erofs: support idmapped mounts
[linux-2.6-microblaze.git] / fs / ext4 / inode.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  64-bit file support on 64-bit platforms by Jakub Jelinek
17  *      (jj@sunsite.ms.mff.cuni.cz)
18  *
19  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20  */
21
22 #include <linux/fs.h>
23 #include <linux/mount.h>
24 #include <linux/time.h>
25 #include <linux/highuid.h>
26 #include <linux/pagemap.h>
27 #include <linux/dax.h>
28 #include <linux/quotaops.h>
29 #include <linux/string.h>
30 #include <linux/buffer_head.h>
31 #include <linux/writeback.h>
32 #include <linux/pagevec.h>
33 #include <linux/mpage.h>
34 #include <linux/namei.h>
35 #include <linux/uio.h>
36 #include <linux/bio.h>
37 #include <linux/workqueue.h>
38 #include <linux/kernel.h>
39 #include <linux/printk.h>
40 #include <linux/slab.h>
41 #include <linux/bitops.h>
42 #include <linux/iomap.h>
43 #include <linux/iversion.h>
44 #include <linux/dax.h>
45
46 #include "ext4_jbd2.h"
47 #include "xattr.h"
48 #include "acl.h"
49 #include "truncate.h"
50
51 #include <trace/events/ext4.h>
52
53 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
54                               struct ext4_inode_info *ei)
55 {
56         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
57         __u32 csum;
58         __u16 dummy_csum = 0;
59         int offset = offsetof(struct ext4_inode, i_checksum_lo);
60         unsigned int csum_size = sizeof(dummy_csum);
61
62         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
63         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
64         offset += csum_size;
65         csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
66                            EXT4_GOOD_OLD_INODE_SIZE - offset);
67
68         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
69                 offset = offsetof(struct ext4_inode, i_checksum_hi);
70                 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
71                                    EXT4_GOOD_OLD_INODE_SIZE,
72                                    offset - EXT4_GOOD_OLD_INODE_SIZE);
73                 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
74                         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
75                                            csum_size);
76                         offset += csum_size;
77                 }
78                 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
79                                    EXT4_INODE_SIZE(inode->i_sb) - offset);
80         }
81
82         return csum;
83 }
84
85 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
86                                   struct ext4_inode_info *ei)
87 {
88         __u32 provided, calculated;
89
90         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
91             cpu_to_le32(EXT4_OS_LINUX) ||
92             !ext4_has_metadata_csum(inode->i_sb))
93                 return 1;
94
95         provided = le16_to_cpu(raw->i_checksum_lo);
96         calculated = ext4_inode_csum(inode, raw, ei);
97         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
98             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
99                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
100         else
101                 calculated &= 0xFFFF;
102
103         return provided == calculated;
104 }
105
106 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
107                          struct ext4_inode_info *ei)
108 {
109         __u32 csum;
110
111         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
112             cpu_to_le32(EXT4_OS_LINUX) ||
113             !ext4_has_metadata_csum(inode->i_sb))
114                 return;
115
116         csum = ext4_inode_csum(inode, raw, ei);
117         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
118         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
119             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
120                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
121 }
122
123 static inline int ext4_begin_ordered_truncate(struct inode *inode,
124                                               loff_t new_size)
125 {
126         trace_ext4_begin_ordered_truncate(inode, new_size);
127         /*
128          * If jinode is zero, then we never opened the file for
129          * writing, so there's no need to call
130          * jbd2_journal_begin_ordered_truncate() since there's no
131          * outstanding writes we need to flush.
132          */
133         if (!EXT4_I(inode)->jinode)
134                 return 0;
135         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
136                                                    EXT4_I(inode)->jinode,
137                                                    new_size);
138 }
139
140 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
141 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
142                                   int pextents);
143
144 /*
145  * Test whether an inode is a fast symlink.
146  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
147  */
148 int ext4_inode_is_fast_symlink(struct inode *inode)
149 {
150         if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
151                 int ea_blocks = EXT4_I(inode)->i_file_acl ?
152                                 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
153
154                 if (ext4_has_inline_data(inode))
155                         return 0;
156
157                 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
158         }
159         return S_ISLNK(inode->i_mode) && inode->i_size &&
160                (inode->i_size < EXT4_N_BLOCKS * 4);
161 }
162
163 /*
164  * Called at the last iput() if i_nlink is zero.
165  */
166 void ext4_evict_inode(struct inode *inode)
167 {
168         handle_t *handle;
169         int err;
170         /*
171          * Credits for final inode cleanup and freeing:
172          * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
173          * (xattr block freeing), bitmap, group descriptor (inode freeing)
174          */
175         int extra_credits = 6;
176         struct ext4_xattr_inode_array *ea_inode_array = NULL;
177         bool freeze_protected = false;
178
179         trace_ext4_evict_inode(inode);
180
181         if (inode->i_nlink) {
182                 /*
183                  * When journalling data dirty buffers are tracked only in the
184                  * journal. So although mm thinks everything is clean and
185                  * ready for reaping the inode might still have some pages to
186                  * write in the running transaction or waiting to be
187                  * checkpointed. Thus calling jbd2_journal_invalidate_folio()
188                  * (via truncate_inode_pages()) to discard these buffers can
189                  * cause data loss. Also even if we did not discard these
190                  * buffers, we would have no way to find them after the inode
191                  * is reaped and thus user could see stale data if he tries to
192                  * read them before the transaction is checkpointed. So be
193                  * careful and force everything to disk here... We use
194                  * ei->i_datasync_tid to store the newest transaction
195                  * containing inode's data.
196                  *
197                  * Note that directories do not have this problem because they
198                  * don't use page cache.
199                  */
200                 if (inode->i_ino != EXT4_JOURNAL_INO &&
201                     ext4_should_journal_data(inode) &&
202                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
203                     inode->i_data.nrpages) {
204                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
205                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
206
207                         jbd2_complete_transaction(journal, commit_tid);
208                         filemap_write_and_wait(&inode->i_data);
209                 }
210                 truncate_inode_pages_final(&inode->i_data);
211
212                 goto no_delete;
213         }
214
215         if (is_bad_inode(inode))
216                 goto no_delete;
217         dquot_initialize(inode);
218
219         if (ext4_should_order_data(inode))
220                 ext4_begin_ordered_truncate(inode, 0);
221         truncate_inode_pages_final(&inode->i_data);
222
223         /*
224          * For inodes with journalled data, transaction commit could have
225          * dirtied the inode. Flush worker is ignoring it because of I_FREEING
226          * flag but we still need to remove the inode from the writeback lists.
227          */
228         if (!list_empty_careful(&inode->i_io_list)) {
229                 WARN_ON_ONCE(!ext4_should_journal_data(inode));
230                 inode_io_list_del(inode);
231         }
232
233         /*
234          * Protect us against freezing - iput() caller didn't have to have any
235          * protection against it. When we are in a running transaction though,
236          * we are already protected against freezing and we cannot grab further
237          * protection due to lock ordering constraints.
238          */
239         if (!ext4_journal_current_handle()) {
240                 sb_start_intwrite(inode->i_sb);
241                 freeze_protected = true;
242         }
243
244         if (!IS_NOQUOTA(inode))
245                 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
246
247         /*
248          * Block bitmap, group descriptor, and inode are accounted in both
249          * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
250          */
251         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
252                          ext4_blocks_for_truncate(inode) + extra_credits - 3);
253         if (IS_ERR(handle)) {
254                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
255                 /*
256                  * If we're going to skip the normal cleanup, we still need to
257                  * make sure that the in-core orphan linked list is properly
258                  * cleaned up.
259                  */
260                 ext4_orphan_del(NULL, inode);
261                 if (freeze_protected)
262                         sb_end_intwrite(inode->i_sb);
263                 goto no_delete;
264         }
265
266         if (IS_SYNC(inode))
267                 ext4_handle_sync(handle);
268
269         /*
270          * Set inode->i_size to 0 before calling ext4_truncate(). We need
271          * special handling of symlinks here because i_size is used to
272          * determine whether ext4_inode_info->i_data contains symlink data or
273          * block mappings. Setting i_size to 0 will remove its fast symlink
274          * status. Erase i_data so that it becomes a valid empty block map.
275          */
276         if (ext4_inode_is_fast_symlink(inode))
277                 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
278         inode->i_size = 0;
279         err = ext4_mark_inode_dirty(handle, inode);
280         if (err) {
281                 ext4_warning(inode->i_sb,
282                              "couldn't mark inode dirty (err %d)", err);
283                 goto stop_handle;
284         }
285         if (inode->i_blocks) {
286                 err = ext4_truncate(inode);
287                 if (err) {
288                         ext4_error_err(inode->i_sb, -err,
289                                        "couldn't truncate inode %lu (err %d)",
290                                        inode->i_ino, err);
291                         goto stop_handle;
292                 }
293         }
294
295         /* Remove xattr references. */
296         err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
297                                       extra_credits);
298         if (err) {
299                 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
300 stop_handle:
301                 ext4_journal_stop(handle);
302                 ext4_orphan_del(NULL, inode);
303                 if (freeze_protected)
304                         sb_end_intwrite(inode->i_sb);
305                 ext4_xattr_inode_array_free(ea_inode_array);
306                 goto no_delete;
307         }
308
309         /*
310          * Kill off the orphan record which ext4_truncate created.
311          * AKPM: I think this can be inside the above `if'.
312          * Note that ext4_orphan_del() has to be able to cope with the
313          * deletion of a non-existent orphan - this is because we don't
314          * know if ext4_truncate() actually created an orphan record.
315          * (Well, we could do this if we need to, but heck - it works)
316          */
317         ext4_orphan_del(handle, inode);
318         EXT4_I(inode)->i_dtime  = (__u32)ktime_get_real_seconds();
319
320         /*
321          * One subtle ordering requirement: if anything has gone wrong
322          * (transaction abort, IO errors, whatever), then we can still
323          * do these next steps (the fs will already have been marked as
324          * having errors), but we can't free the inode if the mark_dirty
325          * fails.
326          */
327         if (ext4_mark_inode_dirty(handle, inode))
328                 /* If that failed, just do the required in-core inode clear. */
329                 ext4_clear_inode(inode);
330         else
331                 ext4_free_inode(handle, inode);
332         ext4_journal_stop(handle);
333         if (freeze_protected)
334                 sb_end_intwrite(inode->i_sb);
335         ext4_xattr_inode_array_free(ea_inode_array);
336         return;
337 no_delete:
338         if (!list_empty(&EXT4_I(inode)->i_fc_list))
339                 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM, NULL);
340         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
341 }
342
343 #ifdef CONFIG_QUOTA
344 qsize_t *ext4_get_reserved_space(struct inode *inode)
345 {
346         return &EXT4_I(inode)->i_reserved_quota;
347 }
348 #endif
349
350 /*
351  * Called with i_data_sem down, which is important since we can call
352  * ext4_discard_preallocations() from here.
353  */
354 void ext4_da_update_reserve_space(struct inode *inode,
355                                         int used, int quota_claim)
356 {
357         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
358         struct ext4_inode_info *ei = EXT4_I(inode);
359
360         spin_lock(&ei->i_block_reservation_lock);
361         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
362         if (unlikely(used > ei->i_reserved_data_blocks)) {
363                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
364                          "with only %d reserved data blocks",
365                          __func__, inode->i_ino, used,
366                          ei->i_reserved_data_blocks);
367                 WARN_ON(1);
368                 used = ei->i_reserved_data_blocks;
369         }
370
371         /* Update per-inode reservations */
372         ei->i_reserved_data_blocks -= used;
373         percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
374
375         spin_unlock(&ei->i_block_reservation_lock);
376
377         /* Update quota subsystem for data blocks */
378         if (quota_claim)
379                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
380         else {
381                 /*
382                  * We did fallocate with an offset that is already delayed
383                  * allocated. So on delayed allocated writeback we should
384                  * not re-claim the quota for fallocated blocks.
385                  */
386                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
387         }
388
389         /*
390          * If we have done all the pending block allocations and if
391          * there aren't any writers on the inode, we can discard the
392          * inode's preallocations.
393          */
394         if ((ei->i_reserved_data_blocks == 0) &&
395             !inode_is_open_for_write(inode))
396                 ext4_discard_preallocations(inode, 0);
397 }
398
399 static int __check_block_validity(struct inode *inode, const char *func,
400                                 unsigned int line,
401                                 struct ext4_map_blocks *map)
402 {
403         if (ext4_has_feature_journal(inode->i_sb) &&
404             (inode->i_ino ==
405              le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
406                 return 0;
407         if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
408                 ext4_error_inode(inode, func, line, map->m_pblk,
409                                  "lblock %lu mapped to illegal pblock %llu "
410                                  "(length %d)", (unsigned long) map->m_lblk,
411                                  map->m_pblk, map->m_len);
412                 return -EFSCORRUPTED;
413         }
414         return 0;
415 }
416
417 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
418                        ext4_lblk_t len)
419 {
420         int ret;
421
422         if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
423                 return fscrypt_zeroout_range(inode, lblk, pblk, len);
424
425         ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
426         if (ret > 0)
427                 ret = 0;
428
429         return ret;
430 }
431
432 #define check_block_validity(inode, map)        \
433         __check_block_validity((inode), __func__, __LINE__, (map))
434
435 #ifdef ES_AGGRESSIVE_TEST
436 static void ext4_map_blocks_es_recheck(handle_t *handle,
437                                        struct inode *inode,
438                                        struct ext4_map_blocks *es_map,
439                                        struct ext4_map_blocks *map,
440                                        int flags)
441 {
442         int retval;
443
444         map->m_flags = 0;
445         /*
446          * There is a race window that the result is not the same.
447          * e.g. xfstests #223 when dioread_nolock enables.  The reason
448          * is that we lookup a block mapping in extent status tree with
449          * out taking i_data_sem.  So at the time the unwritten extent
450          * could be converted.
451          */
452         down_read(&EXT4_I(inode)->i_data_sem);
453         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
454                 retval = ext4_ext_map_blocks(handle, inode, map, 0);
455         } else {
456                 retval = ext4_ind_map_blocks(handle, inode, map, 0);
457         }
458         up_read((&EXT4_I(inode)->i_data_sem));
459
460         /*
461          * We don't check m_len because extent will be collpased in status
462          * tree.  So the m_len might not equal.
463          */
464         if (es_map->m_lblk != map->m_lblk ||
465             es_map->m_flags != map->m_flags ||
466             es_map->m_pblk != map->m_pblk) {
467                 printk("ES cache assertion failed for inode: %lu "
468                        "es_cached ex [%d/%d/%llu/%x] != "
469                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
470                        inode->i_ino, es_map->m_lblk, es_map->m_len,
471                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
472                        map->m_len, map->m_pblk, map->m_flags,
473                        retval, flags);
474         }
475 }
476 #endif /* ES_AGGRESSIVE_TEST */
477
478 /*
479  * The ext4_map_blocks() function tries to look up the requested blocks,
480  * and returns if the blocks are already mapped.
481  *
482  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
483  * and store the allocated blocks in the result buffer head and mark it
484  * mapped.
485  *
486  * If file type is extents based, it will call ext4_ext_map_blocks(),
487  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
488  * based files
489  *
490  * On success, it returns the number of blocks being mapped or allocated.  if
491  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
492  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
493  *
494  * It returns 0 if plain look up failed (blocks have not been allocated), in
495  * that case, @map is returned as unmapped but we still do fill map->m_len to
496  * indicate the length of a hole starting at map->m_lblk.
497  *
498  * It returns the error in case of allocation failure.
499  */
500 int ext4_map_blocks(handle_t *handle, struct inode *inode,
501                     struct ext4_map_blocks *map, int flags)
502 {
503         struct extent_status es;
504         int retval;
505         int ret = 0;
506 #ifdef ES_AGGRESSIVE_TEST
507         struct ext4_map_blocks orig_map;
508
509         memcpy(&orig_map, map, sizeof(*map));
510 #endif
511
512         map->m_flags = 0;
513         ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
514                   flags, map->m_len, (unsigned long) map->m_lblk);
515
516         /*
517          * ext4_map_blocks returns an int, and m_len is an unsigned int
518          */
519         if (unlikely(map->m_len > INT_MAX))
520                 map->m_len = INT_MAX;
521
522         /* We can handle the block number less than EXT_MAX_BLOCKS */
523         if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
524                 return -EFSCORRUPTED;
525
526         /* Lookup extent status tree firstly */
527         if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) &&
528             ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
529                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
530                         map->m_pblk = ext4_es_pblock(&es) +
531                                         map->m_lblk - es.es_lblk;
532                         map->m_flags |= ext4_es_is_written(&es) ?
533                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
534                         retval = es.es_len - (map->m_lblk - es.es_lblk);
535                         if (retval > map->m_len)
536                                 retval = map->m_len;
537                         map->m_len = retval;
538                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
539                         map->m_pblk = 0;
540                         retval = es.es_len - (map->m_lblk - es.es_lblk);
541                         if (retval > map->m_len)
542                                 retval = map->m_len;
543                         map->m_len = retval;
544                         retval = 0;
545                 } else {
546                         BUG();
547                 }
548 #ifdef ES_AGGRESSIVE_TEST
549                 ext4_map_blocks_es_recheck(handle, inode, map,
550                                            &orig_map, flags);
551 #endif
552                 goto found;
553         }
554
555         /*
556          * Try to see if we can get the block without requesting a new
557          * file system block.
558          */
559         down_read(&EXT4_I(inode)->i_data_sem);
560         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
561                 retval = ext4_ext_map_blocks(handle, inode, map, 0);
562         } else {
563                 retval = ext4_ind_map_blocks(handle, inode, map, 0);
564         }
565         if (retval > 0) {
566                 unsigned int status;
567
568                 if (unlikely(retval != map->m_len)) {
569                         ext4_warning(inode->i_sb,
570                                      "ES len assertion failed for inode "
571                                      "%lu: retval %d != map->m_len %d",
572                                      inode->i_ino, retval, map->m_len);
573                         WARN_ON(1);
574                 }
575
576                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
577                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
578                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
579                     !(status & EXTENT_STATUS_WRITTEN) &&
580                     ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
581                                        map->m_lblk + map->m_len - 1))
582                         status |= EXTENT_STATUS_DELAYED;
583                 ret = ext4_es_insert_extent(inode, map->m_lblk,
584                                             map->m_len, map->m_pblk, status);
585                 if (ret < 0)
586                         retval = ret;
587         }
588         up_read((&EXT4_I(inode)->i_data_sem));
589
590 found:
591         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
592                 ret = check_block_validity(inode, map);
593                 if (ret != 0)
594                         return ret;
595         }
596
597         /* If it is only a block(s) look up */
598         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
599                 return retval;
600
601         /*
602          * Returns if the blocks have already allocated
603          *
604          * Note that if blocks have been preallocated
605          * ext4_ext_get_block() returns the create = 0
606          * with buffer head unmapped.
607          */
608         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
609                 /*
610                  * If we need to convert extent to unwritten
611                  * we continue and do the actual work in
612                  * ext4_ext_map_blocks()
613                  */
614                 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
615                         return retval;
616
617         /*
618          * Here we clear m_flags because after allocating an new extent,
619          * it will be set again.
620          */
621         map->m_flags &= ~EXT4_MAP_FLAGS;
622
623         /*
624          * New blocks allocate and/or writing to unwritten extent
625          * will possibly result in updating i_data, so we take
626          * the write lock of i_data_sem, and call get_block()
627          * with create == 1 flag.
628          */
629         down_write(&EXT4_I(inode)->i_data_sem);
630
631         /*
632          * We need to check for EXT4 here because migrate
633          * could have changed the inode type in between
634          */
635         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
636                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
637         } else {
638                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
639
640                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
641                         /*
642                          * We allocated new blocks which will result in
643                          * i_data's format changing.  Force the migrate
644                          * to fail by clearing migrate flags
645                          */
646                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
647                 }
648
649                 /*
650                  * Update reserved blocks/metadata blocks after successful
651                  * block allocation which had been deferred till now. We don't
652                  * support fallocate for non extent files. So we can update
653                  * reserve space here.
654                  */
655                 if ((retval > 0) &&
656                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
657                         ext4_da_update_reserve_space(inode, retval, 1);
658         }
659
660         if (retval > 0) {
661                 unsigned int status;
662
663                 if (unlikely(retval != map->m_len)) {
664                         ext4_warning(inode->i_sb,
665                                      "ES len assertion failed for inode "
666                                      "%lu: retval %d != map->m_len %d",
667                                      inode->i_ino, retval, map->m_len);
668                         WARN_ON(1);
669                 }
670
671                 /*
672                  * We have to zeroout blocks before inserting them into extent
673                  * status tree. Otherwise someone could look them up there and
674                  * use them before they are really zeroed. We also have to
675                  * unmap metadata before zeroing as otherwise writeback can
676                  * overwrite zeros with stale data from block device.
677                  */
678                 if (flags & EXT4_GET_BLOCKS_ZERO &&
679                     map->m_flags & EXT4_MAP_MAPPED &&
680                     map->m_flags & EXT4_MAP_NEW) {
681                         ret = ext4_issue_zeroout(inode, map->m_lblk,
682                                                  map->m_pblk, map->m_len);
683                         if (ret) {
684                                 retval = ret;
685                                 goto out_sem;
686                         }
687                 }
688
689                 /*
690                  * If the extent has been zeroed out, we don't need to update
691                  * extent status tree.
692                  */
693                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
694                     ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
695                         if (ext4_es_is_written(&es))
696                                 goto out_sem;
697                 }
698                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
699                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
700                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
701                     !(status & EXTENT_STATUS_WRITTEN) &&
702                     ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
703                                        map->m_lblk + map->m_len - 1))
704                         status |= EXTENT_STATUS_DELAYED;
705                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
706                                             map->m_pblk, status);
707                 if (ret < 0) {
708                         retval = ret;
709                         goto out_sem;
710                 }
711         }
712
713 out_sem:
714         up_write((&EXT4_I(inode)->i_data_sem));
715         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
716                 ret = check_block_validity(inode, map);
717                 if (ret != 0)
718                         return ret;
719
720                 /*
721                  * Inodes with freshly allocated blocks where contents will be
722                  * visible after transaction commit must be on transaction's
723                  * ordered data list.
724                  */
725                 if (map->m_flags & EXT4_MAP_NEW &&
726                     !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
727                     !(flags & EXT4_GET_BLOCKS_ZERO) &&
728                     !ext4_is_quota_file(inode) &&
729                     ext4_should_order_data(inode)) {
730                         loff_t start_byte =
731                                 (loff_t)map->m_lblk << inode->i_blkbits;
732                         loff_t length = (loff_t)map->m_len << inode->i_blkbits;
733
734                         if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
735                                 ret = ext4_jbd2_inode_add_wait(handle, inode,
736                                                 start_byte, length);
737                         else
738                                 ret = ext4_jbd2_inode_add_write(handle, inode,
739                                                 start_byte, length);
740                         if (ret)
741                                 return ret;
742                 }
743         }
744         if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN ||
745                                 map->m_flags & EXT4_MAP_MAPPED))
746                 ext4_fc_track_range(handle, inode, map->m_lblk,
747                                         map->m_lblk + map->m_len - 1);
748         if (retval < 0)
749                 ext_debug(inode, "failed with err %d\n", retval);
750         return retval;
751 }
752
753 /*
754  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
755  * we have to be careful as someone else may be manipulating b_state as well.
756  */
757 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
758 {
759         unsigned long old_state;
760         unsigned long new_state;
761
762         flags &= EXT4_MAP_FLAGS;
763
764         /* Dummy buffer_head? Set non-atomically. */
765         if (!bh->b_page) {
766                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
767                 return;
768         }
769         /*
770          * Someone else may be modifying b_state. Be careful! This is ugly but
771          * once we get rid of using bh as a container for mapping information
772          * to pass to / from get_block functions, this can go away.
