ext4: main fast-commit commit path
[linux-2.6-microblaze.git] / fs / ext4 / inode.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  64-bit file support on 64-bit platforms by Jakub Jelinek
17  *      (jj@sunsite.ms.mff.cuni.cz)
18  *
19  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20  */
21
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/dax.h>
27 #include <linux/quotaops.h>
28 #include <linux/string.h>
29 #include <linux/buffer_head.h>
30 #include <linux/writeback.h>
31 #include <linux/pagevec.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/uio.h>
35 #include <linux/bio.h>
36 #include <linux/workqueue.h>
37 #include <linux/kernel.h>
38 #include <linux/printk.h>
39 #include <linux/slab.h>
40 #include <linux/bitops.h>
41 #include <linux/iomap.h>
42 #include <linux/iversion.h>
43
44 #include "ext4_jbd2.h"
45 #include "xattr.h"
46 #include "acl.h"
47 #include "truncate.h"
48
49 #include <trace/events/ext4.h>
50
51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52                               struct ext4_inode_info *ei)
53 {
54         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55         __u32 csum;
56         __u16 dummy_csum = 0;
57         int offset = offsetof(struct ext4_inode, i_checksum_lo);
58         unsigned int csum_size = sizeof(dummy_csum);
59
60         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
61         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
62         offset += csum_size;
63         csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
64                            EXT4_GOOD_OLD_INODE_SIZE - offset);
65
66         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
67                 offset = offsetof(struct ext4_inode, i_checksum_hi);
68                 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
69                                    EXT4_GOOD_OLD_INODE_SIZE,
70                                    offset - EXT4_GOOD_OLD_INODE_SIZE);
71                 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
72                         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
73                                            csum_size);
74                         offset += csum_size;
75                 }
76                 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
77                                    EXT4_INODE_SIZE(inode->i_sb) - offset);
78         }
79
80         return csum;
81 }
82
83 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
84                                   struct ext4_inode_info *ei)
85 {
86         __u32 provided, calculated;
87
88         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
89             cpu_to_le32(EXT4_OS_LINUX) ||
90             !ext4_has_metadata_csum(inode->i_sb))
91                 return 1;
92
93         provided = le16_to_cpu(raw->i_checksum_lo);
94         calculated = ext4_inode_csum(inode, raw, ei);
95         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
96             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
97                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
98         else
99                 calculated &= 0xFFFF;
100
101         return provided == calculated;
102 }
103
104 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
105                                 struct ext4_inode_info *ei)
106 {
107         __u32 csum;
108
109         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
110             cpu_to_le32(EXT4_OS_LINUX) ||
111             !ext4_has_metadata_csum(inode->i_sb))
112                 return;
113
114         csum = ext4_inode_csum(inode, raw, ei);
115         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
116         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
117             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
118                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
119 }
120
121 static inline int ext4_begin_ordered_truncate(struct inode *inode,
122                                               loff_t new_size)
123 {
124         trace_ext4_begin_ordered_truncate(inode, new_size);
125         /*
126          * If jinode is zero, then we never opened the file for
127          * writing, so there's no need to call
128          * jbd2_journal_begin_ordered_truncate() since there's no
129          * outstanding writes we need to flush.
130          */
131         if (!EXT4_I(inode)->jinode)
132                 return 0;
133         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
134                                                    EXT4_I(inode)->jinode,
135                                                    new_size);
136 }
137
138 static void ext4_invalidatepage(struct page *page, unsigned int offset,
139                                 unsigned int length);
140 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
141 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
142 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
143                                   int pextents);
144
145 /*
146  * Test whether an inode is a fast symlink.
147  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
148  */
149 int ext4_inode_is_fast_symlink(struct inode *inode)
150 {
151         if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
152                 int ea_blocks = EXT4_I(inode)->i_file_acl ?
153                                 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
154
155                 if (ext4_has_inline_data(inode))
156                         return 0;
157
158                 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
159         }
160         return S_ISLNK(inode->i_mode) && inode->i_size &&
161                (inode->i_size < EXT4_N_BLOCKS * 4);
162 }
163
164 /*
165  * Called at the last iput() if i_nlink is zero.
166  */
167 void ext4_evict_inode(struct inode *inode)
168 {
169         handle_t *handle;
170         int err;
171         /*
172          * Credits for final inode cleanup and freeing:
173          * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
174          * (xattr block freeing), bitmap, group descriptor (inode freeing)
175          */
176         int extra_credits = 6;
177         struct ext4_xattr_inode_array *ea_inode_array = NULL;
178
179         trace_ext4_evict_inode(inode);
180
181         if (inode->i_nlink) {
182                 /*
183                  * When journalling data dirty buffers are tracked only in the
184                  * journal. So although mm thinks everything is clean and
185                  * ready for reaping the inode might still have some pages to
186                  * write in the running transaction or waiting to be
187                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
188                  * (via truncate_inode_pages()) to discard these buffers can
189                  * cause data loss. Also even if we did not discard these
190                  * buffers, we would have no way to find them after the inode
191                  * is reaped and thus user could see stale data if he tries to
192                  * read them before the transaction is checkpointed. So be
193                  * careful and force everything to disk here... We use
194                  * ei->i_datasync_tid to store the newest transaction
195                  * containing inode's data.
196                  *
197                  * Note that directories do not have this problem because they
198                  * don't use page cache.
199                  */
200                 if (inode->i_ino != EXT4_JOURNAL_INO &&
201                     ext4_should_journal_data(inode) &&
202                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
203                     inode->i_data.nrpages) {
204                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
205                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
206
207                         jbd2_complete_transaction(journal, commit_tid);
208                         filemap_write_and_wait(&inode->i_data);
209                 }
210                 truncate_inode_pages_final(&inode->i_data);
211
212                 goto no_delete;
213         }
214
215         if (is_bad_inode(inode))
216                 goto no_delete;
217         dquot_initialize(inode);
218
219         if (ext4_should_order_data(inode))
220                 ext4_begin_ordered_truncate(inode, 0);
221         truncate_inode_pages_final(&inode->i_data);
222
223         /*
224          * For inodes with journalled data, transaction commit could have
225          * dirtied the inode. Flush worker is ignoring it because of I_FREEING
226          * flag but we still need to remove the inode from the writeback lists.
227          */
228         if (!list_empty_careful(&inode->i_io_list)) {
229                 WARN_ON_ONCE(!ext4_should_journal_data(inode));
230                 inode_io_list_del(inode);
231         }
232
233         /*
234          * Protect us against freezing - iput() caller didn't have to have any
235          * protection against it
236          */
237         sb_start_intwrite(inode->i_sb);
238
239         if (!IS_NOQUOTA(inode))
240                 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
241
242         /*
243          * Block bitmap, group descriptor, and inode are accounted in both
244          * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
245          */
246         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
247                          ext4_blocks_for_truncate(inode) + extra_credits - 3);
248         if (IS_ERR(handle)) {
249                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
250                 /*
251                  * If we're going to skip the normal cleanup, we still need to
252                  * make sure that the in-core orphan linked list is properly
253                  * cleaned up.
254                  */
255                 ext4_orphan_del(NULL, inode);
256                 sb_end_intwrite(inode->i_sb);
257                 goto no_delete;
258         }
259
260         if (IS_SYNC(inode))
261                 ext4_handle_sync(handle);
262
263         /*
264          * Set inode->i_size to 0 before calling ext4_truncate(). We need
265          * special handling of symlinks here because i_size is used to
266          * determine whether ext4_inode_info->i_data contains symlink data or
267          * block mappings. Setting i_size to 0 will remove its fast symlink
268          * status. Erase i_data so that it becomes a valid empty block map.
269          */
270         if (ext4_inode_is_fast_symlink(inode))
271                 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
272         inode->i_size = 0;
273         err = ext4_mark_inode_dirty(handle, inode);
274         if (err) {
275                 ext4_warning(inode->i_sb,
276                              "couldn't mark inode dirty (err %d)", err);
277                 goto stop_handle;
278         }
279         if (inode->i_blocks) {
280                 err = ext4_truncate(inode);
281                 if (err) {
282                         ext4_error_err(inode->i_sb, -err,
283                                        "couldn't truncate inode %lu (err %d)",
284                                        inode->i_ino, err);
285                         goto stop_handle;
286                 }
287         }
288
289         /* Remove xattr references. */
290         err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
291                                       extra_credits);
292         if (err) {
293                 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
294 stop_handle:
295                 ext4_journal_stop(handle);
296                 ext4_orphan_del(NULL, inode);
297                 sb_end_intwrite(inode->i_sb);
298                 ext4_xattr_inode_array_free(ea_inode_array);
299                 goto no_delete;
300         }
301
302         /*
303          * Kill off the orphan record which ext4_truncate created.
304          * AKPM: I think this can be inside the above `if'.
305          * Note that ext4_orphan_del() has to be able to cope with the
306          * deletion of a non-existent orphan - this is because we don't
307          * know if ext4_truncate() actually created an orphan record.
308          * (Well, we could do this if we need to, but heck - it works)
309          */
310         ext4_orphan_del(handle, inode);
311         EXT4_I(inode)->i_dtime  = (__u32)ktime_get_real_seconds();
312
313         /*
314          * One subtle ordering requirement: if anything has gone wrong
315          * (transaction abort, IO errors, whatever), then we can still
316          * do these next steps (the fs will already have been marked as
317          * having errors), but we can't free the inode if the mark_dirty
318          * fails.
319          */
320         if (ext4_mark_inode_dirty(handle, inode))
321                 /* If that failed, just do the required in-core inode clear. */
322                 ext4_clear_inode(inode);
323         else
324                 ext4_free_inode(handle, inode);
325         ext4_journal_stop(handle);
326         sb_end_intwrite(inode->i_sb);
327         ext4_xattr_inode_array_free(ea_inode_array);
328         return;
329 no_delete:
330         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
331 }
332
333 #ifdef CONFIG_QUOTA
334 qsize_t *ext4_get_reserved_space(struct inode *inode)
335 {
336         return &EXT4_I(inode)->i_reserved_quota;
337 }
338 #endif
339
340 /*
341  * Called with i_data_sem down, which is important since we can call
342  * ext4_discard_preallocations() from here.
343  */
344 void ext4_da_update_reserve_space(struct inode *inode,
345                                         int used, int quota_claim)
346 {
347         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
348         struct ext4_inode_info *ei = EXT4_I(inode);
349
350         spin_lock(&ei->i_block_reservation_lock);
351         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
352         if (unlikely(used > ei->i_reserved_data_blocks)) {
353                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
354                          "with only %d reserved data blocks",
355                          __func__, inode->i_ino, used,
356                          ei->i_reserved_data_blocks);
357                 WARN_ON(1);
358                 used = ei->i_reserved_data_blocks;
359         }
360
361         /* Update per-inode reservations */
362         ei->i_reserved_data_blocks -= used;
363         percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
364
365         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
366
367         /* Update quota subsystem for data blocks */
368         if (quota_claim)
369                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
370         else {
371                 /*
372                  * We did fallocate with an offset that is already delayed
373                  * allocated. So on delayed allocated writeback we should
374                  * not re-claim the quota for fallocated blocks.
375                  */
376                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
377         }
378
379         /*
380          * If we have done all the pending block allocations and if
381          * there aren't any writers on the inode, we can discard the
382          * inode's preallocations.
383          */
384         if ((ei->i_reserved_data_blocks == 0) &&
385             !inode_is_open_for_write(inode))
386                 ext4_discard_preallocations(inode, 0);
387 }
388
389 static int __check_block_validity(struct inode *inode, const char *func,
390                                 unsigned int line,
391                                 struct ext4_map_blocks *map)
392 {
393         if (ext4_has_feature_journal(inode->i_sb) &&
394             (inode->i_ino ==
395              le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
396                 return 0;
397         if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
398                 ext4_error_inode(inode, func, line, map->m_pblk,
399                                  "lblock %lu mapped to illegal pblock %llu "
400                                  "(length %d)", (unsigned long) map->m_lblk,
401                                  map->m_pblk, map->m_len);
402                 return -EFSCORRUPTED;
403         }
404         return 0;
405 }
406
407 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
408                        ext4_lblk_t len)
409 {
410         int ret;
411
412         if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
413                 return fscrypt_zeroout_range(inode, lblk, pblk, len);
414
415         ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
416         if (ret > 0)
417                 ret = 0;
418
419         return ret;
420 }
421
422 #define check_block_validity(inode, map)        \
423         __check_block_validity((inode), __func__, __LINE__, (map))
424
425 #ifdef ES_AGGRESSIVE_TEST
426 static void ext4_map_blocks_es_recheck(handle_t *handle,
427                                        struct inode *inode,
428                                        struct ext4_map_blocks *es_map,
429                                        struct ext4_map_blocks *map,
430                                        int flags)
431 {
432         int retval;
433
434         map->m_flags = 0;
435         /*
436          * There is a race window that the result is not the same.
437          * e.g. xfstests #223 when dioread_nolock enables.  The reason
438          * is that we lookup a block mapping in extent status tree with
439          * out taking i_data_sem.  So at the time the unwritten extent
440          * could be converted.
441          */
442         down_read(&EXT4_I(inode)->i_data_sem);
443         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
444                 retval = ext4_ext_map_blocks(handle, inode, map, 0);
445         } else {
446                 retval = ext4_ind_map_blocks(handle, inode, map, 0);
447         }
448         up_read((&EXT4_I(inode)->i_data_sem));
449
450         /*
451          * We don't check m_len because extent will be collpased in status
452          * tree.  So the m_len might not equal.
453          */
454         if (es_map->m_lblk != map->m_lblk ||
455             es_map->m_flags != map->m_flags ||
456             es_map->m_pblk != map->m_pblk) {
457                 printk("ES cache assertion failed for inode: %lu "
458                        "es_cached ex [%d/%d/%llu/%x] != "
459                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
460                        inode->i_ino, es_map->m_lblk, es_map->m_len,
461                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
462                        map->m_len, map->m_pblk, map->m_flags,
463                        retval, flags);
464         }
465 }
466 #endif /* ES_AGGRESSIVE_TEST */
467
468 /*
469  * The ext4_map_blocks() function tries to look up the requested blocks,
470  * and returns if the blocks are already mapped.
471  *
472  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
473  * and store the allocated blocks in the result buffer head and mark it
474  * mapped.
475  *
476  * If file type is extents based, it will call ext4_ext_map_blocks(),
477  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
478  * based files
479  *
480  * On success, it returns the number of blocks being mapped or allocated.  if
481  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
482  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
483  *
484  * It returns 0 if plain look up failed (blocks have not been allocated), in
485  * that case, @map is returned as unmapped but we still do fill map->m_len to
486  * indicate the length of a hole starting at map->m_lblk.
487  *
488  * It returns the error in case of allocation failure.
489  */
490 int ext4_map_blocks(handle_t *handle, struct inode *inode,
491                     struct ext4_map_blocks *map, int flags)
492 {
493         struct extent_status es;
494         int retval;
495         int ret = 0;
496 #ifdef ES_AGGRESSIVE_TEST
497         struct ext4_map_blocks orig_map;
498
499         memcpy(&orig_map, map, sizeof(*map));
500 #endif
501
502         map->m_flags = 0;
503         ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
504                   flags, map->m_len, (unsigned long) map->m_lblk);
505
506         /*
507          * ext4_map_blocks returns an int, and m_len is an unsigned int
508          */
509         if (unlikely(map->m_len > INT_MAX))
510                 map->m_len = INT_MAX;
511
512         /* We can handle the block number less than EXT_MAX_BLOCKS */
513         if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
514                 return -EFSCORRUPTED;
515
516         /* Lookup extent status tree firstly */
517         if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
518                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
519                         map->m_pblk = ext4_es_pblock(&es) +
520                                         map->m_lblk - es.es_lblk;
521                         map->m_flags |= ext4_es_is_written(&es) ?
522                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
523                         retval = es.es_len - (map->m_lblk - es.es_lblk);
524                         if (retval > map->m_len)
525                                 retval = map->m_len;
526                         map->m_len = retval;
527                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
528                         map->m_pblk = 0;
529                         retval = es.es_len - (map->m_lblk - es.es_lblk);
530                         if (retval > map->m_len)
531                                 retval = map->m_len;
532                         map->m_len = retval;
533                         retval = 0;
534                 } else {
535                         BUG();
536                 }
537 #ifdef ES_AGGRESSIVE_TEST
538                 ext4_map_blocks_es_recheck(handle, inode, map,
539                                            &orig_map, flags);
540 #endif
541                 goto found;
542         }
543
544         /*
545          * Try to see if we can get the block without requesting a new
546          * file system block.
547          */
548         down_read(&EXT4_I(inode)->i_data_sem);
549         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
550                 retval = ext4_ext_map_blocks(handle, inode, map, 0);
551         } else {
552                 retval = ext4_ind_map_blocks(handle, inode, map, 0);
553         }
554         if (retval > 0) {
555                 unsigned int status;
556
557                 if (unlikely(retval != map->m_len)) {
558                         ext4_warning(inode->i_sb,
559                                      "ES len assertion failed for inode "
560                                      "%lu: retval %d != map->m_len %d",
561                                      inode->i_ino, retval, map->m_len);
562                         WARN_ON(1);
563                 }
564
565                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
566                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
567                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
568                     !(status & EXTENT_STATUS_WRITTEN) &&
569                     ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
570                                        map->m_lblk + map->m_len - 1))
571                         status |= EXTENT_STATUS_DELAYED;
572                 ret = ext4_es_insert_extent(inode, map->m_lblk,
573                                             map->m_len, map->m_pblk, status);
574                 if (ret < 0)
575                         retval = ret;
576         }
577         up_read((&EXT4_I(inode)->i_data_sem));
578
579 found:
580         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
581                 ret = check_block_validity(inode, map);
582                 if (ret != 0)
583                         return ret;
584         }
585
586         /* If it is only a block(s) look up */
587         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
588                 return retval;
589
590         /*
591          * Returns if the blocks have already allocated
592          *
593          * Note that if blocks have been preallocated
594          * ext4_ext_get_block() returns the create = 0
595          * with buffer head unmapped.
596          */
597         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
598                 /*
599                  * If we need to convert extent to unwritten
600                  * we continue and do the actual work in
601                  * ext4_ext_map_blocks()
602                  */
603                 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
604                         return retval;
605
606         /*
607          * Here we clear m_flags because after allocating an new extent,
608          * it will be set again.
609          */
610         map->m_flags &= ~EXT4_MAP_FLAGS;
611
612         /*
613          * New blocks allocate and/or writing to unwritten extent
614          * will possibly result in updating i_data, so we take
615          * the write lock of i_data_sem, and call get_block()
616          * with create == 1 flag.
617          */
618         down_write(&EXT4_I(inode)->i_data_sem);
619
620         /*
621          * We need to check for EXT4 here because migrate
622          * could have changed the inode type in between
623          */
624         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
625                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
626         } else {
627                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
628
629                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
630                         /*
631                          * We allocated new blocks which will result in
632                          * i_data's format changing.  Force the migrate
633                          * to fail by clearing migrate flags
634                          */
635                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
636                 }
637
638                 /*
639                  * Update reserved blocks/metadata blocks after successful
640                  * block allocation which had been deferred till now. We don't
641                  * support fallocate for non extent files. So we can update
642                  * reserve space here.
643                  */
644                 if ((retval > 0) &&
645                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
646                         ext4_da_update_reserve_space(inode, retval, 1);
647         }
648
649         if (retval > 0) {
650                 unsigned int status;
651
652                 if (unlikely(retval != map->m_len)) {
653                         ext4_warning(inode->i_sb,
654                                      "ES len assertion failed for inode "
655                                      "%lu: retval %d != map->m_len %d",
656                                      inode->i_ino, retval, map->m_len);
657                         WARN_ON(1);
658                 }
659
660                 /*
661                  * We have to zeroout blocks before inserting them into extent
662                  * status tree. Otherwise someone could look them up there and
663                  * use them before they are really zeroed. We also have to
664                  * unmap metadata before zeroing as otherwise writeback can
665                  * overwrite zeros with stale data from block device.
666                  */
667                 if (flags & EXT4_GET_BLOCKS_ZERO &&
668                     map->m_flags & EXT4_MAP_MAPPED &&
669                     map->m_flags & EXT4_MAP_NEW) {
670                         ret = ext4_issue_zeroout(inode, map->m_lblk,
671                                                  map->m_pblk, map->m_len);
672                         if (ret) {
673                                 retval = ret;
674                                 goto out_sem;
675                         }
676                 }
677
678                 /*
679                  * If the extent has been zeroed out, we don't need to update
680                  * extent status tree.
681                  */
682                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
683                     ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
684                         if (ext4_es_is_written(&es))
685                                 goto out_sem;
686                 }
687                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
688                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
689                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
690                     !(status & EXTENT_STATUS_WRITTEN) &&
691                     ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
692                                        map->m_lblk + map->m_len - 1))
693                         status |= EXTENT_STATUS_DELAYED;
694                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
695                                             map->m_pblk, status);
696                 if (ret < 0) {
697                         retval = ret;
698                         goto out_sem;
699                 }
700         }
701
702 out_sem:
703         up_write((&EXT4_I(inode)->i_data_sem));
704         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
705                 ret = check_block_validity(inode, map);
706                 if (ret != 0)
707                         return ret;
708
709                 /*
710                  * Inodes with freshly allocated blocks where contents will be
711                  * visible after transaction commit must be on transaction's
712                  * ordered data list.
713                  */
714                 if (map->m_flags & EXT4_MAP_NEW &&
715                     !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
716                     !(flags & EXT4_GET_BLOCKS_ZERO) &&
717                     !ext4_is_quota_file(inode) &&
718                     ext4_should_order_data(inode)) {
719                         loff_t start_byte =
720                                 (loff_t)map->m_lblk << inode->i_blkbits;
721                         loff_t length = (loff_t)map->m_len << inode->i_blkbits;
722
723                         if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
724                                 ret = ext4_jbd2_inode_add_wait(handle, inode,
725                                                 start_byte, length);
726                         else
727                                 ret = ext4_jbd2_inode_add_write(handle, inode,
728                                                 start_byte, length);
729                         if (ret)
730                                 return ret;
731                 }
732                 ext4_fc_track_range(inode, map->m_lblk,
733                             map->m_lblk + map->m_len - 1);
734         }
735
736         if (retval < 0)
737                 ext_debug(inode, "failed with err %d\n", retval);
738         return retval;
739 }
740
741 /*
742  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
743  * we have to be careful as someone else may be manipulating b_state as well.
744  */
745 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
746 {
747         unsigned long old_state;
748         unsigned long new_state;
749
750         flags &= EXT4_MAP_FLAGS;
751
752         /* Dummy buffer_head? Set non-atomically. */
753         if (!bh->b_page) {
754                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
755                 return;
756         }
757         /*
758          * Someone else may be modifying b_state. Be careful! This is ugly but
759          * once we get rid of using bh as a container for mapping information
760          * to pass to / from get_block functions, this can go away.
761          */
762         do {
763                 old_state = READ_ONCE(bh->b_state);
764                 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
765         } while (unlikely(
766                  cmpxchg(&bh->b_state, old_state, new_state) != old_state));
767 }
768
769 static int _ext4_get_block(struct inode *inode, sector_t iblock,
770                            struct buffer_head *bh, int flags)
771 {
772         struct ext4_map_blocks map;
773         int ret = 0;
774
775         if (ext4_has_inline_data(inode))
776                 return -ERANGE;
777
778         map.m_lblk = iblock;
779         map.m_len = bh->b_size >> inode->i_blkbits;
780
781         ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
782                               flags);
783         if (ret > 0) {
784                 map_bh(bh, inode->i_sb, map.m_pblk);
785                 ext4_update_bh_state(bh, map.m_flags);
786                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
787                 ret = 0;
788         } else if (ret == 0) {
789                 /* hole case, need to fill in bh->b_size */
790                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
791         }
792         return ret;
793 }
794
795 int ext4_get_block(struct inode *inode, sector_t iblock,
796                    struct buffer_head *bh, int create)
797 {
798         return _ext4_get_block(inode, iblock, bh,
799                                create ? EXT4_GET_BLOCKS_CREATE : 0);
800 }
801
802 /*
803  * Get block function used when preparing for buffered write if we require
804  * creating an unwritten extent if blocks haven't been allocated.  The extent
805  * will be converted to written after the IO is complete.
806  */
807 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
808                              struct buffer_head *bh_result, int create)
809 {
810         ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
811                    inode->i_ino, create);
812         return _ext4_get_block(inode, iblock, bh_result,
813                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
814 }
815
816 /* Maximum number of blocks we map for direct IO at once. */
817 #define DIO_MAX_BLOCKS 4096
818
819 /*
820  * `handle' can be NULL if create is zero
821  */
822 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
823                                 ext4_lblk_t block, int map_flags)
824 {
825         struct ext4_map_blocks map;
826         struct buffer_head *bh;
827         int create = map_flags & EXT4_GET_BLOCKS_CREATE;
828         int err;
829
830         J_ASSERT(handle != NULL || create == 0);
831
832         map.m_lblk = block;
833         map.m_len = 1;
834         err = ext4_map_blocks(handle, inode, &map, map_flags);
835
836         if (err == 0)
837                 return create ? ERR_PTR(-ENOSPC) : NULL;
838         if (err < 0)
839                 return ERR_PTR(err);
840
841         bh = sb_getblk(inode->i_sb, map.m_pblk);
842         if (unlikely(!bh))
843                 return ERR_PTR(-ENOMEM);
844         if (map.m_flags & EXT4_MAP_NEW) {
845                 J_ASSERT(create != 0);
846                 J_ASSERT(handle != NULL);
847
848                 /*
849                  * Now that we do not always journal data, we should
850                  * keep in mind whether this should always journal the
851                  * new buffer as metadata.  For now, regular file
852                  * writes use ext4_get_block instead, so it's not a
853                  * problem.
