time fields for other inodes in
4996 * the same inode table block.
4998 static void ext4_update_other_inodes_time(struct super_block *sb,
4999 unsigned long orig_ino, char *buf)
5002 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5003 int inode_size = EXT4_INODE_SIZE(sb);
5006 * Calculate the first inode in the inode table block. Inode
5007 * numbers are one-based. That is, the first inode in a block
5008 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5010 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5012 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5013 if (ino == orig_ino)
5015 __ext4_update_other_inode_time(sb, orig_ino, ino,
5016 (struct ext4_inode *)buf);
5022 * Post the struct inode info into an on-disk inode location in the
5023 * buffer-cache. This gobbles the caller's reference to the
5024 * buffer_head in the inode location struct.
5026 * The caller must have write access to iloc->bh.
5028 static int ext4_do_update_inode(handle_t *handle,
5029 struct inode *inode,
5030 struct ext4_iloc *iloc)
5032 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5033 struct ext4_inode_info *ei = EXT4_I(inode);
5034 struct buffer_head *bh = iloc->bh;
5035 struct super_block *sb = inode->i_sb;
5037 int need_datasync = 0, set_large_file = 0;
5042 spin_lock(&ei->i_raw_lock);
5045 * For fields not tracked in the in-memory inode, initialise them
5046 * to zero for new inodes.
5048 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5049 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5051 err = ext4_inode_blocks_set(handle, raw_inode, ei);
5053 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5054 i_uid = i_uid_read(inode);
5055 i_gid = i_gid_read(inode);
5056 i_projid = from_kprojid(&init_user_ns, ei->i_projid);
5057 if (!(test_opt(inode->i_sb, NO_UID32))) {
5058 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
5059 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
5061 * Fix up interoperability with old kernels. Otherwise,
5062 * old inodes get re-used with the upper 16 bits of the
5065 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
5066 raw_inode->i_uid_high = 0;
5067 raw_inode->i_gid_high = 0;
5069 raw_inode->i_uid_high =
5070 cpu_to_le16(high_16_bits(i_uid));
5071 raw_inode->i_gid_high =
5072 cpu_to_le16(high_16_bits(i_gid));
5075 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
5076 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
5077 raw_inode->i_uid_high = 0;
5078 raw_inode->i_gid_high = 0;
5080 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5082 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5083 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5084 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5085 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5087 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5088 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5089 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
5090 raw_inode->i_file_acl_high =
5091 cpu_to_le16(ei->i_file_acl >> 32);
5092 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5093 if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode)) {
5094 ext4_isize_set(raw_inode, ei->i_disksize);
5097 if (ei->i_disksize > 0x7fffffffULL) {
5098 if (!ext4_has_feature_large_file(sb) ||
5099 EXT4_SB(sb)->s_es->s_rev_level ==
5100 cpu_to_le32(EXT4_GOOD_OLD_REV))
5103 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5104 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5105 if (old_valid_dev(inode->i_rdev)) {
5106 raw_inode->i_block[0] =
5107 cpu_to_le32(old_encode_dev(inode->i_rdev));
5108 raw_inode->i_block[1] = 0;
5110 raw_inode->i_block[0] = 0;
5111 raw_inode->i_block[1] =
5112 cpu_to_le32(new_encode_dev(inode->i_rdev));
5113 raw_inode->i_block[2] = 0;
5115 } else if (!ext4_has_inline_data(inode)) {
5116 for (block = 0; block < EXT4_N_BLOCKS; block++)
5117 raw_inode->i_block[block] = ei->i_data[block];
5120 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5121 u64 ivers = ext4_inode_peek_iversion(inode);
5123 raw_inode->i_disk_version = cpu_to_le32(ivers);
5124 if (ei->i_extra_isize) {
5125 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5126 raw_inode->i_version_hi =
5127 cpu_to_le32(ivers >> 32);
5128 raw_inode->i_extra_isize =