773          */
774         do {
775                 old_state = READ_ONCE(bh->b_state);
776                 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
777         } while (unlikely(
778                  cmpxchg(&bh->b_state, old_state, new_state) != old_state));
779 }
780
781 static int _ext4_get_block(struct inode *inode, sector_t iblock,
782                            struct buffer_head *bh, int flags)
783 {
784         struct ext4_map_blocks map;
785         int ret = 0;
786
787         if (ext4_has_inline_data(inode))
788                 return -ERANGE;
789
790         map.m_lblk = iblock;
791         map.m_len = bh->b_size >> inode->i_blkbits;
792
793         ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
794                               flags);
795         if (ret > 0) {
796                 map_bh(bh, inode->i_sb, map.m_pblk);
797                 ext4_update_bh_state(bh, map.m_flags);
798                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
799                 ret = 0;
800         } else if (ret == 0) {
801                 /* hole case, need to fill in bh->b_size */
802                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
803         }
804         return ret;
805 }
806
807 int ext4_get_block(struct inode *inode, sector_t iblock,
808                    struct buffer_head *bh, int create)
809 {
810         return _ext4_get_block(inode, iblock, bh,
811                                create ? EXT4_GET_BLOCKS_CREATE : 0);
812 }
813
814 /*
815  * Get block function used when preparing for buffered write if we require
816  * creating an unwritten extent if blocks haven't been allocated.  The extent
817  * will be converted to written after the IO is complete.
818  */
819 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
820                              struct buffer_head *bh_result, int create)
821 {
822         ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
823                    inode->i_ino, create);
824         return _ext4_get_block(inode, iblock, bh_result,
825                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
826 }
827
828 /* Maximum number of blocks we map for direct IO at once. */
829 #define DIO_MAX_BLOCKS 4096
830
831 /*
832  * `handle' can be NULL if create is zero
833  */
834 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
835                                 ext4_lblk_t block, int map_flags)
836 {
837         struct ext4_map_blocks map;
838         struct buffer_head *bh;
839         int create = map_flags & EXT4_GET_BLOCKS_CREATE;
840         int err;
841
842         ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
843                     || handle != NULL || create == 0);
844
845         map.m_lblk = block;
846         map.m_len = 1;
847         err = ext4_map_blocks(handle, inode, &map, map_flags);
848
849         if (err == 0)
850                 return create ? ERR_PTR(-ENOSPC) : NULL;
851         if (err < 0)
852                 return ERR_PTR(err);
853
854         bh = sb_getblk(inode->i_sb, map.m_pblk);
855         if (unlikely(!bh))
856                 return ERR_PTR(-ENOMEM);
857         if (map.m_flags & EXT4_MAP_NEW) {
858                 ASSERT(create != 0);
859                 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
860                             || (handle != NULL));
861
862                 /*
863                  * Now that we do not always journal data, we should
864                  * keep in mind whether this should always journal the
865                  * new buffer as metadata.  For now, regular file
866                  * writes use ext4_get_block instead, so it's not a
867                  * problem.
868                  */
869                 lock_buffer(bh);
870                 BUFFER_TRACE(bh, "call get_create_access");
871                 err = ext4_journal_get_create_access(handle, inode->i_sb, bh,
872                                                      EXT4_JTR_NONE);
873                 if (unlikely(err)) {
874                         unlock_buffer(bh);
875                         goto errout;
876                 }
877                 if (!buffer_uptodate(bh)) {
878                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
879                         set_buffer_uptodate(bh);
880                 }
881                 unlock_buffer(bh);
882                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
883                 err = ext4_handle_dirty_metadata(handle, inode, bh);
884                 if (unlikely(err))
885                         goto errout;
886         } else
887                 BUFFER_TRACE(bh, "not a new buffer");
888         return bh;
889 errout:
890         brelse(bh);
891         return ERR_PTR(err);
892 }
893
894 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
895                                ext4_lblk_t block, int map_flags)
896 {
897         struct buffer_head *bh;
898         int ret;
899
900         bh = ext4_getblk(handle, inode, block, map_flags);
901         if (IS_ERR(bh))
902                 return bh;
903         if (!bh || ext4_buffer_uptodate(bh))
904                 return bh;
905
906         ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true);
907         if (ret) {
908                 put_bh(bh);
909                 return ERR_PTR(ret);
910         }
911         return bh;
912 }
913
914 /* Read a contiguous batch of blocks. */
915 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
916                      bool wait, struct buffer_head **bhs)
917 {
918         int i, err;
919
920         for (i = 0; i < bh_count; i++) {
921                 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
922                 if (IS_ERR(bhs[i])) {
923                         err = PTR_ERR(bhs[i]);
924                         bh_count = i;
925                         goto out_brelse;
926                 }
927         }
928
929         for (i = 0; i < bh_count; i++)
930                 /* Note that NULL bhs[i] is valid because of holes. */
931                 if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
932                         ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false);
933
934         if (!wait)
935                 return 0;
936
937         for (i = 0; i < bh_count; i++)
938                 if (bhs[i])
939                         wait_on_buffer(bhs[i]);
940
941         for (i = 0; i < bh_count; i++) {
942                 if (bhs[i] && !buffer_uptodate(bhs[i])) {
943                         err = -EIO;
944                         goto out_brelse;
945                 }
946         }
947         return 0;
948
949 out_brelse:
950         for (i = 0; i < bh_count; i++) {
951                 brelse(bhs[i]);
952                 bhs[i] = NULL;
953         }
954         return err;
955 }
956
957 int ext4_walk_page_buffers(handle_t *handle, struct inode *inode,
958                            struct buffer_head *head,
959                            unsigned from,
960                            unsigned to,
961                            int *partial,
962                            int (*fn)(handle_t *handle, struct inode *inode,
963                                      struct buffer_head *bh))
964 {
965         struct buffer_head *bh;
966         unsigned block_start, block_end;
967         unsigned blocksize = head->b_size;
968         int err, ret = 0;
969         struct buffer_head *next;
970
971         for (bh = head, block_start = 0;
972              ret == 0 && (bh != head || !block_start);
973              block_start = block_end, bh = next) {
974                 next = bh->b_this_page;
975                 block_end = block_start + blocksize;
976                 if (block_end <= from || block_start >= to) {
977                         if (partial && !buffer_uptodate(bh))
978                                 *partial = 1;
979                         continue;
980                 }
981                 err = (*fn)(handle, inode, bh);
982                 if (!ret)
983                         ret = err;
984         }
985         return ret;
986 }
987
988 /*
989  * To preserve ordering, it is essential that the hole instantiation and
990  * the data write be encapsulated in a single transaction.  We cannot
991  * close off a transaction and start a new one between the ext4_get_block()
992  * and the commit_write().  So doing the jbd2_journal_start at the start of
993  * prepare_write() is the right place.
994  *
995  * Also, this function can nest inside ext4_writepage().  In that case, we
996  * *know* that ext4_writepage() has generated enough buffer credits to do the
997  * whole page.  So we won't block on the journal in that case, which is good,
998  * because the caller may be PF_MEMALLOC.
999  *
1000  * By accident, ext4 can be reentered when a transaction is open via
1001  * quota file writes.  If we were to commit the transaction while thus
1002  * reentered, there can be a deadlock - we would be holding a quota
1003  * lock, and the commit would never complete if another thread had a
1004  * transaction open and was blocking on the quota lock - a ranking
1005  * violation.
1006  *
1007  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1008  * will _not_ run commit under these circumstances because handle->h_ref
1009  * is elevated.  We'll still have enough credits for the tiny quotafile
1010  * write.
1011  */
1012 int do_journal_get_write_access(handle_t *handle, struct inode *inode,
1013                                 struct buffer_head *bh)
1014 {
1015         int dirty = buffer_dirty(bh);
1016         int ret;
1017
1018         if (!buffer_mapped(bh) || buffer_freed(bh))
1019                 return 0;
1020         /*
1021          * __block_write_begin() could have dirtied some buffers. Clean
1022          * the dirty bit as jbd2_journal_get_write_access() could complain
1023          * otherwise about fs integrity issues. Setting of the dirty bit
1024          * by __block_write_begin() isn't a real problem here as we clear
1025          * the bit before releasing a page lock and thus writeback cannot
1026          * ever write the buffer.
1027          */
1028         if (dirty)
1029                 clear_buffer_dirty(bh);
1030         BUFFER_TRACE(bh, "get write access");
1031         ret = ext4_journal_get_write_access(handle, inode->i_sb, bh,
1032                                             EXT4_JTR_NONE);
1033         if (!ret && dirty)
1034                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1035         return ret;
1036 }
1037
1038 #ifdef CONFIG_FS_ENCRYPTION
1039 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1040                                   get_block_t *get_block)
1041 {
1042         unsigned from = pos & (PAGE_SIZE - 1);
1043         unsigned to = from + len;
1044         struct inode *inode = page->mapping->host;
1045         unsigned block_start, block_end;
1046         sector_t block;
1047         int err = 0;
1048         unsigned blocksize = inode->i_sb->s_blocksize;
1049         unsigned bbits;
1050         struct buffer_head *bh, *head, *wait[2];
1051         int nr_wait = 0;
1052         int i;
1053
1054         BUG_ON(!PageLocked(page));
1055         BUG_ON(from > PAGE_SIZE);
1056         BUG_ON(to > PAGE_SIZE);
1057         BUG_ON(from > to);
1058
1059         if (!page_has_buffers(page))
1060                 create_empty_buffers(page, blocksize, 0);
1061         head = page_buffers(page);
1062         bbits = ilog2(blocksize);
1063         block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1064
1065         for (bh = head, block_start = 0; bh != head || !block_start;
1066             block++, block_start = block_end, bh = bh->b_this_page) {
1067                 block_end = block_start + blocksize;
1068                 if (block_end <= from || block_start >= to) {
1069                         if (PageUptodate(page)) {
1070                                 set_buffer_uptodate(bh);
1071                         }
1072                         continue;
1073                 }
1074                 if (buffer_new(bh))
1075                         clear_buffer_new(bh);
1076                 if (!buffer_mapped(bh)) {
1077                         WARN_ON(bh->b_size != blocksize);
1078                         err = get_block(inode, block, bh, 1);
1079                         if (err)
1080                                 break;
1081                         if (buffer_new(bh)) {
1082                                 if (PageUptodate(page)) {
1083                                         clear_buffer_new(bh);
1084                                         set_buffer_uptodate(bh);
1085                                         mark_buffer_dirty(bh);
1086                                         continue;
1087                                 }
1088                                 if (block_end > to || block_start < from)
1089                                         zero_user_segments(page, to, block_end,
1090                                                            block_start, from);
1091                                 continue;
1092                         }
1093                 }
1094                 if (PageUptodate(page)) {
1095                         set_buffer_uptodate(bh);
1096                         continue;
1097                 }
1098                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1099                     !buffer_unwritten(bh) &&
1100                     (block_start < from || block_end > to)) {
1101                         ext4_read_bh_lock(bh, 0, false);
1102                         wait[nr_wait++] = bh;
1103                 }
1104         }
1105         /*
1106          * If we issued read requests, let them complete.
1107          */
1108         for (i = 0; i < nr_wait; i++) {
1109                 wait_on_buffer(wait[i]);
1110                 if (!buffer_uptodate(wait[i]))
1111                         err = -EIO;
1112         }
1113         if (unlikely(err)) {
1114                 page_zero_new_buffers(page, from, to);
1115         } else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1116                 for (i = 0; i < nr_wait; i++) {
1117                         int err2;
1118
1119                         err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize,
1120                                                                 bh_offset(wait[i]));
1121                         if (err2) {
1122                                 clear_buffer_uptodate(wait[i]);
1123                                 err = err2;
1124                         }
1125                 }
1126         }
1127
1128         return err;
1129 }
1130 #endif
1131
1132 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1133                             loff_t pos, unsigned len, unsigned flags,
1134                             struct page **pagep, void **fsdata)
1135 {
1136         struct inode *inode = mapping->host;
1137         int ret, needed_blocks;
1138         handle_t *handle;
1139         int retries = 0;
1140         struct page *page;
1141         pgoff_t index;
1142         unsigned from, to;
1143
1144         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1145                 return -EIO;
1146
1147         trace_ext4_write_begin(inode, pos, len, flags);
1148         /*
1149          * Reserve one block more for addition to orphan list in case
1150          * we allocate blocks but write fails for some reason
1151          */
1152         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1153         index = pos >> PAGE_SHIFT;
1154         from = pos & (PAGE_SIZE - 1);
1155         to = from + len;
1156
1157         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1158                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1159                                                     flags, pagep);
1160                 if (ret < 0)
1161                         return ret;
1162                 if (ret == 1)
1163                         return 0;
1164         }
1165
1166         /*
1167          * grab_cache_page_write_begin() can take a long time if the
1168          * system is thrashing due to memory pressure, or if the page
1169          * is being written back.  So grab it first before we start
1170          * the transaction handle.  This also allows us to allocate
1171          * the page (if needed) without using GFP_NOFS.
1172          */
1173 retry_grab:
1174         page = grab_cache_page_write_begin(mapping, index, flags);
1175         if (!page)
1176                 return -ENOMEM;
1177         unlock_page(page);
1178
1179 retry_journal:
1180         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1181         if (IS_ERR(handle)) {
1182                 put_page(page);
1183                 return PTR_ERR(handle);
1184         }
1185
1186         lock_page(page);
1187         if (page->mapping != mapping) {
1188                 /* The page got truncated from under us */
1189                 unlock_page(page);
1190                 put_page(page);
1191                 ext4_journal_stop(handle);
1192                 goto retry_grab;
1193         }
1194         /* In case writeback began while the page was unlocked */
1195         wait_for_stable_page(page);
1196
1197 #ifdef CONFIG_FS_ENCRYPTION
1198         if (ext4_should_dioread_nolock(inode))
1199                 ret = ext4_block_write_begin(page, pos, len,
1200                                              ext4_get_block_unwritten);
1201         else
1202                 ret = ext4_block_write_begin(page, pos, len,
1203                                              ext4_get_block);
1204 #else
1205         if (ext4_should_dioread_nolock(inode))
1206                 ret = __block_write_begin(page, pos, len,
1207                                           ext4_get_block_unwritten);
1208         else
1209                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1210 #endif
1211         if (!ret && ext4_should_journal_data(inode)) {
1212                 ret = ext4_walk_page_buffers(handle, inode,
1213                                              page_buffers(page), from, to, NULL,
1214                                              do_journal_get_write_access);
1215         }
1216
1217         if (ret) {
1218                 bool extended = (pos + len > inode->i_size) &&
1219                                 !ext4_verity_in_progress(inode);
1220
1221                 unlock_page(page);
1222                 /*
1223                  * __block_write_begin may have instantiated a few blocks
1224                  * outside i_size.  Trim these off again. Don't need
1225                  * i_size_read because we hold i_rwsem.
1226                  *
1227                  * Add inode to orphan list in case we crash before
1228                  * truncate finishes
1229                  */
1230                 if (extended && ext4_can_truncate(inode))
1231                         ext4_orphan_add(handle, inode);
1232
1233                 ext4_journal_stop(handle);
1234                 if (extended) {
1235                         ext4_truncate_failed_write(inode);
1236                         /*
1237                          * If truncate failed early the inode might
1238                          * still be on the orphan list; we need to
1239                          * make sure the inode is removed from the
1240                          * orphan list in that case.
1241                          */
1242                         if (inode->i_nlink)
1243                                 ext4_orphan_del(NULL, inode);
1244                 }
1245
1246                 if (ret == -ENOSPC &&
1247                     ext4_should_retry_alloc(inode->i_sb, &retries))
1248                         goto retry_journal;
1249                 put_page(page);
1250                 return ret;
1251         }
1252         *pagep = page;
1253         return ret;
1254 }
1255
1256 /* For write_end() in data=journal mode */
1257 static int write_end_fn(handle_t *handle, struct inode *inode,
1258                         struct buffer_head *bh)
1259 {
1260         int ret;
1261         if (!buffer_mapped(bh) || buffer_freed(bh))
1262                 return 0;
1263         set_buffer_uptodate(bh);
1264         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1265         clear_buffer_meta(bh);
1266         clear_buffer_prio(bh);
1267         return ret;
1268 }
1269
1270 /*
1271  * We need to pick up the new inode size which generic_commit_write gave us
1272  * `file' can be NULL - eg, when called from page_symlink().
1273  *
1274  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1275  * buffers are managed internally.
1276  */
1277 static int ext4_write_end(struct file *file,
1278                           struct address_space *mapping,
1279                           loff_t pos, unsigned len, unsigned copied,
1280                           struct page *page, void *fsdata)
1281 {
1282         handle_t *handle = ext4_journal_current_handle();
1283         struct inode *inode = mapping->host;
1284         loff_t old_size = inode->i_size;
1285         int ret = 0, ret2;
1286         int i_size_changed = 0;
1287         bool verity = ext4_verity_in_progress(inode);
1288
1289         trace_ext4_write_end(inode, pos, len, copied);
1290
1291         if (ext4_has_inline_data(inode))
1292                 return ext4_write_inline_data_end(inode, pos, len, copied, page);
1293
1294         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1295         /*
1296          * it's important to update i_size while still holding page lock:
1297          * page writeout could otherwise come in and zero beyond i_size.
1298          *
1299          * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1300          * blocks are being written past EOF, so skip the i_size update.
1301          */
1302         if (!verity)
1303                 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1304         unlock_page(page);
1305         put_page(page);
1306
1307         if (old_size < pos && !verity)
1308                 pagecache_isize_extended(inode, old_size, pos);
1309         /*
1310          * Don't mark the inode dirty under page lock. First, it unnecessarily
1311          * makes the holding time of page lock longer. Second, it forces lock
1312          * ordering of page lock and transaction start for journaling
1313          * filesystems.
1314          */
1315         if (i_size_changed)
1316                 ret = ext4_mark_inode_dirty(handle, inode);
1317
1318         if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1319                 /* if we have allocated more blocks and copied
1320                  * less. We will have blocks allocated outside
1321                  * inode->i_size. So truncate them
1322                  */
1323                 ext4_orphan_add(handle, inode);
1324
1325         ret2 = ext4_journal_stop(handle);
1326         if (!ret)
1327                 ret = ret2;
1328
1329         if (pos + len > inode->i_size && !verity) {
1330                 ext4_truncate_failed_write(inode);
1331                 /*
1332                  * If truncate failed early the inode might still be
1333                  * on the orphan list; we need to make sure the inode
1334                  * is removed from the orphan list in that case.
1335                  */
1336                 if (inode->i_nlink)
1337                         ext4_orphan_del(NULL, inode);
1338         }
1339
1340         return ret ? ret : copied;
1341 }
1342
1343 /*
1344  * This is a private version of page_zero_new_buffers() which doesn't
1345  * set the buffer to be dirty, since in data=journalled mode we need
1346  * to call ext4_handle_dirty_metadata() instead.
1347  */
1348 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1349                                             struct inode *inode,
1350                                             struct page *page,
1351                                             unsigned from, unsigned to)
1352 {
1353         unsigned int block_start = 0, block_end;
1354         struct buffer_head *head, *bh;
1355
1356         bh = head = page_buffers(page);
1357         do {
1358                 block_end = block_start + bh->b_size;
1359                 if (buffer_new(bh)) {
1360                         if (block_end > from && block_start < to) {
1361                                 if (!PageUptodate(page)) {
1362                                         unsigned start, size;
1363
1364                                         start = max(from, block_start);
1365                                         size = min(to, block_end) - start;
1366
1367                                         zero_user(page, start, size);
1368                                         write_end_fn(handle, inode, bh);
1369                                 }
1370                                 clear_buffer_new(bh);
1371                         }
1372                 }
1373                 block_start = block_end;
1374                 bh = bh->b_this_page;
1375         } while (bh != head);
1376 }
1377
1378 static int ext4_journalled_write_end(struct file *file,
1379                                      struct address_space *mapping,
1380                                      loff_t pos, unsigned len, unsigned copied,
1381                                      struct page *page, void *fsdata)
1382 {
1383         handle_t *handle = ext4_journal_current_handle();
1384         struct inode *inode = mapping->host;
1385         loff_t old_size = inode->i_size;
1386         int ret = 0, ret2;
1387         int partial = 0;
1388         unsigned from, to;
1389         int size_changed = 0;
1390         bool verity = ext4_verity_in_progress(inode);
1391
1392         trace_ext4_journalled_write_end(inode, pos, len, copied);
1393         from = pos & (PAGE_SIZE - 1);
1394         to = from + len;
1395
1396         BUG_ON(!ext4_handle_valid(handle));
1397
1398         if (ext4_has_inline_data(inode))
1399                 return ext4_write_inline_data_end(inode, pos, len, copied, page);
1400
1401         if (unlikely(copied < len) && !PageUptodate(page)) {
1402                 copied = 0;
1403                 ext4_journalled_zero_new_buffers(handle, inode, page, from, to);
1404         } else {
1405                 if (unlikely(copied < len))
1406                         ext4_journalled_zero_new_buffers(handle, inode, page,
1407                                                          from + copied, to);
1408                 ret = ext4_walk_page_buffers(handle, inode, page_buffers(page),
1409                                              from, from + copied, &partial,
1410                                              write_end_fn);
1411                 if (!partial)
1412                         SetPageUptodate(page);
1413         }
1414         if (!verity)
1415                 size_changed = ext4_update_inode_size(inode, pos + copied);
1416         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1417         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1418         unlock_page(page);
1419         put_page(page);
1420
1421         if (old_size < pos && !verity)
1422                 pagecache_isize_extended(inode, old_size, pos);
1423
1424         if (size_changed) {
1425                 ret2 = ext4_mark_inode_dirty(handle, inode);
1426                 if (!ret)
1427                         ret = ret2;
1428         }
1429
1430         if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1431                 /* if we have allocated more blocks and copied
1432                  * less. We will have blocks allocated outside
1433                  * inode->i_size. So truncate them
1434                  */
1435                 ext4_orphan_add(handle, inode);
1436
1437         ret2 = ext4_journal_stop(handle);
1438         if (!ret)
1439                 ret = ret2;
1440         if (pos + len > inode->i_size && !verity) {
1441                 ext4_truncate_failed_write(inode);
1442                 /*
1443                  * If truncate failed early the inode might still be
1444                  * on the orphan list; we need to make sure the inode
1445                  * is removed from the orphan list in that case.
1446                  */
1447                 if (inode->i_nlink)
1448                         ext4_orphan_del(NULL, inode);
1449         }
1450
1451         return ret ? ret : copied;
1452 }
1453
1454 /*
1455  * Reserve space for a single cluster
1456  */
1457 static int ext4_da_reserve_space(struct inode *inode)
1458 {
1459         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1460         struct ext4_inode_info *ei = EXT4_I(inode);
1461         int ret;
1462
1463         /*
1464          * We will charge metadata quota at writeout time; this saves
1465          * us from metadata over-estimation, though we may go over by
1466          * a small amount in the end.  Here we just reserve for data.
1467          */
1468         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1469         if (ret)
1470                 return ret;
1471
1472         spin_lock(&ei->i_block_reservation_lock);
1473         if (ext4_claim_free_clusters(sbi, 1, 0)) {
1474                 spin_unlock(&ei->i_block_reservation_lock);
1475                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1476                 return -ENOSPC;
1477         }
1478         ei->i_reserved_data_blocks++;
1479         trace_ext4_da_reserve_space(inode);
1480         spin_unlock(&ei->i_block_reservation_lock);
1481
1482         return 0;       /* success */
1483 }
1484
1485 void ext4_da_release_space(struct inode *inode, int to_free)
1486 {
1487         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1488         struct ext4_inode_info *ei = EXT4_I(inode);
1489
1490         if (!to_free)
1491                 return;         /* Nothing to release, exit */
1492
1493         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1494
1495         trace_ext4_da_release_space(inode, to_free);
1496         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1497                 /*
1498                  * if there aren't enough reserved blocks, then the
1499                  * counter is messed up somewhere.  Since this
1500                  * function is called from invalidate page, it's
1501                  * harmless to return without any action.