854                  */
855                 lock_buffer(bh);
856                 BUFFER_TRACE(bh, "call get_create_access");
857                 err = ext4_journal_get_create_access(handle, bh);
858                 if (unlikely(err)) {
859                         unlock_buffer(bh);
860                         goto errout;
861                 }
862                 if (!buffer_uptodate(bh)) {
863                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
864                         set_buffer_uptodate(bh);
865                 }
866                 unlock_buffer(bh);
867                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
868                 err = ext4_handle_dirty_metadata(handle, inode, bh);
869                 if (unlikely(err))
870                         goto errout;
871         } else
872                 BUFFER_TRACE(bh, "not a new buffer");
873         return bh;
874 errout:
875         brelse(bh);
876         return ERR_PTR(err);
877 }
878
879 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
880                                ext4_lblk_t block, int map_flags)
881 {
882         struct buffer_head *bh;
883         int ret;
884
885         bh = ext4_getblk(handle, inode, block, map_flags);
886         if (IS_ERR(bh))
887                 return bh;
888         if (!bh || ext4_buffer_uptodate(bh))
889                 return bh;
890
891         ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true);
892         if (ret) {
893                 put_bh(bh);
894                 return ERR_PTR(ret);
895         }
896         return bh;
897 }
898
899 /* Read a contiguous batch of blocks. */
900 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
901                      bool wait, struct buffer_head **bhs)
902 {
903         int i, err;
904
905         for (i = 0; i < bh_count; i++) {
906                 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
907                 if (IS_ERR(bhs[i])) {
908                         err = PTR_ERR(bhs[i]);
909                         bh_count = i;
910                         goto out_brelse;
911                 }
912         }
913
914         for (i = 0; i < bh_count; i++)
915                 /* Note that NULL bhs[i] is valid because of holes. */
916                 if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
917                         ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false);
918
919         if (!wait)
920                 return 0;
921
922         for (i = 0; i < bh_count; i++)
923                 if (bhs[i])
924                         wait_on_buffer(bhs[i]);
925
926         for (i = 0; i < bh_count; i++) {
927                 if (bhs[i] && !buffer_uptodate(bhs[i])) {
928                         err = -EIO;
929                         goto out_brelse;
930                 }
931         }
932         return 0;
933
934 out_brelse:
935         for (i = 0; i < bh_count; i++) {
936                 brelse(bhs[i]);
937                 bhs[i] = NULL;
938         }
939         return err;
940 }
941
942 int ext4_walk_page_buffers(handle_t *handle,
943                            struct buffer_head *head,
944                            unsigned from,
945                            unsigned to,
946                            int *partial,
947                            int (*fn)(handle_t *handle,
948                                      struct buffer_head *bh))
949 {
950         struct buffer_head *bh;
951         unsigned block_start, block_end;
952         unsigned blocksize = head->b_size;
953         int err, ret = 0;
954         struct buffer_head *next;
955
956         for (bh = head, block_start = 0;
957              ret == 0 && (bh != head || !block_start);
958              block_start = block_end, bh = next) {
959                 next = bh->b_this_page;
960                 block_end = block_start + blocksize;
961                 if (block_end <= from || block_start >= to) {
962                         if (partial && !buffer_uptodate(bh))
963                                 *partial = 1;
964                         continue;
965                 }
966                 err = (*fn)(handle, bh);
967                 if (!ret)
968                         ret = err;
969         }
970         return ret;
971 }
972
973 /*
974  * To preserve ordering, it is essential that the hole instantiation and
975  * the data write be encapsulated in a single transaction.  We cannot
976  * close off a transaction and start a new one between the ext4_get_block()
977  * and the commit_write().  So doing the jbd2_journal_start at the start of
978  * prepare_write() is the right place.
979  *
980  * Also, this function can nest inside ext4_writepage().  In that case, we
981  * *know* that ext4_writepage() has generated enough buffer credits to do the
982  * whole page.  So we won't block on the journal in that case, which is good,
983  * because the caller may be PF_MEMALLOC.
984  *
985  * By accident, ext4 can be reentered when a transaction is open via
986  * quota file writes.  If we were to commit the transaction while thus
987  * reentered, there can be a deadlock - we would be holding a quota
988  * lock, and the commit would never complete if another thread had a
989  * transaction open and was blocking on the quota lock - a ranking
990  * violation.
991  *
992  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
993  * will _not_ run commit under these circumstances because handle->h_ref
994  * is elevated.  We'll still have enough credits for the tiny quotafile
995  * write.
996  */
997 int do_journal_get_write_access(handle_t *handle,
998                                 struct buffer_head *bh)
999 {
1000         int dirty = buffer_dirty(bh);
1001         int ret;
1002
1003         if (!buffer_mapped(bh) || buffer_freed(bh))
1004                 return 0;
1005         /*
1006          * __block_write_begin() could have dirtied some buffers. Clean
1007          * the dirty bit as jbd2_journal_get_write_access() could complain
1008          * otherwise about fs integrity issues. Setting of the dirty bit
1009          * by __block_write_begin() isn't a real problem here as we clear
1010          * the bit before releasing a page lock and thus writeback cannot
1011          * ever write the buffer.
1012          */
1013         if (dirty)
1014                 clear_buffer_dirty(bh);
1015         BUFFER_TRACE(bh, "get write access");
1016         ret = ext4_journal_get_write_access(handle, bh);
1017         if (!ret && dirty)
1018                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1019         return ret;
1020 }
1021
1022 #ifdef CONFIG_FS_ENCRYPTION
1023 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1024                                   get_block_t *get_block)
1025 {
1026         unsigned from = pos & (PAGE_SIZE - 1);
1027         unsigned to = from + len;
1028         struct inode *inode = page->mapping->host;
1029         unsigned block_start, block_end;
1030         sector_t block;
1031         int err = 0;
1032         unsigned blocksize = inode->i_sb->s_blocksize;
1033         unsigned bbits;
1034         struct buffer_head *bh, *head, *wait[2];
1035         int nr_wait = 0;
1036         int i;
1037
1038         BUG_ON(!PageLocked(page));
1039         BUG_ON(from > PAGE_SIZE);
1040         BUG_ON(to > PAGE_SIZE);
1041         BUG_ON(from > to);
1042
1043         if (!page_has_buffers(page))
1044                 create_empty_buffers(page, blocksize, 0);
1045         head = page_buffers(page);
1046         bbits = ilog2(blocksize);
1047         block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1048
1049         for (bh = head, block_start = 0; bh != head || !block_start;
1050             block++, block_start = block_end, bh = bh->b_this_page) {
1051                 block_end = block_start + blocksize;
1052                 if (block_end <= from || block_start >= to) {
1053                         if (PageUptodate(page)) {
1054                                 if (!buffer_uptodate(bh))
1055                                         set_buffer_uptodate(bh);
1056                         }
1057                         continue;
1058                 }
1059                 if (buffer_new(bh))
1060                         clear_buffer_new(bh);
1061                 if (!buffer_mapped(bh)) {
1062                         WARN_ON(bh->b_size != blocksize);
1063                         err = get_block(inode, block, bh, 1);
1064                         if (err)
1065                                 break;
1066                         if (buffer_new(bh)) {
1067                                 if (PageUptodate(page)) {
1068                                         clear_buffer_new(bh);
1069                                         set_buffer_uptodate(bh);
1070                                         mark_buffer_dirty(bh);
1071                                         continue;
1072                                 }
1073                                 if (block_end > to || block_start < from)
1074                                         zero_user_segments(page, to, block_end,
1075                                                            block_start, from);
1076                                 continue;
1077                         }
1078                 }
1079                 if (PageUptodate(page)) {
1080                         if (!buffer_uptodate(bh))
1081                                 set_buffer_uptodate(bh);
1082                         continue;
1083                 }
1084                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1085                     !buffer_unwritten(bh) &&
1086                     (block_start < from || block_end > to)) {
1087                         ext4_read_bh_lock(bh, 0, false);
1088                         wait[nr_wait++] = bh;
1089                 }
1090         }
1091         /*
1092          * If we issued read requests, let them complete.
1093          */
1094         for (i = 0; i < nr_wait; i++) {
1095                 wait_on_buffer(wait[i]);
1096                 if (!buffer_uptodate(wait[i]))
1097                         err = -EIO;
1098         }
1099         if (unlikely(err)) {
1100                 page_zero_new_buffers(page, from, to);
1101         } else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1102                 for (i = 0; i < nr_wait; i++) {
1103                         int err2;
1104
1105                         err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize,
1106                                                                 bh_offset(wait[i]));
1107                         if (err2) {
1108                                 clear_buffer_uptodate(wait[i]);
1109                                 err = err2;
1110                         }
1111                 }
1112         }
1113
1114         return err;
1115 }
1116 #endif
1117
1118 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1119                             loff_t pos, unsigned len, unsigned flags,
1120                             struct page **pagep, void **fsdata)
1121 {
1122         struct inode *inode = mapping->host;
1123         int ret, needed_blocks;
1124         handle_t *handle;
1125         int retries = 0;
1126         struct page *page;
1127         pgoff_t index;
1128         unsigned from, to;
1129
1130         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1131                 return -EIO;
1132
1133         trace_ext4_write_begin(inode, pos, len, flags);
1134         /*
1135          * Reserve one block more for addition to orphan list in case
1136          * we allocate blocks but write fails for some reason
1137          */
1138         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1139         index = pos >> PAGE_SHIFT;
1140         from = pos & (PAGE_SIZE - 1);
1141         to = from + len;
1142
1143         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1144                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1145                                                     flags, pagep);
1146                 if (ret < 0)
1147                         return ret;
1148                 if (ret == 1)
1149                         return 0;
1150         }
1151
1152         /*
1153          * grab_cache_page_write_begin() can take a long time if the
1154          * system is thrashing due to memory pressure, or if the page
1155          * is being written back.  So grab it first before we start
1156          * the transaction handle.  This also allows us to allocate
1157          * the page (if needed) without using GFP_NOFS.
1158          */
1159 retry_grab:
1160         page = grab_cache_page_write_begin(mapping, index, flags);
1161         if (!page)
1162                 return -ENOMEM;
1163         unlock_page(page);
1164
1165 retry_journal:
1166         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1167         if (IS_ERR(handle)) {
1168                 put_page(page);
1169                 return PTR_ERR(handle);
1170         }
1171
1172         lock_page(page);
1173         if (page->mapping != mapping) {
1174                 /* The page got truncated from under us */
1175                 unlock_page(page);
1176                 put_page(page);
1177                 ext4_journal_stop(handle);
1178                 goto retry_grab;
1179         }
1180         /* In case writeback began while the page was unlocked */
1181         wait_for_stable_page(page);
1182
1183 #ifdef CONFIG_FS_ENCRYPTION
1184         if (ext4_should_dioread_nolock(inode))
1185                 ret = ext4_block_write_begin(page, pos, len,
1186                                              ext4_get_block_unwritten);
1187         else
1188                 ret = ext4_block_write_begin(page, pos, len,
1189                                              ext4_get_block);
1190 #else
1191         if (ext4_should_dioread_nolock(inode))
1192                 ret = __block_write_begin(page, pos, len,
1193                                           ext4_get_block_unwritten);
1194         else
1195                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1196 #endif
1197         if (!ret && ext4_should_journal_data(inode)) {
1198                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1199                                              from, to, NULL,
1200                                              do_journal_get_write_access);
1201         }
1202
1203         if (ret) {
1204                 bool extended = (pos + len > inode->i_size) &&
1205                                 !ext4_verity_in_progress(inode);
1206
1207                 unlock_page(page);
1208                 /*
1209                  * __block_write_begin may have instantiated a few blocks
1210                  * outside i_size.  Trim these off again. Don't need
1211                  * i_size_read because we hold i_mutex.
1212                  *
1213                  * Add inode to orphan list in case we crash before
1214                  * truncate finishes
1215                  */
1216                 if (extended && ext4_can_truncate(inode))
1217                         ext4_orphan_add(handle, inode);
1218
1219                 ext4_journal_stop(handle);
1220                 if (extended) {
1221                         ext4_truncate_failed_write(inode);
1222                         /*
1223                          * If truncate failed early the inode might
1224                          * still be on the orphan list; we need to
1225                          * make sure the inode is removed from the
1226                          * orphan list in that case.
1227                          */
1228                         if (inode->i_nlink)
1229                                 ext4_orphan_del(NULL, inode);
1230                 }
1231
1232                 if (ret == -ENOSPC &&
1233                     ext4_should_retry_alloc(inode->i_sb, &retries))
1234                         goto retry_journal;
1235                 put_page(page);
1236                 return ret;
1237         }
1238         *pagep = page;
1239         return ret;
1240 }
1241
1242 /* For write_end() in data=journal mode */
1243 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1244 {
1245         int ret;
1246         if (!buffer_mapped(bh) || buffer_freed(bh))
1247                 return 0;
1248         set_buffer_uptodate(bh);
1249         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1250         clear_buffer_meta(bh);
1251         clear_buffer_prio(bh);
1252         return ret;
1253 }
1254
1255 /*
1256  * We need to pick up the new inode size which generic_commit_write gave us
1257  * `file' can be NULL - eg, when called from page_symlink().
1258  *
1259  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1260  * buffers are managed internally.
1261  */
1262 static int ext4_write_end(struct file *file,
1263                           struct address_space *mapping,
1264                           loff_t pos, unsigned len, unsigned copied,
1265                           struct page *page, void *fsdata)
1266 {
1267         handle_t *handle = ext4_journal_current_handle();
1268         struct inode *inode = mapping->host;
1269         loff_t old_size = inode->i_size;
1270         int ret = 0, ret2;
1271         int i_size_changed = 0;
1272         int inline_data = ext4_has_inline_data(inode);
1273         bool verity = ext4_verity_in_progress(inode);
1274
1275         trace_ext4_write_end(inode, pos, len, copied);
1276         if (inline_data) {
1277                 ret = ext4_write_inline_data_end(inode, pos, len,
1278                                                  copied, page);
1279                 if (ret < 0) {
1280                         unlock_page(page);
1281                         put_page(page);
1282                         goto errout;
1283                 }
1284                 copied = ret;
1285         } else
1286                 copied = block_write_end(file, mapping, pos,
1287                                          len, copied, page, fsdata);
1288         /*
1289          * it's important to update i_size while still holding page lock:
1290          * page writeout could otherwise come in and zero beyond i_size.
1291          *
1292          * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1293          * blocks are being written past EOF, so skip the i_size update.
1294          */
1295         if (!verity)
1296                 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1297         unlock_page(page);
1298         put_page(page);
1299
1300         if (old_size < pos && !verity)
1301                 pagecache_isize_extended(inode, old_size, pos);
1302         /*
1303          * Don't mark the inode dirty under page lock. First, it unnecessarily
1304          * makes the holding time of page lock longer. Second, it forces lock
1305          * ordering of page lock and transaction start for journaling
1306          * filesystems.
1307          */
1308         if (i_size_changed || inline_data)
1309                 ret = ext4_mark_inode_dirty(handle, inode);
1310
1311         if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1312                 /* if we have allocated more blocks and copied
1313                  * less. We will have blocks allocated outside
1314                  * inode->i_size. So truncate them
1315                  */
1316                 ext4_orphan_add(handle, inode);
1317 errout:
1318         ret2 = ext4_journal_stop(handle);
1319         if (!ret)
1320                 ret = ret2;
1321
1322         if (pos + len > inode->i_size && !verity) {
1323                 ext4_truncate_failed_write(inode);
1324                 /*
1325                  * If truncate failed early the inode might still be
1326                  * on the orphan list; we need to make sure the inode
1327                  * is removed from the orphan list in that case.
1328                  */
1329                 if (inode->i_nlink)
1330                         ext4_orphan_del(NULL, inode);
1331         }
1332
1333         return ret ? ret : copied;
1334 }
1335
1336 /*
1337  * This is a private version of page_zero_new_buffers() which doesn't
1338  * set the buffer to be dirty, since in data=journalled mode we need
1339  * to call ext4_handle_dirty_metadata() instead.
1340  */
1341 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1342                                             struct page *page,
1343                                             unsigned from, unsigned to)
1344 {
1345         unsigned int block_start = 0, block_end;
1346         struct buffer_head *head, *bh;
1347
1348         bh = head = page_buffers(page);
1349         do {
1350                 block_end = block_start + bh->b_size;
1351                 if (buffer_new(bh)) {
1352                         if (block_end > from && block_start < to) {
1353                                 if (!PageUptodate(page)) {
1354                                         unsigned start, size;
1355
1356                                         start = max(from, block_start);
1357                                         size = min(to, block_end) - start;
1358
1359                                         zero_user(page, start, size);
1360                                         write_end_fn(handle, bh);
1361                                 }
1362                                 clear_buffer_new(bh);
1363                         }
1364                 }
1365                 block_start = block_end;
1366                 bh = bh->b_this_page;
1367         } while (bh != head);
1368 }
1369
1370 static int ext4_journalled_write_end(struct file *file,
1371                                      struct address_space *mapping,
1372                                      loff_t pos, unsigned len, unsigned copied,
1373                                      struct page *page, void *fsdata)
1374 {
1375         handle_t *handle = ext4_journal_current_handle();
1376         struct inode *inode = mapping->host;
1377         loff_t old_size = inode->i_size;
1378         int ret = 0, ret2;
1379         int partial = 0;
1380         unsigned from, to;
1381         int size_changed = 0;
1382         int inline_data = ext4_has_inline_data(inode);
1383         bool verity = ext4_verity_in_progress(inode);
1384
1385         trace_ext4_journalled_write_end(inode, pos, len, copied);
1386         from = pos & (PAGE_SIZE - 1);
1387         to = from + len;
1388
1389         BUG_ON(!ext4_handle_valid(handle));
1390
1391         if (inline_data) {
1392                 ret = ext4_write_inline_data_end(inode, pos, len,
1393                                                  copied, page);
1394                 if (ret < 0) {
1395                         unlock_page(page);
1396                         put_page(page);
1397                         goto errout;
1398                 }
1399                 copied = ret;
1400         } else if (unlikely(copied < len) && !PageUptodate(page)) {
1401                 copied = 0;
1402                 ext4_journalled_zero_new_buffers(handle, page, from, to);
1403         } else {
1404                 if (unlikely(copied < len))
1405                         ext4_journalled_zero_new_buffers(handle, page,
1406                                                          from + copied, to);
1407                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1408                                              from + copied, &partial,
1409                                              write_end_fn);
1410                 if (!partial)
1411                         SetPageUptodate(page);
1412         }
1413         if (!verity)
1414                 size_changed = ext4_update_inode_size(inode, pos + copied);
1415         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1416         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1417         unlock_page(page);
1418         put_page(page);
1419
1420         if (old_size < pos && !verity)
1421                 pagecache_isize_extended(inode, old_size, pos);
1422
1423         if (size_changed || inline_data) {
1424                 ret2 = ext4_mark_inode_dirty(handle, inode);
1425                 if (!ret)
1426                         ret = ret2;
1427         }
1428
1429         if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1430                 /* if we have allocated more blocks and copied
1431                  * less. We will have blocks allocated outside
1432                  * inode->i_size. So truncate them
1433                  */
1434                 ext4_orphan_add(handle, inode);
1435
1436 errout:
1437         ret2 = ext4_journal_stop(handle);
1438         if (!ret)
1439                 ret = ret2;
1440         if (pos + len > inode->i_size && !verity) {
1441                 ext4_truncate_failed_write(inode);
1442                 /*
1443                  * If truncate failed early the inode might still be
1444                  * on the orphan list; we need to make sure the inode
1445                  * is removed from the orphan list in that case.
1446                  */
1447                 if (inode->i_nlink)
1448                         ext4_orphan_del(NULL, inode);
1449         }
1450
1451         return ret ? ret : copied;
1452 }
1453
1454 /*
1455  * Reserve space for a single cluster
1456  */
1457 static int ext4_da_reserve_space(struct inode *inode)
1458 {
1459         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1460         struct ext4_inode_info *ei = EXT4_I(inode);
1461         int ret;
1462
1463         /*
1464          * We will charge metadata quota at writeout time; this saves
1465          * us from metadata over-estimation, though we may go over by
1466          * a small amount in the end.  Here we just reserve for data.
1467          */
1468         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1469         if (ret)
1470                 return ret;
1471
1472         spin_lock(&ei->i_block_reservation_lock);
1473         if (ext4_claim_free_clusters(sbi, 1, 0)) {
1474                 spin_unlock(&ei->i_block_reservation_lock);
1475                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1476                 return -ENOSPC;
1477         }
1478         ei->i_reserved_data_blocks++;
1479         trace_ext4_da_reserve_space(inode);
1480         spin_unlock(&ei->i_block_reservation_lock);
1481
1482         return 0;       /* success */
1483 }
1484
1485 void ext4_da_release_space(struct inode *inode, int to_free)
1486 {
1487         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1488         struct ext4_inode_info *ei = EXT4_I(inode);
1489
1490         if (!to_free)
1491                 return;         /* Nothing to release, exit */
1492
1493         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1494
1495         trace_ext4_da_release_space(inode, to_free);
1496         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1497                 /*
1498                  * if there aren't enough reserved blocks, then the
1499                  * counter is messed up somewhere.  Since this
1500                  * function is called from invalidate page, it's
1501                  * harmless to return without any action.
1502                  */
1503                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1504                          "ino %lu, to_free %d with only %d reserved "
1505                          "data blocks", inode->i_ino, to_free,
1506                          ei->i_reserved_data_blocks);
1507                 WARN_ON(1);
1508                 to_free = ei->i_reserved_data_blocks;
1509         }
1510         ei->i_reserved_data_blocks -= to_free;
1511
1512         /* update fs dirty data blocks counter */
1513         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1514
1515         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1516
1517         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1518 }
1519
1520 /*
1521  * Delayed allocation stuff
1522  */
1523
1524 struct mpage_da_data {
1525         struct inode *inode;
1526         struct writeback_control *wbc;
1527
1528         pgoff_t first_page;     /* The first page to write */
1529         pgoff_t next_page;      /* Current page to examine */
1530         pgoff_t last_page;      /* Last page to examine */
1531         /*
1532          * Extent to map - this can be after first_page because that can be
1533          * fully mapped. We somewhat abuse m_flags to store whether the extent
1534          * is delalloc or unwritten.
1535          */
1536         struct ext4_map_blocks map;
1537         struct ext4_io_submit io_submit;        /* IO submission data */
1538         unsigned int do_map:1;
1539         unsigned int scanned_until_end:1;
1540 };
1541
1542 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1543                                        bool invalidate)
1544 {
1545         int nr_pages, i;
1546         pgoff_t index, end;
1547         struct pagevec pvec;
1548         struct inode *inode = mpd->inode;
1549         struct address_space *mapping = inode->i_mapping;
1550
1551         /* This is necessary when next_page == 0. */
1552         if (mpd->first_page >= mpd->next_page)
1553                 return;
1554
1555         mpd->scanned_until_end = 0;
1556         index = mpd->first_page;
1557         end   = mpd->next_page - 1;
1558         if (invalidate) {
1559                 ext4_lblk_t start, last;
1560                 start = index << (PAGE_SHIFT - inode->i_blkbits);
1561                 last = end << (PAGE_SHIFT - inode->i_blkbits);
1562                 ext4_es_remove_extent(inode, start, last - start + 1);
1563         }
1564
1565         pagevec_init(&pvec);
1566         while (index <= end) {
1567                 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1568                 if (nr_pages == 0)
1569                         break;
1570                 for (i = 0; i < nr_pages; i++) {
1571                         struct page *page = pvec.pages[i];
1572
1573                         BUG_ON(!PageLocked(page));
1574                         BUG_ON(PageWriteback(page));
1575                         if (invalidate) {
1576                                 if (page_mapped(page))
1577                                         clear_page_dirty_for_io(page);
1578                                 block_invalidatepage(page, 0, PAGE_SIZE);
1579                                 ClearPageUptodate(page);
1580                         }
1581                         unlock_page(page);
1582                 }
1583                 pagevec_release(&pvec);
1584         }
1585 }
1586
1587 static void ext4_print_free_blocks(struct inode *inode)
1588 {
1589         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1590         struct super_block *sb = inode->i_sb;
1591         struct ext4_inode_info *ei = EXT4_I(inode);
1592
1593         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1594                EXT4_C2B(EXT4_SB(inode->i_sb),
1595                         ext4_count_free_clusters(sb)));
1596         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1597         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1598                (long long) EXT4_C2B(EXT4_SB(sb),
1599                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1600         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1601                (long long) EXT4_C2B(EXT4_SB(sb),
1602                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1603         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1604         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1605                  ei->i_reserved_data_blocks);
1606         return;
1607 }
1608
1609 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1610 {
1611         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1612 }
1613
1614 /*
1615  * ext4_insert_delayed_block - adds a delayed block to the extents status
1616  *                             tree, incrementing the reserved cluster/block
1617  *                             count or making a pending reservation
1618  *                             where needed
1619  *
1620  * @inode - file containing the newly added block
1621  * @lblk - logical block to be added
1622  *
1623  * Returns 0 on success, negative error code on failure.