5129 cpu_to_le16(ei->i_extra_isize);
5133 if (i_projid != EXT4_DEF_PROJID &&
5134 !ext4_has_feature_project(inode->i_sb))
5135 err = err ?: -EFSCORRUPTED;
5137 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5138 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5139 raw_inode->i_projid = cpu_to_le32(i_projid);
5141 ext4_inode_csum_set(inode, raw_inode, ei);
5142 spin_unlock(&ei->i_raw_lock);
5144 EXT4_ERROR_INODE(inode, "corrupted inode contents");
5148 if (inode->i_sb->s_flags & SB_LAZYTIME)
5149 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5152 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5153 err = ext4_handle_dirty_metadata(handle, NULL, bh);
5156 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5157 if (set_large_file) {
5158 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5159 err = ext4_journal_get_write_access(handle, sb,
5164 lock_buffer(EXT4_SB(sb)->s_sbh);
5165 ext4_set_feature_large_file(sb);
5166 ext4_superblock_csum_set(sb);
5167 unlock_buffer(EXT4_SB(sb)->s_sbh);
5168 ext4_handle_sync(handle);
5169 err = ext4_handle_dirty_metadata(handle, NULL,
5170 EXT4_SB(sb)->s_sbh);
5172 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5174 ext4_std_error(inode->i_sb, err);
5181 * ext4_write_inode()
5183 * We are called from a few places:
5185 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5186 * Here, there will be no transaction running. We wait for any running
5187 * transaction to commit.
5189 * - Within flush work (sys_sync(), kupdate and such).
5190 * We wait on commit, if told to.
5192 * - Within iput_final() -> write_inode_now()
5193 * We wait on commit, if told to.
5195 * In all cases it is actually safe for us to return without doing anything,
5196 * because the inode has been copied into a raw inode buffer in
5197 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
5200 * Note that we are absolutely dependent upon all inode dirtiers doing the
5201 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5202 * which we are interested.
5204 * It would be a bug for them to not do this. The code:
5206 * mark_inode_dirty(inode)
5208 * inode->i_size = expr;
5210 * is in error because write_inode() could occur while `stuff()' is running,
5211 * and the new i_size will be lost. Plus the inode will no longer be on the
5212 * superblock's dirty inode list.
5214 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5218 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5219 sb_rdonly(inode->i_sb))
5222 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5225 if (EXT4_SB(inode->i_sb)->s_journal) {
5226 if (ext4_journal_current_handle()) {
5227 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5233 * No need to force transaction in WB_SYNC_NONE mode. Also
5234 * ext4_sync_fs() will force the commit after everything is
5237 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5240 err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal,
5241 EXT4_I(inode)->i_sync_tid);
5243 struct ext4_iloc iloc;
5245 err = __ext4_get_inode_loc_noinmem(inode, &iloc);
5249 * sync(2) will flush the whole buffer cache. No need to do
5250 * it here separately for each inode.
5252 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5253 sync_dirty_buffer(iloc.bh);
5254 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5255 ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5256 "IO error syncing inode");
5265 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5266 * buffers that are attached to a page stradding i_size and are undergoing
5267 * commit. In that case we have to wait for commit to finish and try again.
5269 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5273 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5274 tid_t commit_tid = 0;
5277 offset = inode->i_size & (PAGE_SIZE - 1);
5279 * If the page is fully truncated, we don't need to wait for any commit
5280 * (and we even should not as __ext4_journalled_invalidatepage() may
5281 * strip all buffers from the page but keep the page dirty which can then
5282 * confuse e.g. concurrent ext4_writepage() seeing dirty page without
5283 * buffers). Also we don't need to wait for any commit if all buffers in
5284 * the page remain valid. This is most beneficial for the common case of
5285 * blocksize == PAGESIZE.