1502                  */
1503                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1504                          "ino %lu, to_free %d with only %d reserved "
1505                          "data blocks", inode->i_ino, to_free,
1506                          ei->i_reserved_data_blocks);
1507                 WARN_ON(1);
1508                 to_free = ei->i_reserved_data_blocks;
1509         }
1510         ei->i_reserved_data_blocks -= to_free;
1511
1512         /* update fs dirty data blocks counter */
1513         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1514
1515         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1516
1517         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1518 }
1519
1520 /*
1521  * Delayed allocation stuff
1522  */
1523
1524 struct mpage_da_data {
1525         struct inode *inode;
1526         struct writeback_control *wbc;
1527
1528         pgoff_t first_page;     /* The first page to write */
1529         pgoff_t next_page;      /* Current page to examine */
1530         pgoff_t last_page;      /* Last page to examine */
1531         /*
1532          * Extent to map - this can be after first_page because that can be
1533          * fully mapped. We somewhat abuse m_flags to store whether the extent
1534          * is delalloc or unwritten.
1535          */
1536         struct ext4_map_blocks map;
1537         struct ext4_io_submit io_submit;        /* IO submission data */
1538         unsigned int do_map:1;
1539         unsigned int scanned_until_end:1;
1540 };
1541
1542 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1543                                        bool invalidate)
1544 {
1545         int nr_pages, i;
1546         pgoff_t index, end;
1547         struct pagevec pvec;
1548         struct inode *inode = mpd->inode;
1549         struct address_space *mapping = inode->i_mapping;
1550
1551         /* This is necessary when next_page == 0. */
1552         if (mpd->first_page >= mpd->next_page)
1553                 return;
1554
1555         mpd->scanned_until_end = 0;
1556         index = mpd->first_page;
1557         end   = mpd->next_page - 1;
1558         if (invalidate) {
1559                 ext4_lblk_t start, last;
1560                 start = index << (PAGE_SHIFT - inode->i_blkbits);
1561                 last = end << (PAGE_SHIFT - inode->i_blkbits);
1562                 ext4_es_remove_extent(inode, start, last - start + 1);
1563         }
1564
1565         pagevec_init(&pvec);
1566         while (index <= end) {
1567                 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1568                 if (nr_pages == 0)
1569                         break;
1570                 for (i = 0; i < nr_pages; i++) {
1571                         struct page *page = pvec.pages[i];
1572                         struct folio *folio = page_folio(page);
1573
1574                         BUG_ON(!folio_test_locked(folio));
1575                         BUG_ON(folio_test_writeback(folio));
1576                         if (invalidate) {
1577                                 if (folio_mapped(folio))
1578                                         folio_clear_dirty_for_io(folio);
1579                                 block_invalidate_folio(folio, 0,
1580                                                 folio_size(folio));
1581                                 folio_clear_uptodate(folio);
1582                         }
1583                         folio_unlock(folio);
1584                 }
1585                 pagevec_release(&pvec);
1586         }
1587 }
1588
1589 static void ext4_print_free_blocks(struct inode *inode)
1590 {
1591         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1592         struct super_block *sb = inode->i_sb;
1593         struct ext4_inode_info *ei = EXT4_I(inode);
1594
1595         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1596                EXT4_C2B(EXT4_SB(inode->i_sb),
1597                         ext4_count_free_clusters(sb)));
1598         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1599         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1600                (long long) EXT4_C2B(EXT4_SB(sb),
1601                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1602         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1603                (long long) EXT4_C2B(EXT4_SB(sb),
1604                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1605         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1606         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1607                  ei->i_reserved_data_blocks);
1608         return;
1609 }
1610
1611 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct inode *inode,
1612                                       struct buffer_head *bh)
1613 {
1614         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1615 }
1616
1617 /*
1618  * ext4_insert_delayed_block - adds a delayed block to the extents status
1619  *                             tree, incrementing the reserved cluster/block
1620  *                             count or making a pending reservation
1621  *                             where needed
1622  *
1623  * @inode - file containing the newly added block
1624  * @lblk - logical block to be added
1625  *
1626  * Returns 0 on success, negative error code on failure.
1627  */
1628 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1629 {
1630         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1631         int ret;
1632         bool allocated = false;
1633         bool reserved = false;
1634
1635         /*
1636          * If the cluster containing lblk is shared with a delayed,
1637          * written, or unwritten extent in a bigalloc file system, it's
1638          * already been accounted for and does not need to be reserved.
1639          * A pending reservation must be made for the cluster if it's
1640          * shared with a written or unwritten extent and doesn't already
1641          * have one.  Written and unwritten extents can be purged from the
1642          * extents status tree if the system is under memory pressure, so
1643          * it's necessary to examine the extent tree if a search of the
1644          * extents status tree doesn't get a match.
1645          */
1646         if (sbi->s_cluster_ratio == 1) {
1647                 ret = ext4_da_reserve_space(inode);
1648                 if (ret != 0)   /* ENOSPC */
1649                         goto errout;
1650                 reserved = true;
1651         } else {   /* bigalloc */
1652                 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1653                         if (!ext4_es_scan_clu(inode,
1654                                               &ext4_es_is_mapped, lblk)) {
1655                                 ret = ext4_clu_mapped(inode,
1656                                                       EXT4_B2C(sbi, lblk));
1657                                 if (ret < 0)
1658                                         goto errout;
1659                                 if (ret == 0) {
1660                                         ret = ext4_da_reserve_space(inode);
1661                                         if (ret != 0)   /* ENOSPC */
1662                                                 goto errout;
1663                                         reserved = true;
1664                                 } else {
1665                                         allocated = true;
1666                                 }
1667                         } else {
1668                                 allocated = true;
1669                         }
1670                 }
1671         }
1672
1673         ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1674         if (ret && reserved)
1675                 ext4_da_release_space(inode, 1);
1676
1677 errout:
1678         return ret;
1679 }
1680
1681 /*
1682  * This function is grabs code from the very beginning of
1683  * ext4_map_blocks, but assumes that the caller is from delayed write
1684  * time. This function looks up the requested blocks and sets the
1685  * buffer delay bit under the protection of i_data_sem.
1686  */
1687 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1688                               struct ext4_map_blocks *map,
1689                               struct buffer_head *bh)
1690 {
1691         struct extent_status es;
1692         int retval;
1693         sector_t invalid_block = ~((sector_t) 0xffff);
1694 #ifdef ES_AGGRESSIVE_TEST
1695         struct ext4_map_blocks orig_map;
1696
1697         memcpy(&orig_map, map, sizeof(*map));
1698 #endif
1699
1700         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1701                 invalid_block = ~0;
1702
1703         map->m_flags = 0;
1704         ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1705                   (unsigned long) map->m_lblk);
1706
1707         /* Lookup extent status tree firstly */
1708         if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1709                 if (ext4_es_is_hole(&es)) {
1710                         retval = 0;
1711                         down_read(&EXT4_I(inode)->i_data_sem);
1712                         goto add_delayed;
1713                 }
1714
1715                 /*
1716                  * Delayed extent could be allocated by fallocate.
1717                  * So we need to check it.
1718                  */
1719                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1720                         map_bh(bh, inode->i_sb, invalid_block);
1721                         set_buffer_new(bh);
1722                         set_buffer_delay(bh);
1723                         return 0;
1724                 }
1725
1726                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1727                 retval = es.es_len - (iblock - es.es_lblk);
1728                 if (retval > map->m_len)
1729                         retval = map->m_len;
1730                 map->m_len = retval;
1731                 if (ext4_es_is_written(&es))
1732                         map->m_flags |= EXT4_MAP_MAPPED;
1733                 else if (ext4_es_is_unwritten(&es))
1734                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1735                 else
1736                         BUG();
1737
1738 #ifdef ES_AGGRESSIVE_TEST
1739                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1740 #endif
1741                 return retval;
1742         }
1743
1744         /*
1745          * Try to see if we can get the block without requesting a new
1746          * file system block.
1747          */
1748         down_read(&EXT4_I(inode)->i_data_sem);
1749         if (ext4_has_inline_data(inode))
1750                 retval = 0;
1751         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1752                 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1753         else
1754                 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1755
1756 add_delayed:
1757         if (retval == 0) {
1758                 int ret;
1759
1760                 /*
1761                  * XXX: __block_prepare_write() unmaps passed block,
1762                  * is it OK?
1763                  */
1764
1765                 ret = ext4_insert_delayed_block(inode, map->m_lblk);
1766                 if (ret != 0) {
1767                         retval = ret;
1768                         goto out_unlock;
1769                 }
1770
1771                 map_bh(bh, inode->i_sb, invalid_block);
1772                 set_buffer_new(bh);
1773                 set_buffer_delay(bh);
1774         } else if (retval > 0) {
1775                 int ret;
1776                 unsigned int status;
1777
1778                 if (unlikely(retval != map->m_len)) {
1779                         ext4_warning(inode->i_sb,
1780                                      "ES len assertion failed for inode "
1781                                      "%lu: retval %d != map->m_len %d",
1782                                      inode->i_ino, retval, map->m_len);
1783                         WARN_ON(1);
1784                 }
1785
1786                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1787                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1788                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1789                                             map->m_pblk, status);
1790                 if (ret != 0)
1791                         retval = ret;
1792         }
1793
1794 out_unlock:
1795         up_read((&EXT4_I(inode)->i_data_sem));
1796
1797         return retval;
1798 }
1799
1800 /*
1801  * This is a special get_block_t callback which is used by
1802  * ext4_da_write_begin().  It will either return mapped block or
1803  * reserve space for a single block.
1804  *
1805  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1806  * We also have b_blocknr = -1 and b_bdev initialized properly
1807  *
1808  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1809  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1810  * initialized properly.
1811  */
1812 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1813                            struct buffer_head *bh, int create)
1814 {
1815         struct ext4_map_blocks map;
1816         int ret = 0;
1817
1818         BUG_ON(create == 0);
1819         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1820
1821         map.m_lblk = iblock;
1822         map.m_len = 1;
1823
1824         /*
1825          * first, we need to know whether the block is allocated already
1826          * preallocated blocks are unmapped but should treated
1827          * the same as allocated blocks.
1828          */
1829         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1830         if (ret <= 0)
1831                 return ret;
1832
1833         map_bh(bh, inode->i_sb, map.m_pblk);
1834         ext4_update_bh_state(bh, map.m_flags);
1835
1836         if (buffer_unwritten(bh)) {
1837                 /* A delayed write to unwritten bh should be marked
1838                  * new and mapped.  Mapped ensures that we don't do
1839                  * get_block multiple times when we write to the same
1840                  * offset and new ensures that we do proper zero out
1841                  * for partial write.
1842                  */
1843                 set_buffer_new(bh);
1844                 set_buffer_mapped(bh);
1845         }
1846         return 0;
1847 }
1848
1849 static int __ext4_journalled_writepage(struct page *page,
1850                                        unsigned int len)
1851 {
1852         struct address_space *mapping = page->mapping;
1853         struct inode *inode = mapping->host;
1854         handle_t *handle = NULL;
1855         int ret = 0, err = 0;
1856         int inline_data = ext4_has_inline_data(inode);
1857         struct buffer_head *inode_bh = NULL;
1858         loff_t size;
1859
1860         ClearPageChecked(page);
1861
1862         if (inline_data) {
1863                 BUG_ON(page->index != 0);
1864                 BUG_ON(len > ext4_get_max_inline_size(inode));
1865                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1866                 if (inode_bh == NULL)
1867                         goto out;
1868         }
1869         /*
1870          * We need to release the page lock before we start the
1871          * journal, so grab a reference so the page won't disappear
1872          * out from under us.
1873          */
1874         get_page(page);
1875         unlock_page(page);
1876
1877         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1878                                     ext4_writepage_trans_blocks(inode));
1879         if (IS_ERR(handle)) {
1880                 ret = PTR_ERR(handle);
1881                 put_page(page);
1882                 goto out_no_pagelock;
1883         }
1884         BUG_ON(!ext4_handle_valid(handle));
1885
1886         lock_page(page);
1887         put_page(page);
1888         size = i_size_read(inode);
1889         if (page->mapping != mapping || page_offset(page) > size) {
1890                 /* The page got truncated from under us */
1891                 ext4_journal_stop(handle);
1892                 ret = 0;
1893                 goto out;
1894         }
1895
1896         if (inline_data) {
1897                 ret = ext4_mark_inode_dirty(handle, inode);
1898         } else {
1899                 struct buffer_head *page_bufs = page_buffers(page);
1900
1901                 if (page->index == size >> PAGE_SHIFT)
1902                         len = size & ~PAGE_MASK;
1903                 else
1904                         len = PAGE_SIZE;
1905
1906                 ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
1907                                              NULL, do_journal_get_write_access);
1908
1909                 err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
1910                                              NULL, write_end_fn);
1911         }
1912         if (ret == 0)
1913                 ret = err;
1914         err = ext4_jbd2_inode_add_write(handle, inode, page_offset(page), len);
1915         if (ret == 0)
1916                 ret = err;
1917         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1918         err = ext4_journal_stop(handle);
1919         if (!ret)
1920                 ret = err;
1921
1922         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1923 out:
1924         unlock_page(page);
1925 out_no_pagelock:
1926         brelse(inode_bh);
1927         return ret;
1928 }
1929
1930 /*
1931  * Note that we don't need to start a transaction unless we're journaling data
1932  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1933  * need to file the inode to the transaction's list in ordered mode because if
1934  * we are writing back data added by write(), the inode is already there and if
1935  * we are writing back data modified via mmap(), no one guarantees in which
1936  * transaction the data will hit the disk. In case we are journaling data, we
1937  * cannot start transaction directly because transaction start ranks above page
1938  * lock so we have to do some magic.
1939  *
1940  * This function can get called via...
1941  *   - ext4_writepages after taking page lock (have journal handle)
1942  *   - journal_submit_inode_data_buffers (no journal handle)
1943  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1944  *   - grab_page_cache when doing write_begin (have journal handle)
1945  *
1946  * We don't do any block allocation in this function. If we have page with
1947  * multiple blocks we need to write those buffer_heads that are mapped. This
1948  * is important for mmaped based write. So if we do with blocksize 1K
1949  * truncate(f, 1024);
1950  * a = mmap(f, 0, 4096);
1951  * a[0] = 'a';
1952  * truncate(f, 4096);
1953  * we have in the page first buffer_head mapped via page_mkwrite call back
1954  * but other buffer_heads would be unmapped but dirty (dirty done via the
1955  * do_wp_page). So writepage should write the first block. If we modify
1956  * the mmap area beyond 1024 we will again get a page_fault and the
1957  * page_mkwrite callback will do the block allocation and mark the
1958  * buffer_heads mapped.
1959  *
1960  * We redirty the page if we have any buffer_heads that is either delay or
1961  * unwritten in the page.
1962  *
1963  * We can get recursively called as show below.
1964  *
1965  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1966  *              ext4_writepage()
1967  *
1968  * But since we don't do any block allocation we should not deadlock.
1969  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1970  */
1971 static int ext4_writepage(struct page *page,
1972                           struct writeback_control *wbc)
1973 {
1974         struct folio *folio = page_folio(page);
1975         int ret = 0;
1976         loff_t size;
1977         unsigned int len;
1978         struct buffer_head *page_bufs = NULL;
1979         struct inode *inode = page->mapping->host;
1980         struct ext4_io_submit io_submit;
1981         bool keep_towrite = false;
1982
1983         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
1984                 folio_invalidate(folio, 0, folio_size(folio));
1985                 folio_unlock(folio);
1986                 return -EIO;
1987         }
1988
1989         trace_ext4_writepage(page);
1990         size = i_size_read(inode);
1991         if (page->index == size >> PAGE_SHIFT &&
1992             !ext4_verity_in_progress(inode))
1993                 len = size & ~PAGE_MASK;
1994         else
1995                 len = PAGE_SIZE;
1996
1997         /* Should never happen but for bugs in other kernel subsystems */
1998         if (!page_has_buffers(page)) {
1999                 ext4_warning_inode(inode,
2000                    "page %lu does not have buffers attached", page->index);
2001                 ClearPageDirty(page);
2002                 unlock_page(page);
2003                 return 0;
2004         }
2005
2006         page_bufs = page_buffers(page);
2007         /*
2008          * We cannot do block allocation or other extent handling in this
2009          * function. If there are buffers needing that, we have to redirty
2010          * the page. But we may reach here when we do a journal commit via
2011          * journal_submit_inode_data_buffers() and in that case we must write
2012          * allocated buffers to achieve data=ordered mode guarantees.
2013          *
2014          * Also, if there is only one buffer per page (the fs block
2015          * size == the page size), if one buffer needs block
2016          * allocation or needs to modify the extent tree to clear the
2017          * unwritten flag, we know that the page can't be written at
2018          * all, so we might as well refuse the write immediately.
2019          * Unfortunately if the block size != page size, we can't as
2020          * easily detect this case using ext4_walk_page_buffers(), but
2021          * for the extremely common case, this is an optimization that
2022          * skips a useless round trip through ext4_bio_write_page().
2023          */
2024         if (ext4_walk_page_buffers(NULL, inode, page_bufs, 0, len, NULL,
2025                                    ext4_bh_delay_or_unwritten)) {
2026                 redirty_page_for_writepage(wbc, page);
2027                 if ((current->flags & PF_MEMALLOC) ||
2028                     (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2029                         /*
2030                          * For memory cleaning there's no point in writing only
2031                          * some buffers. So just bail out. Warn if we came here
2032                          * from direct reclaim.
2033                          */
2034                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2035                                                         == PF_MEMALLOC);
2036                         unlock_page(page);
2037                         return 0;
2038                 }
2039                 keep_towrite = true;
2040         }
2041
2042         if (PageChecked(page) && ext4_should_journal_data(inode))
2043                 /*
2044                  * It's mmapped pagecache.  Add buffers and journal it.  There
2045                  * doesn't seem much point in redirtying the page here.
2046                  */
2047                 return __ext4_journalled_writepage(page, len);
2048
2049         ext4_io_submit_init(&io_submit, wbc);
2050         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2051         if (!io_submit.io_end) {
2052                 redirty_page_for_writepage(wbc, page);
2053                 unlock_page(page);
2054                 return -ENOMEM;
2055         }
2056         ret = ext4_bio_write_page(&io_submit, page, len, keep_towrite);
2057         ext4_io_submit(&io_submit);
2058         /* Drop io_end reference we got from init */
2059         ext4_put_io_end_defer(io_submit.io_end);
2060         return ret;
2061 }
2062
2063 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2064 {
2065         int len;
2066         loff_t size;
2067         int err;
2068
2069         BUG_ON(page->index != mpd->first_page);
2070         clear_page_dirty_for_io(page);
2071         /*
2072          * We have to be very careful here!  Nothing protects writeback path
2073          * against i_size changes and the page can be writeably mapped into
2074          * page tables. So an application can be growing i_size and writing
2075          * data through mmap while writeback runs. clear_page_dirty_for_io()
2076          * write-protects our page in page tables and the page cannot get
2077          * written to again until we release page lock. So only after
2078          * clear_page_dirty_for_io() we are safe to sample i_size for
2079          * ext4_bio_write_page() to zero-out tail of the written page. We rely
2080          * on the barrier provided by TestClearPageDirty in
2081          * clear_page_dirty_for_io() to make sure i_size is really sampled only
2082          * after page tables are updated.
2083          */
2084         size = i_size_read(mpd->inode);
2085         if (page->index == size >> PAGE_SHIFT &&
2086             !ext4_verity_in_progress(mpd->inode))
2087                 len = size & ~PAGE_MASK;
2088         else
2089                 len = PAGE_SIZE;
2090         err = ext4_bio_write_page(&mpd->io_submit, page, len, false);
2091         if (!err)
2092                 mpd->wbc->nr_to_write--;
2093         mpd->first_page++;
2094
2095         return err;
2096 }
2097
2098 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
2099
2100 /*
2101  * mballoc gives us at most this number of blocks...
2102  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2103  * The rest of mballoc seems to handle chunks up to full group size.
2104  */
2105 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2106
2107 /*
2108  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2109  *
2110  * @mpd - extent of blocks
2111  * @lblk - logical number of the block in the file
2112  * @bh - buffer head we want to add to the extent
2113  *
2114  * The function is used to collect contig. blocks in the same state. If the
2115  * buffer doesn't require mapping for writeback and we haven't started the
2116  * extent of buffers to map yet, the function returns 'true' immediately - the
2117  * caller can write the buffer right away. Otherwise the function returns true
2118  * if the block has been added to the extent, false if the block couldn't be
2119  * added.
2120  */
2121 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2122                                    struct buffer_head *bh)
2123 {
2124         struct ext4_map_blocks *map = &mpd->map;
2125
2126         /* Buffer that doesn't need mapping for writeback? */
2127         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2128             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2129                 /* So far no extent to map => we write the buffer right away */
2130                 if (map->m_len == 0)
2131                         return true;
2132                 return false;
2133         }
2134
2135         /* First block in the extent? */
2136         if (map->m_len == 0) {
2137                 /* We cannot map unless handle is started... */
2138                 if (!mpd->do_map)
2139                         return false;
2140                 map->m_lblk = lblk;
2141                 map->m_len = 1;
2142                 map->m_flags = bh->b_state & BH_FLAGS;
2143                 return true;
2144         }
2145
2146         /* Don't go larger than mballoc is willing to allocate */
2147         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2148                 return false;
2149
2150         /* Can we merge the block to our big extent? */
2151         if (lblk == map->m_lblk + map->m_len &&
2152             (bh->b_state & BH_FLAGS) == map->m_flags) {
2153                 map->m_len++;
2154                 return true;
2155         }
2156         return false;
2157 }
2158
2159 /*
2160  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2161  *
2162  * @mpd - extent of blocks for mapping
2163  * @head - the first buffer in the page
2164  * @bh - buffer we should start processing from
2165  * @lblk - logical number of the block in the file corresponding to @bh
2166  *
2167  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2168  * the page for IO if all buffers in this page were mapped and there's no
2169  * accumulated extent of buffers to map or add buffers in the page to the
2170  * extent of buffers to map. The function returns 1 if the caller can continue
2171  * by processing the next page, 0 if it should stop adding buffers to the
2172  * extent to map because we cannot extend it anymore. It can also return value
2173  * < 0 in case of error during IO submission.
2174  */
2175 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2176                                    struct buffer_head *head,
2177                                    struct buffer_head *bh,
2178                                    ext4_lblk_t lblk)
2179 {
2180         struct inode *inode = mpd->inode;
2181         int err;
2182         ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2183                                                         >> inode->i_blkbits;
2184
2185         if (ext4_verity_in_progress(inode))
2186                 blocks = EXT_MAX_BLOCKS;
2187
2188         do {
2189                 BUG_ON(buffer_locked(bh));
2190
2191                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2192                         /* Found extent to map? */
2193                         if (mpd->map.m_len)
2194                                 return 0;
2195                         /* Buffer needs mapping and handle is not started? */
2196                         if (!mpd->do_map)
2197                                 return 0;
2198                         /* Everything mapped so far and we hit EOF */
2199                         break;
2200                 }
2201         } while (lblk++, (bh = bh->b_this_page) != head);
2202         /* So far everything mapped? Submit the page for IO. */
2203         if (mpd->map.m_len == 0) {
2204                 err = mpage_submit_page(mpd, head->b_page);
2205                 if (err < 0)
2206                         return err;
2207         }
2208         if (lblk >= blocks) {
2209                 mpd->scanned_until_end = 1;
2210                 return 0;
2211         }
2212         return 1;
2213 }
2214
2215 /*
2216  * mpage_process_page - update page buffers corresponding to changed extent and
2217  *                     may submit fully mapped page for IO
2218  *
2219  * @mpd         - description of extent to map, on return next extent to map
2220  * @m_lblk      - logical block mapping.
2221  * @m_pblk      - corresponding physical mapping.
2222  * @map_bh      - determines on return whether this page requires any further
2223  *                mapping or not.
2224  * Scan given page buffers corresponding to changed extent and update buffer
2225  * state according to new extent state.
2226  * We map delalloc buffers to their physical location, clear unwritten bits.
2227  * If the given page is not fully mapped, we update @map to the next extent in
2228  * the given page that needs mapping & return @map_bh as true.