1624  */
1625 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1626 {
1627         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1628         int ret;
1629         bool allocated = false;
1630
1631         /*
1632          * If the cluster containing lblk is shared with a delayed,
1633          * written, or unwritten extent in a bigalloc file system, it's
1634          * already been accounted for and does not need to be reserved.
1635          * A pending reservation must be made for the cluster if it's
1636          * shared with a written or unwritten extent and doesn't already
1637          * have one.  Written and unwritten extents can be purged from the
1638          * extents status tree if the system is under memory pressure, so
1639          * it's necessary to examine the extent tree if a search of the
1640          * extents status tree doesn't get a match.
1641          */
1642         if (sbi->s_cluster_ratio == 1) {
1643                 ret = ext4_da_reserve_space(inode);
1644                 if (ret != 0)   /* ENOSPC */
1645                         goto errout;
1646         } else {   /* bigalloc */
1647                 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1648                         if (!ext4_es_scan_clu(inode,
1649                                               &ext4_es_is_mapped, lblk)) {
1650                                 ret = ext4_clu_mapped(inode,
1651                                                       EXT4_B2C(sbi, lblk));
1652                                 if (ret < 0)
1653                                         goto errout;
1654                                 if (ret == 0) {
1655                                         ret = ext4_da_reserve_space(inode);
1656                                         if (ret != 0)   /* ENOSPC */
1657                                                 goto errout;
1658                                 } else {
1659                                         allocated = true;
1660                                 }
1661                         } else {
1662                                 allocated = true;
1663                         }
1664                 }
1665         }
1666
1667         ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1668
1669 errout:
1670         return ret;
1671 }
1672
1673 /*
1674  * This function is grabs code from the very beginning of
1675  * ext4_map_blocks, but assumes that the caller is from delayed write
1676  * time. This function looks up the requested blocks and sets the
1677  * buffer delay bit under the protection of i_data_sem.
1678  */
1679 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1680                               struct ext4_map_blocks *map,
1681                               struct buffer_head *bh)
1682 {
1683         struct extent_status es;
1684         int retval;
1685         sector_t invalid_block = ~((sector_t) 0xffff);
1686 #ifdef ES_AGGRESSIVE_TEST
1687         struct ext4_map_blocks orig_map;
1688
1689         memcpy(&orig_map, map, sizeof(*map));
1690 #endif
1691
1692         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1693                 invalid_block = ~0;
1694
1695         map->m_flags = 0;
1696         ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1697                   (unsigned long) map->m_lblk);
1698
1699         /* Lookup extent status tree firstly */
1700         if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1701                 if (ext4_es_is_hole(&es)) {
1702                         retval = 0;
1703                         down_read(&EXT4_I(inode)->i_data_sem);
1704                         goto add_delayed;
1705                 }
1706
1707                 /*
1708                  * Delayed extent could be allocated by fallocate.
1709                  * So we need to check it.
1710                  */
1711                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1712                         map_bh(bh, inode->i_sb, invalid_block);
1713                         set_buffer_new(bh);
1714                         set_buffer_delay(bh);
1715                         return 0;
1716                 }
1717
1718                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1719                 retval = es.es_len - (iblock - es.es_lblk);
1720                 if (retval > map->m_len)
1721                         retval = map->m_len;
1722                 map->m_len = retval;
1723                 if (ext4_es_is_written(&es))
1724                         map->m_flags |= EXT4_MAP_MAPPED;
1725                 else if (ext4_es_is_unwritten(&es))
1726                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1727                 else
1728                         BUG();
1729
1730 #ifdef ES_AGGRESSIVE_TEST
1731                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1732 #endif
1733                 return retval;
1734         }
1735
1736         /*
1737          * Try to see if we can get the block without requesting a new
1738          * file system block.
1739          */
1740         down_read(&EXT4_I(inode)->i_data_sem);
1741         if (ext4_has_inline_data(inode))
1742                 retval = 0;
1743         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1744                 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1745         else
1746                 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1747
1748 add_delayed:
1749         if (retval == 0) {
1750                 int ret;
1751
1752                 /*
1753                  * XXX: __block_prepare_write() unmaps passed block,
1754                  * is it OK?
1755                  */
1756
1757                 ret = ext4_insert_delayed_block(inode, map->m_lblk);
1758                 if (ret != 0) {
1759                         retval = ret;
1760                         goto out_unlock;
1761                 }
1762
1763                 map_bh(bh, inode->i_sb, invalid_block);
1764                 set_buffer_new(bh);
1765                 set_buffer_delay(bh);
1766         } else if (retval > 0) {
1767                 int ret;
1768                 unsigned int status;
1769
1770                 if (unlikely(retval != map->m_len)) {
1771                         ext4_warning(inode->i_sb,
1772                                      "ES len assertion failed for inode "
1773                                      "%lu: retval %d != map->m_len %d",
1774                                      inode->i_ino, retval, map->m_len);
1775                         WARN_ON(1);
1776                 }
1777
1778                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1779                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1780                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1781                                             map->m_pblk, status);
1782                 if (ret != 0)
1783                         retval = ret;
1784         }
1785
1786 out_unlock:
1787         up_read((&EXT4_I(inode)->i_data_sem));
1788
1789         return retval;
1790 }
1791
1792 /*
1793  * This is a special get_block_t callback which is used by
1794  * ext4_da_write_begin().  It will either return mapped block or
1795  * reserve space for a single block.
1796  *
1797  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1798  * We also have b_blocknr = -1 and b_bdev initialized properly
1799  *
1800  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1801  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1802  * initialized properly.
1803  */
1804 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1805                            struct buffer_head *bh, int create)
1806 {
1807         struct ext4_map_blocks map;
1808         int ret = 0;
1809
1810         BUG_ON(create == 0);
1811         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1812
1813         map.m_lblk = iblock;
1814         map.m_len = 1;
1815
1816         /*
1817          * first, we need to know whether the block is allocated already
1818          * preallocated blocks are unmapped but should treated
1819          * the same as allocated blocks.
1820          */
1821         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1822         if (ret <= 0)
1823                 return ret;
1824
1825         map_bh(bh, inode->i_sb, map.m_pblk);
1826         ext4_update_bh_state(bh, map.m_flags);
1827
1828         if (buffer_unwritten(bh)) {
1829                 /* A delayed write to unwritten bh should be marked
1830                  * new and mapped.  Mapped ensures that we don't do
1831                  * get_block multiple times when we write to the same
1832                  * offset and new ensures that we do proper zero out
1833                  * for partial write.
1834                  */
1835                 set_buffer_new(bh);
1836                 set_buffer_mapped(bh);
1837         }
1838         return 0;
1839 }
1840
1841 static int bget_one(handle_t *handle, struct buffer_head *bh)
1842 {
1843         get_bh(bh);
1844         return 0;
1845 }
1846
1847 static int bput_one(handle_t *handle, struct buffer_head *bh)
1848 {
1849         put_bh(bh);
1850         return 0;
1851 }
1852
1853 static int __ext4_journalled_writepage(struct page *page,
1854                                        unsigned int len)
1855 {
1856         struct address_space *mapping = page->mapping;
1857         struct inode *inode = mapping->host;
1858         struct buffer_head *page_bufs = NULL;
1859         handle_t *handle = NULL;
1860         int ret = 0, err = 0;
1861         int inline_data = ext4_has_inline_data(inode);
1862         struct buffer_head *inode_bh = NULL;
1863
1864         ClearPageChecked(page);
1865
1866         if (inline_data) {
1867                 BUG_ON(page->index != 0);
1868                 BUG_ON(len > ext4_get_max_inline_size(inode));
1869                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1870                 if (inode_bh == NULL)
1871                         goto out;
1872         } else {
1873                 page_bufs = page_buffers(page);
1874                 if (!page_bufs) {
1875                         BUG();
1876                         goto out;
1877                 }
1878                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1879                                        NULL, bget_one);
1880         }
1881         /*
1882          * We need to release the page lock before we start the
1883          * journal, so grab a reference so the page won't disappear
1884          * out from under us.
1885          */
1886         get_page(page);
1887         unlock_page(page);
1888
1889         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1890                                     ext4_writepage_trans_blocks(inode));
1891         if (IS_ERR(handle)) {
1892                 ret = PTR_ERR(handle);
1893                 put_page(page);
1894                 goto out_no_pagelock;
1895         }
1896         BUG_ON(!ext4_handle_valid(handle));
1897
1898         lock_page(page);
1899         put_page(page);
1900         if (page->mapping != mapping) {
1901                 /* The page got truncated from under us */
1902                 ext4_journal_stop(handle);
1903                 ret = 0;
1904                 goto out;
1905         }
1906
1907         if (inline_data) {
1908                 ret = ext4_mark_inode_dirty(handle, inode);
1909         } else {
1910                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1911                                              do_journal_get_write_access);
1912
1913                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1914                                              write_end_fn);
1915         }
1916         if (ret == 0)
1917                 ret = err;
1918         err = ext4_jbd2_inode_add_write(handle, inode, 0, len);
1919         if (ret == 0)
1920                 ret = err;
1921         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1922         err = ext4_journal_stop(handle);
1923         if (!ret)
1924                 ret = err;
1925
1926         if (!ext4_has_inline_data(inode))
1927                 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1928                                        NULL, bput_one);
1929         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1930 out:
1931         unlock_page(page);
1932 out_no_pagelock:
1933         brelse(inode_bh);
1934         return ret;
1935 }
1936
1937 /*
1938  * Note that we don't need to start a transaction unless we're journaling data
1939  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1940  * need to file the inode to the transaction's list in ordered mode because if
1941  * we are writing back data added by write(), the inode is already there and if
1942  * we are writing back data modified via mmap(), no one guarantees in which
1943  * transaction the data will hit the disk. In case we are journaling data, we
1944  * cannot start transaction directly because transaction start ranks above page
1945  * lock so we have to do some magic.
1946  *
1947  * This function can get called via...
1948  *   - ext4_writepages after taking page lock (have journal handle)
1949  *   - journal_submit_inode_data_buffers (no journal handle)
1950  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1951  *   - grab_page_cache when doing write_begin (have journal handle)
1952  *
1953  * We don't do any block allocation in this function. If we have page with
1954  * multiple blocks we need to write those buffer_heads that are mapped. This
1955  * is important for mmaped based write. So if we do with blocksize 1K
1956  * truncate(f, 1024);
1957  * a = mmap(f, 0, 4096);
1958  * a[0] = 'a';
1959  * truncate(f, 4096);
1960  * we have in the page first buffer_head mapped via page_mkwrite call back
1961  * but other buffer_heads would be unmapped but dirty (dirty done via the
1962  * do_wp_page). So writepage should write the first block. If we modify
1963  * the mmap area beyond 1024 we will again get a page_fault and the
1964  * page_mkwrite callback will do the block allocation and mark the
1965  * buffer_heads mapped.
1966  *
1967  * We redirty the page if we have any buffer_heads that is either delay or
1968  * unwritten in the page.
1969  *
1970  * We can get recursively called as show below.
1971  *
1972  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1973  *              ext4_writepage()
1974  *
1975  * But since we don't do any block allocation we should not deadlock.
1976  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1977  */
1978 static int ext4_writepage(struct page *page,
1979                           struct writeback_control *wbc)
1980 {
1981         int ret = 0;
1982         loff_t size;
1983         unsigned int len;
1984         struct buffer_head *page_bufs = NULL;
1985         struct inode *inode = page->mapping->host;
1986         struct ext4_io_submit io_submit;
1987         bool keep_towrite = false;
1988
1989         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
1990                 inode->i_mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
1991                 unlock_page(page);
1992                 return -EIO;
1993         }
1994
1995         trace_ext4_writepage(page);
1996         size = i_size_read(inode);
1997         if (page->index == size >> PAGE_SHIFT &&
1998             !ext4_verity_in_progress(inode))
1999                 len = size & ~PAGE_MASK;
2000         else
2001                 len = PAGE_SIZE;
2002
2003         page_bufs = page_buffers(page);
2004         /*
2005          * We cannot do block allocation or other extent handling in this
2006          * function. If there are buffers needing that, we have to redirty
2007          * the page. But we may reach here when we do a journal commit via
2008          * journal_submit_inode_data_buffers() and in that case we must write
2009          * allocated buffers to achieve data=ordered mode guarantees.
2010          *
2011          * Also, if there is only one buffer per page (the fs block
2012          * size == the page size), if one buffer needs block
2013          * allocation or needs to modify the extent tree to clear the
2014          * unwritten flag, we know that the page can't be written at
2015          * all, so we might as well refuse the write immediately.
2016          * Unfortunately if the block size != page size, we can't as
2017          * easily detect this case using ext4_walk_page_buffers(), but
2018          * for the extremely common case, this is an optimization that
2019          * skips a useless round trip through ext4_bio_write_page().
2020          */
2021         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2022                                    ext4_bh_delay_or_unwritten)) {
2023                 redirty_page_for_writepage(wbc, page);
2024                 if ((current->flags & PF_MEMALLOC) ||
2025                     (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2026                         /*
2027                          * For memory cleaning there's no point in writing only
2028                          * some buffers. So just bail out. Warn if we came here
2029                          * from direct reclaim.
2030                          */
2031                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2032                                                         == PF_MEMALLOC);
2033                         unlock_page(page);
2034                         return 0;
2035                 }
2036                 keep_towrite = true;
2037         }
2038
2039         if (PageChecked(page) && ext4_should_journal_data(inode))
2040                 /*
2041                  * It's mmapped pagecache.  Add buffers and journal it.  There
2042                  * doesn't seem much point in redirtying the page here.
2043                  */
2044                 return __ext4_journalled_writepage(page, len);
2045
2046         ext4_io_submit_init(&io_submit, wbc);
2047         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2048         if (!io_submit.io_end) {
2049                 redirty_page_for_writepage(wbc, page);
2050                 unlock_page(page);
2051                 return -ENOMEM;
2052         }
2053         ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2054         ext4_io_submit(&io_submit);
2055         /* Drop io_end reference we got from init */
2056         ext4_put_io_end_defer(io_submit.io_end);
2057         return ret;
2058 }
2059
2060 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2061 {
2062         int len;
2063         loff_t size;
2064         int err;
2065
2066         BUG_ON(page->index != mpd->first_page);
2067         clear_page_dirty_for_io(page);
2068         /*
2069          * We have to be very careful here!  Nothing protects writeback path
2070          * against i_size changes and the page can be writeably mapped into
2071          * page tables. So an application can be growing i_size and writing
2072          * data through mmap while writeback runs. clear_page_dirty_for_io()
2073          * write-protects our page in page tables and the page cannot get
2074          * written to again until we release page lock. So only after
2075          * clear_page_dirty_for_io() we are safe to sample i_size for
2076          * ext4_bio_write_page() to zero-out tail of the written page. We rely
2077          * on the barrier provided by TestClearPageDirty in
2078          * clear_page_dirty_for_io() to make sure i_size is really sampled only
2079          * after page tables are updated.
2080          */
2081         size = i_size_read(mpd->inode);
2082         if (page->index == size >> PAGE_SHIFT &&
2083             !ext4_verity_in_progress(mpd->inode))
2084                 len = size & ~PAGE_MASK;
2085         else
2086                 len = PAGE_SIZE;
2087         err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2088         if (!err)
2089                 mpd->wbc->nr_to_write--;
2090         mpd->first_page++;
2091
2092         return err;
2093 }
2094
2095 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
2096
2097 /*
2098  * mballoc gives us at most this number of blocks...
2099  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2100  * The rest of mballoc seems to handle chunks up to full group size.
2101  */
2102 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2103
2104 /*
2105  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2106  *
2107  * @mpd - extent of blocks
2108  * @lblk - logical number of the block in the file
2109  * @bh - buffer head we want to add to the extent
2110  *
2111  * The function is used to collect contig. blocks in the same state. If the
2112  * buffer doesn't require mapping for writeback and we haven't started the
2113  * extent of buffers to map yet, the function returns 'true' immediately - the
2114  * caller can write the buffer right away. Otherwise the function returns true
2115  * if the block has been added to the extent, false if the block couldn't be
2116  * added.
2117  */
2118 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2119                                    struct buffer_head *bh)
2120 {
2121         struct ext4_map_blocks *map = &mpd->map;
2122
2123         /* Buffer that doesn't need mapping for writeback? */
2124         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2125             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2126                 /* So far no extent to map => we write the buffer right away */
2127                 if (map->m_len == 0)
2128                         return true;
2129                 return false;
2130         }
2131
2132         /* First block in the extent? */
2133         if (map->m_len == 0) {
2134                 /* We cannot map unless handle is started... */
2135                 if (!mpd->do_map)
2136                         return false;
2137                 map->m_lblk = lblk;
2138                 map->m_len = 1;
2139                 map->m_flags = bh->b_state & BH_FLAGS;
2140                 return true;
2141         }
2142
2143         /* Don't go larger than mballoc is willing to allocate */
2144         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2145                 return false;
2146
2147         /* Can we merge the block to our big extent? */
2148         if (lblk == map->m_lblk + map->m_len &&
2149             (bh->b_state & BH_FLAGS) == map->m_flags) {
2150                 map->m_len++;
2151                 return true;
2152         }
2153         return false;
2154 }
2155
2156 /*
2157  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2158  *
2159  * @mpd - extent of blocks for mapping
2160  * @head - the first buffer in the page
2161  * @bh - buffer we should start processing from
2162  * @lblk - logical number of the block in the file corresponding to @bh
2163  *
2164  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2165  * the page for IO if all buffers in this page were mapped and there's no
2166  * accumulated extent of buffers to map or add buffers in the page to the
2167  * extent of buffers to map. The function returns 1 if the caller can continue
2168  * by processing the next page, 0 if it should stop adding buffers to the
2169  * extent to map because we cannot extend it anymore. It can also return value
2170  * < 0 in case of error during IO submission.
2171  */
2172 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2173                                    struct buffer_head *head,
2174                                    struct buffer_head *bh,
2175                                    ext4_lblk_t lblk)
2176 {
2177         struct inode *inode = mpd->inode;
2178         int err;
2179         ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2180                                                         >> inode->i_blkbits;
2181
2182         if (ext4_verity_in_progress(inode))
2183                 blocks = EXT_MAX_BLOCKS;
2184
2185         do {
2186                 BUG_ON(buffer_locked(bh));
2187
2188                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2189                         /* Found extent to map? */
2190                         if (mpd->map.m_len)
2191                                 return 0;
2192                         /* Buffer needs mapping and handle is not started? */
2193                         if (!mpd->do_map)
2194                                 return 0;
2195                         /* Everything mapped so far and we hit EOF */
2196                         break;
2197                 }
2198         } while (lblk++, (bh = bh->b_this_page) != head);
2199         /* So far everything mapped? Submit the page for IO. */
2200         if (mpd->map.m_len == 0) {
2201                 err = mpage_submit_page(mpd, head->b_page);
2202                 if (err < 0)
2203                         return err;
2204         }
2205         if (lblk >= blocks) {
2206                 mpd->scanned_until_end = 1;
2207                 return 0;
2208         }
2209         return 1;
2210 }
2211
2212 /*
2213  * mpage_process_page - update page buffers corresponding to changed extent and
2214  *                     may submit fully mapped page for IO
2215  *
2216  * @mpd         - description of extent to map, on return next extent to map
2217  * @m_lblk      - logical block mapping.
2218  * @m_pblk      - corresponding physical mapping.
2219  * @map_bh      - determines on return whether this page requires any further
2220  *                mapping or not.
2221  * Scan given page buffers corresponding to changed extent and update buffer
2222  * state according to new extent state.
2223  * We map delalloc buffers to their physical location, clear unwritten bits.
2224  * If the given page is not fully mapped, we update @map to the next extent in
2225  * the given page that needs mapping & return @map_bh as true.
2226  */
2227 static int mpage_process_page(struct mpage_da_data *mpd, struct page *page,
2228                               ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2229                               bool *map_bh)
2230 {
2231         struct buffer_head *head, *bh;
2232         ext4_io_end_t *io_end = mpd->io_submit.io_end;
2233         ext4_lblk_t lblk = *m_lblk;
2234         ext4_fsblk_t pblock = *m_pblk;
2235         int err = 0;
2236         int blkbits = mpd->inode->i_blkbits;
2237         ssize_t io_end_size = 0;
2238         struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2239
2240         bh = head = page_buffers(page);
2241         do {
2242                 if (lblk < mpd->map.m_lblk)
2243                         continue;
2244                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2245                         /*
2246                          * Buffer after end of mapped extent.
2247                          * Find next buffer in the page to map.
2248                          */
2249                         mpd->map.m_len = 0;
2250                         mpd->map.m_flags = 0;
2251                         io_end_vec->size += io_end_size;
2252                         io_end_size = 0;
2253
2254                         err = mpage_process_page_bufs(mpd, head, bh, lblk);
2255                         if (err > 0)
2256                                 err = 0;
2257                         if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2258                                 io_end_vec = ext4_alloc_io_end_vec(io_end);
2259                                 if (IS_ERR(io_end_vec)) {
2260                                         err = PTR_ERR(io_end_vec);
2261                                         goto out;
2262                                 }
2263                                 io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits;
2264                         }
2265                         *map_bh = true;
2266                         goto out;
2267                 }
2268                 if (buffer_delay(bh)) {
2269                         clear_buffer_delay(bh);
2270                         bh->b_blocknr = pblock++;
2271                 }
2272                 clear_buffer_unwritten(bh);
2273                 io_end_size += (1 << blkbits);
2274         } while (lblk++, (bh = bh->b_this_page) != head);
2275
2276         io_end_vec->size += io_end_size;
2277         io_end_size = 0;
2278         *map_bh = false;
2279 out:
2280         *m_lblk = lblk;
2281         *m_pblk = pblock;
2282         return err;
2283 }
2284
2285 /*
2286  * mpage_map_buffers - update buffers corresponding to changed extent and
2287  *                     submit fully mapped pages for IO
2288  *
2289  * @mpd - description of extent to map, on return next extent to map
2290  *
2291  * Scan buffers corresponding to changed extent (we expect corresponding pages
2292  * to be already locked) and update buffer state according to new extent state.
2293  * We map delalloc buffers to their physical location, clear unwritten bits,
2294  * and mark buffers as uninit when we perform writes to unwritten extents
2295  * and do extent conversion after IO is finished. If the last page is not fully
2296  * mapped, we update @map to the next extent in the last page that needs
2297  * mapping. Otherwise we submit the page for IO.
2298  */
2299 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2300 {
2301         struct pagevec pvec;
2302         int nr_pages, i;
2303         struct inode *inode = mpd->inode;
2304         int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2305         pgoff_t start, end;
2306         ext4_lblk_t lblk;
2307         ext4_fsblk_t pblock;
2308         int err;
2309         bool map_bh = false;
2310
2311         start = mpd->map.m_lblk >> bpp_bits;
2312         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2313         lblk = start << bpp_bits;
2314         pblock = mpd->map.m_pblk;
2315
2316         pagevec_init(&pvec);
2317         while (start <= end) {
2318                 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2319                                                 &start, end);
2320                 if (nr_pages == 0)
2321                         break;
2322                 for (i = 0; i < nr_pages; i++) {
2323                         struct page *page = pvec.pages[i];
2324
2325                         err = mpage_process_page(mpd, page, &lblk, &pblock,
2326                                                  &map_bh);
2327                         /*
2328                          * If map_bh is true, means page may require further bh
2329                          * mapping, or maybe the page was submitted for IO.
2330                          * So we return to call further extent mapping.
2331                          */
2332                         if (err < 0 || map_bh)
2333                                 goto out;
2334                         /* Page fully mapped - let IO run! */
2335                         err = mpage_submit_page(mpd, page);
2336                         if (err < 0)
2337                                 goto out;
2338                 }
2339                 pagevec_release(&pvec);
2340         }
2341         /* Extent fully mapped and matches with page boundary. We are done. */
2342         mpd->map.m_len = 0;
2343         mpd->map.m_flags = 0;
2344         return 0;
2345 out:
2346         pagevec_release(&pvec);
2347         return err;
2348 }
2349
2350 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2351 {
2352         struct inode *inode = mpd->inode;
2353         struct ext4_map_blocks *map = &mpd->map;
2354         int get_blocks_flags;
2355         int err, dioread_nolock;
2356
2357         trace_ext4_da_write_pages_extent(inode, map);
2358         /*
2359          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2360          * to convert an unwritten extent to be initialized (in the case
2361          * where we have written into one or more preallocated blocks).  It is
2362          * possible that we're going to need more metadata blocks than
2363          * previously reserved. However we must not fail because we're in
2364          * writeback and there is nothing we can do about it so it might result
2365          * in data loss.  So use reserved blocks to allocate metadata if
2366          * possible.
2367          *
2368          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2369          * the blocks in question are delalloc blocks.  This indicates
2370          * that the blocks and quotas has already been checked when
2371          * the data was copied into the page cache.
2372          */
2373         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2374                            EXT4_GET_BLOCKS_METADATA_NOFAIL |
2375                            EXT4_GET_BLOCKS_IO_SUBMIT;
2376         dioread_nolock = ext4_should_dioread_nolock(inode);
2377         if (dioread_nolock)
2378                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2379         if (map->m_flags & BIT(BH_Delay))
2380                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2381
2382         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2383         if (err < 0)
2384                 return err;
2385         if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2386                 if (!mpd->io_submit.io_end->handle &&
2387                     ext4_handle_valid(handle)) {
2388                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2389                         handle->h_rsv_handle = NULL;
2390                 }
2391                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2392         }
2393
2394         BUG_ON(map->m_len == 0);
2395         return 0;
2396 }
2397
2398 /*
2399  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2400  *                               mpd->len and submit pages underlying it for IO
2401  *
2402  * @handle - handle for journal operations
2403  * @mpd - extent to map
2404  * @give_up_on_write - we set this to true iff there is a fatal error and there
2405  *                     is no hope of writing the data. The caller should discard
2406  *                     dirty pages to avoid infinite loops.