5287 if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5290 page = find_lock_page(inode->i_mapping,
5291 inode->i_size >> PAGE_SHIFT);
5294 ret = __ext4_journalled_invalidatepage(page, offset,
5295 PAGE_SIZE - offset);
5301 read_lock(&journal->j_state_lock);
5302 if (journal->j_committing_transaction)
5303 commit_tid = journal->j_committing_transaction->t_tid;
5304 read_unlock(&journal->j_state_lock);
5306 jbd2_log_wait_commit(journal, commit_tid);
5313 * Called from notify_change.
5315 * We want to trap VFS attempts to truncate the file as soon as
5316 * possible. In particular, we want to make sure that when the VFS
5317 * shrinks i_size, we put the inode on the orphan list and modify
5318 * i_disksize immediately, so that during the subsequent flushing of
5319 * dirty pages and freeing of disk blocks, we can guarantee that any
5320 * commit will leave the blocks being flushed in an unused state on
5321 * disk. (On recovery, the inode will get truncated and the blocks will
5322 * be freed, so we have a strong guarantee that no future commit will
5323 * leave these blocks visible to the user.)
5325 * Another thing we have to assure is that if we are in ordered mode
5326 * and inode is still attached to the committing transaction, we must
5327 * we start writeout of all the dirty pages which are being truncated.
5328 * This way we are sure that all the data written in the previous
5329 * transaction are already on disk (truncate waits for pages under
5332 * Called with inode->i_mutex down.
5334 int ext4_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
5337 struct inode *inode = d_inode(dentry);
5340 const unsigned int ia_valid = attr->ia_valid;
5342 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5345 if (unlikely(IS_IMMUTABLE(inode)))
5348 if (unlikely(IS_APPEND(inode) &&
5349 (ia_valid & (ATTR_MODE | ATTR_UID |
5350 ATTR_GID | ATTR_TIMES_SET))))
5353 error = setattr_prepare(mnt_userns, dentry, attr);
5357 error = fscrypt_prepare_setattr(dentry, attr);
5361 error = fsverity_prepare_setattr(dentry, attr);
5365 if (is_quota_modification(inode, attr)) {
5366 error = dquot_initialize(inode);
5370 ext4_fc_start_update(inode);
5371 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5372 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5375 /* (user+group)*(old+new) structure, inode write (sb,
5376 * inode block, ? - but truncate inode update has it) */
5377 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5378 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5379 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5380 if (IS_ERR(handle)) {
5381 error = PTR_ERR(handle);
5385 /* dquot_transfer() calls back ext4_get_inode_usage() which
5386 * counts xattr inode references.
5388 down_read(&EXT4_I(inode)->xattr_sem);
5389 error = dquot_transfer(inode, attr);
5390 up_read(&EXT4_I(inode)->xattr_sem);
5393 ext4_journal_stop(handle);
5394 ext4_fc_stop_update(inode);
5397 /* Update corresponding info in inode so that everything is in
5398 * one transaction */
5399 if (attr->ia_valid & ATTR_UID)
5400 inode->i_uid = attr->ia_uid;
5401 if (attr->ia_valid & ATTR_GID)
5402 inode->i_gid = attr->ia_gid;
5403 error = ext4_mark_inode_dirty(handle, inode);
5404 ext4_journal_stop(handle);
5405 if (unlikely(error)) {
5406 ext4_fc_stop_update(inode);
5411 if (attr->ia_valid & ATTR_SIZE) {
5413 loff_t oldsize = inode->i_size;
5414 int shrink = (attr->ia_size < inode->i_size);
5416 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5417 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5419 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5420 ext4_fc_stop_update(inode);
5424 if (!S_ISREG(inode->i_mode)) {
5425 ext4_fc_stop_update(inode);
5429 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5430 inode_inc_iversion(inode);
5433 if (ext4_should_order_data(inode)) {
5434 error = ext4_begin_ordered_truncate(inode,
5440 * Blocks are going to be removed from the inode. Wait
5441 * for dio in flight.