2229  */
2230 static int mpage_process_page(struct mpage_da_data *mpd, struct page *page,
2231                               ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2232                               bool *map_bh)
2233 {
2234         struct buffer_head *head, *bh;
2235         ext4_io_end_t *io_end = mpd->io_submit.io_end;
2236         ext4_lblk_t lblk = *m_lblk;
2237         ext4_fsblk_t pblock = *m_pblk;
2238         int err = 0;
2239         int blkbits = mpd->inode->i_blkbits;
2240         ssize_t io_end_size = 0;
2241         struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2242
2243         bh = head = page_buffers(page);
2244         do {
2245                 if (lblk < mpd->map.m_lblk)
2246                         continue;
2247                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2248                         /*
2249                          * Buffer after end of mapped extent.
2250                          * Find next buffer in the page to map.
2251                          */
2252                         mpd->map.m_len = 0;
2253                         mpd->map.m_flags = 0;
2254                         io_end_vec->size += io_end_size;
2255
2256                         err = mpage_process_page_bufs(mpd, head, bh, lblk);
2257                         if (err > 0)
2258                                 err = 0;
2259                         if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2260                                 io_end_vec = ext4_alloc_io_end_vec(io_end);
2261                                 if (IS_ERR(io_end_vec)) {
2262                                         err = PTR_ERR(io_end_vec);
2263                                         goto out;
2264                                 }
2265                                 io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits;
2266                         }
2267                         *map_bh = true;
2268                         goto out;
2269                 }
2270                 if (buffer_delay(bh)) {
2271                         clear_buffer_delay(bh);
2272                         bh->b_blocknr = pblock++;
2273                 }
2274                 clear_buffer_unwritten(bh);
2275                 io_end_size += (1 << blkbits);
2276         } while (lblk++, (bh = bh->b_this_page) != head);
2277
2278         io_end_vec->size += io_end_size;
2279         *map_bh = false;
2280 out:
2281         *m_lblk = lblk;
2282         *m_pblk = pblock;
2283         return err;
2284 }
2285
2286 /*
2287  * mpage_map_buffers - update buffers corresponding to changed extent and
2288  *                     submit fully mapped pages for IO
2289  *
2290  * @mpd - description of extent to map, on return next extent to map
2291  *
2292  * Scan buffers corresponding to changed extent (we expect corresponding pages
2293  * to be already locked) and update buffer state according to new extent state.
2294  * We map delalloc buffers to their physical location, clear unwritten bits,
2295  * and mark buffers as uninit when we perform writes to unwritten extents
2296  * and do extent conversion after IO is finished. If the last page is not fully
2297  * mapped, we update @map to the next extent in the last page that needs
2298  * mapping. Otherwise we submit the page for IO.
2299  */
2300 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2301 {
2302         struct pagevec pvec;
2303         int nr_pages, i;
2304         struct inode *inode = mpd->inode;
2305         int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2306         pgoff_t start, end;
2307         ext4_lblk_t lblk;
2308         ext4_fsblk_t pblock;
2309         int err;
2310         bool map_bh = false;
2311
2312         start = mpd->map.m_lblk >> bpp_bits;
2313         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2314         lblk = start << bpp_bits;
2315         pblock = mpd->map.m_pblk;
2316
2317         pagevec_init(&pvec);
2318         while (start <= end) {
2319                 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2320                                                 &start, end);
2321                 if (nr_pages == 0)
2322                         break;
2323                 for (i = 0; i < nr_pages; i++) {
2324                         struct page *page = pvec.pages[i];
2325
2326                         err = mpage_process_page(mpd, page, &lblk, &pblock,
2327                                                  &map_bh);
2328                         /*
2329                          * If map_bh is true, means page may require further bh
2330                          * mapping, or maybe the page was submitted for IO.
2331                          * So we return to call further extent mapping.
2332                          */
2333                         if (err < 0 || map_bh)
2334                                 goto out;
2335                         /* Page fully mapped - let IO run! */
2336                         err = mpage_submit_page(mpd, page);
2337                         if (err < 0)
2338                                 goto out;
2339                 }
2340                 pagevec_release(&pvec);
2341         }
2342         /* Extent fully mapped and matches with page boundary. We are done. */
2343         mpd->map.m_len = 0;
2344         mpd->map.m_flags = 0;
2345         return 0;
2346 out:
2347         pagevec_release(&pvec);
2348         return err;
2349 }
2350
2351 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2352 {
2353         struct inode *inode = mpd->inode;
2354         struct ext4_map_blocks *map = &mpd->map;
2355         int get_blocks_flags;
2356         int err, dioread_nolock;
2357
2358         trace_ext4_da_write_pages_extent(inode, map);
2359         /*
2360          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2361          * to convert an unwritten extent to be initialized (in the case
2362          * where we have written into one or more preallocated blocks).  It is
2363          * possible that we're going to need more metadata blocks than
2364          * previously reserved. However we must not fail because we're in
2365          * writeback and there is nothing we can do about it so it might result
2366          * in data loss.  So use reserved blocks to allocate metadata if
2367          * possible.
2368          *
2369          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2370          * the blocks in question are delalloc blocks.  This indicates
2371          * that the blocks and quotas has already been checked when
2372          * the data was copied into the page cache.
2373          */
2374         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2375                            EXT4_GET_BLOCKS_METADATA_NOFAIL |
2376                            EXT4_GET_BLOCKS_IO_SUBMIT;
2377         dioread_nolock = ext4_should_dioread_nolock(inode);
2378         if (dioread_nolock)
2379                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2380         if (map->m_flags & BIT(BH_Delay))
2381                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2382
2383         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2384         if (err < 0)
2385                 return err;
2386         if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2387                 if (!mpd->io_submit.io_end->handle &&
2388                     ext4_handle_valid(handle)) {
2389                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2390                         handle->h_rsv_handle = NULL;
2391                 }
2392                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2393         }
2394
2395         BUG_ON(map->m_len == 0);
2396         return 0;
2397 }
2398
2399 /*
2400  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2401  *                               mpd->len and submit pages underlying it for IO
2402  *
2403  * @handle - handle for journal operations
2404  * @mpd - extent to map
2405  * @give_up_on_write - we set this to true iff there is a fatal error and there
2406  *                     is no hope of writing the data. The caller should discard
2407  *                     dirty pages to avoid infinite loops.
2408  *
2409  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2410  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2411  * them to initialized or split the described range from larger unwritten
2412  * extent. Note that we need not map all the described range since allocation
2413  * can return less blocks or the range is covered by more unwritten extents. We
2414  * cannot map more because we are limited by reserved transaction credits. On
2415  * the other hand we always make sure that the last touched page is fully
2416  * mapped so that it can be written out (and thus forward progress is
2417  * guaranteed). After mapping we submit all mapped pages for IO.
2418  */
2419 static int mpage_map_and_submit_extent(handle_t *handle,
2420                                        struct mpage_da_data *mpd,
2421                                        bool *give_up_on_write)
2422 {
2423         struct inode *inode = mpd->inode;
2424         struct ext4_map_blocks *map = &mpd->map;
2425         int err;
2426         loff_t disksize;
2427         int progress = 0;
2428         ext4_io_end_t *io_end = mpd->io_submit.io_end;
2429         struct ext4_io_end_vec *io_end_vec;
2430
2431         io_end_vec = ext4_alloc_io_end_vec(io_end);
2432         if (IS_ERR(io_end_vec))
2433                 return PTR_ERR(io_end_vec);
2434         io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2435         do {
2436                 err = mpage_map_one_extent(handle, mpd);
2437                 if (err < 0) {
2438                         struct super_block *sb = inode->i_sb;
2439
2440                         if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2441                             ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
2442                                 goto invalidate_dirty_pages;
2443                         /*
2444                          * Let the uper layers retry transient errors.
2445                          * In the case of ENOSPC, if ext4_count_free_blocks()
2446                          * is non-zero, a commit should free up blocks.
2447                          */
2448                         if ((err == -ENOMEM) ||
2449                             (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2450                                 if (progress)
2451                                         goto update_disksize;
2452                                 return err;
2453                         }
2454                         ext4_msg(sb, KERN_CRIT,
2455                                  "Delayed block allocation failed for "
2456                                  "inode %lu at logical offset %llu with"
2457                                  " max blocks %u with error %d",
2458                                  inode->i_ino,
2459                                  (unsigned long long)map->m_lblk,
2460                                  (unsigned)map->m_len, -err);
2461                         ext4_msg(sb, KERN_CRIT,
2462                                  "This should not happen!! Data will "
2463                                  "be lost\n");
2464                         if (err == -ENOSPC)
2465                                 ext4_print_free_blocks(inode);
2466                 invalidate_dirty_pages:
2467                         *give_up_on_write = true;
2468                         return err;
2469                 }
2470                 progress = 1;
2471                 /*
2472                  * Update buffer state, submit mapped pages, and get us new
2473                  * extent to map
2474                  */
2475                 err = mpage_map_and_submit_buffers(mpd);
2476                 if (err < 0)
2477                         goto update_disksize;
2478         } while (map->m_len);
2479
2480 update_disksize:
2481         /*
2482          * Update on-disk size after IO is submitted.  Races with
2483          * truncate are avoided by checking i_size under i_data_sem.
2484          */
2485         disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2486         if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2487                 int err2;
2488                 loff_t i_size;
2489
2490                 down_write(&EXT4_I(inode)->i_data_sem);
2491                 i_size = i_size_read(inode);
2492                 if (disksize > i_size)
2493                         disksize = i_size;
2494                 if (disksize > EXT4_I(inode)->i_disksize)
2495                         EXT4_I(inode)->i_disksize = disksize;
2496                 up_write(&EXT4_I(inode)->i_data_sem);
2497                 err2 = ext4_mark_inode_dirty(handle, inode);
2498                 if (err2) {
2499                         ext4_error_err(inode->i_sb, -err2,
2500                                        "Failed to mark inode %lu dirty",
2501                                        inode->i_ino);
2502                 }
2503                 if (!err)
2504                         err = err2;
2505         }
2506         return err;
2507 }
2508
2509 /*
2510  * Calculate the total number of credits to reserve for one writepages
2511  * iteration. This is called from ext4_writepages(). We map an extent of
2512  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2513  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2514  * bpp - 1 blocks in bpp different extents.
2515  */
2516 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2517 {
2518         int bpp = ext4_journal_blocks_per_page(inode);
2519
2520         return ext4_meta_trans_blocks(inode,
2521                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2522 }
2523
2524 /*
2525  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2526  *                               and underlying extent to map
2527  *
2528  * @mpd - where to look for pages
2529  *
2530  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2531  * IO immediately. When we find a page which isn't mapped we start accumulating
2532  * extent of buffers underlying these pages that needs mapping (formed by
2533  * either delayed or unwritten buffers). We also lock the pages containing
2534  * these buffers. The extent found is returned in @mpd structure (starting at
2535  * mpd->lblk with length mpd->len blocks).
2536  *
2537  * Note that this function can attach bios to one io_end structure which are
2538  * neither logically nor physically contiguous. Although it may seem as an
2539  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2540  * case as we need to track IO to all buffers underlying a page in one io_end.
2541  */
2542 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2543 {
2544         struct address_space *mapping = mpd->inode->i_mapping;
2545         struct pagevec pvec;
2546         unsigned int nr_pages;
2547         long left = mpd->wbc->nr_to_write;
2548         pgoff_t index = mpd->first_page;
2549         pgoff_t end = mpd->last_page;
2550         xa_mark_t tag;
2551         int i, err = 0;
2552         int blkbits = mpd->inode->i_blkbits;
2553         ext4_lblk_t lblk;
2554         struct buffer_head *head;
2555
2556         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2557                 tag = PAGECACHE_TAG_TOWRITE;
2558         else
2559                 tag = PAGECACHE_TAG_DIRTY;
2560
2561         pagevec_init(&pvec);
2562         mpd->map.m_len = 0;
2563         mpd->next_page = index;
2564         while (index <= end) {
2565                 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2566                                 tag);
2567                 if (nr_pages == 0)
2568                         break;
2569
2570                 for (i = 0; i < nr_pages; i++) {
2571                         struct page *page = pvec.pages[i];
2572
2573                         /*
2574                          * Accumulated enough dirty pages? This doesn't apply
2575                          * to WB_SYNC_ALL mode. For integrity sync we have to
2576                          * keep going because someone may be concurrently
2577                          * dirtying pages, and we might have synced a lot of
2578                          * newly appeared dirty pages, but have not synced all
2579                          * of the old dirty pages.
2580                          */
2581                         if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2582                                 goto out;
2583
2584                         /* If we can't merge this page, we are done. */
2585                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2586                                 goto out;
2587
2588                         lock_page(page);
2589                         /*
2590                          * If the page is no longer dirty, or its mapping no
2591                          * longer corresponds to inode we are writing (which
2592                          * means it has been truncated or invalidated), or the
2593                          * page is already under writeback and we are not doing
2594                          * a data integrity writeback, skip the page
2595                          */
2596                         if (!PageDirty(page) ||
2597                             (PageWriteback(page) &&
2598                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2599                             unlikely(page->mapping != mapping)) {
2600                                 unlock_page(page);
2601                                 continue;
2602                         }
2603
2604                         wait_on_page_writeback(page);
2605                         BUG_ON(PageWriteback(page));
2606
2607                         /*
2608                          * Should never happen but for buggy code in
2609                          * other subsystems that call
2610                          * set_page_dirty() without properly warning
2611                          * the file system first.  See [1] for more
2612                          * information.
2613                          *
2614                          * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz
2615                          */
2616                         if (!page_has_buffers(page)) {
2617                                 ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", page->index);
2618                                 ClearPageDirty(page);
2619                                 unlock_page(page);
2620                                 continue;
2621                         }
2622
2623                         if (mpd->map.m_len == 0)
2624                                 mpd->first_page = page->index;
2625                         mpd->next_page = page->index + 1;
2626                         /* Add all dirty buffers to mpd */
2627                         lblk = ((ext4_lblk_t)page->index) <<
2628                                 (PAGE_SHIFT - blkbits);
2629                         head = page_buffers(page);
2630                         err = mpage_process_page_bufs(mpd, head, head, lblk);
2631                         if (err <= 0)
2632                                 goto out;
2633                         err = 0;
2634                         left--;
2635                 }
2636                 pagevec_release(&pvec);
2637                 cond_resched();
2638         }
2639         mpd->scanned_until_end = 1;
2640         return 0;
2641 out:
2642         pagevec_release(&pvec);
2643         return err;
2644 }
2645
2646 static int ext4_writepages(struct address_space *mapping,
2647                            struct writeback_control *wbc)
2648 {
2649         pgoff_t writeback_index = 0;
2650         long nr_to_write = wbc->nr_to_write;
2651         int range_whole = 0;
2652         int cycled = 1;
2653         handle_t *handle = NULL;
2654         struct mpage_da_data mpd;
2655         struct inode *inode = mapping->host;
2656         int needed_blocks, rsv_blocks = 0, ret = 0;
2657         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2658         struct blk_plug plug;
2659         bool give_up_on_write = false;
2660
2661         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2662                 return -EIO;
2663
2664         percpu_down_read(&sbi->s_writepages_rwsem);
2665         trace_ext4_writepages(inode, wbc);
2666
2667         /*
2668          * No pages to write? This is mainly a kludge to avoid starting
2669          * a transaction for special inodes like journal inode on last iput()
2670          * because that could violate lock ordering on umount
2671          */
2672         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2673                 goto out_writepages;
2674
2675         if (ext4_should_journal_data(inode)) {
2676                 ret = generic_writepages(mapping, wbc);
2677                 goto out_writepages;
2678         }
2679
2680         /*
2681          * If the filesystem has aborted, it is read-only, so return
2682          * right away instead of dumping stack traces later on that
2683          * will obscure the real source of the problem.  We test
2684          * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2685          * the latter could be true if the filesystem is mounted
2686          * read-only, and in that case, ext4_writepages should
2687          * *never* be called, so if that ever happens, we would want
2688          * the stack trace.
2689          */
2690         if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2691                      ext4_test_mount_flag(inode->i_sb, EXT4_MF_FS_ABORTED))) {
2692                 ret = -EROFS;
2693                 goto out_writepages;
2694         }
2695
2696         /*
2697          * If we have inline data and arrive here, it means that
2698          * we will soon create the block for the 1st page, so
2699          * we'd better clear the inline data here.
2700          */
2701         if (ext4_has_inline_data(inode)) {
2702                 /* Just inode will be modified... */
2703                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2704                 if (IS_ERR(handle)) {
2705                         ret = PTR_ERR(handle);
2706                         goto out_writepages;
2707                 }
2708                 BUG_ON(ext4_test_inode_state(inode,
2709                                 EXT4_STATE_MAY_INLINE_DATA));
2710                 ext4_destroy_inline_data(handle, inode);
2711                 ext4_journal_stop(handle);
2712         }
2713
2714         if (ext4_should_dioread_nolock(inode)) {
2715                 /*
2716                  * We may need to convert up to one extent per block in
2717                  * the page and we may dirty the inode.
2718                  */
2719                 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2720                                                 PAGE_SIZE >> inode->i_blkbits);
2721         }
2722
2723         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2724                 range_whole = 1;
2725
2726         if (wbc->range_cyclic) {
2727                 writeback_index = mapping->writeback_index;
2728                 if (writeback_index)
2729                         cycled = 0;
2730                 mpd.first_page = writeback_index;
2731                 mpd.last_page = -1;
2732         } else {
2733                 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2734                 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2735         }
2736
2737         mpd.inode = inode;
2738         mpd.wbc = wbc;
2739         ext4_io_submit_init(&mpd.io_submit, wbc);
2740 retry:
2741         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2742                 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2743         blk_start_plug(&plug);
2744
2745         /*
2746          * First writeback pages that don't need mapping - we can avoid
2747          * starting a transaction unnecessarily and also avoid being blocked
2748          * in the block layer on device congestion while having transaction
2749          * started.
2750          */
2751         mpd.do_map = 0;
2752         mpd.scanned_until_end = 0;
2753         mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2754         if (!mpd.io_submit.io_end) {
2755                 ret = -ENOMEM;
2756                 goto unplug;
2757         }
2758         ret = mpage_prepare_extent_to_map(&mpd);
2759         /* Unlock pages we didn't use */
2760         mpage_release_unused_pages(&mpd, false);
2761         /* Submit prepared bio */
2762         ext4_io_submit(&mpd.io_submit);
2763         ext4_put_io_end_defer(mpd.io_submit.io_end);
2764         mpd.io_submit.io_end = NULL;
2765         if (ret < 0)
2766                 goto unplug;
2767
2768         while (!mpd.scanned_until_end && wbc->nr_to_write > 0) {
2769                 /* For each extent of pages we use new io_end */
2770                 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2771                 if (!mpd.io_submit.io_end) {
2772                         ret = -ENOMEM;
2773                         break;
2774                 }
2775
2776                 /*
2777                  * We have two constraints: We find one extent to map and we
2778                  * must always write out whole page (makes a difference when
2779                  * blocksize < pagesize) so that we don't block on IO when we
2780                  * try to write out the rest of the page. Journalled mode is
2781                  * not supported by delalloc.
2782                  */
2783                 BUG_ON(ext4_should_journal_data(inode));
2784                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2785
2786                 /* start a new transaction */
2787                 handle = ext4_journal_start_with_reserve(inode,
2788                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2789                 if (IS_ERR(handle)) {
2790                         ret = PTR_ERR(handle);
2791                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2792                                "%ld pages, ino %lu; err %d", __func__,
2793                                 wbc->nr_to_write, inode->i_ino, ret);
2794                         /* Release allocated io_end */
2795                         ext4_put_io_end(mpd.io_submit.io_end);
2796                         mpd.io_submit.io_end = NULL;
2797                         break;
2798                 }
2799                 mpd.do_map = 1;
2800
2801                 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2802                 ret = mpage_prepare_extent_to_map(&mpd);
2803                 if (!ret && mpd.map.m_len)
2804                         ret = mpage_map_and_submit_extent(handle, &mpd,
2805                                         &give_up_on_write);
2806                 /*
2807                  * Caution: If the handle is synchronous,
2808                  * ext4_journal_stop() can wait for transaction commit
2809                  * to finish which may depend on writeback of pages to
2810                  * complete or on page lock to be released.  In that
2811                  * case, we have to wait until after we have
2812                  * submitted all the IO, released page locks we hold,
2813                  * and dropped io_end reference (for extent conversion
2814                  * to be able to complete) before stopping the handle.
2815                  */
2816                 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2817                         ext4_journal_stop(handle);
2818                         handle = NULL;
2819                         mpd.do_map = 0;
2820                 }
2821                 /* Unlock pages we didn't use */
2822                 mpage_release_unused_pages(&mpd, give_up_on_write);
2823                 /* Submit prepared bio */
2824                 ext4_io_submit(&mpd.io_submit);
2825
2826                 /*
2827                  * Drop our io_end reference we got from init. We have
2828                  * to be careful and use deferred io_end finishing if
2829                  * we are still holding the transaction as we can
2830                  * release the last reference to io_end which may end
2831                  * up doing unwritten extent conversion.
2832                  */
2833                 if (handle) {
2834                         ext4_put_io_end_defer(mpd.io_submit.io_end);
2835                         ext4_journal_stop(handle);
2836                 } else
2837                         ext4_put_io_end(mpd.io_submit.io_end);
2838                 mpd.io_submit.io_end = NULL;
2839
2840                 if (ret == -ENOSPC && sbi->s_journal) {
2841                         /*
2842                          * Commit the transaction which would
2843                          * free blocks released in the transaction
2844                          * and try again
2845                          */
2846                         jbd2_journal_force_commit_nested(sbi->s_journal);
2847                         ret = 0;
2848                         continue;
2849                 }
2850                 /* Fatal error - ENOMEM, EIO... */
2851                 if (ret)
2852                         break;
2853         }
2854 unplug:
2855         blk_finish_plug(&plug);
2856         if (!ret && !cycled && wbc->nr_to_write > 0) {
2857                 cycled = 1;
2858                 mpd.last_page = writeback_index - 1;
2859                 mpd.first_page = 0;
2860                 goto retry;
2861         }
2862
2863         /* Update index */
2864         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2865                 /*
2866                  * Set the writeback_index so that range_cyclic
2867                  * mode will write it back later
2868                  */
2869                 mapping->writeback_index = mpd.first_page;
2870
2871 out_writepages:
2872         trace_ext4_writepages_result(inode, wbc, ret,
2873                                      nr_to_write - wbc->nr_to_write);
2874         percpu_up_read(&sbi->s_writepages_rwsem);
2875         return ret;
2876 }
2877
2878 static int ext4_dax_writepages(struct address_space *mapping,
2879                                struct writeback_control *wbc)
2880 {
2881         int ret;
2882         long nr_to_write = wbc->nr_to_write;
2883         struct inode *inode = mapping->host;
2884         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2885
2886         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2887                 return -EIO;
2888
2889         percpu_down_read(&sbi->s_writepages_rwsem);
2890         trace_ext4_writepages(inode, wbc);
2891
2892         ret = dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc);
2893         trace_ext4_writepages_result(inode, wbc, ret,
2894                                      nr_to_write - wbc->nr_to_write);
2895         percpu_up_read(&sbi->s_writepages_rwsem);
2896         return ret;
2897 }
2898
2899 static int ext4_nonda_switch(struct super_block *sb)
2900 {
2901         s64 free_clusters, dirty_clusters;
2902         struct ext4_sb_info *sbi = EXT4_SB(sb);
2903
2904         /*
2905          * switch to non delalloc mode if we are running low
2906          * on free block. The free block accounting via percpu
2907          * counters can get slightly wrong with percpu_counter_batch getting
2908          * accumulated on each CPU without updating global counters
2909          * Delalloc need an accurate free block accounting. So switch
2910          * to non delalloc when we are near to error range.
2911          */
2912         free_clusters =
2913                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2914         dirty_clusters =
2915                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2916         /*
2917          * Start pushing delalloc when 1/2 of free blocks are dirty.