2407  *
2408  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2409  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2410  * them to initialized or split the described range from larger unwritten
2411  * extent. Note that we need not map all the described range since allocation
2412  * can return less blocks or the range is covered by more unwritten extents. We
2413  * cannot map more because we are limited by reserved transaction credits. On
2414  * the other hand we always make sure that the last touched page is fully
2415  * mapped so that it can be written out (and thus forward progress is
2416  * guaranteed). After mapping we submit all mapped pages for IO.
2417  */
2418 static int mpage_map_and_submit_extent(handle_t *handle,
2419                                        struct mpage_da_data *mpd,
2420                                        bool *give_up_on_write)
2421 {
2422         struct inode *inode = mpd->inode;
2423         struct ext4_map_blocks *map = &mpd->map;
2424         int err;
2425         loff_t disksize;
2426         int progress = 0;
2427         ext4_io_end_t *io_end = mpd->io_submit.io_end;
2428         struct ext4_io_end_vec *io_end_vec;
2429
2430         io_end_vec = ext4_alloc_io_end_vec(io_end);
2431         if (IS_ERR(io_end_vec))
2432                 return PTR_ERR(io_end_vec);
2433         io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2434         do {
2435                 err = mpage_map_one_extent(handle, mpd);
2436                 if (err < 0) {
2437                         struct super_block *sb = inode->i_sb;
2438
2439                         if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2440                             EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2441                                 goto invalidate_dirty_pages;
2442                         /*
2443                          * Let the uper layers retry transient errors.
2444                          * In the case of ENOSPC, if ext4_count_free_blocks()
2445                          * is non-zero, a commit should free up blocks.
2446                          */
2447                         if ((err == -ENOMEM) ||
2448                             (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2449                                 if (progress)
2450                                         goto update_disksize;
2451                                 return err;
2452                         }
2453                         ext4_msg(sb, KERN_CRIT,
2454                                  "Delayed block allocation failed for "
2455                                  "inode %lu at logical offset %llu with"
2456                                  " max blocks %u with error %d",
2457                                  inode->i_ino,
2458                                  (unsigned long long)map->m_lblk,
2459                                  (unsigned)map->m_len, -err);
2460                         ext4_msg(sb, KERN_CRIT,
2461                                  "This should not happen!! Data will "
2462                                  "be lost\n");
2463                         if (err == -ENOSPC)
2464                                 ext4_print_free_blocks(inode);
2465                 invalidate_dirty_pages:
2466                         *give_up_on_write = true;
2467                         return err;
2468                 }
2469                 progress = 1;
2470                 /*
2471                  * Update buffer state, submit mapped pages, and get us new
2472                  * extent to map
2473                  */
2474                 err = mpage_map_and_submit_buffers(mpd);
2475                 if (err < 0)
2476                         goto update_disksize;
2477         } while (map->m_len);
2478
2479 update_disksize:
2480         /*
2481          * Update on-disk size after IO is submitted.  Races with
2482          * truncate are avoided by checking i_size under i_data_sem.
2483          */
2484         disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2485         if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2486                 int err2;
2487                 loff_t i_size;
2488
2489                 down_write(&EXT4_I(inode)->i_data_sem);
2490                 i_size = i_size_read(inode);
2491                 if (disksize > i_size)
2492                         disksize = i_size;
2493                 if (disksize > EXT4_I(inode)->i_disksize)
2494                         EXT4_I(inode)->i_disksize = disksize;
2495                 up_write(&EXT4_I(inode)->i_data_sem);
2496                 err2 = ext4_mark_inode_dirty(handle, inode);
2497                 if (err2) {
2498                         ext4_error_err(inode->i_sb, -err2,
2499                                        "Failed to mark inode %lu dirty",
2500                                        inode->i_ino);
2501                 }
2502                 if (!err)
2503                         err = err2;
2504         }
2505         return err;
2506 }
2507
2508 /*
2509  * Calculate the total number of credits to reserve for one writepages
2510  * iteration. This is called from ext4_writepages(). We map an extent of
2511  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2512  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2513  * bpp - 1 blocks in bpp different extents.
2514  */
2515 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2516 {
2517         int bpp = ext4_journal_blocks_per_page(inode);
2518
2519         return ext4_meta_trans_blocks(inode,
2520                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2521 }
2522
2523 /*
2524  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2525  *                               and underlying extent to map
2526  *
2527  * @mpd - where to look for pages
2528  *
2529  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2530  * IO immediately. When we find a page which isn't mapped we start accumulating
2531  * extent of buffers underlying these pages that needs mapping (formed by
2532  * either delayed or unwritten buffers). We also lock the pages containing
2533  * these buffers. The extent found is returned in @mpd structure (starting at
2534  * mpd->lblk with length mpd->len blocks).
2535  *
2536  * Note that this function can attach bios to one io_end structure which are
2537  * neither logically nor physically contiguous. Although it may seem as an
2538  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2539  * case as we need to track IO to all buffers underlying a page in one io_end.
2540  */
2541 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2542 {
2543         struct address_space *mapping = mpd->inode->i_mapping;
2544         struct pagevec pvec;
2545         unsigned int nr_pages;
2546         long left = mpd->wbc->nr_to_write;
2547         pgoff_t index = mpd->first_page;
2548         pgoff_t end = mpd->last_page;
2549         xa_mark_t tag;
2550         int i, err = 0;
2551         int blkbits = mpd->inode->i_blkbits;
2552         ext4_lblk_t lblk;
2553         struct buffer_head *head;
2554
2555         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2556                 tag = PAGECACHE_TAG_TOWRITE;
2557         else
2558                 tag = PAGECACHE_TAG_DIRTY;
2559
2560         pagevec_init(&pvec);
2561         mpd->map.m_len = 0;
2562         mpd->next_page = index;
2563         while (index <= end) {
2564                 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2565                                 tag);
2566                 if (nr_pages == 0)
2567                         break;
2568
2569                 for (i = 0; i < nr_pages; i++) {
2570                         struct page *page = pvec.pages[i];
2571
2572                         /*
2573                          * Accumulated enough dirty pages? This doesn't apply
2574                          * to WB_SYNC_ALL mode. For integrity sync we have to
2575                          * keep going because someone may be concurrently
2576                          * dirtying pages, and we might have synced a lot of
2577                          * newly appeared dirty pages, but have not synced all
2578                          * of the old dirty pages.
2579                          */
2580                         if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2581                                 goto out;
2582
2583                         /* If we can't merge this page, we are done. */
2584                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2585                                 goto out;
2586
2587                         lock_page(page);
2588                         /*
2589                          * If the page is no longer dirty, or its mapping no
2590                          * longer corresponds to inode we are writing (which
2591                          * means it has been truncated or invalidated), or the
2592                          * page is already under writeback and we are not doing
2593                          * a data integrity writeback, skip the page
2594                          */
2595                         if (!PageDirty(page) ||
2596                             (PageWriteback(page) &&
2597                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2598                             unlikely(page->mapping != mapping)) {
2599                                 unlock_page(page);
2600                                 continue;
2601                         }
2602
2603                         wait_on_page_writeback(page);
2604                         BUG_ON(PageWriteback(page));
2605
2606                         if (mpd->map.m_len == 0)
2607                                 mpd->first_page = page->index;
2608                         mpd->next_page = page->index + 1;
2609                         /* Add all dirty buffers to mpd */
2610                         lblk = ((ext4_lblk_t)page->index) <<
2611                                 (PAGE_SHIFT - blkbits);
2612                         head = page_buffers(page);
2613                         err = mpage_process_page_bufs(mpd, head, head, lblk);
2614                         if (err <= 0)
2615                                 goto out;
2616                         err = 0;
2617                         left--;
2618                 }
2619                 pagevec_release(&pvec);
2620                 cond_resched();
2621         }
2622         mpd->scanned_until_end = 1;
2623         return 0;
2624 out:
2625         pagevec_release(&pvec);
2626         return err;
2627 }
2628
2629 static int ext4_writepages(struct address_space *mapping,
2630                            struct writeback_control *wbc)
2631 {
2632         pgoff_t writeback_index = 0;
2633         long nr_to_write = wbc->nr_to_write;
2634         int range_whole = 0;
2635         int cycled = 1;
2636         handle_t *handle = NULL;
2637         struct mpage_da_data mpd;
2638         struct inode *inode = mapping->host;
2639         int needed_blocks, rsv_blocks = 0, ret = 0;
2640         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2641         struct blk_plug plug;
2642         bool give_up_on_write = false;
2643
2644         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2645                 return -EIO;
2646
2647         percpu_down_read(&sbi->s_writepages_rwsem);
2648         trace_ext4_writepages(inode, wbc);
2649
2650         /*
2651          * No pages to write? This is mainly a kludge to avoid starting
2652          * a transaction for special inodes like journal inode on last iput()
2653          * because that could violate lock ordering on umount
2654          */
2655         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2656                 goto out_writepages;
2657
2658         if (ext4_should_journal_data(inode)) {
2659                 ret = generic_writepages(mapping, wbc);
2660                 goto out_writepages;
2661         }
2662
2663         /*
2664          * If the filesystem has aborted, it is read-only, so return
2665          * right away instead of dumping stack traces later on that
2666          * will obscure the real source of the problem.  We test
2667          * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2668          * the latter could be true if the filesystem is mounted
2669          * read-only, and in that case, ext4_writepages should
2670          * *never* be called, so if that ever happens, we would want
2671          * the stack trace.
2672          */
2673         if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2674                      sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2675                 ret = -EROFS;
2676                 goto out_writepages;
2677         }
2678
2679         /*
2680          * If we have inline data and arrive here, it means that
2681          * we will soon create the block for the 1st page, so
2682          * we'd better clear the inline data here.
2683          */
2684         if (ext4_has_inline_data(inode)) {
2685                 /* Just inode will be modified... */
2686                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2687                 if (IS_ERR(handle)) {
2688                         ret = PTR_ERR(handle);
2689                         goto out_writepages;
2690                 }
2691                 BUG_ON(ext4_test_inode_state(inode,
2692                                 EXT4_STATE_MAY_INLINE_DATA));
2693                 ext4_destroy_inline_data(handle, inode);
2694                 ext4_journal_stop(handle);
2695         }
2696
2697         if (ext4_should_dioread_nolock(inode)) {
2698                 /*
2699                  * We may need to convert up to one extent per block in
2700                  * the page and we may dirty the inode.
2701                  */
2702                 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2703                                                 PAGE_SIZE >> inode->i_blkbits);
2704         }
2705
2706         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2707                 range_whole = 1;
2708
2709         if (wbc->range_cyclic) {
2710                 writeback_index = mapping->writeback_index;
2711                 if (writeback_index)
2712                         cycled = 0;
2713                 mpd.first_page = writeback_index;
2714                 mpd.last_page = -1;
2715         } else {
2716                 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2717                 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2718         }
2719
2720         mpd.inode = inode;
2721         mpd.wbc = wbc;
2722         ext4_io_submit_init(&mpd.io_submit, wbc);
2723 retry:
2724         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2725                 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2726         blk_start_plug(&plug);
2727
2728         /*
2729          * First writeback pages that don't need mapping - we can avoid
2730          * starting a transaction unnecessarily and also avoid being blocked
2731          * in the block layer on device congestion while having transaction
2732          * started.
2733          */
2734         mpd.do_map = 0;
2735         mpd.scanned_until_end = 0;
2736         mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2737         if (!mpd.io_submit.io_end) {
2738                 ret = -ENOMEM;
2739                 goto unplug;
2740         }
2741         ret = mpage_prepare_extent_to_map(&mpd);
2742         /* Unlock pages we didn't use */
2743         mpage_release_unused_pages(&mpd, false);
2744         /* Submit prepared bio */
2745         ext4_io_submit(&mpd.io_submit);
2746         ext4_put_io_end_defer(mpd.io_submit.io_end);
2747         mpd.io_submit.io_end = NULL;
2748         if (ret < 0)
2749                 goto unplug;
2750
2751         while (!mpd.scanned_until_end && wbc->nr_to_write > 0) {
2752                 /* For each extent of pages we use new io_end */
2753                 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2754                 if (!mpd.io_submit.io_end) {
2755                         ret = -ENOMEM;
2756                         break;
2757                 }
2758
2759                 /*
2760                  * We have two constraints: We find one extent to map and we
2761                  * must always write out whole page (makes a difference when
2762                  * blocksize < pagesize) so that we don't block on IO when we
2763                  * try to write out the rest of the page. Journalled mode is
2764                  * not supported by delalloc.
2765                  */
2766                 BUG_ON(ext4_should_journal_data(inode));
2767                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2768
2769                 /* start a new transaction */
2770                 handle = ext4_journal_start_with_reserve(inode,
2771                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2772                 if (IS_ERR(handle)) {
2773                         ret = PTR_ERR(handle);
2774                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2775                                "%ld pages, ino %lu; err %d", __func__,
2776                                 wbc->nr_to_write, inode->i_ino, ret);
2777                         /* Release allocated io_end */
2778                         ext4_put_io_end(mpd.io_submit.io_end);
2779                         mpd.io_submit.io_end = NULL;
2780                         break;
2781                 }
2782                 mpd.do_map = 1;
2783
2784                 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2785                 ret = mpage_prepare_extent_to_map(&mpd);
2786                 if (!ret && mpd.map.m_len)
2787                         ret = mpage_map_and_submit_extent(handle, &mpd,
2788                                         &give_up_on_write);
2789                 /*
2790                  * Caution: If the handle is synchronous,
2791                  * ext4_journal_stop() can wait for transaction commit
2792                  * to finish which may depend on writeback of pages to
2793                  * complete or on page lock to be released.  In that
2794                  * case, we have to wait until after we have
2795                  * submitted all the IO, released page locks we hold,
2796                  * and dropped io_end reference (for extent conversion
2797                  * to be able to complete) before stopping the handle.
2798                  */
2799                 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2800                         ext4_journal_stop(handle);
2801                         handle = NULL;
2802                         mpd.do_map = 0;
2803                 }
2804                 /* Unlock pages we didn't use */
2805                 mpage_release_unused_pages(&mpd, give_up_on_write);
2806                 /* Submit prepared bio */
2807                 ext4_io_submit(&mpd.io_submit);
2808
2809                 /*
2810                  * Drop our io_end reference we got from init. We have
2811                  * to be careful and use deferred io_end finishing if
2812                  * we are still holding the transaction as we can
2813                  * release the last reference to io_end which may end
2814                  * up doing unwritten extent conversion.
2815                  */
2816                 if (handle) {
2817                         ext4_put_io_end_defer(mpd.io_submit.io_end);
2818                         ext4_journal_stop(handle);
2819                 } else
2820                         ext4_put_io_end(mpd.io_submit.io_end);
2821                 mpd.io_submit.io_end = NULL;
2822
2823                 if (ret == -ENOSPC && sbi->s_journal) {
2824                         /*
2825                          * Commit the transaction which would
2826                          * free blocks released in the transaction
2827                          * and try again
2828                          */
2829                         jbd2_journal_force_commit_nested(sbi->s_journal);
2830                         ret = 0;
2831                         continue;
2832                 }
2833                 /* Fatal error - ENOMEM, EIO... */
2834                 if (ret)
2835                         break;
2836         }
2837 unplug:
2838         blk_finish_plug(&plug);
2839         if (!ret && !cycled && wbc->nr_to_write > 0) {
2840                 cycled = 1;
2841                 mpd.last_page = writeback_index - 1;
2842                 mpd.first_page = 0;
2843                 goto retry;
2844         }
2845
2846         /* Update index */
2847         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2848                 /*
2849                  * Set the writeback_index so that range_cyclic
2850                  * mode will write it back later
2851                  */
2852                 mapping->writeback_index = mpd.first_page;
2853
2854 out_writepages:
2855         trace_ext4_writepages_result(inode, wbc, ret,
2856                                      nr_to_write - wbc->nr_to_write);
2857         percpu_up_read(&sbi->s_writepages_rwsem);
2858         return ret;
2859 }
2860
2861 static int ext4_dax_writepages(struct address_space *mapping,
2862                                struct writeback_control *wbc)
2863 {
2864         int ret;
2865         long nr_to_write = wbc->nr_to_write;
2866         struct inode *inode = mapping->host;
2867         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2868
2869         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2870                 return -EIO;
2871
2872         percpu_down_read(&sbi->s_writepages_rwsem);
2873         trace_ext4_writepages(inode, wbc);
2874
2875         ret = dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc);
2876         trace_ext4_writepages_result(inode, wbc, ret,
2877                                      nr_to_write - wbc->nr_to_write);
2878         percpu_up_read(&sbi->s_writepages_rwsem);
2879         return ret;
2880 }
2881
2882 static int ext4_nonda_switch(struct super_block *sb)
2883 {
2884         s64 free_clusters, dirty_clusters;
2885         struct ext4_sb_info *sbi = EXT4_SB(sb);
2886
2887         /*
2888          * switch to non delalloc mode if we are running low
2889          * on free block. The free block accounting via percpu
2890          * counters can get slightly wrong with percpu_counter_batch getting
2891          * accumulated on each CPU without updating global counters
2892          * Delalloc need an accurate free block accounting. So switch
2893          * to non delalloc when we are near to error range.
2894          */
2895         free_clusters =
2896                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2897         dirty_clusters =
2898                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2899         /*
2900          * Start pushing delalloc when 1/2 of free blocks are dirty.
2901          */
2902         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2903                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2904
2905         if (2 * free_clusters < 3 * dirty_clusters ||
2906             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2907                 /*
2908                  * free block count is less than 150% of dirty blocks
2909                  * or free blocks is less than watermark
2910                  */
2911                 return 1;
2912         }
2913         return 0;
2914 }
2915
2916 /* We always reserve for an inode update; the superblock could be there too */
2917 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2918 {
2919         if (likely(ext4_has_feature_large_file(inode->i_sb)))
2920                 return 1;
2921
2922         if (pos + len <= 0x7fffffffULL)
2923                 return 1;
2924
2925         /* We might need to update the superblock to set LARGE_FILE */
2926         return 2;
2927 }
2928
2929 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2930                                loff_t pos, unsigned len, unsigned flags,
2931                                struct page **pagep, void **fsdata)
2932 {
2933         int ret, retries = 0;
2934         struct page *page;
2935         pgoff_t index;
2936         struct inode *inode = mapping->host;
2937         handle_t *handle;
2938
2939         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2940                 return -EIO;
2941
2942         index = pos >> PAGE_SHIFT;
2943
2944         if (ext4_nonda_switch(inode->i_sb) || S_ISLNK(inode->i_mode) ||
2945             ext4_verity_in_progress(inode)) {
2946                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2947                 return ext4_write_begin(file, mapping, pos,
2948                                         len, flags, pagep, fsdata);
2949         }
2950         *fsdata = (void *)0;
2951         trace_ext4_da_write_begin(inode, pos, len, flags);
2952
2953         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2954                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2955                                                       pos, len, flags,
2956                                                       pagep, fsdata);
2957                 if (ret < 0)
2958                         return ret;
2959                 if (ret == 1)
2960                         return 0;
2961         }
2962
2963         /*
2964          * grab_cache_page_write_begin() can take a long time if the
2965          * system is thrashing due to memory pressure, or if the page
2966          * is being written back.  So grab it first before we start
2967          * the transaction handle.  This also allows us to allocate
2968          * the page (if needed) without using GFP_NOFS.
2969          */
2970 retry_grab:
2971         page = grab_cache_page_write_begin(mapping, index, flags);
2972         if (!page)
2973                 return -ENOMEM;
2974         unlock_page(page);
2975
2976         /*
2977          * With delayed allocation, we don't log the i_disksize update
2978          * if there is delayed block allocation. But we still need
2979          * to journalling the i_disksize update if writes to the end
2980          * of file which has an already mapped buffer.
2981          */
2982 retry_journal:
2983         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2984                                 ext4_da_write_credits(inode, pos, len));
2985         if (IS_ERR(handle)) {
2986                 put_page(page);
2987                 return PTR_ERR(handle);
2988         }
2989
2990         lock_page(page);
2991         if (page->mapping != mapping) {
2992                 /* The page got truncated from under us */
2993                 unlock_page(page);
2994                 put_page(page);
2995                 ext4_journal_stop(handle);
2996                 goto retry_grab;
2997         }
2998         /* In case writeback began while the page was unlocked */
2999         wait_for_stable_page(page);
3000
3001 #ifdef CONFIG_FS_ENCRYPTION
3002         ret = ext4_block_write_begin(page, pos, len,
3003                                      ext4_da_get_block_prep);
3004 #else
3005         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3006 #endif
3007         if (ret < 0) {
3008                 unlock_page(page);
3009                 ext4_journal_stop(handle);
3010                 /*
3011                  * block_write_begin may have instantiated a few blocks
3012                  * outside i_size.  Trim these off again. Don't need
3013                  * i_size_read because we hold i_mutex.
3014                  */
3015                 if (pos + len > inode->i_size)
3016                         ext4_truncate_failed_write(inode);
3017
3018                 if (ret == -ENOSPC &&
3019                     ext4_should_retry_alloc(inode->i_sb, &retries))
3020                         goto retry_journal;
3021
3022                 put_page(page);
3023                 return ret;
3024         }
3025
3026         *pagep = page;
3027         return ret;
3028 }
3029
3030 /*
3031  * Check if we should update i_disksize
3032  * when write to the end of file but not require block allocation
3033  */
3034 static int ext4_da_should_update_i_disksize(struct page *page,
3035                                             unsigned long offset)
3036 {
3037         struct buffer_head *bh;
3038         struct inode *inode = page->mapping->host;
3039         unsigned int idx;
3040         int i;
3041
3042         bh = page_buffers(page);
3043         idx = offset >> inode->i_blkbits;
3044
3045         for (i = 0; i < idx; i++)
3046                 bh = bh->b_this_page;
3047
3048         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3049                 return 0;
3050         return 1;
3051 }
3052
3053 static int ext4_da_write_end(struct file *file,
3054                              struct address_space *mapping,
3055                              loff_t pos, unsigned len, unsigned copied,
3056                              struct page *page, void *fsdata)
3057 {
3058         struct inode *inode = mapping->host;
3059         int ret = 0, ret2;
3060         handle_t *handle = ext4_journal_current_handle();
3061         loff_t new_i_size;
3062         unsigned long start, end;
3063         int write_mode = (int)(unsigned long)fsdata;
3064
3065         if (write_mode == FALL_BACK_TO_NONDELALLOC)
3066                 return ext4_write_end(file, mapping, pos,
3067                                       len, copied, page, fsdata);
3068
3069         trace_ext4_da_write_end(inode, pos, len, copied);
3070         start = pos & (PAGE_SIZE - 1);
3071         end = start + copied - 1;
3072
3073         /*
3074          * generic_write_end() will run mark_inode_dirty() if i_size
3075          * changes.  So let's piggyback the i_disksize mark_inode_dirty
3076          * into that.
3077          */
3078         new_i_size = pos + copied;
3079         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3080                 if (ext4_has_inline_data(inode) ||
3081                     ext4_da_should_update_i_disksize(page, end)) {
3082                         ext4_update_i_disksize(inode, new_i_size);
3083                         /* We need to mark inode dirty even if
3084                          * new_i_size is less that inode->i_size
3085                          * bu greater than i_disksize.(hint delalloc)
3086                          */
3087                         ret = ext4_mark_inode_dirty(handle, inode);
3088                 }
3089         }
3090
3091         if (write_mode != CONVERT_INLINE_DATA &&
3092             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3093             ext4_has_inline_data(inode))
3094                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3095                                                      page);
3096         else
3097                 ret2 = generic_write_end(file, mapping, pos, len, copied,
3098                                                         page, fsdata);
3099
3100         copied = ret2;
3101         if (ret2 < 0)
3102                 ret = ret2;
3103         ret2 = ext4_journal_stop(handle);
3104         if (unlikely(ret2 && !ret))
3105                 ret = ret2;
3106
3107         return ret ? ret : copied;
3108 }
3109
3110 /*
3111  * Force all delayed allocation blocks to be allocated for a given inode.
3112  */
3113 int ext4_alloc_da_blocks(struct inode *inode)
3114 {
3115         trace_ext4_alloc_da_blocks(inode);
3116
3117         if (!EXT4_I(inode)->i_reserved_data_blocks)
3118                 return 0;
3119
3120         /*
3121          * We do something simple for now.  The filemap_flush() will
3122          * also start triggering a write of the data blocks, which is
3123          * not strictly speaking necessary (and for users of
3124          * laptop_mode, not even desirable).  However, to do otherwise
3125          * would require replicating code paths in:
3126          *
3127          * ext4_writepages() ->
3128          *    write_cache_pages() ---> (via passed in callback function)
3129          *        __mpage_da_writepage() -->
3130          *           mpage_add_bh_to_extent()
3131          *           mpage_da_map_blocks()
3132          *
3133          * The problem is that write_cache_pages(), located in
3134          * mm/page-writeback.c, marks pages clean in preparation for
3135          * doing I/O, which is not desirable if we're not planning on
3136          * doing I/O at all.