5443 inode_dio_wait(inode);
5446 filemap_invalidate_lock(inode->i_mapping);
5448 rc = ext4_break_layouts(inode);
5450 filemap_invalidate_unlock(inode->i_mapping);
5454 if (attr->ia_size != inode->i_size) {
5455 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5456 if (IS_ERR(handle)) {
5457 error = PTR_ERR(handle);
5460 if (ext4_handle_valid(handle) && shrink) {
5461 error = ext4_orphan_add(handle, inode);
5465 * Update c/mtime on truncate up, ext4_truncate() will
5466 * update c/mtime in shrink case below
5469 inode->i_mtime = current_time(inode);
5470 inode->i_ctime = inode->i_mtime;
5474 ext4_fc_track_range(handle, inode,
5475 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5476 inode->i_sb->s_blocksize_bits,
5477 (oldsize > 0 ? oldsize - 1 : 0) >>
5478 inode->i_sb->s_blocksize_bits);
5480 ext4_fc_track_range(
5482 (oldsize > 0 ? oldsize - 1 : oldsize) >>
5483 inode->i_sb->s_blocksize_bits,
5484 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5485 inode->i_sb->s_blocksize_bits);
5487 down_write(&EXT4_I(inode)->i_data_sem);
5488 EXT4_I(inode)->i_disksize = attr->ia_size;
5489 rc = ext4_mark_inode_dirty(handle, inode);
5493 * We have to update i_size under i_data_sem together
5494 * with i_disksize to avoid races with writeback code
5495 * running ext4_wb_update_i_disksize().
5498 i_size_write(inode, attr->ia_size);
5499 up_write(&EXT4_I(inode)->i_data_sem);
5500 ext4_journal_stop(handle);
5504 pagecache_isize_extended(inode, oldsize,
5506 } else if (ext4_should_journal_data(inode)) {
5507 ext4_wait_for_tail_page_commit(inode);
5512 * Truncate pagecache after we've waited for commit
5513 * in data=journal mode to make pages freeable.
5515 truncate_pagecache(inode, inode->i_size);
5517 * Call ext4_truncate() even if i_size didn't change to
5518 * truncate possible preallocated blocks.
5520 if (attr->ia_size <= oldsize) {
5521 rc = ext4_truncate(inode);
5526 filemap_invalidate_unlock(inode->i_mapping);
5530 setattr_copy(mnt_userns, inode, attr);
5531 mark_inode_dirty(inode);
5535 * If the call to ext4_truncate failed to get a transaction handle at
5536 * all, we need to clean up the in-core orphan list manually.
5538 if (orphan && inode->i_nlink)
5539 ext4_orphan_del(NULL, inode);
5541 if (!error && (ia_valid & ATTR_MODE))
5542 rc = posix_acl_chmod(mnt_userns, inode, inode->i_mode);
5546 ext4_std_error(inode->i_sb, error);
5549 ext4_fc_stop_update(inode);
5553 int ext4_getattr(struct user_namespace *mnt_userns, const struct path *path,
5554 struct kstat *stat, u32 request_mask, unsigned int query_flags)
5556 struct inode *inode = d_inode(path->dentry);
5557 struct ext4_inode *raw_inode;
5558 struct ext4_inode_info *ei = EXT4_I(inode);
5561 if ((request_mask & STATX_BTIME) &&
5562 EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5563 stat->result_mask |= STATX_BTIME;
5564 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5565 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5568 flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5569 if (flags & EXT4_APPEND_FL)
5570 stat->attributes |= STATX_ATTR_APPEND;
5571 if (flags & EXT4_COMPR_FL)
5572 stat->attributes |= STATX_ATTR_COMPRESSED;
5573 if (flags & EXT4_ENCRYPT_FL)
5574 stat->attributes |= STATX_ATTR_ENCRYPTED;
5575 if (flags & EXT4_IMMUTABLE_FL)
5576 stat->attributes |= STATX_ATTR_IMMUTABLE;
5577 if (flags & EXT4_NODUMP_FL)
5578 stat->attributes |= STATX_ATTR_NODUMP;
5579 if (flags & EXT4_VERITY_FL)
5580 stat->attributes |= STATX_ATTR_VERITY;
5582 stat->attributes_mask |= (STATX_ATTR_APPEND |
5583 STATX_ATTR_COMPRESSED |
5584 STATX_ATTR_ENCRYPTED |
5585 STATX_ATTR_IMMUTABLE |
5589 generic_fillattr(mnt_userns, inode, stat);
5593 int ext4_file_getattr(struct user_namespace *mnt_userns,
5594 const struct path *path, struct kstat *stat,
5595 u32 request_mask, unsigned int query_flags)
5597 struct inode *inode = d_inode(path->dentry);
5598 u64 delalloc_blocks;
5600 ext4_getattr(mnt_userns, path, stat, request_mask, query_flags);
5603 * If there is inline data in the inode, the inode will normally not
5604 * have data blocks allocated (it may have an external xattr block).