2918          */
2919         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2920                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2921
2922         if (2 * free_clusters < 3 * dirty_clusters ||
2923             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2924                 /*
2925                  * free block count is less than 150% of dirty blocks
2926                  * or free blocks is less than watermark
2927                  */
2928                 return 1;
2929         }
2930         return 0;
2931 }
2932
2933 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2934                                loff_t pos, unsigned len, unsigned flags,
2935                                struct page **pagep, void **fsdata)
2936 {
2937         int ret, retries = 0;
2938         struct page *page;
2939         pgoff_t index;
2940         struct inode *inode = mapping->host;
2941
2942         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2943                 return -EIO;
2944
2945         index = pos >> PAGE_SHIFT;
2946
2947         if (ext4_nonda_switch(inode->i_sb) || S_ISLNK(inode->i_mode) ||
2948             ext4_verity_in_progress(inode)) {
2949                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2950                 return ext4_write_begin(file, mapping, pos,
2951                                         len, flags, pagep, fsdata);
2952         }
2953         *fsdata = (void *)0;
2954         trace_ext4_da_write_begin(inode, pos, len, flags);
2955
2956         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2957                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2958                                                       pos, len, flags,
2959                                                       pagep, fsdata);
2960                 if (ret < 0)
2961                         return ret;
2962                 if (ret == 1)
2963                         return 0;
2964         }
2965
2966 retry:
2967         page = grab_cache_page_write_begin(mapping, index, flags);
2968         if (!page)
2969                 return -ENOMEM;
2970
2971         /* In case writeback began while the page was unlocked */
2972         wait_for_stable_page(page);
2973
2974 #ifdef CONFIG_FS_ENCRYPTION
2975         ret = ext4_block_write_begin(page, pos, len,
2976                                      ext4_da_get_block_prep);
2977 #else
2978         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2979 #endif
2980         if (ret < 0) {
2981                 unlock_page(page);
2982                 put_page(page);
2983                 /*
2984                  * block_write_begin may have instantiated a few blocks
2985                  * outside i_size.  Trim these off again. Don't need
2986                  * i_size_read because we hold inode lock.
2987                  */
2988                 if (pos + len > inode->i_size)
2989                         ext4_truncate_failed_write(inode);
2990
2991                 if (ret == -ENOSPC &&
2992                     ext4_should_retry_alloc(inode->i_sb, &retries))
2993                         goto retry;
2994                 return ret;
2995         }
2996
2997         *pagep = page;
2998         return ret;
2999 }
3000
3001 /*
3002  * Check if we should update i_disksize
3003  * when write to the end of file but not require block allocation
3004  */
3005 static int ext4_da_should_update_i_disksize(struct page *page,
3006                                             unsigned long offset)
3007 {
3008         struct buffer_head *bh;
3009         struct inode *inode = page->mapping->host;
3010         unsigned int idx;
3011         int i;
3012
3013         bh = page_buffers(page);
3014         idx = offset >> inode->i_blkbits;
3015
3016         for (i = 0; i < idx; i++)
3017                 bh = bh->b_this_page;
3018
3019         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3020                 return 0;
3021         return 1;
3022 }
3023
3024 static int ext4_da_write_end(struct file *file,
3025                              struct address_space *mapping,
3026                              loff_t pos, unsigned len, unsigned copied,
3027                              struct page *page, void *fsdata)
3028 {
3029         struct inode *inode = mapping->host;
3030         loff_t new_i_size;
3031         unsigned long start, end;
3032         int write_mode = (int)(unsigned long)fsdata;
3033
3034         if (write_mode == FALL_BACK_TO_NONDELALLOC)
3035                 return ext4_write_end(file, mapping, pos,
3036                                       len, copied, page, fsdata);
3037
3038         trace_ext4_da_write_end(inode, pos, len, copied);
3039
3040         if (write_mode != CONVERT_INLINE_DATA &&
3041             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3042             ext4_has_inline_data(inode))
3043                 return ext4_write_inline_data_end(inode, pos, len, copied, page);
3044
3045         start = pos & (PAGE_SIZE - 1);
3046         end = start + copied - 1;
3047
3048         /*
3049          * Since we are holding inode lock, we are sure i_disksize <=
3050          * i_size. We also know that if i_disksize < i_size, there are
3051          * delalloc writes pending in the range upto i_size. If the end of
3052          * the current write is <= i_size, there's no need to touch
3053          * i_disksize since writeback will push i_disksize upto i_size
3054          * eventually. If the end of the current write is > i_size and
3055          * inside an allocated block (ext4_da_should_update_i_disksize()
3056          * check), we need to update i_disksize here as neither
3057          * ext4_writepage() nor certain ext4_writepages() paths not
3058          * allocating blocks update i_disksize.
3059          *
3060          * Note that we defer inode dirtying to generic_write_end() /
3061          * ext4_da_write_inline_data_end().
3062          */
3063         new_i_size = pos + copied;
3064         if (copied && new_i_size > inode->i_size &&
3065             ext4_da_should_update_i_disksize(page, end))
3066                 ext4_update_i_disksize(inode, new_i_size);
3067
3068         return generic_write_end(file, mapping, pos, len, copied, page, fsdata);
3069 }
3070
3071 /*
3072  * Force all delayed allocation blocks to be allocated for a given inode.
3073  */
3074 int ext4_alloc_da_blocks(struct inode *inode)
3075 {
3076         trace_ext4_alloc_da_blocks(inode);
3077
3078         if (!EXT4_I(inode)->i_reserved_data_blocks)
3079                 return 0;
3080
3081         /*
3082          * We do something simple for now.  The filemap_flush() will
3083          * also start triggering a write of the data blocks, which is
3084          * not strictly speaking necessary (and for users of
3085          * laptop_mode, not even desirable).  However, to do otherwise
3086          * would require replicating code paths in:
3087          *
3088          * ext4_writepages() ->
3089          *    write_cache_pages() ---> (via passed in callback function)
3090          *        __mpage_da_writepage() -->
3091          *           mpage_add_bh_to_extent()
3092          *           mpage_da_map_blocks()
3093          *
3094          * The problem is that write_cache_pages(), located in
3095          * mm/page-writeback.c, marks pages clean in preparation for
3096          * doing I/O, which is not desirable if we're not planning on
3097          * doing I/O at all.
3098          *
3099          * We could call write_cache_pages(), and then redirty all of
3100          * the pages by calling redirty_page_for_writepage() but that
3101          * would be ugly in the extreme.  So instead we would need to
3102          * replicate parts of the code in the above functions,
3103          * simplifying them because we wouldn't actually intend to
3104          * write out the pages, but rather only collect contiguous
3105          * logical block extents, call the multi-block allocator, and
3106          * then update the buffer heads with the block allocations.
3107          *
3108          * For now, though, we'll cheat by calling filemap_flush(),
3109          * which will map the blocks, and start the I/O, but not
3110          * actually wait for the I/O to complete.
3111          */
3112         return filemap_flush(inode->i_mapping);
3113 }
3114
3115 /*
3116  * bmap() is special.  It gets used by applications such as lilo and by
3117  * the swapper to find the on-disk block of a specific piece of data.
3118  *
3119  * Naturally, this is dangerous if the block concerned is still in the
3120  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3121  * filesystem and enables swap, then they may get a nasty shock when the
3122  * data getting swapped to that swapfile suddenly gets overwritten by
3123  * the original zero's written out previously to the journal and
3124  * awaiting writeback in the kernel's buffer cache.
3125  *
3126  * So, if we see any bmap calls here on a modified, data-journaled file,
3127  * take extra steps to flush any blocks which might be in the cache.
3128  */
3129 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3130 {
3131         struct inode *inode = mapping->host;
3132         journal_t *journal;
3133         int err;
3134
3135         /*
3136          * We can get here for an inline file via the FIBMAP ioctl
3137          */
3138         if (ext4_has_inline_data(inode))
3139                 return 0;
3140
3141         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3142                         test_opt(inode->i_sb, DELALLOC)) {
3143                 /*
3144                  * With delalloc we want to sync the file
3145                  * so that we can make sure we allocate
3146                  * blocks for file
3147                  */
3148                 filemap_write_and_wait(mapping);
3149         }
3150
3151         if (EXT4_JOURNAL(inode) &&
3152             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3153                 /*
3154                  * This is a REALLY heavyweight approach, but the use of
3155                  * bmap on dirty files is expected to be extremely rare:
3156                  * only if we run lilo or swapon on a freshly made file
3157                  * do we expect this to happen.
3158                  *
3159                  * (bmap requires CAP_SYS_RAWIO so this does not
3160                  * represent an unprivileged user DOS attack --- we'd be
3161                  * in trouble if mortal users could trigger this path at
3162                  * will.)
3163                  *
3164                  * NB. EXT4_STATE_JDATA is not set on files other than
3165                  * regular files.  If somebody wants to bmap a directory
3166                  * or symlink and gets confused because the buffer
3167                  * hasn't yet been flushed to disk, they deserve
3168                  * everything they get.
3169                  */
3170
3171                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3172                 journal = EXT4_JOURNAL(inode);
3173                 jbd2_journal_lock_updates(journal);
3174                 err = jbd2_journal_flush(journal, 0);
3175                 jbd2_journal_unlock_updates(journal);
3176
3177                 if (err)
3178                         return 0;
3179         }
3180
3181         return iomap_bmap(mapping, block, &ext4_iomap_ops);
3182 }
3183
3184 static int ext4_readpage(struct file *file, struct page *page)
3185 {
3186         int ret = -EAGAIN;
3187         struct inode *inode = page->mapping->host;
3188
3189         trace_ext4_readpage(page);
3190
3191         if (ext4_has_inline_data(inode))
3192                 ret = ext4_readpage_inline(inode, page);
3193
3194         if (ret == -EAGAIN)
3195                 return ext4_mpage_readpages(inode, NULL, page);
3196
3197         return ret;
3198 }
3199
3200 static void ext4_readahead(struct readahead_control *rac)
3201 {
3202         struct inode *inode = rac->mapping->host;
3203
3204         /* If the file has inline data, no need to do readahead. */
3205         if (ext4_has_inline_data(inode))
3206                 return;
3207
3208         ext4_mpage_readpages(inode, rac, NULL);
3209 }
3210
3211 static void ext4_invalidate_folio(struct folio *folio, size_t offset,
3212                                 size_t length)
3213 {
3214         trace_ext4_invalidate_folio(folio, offset, length);
3215
3216         /* No journalling happens on data buffers when this function is used */
3217         WARN_ON(folio_buffers(folio) && buffer_jbd(folio_buffers(folio)));
3218
3219         block_invalidate_folio(folio, offset, length);
3220 }
3221
3222 static int __ext4_journalled_invalidate_folio(struct folio *folio,
3223                                             size_t offset, size_t length)
3224 {
3225         journal_t *journal = EXT4_JOURNAL(folio->mapping->host);
3226
3227         trace_ext4_journalled_invalidate_folio(folio, offset, length);
3228
3229         /*
3230          * If it's a full truncate we just forget about the pending dirtying
3231          */
3232         if (offset == 0 && length == folio_size(folio))
3233                 folio_clear_checked(folio);
3234
3235         return jbd2_journal_invalidate_folio(journal, folio, offset, length);
3236 }
3237
3238 /* Wrapper for aops... */
3239 static void ext4_journalled_invalidate_folio(struct folio *folio,
3240                                            size_t offset,
3241                                            size_t length)
3242 {
3243         WARN_ON(__ext4_journalled_invalidate_folio(folio, offset, length) < 0);
3244 }
3245
3246 static int ext4_releasepage(struct page *page, gfp_t wait)
3247 {
3248         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3249
3250         trace_ext4_releasepage(page);
3251
3252         /* Page has dirty journalled data -> cannot release */
3253         if (PageChecked(page))
3254                 return 0;
3255         if (journal)
3256                 return jbd2_journal_try_to_free_buffers(journal, page);
3257         else
3258                 return try_to_free_buffers(page);
3259 }
3260
3261 static bool ext4_inode_datasync_dirty(struct inode *inode)
3262 {
3263         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3264
3265         if (journal) {
3266                 if (jbd2_transaction_committed(journal,
3267                         EXT4_I(inode)->i_datasync_tid))
3268                         return false;
3269                 if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
3270                         return !list_empty(&EXT4_I(inode)->i_fc_list);
3271                 return true;
3272         }
3273
3274         /* Any metadata buffers to write? */
3275         if (!list_empty(&inode->i_mapping->private_list))
3276                 return true;
3277         return inode->i_state & I_DIRTY_DATASYNC;
3278 }
3279
3280 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3281                            struct ext4_map_blocks *map, loff_t offset,
3282                            loff_t length, unsigned int flags)
3283 {
3284         u8 blkbits = inode->i_blkbits;
3285
3286         /*
3287          * Writes that span EOF might trigger an I/O size update on completion,
3288          * so consider them to be dirty for the purpose of O_DSYNC, even if
3289          * there is no other metadata changes being made or are pending.
3290          */
3291         iomap->flags = 0;
3292         if (ext4_inode_datasync_dirty(inode) ||
3293             offset + length > i_size_read(inode))
3294                 iomap->flags |= IOMAP_F_DIRTY;
3295
3296         if (map->m_flags & EXT4_MAP_NEW)
3297                 iomap->flags |= IOMAP_F_NEW;
3298
3299         if (flags & IOMAP_DAX)
3300                 iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3301         else
3302                 iomap->bdev = inode->i_sb->s_bdev;
3303         iomap->offset = (u64) map->m_lblk << blkbits;
3304         iomap->length = (u64) map->m_len << blkbits;
3305
3306         if ((map->m_flags & EXT4_MAP_MAPPED) &&
3307             !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3308                 iomap->flags |= IOMAP_F_MERGED;
3309
3310         /*
3311          * Flags passed to ext4_map_blocks() for direct I/O writes can result
3312          * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3313          * set. In order for any allocated unwritten extents to be converted
3314          * into written extents correctly within the ->end_io() handler, we
3315          * need to ensure that the iomap->type is set appropriately. Hence, the
3316          * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3317          * been set first.
3318          */
3319         if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3320                 iomap->type = IOMAP_UNWRITTEN;
3321                 iomap->addr = (u64) map->m_pblk << blkbits;
3322                 if (flags & IOMAP_DAX)
3323                         iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3324         } else if (map->m_flags & EXT4_MAP_MAPPED) {
3325                 iomap->type = IOMAP_MAPPED;
3326                 iomap->addr = (u64) map->m_pblk << blkbits;
3327                 if (flags & IOMAP_DAX)
3328                         iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3329         } else {
3330                 iomap->type = IOMAP_HOLE;
3331                 iomap->addr = IOMAP_NULL_ADDR;
3332         }
3333 }
3334
3335 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3336                             unsigned int flags)
3337 {
3338         handle_t *handle;
3339         u8 blkbits = inode->i_blkbits;
3340         int ret, dio_credits, m_flags = 0, retries = 0;
3341
3342         /*
3343          * Trim the mapping request to the maximum value that we can map at
3344          * once for direct I/O.
3345          */
3346         if (map->m_len > DIO_MAX_BLOCKS)
3347                 map->m_len = DIO_MAX_BLOCKS;
3348         dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3349
3350 retry:
3351         /*
3352          * Either we allocate blocks and then don't get an unwritten extent, so
3353          * in that case we have reserved enough credits. Or, the blocks are
3354          * already allocated and unwritten. In that case, the extent conversion
3355          * fits into the credits as well.
3356          */
3357         handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3358         if (IS_ERR(handle))
3359                 return PTR_ERR(handle);
3360
3361         /*
3362          * DAX and direct I/O are the only two operations that are currently
3363          * supported with IOMAP_WRITE.
3364          */
3365         WARN_ON(!(flags & (IOMAP_DAX | IOMAP_DIRECT)));
3366         if (flags & IOMAP_DAX)
3367                 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3368         /*
3369          * We use i_size instead of i_disksize here because delalloc writeback
3370          * can complete at any point during the I/O and subsequently push the
3371          * i_disksize out to i_size. This could be beyond where direct I/O is
3372          * happening and thus expose allocated blocks to direct I/O reads.
3373          */
3374         else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode))
3375                 m_flags = EXT4_GET_BLOCKS_CREATE;
3376         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3377                 m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3378
3379         ret = ext4_map_blocks(handle, inode, map, m_flags);
3380
3381         /*
3382          * We cannot fill holes in indirect tree based inodes as that could
3383          * expose stale data in the case of a crash. Use the magic error code
3384          * to fallback to buffered I/O.
3385          */
3386         if (!m_flags && !ret)
3387                 ret = -ENOTBLK;
3388
3389         ext4_journal_stop(handle);
3390         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3391                 goto retry;
3392
3393         return ret;
3394 }
3395
3396
3397 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3398                 unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3399 {
3400         int ret;
3401         struct ext4_map_blocks map;
3402         u8 blkbits = inode->i_blkbits;
3403
3404         if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3405                 return -EINVAL;
3406
3407         if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3408                 return -ERANGE;
3409
3410         /*
3411          * Calculate the first and last logical blocks respectively.
3412          */
3413         map.m_lblk = offset >> blkbits;
3414         map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3415                           EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3416
3417         if (flags & IOMAP_WRITE) {
3418                 /*
3419                  * We check here if the blocks are already allocated, then we
3420                  * don't need to start a journal txn and we can directly return
3421                  * the mapping information. This could boost performance
3422                  * especially in multi-threaded overwrite requests.
3423                  */
3424                 if (offset + length <= i_size_read(inode)) {
3425                         ret = ext4_map_blocks(NULL, inode, &map, 0);
3426                         if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED))
3427                                 goto out;
3428                 }
3429                 ret = ext4_iomap_alloc(inode, &map, flags);
3430         } else {
3431                 ret = ext4_map_blocks(NULL, inode, &map, 0);
3432         }
3433
3434         if (ret < 0)
3435                 return ret;
3436 out:
3437         /*
3438          * When inline encryption is enabled, sometimes I/O to an encrypted file
3439          * has to be broken up to guarantee DUN contiguity.  Handle this by
3440          * limiting the length of the mapping returned.
3441          */
3442         map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
3443
3444         ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3445
3446         return 0;
3447 }
3448
3449 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3450                 loff_t length, unsigned flags, struct iomap *iomap,
3451                 struct iomap *srcmap)
3452 {
3453         int ret;
3454
3455         /*
3456          * Even for writes we don't need to allocate blocks, so just pretend
3457          * we are reading to save overhead of starting a transaction.
3458          */
3459         flags &= ~IOMAP_WRITE;
3460         ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3461         WARN_ON_ONCE(iomap->type != IOMAP_MAPPED);
3462         return ret;
3463 }
3464
3465 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3466                           ssize_t written, unsigned flags, struct iomap *iomap)
3467 {
3468         /*
3469          * Check to see whether an error occurred while writing out the data to
3470          * the allocated blocks. If so, return the magic error code so that we
3471          * fallback to buffered I/O and attempt to complete the remainder of
3472          * the I/O. Any blocks that may have been allocated in preparation for
3473          * the direct I/O will be reused during buffered I/O.
3474          */
3475         if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3476                 return -ENOTBLK;
3477
3478         return 0;
3479 }
3480
3481 const struct iomap_ops ext4_iomap_ops = {
3482         .iomap_begin            = ext4_iomap_begin,
3483         .iomap_end              = ext4_iomap_end,
3484 };
3485
3486 const struct iomap_ops ext4_iomap_overwrite_ops = {
3487         .iomap_begin            = ext4_iomap_overwrite_begin,
3488         .iomap_end              = ext4_iomap_end,
3489 };
3490
3491 static bool ext4_iomap_is_delalloc(struct inode *inode,
3492                                    struct ext4_map_blocks *map)
3493 {
3494         struct extent_status es;
3495         ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1;
3496
3497         ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3498                                   map->m_lblk, end, &es);
3499
3500         if (!es.es_len || es.es_lblk > end)
3501                 return false;
3502
3503         if (es.es_lblk > map->m_lblk) {
3504                 map->m_len = es.es_lblk - map->m_lblk;
3505                 return false;
3506         }
3507
3508         offset = map->m_lblk - es.es_lblk;
3509         map->m_len = es.es_len - offset;
3510
3511         return true;
3512 }
3513
3514 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3515                                    loff_t length, unsigned int flags,
3516                                    struct iomap *iomap, struct iomap *srcmap)
3517 {
3518         int ret;
3519         bool delalloc = false;
3520         struct ext4_map_blocks map;
3521         u8 blkbits = inode->i_blkbits;
3522
3523         if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3524                 return -EINVAL;
3525
3526         if (ext4_has_inline_data(inode)) {
3527                 ret = ext4_inline_data_iomap(inode, iomap);
3528                 if (ret != -EAGAIN) {
3529                         if (ret == 0 && offset >= iomap->length)
3530                                 ret = -ENOENT;
3531                         return ret;
3532                 }
3533         }
3534
3535         /*
3536          * Calculate the first and last logical block respectively.
3537          */
3538         map.m_lblk = offset >> blkbits;
3539         map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3540                           EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3541
3542         /*
3543          * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3544          * So handle it here itself instead of querying ext4_map_blocks().
3545          * Since ext4_map_blocks() will warn about it and will return
3546          * -EIO error.
3547          */
3548         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3549                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3550
3551                 if (offset >= sbi->s_bitmap_maxbytes) {
3552                         map.m_flags = 0;
3553                         goto set_iomap;
3554                 }
3555         }
3556
3557         ret = ext4_map_blocks(NULL, inode, &map, 0);
3558         if (ret < 0)
3559                 return ret;
3560         if (ret == 0)
3561                 delalloc = ext4_iomap_is_delalloc(inode, &map);
3562
3563 set_iomap:
3564         ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3565         if (delalloc && iomap->type == IOMAP_HOLE)
3566                 iomap->type = IOMAP_DELALLOC;
3567
3568         return 0;
3569 }
3570
3571 const struct iomap_ops ext4_iomap_report_ops = {
3572         .iomap_begin = ext4_iomap_begin_report,
3573 };
3574
3575 /*
3576  * Whenever the folio is being dirtied, corresponding buffers should already
3577  * be attached to the transaction (we take care of this in ext4_page_mkwrite()
3578  * and ext4_write_begin()). However we cannot move buffers to dirty transaction
3579  * lists here because ->dirty_folio is called under VFS locks and the folio
3580  * is not necessarily locked.
3581  *
3582  * We cannot just dirty the folio and leave attached buffers clean, because the
3583  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3584  * or jbddirty because all the journalling code will explode.
3585  *
3586  * So what we do is to mark the folio "pending dirty" and next time writepage
3587  * is called, propagate that into the buffers appropriately.