3137          *
3138          * We could call write_cache_pages(), and then redirty all of
3139          * the pages by calling redirty_page_for_writepage() but that
3140          * would be ugly in the extreme.  So instead we would need to
3141          * replicate parts of the code in the above functions,
3142          * simplifying them because we wouldn't actually intend to
3143          * write out the pages, but rather only collect contiguous
3144          * logical block extents, call the multi-block allocator, and
3145          * then update the buffer heads with the block allocations.
3146          *
3147          * For now, though, we'll cheat by calling filemap_flush(),
3148          * which will map the blocks, and start the I/O, but not
3149          * actually wait for the I/O to complete.
3150          */
3151         return filemap_flush(inode->i_mapping);
3152 }
3153
3154 /*
3155  * bmap() is special.  It gets used by applications such as lilo and by
3156  * the swapper to find the on-disk block of a specific piece of data.
3157  *
3158  * Naturally, this is dangerous if the block concerned is still in the
3159  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3160  * filesystem and enables swap, then they may get a nasty shock when the
3161  * data getting swapped to that swapfile suddenly gets overwritten by
3162  * the original zero's written out previously to the journal and
3163  * awaiting writeback in the kernel's buffer cache.
3164  *
3165  * So, if we see any bmap calls here on a modified, data-journaled file,
3166  * take extra steps to flush any blocks which might be in the cache.
3167  */
3168 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3169 {
3170         struct inode *inode = mapping->host;
3171         journal_t *journal;
3172         int err;
3173
3174         /*
3175          * We can get here for an inline file via the FIBMAP ioctl
3176          */
3177         if (ext4_has_inline_data(inode))
3178                 return 0;
3179
3180         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3181                         test_opt(inode->i_sb, DELALLOC)) {
3182                 /*
3183                  * With delalloc we want to sync the file
3184                  * so that we can make sure we allocate
3185                  * blocks for file
3186                  */
3187                 filemap_write_and_wait(mapping);
3188         }
3189
3190         if (EXT4_JOURNAL(inode) &&
3191             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3192                 /*
3193                  * This is a REALLY heavyweight approach, but the use of
3194                  * bmap on dirty files is expected to be extremely rare:
3195                  * only if we run lilo or swapon on a freshly made file
3196                  * do we expect this to happen.
3197                  *
3198                  * (bmap requires CAP_SYS_RAWIO so this does not
3199                  * represent an unprivileged user DOS attack --- we'd be
3200                  * in trouble if mortal users could trigger this path at
3201                  * will.)
3202                  *
3203                  * NB. EXT4_STATE_JDATA is not set on files other than
3204                  * regular files.  If somebody wants to bmap a directory
3205                  * or symlink and gets confused because the buffer
3206                  * hasn't yet been flushed to disk, they deserve
3207                  * everything they get.
3208                  */
3209
3210                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3211                 journal = EXT4_JOURNAL(inode);
3212                 jbd2_journal_lock_updates(journal);
3213                 err = jbd2_journal_flush(journal);
3214                 jbd2_journal_unlock_updates(journal);
3215
3216                 if (err)
3217                         return 0;
3218         }
3219
3220         return iomap_bmap(mapping, block, &ext4_iomap_ops);
3221 }
3222
3223 static int ext4_readpage(struct file *file, struct page *page)
3224 {
3225         int ret = -EAGAIN;
3226         struct inode *inode = page->mapping->host;
3227
3228         trace_ext4_readpage(page);
3229
3230         if (ext4_has_inline_data(inode))
3231                 ret = ext4_readpage_inline(inode, page);
3232
3233         if (ret == -EAGAIN)
3234                 return ext4_mpage_readpages(inode, NULL, page);
3235
3236         return ret;
3237 }
3238
3239 static void ext4_readahead(struct readahead_control *rac)
3240 {
3241         struct inode *inode = rac->mapping->host;
3242
3243         /* If the file has inline data, no need to do readahead. */
3244         if (ext4_has_inline_data(inode))
3245                 return;
3246
3247         ext4_mpage_readpages(inode, rac, NULL);
3248 }
3249
3250 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3251                                 unsigned int length)
3252 {
3253         trace_ext4_invalidatepage(page, offset, length);
3254
3255         /* No journalling happens on data buffers when this function is used */
3256         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3257
3258         block_invalidatepage(page, offset, length);
3259 }
3260
3261 static int __ext4_journalled_invalidatepage(struct page *page,
3262                                             unsigned int offset,
3263                                             unsigned int length)
3264 {
3265         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3266
3267         trace_ext4_journalled_invalidatepage(page, offset, length);
3268
3269         /*
3270          * If it's a full truncate we just forget about the pending dirtying
3271          */
3272         if (offset == 0 && length == PAGE_SIZE)
3273                 ClearPageChecked(page);
3274
3275         return jbd2_journal_invalidatepage(journal, page, offset, length);
3276 }
3277
3278 /* Wrapper for aops... */
3279 static void ext4_journalled_invalidatepage(struct page *page,
3280                                            unsigned int offset,
3281                                            unsigned int length)
3282 {
3283         WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3284 }
3285
3286 static int ext4_releasepage(struct page *page, gfp_t wait)
3287 {
3288         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3289
3290         trace_ext4_releasepage(page);
3291
3292         /* Page has dirty journalled data -> cannot release */
3293         if (PageChecked(page))
3294                 return 0;
3295         if (journal)
3296                 return jbd2_journal_try_to_free_buffers(journal, page);
3297         else
3298                 return try_to_free_buffers(page);
3299 }
3300
3301 static bool ext4_inode_datasync_dirty(struct inode *inode)
3302 {
3303         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3304
3305         if (journal) {
3306                 if (jbd2_transaction_committed(journal,
3307                                         EXT4_I(inode)->i_datasync_tid))
3308                         return true;
3309                 return atomic_read(&EXT4_SB(inode->i_sb)->s_fc_subtid) >=
3310                         EXT4_I(inode)->i_fc_committed_subtid;
3311         }
3312
3313         /* Any metadata buffers to write? */
3314         if (!list_empty(&inode->i_mapping->private_list))
3315                 return true;
3316         return inode->i_state & I_DIRTY_DATASYNC;
3317 }
3318
3319 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3320                            struct ext4_map_blocks *map, loff_t offset,
3321                            loff_t length)
3322 {
3323         u8 blkbits = inode->i_blkbits;
3324
3325         /*
3326          * Writes that span EOF might trigger an I/O size update on completion,
3327          * so consider them to be dirty for the purpose of O_DSYNC, even if
3328          * there is no other metadata changes being made or are pending.
3329          */
3330         iomap->flags = 0;
3331         if (ext4_inode_datasync_dirty(inode) ||
3332             offset + length > i_size_read(inode))
3333                 iomap->flags |= IOMAP_F_DIRTY;
3334
3335         if (map->m_flags & EXT4_MAP_NEW)
3336                 iomap->flags |= IOMAP_F_NEW;
3337
3338         iomap->bdev = inode->i_sb->s_bdev;
3339         iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3340         iomap->offset = (u64) map->m_lblk << blkbits;
3341         iomap->length = (u64) map->m_len << blkbits;
3342
3343         if ((map->m_flags & EXT4_MAP_MAPPED) &&
3344             !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3345                 iomap->flags |= IOMAP_F_MERGED;
3346
3347         /*
3348          * Flags passed to ext4_map_blocks() for direct I/O writes can result
3349          * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3350          * set. In order for any allocated unwritten extents to be converted
3351          * into written extents correctly within the ->end_io() handler, we
3352          * need to ensure that the iomap->type is set appropriately. Hence, the
3353          * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3354          * been set first.
3355          */
3356         if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3357                 iomap->type = IOMAP_UNWRITTEN;
3358                 iomap->addr = (u64) map->m_pblk << blkbits;
3359         } else if (map->m_flags & EXT4_MAP_MAPPED) {
3360                 iomap->type = IOMAP_MAPPED;
3361                 iomap->addr = (u64) map->m_pblk << blkbits;
3362         } else {
3363                 iomap->type = IOMAP_HOLE;
3364                 iomap->addr = IOMAP_NULL_ADDR;
3365         }
3366 }
3367
3368 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3369                             unsigned int flags)
3370 {
3371         handle_t *handle;
3372         u8 blkbits = inode->i_blkbits;
3373         int ret, dio_credits, m_flags = 0, retries = 0;
3374
3375         /*
3376          * Trim the mapping request to the maximum value that we can map at
3377          * once for direct I/O.
3378          */
3379         if (map->m_len > DIO_MAX_BLOCKS)
3380                 map->m_len = DIO_MAX_BLOCKS;
3381         dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3382
3383 retry:
3384         /*
3385          * Either we allocate blocks and then don't get an unwritten extent, so
3386          * in that case we have reserved enough credits. Or, the blocks are
3387          * already allocated and unwritten. In that case, the extent conversion
3388          * fits into the credits as well.
3389          */
3390         handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3391         if (IS_ERR(handle))
3392                 return PTR_ERR(handle);
3393
3394         /*
3395          * DAX and direct I/O are the only two operations that are currently
3396          * supported with IOMAP_WRITE.
3397          */
3398         WARN_ON(!IS_DAX(inode) && !(flags & IOMAP_DIRECT));
3399         if (IS_DAX(inode))
3400                 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3401         /*
3402          * We use i_size instead of i_disksize here because delalloc writeback
3403          * can complete at any point during the I/O and subsequently push the
3404          * i_disksize out to i_size. This could be beyond where direct I/O is
3405          * happening and thus expose allocated blocks to direct I/O reads.
3406          */
3407         else if ((map->m_lblk * (1 << blkbits)) >= i_size_read(inode))
3408                 m_flags = EXT4_GET_BLOCKS_CREATE;
3409         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3410                 m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3411
3412         ret = ext4_map_blocks(handle, inode, map, m_flags);
3413
3414         /*
3415          * We cannot fill holes in indirect tree based inodes as that could
3416          * expose stale data in the case of a crash. Use the magic error code
3417          * to fallback to buffered I/O.
3418          */
3419         if (!m_flags && !ret)
3420                 ret = -ENOTBLK;
3421
3422         ext4_journal_stop(handle);
3423         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3424                 goto retry;
3425
3426         return ret;
3427 }
3428
3429
3430 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3431                 unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3432 {
3433         int ret;
3434         struct ext4_map_blocks map;
3435         u8 blkbits = inode->i_blkbits;
3436
3437         if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3438                 return -EINVAL;
3439
3440         if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3441                 return -ERANGE;
3442
3443         /*
3444          * Calculate the first and last logical blocks respectively.
3445          */
3446         map.m_lblk = offset >> blkbits;
3447         map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3448                           EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3449
3450         if (flags & IOMAP_WRITE) {
3451                 /*
3452                  * We check here if the blocks are already allocated, then we
3453                  * don't need to start a journal txn and we can directly return
3454                  * the mapping information. This could boost performance
3455                  * especially in multi-threaded overwrite requests.
3456                  */
3457                 if (offset + length <= i_size_read(inode)) {
3458                         ret = ext4_map_blocks(NULL, inode, &map, 0);
3459                         if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED))
3460                                 goto out;
3461                 }
3462                 ret = ext4_iomap_alloc(inode, &map, flags);
3463         } else {
3464                 ret = ext4_map_blocks(NULL, inode, &map, 0);
3465         }
3466
3467         if (ret < 0)
3468                 return ret;
3469 out:
3470         ext4_set_iomap(inode, iomap, &map, offset, length);
3471
3472         return 0;
3473 }
3474
3475 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3476                 loff_t length, unsigned flags, struct iomap *iomap,
3477                 struct iomap *srcmap)
3478 {
3479         int ret;
3480
3481         /*
3482          * Even for writes we don't need to allocate blocks, so just pretend
3483          * we are reading to save overhead of starting a transaction.
3484          */
3485         flags &= ~IOMAP_WRITE;
3486         ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3487         WARN_ON_ONCE(iomap->type != IOMAP_MAPPED);
3488         return ret;
3489 }
3490
3491 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3492                           ssize_t written, unsigned flags, struct iomap *iomap)
3493 {
3494         /*
3495          * Check to see whether an error occurred while writing out the data to
3496          * the allocated blocks. If so, return the magic error code so that we
3497          * fallback to buffered I/O and attempt to complete the remainder of
3498          * the I/O. Any blocks that may have been allocated in preparation for
3499          * the direct I/O will be reused during buffered I/O.
3500          */
3501         if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3502                 return -ENOTBLK;
3503
3504         return 0;
3505 }
3506
3507 const struct iomap_ops ext4_iomap_ops = {
3508         .iomap_begin            = ext4_iomap_begin,
3509         .iomap_end              = ext4_iomap_end,
3510 };
3511
3512 const struct iomap_ops ext4_iomap_overwrite_ops = {
3513         .iomap_begin            = ext4_iomap_overwrite_begin,
3514         .iomap_end              = ext4_iomap_end,
3515 };
3516
3517 static bool ext4_iomap_is_delalloc(struct inode *inode,
3518                                    struct ext4_map_blocks *map)
3519 {
3520         struct extent_status es;
3521         ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1;
3522
3523         ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3524                                   map->m_lblk, end, &es);
3525
3526         if (!es.es_len || es.es_lblk > end)
3527                 return false;
3528
3529         if (es.es_lblk > map->m_lblk) {
3530                 map->m_len = es.es_lblk - map->m_lblk;
3531                 return false;
3532         }
3533
3534         offset = map->m_lblk - es.es_lblk;
3535         map->m_len = es.es_len - offset;
3536
3537         return true;
3538 }
3539
3540 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3541                                    loff_t length, unsigned int flags,
3542                                    struct iomap *iomap, struct iomap *srcmap)
3543 {
3544         int ret;
3545         bool delalloc = false;
3546         struct ext4_map_blocks map;
3547         u8 blkbits = inode->i_blkbits;
3548
3549         if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3550                 return -EINVAL;
3551
3552         if (ext4_has_inline_data(inode)) {
3553                 ret = ext4_inline_data_iomap(inode, iomap);
3554                 if (ret != -EAGAIN) {
3555                         if (ret == 0 && offset >= iomap->length)
3556                                 ret = -ENOENT;
3557                         return ret;
3558                 }
3559         }
3560
3561         /*
3562          * Calculate the first and last logical block respectively.
3563          */
3564         map.m_lblk = offset >> blkbits;
3565         map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3566                           EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3567
3568         /*
3569          * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3570          * So handle it here itself instead of querying ext4_map_blocks().
3571          * Since ext4_map_blocks() will warn about it and will return
3572          * -EIO error.
3573          */
3574         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3575                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3576
3577                 if (offset >= sbi->s_bitmap_maxbytes) {
3578                         map.m_flags = 0;
3579                         goto set_iomap;
3580                 }
3581         }
3582
3583         ret = ext4_map_blocks(NULL, inode, &map, 0);
3584         if (ret < 0)
3585                 return ret;
3586         if (ret == 0)
3587                 delalloc = ext4_iomap_is_delalloc(inode, &map);
3588
3589 set_iomap:
3590         ext4_set_iomap(inode, iomap, &map, offset, length);
3591         if (delalloc && iomap->type == IOMAP_HOLE)
3592                 iomap->type = IOMAP_DELALLOC;
3593
3594         return 0;
3595 }
3596
3597 const struct iomap_ops ext4_iomap_report_ops = {
3598         .iomap_begin = ext4_iomap_begin_report,
3599 };
3600
3601 /*
3602  * Pages can be marked dirty completely asynchronously from ext4's journalling
3603  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3604  * much here because ->set_page_dirty is called under VFS locks.  The page is
3605  * not necessarily locked.
3606  *
3607  * We cannot just dirty the page and leave attached buffers clean, because the
3608  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3609  * or jbddirty because all the journalling code will explode.
3610  *
3611  * So what we do is to mark the page "pending dirty" and next time writepage
3612  * is called, propagate that into the buffers appropriately.
3613  */
3614 static int ext4_journalled_set_page_dirty(struct page *page)
3615 {
3616         SetPageChecked(page);
3617         return __set_page_dirty_nobuffers(page);
3618 }
3619
3620 static int ext4_set_page_dirty(struct page *page)
3621 {
3622         WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3623         WARN_ON_ONCE(!page_has_buffers(page));
3624         return __set_page_dirty_buffers(page);
3625 }
3626
3627 static int ext4_iomap_swap_activate(struct swap_info_struct *sis,
3628                                     struct file *file, sector_t *span)
3629 {
3630         return iomap_swapfile_activate(sis, file, span,
3631                                        &ext4_iomap_report_ops);
3632 }
3633
3634 static const struct address_space_operations ext4_aops = {
3635         .readpage               = ext4_readpage,
3636         .readahead              = ext4_readahead,
3637         .writepage              = ext4_writepage,
3638         .writepages             = ext4_writepages,
3639         .write_begin            = ext4_write_begin,
3640         .write_end              = ext4_write_end,
3641         .set_page_dirty         = ext4_set_page_dirty,
3642         .bmap                   = ext4_bmap,
3643         .invalidatepage         = ext4_invalidatepage,
3644         .releasepage            = ext4_releasepage,
3645         .direct_IO              = noop_direct_IO,
3646         .migratepage            = buffer_migrate_page,
3647         .is_partially_uptodate  = block_is_partially_uptodate,
3648         .error_remove_page      = generic_error_remove_page,
3649         .swap_activate          = ext4_iomap_swap_activate,
3650 };
3651
3652 static const struct address_space_operations ext4_journalled_aops = {
3653         .readpage               = ext4_readpage,
3654         .readahead              = ext4_readahead,
3655         .writepage              = ext4_writepage,
3656         .writepages             = ext4_writepages,
3657         .write_begin            = ext4_write_begin,
3658         .write_end              = ext4_journalled_write_end,
3659         .set_page_dirty         = ext4_journalled_set_page_dirty,
3660         .bmap                   = ext4_bmap,
3661         .invalidatepage         = ext4_journalled_invalidatepage,
3662         .releasepage            = ext4_releasepage,
3663         .direct_IO              = noop_direct_IO,
3664         .is_partially_uptodate  = block_is_partially_uptodate,
3665         .error_remove_page      = generic_error_remove_page,
3666         .swap_activate          = ext4_iomap_swap_activate,
3667 };
3668
3669 static const struct address_space_operations ext4_da_aops = {
3670         .readpage               = ext4_readpage,
3671         .readahead              = ext4_readahead,
3672         .writepage              = ext4_writepage,
3673         .writepages             = ext4_writepages,
3674         .write_begin            = ext4_da_write_begin,
3675         .write_end              = ext4_da_write_end,
3676         .set_page_dirty         = ext4_set_page_dirty,
3677         .bmap                   = ext4_bmap,
3678         .invalidatepage         = ext4_invalidatepage,
3679         .releasepage            = ext4_releasepage,
3680         .direct_IO              = noop_direct_IO,
3681         .migratepage            = buffer_migrate_page,
3682         .is_partially_uptodate  = block_is_partially_uptodate,
3683         .error_remove_page      = generic_error_remove_page,
3684         .swap_activate          = ext4_iomap_swap_activate,
3685 };
3686
3687 static const struct address_space_operations ext4_dax_aops = {
3688         .writepages             = ext4_dax_writepages,
3689         .direct_IO              = noop_direct_IO,
3690         .set_page_dirty         = noop_set_page_dirty,
3691         .bmap                   = ext4_bmap,
3692         .invalidatepage         = noop_invalidatepage,
3693         .swap_activate          = ext4_iomap_swap_activate,
3694 };
3695
3696 void ext4_set_aops(struct inode *inode)
3697 {
3698         switch (ext4_inode_journal_mode(inode)) {
3699         case EXT4_INODE_ORDERED_DATA_MODE:
3700         case EXT4_INODE_WRITEBACK_DATA_MODE:
3701                 break;
3702         case EXT4_INODE_JOURNAL_DATA_MODE:
3703                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3704                 return;
3705         default:
3706                 BUG();
3707         }
3708         if (IS_DAX(inode))
3709                 inode->i_mapping->a_ops = &ext4_dax_aops;
3710         else if (test_opt(inode->i_sb, DELALLOC))
3711                 inode->i_mapping->a_ops = &ext4_da_aops;
3712         else
3713                 inode->i_mapping->a_ops = &ext4_aops;
3714 }
3715
3716 static int __ext4_block_zero_page_range(handle_t *handle,
3717                 struct address_space *mapping, loff_t from, loff_t length)
3718 {
3719         ext4_fsblk_t index = from >> PAGE_SHIFT;
3720         unsigned offset = from & (PAGE_SIZE-1);
3721         unsigned blocksize, pos;
3722         ext4_lblk_t iblock;
3723         struct inode *inode = mapping->host;
3724         struct buffer_head *bh;
3725         struct page *page;
3726         int err = 0;
3727
3728         page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3729                                    mapping_gfp_constraint(mapping, ~__GFP_FS));
3730         if (!page)
3731                 return -ENOMEM;
3732
3733         blocksize = inode->i_sb->s_blocksize;
3734
3735         iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3736
3737         if (!page_has_buffers(page))
3738                 create_empty_buffers(page, blocksize, 0);
3739
3740         /* Find the buffer that contains "offset" */
3741         bh = page_buffers(page);
3742         pos = blocksize;
3743         while (offset >= pos) {
3744                 bh = bh->b_this_page;
3745                 iblock++;
3746                 pos += blocksize;
3747         }
3748         if (buffer_freed(bh)) {
3749                 BUFFER_TRACE(bh, "freed: skip");
3750                 goto unlock;
3751         }
3752         if (!buffer_mapped(bh)) {
3753                 BUFFER_TRACE(bh, "unmapped");
3754                 ext4_get_block(inode, iblock, bh, 0);
3755                 /* unmapped? It's a hole - nothing to do */
3756                 if (!buffer_mapped(bh)) {
3757                         BUFFER_TRACE(bh, "still unmapped");
3758                         goto unlock;
3759                 }
3760         }
3761
3762         /* Ok, it's mapped. Make sure it's up-to-date */
3763         if (PageUptodate(page))
3764                 set_buffer_uptodate(bh);
3765
3766         if (!buffer_uptodate(bh)) {
3767                 err = ext4_read_bh_lock(bh, 0, true);
3768                 if (err)
3769                         goto unlock;
3770                 if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
3771                         /* We expect the key to be set. */
3772                         BUG_ON(!fscrypt_has_encryption_key(inode));
3773                         err = fscrypt_decrypt_pagecache_blocks(page, blocksize,
3774                                                                bh_offset(bh));
3775                         if (err) {
3776                                 clear_buffer_uptodate(bh);
3777                                 goto unlock;
3778                         }
3779                 }
3780         }
3781         if (ext4_should_journal_data(inode)) {
3782                 BUFFER_TRACE(bh, "get write access");
3783                 err = ext4_journal_get_write_access(handle, bh);
3784                 if (err)
3785                         goto unlock;
3786         }
3787         zero_user(page, offset, length);
3788         BUFFER_TRACE(bh, "zeroed end of block");
3789
3790         if (ext4_should_journal_data(inode)) {
3791                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3792         } else {
3793                 err = 0;
3794                 mark_buffer_dirty(bh);
3795                 if (ext4_should_order_data(inode))
3796                         err = ext4_jbd2_inode_add_write(handle, inode, from,
3797                                         length);
3798         }
3799
3800 unlock:
3801         unlock_page(page);
3802         put_page(page);
3803         return err;
3804 }
3805
3806 /*
3807  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3808  * starting from file offset 'from'.  The range to be zero'd must
3809  * be contained with in one block.  If the specified range exceeds
3810  * the end of the block it will be shortened to end of the block
3811  * that cooresponds to 'from'
3812  */
3813 static int ext4_block_zero_page_range(handle_t *handle,
3814                 struct address_space *mapping, loff_t from, loff_t length)
3815 {
3816         struct inode *inode = mapping->host;
3817         unsigned offset = from & (PAGE_SIZE-1);
3818         unsigned blocksize = inode->i_sb->s_blocksize;
3819         unsigned max = blocksize - (offset & (blocksize - 1));
3820
3821         /*
3822          * correct length if it does not fall between
3823          * 'from' and the end of the block
3824          */
3825         if (length > max || length < 0)
3826                 length = max;
3827
3828         if (IS_DAX(inode)) {
3829                 return iomap_zero_range(inode, from, length, NULL,
3830                                         &ext4_iomap_ops);
3831         }
3832         return __ext4_block_zero_page_range(handle, mapping, from, length);
3833 }
3834
3835 /*
3836  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3837  * up to the end of the block which corresponds to `from'.
3838  * This required during truncate. We need to physically zero the tail end
3839  * of that block so it doesn't yield old data if the file is later grown.