5605 * Report at least one sector for such files, so tools like tar, rsync,
5606 * others don't incorrectly think the file is completely sparse.
5608 if (unlikely(ext4_has_inline_data(inode)))
5609 stat->blocks += (stat->size + 511) >> 9;
5612 * We can't update i_blocks if the block allocation is delayed
5613 * otherwise in the case of system crash before the real block
5614 * allocation is done, we will have i_blocks inconsistent with
5615 * on-disk file blocks.
5616 * We always keep i_blocks updated together with real
5617 * allocation. But to not confuse with user, stat
5618 * will return the blocks that include the delayed allocation
5619 * blocks for this file.
5621 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5622 EXT4_I(inode)->i_reserved_data_blocks);
5623 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5627 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5630 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5631 return ext4_ind_trans_blocks(inode, lblocks);
5632 return ext4_ext_index_trans_blocks(inode, pextents);
5636 * Account for index blocks, block groups bitmaps and block group
5637 * descriptor blocks if modify datablocks and index blocks
5638 * worse case, the indexs blocks spread over different block groups
5640 * If datablocks are discontiguous, they are possible to spread over
5641 * different block groups too. If they are contiguous, with flexbg,
5642 * they could still across block group boundary.
5644 * Also account for superblock, inode, quota and xattr blocks
5646 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5649 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5655 * How many index blocks need to touch to map @lblocks logical blocks
5656 * to @pextents physical extents?
5658 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5663 * Now let's see how many group bitmaps and group descriptors need
5666 groups = idxblocks + pextents;
5668 if (groups > ngroups)
5670 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5671 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5673 /* bitmaps and block group descriptor blocks */
5674 ret += groups + gdpblocks;
5676 /* Blocks for super block, inode, quota and xattr blocks */
5677 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5683 * Calculate the total number of credits to reserve to fit
5684 * the modification of a single pages into a single transaction,
5685 * which may include multiple chunks of block allocations.
5687 * This could be called via ext4_write_begin()
5689 * We need to consider the worse case, when
5690 * one new block per extent.
5692 int ext4_writepage_trans_blocks(struct inode *inode)
5694 int bpp = ext4_journal_blocks_per_page(inode);
5697 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5699 /* Account for data blocks for journalled mode */
5700 if (ext4_should_journal_data(inode))
5706 * Calculate the journal credits for a chunk of data modification.
5708 * This is called from DIO, fallocate or whoever calling
5709 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5711 * journal buffers for data blocks are not included here, as DIO
5712 * and fallocate do no need to journal data buffers.
5714 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5716 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5720 * The caller must have previously called ext4_reserve_inode_write().
5721 * Give this, we know that the caller already has write access to iloc->bh.