3588  */
3589 static bool ext4_journalled_dirty_folio(struct address_space *mapping,
3590                 struct folio *folio)
3591 {
3592         WARN_ON_ONCE(!folio_buffers(folio));
3593         folio_set_checked(folio);
3594         return filemap_dirty_folio(mapping, folio);
3595 }
3596
3597 static bool ext4_dirty_folio(struct address_space *mapping, struct folio *folio)
3598 {
3599         WARN_ON_ONCE(!folio_test_locked(folio) && !folio_test_dirty(folio));
3600         WARN_ON_ONCE(!folio_buffers(folio));
3601         return block_dirty_folio(mapping, folio);
3602 }
3603
3604 static int ext4_iomap_swap_activate(struct swap_info_struct *sis,
3605                                     struct file *file, sector_t *span)
3606 {
3607         return iomap_swapfile_activate(sis, file, span,
3608                                        &ext4_iomap_report_ops);
3609 }
3610
3611 static const struct address_space_operations ext4_aops = {
3612         .readpage               = ext4_readpage,
3613         .readahead              = ext4_readahead,
3614         .writepage              = ext4_writepage,
3615         .writepages             = ext4_writepages,
3616         .write_begin            = ext4_write_begin,
3617         .write_end              = ext4_write_end,
3618         .dirty_folio            = ext4_dirty_folio,
3619         .bmap                   = ext4_bmap,
3620         .invalidate_folio       = ext4_invalidate_folio,
3621         .releasepage            = ext4_releasepage,
3622         .direct_IO              = noop_direct_IO,
3623         .migratepage            = buffer_migrate_page,
3624         .is_partially_uptodate  = block_is_partially_uptodate,
3625         .error_remove_page      = generic_error_remove_page,
3626         .swap_activate          = ext4_iomap_swap_activate,
3627 };
3628
3629 static const struct address_space_operations ext4_journalled_aops = {
3630         .readpage               = ext4_readpage,
3631         .readahead              = ext4_readahead,
3632         .writepage              = ext4_writepage,
3633         .writepages             = ext4_writepages,
3634         .write_begin            = ext4_write_begin,
3635         .write_end              = ext4_journalled_write_end,
3636         .dirty_folio            = ext4_journalled_dirty_folio,
3637         .bmap                   = ext4_bmap,
3638         .invalidate_folio       = ext4_journalled_invalidate_folio,
3639         .releasepage            = ext4_releasepage,
3640         .direct_IO              = noop_direct_IO,
3641         .is_partially_uptodate  = block_is_partially_uptodate,
3642         .error_remove_page      = generic_error_remove_page,
3643         .swap_activate          = ext4_iomap_swap_activate,
3644 };
3645
3646 static const struct address_space_operations ext4_da_aops = {
3647         .readpage               = ext4_readpage,
3648         .readahead              = ext4_readahead,
3649         .writepage              = ext4_writepage,
3650         .writepages             = ext4_writepages,
3651         .write_begin            = ext4_da_write_begin,
3652         .write_end              = ext4_da_write_end,
3653         .dirty_folio            = ext4_dirty_folio,
3654         .bmap                   = ext4_bmap,
3655         .invalidate_folio       = ext4_invalidate_folio,
3656         .releasepage            = ext4_releasepage,
3657         .direct_IO              = noop_direct_IO,
3658         .migratepage            = buffer_migrate_page,
3659         .is_partially_uptodate  = block_is_partially_uptodate,
3660         .error_remove_page      = generic_error_remove_page,
3661         .swap_activate          = ext4_iomap_swap_activate,
3662 };
3663
3664 static const struct address_space_operations ext4_dax_aops = {
3665         .writepages             = ext4_dax_writepages,
3666         .direct_IO              = noop_direct_IO,
3667         .dirty_folio            = noop_dirty_folio,
3668         .bmap                   = ext4_bmap,
3669         .swap_activate          = ext4_iomap_swap_activate,
3670 };
3671
3672 void ext4_set_aops(struct inode *inode)
3673 {
3674         switch (ext4_inode_journal_mode(inode)) {
3675         case EXT4_INODE_ORDERED_DATA_MODE:
3676         case EXT4_INODE_WRITEBACK_DATA_MODE:
3677                 break;
3678         case EXT4_INODE_JOURNAL_DATA_MODE:
3679                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3680                 return;
3681         default:
3682                 BUG();
3683         }
3684         if (IS_DAX(inode))
3685                 inode->i_mapping->a_ops = &ext4_dax_aops;
3686         else if (test_opt(inode->i_sb, DELALLOC))
3687                 inode->i_mapping->a_ops = &ext4_da_aops;
3688         else
3689                 inode->i_mapping->a_ops = &ext4_aops;
3690 }
3691
3692 static int __ext4_block_zero_page_range(handle_t *handle,
3693                 struct address_space *mapping, loff_t from, loff_t length)
3694 {
3695         ext4_fsblk_t index = from >> PAGE_SHIFT;
3696         unsigned offset = from & (PAGE_SIZE-1);
3697         unsigned blocksize, pos;
3698         ext4_lblk_t iblock;
3699         struct inode *inode = mapping->host;
3700         struct buffer_head *bh;
3701         struct page *page;
3702         int err = 0;
3703
3704         page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3705                                    mapping_gfp_constraint(mapping, ~__GFP_FS));
3706         if (!page)
3707                 return -ENOMEM;
3708
3709         blocksize = inode->i_sb->s_blocksize;
3710
3711         iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3712
3713         if (!page_has_buffers(page))
3714                 create_empty_buffers(page, blocksize, 0);
3715
3716         /* Find the buffer that contains "offset" */
3717         bh = page_buffers(page);
3718         pos = blocksize;
3719         while (offset >= pos) {
3720                 bh = bh->b_this_page;
3721                 iblock++;
3722                 pos += blocksize;
3723         }
3724         if (buffer_freed(bh)) {
3725                 BUFFER_TRACE(bh, "freed: skip");
3726                 goto unlock;
3727         }
3728         if (!buffer_mapped(bh)) {
3729                 BUFFER_TRACE(bh, "unmapped");
3730                 ext4_get_block(inode, iblock, bh, 0);
3731                 /* unmapped? It's a hole - nothing to do */
3732                 if (!buffer_mapped(bh)) {
3733                         BUFFER_TRACE(bh, "still unmapped");
3734                         goto unlock;
3735                 }
3736         }
3737
3738         /* Ok, it's mapped. Make sure it's up-to-date */
3739         if (PageUptodate(page))
3740                 set_buffer_uptodate(bh);
3741
3742         if (!buffer_uptodate(bh)) {
3743                 err = ext4_read_bh_lock(bh, 0, true);
3744                 if (err)
3745                         goto unlock;
3746                 if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
3747                         /* We expect the key to be set. */
3748                         BUG_ON(!fscrypt_has_encryption_key(inode));
3749                         err = fscrypt_decrypt_pagecache_blocks(page, blocksize,
3750                                                                bh_offset(bh));
3751                         if (err) {
3752                                 clear_buffer_uptodate(bh);
3753                                 goto unlock;
3754                         }
3755                 }
3756         }
3757         if (ext4_should_journal_data(inode)) {
3758                 BUFFER_TRACE(bh, "get write access");
3759                 err = ext4_journal_get_write_access(handle, inode->i_sb, bh,
3760                                                     EXT4_JTR_NONE);
3761                 if (err)
3762                         goto unlock;
3763         }
3764         zero_user(page, offset, length);
3765         BUFFER_TRACE(bh, "zeroed end of block");
3766
3767         if (ext4_should_journal_data(inode)) {
3768                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3769         } else {
3770                 err = 0;
3771                 mark_buffer_dirty(bh);
3772                 if (ext4_should_order_data(inode))
3773                         err = ext4_jbd2_inode_add_write(handle, inode, from,
3774                                         length);
3775         }
3776
3777 unlock:
3778         unlock_page(page);
3779         put_page(page);
3780         return err;
3781 }
3782
3783 /*
3784  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3785  * starting from file offset 'from'.  The range to be zero'd must
3786  * be contained with in one block.  If the specified range exceeds
3787  * the end of the block it will be shortened to end of the block
3788  * that corresponds to 'from'
3789  */
3790 static int ext4_block_zero_page_range(handle_t *handle,
3791                 struct address_space *mapping, loff_t from, loff_t length)
3792 {
3793         struct inode *inode = mapping->host;
3794         unsigned offset = from & (PAGE_SIZE-1);
3795         unsigned blocksize = inode->i_sb->s_blocksize;
3796         unsigned max = blocksize - (offset & (blocksize - 1));
3797
3798         /*
3799          * correct length if it does not fall between
3800          * 'from' and the end of the block
3801          */
3802         if (length > max || length < 0)
3803                 length = max;
3804
3805         if (IS_DAX(inode)) {
3806                 return dax_zero_range(inode, from, length, NULL,
3807                                       &ext4_iomap_ops);
3808         }
3809         return __ext4_block_zero_page_range(handle, mapping, from, length);
3810 }
3811
3812 /*
3813  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3814  * up to the end of the block which corresponds to `from'.
3815  * This required during truncate. We need to physically zero the tail end
3816  * of that block so it doesn't yield old data if the file is later grown.
3817  */
3818 static int ext4_block_truncate_page(handle_t *handle,
3819                 struct address_space *mapping, loff_t from)
3820 {
3821         unsigned offset = from & (PAGE_SIZE-1);
3822         unsigned length;
3823         unsigned blocksize;
3824         struct inode *inode = mapping->host;
3825
3826         /* If we are processing an encrypted inode during orphan list handling */
3827         if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3828                 return 0;
3829
3830         blocksize = inode->i_sb->s_blocksize;
3831         length = blocksize - (offset & (blocksize - 1));
3832
3833         return ext4_block_zero_page_range(handle, mapping, from, length);
3834 }
3835
3836 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3837                              loff_t lstart, loff_t length)
3838 {
3839         struct super_block *sb = inode->i_sb;
3840         struct address_space *mapping = inode->i_mapping;
3841         unsigned partial_start, partial_end;
3842         ext4_fsblk_t start, end;
3843         loff_t byte_end = (lstart + length - 1);
3844         int err = 0;
3845
3846         partial_start = lstart & (sb->s_blocksize - 1);
3847         partial_end = byte_end & (sb->s_blocksize - 1);
3848
3849         start = lstart >> sb->s_blocksize_bits;
3850         end = byte_end >> sb->s_blocksize_bits;
3851
3852         /* Handle partial zero within the single block */
3853         if (start == end &&
3854             (partial_start || (partial_end != sb->s_blocksize - 1))) {
3855                 err = ext4_block_zero_page_range(handle, mapping,
3856                                                  lstart, length);
3857                 return err;
3858         }
3859         /* Handle partial zero out on the start of the range */
3860         if (partial_start) {
3861                 err = ext4_block_zero_page_range(handle, mapping,
3862                                                  lstart, sb->s_blocksize);
3863                 if (err)
3864                         return err;
3865         }
3866         /* Handle partial zero out on the end of the range */
3867         if (partial_end != sb->s_blocksize - 1)
3868                 err = ext4_block_zero_page_range(handle, mapping,
3869                                                  byte_end - partial_end,
3870                                                  partial_end + 1);
3871         return err;
3872 }
3873
3874 int ext4_can_truncate(struct inode *inode)
3875 {
3876         if (S_ISREG(inode->i_mode))
3877                 return 1;
3878         if (S_ISDIR(inode->i_mode))
3879                 return 1;
3880         if (S_ISLNK(inode->i_mode))
3881                 return !ext4_inode_is_fast_symlink(inode);
3882         return 0;
3883 }
3884
3885 /*
3886  * We have to make sure i_disksize gets properly updated before we truncate
3887  * page cache due to hole punching or zero range. Otherwise i_disksize update
3888  * can get lost as it may have been postponed to submission of writeback but
3889  * that will never happen after we truncate page cache.
3890  */
3891 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3892                                       loff_t len)
3893 {
3894         handle_t *handle;
3895         int ret;
3896
3897         loff_t size = i_size_read(inode);
3898
3899         WARN_ON(!inode_is_locked(inode));
3900         if (offset > size || offset + len < size)
3901                 return 0;
3902
3903         if (EXT4_I(inode)->i_disksize >= size)
3904                 return 0;
3905
3906         handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3907         if (IS_ERR(handle))
3908                 return PTR_ERR(handle);
3909         ext4_update_i_disksize(inode, size);
3910         ret = ext4_mark_inode_dirty(handle, inode);
3911         ext4_journal_stop(handle);
3912
3913         return ret;
3914 }
3915
3916 static void ext4_wait_dax_page(struct inode *inode)
3917 {
3918         filemap_invalidate_unlock(inode->i_mapping);
3919         schedule();
3920         filemap_invalidate_lock(inode->i_mapping);
3921 }
3922
3923 int ext4_break_layouts(struct inode *inode)
3924 {
3925         struct page *page;
3926         int error;
3927
3928         if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock)))
3929                 return -EINVAL;
3930
3931         do {
3932                 page = dax_layout_busy_page(inode->i_mapping);
3933                 if (!page)
3934                         return 0;
3935
3936                 error = ___wait_var_event(&page->_refcount,
3937                                 atomic_read(&page->_refcount) == 1,
3938                                 TASK_INTERRUPTIBLE, 0, 0,
3939                                 ext4_wait_dax_page(inode));
3940         } while (error == 0);
3941
3942         return error;
3943 }
3944
3945 /*
3946  * ext4_punch_hole: punches a hole in a file by releasing the blocks
3947  * associated with the given offset and length
3948  *
3949  * @inode:  File inode
3950  * @offset: The offset where the hole will begin
3951  * @len:    The length of the hole
3952  *
3953  * Returns: 0 on success or negative on failure
3954  */
3955
3956 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3957 {
3958         struct inode *inode = file_inode(file);
3959         struct super_block *sb = inode->i_sb;
3960         ext4_lblk_t first_block, stop_block;
3961         struct address_space *mapping = inode->i_mapping;
3962         loff_t first_block_offset, last_block_offset, max_length;
3963         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3964         handle_t *handle;
3965         unsigned int credits;
3966         int ret = 0, ret2 = 0;
3967
3968         trace_ext4_punch_hole(inode, offset, length, 0);
3969
3970         ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
3971         if (ext4_has_inline_data(inode)) {
3972                 filemap_invalidate_lock(mapping);
3973                 ret = ext4_convert_inline_data(inode);
3974                 filemap_invalidate_unlock(mapping);
3975                 if (ret)
3976                         return ret;
3977         }
3978
3979         /*
3980          * Write out all dirty pages to avoid race conditions
3981          * Then release them.
3982          */
3983         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3984                 ret = filemap_write_and_wait_range(mapping, offset,
3985                                                    offset + length - 1);
3986                 if (ret)
3987                         return ret;
3988         }
3989
3990         inode_lock(inode);
3991
3992         /* No need to punch hole beyond i_size */
3993         if (offset >= inode->i_size)
3994                 goto out_mutex;
3995
3996         /*
3997          * If the hole extends beyond i_size, set the hole
3998          * to end after the page that contains i_size
3999          */
4000         if (offset + length > inode->i_size) {
4001                 length = inode->i_size +
4002                    PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4003                    offset;
4004         }
4005
4006         /*
4007          * For punch hole the length + offset needs to be within one block
4008          * before last range. Adjust the length if it goes beyond that limit.
4009          */
4010         max_length = sbi->s_bitmap_maxbytes - inode->i_sb->s_blocksize;
4011         if (offset + length > max_length)
4012                 length = max_length - offset;
4013
4014         if (offset & (sb->s_blocksize - 1) ||
4015             (offset + length) & (sb->s_blocksize - 1)) {
4016                 /*
4017                  * Attach jinode to inode for jbd2 if we do any zeroing of
4018                  * partial block
4019                  */
4020                 ret = ext4_inode_attach_jinode(inode);
4021                 if (ret < 0)
4022                         goto out_mutex;
4023
4024         }
4025
4026         /* Wait all existing dio workers, newcomers will block on i_rwsem */
4027         inode_dio_wait(inode);
4028
4029         ret = file_modified(file);
4030         if (ret)
4031                 goto out_mutex;
4032
4033         /*
4034          * Prevent page faults from reinstantiating pages we have released from
4035          * page cache.
4036          */
4037         filemap_invalidate_lock(mapping);
4038
4039         ret = ext4_break_layouts(inode);
4040         if (ret)
4041                 goto out_dio;
4042
4043         first_block_offset = round_up(offset, sb->s_blocksize);
4044         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4045
4046         /* Now release the pages and zero block aligned part of pages*/
4047         if (last_block_offset > first_block_offset) {
4048                 ret = ext4_update_disksize_before_punch(inode, offset, length);
4049                 if (ret)
4050                         goto out_dio;
4051                 truncate_pagecache_range(inode, first_block_offset,
4052                                          last_block_offset);
4053         }
4054
4055         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4056                 credits = ext4_writepage_trans_blocks(inode);
4057         else
4058                 credits = ext4_blocks_for_truncate(inode);
4059         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4060         if (IS_ERR(handle)) {
4061                 ret = PTR_ERR(handle);
4062                 ext4_std_error(sb, ret);
4063                 goto out_dio;
4064         }
4065
4066         ret = ext4_zero_partial_blocks(handle, inode, offset,
4067                                        length);
4068         if (ret)
4069                 goto out_stop;
4070
4071         first_block = (offset + sb->s_blocksize - 1) >>
4072                 EXT4_BLOCK_SIZE_BITS(sb);
4073         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4074
4075         /* If there are blocks to remove, do it */
4076         if (stop_block > first_block) {
4077
4078                 down_write(&EXT4_I(inode)->i_data_sem);
4079                 ext4_discard_preallocations(inode, 0);
4080
4081                 ret = ext4_es_remove_extent(inode, first_block,
4082                                             stop_block - first_block);
4083                 if (ret) {
4084                         up_write(&EXT4_I(inode)->i_data_sem);
4085                         goto out_stop;
4086                 }
4087
4088                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4089                         ret = ext4_ext_remove_space(inode, first_block,
4090                                                     stop_block - 1);
4091                 else
4092                         ret = ext4_ind_remove_space(handle, inode, first_block,
4093                                                     stop_block);
4094
4095                 up_write(&EXT4_I(inode)->i_data_sem);
4096         }
4097         ext4_fc_track_range(handle, inode, first_block, stop_block);
4098         if (IS_SYNC(inode))
4099                 ext4_handle_sync(handle);
4100
4101         inode->i_mtime = inode->i_ctime = current_time(inode);
4102         ret2 = ext4_mark_inode_dirty(handle, inode);
4103         if (unlikely(ret2))
4104                 ret = ret2;
4105         if (ret >= 0)
4106                 ext4_update_inode_fsync_trans(handle, inode, 1);
4107 out_stop:
4108         ext4_journal_stop(handle);
4109 out_dio:
4110         filemap_invalidate_unlock(mapping);
4111 out_mutex:
4112         inode_unlock(inode);
4113         return ret;
4114 }
4115
4116 int ext4_inode_attach_jinode(struct inode *inode)
4117 {
4118         struct ext4_inode_info *ei = EXT4_I(inode);
4119         struct jbd2_inode *jinode;
4120
4121         if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4122                 return 0;
4123
4124         jinode = jbd2_alloc_inode(GFP_KERNEL);
4125         spin_lock(&inode->i_lock);
4126         if (!ei->jinode) {
4127                 if (!jinode) {
4128                         spin_unlock(&inode->i_lock);
4129                         return -ENOMEM;
4130                 }
4131                 ei->jinode = jinode;
4132                 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4133                 jinode = NULL;
4134         }
4135         spin_unlock(&inode->i_lock);
4136         if (unlikely(jinode != NULL))
4137                 jbd2_free_inode(jinode);
4138         return 0;
4139 }
4140
4141 /*
4142  * ext4_truncate()
4143  *
4144  * We block out ext4_get_block() block instantiations across the entire
4145  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4146  * simultaneously on behalf of the same inode.
4147  *
4148  * As we work through the truncate and commit bits of it to the journal there
4149  * is one core, guiding principle: the file's tree must always be consistent on
4150  * disk.  We must be able to restart the truncate after a crash.
4151  *
4152  * The file's tree may be transiently inconsistent in memory (although it
4153  * probably isn't), but whenever we close off and commit a journal transaction,
4154  * the contents of (the filesystem + the journal) must be consistent and
4155  * restartable.  It's pretty simple, really: bottom up, right to left (although
4156  * left-to-right works OK too).
4157  *
4158  * Note that at recovery time, journal replay occurs *before* the restart of
4159  * truncate against the orphan inode list.
4160  *
4161  * The committed inode has the new, desired i_size (which is the same as
4162  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4163  * that this inode's truncate did not complete and it will again call
4164  * ext4_truncate() to have another go.  So there will be instantiated blocks
4165  * to the right of the truncation point in a crashed ext4 filesystem.  But
4166  * that's fine - as long as they are linked from the inode, the post-crash
4167  * ext4_truncate() run will find them and release them.
4168  */
4169 int ext4_truncate(struct inode *inode)
4170 {
4171         struct ext4_inode_info *ei = EXT4_I(inode);
4172         unsigned int credits;
4173         int err = 0, err2;
4174         handle_t *handle;
4175         struct address_space *mapping = inode->i_mapping;
4176
4177         /*
4178          * There is a possibility that we're either freeing the inode
4179          * or it's a completely new inode. In those cases we might not
4180          * have i_rwsem locked because it's not necessary.
4181          */
4182         if (!(inode->i_state & (I_NEW|I_FREEING)))
4183                 WARN_ON(!inode_is_locked(inode));
4184         trace_ext4_truncate_enter(inode);
4185
4186         if (!ext4_can_truncate(inode))
4187                 goto out_trace;
4188
4189         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4190                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4191
4192         if (ext4_has_inline_data(inode)) {
4193                 int has_inline = 1;
4194
4195                 err = ext4_inline_data_truncate(inode, &has_inline);
4196                 if (err || has_inline)
4197                         goto out_trace;
4198         }
4199
4200         /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4201         if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4202                 if (ext4_inode_attach_jinode(inode) < 0)
4203                         goto out_trace;
4204         }
4205
4206         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4207                 credits = ext4_writepage_trans_blocks(inode);
4208         else
4209                 credits = ext4_blocks_for_truncate(inode);
4210
4211         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4212         if (IS_ERR(handle)) {
4213                 err = PTR_ERR(handle);
4214                 goto out_trace;
4215         }
4216
4217         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4218                 ext4_block_truncate_page(handle, mapping, inode->i_size);
4219
4220         /*
4221          * We add the inode to the orphan list, so that if this
4222          * truncate spans multiple transactions, and we crash, we will
4223          * resume the truncate when the filesystem recovers.  It also
4224          * marks the inode dirty, to catch the new size.
4225          *
4226          * Implication: the file must always be in a sane, consistent
4227          * truncatable state while each transaction commits.
4228          */
4229         err = ext4_orphan_add(handle, inode);
4230         if (err)
4231                 goto out_stop;
4232
4233         down_write(&EXT4_I(inode)->i_data_sem);
4234
4235         ext4_discard_preallocations(inode, 0);
4236
4237         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4238                 err = ext4_ext_truncate(handle, inode);
4239         else
4240                 ext4_ind_truncate(handle, inode);
4241
4242         up_write(&ei->i_data_sem);
4243         if (err)
4244                 goto out_stop;
4245
4246         if (IS_SYNC(inode))
4247                 ext4_handle_sync(handle);
4248
4249 out_stop:
4250         /*
4251          * If this was a simple ftruncate() and the file will remain alive,
4252          * then we need to clear up the orphan record which we created above.
4253          * However, if this was a real unlink then we were called by
4254          * ext4_evict_inode(), and we allow that function to clean up the
4255          * orphan info for us.
4256          */
4257         if (inode->i_nlink)
4258                 ext4_orphan_del(handle, inode);
4259
4260         inode->i_mtime = inode->i_ctime = current_time(inode);
4261         err2 = ext4_mark_inode_dirty(handle, inode);
4262         if (unlikely(err2 && !err))
4263                 err = err2;
4264         ext4_journal_stop(handle);
4265
4266 out_trace:
4267         trace_ext4_truncate_exit(inode);
4268         return err;
4269 }
4270
4271 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4272 {
4273         if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4274                 return inode_peek_iversion_raw(inode);
4275         else
4276                 return inode_peek_iversion(inode);
4277 }
4278
4279 static int ext4_inode_blocks_set(struct ext4_inode *raw_inode,
4280                                  struct ext4_inode_info *ei)
4281 {
4282         struct inode *inode = &(ei->vfs_inode);
4283         u64 i_blocks = READ_ONCE(inode->i_blocks);
4284         struct super_block *sb = inode->i_sb;
4285
4286         if (i_blocks <= ~0U) {
4287                 /*
4288                  * i_blocks can be represented in a 32 bit variable
4289                  * as multiple of 512 bytes
4290                  */
4291                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4292                 raw_inode->i_blocks_high = 0;
4293                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4294                 return 0;
4295         }
4296
4297         /*
4298          * This should never happen since sb->s_maxbytes should not have
4299          * allowed this, sb->s_maxbytes was set according to the huge_file
4300          * feature in ext4_fill_super().