3840  */
3841 static int ext4_block_truncate_page(handle_t *handle,
3842                 struct address_space *mapping, loff_t from)
3843 {
3844         unsigned offset = from & (PAGE_SIZE-1);
3845         unsigned length;
3846         unsigned blocksize;
3847         struct inode *inode = mapping->host;
3848
3849         /* If we are processing an encrypted inode during orphan list handling */
3850         if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3851                 return 0;
3852
3853         blocksize = inode->i_sb->s_blocksize;
3854         length = blocksize - (offset & (blocksize - 1));
3855
3856         return ext4_block_zero_page_range(handle, mapping, from, length);
3857 }
3858
3859 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3860                              loff_t lstart, loff_t length)
3861 {
3862         struct super_block *sb = inode->i_sb;
3863         struct address_space *mapping = inode->i_mapping;
3864         unsigned partial_start, partial_end;
3865         ext4_fsblk_t start, end;
3866         loff_t byte_end = (lstart + length - 1);
3867         int err = 0;
3868
3869         partial_start = lstart & (sb->s_blocksize - 1);
3870         partial_end = byte_end & (sb->s_blocksize - 1);
3871
3872         start = lstart >> sb->s_blocksize_bits;
3873         end = byte_end >> sb->s_blocksize_bits;
3874
3875         /* Handle partial zero within the single block */
3876         if (start == end &&
3877             (partial_start || (partial_end != sb->s_blocksize - 1))) {
3878                 err = ext4_block_zero_page_range(handle, mapping,
3879                                                  lstart, length);
3880                 return err;
3881         }
3882         /* Handle partial zero out on the start of the range */
3883         if (partial_start) {
3884                 err = ext4_block_zero_page_range(handle, mapping,
3885                                                  lstart, sb->s_blocksize);
3886                 if (err)
3887                         return err;
3888         }
3889         /* Handle partial zero out on the end of the range */
3890         if (partial_end != sb->s_blocksize - 1)
3891                 err = ext4_block_zero_page_range(handle, mapping,
3892                                                  byte_end - partial_end,
3893                                                  partial_end + 1);
3894         return err;
3895 }
3896
3897 int ext4_can_truncate(struct inode *inode)
3898 {
3899         if (S_ISREG(inode->i_mode))
3900                 return 1;
3901         if (S_ISDIR(inode->i_mode))
3902                 return 1;
3903         if (S_ISLNK(inode->i_mode))
3904                 return !ext4_inode_is_fast_symlink(inode);
3905         return 0;
3906 }
3907
3908 /*
3909  * We have to make sure i_disksize gets properly updated before we truncate
3910  * page cache due to hole punching or zero range. Otherwise i_disksize update
3911  * can get lost as it may have been postponed to submission of writeback but
3912  * that will never happen after we truncate page cache.
3913  */
3914 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3915                                       loff_t len)
3916 {
3917         handle_t *handle;
3918         int ret;
3919
3920         loff_t size = i_size_read(inode);
3921
3922         WARN_ON(!inode_is_locked(inode));
3923         if (offset > size || offset + len < size)
3924                 return 0;
3925
3926         if (EXT4_I(inode)->i_disksize >= size)
3927                 return 0;
3928
3929         handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3930         if (IS_ERR(handle))
3931                 return PTR_ERR(handle);
3932         ext4_update_i_disksize(inode, size);
3933         ret = ext4_mark_inode_dirty(handle, inode);
3934         ext4_journal_stop(handle);
3935
3936         return ret;
3937 }
3938
3939 static void ext4_wait_dax_page(struct ext4_inode_info *ei)
3940 {
3941         up_write(&ei->i_mmap_sem);
3942         schedule();
3943         down_write(&ei->i_mmap_sem);
3944 }
3945
3946 int ext4_break_layouts(struct inode *inode)
3947 {
3948         struct ext4_inode_info *ei = EXT4_I(inode);
3949         struct page *page;
3950         int error;
3951
3952         if (WARN_ON_ONCE(!rwsem_is_locked(&ei->i_mmap_sem)))
3953                 return -EINVAL;
3954
3955         do {
3956                 page = dax_layout_busy_page(inode->i_mapping);
3957                 if (!page)
3958                         return 0;
3959
3960                 error = ___wait_var_event(&page->_refcount,
3961                                 atomic_read(&page->_refcount) == 1,
3962                                 TASK_INTERRUPTIBLE, 0, 0,
3963                                 ext4_wait_dax_page(ei));
3964         } while (error == 0);
3965
3966         return error;
3967 }
3968
3969 /*
3970  * ext4_punch_hole: punches a hole in a file by releasing the blocks
3971  * associated with the given offset and length
3972  *
3973  * @inode:  File inode
3974  * @offset: The offset where the hole will begin
3975  * @len:    The length of the hole
3976  *
3977  * Returns: 0 on success or negative on failure
3978  */
3979
3980 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3981 {
3982         struct super_block *sb = inode->i_sb;
3983         ext4_lblk_t first_block, stop_block;
3984         struct address_space *mapping = inode->i_mapping;
3985         loff_t first_block_offset, last_block_offset;
3986         handle_t *handle;
3987         unsigned int credits;
3988         int ret = 0, ret2 = 0;
3989
3990         trace_ext4_punch_hole(inode, offset, length, 0);
3991
3992         ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
3993         if (ext4_has_inline_data(inode)) {
3994                 down_write(&EXT4_I(inode)->i_mmap_sem);
3995                 ret = ext4_convert_inline_data(inode);
3996                 up_write(&EXT4_I(inode)->i_mmap_sem);
3997                 if (ret)
3998                         return ret;
3999         }
4000
4001         /*
4002          * Write out all dirty pages to avoid race conditions
4003          * Then release them.
4004          */
4005         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4006                 ret = filemap_write_and_wait_range(mapping, offset,
4007                                                    offset + length - 1);
4008                 if (ret)
4009                         return ret;
4010         }
4011
4012         inode_lock(inode);
4013
4014         /* No need to punch hole beyond i_size */
4015         if (offset >= inode->i_size)
4016                 goto out_mutex;
4017
4018         /*
4019          * If the hole extends beyond i_size, set the hole
4020          * to end after the page that contains i_size
4021          */
4022         if (offset + length > inode->i_size) {
4023                 length = inode->i_size +
4024                    PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4025                    offset;
4026         }
4027
4028         if (offset & (sb->s_blocksize - 1) ||
4029             (offset + length) & (sb->s_blocksize - 1)) {
4030                 /*
4031                  * Attach jinode to inode for jbd2 if we do any zeroing of
4032                  * partial block
4033                  */
4034                 ret = ext4_inode_attach_jinode(inode);
4035                 if (ret < 0)
4036                         goto out_mutex;
4037
4038         }
4039
4040         /* Wait all existing dio workers, newcomers will block on i_mutex */
4041         inode_dio_wait(inode);
4042
4043         /*
4044          * Prevent page faults from reinstantiating pages we have released from
4045          * page cache.
4046          */
4047         down_write(&EXT4_I(inode)->i_mmap_sem);
4048
4049         ret = ext4_break_layouts(inode);
4050         if (ret)
4051                 goto out_dio;
4052
4053         first_block_offset = round_up(offset, sb->s_blocksize);
4054         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4055
4056         /* Now release the pages and zero block aligned part of pages*/
4057         if (last_block_offset > first_block_offset) {
4058                 ret = ext4_update_disksize_before_punch(inode, offset, length);
4059                 if (ret)
4060                         goto out_dio;
4061                 truncate_pagecache_range(inode, first_block_offset,
4062                                          last_block_offset);
4063         }
4064
4065         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4066                 credits = ext4_writepage_trans_blocks(inode);
4067         else
4068                 credits = ext4_blocks_for_truncate(inode);
4069         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4070         if (IS_ERR(handle)) {
4071                 ret = PTR_ERR(handle);
4072                 ext4_std_error(sb, ret);
4073                 goto out_dio;
4074         }
4075
4076         ret = ext4_zero_partial_blocks(handle, inode, offset,
4077                                        length);
4078         if (ret)
4079                 goto out_stop;
4080
4081         first_block = (offset + sb->s_blocksize - 1) >>
4082                 EXT4_BLOCK_SIZE_BITS(sb);
4083         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4084
4085         /* If there are blocks to remove, do it */
4086         if (stop_block > first_block) {
4087
4088                 down_write(&EXT4_I(inode)->i_data_sem);
4089                 ext4_discard_preallocations(inode, 0);
4090
4091                 ret = ext4_es_remove_extent(inode, first_block,
4092                                             stop_block - first_block);
4093                 if (ret) {
4094                         up_write(&EXT4_I(inode)->i_data_sem);
4095                         goto out_stop;
4096                 }
4097
4098                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4099                         ret = ext4_ext_remove_space(inode, first_block,
4100                                                     stop_block - 1);
4101                 else
4102                         ret = ext4_ind_remove_space(handle, inode, first_block,
4103                                                     stop_block);
4104
4105                 up_write(&EXT4_I(inode)->i_data_sem);
4106         }
4107         ext4_fc_track_range(inode, first_block, stop_block);
4108         if (IS_SYNC(inode))
4109                 ext4_handle_sync(handle);
4110
4111         inode->i_mtime = inode->i_ctime = current_time(inode);
4112         ret2 = ext4_mark_inode_dirty(handle, inode);
4113         if (unlikely(ret2))
4114                 ret = ret2;
4115         if (ret >= 0)
4116                 ext4_update_inode_fsync_trans(handle, inode, 1);
4117 out_stop:
4118         ext4_journal_stop(handle);
4119 out_dio:
4120         up_write(&EXT4_I(inode)->i_mmap_sem);
4121 out_mutex:
4122         inode_unlock(inode);
4123         return ret;
4124 }
4125
4126 int ext4_inode_attach_jinode(struct inode *inode)
4127 {
4128         struct ext4_inode_info *ei = EXT4_I(inode);
4129         struct jbd2_inode *jinode;
4130
4131         if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4132                 return 0;
4133
4134         jinode = jbd2_alloc_inode(GFP_KERNEL);
4135         spin_lock(&inode->i_lock);
4136         if (!ei->jinode) {
4137                 if (!jinode) {
4138                         spin_unlock(&inode->i_lock);
4139                         return -ENOMEM;
4140                 }
4141                 ei->jinode = jinode;
4142                 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4143                 jinode = NULL;
4144         }
4145         spin_unlock(&inode->i_lock);
4146         if (unlikely(jinode != NULL))
4147                 jbd2_free_inode(jinode);
4148         return 0;
4149 }
4150
4151 /*
4152  * ext4_truncate()
4153  *
4154  * We block out ext4_get_block() block instantiations across the entire
4155  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4156  * simultaneously on behalf of the same inode.
4157  *
4158  * As we work through the truncate and commit bits of it to the journal there
4159  * is one core, guiding principle: the file's tree must always be consistent on
4160  * disk.  We must be able to restart the truncate after a crash.
4161  *
4162  * The file's tree may be transiently inconsistent in memory (although it
4163  * probably isn't), but whenever we close off and commit a journal transaction,
4164  * the contents of (the filesystem + the journal) must be consistent and
4165  * restartable.  It's pretty simple, really: bottom up, right to left (although
4166  * left-to-right works OK too).
4167  *
4168  * Note that at recovery time, journal replay occurs *before* the restart of
4169  * truncate against the orphan inode list.
4170  *
4171  * The committed inode has the new, desired i_size (which is the same as
4172  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4173  * that this inode's truncate did not complete and it will again call
4174  * ext4_truncate() to have another go.  So there will be instantiated blocks
4175  * to the right of the truncation point in a crashed ext4 filesystem.  But
4176  * that's fine - as long as they are linked from the inode, the post-crash
4177  * ext4_truncate() run will find them and release them.
4178  */
4179 int ext4_truncate(struct inode *inode)
4180 {
4181         struct ext4_inode_info *ei = EXT4_I(inode);
4182         unsigned int credits;
4183         int err = 0, err2;
4184         handle_t *handle;
4185         struct address_space *mapping = inode->i_mapping;
4186
4187         /*
4188          * There is a possibility that we're either freeing the inode
4189          * or it's a completely new inode. In those cases we might not
4190          * have i_mutex locked because it's not necessary.
4191          */
4192         if (!(inode->i_state & (I_NEW|I_FREEING)))
4193                 WARN_ON(!inode_is_locked(inode));
4194         trace_ext4_truncate_enter(inode);
4195
4196         if (!ext4_can_truncate(inode))
4197                 goto out_trace;
4198
4199         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4200                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4201
4202         if (ext4_has_inline_data(inode)) {
4203                 int has_inline = 1;
4204
4205                 err = ext4_inline_data_truncate(inode, &has_inline);
4206                 if (err || has_inline)
4207                         goto out_trace;
4208         }
4209
4210         /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4211         if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4212                 if (ext4_inode_attach_jinode(inode) < 0)
4213                         goto out_trace;
4214         }
4215
4216         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4217                 credits = ext4_writepage_trans_blocks(inode);
4218         else
4219                 credits = ext4_blocks_for_truncate(inode);
4220
4221         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4222         if (IS_ERR(handle)) {
4223                 err = PTR_ERR(handle);
4224                 goto out_trace;
4225         }
4226
4227         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4228                 ext4_block_truncate_page(handle, mapping, inode->i_size);
4229
4230         /*
4231          * We add the inode to the orphan list, so that if this
4232          * truncate spans multiple transactions, and we crash, we will
4233          * resume the truncate when the filesystem recovers.  It also
4234          * marks the inode dirty, to catch the new size.
4235          *
4236          * Implication: the file must always be in a sane, consistent
4237          * truncatable state while each transaction commits.
4238          */
4239         err = ext4_orphan_add(handle, inode);
4240         if (err)
4241                 goto out_stop;
4242
4243         down_write(&EXT4_I(inode)->i_data_sem);
4244
4245         ext4_discard_preallocations(inode, 0);
4246
4247         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4248                 err = ext4_ext_truncate(handle, inode);
4249         else
4250                 ext4_ind_truncate(handle, inode);
4251
4252         up_write(&ei->i_data_sem);
4253         if (err)
4254                 goto out_stop;
4255
4256         if (IS_SYNC(inode))
4257                 ext4_handle_sync(handle);
4258
4259 out_stop:
4260         /*
4261          * If this was a simple ftruncate() and the file will remain alive,
4262          * then we need to clear up the orphan record which we created above.
4263          * However, if this was a real unlink then we were called by
4264          * ext4_evict_inode(), and we allow that function to clean up the
4265          * orphan info for us.
4266          */
4267         if (inode->i_nlink)
4268                 ext4_orphan_del(handle, inode);
4269
4270         inode->i_mtime = inode->i_ctime = current_time(inode);
4271         err2 = ext4_mark_inode_dirty(handle, inode);
4272         if (unlikely(err2 && !err))
4273                 err = err2;
4274         ext4_journal_stop(handle);
4275
4276 out_trace:
4277         trace_ext4_truncate_exit(inode);
4278         return err;
4279 }
4280
4281 /*
4282  * ext4_get_inode_loc returns with an extra refcount against the inode's
4283  * underlying buffer_head on success. If 'in_mem' is true, we have all
4284  * data in memory that is needed to recreate the on-disk version of this
4285  * inode.
4286  */
4287 static int __ext4_get_inode_loc(struct inode *inode,
4288                                 struct ext4_iloc *iloc, int in_mem)
4289 {
4290         struct ext4_group_desc  *gdp;
4291         struct buffer_head      *bh;
4292         struct super_block      *sb = inode->i_sb;
4293         ext4_fsblk_t            block;
4294         struct blk_plug         plug;
4295         int                     inodes_per_block, inode_offset;
4296
4297         iloc->bh = NULL;
4298         if (inode->i_ino < EXT4_ROOT_INO ||
4299             inode->i_ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4300                 return -EFSCORRUPTED;
4301
4302         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4303         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4304         if (!gdp)
4305                 return -EIO;
4306
4307         /*
4308          * Figure out the offset within the block group inode table
4309          */
4310         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4311         inode_offset = ((inode->i_ino - 1) %
4312                         EXT4_INODES_PER_GROUP(sb));
4313         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4314         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4315
4316         bh = sb_getblk(sb, block);
4317         if (unlikely(!bh))
4318                 return -ENOMEM;
4319         if (ext4_simulate_fail(sb, EXT4_SIM_INODE_EIO))
4320                 goto simulate_eio;
4321         if (!buffer_uptodate(bh)) {
4322                 lock_buffer(bh);
4323
4324                 if (ext4_buffer_uptodate(bh)) {
4325                         /* someone brought it uptodate while we waited */
4326                         unlock_buffer(bh);
4327                         goto has_buffer;
4328                 }
4329
4330                 /*
4331                  * If we have all information of the inode in memory and this
4332                  * is the only valid inode in the block, we need not read the
4333                  * block.
4334                  */
4335                 if (in_mem) {
4336                         struct buffer_head *bitmap_bh;
4337                         int i, start;
4338
4339                         start = inode_offset & ~(inodes_per_block - 1);
4340
4341                         /* Is the inode bitmap in cache? */
4342                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4343                         if (unlikely(!bitmap_bh))
4344                                 goto make_io;
4345
4346                         /*
4347                          * If the inode bitmap isn't in cache then the
4348                          * optimisation may end up performing two reads instead
4349                          * of one, so skip it.
4350                          */
4351                         if (!buffer_uptodate(bitmap_bh)) {
4352                                 brelse(bitmap_bh);
4353                                 goto make_io;
4354                         }
4355                         for (i = start; i < start + inodes_per_block; i++) {
4356                                 if (i == inode_offset)
4357                                         continue;
4358                                 if (ext4_test_bit(i, bitmap_bh->b_data))
4359                                         break;
4360                         }
4361                         brelse(bitmap_bh);
4362                         if (i == start + inodes_per_block) {
4363                                 /* all other inodes are free, so skip I/O */
4364                                 memset(bh->b_data, 0, bh->b_size);
4365                                 set_buffer_uptodate(bh);
4366                                 unlock_buffer(bh);
4367                                 goto has_buffer;
4368                         }
4369                 }
4370
4371 make_io:
4372                 /*
4373                  * If we need to do any I/O, try to pre-readahead extra
4374                  * blocks from the inode table.
4375                  */
4376                 blk_start_plug(&plug);
4377                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4378                         ext4_fsblk_t b, end, table;
4379                         unsigned num;
4380                         __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4381
4382                         table = ext4_inode_table(sb, gdp);
4383                         /* s_inode_readahead_blks is always a power of 2 */
4384                         b = block & ~((ext4_fsblk_t) ra_blks - 1);
4385                         if (table > b)
4386                                 b = table;
4387                         end = b + ra_blks;
4388                         num = EXT4_INODES_PER_GROUP(sb);
4389                         if (ext4_has_group_desc_csum(sb))
4390                                 num -= ext4_itable_unused_count(sb, gdp);
4391                         table += num / inodes_per_block;
4392                         if (end > table)
4393                                 end = table;
4394                         while (b <= end)
4395                                 ext4_sb_breadahead_unmovable(sb, b++);
4396                 }
4397
4398                 /*
4399                  * There are other valid inodes in the buffer, this inode
4400                  * has in-inode xattrs, or we don't have this inode in memory.
4401                  * Read the block from disk.
4402                  */
4403                 trace_ext4_load_inode(inode);
4404                 ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL);
4405                 blk_finish_plug(&plug);
4406                 wait_on_buffer(bh);
4407                 if (!buffer_uptodate(bh)) {
4408                 simulate_eio:
4409                         ext4_error_inode_block(inode, block, EIO,
4410                                                "unable to read itable block");
4411                         brelse(bh);
4412                         return -EIO;
4413                 }
4414         }
4415 has_buffer:
4416         iloc->bh = bh;
4417         return 0;
4418 }
4419
4420 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4421 {
4422         /* We have all inode data except xattrs in memory here. */
4423         return __ext4_get_inode_loc(inode, iloc,
4424                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4425 }
4426
4427 static bool ext4_should_enable_dax(struct inode *inode)
4428 {
4429         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4430
4431         if (test_opt2(inode->i_sb, DAX_NEVER))
4432                 return false;
4433         if (!S_ISREG(inode->i_mode))
4434                 return false;
4435         if (ext4_should_journal_data(inode))
4436                 return false;
4437         if (ext4_has_inline_data(inode))
4438                 return false;
4439         if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4440                 return false;
4441         if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4442                 return false;
4443         if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4444                 return false;
4445         if (test_opt(inode->i_sb, DAX_ALWAYS))
4446                 return true;
4447
4448         return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
4449 }
4450
4451 void ext4_set_inode_flags(struct inode *inode, bool init)
4452 {
4453         unsigned int flags = EXT4_I(inode)->i_flags;
4454         unsigned int new_fl = 0;
4455
4456         WARN_ON_ONCE(IS_DAX(inode) && init);
4457
4458         if (flags & EXT4_SYNC_FL)
4459                 new_fl |= S_SYNC;
4460         if (flags & EXT4_APPEND_FL)
4461                 new_fl |= S_APPEND;
4462         if (flags & EXT4_IMMUTABLE_FL)
4463                 new_fl |= S_IMMUTABLE;
4464         if (flags & EXT4_NOATIME_FL)
4465                 new_fl |= S_NOATIME;
4466         if (flags & EXT4_DIRSYNC_FL)
4467                 new_fl |= S_DIRSYNC;
4468
4469         /* Because of the way inode_set_flags() works we must preserve S_DAX
4470          * here if already set. */
4471         new_fl |= (inode->i_flags & S_DAX);
4472         if (init && ext4_should_enable_dax(inode))
4473                 new_fl |= S_DAX;
4474
4475         if (flags & EXT4_ENCRYPT_FL)
4476                 new_fl |= S_ENCRYPTED;
4477         if (flags & EXT4_CASEFOLD_FL)
4478                 new_fl |= S_CASEFOLD;
4479         if (flags & EXT4_VERITY_FL)
4480                 new_fl |= S_VERITY;
4481         inode_set_flags(inode, new_fl,
4482                         S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4483                         S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4484 }
4485
4486 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4487                                   struct ext4_inode_info *ei)
4488 {
4489         blkcnt_t i_blocks ;
4490         struct inode *inode = &(ei->vfs_inode);
4491         struct super_block *sb = inode->i_sb;
4492
4493         if (ext4_has_feature_huge_file(sb)) {
4494                 /* we are using combined 48 bit field */
4495                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4496                                         le32_to_cpu(raw_inode->i_blocks_lo);
4497                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4498                         /* i_blocks represent file system block size */
4499                         return i_blocks  << (inode->i_blkbits - 9);
4500                 } else {
4501                         return i_blocks;
4502                 }
4503         } else {
4504                 return le32_to_cpu(raw_inode->i_blocks_lo);
4505         }
4506 }
4507
4508 static inline int ext4_iget_extra_inode(struct inode *inode,
4509                                          struct ext4_inode *raw_inode,
4510                                          struct ext4_inode_info *ei)
4511 {
4512         __le32 *magic = (void *)raw_inode +
4513                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4514
4515         if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4516             EXT4_INODE_SIZE(inode->i_sb) &&
4517             *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4518                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4519                 return ext4_find_inline_data_nolock(inode);
4520         } else
4521                 EXT4_I(inode)->i_inline_off = 0;
4522         return 0;
4523 }
4524
4525 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4526 {
4527         if (!ext4_has_feature_project(inode->i_sb))
4528                 return -EOPNOTSUPP;
4529         *projid = EXT4_I(inode)->i_projid;
4530         return 0;
4531 }
4532
4533 /*
4534  * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4535  * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4536  * set.
4537  */
4538 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4539 {
4540         if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4541                 inode_set_iversion_raw(inode, val);
4542         else
4543                 inode_set_iversion_queried(inode, val);
4544 }
4545 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4546 {
4547         if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4548                 return inode_peek_iversion_raw(inode);
4549         else
4550                 return inode_peek_iversion(inode);
4551 }
4552
4553 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4554                           ext4_iget_flags flags, const char *function,
4555                           unsigned int line)
4556 {
4557         struct ext4_iloc iloc;
4558         struct ext4_inode *raw_inode;
4559         struct ext4_inode_info *ei;
4560         struct inode *inode;
4561         journal_t *journal = EXT4_SB(sb)->s_journal;
4562         long ret;
4563         loff_t size;
4564         int block;
4565         uid_t i_uid;
4566         gid_t i_gid;
4567         projid_t i_projid;
4568
4569         if ((!(flags & EXT4_IGET_SPECIAL) &&
4570              (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)) ||
4571             (ino < EXT4_ROOT_INO) ||
4572             (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))) {
4573                 if (flags & EXT4_IGET_HANDLE)
4574                         return ERR_PTR(-ESTALE);
4575                 __ext4_error(sb, function, line, EFSCORRUPTED, 0,
4576                              "inode #%lu: comm %s: iget: illegal inode #",
4577                              ino, current->comm);
4578                 return ERR_PTR(-EFSCORRUPTED);
4579         }
4580
4581         inode = iget_locked(sb, ino);
4582         if (!inode)
4583                 return ERR_PTR(-ENOMEM);
4584         if (!(inode->i_state & I_NEW))
4585                 return inode;
4586
4587         ei = EXT4_I(inode);
4588         iloc.bh = NULL;
4589
4590         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4591         if (ret < 0)
4592                 goto bad_inode;
4593         raw_inode = ext4_raw_inode(&iloc);
4594
4595         if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4596                 ext4_error_inode(inode, function, line, 0,
4597                                  "iget: root inode unallocated");
4598                 ret = -EFSCORRUPTED;
4599                 goto bad_inode;
4600         }
4601
4602         if ((flags & EXT4_IGET_HANDLE) &&
4603             (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4604                 ret = -ESTALE;
4605                 goto bad_inode;
4606         }
4607
4608         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4609                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4610                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4611                         EXT4_INODE_SIZE(inode->i_sb) ||
4612                     (ei->i_extra_isize & 3)) {
4613                         ext4_error_inode(inode, function, line, 0,
4614                                          "iget: bad extra_isize %u "
4615                                          "(inode size %u)",
4616                                          ei->i_extra_isize,
4617                                          EXT4_INODE_SIZE(inode->i_sb));
4618                         ret = -EFSCORRUPTED;
4619                         goto bad_inode;
4620                 }
4621         } else
4622                 ei->i_extra_isize = 0;
4623
4624         /* Precompute checksum seed for inode metadata */
4625         if (ext4_has_metadata_csum(sb)) {
4626                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4627                 __u32 csum;
4628                 __le32 inum = cpu_to_le32(inode->i_ino);
4629                 __le32 gen = raw_inode->i_generation;
4630                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4631                                    sizeof(inum));
4632                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4633                                               sizeof(gen));
4634         }
4635
4636         if (!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4637             ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) {
4638                 ext4_error_inode_err(inode, function, line, 0, EFSBADCRC,
4639                                      "iget: checksum invalid");
4640                 ret = -EFSBADCRC;
4641                 goto bad_inode;
4642         }
4643
4644         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4645         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4646         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4647         if (ext4_has_feature_project(sb) &&
4648             EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4649             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4650                 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4651         else
4652                 i_projid = EXT4_DEF_PROJID;
4653
4654         if (!(test_opt(inode->i_sb, NO_UID32))) {
4655                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4656                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4657         }
4658         i_uid_write(inode, i_uid);
4659         i_gid_write(inode, i_gid);
4660         ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4661         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4662
4663         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4664         ei->i_inline_off = 0;
4665         ei->i_dir_start_lookup = 0;
4666         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4667         /* We now have enough fields to check if the inode was active or not.