5723 int ext4_mark_iloc_dirty(handle_t *handle,
5724 struct inode *inode, struct ext4_iloc *iloc)
5728 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5732 ext4_fc_track_inode(handle, inode);
5734 if (IS_I_VERSION(inode))
5735 inode_inc_iversion(inode);
5737 /* the do_update_inode consumes one bh->b_count */
5740 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5741 err = ext4_do_update_inode(handle, inode, iloc);
5747 * On success, We end up with an outstanding reference count against
5748 * iloc->bh. This _must_ be cleaned up later.
5752 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5753 struct ext4_iloc *iloc)
5757 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5760 err = ext4_get_inode_loc(inode, iloc);
5762 BUFFER_TRACE(iloc->bh, "get_write_access");
5763 err = ext4_journal_get_write_access(handle, inode->i_sb,
5764 iloc->bh, EXT4_JTR_NONE);
5770 ext4_std_error(inode->i_sb, err);
5774 static int __ext4_expand_extra_isize(struct inode *inode,
5775 unsigned int new_extra_isize,
5776 struct ext4_iloc *iloc,
5777 handle_t *handle, int *no_expand)
5779 struct ext4_inode *raw_inode;
5780 struct ext4_xattr_ibody_header *header;
5781 unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5782 struct ext4_inode_info *ei = EXT4_I(inode);
5785 /* this was checked at iget time, but double check for good measure */
5786 if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5787 (ei->i_extra_isize & 3)) {
5788 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5790 EXT4_INODE_SIZE(inode->i_sb));
5791 return -EFSCORRUPTED;
5793 if ((new_extra_isize < ei->i_extra_isize) ||
5794 (new_extra_isize < 4) ||
5795 (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5796 return -EINVAL; /* Should never happen */
5798 raw_inode = ext4_raw_inode(iloc);
5800 header = IHDR(inode, raw_inode);
5802 /* No extended attributes present */
5803 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5804 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5805 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5806 EXT4_I(inode)->i_extra_isize, 0,
5807 new_extra_isize - EXT4_I(inode)->i_extra_isize);
5808 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5812 /* try to expand with EAs present */
5813 error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5817 * Inode size expansion failed; don't try again
5826 * Expand an inode by new_extra_isize bytes.
5827 * Returns 0 on success or negative error number on failure.
5829 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5830 unsigned int new_extra_isize,
5831 struct ext4_iloc iloc,
5837 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5841 * In nojournal mode, we can immediately attempt to expand
5842 * the inode. When journaled, we first need to obtain extra
5843 * buffer credits since we may write into the EA block
5844 * with this same handle. If journal_extend fails, then it will
5845 * only result in a minor loss of functionality for that inode.
5846 * If this is felt to be critical, then e2fsck should be run to
5847 * force a large enough s_min_extra_isize.
5849 if (ext4_journal_extend(handle,
5850 EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5853 if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5856 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5857 handle, &no_expand);
5858 ext4_write_unlock_xattr(inode, &no_expand);
5863 int ext4_expand_extra_isize(struct inode *inode,
5864 unsigned int new_extra_isize,
5865 struct ext4_iloc *iloc)
5871 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5876 handle = ext4_journal_start(inode, EXT4_HT_INODE,
5877 EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5878 if (IS_ERR(handle)) {
5879 error = PTR_ERR(handle);
5884 ext4_write_lock_xattr(inode, &no_expand);
5886 BUFFER_TRACE(iloc->bh, "get_write_access");
5887 error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh,
5894 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5895 handle, &no_expand);
5897 rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5902 ext4_write_unlock_xattr(inode, &no_expand);
5903 ext4_journal_stop(handle);
5908 * What we do here is to mark the in-core inode as clean with respect to inode
5909 * dirtiness (it may still be data-dirty).
5910 * This means that the in-core inode may be reaped by prune_icache
5911 * without having to perform any I/O. This is a very good thing,
5912 * because *any* task may call prune_icache - even ones which
5913 * have a transaction open against a different journal.