4301          */
4302         if (!ext4_has_feature_huge_file(sb))
4303                 return -EFSCORRUPTED;
4304
4305         if (i_blocks <= 0xffffffffffffULL) {
4306                 /*
4307                  * i_blocks can be represented in a 48 bit variable
4308                  * as multiple of 512 bytes
4309                  */
4310                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4311                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4312                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4313         } else {
4314                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4315                 /* i_block is stored in file system block size */
4316                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4317                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4318                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4319         }
4320         return 0;
4321 }
4322
4323 static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode)
4324 {
4325         struct ext4_inode_info *ei = EXT4_I(inode);
4326         uid_t i_uid;
4327         gid_t i_gid;
4328         projid_t i_projid;
4329         int block;
4330         int err;
4331
4332         err = ext4_inode_blocks_set(raw_inode, ei);
4333
4334         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4335         i_uid = i_uid_read(inode);
4336         i_gid = i_gid_read(inode);
4337         i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4338         if (!(test_opt(inode->i_sb, NO_UID32))) {
4339                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4340                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4341                 /*
4342                  * Fix up interoperability with old kernels. Otherwise,
4343                  * old inodes get re-used with the upper 16 bits of the
4344                  * uid/gid intact.
4345                  */
4346                 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4347                         raw_inode->i_uid_high = 0;
4348                         raw_inode->i_gid_high = 0;
4349                 } else {
4350                         raw_inode->i_uid_high =
4351                                 cpu_to_le16(high_16_bits(i_uid));
4352                         raw_inode->i_gid_high =
4353                                 cpu_to_le16(high_16_bits(i_gid));
4354                 }
4355         } else {
4356                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4357                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4358                 raw_inode->i_uid_high = 0;
4359                 raw_inode->i_gid_high = 0;
4360         }
4361         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4362
4363         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4364         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4365         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4366         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4367
4368         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4369         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4370         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4371                 raw_inode->i_file_acl_high =
4372                         cpu_to_le16(ei->i_file_acl >> 32);
4373         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4374         ext4_isize_set(raw_inode, ei->i_disksize);
4375
4376         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4377         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4378                 if (old_valid_dev(inode->i_rdev)) {
4379                         raw_inode->i_block[0] =
4380                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4381                         raw_inode->i_block[1] = 0;
4382                 } else {
4383                         raw_inode->i_block[0] = 0;
4384                         raw_inode->i_block[1] =
4385                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4386                         raw_inode->i_block[2] = 0;
4387                 }
4388         } else if (!ext4_has_inline_data(inode)) {
4389                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4390                         raw_inode->i_block[block] = ei->i_data[block];
4391         }
4392
4393         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4394                 u64 ivers = ext4_inode_peek_iversion(inode);
4395
4396                 raw_inode->i_disk_version = cpu_to_le32(ivers);
4397                 if (ei->i_extra_isize) {
4398                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4399                                 raw_inode->i_version_hi =
4400                                         cpu_to_le32(ivers >> 32);
4401                         raw_inode->i_extra_isize =
4402                                 cpu_to_le16(ei->i_extra_isize);
4403                 }
4404         }
4405
4406         if (i_projid != EXT4_DEF_PROJID &&
4407             !ext4_has_feature_project(inode->i_sb))
4408                 err = err ?: -EFSCORRUPTED;
4409
4410         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4411             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4412                 raw_inode->i_projid = cpu_to_le32(i_projid);
4413
4414         ext4_inode_csum_set(inode, raw_inode, ei);
4415         return err;
4416 }
4417
4418 /*
4419  * ext4_get_inode_loc returns with an extra refcount against the inode's
4420  * underlying buffer_head on success. If we pass 'inode' and it does not
4421  * have in-inode xattr, we have all inode data in memory that is needed
4422  * to recreate the on-disk version of this inode.
4423  */
4424 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino,
4425                                 struct inode *inode, struct ext4_iloc *iloc,
4426                                 ext4_fsblk_t *ret_block)
4427 {
4428         struct ext4_group_desc  *gdp;
4429         struct buffer_head      *bh;
4430         ext4_fsblk_t            block;
4431         struct blk_plug         plug;
4432         int                     inodes_per_block, inode_offset;
4433
4434         iloc->bh = NULL;
4435         if (ino < EXT4_ROOT_INO ||
4436             ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4437                 return -EFSCORRUPTED;
4438
4439         iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
4440         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4441         if (!gdp)
4442                 return -EIO;
4443
4444         /*
4445          * Figure out the offset within the block group inode table
4446          */
4447         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4448         inode_offset = ((ino - 1) %
4449                         EXT4_INODES_PER_GROUP(sb));
4450         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4451         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4452
4453         bh = sb_getblk(sb, block);
4454         if (unlikely(!bh))
4455                 return -ENOMEM;
4456         if (ext4_buffer_uptodate(bh))
4457                 goto has_buffer;
4458
4459         lock_buffer(bh);
4460         if (ext4_buffer_uptodate(bh)) {
4461                 /* Someone brought it uptodate while we waited */
4462                 unlock_buffer(bh);
4463                 goto has_buffer;
4464         }
4465
4466         /*
4467          * If we have all information of the inode in memory and this
4468          * is the only valid inode in the block, we need not read the
4469          * block.
4470          */
4471         if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4472                 struct buffer_head *bitmap_bh;
4473                 int i, start;
4474
4475                 start = inode_offset & ~(inodes_per_block - 1);
4476
4477                 /* Is the inode bitmap in cache? */
4478                 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4479                 if (unlikely(!bitmap_bh))
4480                         goto make_io;
4481
4482                 /*
4483                  * If the inode bitmap isn't in cache then the
4484                  * optimisation may end up performing two reads instead
4485                  * of one, so skip it.
4486                  */
4487                 if (!buffer_uptodate(bitmap_bh)) {
4488                         brelse(bitmap_bh);
4489                         goto make_io;
4490                 }
4491                 for (i = start; i < start + inodes_per_block; i++) {
4492                         if (i == inode_offset)
4493                                 continue;
4494                         if (ext4_test_bit(i, bitmap_bh->b_data))
4495                                 break;
4496                 }
4497                 brelse(bitmap_bh);
4498                 if (i == start + inodes_per_block) {
4499                         struct ext4_inode *raw_inode =
4500                                 (struct ext4_inode *) (bh->b_data + iloc->offset);
4501
4502                         /* all other inodes are free, so skip I/O */
4503                         memset(bh->b_data, 0, bh->b_size);
4504                         if (!ext4_test_inode_state(inode, EXT4_STATE_NEW))
4505                                 ext4_fill_raw_inode(inode, raw_inode);
4506                         set_buffer_uptodate(bh);
4507                         unlock_buffer(bh);
4508                         goto has_buffer;
4509                 }
4510         }
4511
4512 make_io:
4513         /*
4514          * If we need to do any I/O, try to pre-readahead extra
4515          * blocks from the inode table.
4516          */
4517         blk_start_plug(&plug);
4518         if (EXT4_SB(sb)->s_inode_readahead_blks) {
4519                 ext4_fsblk_t b, end, table;
4520                 unsigned num;
4521                 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4522
4523                 table = ext4_inode_table(sb, gdp);
4524                 /* s_inode_readahead_blks is always a power of 2 */
4525                 b = block & ~((ext4_fsblk_t) ra_blks - 1);
4526                 if (table > b)
4527                         b = table;
4528                 end = b + ra_blks;
4529                 num = EXT4_INODES_PER_GROUP(sb);
4530                 if (ext4_has_group_desc_csum(sb))
4531                         num -= ext4_itable_unused_count(sb, gdp);
4532                 table += num / inodes_per_block;
4533                 if (end > table)
4534                         end = table;
4535                 while (b <= end)
4536                         ext4_sb_breadahead_unmovable(sb, b++);
4537         }
4538
4539         /*
4540          * There are other valid inodes in the buffer, this inode
4541          * has in-inode xattrs, or we don't have this inode in memory.
4542          * Read the block from disk.
4543          */
4544         trace_ext4_load_inode(sb, ino);
4545         ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL);
4546         blk_finish_plug(&plug);
4547         wait_on_buffer(bh);
4548         ext4_simulate_fail_bh(sb, bh, EXT4_SIM_INODE_EIO);
4549         if (!buffer_uptodate(bh)) {
4550                 if (ret_block)
4551                         *ret_block = block;
4552                 brelse(bh);
4553                 return -EIO;
4554         }
4555 has_buffer:
4556         iloc->bh = bh;
4557         return 0;
4558 }
4559
4560 static int __ext4_get_inode_loc_noinmem(struct inode *inode,
4561                                         struct ext4_iloc *iloc)
4562 {
4563         ext4_fsblk_t err_blk = 0;
4564         int ret;
4565
4566         ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc,
4567                                         &err_blk);
4568
4569         if (ret == -EIO)
4570                 ext4_error_inode_block(inode, err_blk, EIO,
4571                                         "unable to read itable block");
4572
4573         return ret;
4574 }
4575
4576 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4577 {
4578         ext4_fsblk_t err_blk = 0;
4579         int ret;
4580
4581         ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc,
4582                                         &err_blk);
4583
4584         if (ret == -EIO)
4585                 ext4_error_inode_block(inode, err_blk, EIO,
4586                                         "unable to read itable block");
4587
4588         return ret;
4589 }
4590
4591
4592 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino,
4593                           struct ext4_iloc *iloc)
4594 {
4595         return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL);
4596 }
4597
4598 static bool ext4_should_enable_dax(struct inode *inode)
4599 {
4600         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4601
4602         if (test_opt2(inode->i_sb, DAX_NEVER))
4603                 return false;
4604         if (!S_ISREG(inode->i_mode))
4605                 return false;
4606         if (ext4_should_journal_data(inode))
4607                 return false;
4608         if (ext4_has_inline_data(inode))
4609                 return false;
4610         if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4611                 return false;
4612         if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4613                 return false;
4614         if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4615                 return false;
4616         if (test_opt(inode->i_sb, DAX_ALWAYS))
4617                 return true;
4618
4619         return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
4620 }
4621
4622 void ext4_set_inode_flags(struct inode *inode, bool init)
4623 {
4624         unsigned int flags = EXT4_I(inode)->i_flags;
4625         unsigned int new_fl = 0;
4626
4627         WARN_ON_ONCE(IS_DAX(inode) && init);
4628
4629         if (flags & EXT4_SYNC_FL)
4630                 new_fl |= S_SYNC;
4631         if (flags & EXT4_APPEND_FL)
4632                 new_fl |= S_APPEND;
4633         if (flags & EXT4_IMMUTABLE_FL)
4634                 new_fl |= S_IMMUTABLE;
4635         if (flags & EXT4_NOATIME_FL)
4636                 new_fl |= S_NOATIME;
4637         if (flags & EXT4_DIRSYNC_FL)
4638                 new_fl |= S_DIRSYNC;
4639
4640         /* Because of the way inode_set_flags() works we must preserve S_DAX
4641          * here if already set. */
4642         new_fl |= (inode->i_flags & S_DAX);
4643         if (init && ext4_should_enable_dax(inode))
4644                 new_fl |= S_DAX;
4645
4646         if (flags & EXT4_ENCRYPT_FL)
4647                 new_fl |= S_ENCRYPTED;
4648         if (flags & EXT4_CASEFOLD_FL)
4649                 new_fl |= S_CASEFOLD;
4650         if (flags & EXT4_VERITY_FL)
4651                 new_fl |= S_VERITY;
4652         inode_set_flags(inode, new_fl,
4653                         S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4654                         S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4655 }
4656
4657 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4658                                   struct ext4_inode_info *ei)
4659 {
4660         blkcnt_t i_blocks ;
4661         struct inode *inode = &(ei->vfs_inode);
4662         struct super_block *sb = inode->i_sb;
4663
4664         if (ext4_has_feature_huge_file(sb)) {
4665                 /* we are using combined 48 bit field */
4666                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4667                                         le32_to_cpu(raw_inode->i_blocks_lo);
4668                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4669                         /* i_blocks represent file system block size */
4670                         return i_blocks  << (inode->i_blkbits - 9);
4671                 } else {
4672                         return i_blocks;
4673                 }
4674         } else {
4675                 return le32_to_cpu(raw_inode->i_blocks_lo);
4676         }
4677 }
4678
4679 static inline int ext4_iget_extra_inode(struct inode *inode,
4680                                          struct ext4_inode *raw_inode,
4681                                          struct ext4_inode_info *ei)
4682 {
4683         __le32 *magic = (void *)raw_inode +
4684                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4685
4686         if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4687             EXT4_INODE_SIZE(inode->i_sb) &&
4688             *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4689                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4690                 return ext4_find_inline_data_nolock(inode);
4691         } else
4692                 EXT4_I(inode)->i_inline_off = 0;
4693         return 0;
4694 }
4695
4696 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4697 {
4698         if (!ext4_has_feature_project(inode->i_sb))
4699                 return -EOPNOTSUPP;
4700         *projid = EXT4_I(inode)->i_projid;
4701         return 0;
4702 }
4703
4704 /*
4705  * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4706  * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4707  * set.
4708  */
4709 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4710 {
4711         if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4712                 inode_set_iversion_raw(inode, val);
4713         else
4714                 inode_set_iversion_queried(inode, val);
4715 }
4716
4717 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4718                           ext4_iget_flags flags, const char *function,
4719                           unsigned int line)
4720 {
4721         struct ext4_iloc iloc;
4722         struct ext4_inode *raw_inode;
4723         struct ext4_inode_info *ei;
4724         struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4725         struct inode *inode;
4726         journal_t *journal = EXT4_SB(sb)->s_journal;
4727         long ret;
4728         loff_t size;
4729         int block;
4730         uid_t i_uid;
4731         gid_t i_gid;
4732         projid_t i_projid;
4733
4734         if ((!(flags & EXT4_IGET_SPECIAL) &&
4735              ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) ||
4736               ino == le32_to_cpu(es->s_usr_quota_inum) ||
4737               ino == le32_to_cpu(es->s_grp_quota_inum) ||
4738               ino == le32_to_cpu(es->s_prj_quota_inum) ||
4739               ino == le32_to_cpu(es->s_orphan_file_inum))) ||
4740             (ino < EXT4_ROOT_INO) ||
4741             (ino > le32_to_cpu(es->s_inodes_count))) {
4742                 if (flags & EXT4_IGET_HANDLE)
4743                         return ERR_PTR(-ESTALE);
4744                 __ext4_error(sb, function, line, false, EFSCORRUPTED, 0,
4745                              "inode #%lu: comm %s: iget: illegal inode #",
4746                              ino, current->comm);
4747                 return ERR_PTR(-EFSCORRUPTED);
4748         }
4749
4750         inode = iget_locked(sb, ino);
4751         if (!inode)
4752                 return ERR_PTR(-ENOMEM);
4753         if (!(inode->i_state & I_NEW))
4754                 return inode;
4755
4756         ei = EXT4_I(inode);
4757         iloc.bh = NULL;
4758
4759         ret = __ext4_get_inode_loc_noinmem(inode, &iloc);
4760         if (ret < 0)
4761                 goto bad_inode;
4762         raw_inode = ext4_raw_inode(&iloc);
4763
4764         if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4765                 ext4_error_inode(inode, function, line, 0,
4766                                  "iget: root inode unallocated");
4767                 ret = -EFSCORRUPTED;
4768                 goto bad_inode;
4769         }
4770
4771         if ((flags & EXT4_IGET_HANDLE) &&
4772             (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4773                 ret = -ESTALE;
4774                 goto bad_inode;
4775         }
4776
4777         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4778                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4779                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4780                         EXT4_INODE_SIZE(inode->i_sb) ||
4781                     (ei->i_extra_isize & 3)) {
4782                         ext4_error_inode(inode, function, line, 0,
4783                                          "iget: bad extra_isize %u "
4784                                          "(inode size %u)",
4785                                          ei->i_extra_isize,
4786                                          EXT4_INODE_SIZE(inode->i_sb));
4787                         ret = -EFSCORRUPTED;
4788                         goto bad_inode;
4789                 }
4790         } else
4791                 ei->i_extra_isize = 0;
4792
4793         /* Precompute checksum seed for inode metadata */
4794         if (ext4_has_metadata_csum(sb)) {
4795                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4796                 __u32 csum;
4797                 __le32 inum = cpu_to_le32(inode->i_ino);
4798                 __le32 gen = raw_inode->i_generation;
4799                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4800                                    sizeof(inum));
4801                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4802                                               sizeof(gen));
4803         }
4804
4805         if ((!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4806             ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) &&
4807              (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) {
4808                 ext4_error_inode_err(inode, function, line, 0,
4809                                 EFSBADCRC, "iget: checksum invalid");
4810                 ret = -EFSBADCRC;
4811                 goto bad_inode;
4812         }
4813
4814         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4815         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4816         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4817         if (ext4_has_feature_project(sb) &&
4818             EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4819             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4820                 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4821         else
4822                 i_projid = EXT4_DEF_PROJID;
4823
4824         if (!(test_opt(inode->i_sb, NO_UID32))) {
4825                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4826                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4827         }
4828         i_uid_write(inode, i_uid);
4829         i_gid_write(inode, i_gid);
4830         ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4831         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4832
4833         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4834         ei->i_inline_off = 0;
4835         ei->i_dir_start_lookup = 0;
4836         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4837         /* We now have enough fields to check if the inode was active or not.
4838          * This is needed because nfsd might try to access dead inodes
4839          * the test is that same one that e2fsck uses
4840          * NeilBrown 1999oct15
4841          */
4842         if (inode->i_nlink == 0) {
4843                 if ((inode->i_mode == 0 ||
4844                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4845                     ino != EXT4_BOOT_LOADER_INO) {
4846                         /* this inode is deleted */
4847                         ret = -ESTALE;
4848                         goto bad_inode;
4849                 }
4850                 /* The only unlinked inodes we let through here have
4851                  * valid i_mode and are being read by the orphan
4852                  * recovery code: that's fine, we're about to complete
4853                  * the process of deleting those.
4854                  * OR it is the EXT4_BOOT_LOADER_INO which is
4855                  * not initialized on a new filesystem. */
4856         }
4857         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4858         ext4_set_inode_flags(inode, true);
4859         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4860         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4861         if (ext4_has_feature_64bit(sb))
4862                 ei->i_file_acl |=
4863                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4864         inode->i_size = ext4_isize(sb, raw_inode);
4865         if ((size = i_size_read(inode)) < 0) {
4866                 ext4_error_inode(inode, function, line, 0,
4867                                  "iget: bad i_size value: %lld", size);
4868                 ret = -EFSCORRUPTED;
4869                 goto bad_inode;
4870         }
4871         /*
4872          * If dir_index is not enabled but there's dir with INDEX flag set,
4873          * we'd normally treat htree data as empty space. But with metadata
4874          * checksumming that corrupts checksums so forbid that.
4875          */
4876         if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4877             ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4878                 ext4_error_inode(inode, function, line, 0,
4879                          "iget: Dir with htree data on filesystem without dir_index feature.");
4880                 ret = -EFSCORRUPTED;
4881                 goto bad_inode;
4882         }
4883         ei->i_disksize = inode->i_size;
4884 #ifdef CONFIG_QUOTA
4885         ei->i_reserved_quota = 0;
4886 #endif
4887         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4888         ei->i_block_group = iloc.block_group;
4889         ei->i_last_alloc_group = ~0;
4890         /*
4891          * NOTE! The in-memory inode i_data array is in little-endian order
4892          * even on big-endian machines: we do NOT byteswap the block numbers!
4893          */
4894         for (block = 0; block < EXT4_N_BLOCKS; block++)
4895                 ei->i_data[block] = raw_inode->i_block[block];
4896         INIT_LIST_HEAD(&ei->i_orphan);
4897         ext4_fc_init_inode(&ei->vfs_inode);
4898
4899         /*
4900          * Set transaction id's of transactions that have to be committed
4901          * to finish f[data]sync. We set them to currently running transaction
4902          * as we cannot be sure that the inode or some of its metadata isn't
4903          * part of the transaction - the inode could have been reclaimed and
4904          * now it is reread from disk.
4905          */
4906         if (journal) {
4907                 transaction_t *transaction;
4908                 tid_t tid;
4909
4910                 read_lock(&journal->j_state_lock);
4911                 if (journal->j_running_transaction)
4912                         transaction = journal->j_running_transaction;
4913                 else
4914                         transaction = journal->j_committing_transaction;
4915                 if (transaction)
4916                         tid = transaction->t_tid;
4917                 else
4918                         tid = journal->j_commit_sequence;
4919                 read_unlock(&journal->j_state_lock);
4920                 ei->i_sync_tid = tid;
4921                 ei->i_datasync_tid = tid;
4922         }
4923
4924         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4925                 if (ei->i_extra_isize == 0) {
4926                         /* The extra space is currently unused. Use it. */
4927                         BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4928                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4929                                             EXT4_GOOD_OLD_INODE_SIZE;
4930                 } else {
4931                         ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4932                         if (ret)
4933                                 goto bad_inode;
4934                 }
4935         }
4936
4937         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4938         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4939         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4940         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4941
4942         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4943                 u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4944
4945                 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4946                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4947                                 ivers |=
4948                     (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4949                 }
4950                 ext4_inode_set_iversion_queried(inode, ivers);
4951         }
4952
4953         ret = 0;
4954         if (ei->i_file_acl &&
4955             !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
4956                 ext4_error_inode(inode, function, line, 0,
4957                                  "iget: bad extended attribute block %llu",
4958                                  ei->i_file_acl);
4959                 ret = -EFSCORRUPTED;
4960                 goto bad_inode;
4961         } else if (!ext4_has_inline_data(inode)) {
4962                 /* validate the block references in the inode */
4963                 if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) &&
4964                         (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4965                         (S_ISLNK(inode->i_mode) &&
4966                         !ext4_inode_is_fast_symlink(inode)))) {
4967                         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4968                                 ret = ext4_ext_check_inode(inode);
4969                         else
4970                                 ret = ext4_ind_check_inode(inode);
4971                 }
4972         }
4973         if (ret)
4974                 goto bad_inode;
4975
4976         if (S_ISREG(inode->i_mode)) {
4977                 inode->i_op = &ext4_file_inode_operations;
4978                 inode->i_fop = &ext4_file_operations;
4979                 ext4_set_aops(inode);
4980         } else if (S_ISDIR(inode->i_mode)) {
4981                 inode->i_op = &ext4_dir_inode_operations;
4982                 inode->i_fop = &ext4_dir_operations;
4983         } else if (S_ISLNK(inode->i_mode)) {
4984                 /* VFS does not allow setting these so must be corruption */
4985                 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
4986                         ext4_error_inode(inode, function, line, 0,
4987                                          "iget: immutable or append flags "
4988                                          "not allowed on symlinks");
4989                         ret = -EFSCORRUPTED;
4990                         goto bad_inode;
4991                 }
4992                 if (IS_ENCRYPTED(inode)) {
4993                         inode->i_op = &ext4_encrypted_symlink_inode_operations;
4994                         ext4_set_aops(inode);
4995                 } else if (ext4_inode_is_fast_symlink(inode)) {
4996                         inode->i_link = (char *)ei->i_data;
4997                         inode->i_op = &ext4_fast_symlink_inode_operations;
4998                         nd_terminate_link(ei->i_data, inode->i_size,
4999                                 sizeof(ei->i_data) - 1);
5000                 } else {
5001                         inode->i_op = &ext4_symlink_inode_operations;
5002                         ext4_set_aops(inode);
5003                 }
5004                 inode_nohighmem(inode);
5005         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5006               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5007                 inode->i_op = &ext4_special_inode_operations;
5008                 if (raw_inode->i_block[0])
5009                         init_special_inode(inode, inode->i_mode,
5010                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5011                 else
5012                         init_special_inode(inode, inode->i_mode,
5013                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5014         } else if (ino == EXT4_BOOT_LOADER_INO) {
5015                 make_bad_inode(inode);
5016         } else {
5017                 ret = -EFSCORRUPTED;
5018                 ext4_error_inode(inode, function, line, 0,
5019                                  "iget: bogus i_mode (%o)", inode->i_mode);
5020                 goto bad_inode;
5021         }
5022         if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb))
5023                 ext4_error_inode(inode, function, line, 0,
5024                                  "casefold flag without casefold feature");
5025         brelse(iloc.bh);
5026
5027         unlock_new_inode(inode);
5028         return inode;
5029
5030 bad_inode:
5031         brelse(iloc.bh);
5032         iget_failed(inode);
5033         return ERR_PTR(ret);
5034 }
5035
5036 static void __ext4_update_other_inode_time(struct super_block *sb,
5037                                            unsigned long orig_ino,
5038                                            unsigned long ino,
5039                                            struct ext4_inode *raw_inode)
5040 {
5041         struct inode *inode;
5042
5043         inode = find_inode_by_ino_rcu(sb, ino);
5044         if (!inode)
5045                 return;
5046
5047         if (!inode_is_dirtytime_only(inode))
5048                 return;
5049
5050         spin_lock(&inode->i_lock);
5051         if (inode_is_dirtytime_only(inode)) {
5052                 struct ext4_inode_info  *ei = EXT4_I(inode);
5053
5054                 inode->i_state &= ~I_DIRTY_TIME;
5055                 spin_unlock(&inode->i_lock);
5056
5057                 spin_lock(&ei->i_raw_lock);
5058                 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5059                 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5060                 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5061                 ext4_inode_csum_set(inode, raw_inode, ei);
5062                 spin_unlock(&ei->i_raw_lock);
5063                 trace_ext4_other_inode_update_time(inode, orig_ino);
5064                 return;
5065         }
5066         spin_unlock(&inode->i_lock);
5067 }
5068
5069 /*
5070  * Opportunistically update the other time fields for other inodes in
5071  * the same inode table block.