4668          * This is needed because nfsd might try to access dead inodes
4669          * the test is that same one that e2fsck uses
4670          * NeilBrown 1999oct15
4671          */
4672         if (inode->i_nlink == 0) {
4673                 if ((inode->i_mode == 0 ||
4674                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4675                     ino != EXT4_BOOT_LOADER_INO) {
4676                         /* this inode is deleted */
4677                         ret = -ESTALE;
4678                         goto bad_inode;
4679                 }
4680                 /* The only unlinked inodes we let through here have
4681                  * valid i_mode and are being read by the orphan
4682                  * recovery code: that's fine, we're about to complete
4683                  * the process of deleting those.
4684                  * OR it is the EXT4_BOOT_LOADER_INO which is
4685                  * not initialized on a new filesystem. */
4686         }
4687         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4688         ext4_set_inode_flags(inode, true);
4689         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4690         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4691         if (ext4_has_feature_64bit(sb))
4692                 ei->i_file_acl |=
4693                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4694         inode->i_size = ext4_isize(sb, raw_inode);
4695         if ((size = i_size_read(inode)) < 0) {
4696                 ext4_error_inode(inode, function, line, 0,
4697                                  "iget: bad i_size value: %lld", size);
4698                 ret = -EFSCORRUPTED;
4699                 goto bad_inode;
4700         }
4701         /*
4702          * If dir_index is not enabled but there's dir with INDEX flag set,
4703          * we'd normally treat htree data as empty space. But with metadata
4704          * checksumming that corrupts checksums so forbid that.
4705          */
4706         if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4707             ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4708                 ext4_error_inode(inode, function, line, 0,
4709                          "iget: Dir with htree data on filesystem without dir_index feature.");
4710                 ret = -EFSCORRUPTED;
4711                 goto bad_inode;
4712         }
4713         ei->i_disksize = inode->i_size;
4714 #ifdef CONFIG_QUOTA
4715         ei->i_reserved_quota = 0;
4716 #endif
4717         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4718         ei->i_block_group = iloc.block_group;
4719         ei->i_last_alloc_group = ~0;
4720         /*
4721          * NOTE! The in-memory inode i_data array is in little-endian order
4722          * even on big-endian machines: we do NOT byteswap the block numbers!
4723          */
4724         for (block = 0; block < EXT4_N_BLOCKS; block++)
4725                 ei->i_data[block] = raw_inode->i_block[block];
4726         INIT_LIST_HEAD(&ei->i_orphan);
4727         ext4_fc_init_inode(&ei->vfs_inode);
4728
4729         /*
4730          * Set transaction id's of transactions that have to be committed
4731          * to finish f[data]sync. We set them to currently running transaction
4732          * as we cannot be sure that the inode or some of its metadata isn't
4733          * part of the transaction - the inode could have been reclaimed and
4734          * now it is reread from disk.
4735          */
4736         if (journal) {
4737                 transaction_t *transaction;
4738                 tid_t tid;
4739
4740                 read_lock(&journal->j_state_lock);
4741                 if (journal->j_running_transaction)
4742                         transaction = journal->j_running_transaction;
4743                 else
4744                         transaction = journal->j_committing_transaction;
4745                 if (transaction)
4746                         tid = transaction->t_tid;
4747                 else
4748                         tid = journal->j_commit_sequence;
4749                 read_unlock(&journal->j_state_lock);
4750                 ei->i_sync_tid = tid;
4751                 ei->i_datasync_tid = tid;
4752         }
4753
4754         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4755                 if (ei->i_extra_isize == 0) {
4756                         /* The extra space is currently unused. Use it. */
4757                         BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4758                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4759                                             EXT4_GOOD_OLD_INODE_SIZE;
4760                 } else {
4761                         ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4762                         if (ret)
4763                                 goto bad_inode;
4764                 }
4765         }
4766
4767         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4768         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4769         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4770         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4771
4772         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4773                 u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4774
4775                 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4776                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4777                                 ivers |=
4778                     (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4779                 }
4780                 ext4_inode_set_iversion_queried(inode, ivers);
4781         }
4782
4783         ret = 0;
4784         if (ei->i_file_acl &&
4785             !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
4786                 ext4_error_inode(inode, function, line, 0,
4787                                  "iget: bad extended attribute block %llu",
4788                                  ei->i_file_acl);
4789                 ret = -EFSCORRUPTED;
4790                 goto bad_inode;
4791         } else if (!ext4_has_inline_data(inode)) {
4792                 /* validate the block references in the inode */
4793                 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4794                    (S_ISLNK(inode->i_mode) &&
4795                     !ext4_inode_is_fast_symlink(inode))) {
4796                         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4797                                 ret = ext4_ext_check_inode(inode);
4798                         else
4799                                 ret = ext4_ind_check_inode(inode);
4800                 }
4801         }
4802         if (ret)
4803                 goto bad_inode;
4804
4805         if (S_ISREG(inode->i_mode)) {
4806                 inode->i_op = &ext4_file_inode_operations;
4807                 inode->i_fop = &ext4_file_operations;
4808                 ext4_set_aops(inode);
4809         } else if (S_ISDIR(inode->i_mode)) {
4810                 inode->i_op = &ext4_dir_inode_operations;
4811                 inode->i_fop = &ext4_dir_operations;
4812         } else if (S_ISLNK(inode->i_mode)) {
4813                 /* VFS does not allow setting these so must be corruption */
4814                 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
4815                         ext4_error_inode(inode, function, line, 0,
4816                                          "iget: immutable or append flags "
4817                                          "not allowed on symlinks");
4818                         ret = -EFSCORRUPTED;
4819                         goto bad_inode;
4820                 }
4821                 if (IS_ENCRYPTED(inode)) {
4822                         inode->i_op = &ext4_encrypted_symlink_inode_operations;
4823                         ext4_set_aops(inode);
4824                 } else if (ext4_inode_is_fast_symlink(inode)) {
4825                         inode->i_link = (char *)ei->i_data;
4826                         inode->i_op = &ext4_fast_symlink_inode_operations;
4827                         nd_terminate_link(ei->i_data, inode->i_size,
4828                                 sizeof(ei->i_data) - 1);
4829                 } else {
4830                         inode->i_op = &ext4_symlink_inode_operations;
4831                         ext4_set_aops(inode);
4832                 }
4833                 inode_nohighmem(inode);
4834         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4835               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4836                 inode->i_op = &ext4_special_inode_operations;
4837                 if (raw_inode->i_block[0])
4838                         init_special_inode(inode, inode->i_mode,
4839                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4840                 else
4841                         init_special_inode(inode, inode->i_mode,
4842                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4843         } else if (ino == EXT4_BOOT_LOADER_INO) {
4844                 make_bad_inode(inode);
4845         } else {
4846                 ret = -EFSCORRUPTED;
4847                 ext4_error_inode(inode, function, line, 0,
4848                                  "iget: bogus i_mode (%o)", inode->i_mode);
4849                 goto bad_inode;
4850         }
4851         if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb))
4852                 ext4_error_inode(inode, function, line, 0,
4853                                  "casefold flag without casefold feature");
4854         brelse(iloc.bh);
4855
4856         unlock_new_inode(inode);
4857         return inode;
4858
4859 bad_inode:
4860         brelse(iloc.bh);
4861         iget_failed(inode);
4862         return ERR_PTR(ret);
4863 }
4864
4865 static int ext4_inode_blocks_set(handle_t *handle,
4866                                 struct ext4_inode *raw_inode,
4867                                 struct ext4_inode_info *ei)
4868 {
4869         struct inode *inode = &(ei->vfs_inode);
4870         u64 i_blocks = READ_ONCE(inode->i_blocks);
4871         struct super_block *sb = inode->i_sb;
4872
4873         if (i_blocks <= ~0U) {
4874                 /*
4875                  * i_blocks can be represented in a 32 bit variable
4876                  * as multiple of 512 bytes
4877                  */
4878                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4879                 raw_inode->i_blocks_high = 0;
4880                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4881                 return 0;
4882         }
4883         if (!ext4_has_feature_huge_file(sb))
4884                 return -EFBIG;
4885
4886         if (i_blocks <= 0xffffffffffffULL) {
4887                 /*
4888                  * i_blocks can be represented in a 48 bit variable
4889                  * as multiple of 512 bytes
4890                  */
4891                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4892                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4893                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4894         } else {
4895                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4896                 /* i_block is stored in file system block size */
4897                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4898                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4899                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4900         }
4901         return 0;
4902 }
4903
4904 static void __ext4_update_other_inode_time(struct super_block *sb,
4905                                            unsigned long orig_ino,
4906                                            unsigned long ino,
4907                                            struct ext4_inode *raw_inode)
4908 {
4909         struct inode *inode;
4910
4911         inode = find_inode_by_ino_rcu(sb, ino);
4912         if (!inode)
4913                 return;
4914
4915         if ((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4916                                I_DIRTY_INODE)) ||
4917             ((inode->i_state & I_DIRTY_TIME) == 0))
4918                 return;
4919
4920         spin_lock(&inode->i_lock);
4921         if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4922                                 I_DIRTY_INODE)) == 0) &&
4923             (inode->i_state & I_DIRTY_TIME)) {
4924                 struct ext4_inode_info  *ei = EXT4_I(inode);
4925
4926                 inode->i_state &= ~I_DIRTY_TIME;
4927                 spin_unlock(&inode->i_lock);
4928
4929                 spin_lock(&ei->i_raw_lock);
4930                 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4931                 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4932                 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4933                 ext4_inode_csum_set(inode, raw_inode, ei);
4934                 spin_unlock(&ei->i_raw_lock);
4935                 trace_ext4_other_inode_update_time(inode, orig_ino);
4936                 return;
4937         }
4938         spin_unlock(&inode->i_lock);
4939 }
4940
4941 /*
4942  * Opportunistically update the other time fields for other inodes in
4943  * the same inode table block.
4944  */
4945 static void ext4_update_other_inodes_time(struct super_block *sb,
4946                                           unsigned long orig_ino, char *buf)
4947 {
4948         unsigned long ino;
4949         int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4950         int inode_size = EXT4_INODE_SIZE(sb);
4951
4952         /*
4953          * Calculate the first inode in the inode table block.  Inode
4954          * numbers are one-based.  That is, the first inode in a block
4955          * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4956          */
4957         ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4958         rcu_read_lock();
4959         for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4960                 if (ino == orig_ino)
4961                         continue;
4962                 __ext4_update_other_inode_time(sb, orig_ino, ino,
4963                                                (struct ext4_inode *)buf);
4964         }
4965         rcu_read_unlock();
4966 }
4967
4968 /*
4969  * Post the struct inode info into an on-disk inode location in the
4970  * buffer-cache.  This gobbles the caller's reference to the
4971  * buffer_head in the inode location struct.
4972  *
4973  * The caller must have write access to iloc->bh.
4974  */
4975 static int ext4_do_update_inode(handle_t *handle,
4976                                 struct inode *inode,
4977                                 struct ext4_iloc *iloc)
4978 {
4979         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4980         struct ext4_inode_info *ei = EXT4_I(inode);
4981         struct buffer_head *bh = iloc->bh;
4982         struct super_block *sb = inode->i_sb;
4983         int err = 0, rc, block;
4984         int need_datasync = 0, set_large_file = 0;
4985         uid_t i_uid;
4986         gid_t i_gid;
4987         projid_t i_projid;
4988
4989         spin_lock(&ei->i_raw_lock);
4990
4991         /* For fields not tracked in the in-memory inode,
4992          * initialise them to zero for new inodes. */
4993         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4994                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4995
4996         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4997         i_uid = i_uid_read(inode);
4998         i_gid = i_gid_read(inode);
4999         i_projid = from_kprojid(&init_user_ns, ei->i_projid);
5000         if (!(test_opt(inode->i_sb, NO_UID32))) {
5001                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
5002                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
5003 /*
5004  * Fix up interoperability with old kernels. Otherwise, old inodes get
5005  * re-used with the upper 16 bits of the uid/gid intact
5006  */
5007                 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
5008                         raw_inode->i_uid_high = 0;
5009                         raw_inode->i_gid_high = 0;
5010                 } else {
5011                         raw_inode->i_uid_high =
5012                                 cpu_to_le16(high_16_bits(i_uid));
5013                         raw_inode->i_gid_high =
5014                                 cpu_to_le16(high_16_bits(i_gid));
5015                 }
5016         } else {
5017                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
5018                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
5019                 raw_inode->i_uid_high = 0;
5020                 raw_inode->i_gid_high = 0;
5021         }
5022         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5023
5024         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5025         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5026         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5027         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5028
5029         err = ext4_inode_blocks_set(handle, raw_inode, ei);
5030         if (err) {
5031                 spin_unlock(&ei->i_raw_lock);
5032                 goto out_brelse;
5033         }
5034         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5035         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5036         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
5037                 raw_inode->i_file_acl_high =
5038                         cpu_to_le16(ei->i_file_acl >> 32);
5039         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5040         if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode)) {
5041                 ext4_isize_set(raw_inode, ei->i_disksize);
5042                 need_datasync = 1;
5043         }
5044         if (ei->i_disksize > 0x7fffffffULL) {
5045                 if (!ext4_has_feature_large_file(sb) ||
5046                                 EXT4_SB(sb)->s_es->s_rev_level ==
5047                     cpu_to_le32(EXT4_GOOD_OLD_REV))
5048                         set_large_file = 1;
5049         }
5050         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5051         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5052                 if (old_valid_dev(inode->i_rdev)) {
5053                         raw_inode->i_block[0] =
5054                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
5055                         raw_inode->i_block[1] = 0;
5056                 } else {
5057                         raw_inode->i_block[0] = 0;
5058                         raw_inode->i_block[1] =
5059                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
5060                         raw_inode->i_block[2] = 0;
5061                 }
5062         } else if (!ext4_has_inline_data(inode)) {
5063                 for (block = 0; block < EXT4_N_BLOCKS; block++)
5064                         raw_inode->i_block[block] = ei->i_data[block];
5065         }
5066
5067         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5068                 u64 ivers = ext4_inode_peek_iversion(inode);
5069
5070                 raw_inode->i_disk_version = cpu_to_le32(ivers);
5071                 if (ei->i_extra_isize) {
5072                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5073                                 raw_inode->i_version_hi =
5074                                         cpu_to_le32(ivers >> 32);
5075                         raw_inode->i_extra_isize =
5076                                 cpu_to_le16(ei->i_extra_isize);
5077                 }
5078         }
5079
5080         BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5081                i_projid != EXT4_DEF_PROJID);
5082
5083         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5084             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5085                 raw_inode->i_projid = cpu_to_le32(i_projid);
5086
5087         ext4_inode_csum_set(inode, raw_inode, ei);
5088         spin_unlock(&ei->i_raw_lock);
5089         if (inode->i_sb->s_flags & SB_LAZYTIME)
5090                 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5091                                               bh->b_data);
5092
5093         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5094         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5095         if (!err)
5096                 err = rc;
5097         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5098         if (set_large_file) {
5099                 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5100                 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5101                 if (err)
5102                         goto out_brelse;
5103                 ext4_set_feature_large_file(sb);
5104                 ext4_handle_sync(handle);
5105                 err = ext4_handle_dirty_super(handle, sb);
5106         }
5107         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5108 out_brelse:
5109         brelse(bh);
5110         ext4_std_error(inode->i_sb, err);
5111         return err;
5112 }
5113
5114 /*
5115  * ext4_write_inode()
5116  *
5117  * We are called from a few places:
5118  *
5119  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5120  *   Here, there will be no transaction running. We wait for any running
5121  *   transaction to commit.
5122  *
5123  * - Within flush work (sys_sync(), kupdate and such).
5124  *   We wait on commit, if told to.
5125  *
5126  * - Within iput_final() -> write_inode_now()
5127  *   We wait on commit, if told to.
5128  *
5129  * In all cases it is actually safe for us to return without doing anything,
5130  * because the inode has been copied into a raw inode buffer in
5131  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5132  * writeback.
5133  *
5134  * Note that we are absolutely dependent upon all inode dirtiers doing the
5135  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5136  * which we are interested.
5137  *
5138  * It would be a bug for them to not do this.  The code:
5139  *
5140  *      mark_inode_dirty(inode)
5141  *      stuff();
5142  *      inode->i_size = expr;
5143  *
5144  * is in error because write_inode() could occur while `stuff()' is running,
5145  * and the new i_size will be lost.  Plus the inode will no longer be on the
5146  * superblock's dirty inode list.
5147  */
5148 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5149 {
5150         int err;
5151
5152         if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5153             sb_rdonly(inode->i_sb))
5154                 return 0;
5155
5156         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5157                 return -EIO;
5158
5159         if (EXT4_SB(inode->i_sb)->s_journal) {
5160                 if (ext4_journal_current_handle()) {
5161                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5162                         dump_stack();
5163                         return -EIO;
5164                 }
5165
5166                 /*
5167                  * No need to force transaction in WB_SYNC_NONE mode. Also
5168                  * ext4_sync_fs() will force the commit after everything is
5169                  * written.
5170                  */
5171                 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5172                         return 0;
5173
5174                 err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal,
5175                                                 EXT4_I(inode)->i_sync_tid);
5176         } else {
5177                 struct ext4_iloc iloc;
5178
5179                 err = __ext4_get_inode_loc(inode, &iloc, 0);
5180                 if (err)
5181                         return err;
5182                 /*
5183                  * sync(2) will flush the whole buffer cache. No need to do
5184                  * it here separately for each inode.
5185                  */
5186                 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5187                         sync_dirty_buffer(iloc.bh);
5188                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5189                         ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5190                                                "IO error syncing inode");
5191                         err = -EIO;
5192                 }
5193                 brelse(iloc.bh);
5194         }
5195         return err;
5196 }
5197
5198 /*
5199  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5200  * buffers that are attached to a page stradding i_size and are undergoing
5201  * commit. In that case we have to wait for commit to finish and try again.
5202  */
5203 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5204 {
5205         struct page *page;
5206         unsigned offset;
5207         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5208         tid_t commit_tid = 0;
5209         int ret;
5210
5211         offset = inode->i_size & (PAGE_SIZE - 1);
5212         /*
5213          * If the page is fully truncated, we don't need to wait for any commit
5214          * (and we even should not as __ext4_journalled_invalidatepage() may
5215          * strip all buffers from the page but keep the page dirty which can then
5216          * confuse e.g. concurrent ext4_writepage() seeing dirty page without
5217          * buffers). Also we don't need to wait for any commit if all buffers in
5218          * the page remain valid. This is most beneficial for the common case of
5219          * blocksize == PAGESIZE.
5220          */
5221         if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5222                 return;
5223         while (1) {
5224                 page = find_lock_page(inode->i_mapping,
5225                                       inode->i_size >> PAGE_SHIFT);
5226                 if (!page)
5227                         return;
5228                 ret = __ext4_journalled_invalidatepage(page, offset,
5229                                                 PAGE_SIZE - offset);
5230                 unlock_page(page);
5231                 put_page(page);
5232                 if (ret != -EBUSY)
5233                         return;
5234                 commit_tid = 0;
5235                 read_lock(&journal->j_state_lock);
5236                 if (journal->j_committing_transaction)
5237                         commit_tid = journal->j_committing_transaction->t_tid;
5238                 read_unlock(&journal->j_state_lock);
5239                 if (commit_tid)
5240                         jbd2_log_wait_commit(journal, commit_tid);
5241         }
5242 }
5243
5244 /*
5245  * ext4_setattr()
5246  *
5247  * Called from notify_change.
5248  *
5249  * We want to trap VFS attempts to truncate the file as soon as
5250  * possible.  In particular, we want to make sure that when the VFS
5251  * shrinks i_size, we put the inode on the orphan list and modify
5252  * i_disksize immediately, so that during the subsequent flushing of
5253  * dirty pages and freeing of disk blocks, we can guarantee that any
5254  * commit will leave the blocks being flushed in an unused state on
5255  * disk.  (On recovery, the inode will get truncated and the blocks will
5256  * be freed, so we have a strong guarantee that no future commit will
5257  * leave these blocks visible to the user.)
5258  *
5259  * Another thing we have to assure is that if we are in ordered mode
5260  * and inode is still attached to the committing transaction, we must
5261  * we start writeout of all the dirty pages which are being truncated.
5262  * This way we are sure that all the data written in the previous
5263  * transaction are already on disk (truncate waits for pages under
5264  * writeback).
5265  *
5266  * Called with inode->i_mutex down.
5267  */
5268 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5269 {
5270         struct inode *inode = d_inode(dentry);
5271         int error, rc = 0;
5272         int orphan = 0;
5273         const unsigned int ia_valid = attr->ia_valid;
5274
5275         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5276                 return -EIO;
5277
5278         if (unlikely(IS_IMMUTABLE(inode)))
5279                 return -EPERM;
5280
5281         if (unlikely(IS_APPEND(inode) &&
5282                      (ia_valid & (ATTR_MODE | ATTR_UID |
5283                                   ATTR_GID | ATTR_TIMES_SET))))
5284                 return -EPERM;
5285
5286         error = setattr_prepare(dentry, attr);
5287         if (error)
5288                 return error;
5289
5290         error = fscrypt_prepare_setattr(dentry, attr);
5291         if (error)
5292                 return error;
5293
5294         error = fsverity_prepare_setattr(dentry, attr);
5295         if (error)
5296                 return error;
5297
5298         if (is_quota_modification(inode, attr)) {
5299                 error = dquot_initialize(inode);
5300                 if (error)
5301                         return error;
5302         }
5303         ext4_fc_start_update(inode);
5304         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5305             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5306                 handle_t *handle;
5307
5308                 /* (user+group)*(old+new) structure, inode write (sb,
5309                  * inode block, ? - but truncate inode update has it) */
5310                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5311                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5312                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5313                 if (IS_ERR(handle)) {
5314                         error = PTR_ERR(handle);
5315                         goto err_out;
5316                 }
5317
5318                 /* dquot_transfer() calls back ext4_get_inode_usage() which
5319                  * counts xattr inode references.
5320                  */
5321                 down_read(&EXT4_I(inode)->xattr_sem);
5322                 error = dquot_transfer(inode, attr);
5323                 up_read(&EXT4_I(inode)->xattr_sem);
5324
5325                 if (error) {
5326                         ext4_journal_stop(handle);
5327                         ext4_fc_stop_update(inode);
5328                         return error;
5329                 }
5330                 /* Update corresponding info in inode so that everything is in
5331                  * one transaction */
5332                 if (attr->ia_valid & ATTR_UID)
5333                         inode->i_uid = attr->ia_uid;
5334                 if (attr->ia_valid & ATTR_GID)
5335                         inode->i_gid = attr->ia_gid;
5336                 error = ext4_mark_inode_dirty(handle, inode);
5337                 ext4_journal_stop(handle);
5338                 if (unlikely(error))
5339                         return error;
5340         }
5341
5342         if (attr->ia_valid & ATTR_SIZE) {
5343                 handle_t *handle;
5344                 loff_t oldsize = inode->i_size;
5345                 int shrink = (attr->ia_size < inode->i_size);
5346
5347                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5348                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5349
5350                         if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5351                                 ext4_fc_stop_update(inode);
5352                                 return -EFBIG;
5353                         }
5354                 }
5355                 if (!S_ISREG(inode->i_mode)) {
5356                         ext4_fc_stop_update(inode);
5357                         return -EINVAL;
5358                 }
5359
5360                 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5361                         inode_inc_iversion(inode);
5362
5363                 if (shrink) {
5364                         if (ext4_should_order_data(inode)) {
5365                                 error = ext4_begin_ordered_truncate(inode,
5366                                                             attr->ia_size);
5367                                 if (error)
5368                                         goto err_out;
5369                         }
5370                         /*
5371                          * Blocks are going to be removed from the inode. Wait
5372                          * for dio in flight.