5915 * Is this cheating? Not really. Sure, we haven't written the
5916 * inode out, but prune_icache isn't a user-visible syncing function.
5917 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5918 * we start and wait on commits.
5920 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
5921 const char *func, unsigned int line)
5923 struct ext4_iloc iloc;
5924 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5928 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5929 err = ext4_reserve_inode_write(handle, inode, &iloc);
5933 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5934 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5937 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5940 ext4_error_inode_err(inode, func, line, 0, err,
5941 "mark_inode_dirty error");
5946 * ext4_dirty_inode() is called from __mark_inode_dirty()
5948 * We're really interested in the case where a file is being extended.
5949 * i_size has been changed by generic_commit_write() and we thus need
5950 * to include the updated inode in the current transaction.
5952 * Also, dquot_alloc_block() will always dirty the inode when blocks
5953 * are allocated to the file.
5955 * If the inode is marked synchronous, we don't honour that here - doing
5956 * so would cause a commit on atime updates, which we don't bother doing.
5957 * We handle synchronous inodes at the highest possible level.
5959 void ext4_dirty_inode(struct inode *inode, int flags)
5963 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5966 ext4_mark_inode_dirty(handle, inode);
5967 ext4_journal_stop(handle);
5970 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5975 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5978 * We have to be very careful here: changing a data block's
5979 * journaling status dynamically is dangerous. If we write a
5980 * data block to the journal, change the status and then delete
5981 * that block, we risk forgetting to revoke the old log record
5982 * from the journal and so a subsequent replay can corrupt data.
5983 * So, first we make sure that the journal is empty and that
5984 * nobody is changing anything.
5987 journal = EXT4_JOURNAL(inode);
5990 if (is_journal_aborted(journal))
5993 /* Wait for all existing dio workers */
5994 inode_dio_wait(inode);
5997 * Before flushing the journal and switching inode's aops, we have
5998 * to flush all dirty data the inode has. There can be outstanding
5999 * delayed allocations, there can be unwritten extents created by
6000 * fallocate or buffered writes in dioread_nolock mode covered by
6001 * dirty data which can be converted only after flushing the dirty
6002 * data (and journalled aops don't know how to handle these cases).
6005 filemap_invalidate_lock(inode->i_mapping);
6006 err = filemap_write_and_wait(inode->i_mapping);
6008 filemap_invalidate_unlock(inode->i_mapping);
6013 percpu_down_write(&sbi->s_writepages_rwsem);
6014 jbd2_journal_lock_updates(journal);
6017 * OK, there are no updates running now, and all cached data is
6018 * synced to disk. We are now in a completely consistent state
6019 * which doesn't have anything in the journal, and we know that
6020 * no filesystem updates are running, so it is safe to modify
6021 * the inode's in-core data-journaling state flag now.
6025 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6027 err = jbd2_journal_flush(journal, 0);
6029 jbd2_journal_unlock_updates(journal);
6030 percpu_up_write(&sbi->s_writepages_rwsem);
6033 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6035 ext4_set_aops(inode);
6037 jbd2_journal_unlock_updates(journal);
6038 percpu_up_write(&sbi->s_writepages_rwsem);
6041 filemap_invalidate_unlock(inode->i_mapping);
6043 /* Finally we can mark the inode as dirty. */
6045 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6047 return PTR_ERR(handle);
6049 ext4_fc_mark_ineligible(inode->i_sb,
6050 EXT4_FC_REASON_JOURNAL_FLAG_CHANGE);
6051 err = ext4_mark_inode_dirty(handle, inode);
6052 ext4_handle_sync(handle);
6053 ext4_journal_stop(handle);
6054 ext4_std_error(inode->i_sb, err);
6059 static int ext4_bh_unmapped(handle_t *handle, struct inode *inode,
6060 struct buffer_head *bh)
6062 return !buffer_mapped(bh);
6065 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6067 struct vm_area_struct *vma = vmf->vma;
6068 struct page *page = vmf->page;
6073 struct file *file = vma->vm_file;
6074 struct inode *inode = file_inode(file);
6075 struct address_space *mapping = inode->i_mapping;
6077 get_block_t *get_block;
6080 if (unlikely(IS_IMMUTABLE(inode)))
6081 return VM_FAULT_SIGBUS;
6083 sb_start_pagefault(inode->i_sb);
6084 file_update_time(vma->vm_file);
6086 filemap_invalidate_lock_shared(mapping);
6088 err = ext4_convert_inline_data(inode);
6093 * On data journalling we skip straight to the transaction handle:
6094 * there's no delalloc; page truncated will be checked later; the
6095 * early return w/ all buffers mapped (calculates size/len) can't
6096 * be used; and there's no dioread_nolock, so only ext4_get_block.