5373                          */
5374                         inode_dio_wait(inode);
5375                 }
5376
5377                 down_write(&EXT4_I(inode)->i_mmap_sem);
5378
5379                 rc = ext4_break_layouts(inode);
5380                 if (rc) {
5381                         up_write(&EXT4_I(inode)->i_mmap_sem);
5382                         goto err_out;
5383                 }
5384
5385                 if (attr->ia_size != inode->i_size) {
5386                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5387                         if (IS_ERR(handle)) {
5388                                 error = PTR_ERR(handle);
5389                                 goto out_mmap_sem;
5390                         }
5391                         if (ext4_handle_valid(handle) && shrink) {
5392                                 error = ext4_orphan_add(handle, inode);
5393                                 orphan = 1;
5394                         }
5395                         /*
5396                          * Update c/mtime on truncate up, ext4_truncate() will
5397                          * update c/mtime in shrink case below
5398                          */
5399                         if (!shrink) {
5400                                 inode->i_mtime = current_time(inode);
5401                                 inode->i_ctime = inode->i_mtime;
5402                         }
5403
5404                         if (shrink)
5405                                 ext4_fc_track_range(inode,
5406                                         (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5407                                         inode->i_sb->s_blocksize_bits,
5408                                         (oldsize > 0 ? oldsize - 1 : 0) >>
5409                                         inode->i_sb->s_blocksize_bits);
5410                         else
5411                                 ext4_fc_track_range(
5412                                         inode,
5413                                         (oldsize > 0 ? oldsize - 1 : oldsize) >>
5414                                         inode->i_sb->s_blocksize_bits,
5415                                         (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5416                                         inode->i_sb->s_blocksize_bits);
5417
5418                         down_write(&EXT4_I(inode)->i_data_sem);
5419                         EXT4_I(inode)->i_disksize = attr->ia_size;
5420                         rc = ext4_mark_inode_dirty(handle, inode);
5421                         if (!error)
5422                                 error = rc;
5423                         /*
5424                          * We have to update i_size under i_data_sem together
5425                          * with i_disksize to avoid races with writeback code
5426                          * running ext4_wb_update_i_disksize().
5427                          */
5428                         if (!error)
5429                                 i_size_write(inode, attr->ia_size);
5430                         up_write(&EXT4_I(inode)->i_data_sem);
5431                         ext4_journal_stop(handle);
5432                         if (error)
5433                                 goto out_mmap_sem;
5434                         if (!shrink) {
5435                                 pagecache_isize_extended(inode, oldsize,
5436                                                          inode->i_size);
5437                         } else if (ext4_should_journal_data(inode)) {
5438                                 ext4_wait_for_tail_page_commit(inode);
5439                         }
5440                 }
5441
5442                 /*
5443                  * Truncate pagecache after we've waited for commit
5444                  * in data=journal mode to make pages freeable.
5445                  */
5446                 truncate_pagecache(inode, inode->i_size);
5447                 /*
5448                  * Call ext4_truncate() even if i_size didn't change to
5449                  * truncate possible preallocated blocks.
5450                  */
5451                 if (attr->ia_size <= oldsize) {
5452                         rc = ext4_truncate(inode);
5453                         if (rc)
5454                                 error = rc;
5455                 }
5456 out_mmap_sem:
5457                 up_write(&EXT4_I(inode)->i_mmap_sem);
5458         }
5459
5460         if (!error) {
5461                 setattr_copy(inode, attr);
5462                 mark_inode_dirty(inode);
5463         }
5464
5465         /*
5466          * If the call to ext4_truncate failed to get a transaction handle at
5467          * all, we need to clean up the in-core orphan list manually.
5468          */
5469         if (orphan && inode->i_nlink)
5470                 ext4_orphan_del(NULL, inode);
5471
5472         if (!error && (ia_valid & ATTR_MODE))
5473                 rc = posix_acl_chmod(inode, inode->i_mode);
5474
5475 err_out:
5476         if  (error)
5477                 ext4_std_error(inode->i_sb, error);
5478         if (!error)
5479                 error = rc;
5480         ext4_fc_stop_update(inode);
5481         return error;
5482 }
5483
5484 int ext4_getattr(const struct path *path, struct kstat *stat,
5485                  u32 request_mask, unsigned int query_flags)
5486 {
5487         struct inode *inode = d_inode(path->dentry);
5488         struct ext4_inode *raw_inode;
5489         struct ext4_inode_info *ei = EXT4_I(inode);
5490         unsigned int flags;
5491
5492         if ((request_mask & STATX_BTIME) &&
5493             EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5494                 stat->result_mask |= STATX_BTIME;
5495                 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5496                 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5497         }
5498
5499         flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5500         if (flags & EXT4_APPEND_FL)
5501                 stat->attributes |= STATX_ATTR_APPEND;
5502         if (flags & EXT4_COMPR_FL)
5503                 stat->attributes |= STATX_ATTR_COMPRESSED;
5504         if (flags & EXT4_ENCRYPT_FL)
5505                 stat->attributes |= STATX_ATTR_ENCRYPTED;
5506         if (flags & EXT4_IMMUTABLE_FL)
5507                 stat->attributes |= STATX_ATTR_IMMUTABLE;
5508         if (flags & EXT4_NODUMP_FL)
5509                 stat->attributes |= STATX_ATTR_NODUMP;
5510         if (flags & EXT4_VERITY_FL)
5511                 stat->attributes |= STATX_ATTR_VERITY;
5512
5513         stat->attributes_mask |= (STATX_ATTR_APPEND |
5514                                   STATX_ATTR_COMPRESSED |
5515                                   STATX_ATTR_ENCRYPTED |
5516                                   STATX_ATTR_IMMUTABLE |
5517                                   STATX_ATTR_NODUMP |
5518                                   STATX_ATTR_VERITY);
5519
5520         generic_fillattr(inode, stat);
5521         return 0;
5522 }
5523
5524 int ext4_file_getattr(const struct path *path, struct kstat *stat,
5525                       u32 request_mask, unsigned int query_flags)
5526 {
5527         struct inode *inode = d_inode(path->dentry);
5528         u64 delalloc_blocks;
5529
5530         ext4_getattr(path, stat, request_mask, query_flags);
5531
5532         /*
5533          * If there is inline data in the inode, the inode will normally not
5534          * have data blocks allocated (it may have an external xattr block).
5535          * Report at least one sector for such files, so tools like tar, rsync,
5536          * others don't incorrectly think the file is completely sparse.
5537          */
5538         if (unlikely(ext4_has_inline_data(inode)))
5539                 stat->blocks += (stat->size + 511) >> 9;
5540
5541         /*
5542          * We can't update i_blocks if the block allocation is delayed
5543          * otherwise in the case of system crash before the real block
5544          * allocation is done, we will have i_blocks inconsistent with
5545          * on-disk file blocks.
5546          * We always keep i_blocks updated together with real
5547          * allocation. But to not confuse with user, stat
5548          * will return the blocks that include the delayed allocation
5549          * blocks for this file.
5550          */
5551         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5552                                    EXT4_I(inode)->i_reserved_data_blocks);
5553         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5554         return 0;
5555 }
5556
5557 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5558                                    int pextents)
5559 {
5560         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5561                 return ext4_ind_trans_blocks(inode, lblocks);
5562         return ext4_ext_index_trans_blocks(inode, pextents);
5563 }
5564
5565 /*
5566  * Account for index blocks, block groups bitmaps and block group
5567  * descriptor blocks if modify datablocks and index blocks
5568  * worse case, the indexs blocks spread over different block groups
5569  *
5570  * If datablocks are discontiguous, they are possible to spread over
5571  * different block groups too. If they are contiguous, with flexbg,
5572  * they could still across block group boundary.
5573  *
5574  * Also account for superblock, inode, quota and xattr blocks
5575  */
5576 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5577                                   int pextents)
5578 {
5579         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5580         int gdpblocks;
5581         int idxblocks;
5582         int ret = 0;
5583
5584         /*
5585          * How many index blocks need to touch to map @lblocks logical blocks
5586          * to @pextents physical extents?
5587          */
5588         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5589
5590         ret = idxblocks;
5591
5592         /*
5593          * Now let's see how many group bitmaps and group descriptors need
5594          * to account
5595          */
5596         groups = idxblocks + pextents;
5597         gdpblocks = groups;
5598         if (groups > ngroups)
5599                 groups = ngroups;
5600         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5601                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5602
5603         /* bitmaps and block group descriptor blocks */
5604         ret += groups + gdpblocks;
5605
5606         /* Blocks for super block, inode, quota and xattr blocks */
5607         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5608
5609         return ret;
5610 }
5611
5612 /*
5613  * Calculate the total number of credits to reserve to fit
5614  * the modification of a single pages into a single transaction,
5615  * which may include multiple chunks of block allocations.
5616  *
5617  * This could be called via ext4_write_begin()
5618  *
5619  * We need to consider the worse case, when
5620  * one new block per extent.
5621  */
5622 int ext4_writepage_trans_blocks(struct inode *inode)
5623 {
5624         int bpp = ext4_journal_blocks_per_page(inode);
5625         int ret;
5626
5627         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5628
5629         /* Account for data blocks for journalled mode */
5630         if (ext4_should_journal_data(inode))
5631                 ret += bpp;
5632         return ret;
5633 }
5634
5635 /*
5636  * Calculate the journal credits for a chunk of data modification.
5637  *
5638  * This is called from DIO, fallocate or whoever calling
5639  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5640  *
5641  * journal buffers for data blocks are not included here, as DIO
5642  * and fallocate do no need to journal data buffers.
5643  */
5644 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5645 {
5646         return ext4_meta_trans_blocks(inode, nrblocks, 1);
5647 }
5648
5649 /*
5650  * The caller must have previously called ext4_reserve_inode_write().
5651  * Give this, we know that the caller already has write access to iloc->bh.
5652  */
5653 int ext4_mark_iloc_dirty(handle_t *handle,
5654                          struct inode *inode, struct ext4_iloc *iloc)
5655 {
5656         int err = 0;
5657
5658         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5659                 put_bh(iloc->bh);
5660                 return -EIO;
5661         }
5662         ext4_fc_track_inode(inode);
5663
5664         if (IS_I_VERSION(inode))
5665                 inode_inc_iversion(inode);
5666
5667         /* the do_update_inode consumes one bh->b_count */
5668         get_bh(iloc->bh);
5669
5670         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5671         err = ext4_do_update_inode(handle, inode, iloc);
5672         put_bh(iloc->bh);
5673         return err;
5674 }
5675
5676 /*
5677  * On success, We end up with an outstanding reference count against
5678  * iloc->bh.  This _must_ be cleaned up later.
5679  */
5680
5681 int
5682 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5683                          struct ext4_iloc *iloc)
5684 {
5685         int err;
5686
5687         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5688                 return -EIO;
5689
5690         err = ext4_get_inode_loc(inode, iloc);
5691         if (!err) {
5692                 BUFFER_TRACE(iloc->bh, "get_write_access");
5693                 err = ext4_journal_get_write_access(handle, iloc->bh);
5694                 if (err) {
5695                         brelse(iloc->bh);
5696                         iloc->bh = NULL;
5697                 }
5698         }
5699         ext4_std_error(inode->i_sb, err);
5700         return err;
5701 }
5702
5703 static int __ext4_expand_extra_isize(struct inode *inode,
5704                                      unsigned int new_extra_isize,
5705                                      struct ext4_iloc *iloc,
5706                                      handle_t *handle, int *no_expand)
5707 {
5708         struct ext4_inode *raw_inode;
5709         struct ext4_xattr_ibody_header *header;
5710         unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5711         struct ext4_inode_info *ei = EXT4_I(inode);
5712         int error;
5713
5714         /* this was checked at iget time, but double check for good measure */
5715         if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5716             (ei->i_extra_isize & 3)) {
5717                 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5718                                  ei->i_extra_isize,
5719                                  EXT4_INODE_SIZE(inode->i_sb));
5720                 return -EFSCORRUPTED;
5721         }
5722         if ((new_extra_isize < ei->i_extra_isize) ||
5723             (new_extra_isize < 4) ||
5724             (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5725                 return -EINVAL; /* Should never happen */
5726
5727         raw_inode = ext4_raw_inode(iloc);
5728
5729         header = IHDR(inode, raw_inode);
5730
5731         /* No extended attributes present */
5732         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5733             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5734                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5735                        EXT4_I(inode)->i_extra_isize, 0,
5736                        new_extra_isize - EXT4_I(inode)->i_extra_isize);
5737                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5738                 return 0;
5739         }
5740
5741         /* try to expand with EAs present */
5742         error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5743                                            raw_inode, handle);
5744         if (error) {
5745                 /*
5746                  * Inode size expansion failed; don't try again
5747                  */
5748                 *no_expand = 1;
5749         }
5750
5751         return error;
5752 }
5753
5754 /*
5755  * Expand an inode by new_extra_isize bytes.
5756  * Returns 0 on success or negative error number on failure.
5757  */
5758 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5759                                           unsigned int new_extra_isize,
5760                                           struct ext4_iloc iloc,
5761                                           handle_t *handle)
5762 {
5763         int no_expand;
5764         int error;
5765
5766         if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5767                 return -EOVERFLOW;
5768
5769         /*
5770          * In nojournal mode, we can immediately attempt to expand
5771          * the inode.  When journaled, we first need to obtain extra
5772          * buffer credits since we may write into the EA block
5773          * with this same handle. If journal_extend fails, then it will
5774          * only result in a minor loss of functionality for that inode.
5775          * If this is felt to be critical, then e2fsck should be run to
5776          * force a large enough s_min_extra_isize.
5777          */
5778         if (ext4_journal_extend(handle,
5779                                 EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5780                 return -ENOSPC;
5781
5782         if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5783                 return -EBUSY;
5784
5785         error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5786                                           handle, &no_expand);
5787         ext4_write_unlock_xattr(inode, &no_expand);
5788
5789         return error;
5790 }
5791
5792 int ext4_expand_extra_isize(struct inode *inode,
5793                             unsigned int new_extra_isize,
5794                             struct ext4_iloc *iloc)
5795 {
5796         handle_t *handle;
5797         int no_expand;
5798         int error, rc;
5799
5800         if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5801                 brelse(iloc->bh);
5802                 return -EOVERFLOW;
5803         }
5804
5805         handle = ext4_journal_start(inode, EXT4_HT_INODE,
5806                                     EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5807         if (IS_ERR(handle)) {
5808                 error = PTR_ERR(handle);
5809                 brelse(iloc->bh);
5810                 return error;
5811         }
5812
5813         ext4_write_lock_xattr(inode, &no_expand);
5814
5815         BUFFER_TRACE(iloc->bh, "get_write_access");
5816         error = ext4_journal_get_write_access(handle, iloc->bh);
5817         if (error) {
5818                 brelse(iloc->bh);
5819                 goto out_unlock;
5820         }
5821
5822         error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5823                                           handle, &no_expand);
5824
5825         rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5826         if (!error)
5827                 error = rc;
5828
5829 out_unlock:
5830         ext4_write_unlock_xattr(inode, &no_expand);
5831         ext4_journal_stop(handle);
5832         return error;
5833 }
5834
5835 /*
5836  * What we do here is to mark the in-core inode as clean with respect to inode
5837  * dirtiness (it may still be data-dirty).
5838  * This means that the in-core inode may be reaped by prune_icache
5839  * without having to perform any I/O.  This is a very good thing,
5840  * because *any* task may call prune_icache - even ones which
5841  * have a transaction open against a different journal.
5842  *
5843  * Is this cheating?  Not really.  Sure, we haven't written the
5844  * inode out, but prune_icache isn't a user-visible syncing function.
5845  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5846  * we start and wait on commits.
5847  */
5848 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
5849                                 const char *func, unsigned int line)
5850 {
5851         struct ext4_iloc iloc;
5852         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5853         int err;
5854
5855         might_sleep();
5856         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5857         err = ext4_reserve_inode_write(handle, inode, &iloc);
5858         if (err)
5859                 goto out;
5860
5861         if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5862                 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5863                                                iloc, handle);
5864
5865         err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5866 out:
5867         if (unlikely(err))
5868                 ext4_error_inode_err(inode, func, line, 0, err,
5869                                         "mark_inode_dirty error");
5870         return err;
5871 }
5872
5873 /*
5874  * ext4_dirty_inode() is called from __mark_inode_dirty()
5875  *
5876  * We're really interested in the case where a file is being extended.
5877  * i_size has been changed by generic_commit_write() and we thus need
5878  * to include the updated inode in the current transaction.
5879  *
5880  * Also, dquot_alloc_block() will always dirty the inode when blocks
5881  * are allocated to the file.
5882  *
5883  * If the inode is marked synchronous, we don't honour that here - doing
5884  * so would cause a commit on atime updates, which we don't bother doing.
5885  * We handle synchronous inodes at the highest possible level.
5886  *
5887  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
5888  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5889  * to copy into the on-disk inode structure are the timestamp files.
5890  */
5891 void ext4_dirty_inode(struct inode *inode, int flags)
5892 {
5893         handle_t *handle;
5894
5895         if (flags == I_DIRTY_TIME)
5896                 return;
5897         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5898         if (IS_ERR(handle))
5899                 goto out;
5900
5901         ext4_mark_inode_dirty(handle, inode);
5902
5903         ext4_journal_stop(handle);
5904 out:
5905         return;
5906 }
5907
5908 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5909 {
5910         journal_t *journal;
5911         handle_t *handle;
5912         int err;
5913         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5914
5915         /*
5916          * We have to be very careful here: changing a data block's
5917          * journaling status dynamically is dangerous.  If we write a
5918          * data block to the journal, change the status and then delete
5919          * that block, we risk forgetting to revoke the old log record
5920          * from the journal and so a subsequent replay can corrupt data.
5921          * So, first we make sure that the journal is empty and that
5922          * nobody is changing anything.
5923          */
5924
5925         journal = EXT4_JOURNAL(inode);
5926         if (!journal)
5927                 return 0;
5928         if (is_journal_aborted(journal))
5929                 return -EROFS;
5930
5931         /* Wait for all existing dio workers */
5932         inode_dio_wait(inode);
5933
5934         /*
5935          * Before flushing the journal and switching inode's aops, we have
5936          * to flush all dirty data the inode has. There can be outstanding
5937          * delayed allocations, there can be unwritten extents created by
5938          * fallocate or buffered writes in dioread_nolock mode covered by
5939          * dirty data which can be converted only after flushing the dirty
5940          * data (and journalled aops don't know how to handle these cases).
5941          */
5942         if (val) {
5943                 down_write(&EXT4_I(inode)->i_mmap_sem);
5944                 err = filemap_write_and_wait(inode->i_mapping);
5945                 if (err < 0) {
5946                         up_write(&EXT4_I(inode)->i_mmap_sem);
5947                         return err;
5948                 }
5949         }
5950
5951         percpu_down_write(&sbi->s_writepages_rwsem);
5952         jbd2_journal_lock_updates(journal);
5953
5954         /*
5955          * OK, there are no updates running now, and all cached data is
5956          * synced to disk.  We are now in a completely consistent state
5957          * which doesn't have anything in the journal, and we know that
5958          * no filesystem updates are running, so it is safe to modify
5959          * the inode's in-core data-journaling state flag now.
5960          */
5961
5962         if (val)
5963                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5964         else {
5965                 err = jbd2_journal_flush(journal);
5966                 if (err < 0) {
5967                         jbd2_journal_unlock_updates(journal);
5968                         percpu_up_write(&sbi->s_writepages_rwsem);
5969                         return err;
5970                 }
5971                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5972         }
5973         ext4_set_aops(inode);
5974
5975         jbd2_journal_unlock_updates(journal);
5976         percpu_up_write(&sbi->s_writepages_rwsem);
5977
5978         if (val)
5979                 up_write(&EXT4_I(inode)->i_mmap_sem);
5980
5981         /* Finally we can mark the inode as dirty. */
5982
5983         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5984         if (IS_ERR(handle))
5985                 return PTR_ERR(handle);
5986
5987         ext4_fc_mark_ineligible(inode->i_sb,
5988                 EXT4_FC_REASON_JOURNAL_FLAG_CHANGE);
5989         err = ext4_mark_inode_dirty(handle, inode);
5990         ext4_handle_sync(handle);
5991         ext4_journal_stop(handle);
5992         ext4_std_error(inode->i_sb, err);
5993
5994         return err;
5995 }
5996
5997 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5998 {
5999         return !buffer_mapped(bh);
6000 }
6001
6002 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6003 {
6004         struct vm_area_struct *vma = vmf->vma;
6005         struct page *page = vmf->page;
6006         loff_t size;
6007         unsigned long len;
6008         int err;
6009         vm_fault_t ret;
6010         struct file *file = vma->vm_file;
6011         struct inode *inode = file_inode(file);
6012         struct address_space *mapping = inode->i_mapping;
6013         handle_t *handle;
6014         get_block_t *get_block;
6015         int retries = 0;
6016
6017         if (unlikely(IS_IMMUTABLE(inode)))
6018                 return VM_FAULT_SIGBUS;
6019
6020         sb_start_pagefault(inode->i_sb);
6021         file_update_time(vma->vm_file);
6022
6023         down_read(&EXT4_I(inode)->i_mmap_sem);
6024
6025         err = ext4_convert_inline_data(inode);
6026         if (err)
6027                 goto out_ret;
6028
6029         /*
6030          * On data journalling we skip straight to the transaction handle:
6031          * there's no delalloc; page truncated will be checked later; the
6032          * early return w/ all buffers mapped (calculates size/len) can't
6033          * be used; and there's no dioread_nolock, so only ext4_get_block.
6034          */
6035         if (ext4_should_journal_data(inode))
6036                 goto retry_alloc;
6037
6038         /* Delalloc case is easy... */
6039         if (test_opt(inode->i_sb, DELALLOC) &&
6040             !ext4_nonda_switch(inode->i_sb)) {
6041                 do {
6042                         err = block_page_mkwrite(vma, vmf,
6043                                                    ext4_da_get_block_prep);
6044                 } while (err == -ENOSPC &&
6045                        ext4_should_retry_alloc(inode->i_sb, &retries));
6046                 goto out_ret;
6047         }
6048
6049         lock_page(page);
6050         size = i_size_read(inode);
6051         /* Page got truncated from under us? */
6052         if (page->mapping != mapping || page_offset(page) > size) {
6053                 unlock_page(page);
6054                 ret = VM_FAULT_NOPAGE;
6055                 goto out;
6056         }
6057
6058         if (page->index == size >> PAGE_SHIFT)
6059                 len = size & ~PAGE_MASK;
6060         else
6061                 len = PAGE_SIZE;
6062         /*
6063          * Return if we have all the buffers mapped. This avoids the need to do
6064          * journal_start/journal_stop which can block and take a long time
6065          *
6066          * This cannot be done for data journalling, as we have to add the
6067          * inode to the transaction's list to writeprotect pages on commit.
6068          */
6069         if (page_has_buffers(page)) {
6070                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
6071                                             0, len, NULL,
6072                                             ext4_bh_unmapped)) {
6073                         /* Wait so that we don't change page under IO */
6074                         wait_for_stable_page(page);
6075                         ret = VM_FAULT_LOCKED;
6076                         goto out;
6077                 }
6078         }
6079         unlock_page(page);
6080         /* OK, we need to fill the hole... */
6081         if (ext4_should_dioread_nolock(inode))
6082                 get_block = ext4_get_block_unwritten;
6083         else
6084                 get_block = ext4_get_block;
6085 retry_alloc:
6086         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6087                                     ext4_writepage_trans_blocks(inode));
6088         if (IS_ERR(handle)) {
6089                 ret = VM_FAULT_SIGBUS;
6090                 goto out;
6091         }
6092         /*
6093          * Data journalling can't use block_page_mkwrite() because it
6094          * will set_buffer_dirty() before do_journal_get_write_access()
6095          * thus might hit warning messages for dirty metadata buffers.
6096          */
6097         if (!ext4_should_journal_data(inode)) {
6098                 err = block_page_mkwrite(vma, vmf, get_block);
6099         } else {
6100                 lock_page(page);
6101                 size = i_size_read(inode);
6102                 /* Page got truncated from under us? */
6103                 if (page->mapping != mapping || page_offset(page) > size) {
6104                         ret = VM_FAULT_NOPAGE;
6105                         goto out_error;
6106                 }
6107
6108                 if (page->index == size >> PAGE_SHIFT)
6109                         len = size & ~PAGE_MASK;
6110                 else
6111                         len = PAGE_SIZE;
6112
6113                 err = __block_write_begin(page, 0, len, ext4_get_block);
6114                 if (!err) {
6115                         ret = VM_FAULT_SIGBUS;
6116                         if (ext4_walk_page_buffers(handle, page_buffers(page),
6117                                         0, len, NULL, do_journal_get_write_access))
6118                                 goto out_error;
6119                         if (ext4_walk_page_buffers(handle, page_buffers(page),
6120                                         0, len, NULL, write_end_fn))
6121                                 goto out_error;
6122                         if (ext4_jbd2_inode_add_write(handle, inode, 0, len))
6123                                 goto out_error;
6124                         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6125                 } else {
6126                         unlock_page(page);
6127                 }
6128         }
6129         ext4_journal_stop(handle);
6130         if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6131                 goto retry_alloc;
6132 out_ret:
6133         ret = block_page_mkwrite_return(err);
6134 out:
6135         up_read(&EXT4_I(inode)->i_mmap_sem);
6136         sb_end_pagefault(inode->i_sb);
6137         return ret;
6138 out_error:
6139         unlock_page(page);
6140         ext4_journal_stop(handle);
6141         goto out;
6142 }
6143
6144 vm_fault_t ext4_filemap_fault(struct vm_fault *vmf)
6145 {
6146         struct inode *inode = file_inode(vmf->vma->vm_file);
6147         vm_fault_t ret;
6148
6149         down_read(&EXT4_I(inode)->i_mmap_sem);
6150         ret = filemap_fault(vmf);
6151         up_read(&EXT4_I(inode)->i_mmap_sem);
6152
6153         return ret;
6154 }