6098 if (ext4_should_journal_data(inode))
6101 /* Delalloc case is easy... */
6102 if (test_opt(inode->i_sb, DELALLOC) &&
6103 !ext4_nonda_switch(inode->i_sb)) {
6105 err = block_page_mkwrite(vma, vmf,
6106 ext4_da_get_block_prep);
6107 } while (err == -ENOSPC &&
6108 ext4_should_retry_alloc(inode->i_sb, &retries));
6113 size = i_size_read(inode);
6114 /* Page got truncated from under us? */
6115 if (page->mapping != mapping || page_offset(page) > size) {
6117 ret = VM_FAULT_NOPAGE;
6121 if (page->index == size >> PAGE_SHIFT)
6122 len = size & ~PAGE_MASK;
6126 * Return if we have all the buffers mapped. This avoids the need to do
6127 * journal_start/journal_stop which can block and take a long time
6129 * This cannot be done for data journalling, as we have to add the
6130 * inode to the transaction's list to writeprotect pages on commit.
6132 if (page_has_buffers(page)) {
6133 if (!ext4_walk_page_buffers(NULL, inode, page_buffers(page),
6135 ext4_bh_unmapped)) {
6136 /* Wait so that we don't change page under IO */
6137 wait_for_stable_page(page);
6138 ret = VM_FAULT_LOCKED;
6143 /* OK, we need to fill the hole... */
6144 if (ext4_should_dioread_nolock(inode))
6145 get_block = ext4_get_block_unwritten;
6147 get_block = ext4_get_block;
6149 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6150 ext4_writepage_trans_blocks(inode));
6151 if (IS_ERR(handle)) {
6152 ret = VM_FAULT_SIGBUS;
6156 * Data journalling can't use block_page_mkwrite() because it
6157 * will set_buffer_dirty() before do_journal_get_write_access()
6158 * thus might hit warning messages for dirty metadata buffers.
6160 if (!ext4_should_journal_data(inode)) {
6161 err = block_page_mkwrite(vma, vmf, get_block);
6164 size = i_size_read(inode);
6165 /* Page got truncated from under us? */
6166 if (page->mapping != mapping || page_offset(page) > size) {
6167 ret = VM_FAULT_NOPAGE;
6171 if (page->index == size >> PAGE_SHIFT)
6172 len = size & ~PAGE_MASK;
6176 err = __block_write_begin(page, 0, len, ext4_get_block);
6178 ret = VM_FAULT_SIGBUS;
6179 if (ext4_walk_page_buffers(handle, inode,
6180 page_buffers(page), 0, len, NULL,
6181 do_journal_get_write_access))
6183 if (ext4_walk_page_buffers(handle, inode,
6184 page_buffers(page), 0, len, NULL,
6187 if (ext4_jbd2_inode_add_write(handle, inode,
6188 page_offset(page), len))
6190 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6195 ext4_journal_stop(handle);
6196 if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6199 ret = block_page_mkwrite_return(err);
6201 filemap_invalidate_unlock_shared(mapping);
6202 sb_end_pagefault(inode->i_sb);
6206 ext4_journal_stop(handle);