5072  */
5073 static void ext4_update_other_inodes_time(struct super_block *sb,
5074                                           unsigned long orig_ino, char *buf)
5075 {
5076         unsigned long ino;
5077         int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5078         int inode_size = EXT4_INODE_SIZE(sb);
5079
5080         /*
5081          * Calculate the first inode in the inode table block.  Inode
5082          * numbers are one-based.  That is, the first inode in a block
5083          * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5084          */
5085         ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5086         rcu_read_lock();
5087         for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5088                 if (ino == orig_ino)
5089                         continue;
5090                 __ext4_update_other_inode_time(sb, orig_ino, ino,
5091                                                (struct ext4_inode *)buf);
5092         }
5093         rcu_read_unlock();
5094 }
5095
5096 /*
5097  * Post the struct inode info into an on-disk inode location in the
5098  * buffer-cache.  This gobbles the caller's reference to the
5099  * buffer_head in the inode location struct.
5100  *
5101  * The caller must have write access to iloc->bh.
5102  */
5103 static int ext4_do_update_inode(handle_t *handle,
5104                                 struct inode *inode,
5105                                 struct ext4_iloc *iloc)
5106 {
5107         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5108         struct ext4_inode_info *ei = EXT4_I(inode);
5109         struct buffer_head *bh = iloc->bh;
5110         struct super_block *sb = inode->i_sb;
5111         int err;
5112         int need_datasync = 0, set_large_file = 0;
5113
5114         spin_lock(&ei->i_raw_lock);
5115
5116         /*
5117          * For fields not tracked in the in-memory inode, initialise them
5118          * to zero for new inodes.
5119          */
5120         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5121                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5122
5123         if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode))
5124                 need_datasync = 1;
5125         if (ei->i_disksize > 0x7fffffffULL) {
5126                 if (!ext4_has_feature_large_file(sb) ||
5127                     EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV))
5128                         set_large_file = 1;
5129         }
5130
5131         err = ext4_fill_raw_inode(inode, raw_inode);
5132         spin_unlock(&ei->i_raw_lock);
5133         if (err) {
5134                 EXT4_ERROR_INODE(inode, "corrupted inode contents");
5135                 goto out_brelse;
5136         }
5137
5138         if (inode->i_sb->s_flags & SB_LAZYTIME)
5139                 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5140                                               bh->b_data);
5141
5142         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5143         err = ext4_handle_dirty_metadata(handle, NULL, bh);
5144         if (err)
5145                 goto out_error;
5146         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5147         if (set_large_file) {
5148                 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5149                 err = ext4_journal_get_write_access(handle, sb,
5150                                                     EXT4_SB(sb)->s_sbh,
5151                                                     EXT4_JTR_NONE);
5152                 if (err)
5153                         goto out_error;
5154                 lock_buffer(EXT4_SB(sb)->s_sbh);
5155                 ext4_set_feature_large_file(sb);
5156                 ext4_superblock_csum_set(sb);
5157                 unlock_buffer(EXT4_SB(sb)->s_sbh);
5158                 ext4_handle_sync(handle);
5159                 err = ext4_handle_dirty_metadata(handle, NULL,
5160                                                  EXT4_SB(sb)->s_sbh);
5161         }
5162         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5163 out_error:
5164         ext4_std_error(inode->i_sb, err);
5165 out_brelse:
5166         brelse(bh);
5167         return err;
5168 }
5169
5170 /*
5171  * ext4_write_inode()
5172  *
5173  * We are called from a few places:
5174  *
5175  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5176  *   Here, there will be no transaction running. We wait for any running
5177  *   transaction to commit.
5178  *
5179  * - Within flush work (sys_sync(), kupdate and such).
5180  *   We wait on commit, if told to.
5181  *
5182  * - Within iput_final() -> write_inode_now()
5183  *   We wait on commit, if told to.
5184  *
5185  * In all cases it is actually safe for us to return without doing anything,
5186  * because the inode has been copied into a raw inode buffer in
5187  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5188  * writeback.
5189  *
5190  * Note that we are absolutely dependent upon all inode dirtiers doing the
5191  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5192  * which we are interested.
5193  *
5194  * It would be a bug for them to not do this.  The code:
5195  *
5196  *      mark_inode_dirty(inode)
5197  *      stuff();
5198  *      inode->i_size = expr;
5199  *
5200  * is in error because write_inode() could occur while `stuff()' is running,
5201  * and the new i_size will be lost.  Plus the inode will no longer be on the
5202  * superblock's dirty inode list.
5203  */
5204 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5205 {
5206         int err;
5207
5208         if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5209             sb_rdonly(inode->i_sb))
5210                 return 0;
5211
5212         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5213                 return -EIO;
5214
5215         if (EXT4_SB(inode->i_sb)->s_journal) {
5216                 if (ext4_journal_current_handle()) {
5217                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5218                         dump_stack();
5219                         return -EIO;
5220                 }
5221
5222                 /*
5223                  * No need to force transaction in WB_SYNC_NONE mode. Also
5224                  * ext4_sync_fs() will force the commit after everything is
5225                  * written.
5226                  */
5227                 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5228                         return 0;
5229
5230                 err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal,
5231                                                 EXT4_I(inode)->i_sync_tid);
5232         } else {
5233                 struct ext4_iloc iloc;
5234
5235                 err = __ext4_get_inode_loc_noinmem(inode, &iloc);
5236                 if (err)
5237                         return err;
5238                 /*
5239                  * sync(2) will flush the whole buffer cache. No need to do
5240                  * it here separately for each inode.
5241                  */
5242                 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5243                         sync_dirty_buffer(iloc.bh);
5244                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5245                         ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5246                                                "IO error syncing inode");
5247                         err = -EIO;
5248                 }
5249                 brelse(iloc.bh);
5250         }
5251         return err;
5252 }
5253
5254 /*
5255  * In data=journal mode ext4_journalled_invalidate_folio() may fail to invalidate
5256  * buffers that are attached to a folio straddling i_size and are undergoing
5257  * commit. In that case we have to wait for commit to finish and try again.
5258  */
5259 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5260 {
5261         unsigned offset;
5262         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5263         tid_t commit_tid = 0;
5264         int ret;
5265
5266         offset = inode->i_size & (PAGE_SIZE - 1);
5267         /*
5268          * If the folio is fully truncated, we don't need to wait for any commit
5269          * (and we even should not as __ext4_journalled_invalidate_folio() may
5270          * strip all buffers from the folio but keep the folio dirty which can then
5271          * confuse e.g. concurrent ext4_writepage() seeing dirty folio without
5272          * buffers). Also we don't need to wait for any commit if all buffers in
5273          * the folio remain valid. This is most beneficial for the common case of
5274          * blocksize == PAGESIZE.
5275          */
5276         if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5277                 return;
5278         while (1) {
5279                 struct folio *folio = filemap_lock_folio(inode->i_mapping,
5280                                       inode->i_size >> PAGE_SHIFT);
5281                 if (!folio)
5282                         return;
5283                 ret = __ext4_journalled_invalidate_folio(folio, offset,
5284                                                 folio_size(folio) - offset);
5285                 folio_unlock(folio);
5286                 folio_put(folio);
5287                 if (ret != -EBUSY)
5288                         return;
5289                 commit_tid = 0;
5290                 read_lock(&journal->j_state_lock);
5291                 if (journal->j_committing_transaction)
5292                         commit_tid = journal->j_committing_transaction->t_tid;
5293                 read_unlock(&journal->j_state_lock);
5294                 if (commit_tid)
5295                         jbd2_log_wait_commit(journal, commit_tid);
5296         }
5297 }
5298
5299 /*
5300  * ext4_setattr()
5301  *
5302  * Called from notify_change.
5303  *
5304  * We want to trap VFS attempts to truncate the file as soon as
5305  * possible.  In particular, we want to make sure that when the VFS
5306  * shrinks i_size, we put the inode on the orphan list and modify
5307  * i_disksize immediately, so that during the subsequent flushing of
5308  * dirty pages and freeing of disk blocks, we can guarantee that any
5309  * commit will leave the blocks being flushed in an unused state on
5310  * disk.  (On recovery, the inode will get truncated and the blocks will
5311  * be freed, so we have a strong guarantee that no future commit will
5312  * leave these blocks visible to the user.)
5313  *
5314  * Another thing we have to assure is that if we are in ordered mode
5315  * and inode is still attached to the committing transaction, we must
5316  * we start writeout of all the dirty pages which are being truncated.
5317  * This way we are sure that all the data written in the previous
5318  * transaction are already on disk (truncate waits for pages under
5319  * writeback).
5320  *
5321  * Called with inode->i_rwsem down.
5322  */
5323 int ext4_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
5324                  struct iattr *attr)
5325 {
5326         struct inode *inode = d_inode(dentry);
5327         int error, rc = 0;
5328         int orphan = 0;
5329         const unsigned int ia_valid = attr->ia_valid;
5330
5331         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5332                 return -EIO;
5333
5334         if (unlikely(IS_IMMUTABLE(inode)))
5335                 return -EPERM;
5336
5337         if (unlikely(IS_APPEND(inode) &&
5338                      (ia_valid & (ATTR_MODE | ATTR_UID |
5339                                   ATTR_GID | ATTR_TIMES_SET))))
5340                 return -EPERM;
5341
5342         error = setattr_prepare(mnt_userns, dentry, attr);
5343         if (error)
5344                 return error;
5345
5346         error = fscrypt_prepare_setattr(dentry, attr);
5347         if (error)
5348                 return error;
5349
5350         error = fsverity_prepare_setattr(dentry, attr);
5351         if (error)
5352                 return error;
5353
5354         if (is_quota_modification(inode, attr)) {
5355                 error = dquot_initialize(inode);
5356                 if (error)
5357                         return error;
5358         }
5359
5360         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5361             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5362                 handle_t *handle;
5363
5364                 /* (user+group)*(old+new) structure, inode write (sb,
5365                  * inode block, ? - but truncate inode update has it) */
5366                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5367                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5368                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5369                 if (IS_ERR(handle)) {
5370                         error = PTR_ERR(handle);
5371                         goto err_out;
5372                 }
5373
5374                 /* dquot_transfer() calls back ext4_get_inode_usage() which
5375                  * counts xattr inode references.
5376                  */
5377                 down_read(&EXT4_I(inode)->xattr_sem);
5378                 error = dquot_transfer(inode, attr);
5379                 up_read(&EXT4_I(inode)->xattr_sem);
5380
5381                 if (error) {
5382                         ext4_journal_stop(handle);
5383                         return error;
5384                 }
5385                 /* Update corresponding info in inode so that everything is in
5386                  * one transaction */
5387                 if (attr->ia_valid & ATTR_UID)
5388                         inode->i_uid = attr->ia_uid;
5389                 if (attr->ia_valid & ATTR_GID)
5390                         inode->i_gid = attr->ia_gid;
5391                 error = ext4_mark_inode_dirty(handle, inode);
5392                 ext4_journal_stop(handle);
5393                 if (unlikely(error)) {
5394                         return error;
5395                 }
5396         }
5397
5398         if (attr->ia_valid & ATTR_SIZE) {
5399                 handle_t *handle;
5400                 loff_t oldsize = inode->i_size;
5401                 int shrink = (attr->ia_size < inode->i_size);
5402
5403                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5404                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5405
5406                         if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5407                                 return -EFBIG;
5408                         }
5409                 }
5410                 if (!S_ISREG(inode->i_mode)) {
5411                         return -EINVAL;
5412                 }
5413
5414                 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5415                         inode_inc_iversion(inode);
5416
5417                 if (shrink) {
5418                         if (ext4_should_order_data(inode)) {
5419                                 error = ext4_begin_ordered_truncate(inode,
5420                                                             attr->ia_size);
5421                                 if (error)
5422                                         goto err_out;
5423                         }
5424                         /*
5425                          * Blocks are going to be removed from the inode. Wait
5426                          * for dio in flight.
5427                          */
5428                         inode_dio_wait(inode);
5429                 }
5430
5431                 filemap_invalidate_lock(inode->i_mapping);
5432
5433                 rc = ext4_break_layouts(inode);
5434                 if (rc) {
5435                         filemap_invalidate_unlock(inode->i_mapping);
5436                         goto err_out;
5437                 }
5438
5439                 if (attr->ia_size != inode->i_size) {
5440                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5441                         if (IS_ERR(handle)) {
5442                                 error = PTR_ERR(handle);
5443                                 goto out_mmap_sem;
5444                         }
5445                         if (ext4_handle_valid(handle) && shrink) {
5446                                 error = ext4_orphan_add(handle, inode);
5447                                 orphan = 1;
5448                         }
5449                         /*
5450                          * Update c/mtime on truncate up, ext4_truncate() will
5451                          * update c/mtime in shrink case below
5452                          */
5453                         if (!shrink) {
5454                                 inode->i_mtime = current_time(inode);
5455                                 inode->i_ctime = inode->i_mtime;
5456                         }
5457
5458                         if (shrink)
5459                                 ext4_fc_track_range(handle, inode,
5460                                         (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5461                                         inode->i_sb->s_blocksize_bits,
5462                                         EXT_MAX_BLOCKS - 1);
5463                         else
5464                                 ext4_fc_track_range(
5465                                         handle, inode,
5466                                         (oldsize > 0 ? oldsize - 1 : oldsize) >>
5467                                         inode->i_sb->s_blocksize_bits,
5468                                         (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5469                                         inode->i_sb->s_blocksize_bits);
5470
5471                         down_write(&EXT4_I(inode)->i_data_sem);
5472                         EXT4_I(inode)->i_disksize = attr->ia_size;
5473                         rc = ext4_mark_inode_dirty(handle, inode);
5474                         if (!error)
5475                                 error = rc;
5476                         /*
5477                          * We have to update i_size under i_data_sem together
5478                          * with i_disksize to avoid races with writeback code
5479                          * running ext4_wb_update_i_disksize().
5480                          */
5481                         if (!error)
5482                                 i_size_write(inode, attr->ia_size);
5483                         up_write(&EXT4_I(inode)->i_data_sem);
5484                         ext4_journal_stop(handle);
5485                         if (error)
5486                                 goto out_mmap_sem;
5487                         if (!shrink) {
5488                                 pagecache_isize_extended(inode, oldsize,
5489                                                          inode->i_size);
5490                         } else if (ext4_should_journal_data(inode)) {
5491                                 ext4_wait_for_tail_page_commit(inode);
5492                         }
5493                 }
5494
5495                 /*
5496                  * Truncate pagecache after we've waited for commit
5497                  * in data=journal mode to make pages freeable.
5498                  */
5499                 truncate_pagecache(inode, inode->i_size);
5500                 /*
5501                  * Call ext4_truncate() even if i_size didn't change to
5502                  * truncate possible preallocated blocks.
5503                  */
5504                 if (attr->ia_size <= oldsize) {
5505                         rc = ext4_truncate(inode);
5506                         if (rc)
5507                                 error = rc;
5508                 }
5509 out_mmap_sem:
5510                 filemap_invalidate_unlock(inode->i_mapping);
5511         }
5512
5513         if (!error) {
5514                 setattr_copy(mnt_userns, inode, attr);
5515                 mark_inode_dirty(inode);
5516         }
5517
5518         /*
5519          * If the call to ext4_truncate failed to get a transaction handle at
5520          * all, we need to clean up the in-core orphan list manually.
5521          */
5522         if (orphan && inode->i_nlink)
5523                 ext4_orphan_del(NULL, inode);
5524
5525         if (!error && (ia_valid & ATTR_MODE))
5526                 rc = posix_acl_chmod(mnt_userns, inode, inode->i_mode);
5527
5528 err_out:
5529         if  (error)
5530                 ext4_std_error(inode->i_sb, error);
5531         if (!error)
5532                 error = rc;
5533         return error;
5534 }
5535
5536 int ext4_getattr(struct user_namespace *mnt_userns, const struct path *path,
5537                  struct kstat *stat, u32 request_mask, unsigned int query_flags)
5538 {
5539         struct inode *inode = d_inode(path->dentry);
5540         struct ext4_inode *raw_inode;
5541         struct ext4_inode_info *ei = EXT4_I(inode);
5542         unsigned int flags;
5543
5544         if ((request_mask & STATX_BTIME) &&
5545             EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5546                 stat->result_mask |= STATX_BTIME;
5547                 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5548                 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5549         }
5550
5551         flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5552         if (flags & EXT4_APPEND_FL)
5553                 stat->attributes |= STATX_ATTR_APPEND;
5554         if (flags & EXT4_COMPR_FL)
5555                 stat->attributes |= STATX_ATTR_COMPRESSED;
5556         if (flags & EXT4_ENCRYPT_FL)
5557                 stat->attributes |= STATX_ATTR_ENCRYPTED;
5558         if (flags & EXT4_IMMUTABLE_FL)
5559                 stat->attributes |= STATX_ATTR_IMMUTABLE;
5560         if (flags & EXT4_NODUMP_FL)
5561                 stat->attributes |= STATX_ATTR_NODUMP;
5562         if (flags & EXT4_VERITY_FL)
5563                 stat->attributes |= STATX_ATTR_VERITY;
5564
5565         stat->attributes_mask |= (STATX_ATTR_APPEND |
5566                                   STATX_ATTR_COMPRESSED |
5567                                   STATX_ATTR_ENCRYPTED |
5568                                   STATX_ATTR_IMMUTABLE |
5569                                   STATX_ATTR_NODUMP |
5570                                   STATX_ATTR_VERITY);
5571
5572         generic_fillattr(mnt_userns, inode, stat);
5573         return 0;
5574 }
5575
5576 int ext4_file_getattr(struct user_namespace *mnt_userns,
5577                       const struct path *path, struct kstat *stat,
5578                       u32 request_mask, unsigned int query_flags)
5579 {
5580         struct inode *inode = d_inode(path->dentry);
5581         u64 delalloc_blocks;
5582
5583         ext4_getattr(mnt_userns, path, stat, request_mask, query_flags);
5584
5585         /*
5586          * If there is inline data in the inode, the inode will normally not
5587          * have data blocks allocated (it may have an external xattr block).
5588          * Report at least one sector for such files, so tools like tar, rsync,
5589          * others don't incorrectly think the file is completely sparse.
5590          */
5591         if (unlikely(ext4_has_inline_data(inode)))
5592                 stat->blocks += (stat->size + 511) >> 9;
5593
5594         /*
5595          * We can't update i_blocks if the block allocation is delayed
5596          * otherwise in the case of system crash before the real block
5597          * allocation is done, we will have i_blocks inconsistent with
5598          * on-disk file blocks.
5599          * We always keep i_blocks updated together with real
5600          * allocation. But to not confuse with user, stat
5601          * will return the blocks that include the delayed allocation
5602          * blocks for this file.
5603          */
5604         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5605                                    EXT4_I(inode)->i_reserved_data_blocks);
5606         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5607         return 0;
5608 }
5609
5610 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5611                                    int pextents)
5612 {
5613         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5614                 return ext4_ind_trans_blocks(inode, lblocks);
5615         return ext4_ext_index_trans_blocks(inode, pextents);
5616 }
5617
5618 /*
5619  * Account for index blocks, block groups bitmaps and block group
5620  * descriptor blocks if modify datablocks and index blocks
5621  * worse case, the indexs blocks spread over different block groups
5622  *
5623  * If datablocks are discontiguous, they are possible to spread over
5624  * different block groups too. If they are contiguous, with flexbg,
5625  * they could still across block group boundary.
5626  *
5627  * Also account for superblock, inode, quota and xattr blocks
5628  */
5629 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5630                                   int pextents)
5631 {
5632         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5633         int gdpblocks;
5634         int idxblocks;
5635         int ret = 0;
5636
5637         /*
5638          * How many index blocks need to touch to map @lblocks logical blocks
5639          * to @pextents physical extents?
5640          */
5641         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5642
5643         ret = idxblocks;
5644
5645         /*
5646          * Now let's see how many group bitmaps and group descriptors need
5647          * to account
5648          */
5649         groups = idxblocks + pextents;
5650         gdpblocks = groups;
5651         if (groups > ngroups)
5652                 groups = ngroups;
5653         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5654                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5655
5656         /* bitmaps and block group descriptor blocks */
5657         ret += groups + gdpblocks;
5658
5659         /* Blocks for super block, inode, quota and xattr blocks */
5660         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5661
5662         return ret;
5663 }
5664
5665 /*
5666  * Calculate the total number of credits to reserve to fit
5667  * the modification of a single pages into a single transaction,
5668  * which may include multiple chunks of block allocations.
5669  *
5670  * This could be called via ext4_write_begin()
5671  *
5672  * We need to consider the worse case, when
5673  * one new block per extent.
5674  */
5675 int ext4_writepage_trans_blocks(struct inode *inode)
5676 {
5677         int bpp = ext4_journal_blocks_per_page(inode);
5678         int ret;
5679
5680         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5681
5682         /* Account for data blocks for journalled mode */
5683         if (ext4_should_journal_data(inode))
5684                 ret += bpp;
5685         return ret;
5686 }
5687
5688 /*
5689  * Calculate the journal credits for a chunk of data modification.
5690  *
5691  * This is called from DIO, fallocate or whoever calling
5692  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5693  *
5694  * journal buffers for data blocks are not included here, as DIO
5695  * and fallocate do no need to journal data buffers.
5696  */
5697 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5698 {
5699         return ext4_meta_trans_blocks(inode, nrblocks, 1);
5700 }
5701
5702 /*
5703  * The caller must have previously called ext4_reserve_inode_write().
5704  * Give this, we know that the caller already has write access to iloc->bh.
5705  */
5706 int ext4_mark_iloc_dirty(handle_t *handle,
5707                          struct inode *inode, struct ext4_iloc *iloc)
5708 {
5709         int err = 0;
5710
5711         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5712                 put_bh(iloc->bh);
5713                 return -EIO;
5714         }
5715         ext4_fc_track_inode(handle, inode);
5716
5717         if (IS_I_VERSION(inode))
5718                 inode_inc_iversion(inode);
5719
5720         /* the do_update_inode consumes one bh->b_count */
5721         get_bh(iloc->bh);
5722
5723         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5724         err = ext4_do_update_inode(handle, inode, iloc);
5725         put_bh(iloc->bh);
5726         return err;
5727 }
5728
5729 /*
5730  * On success, We end up with an outstanding reference count against
5731  * iloc->bh.  This _must_ be cleaned up later.
5732  */
5733
5734 int
5735 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5736                          struct ext4_iloc *iloc)
5737 {
5738         int err;
5739
5740         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5741                 return -EIO;
5742
5743         err = ext4_get_inode_loc(inode, iloc);
5744         if (!err) {
5745                 BUFFER_TRACE(iloc->bh, "get_write_access");
5746                 err = ext4_journal_get_write_access(handle, inode->i_sb,
5747                                                     iloc->bh, EXT4_JTR_NONE);
5748                 if (err) {
5749                         brelse(iloc->bh);
5750                         iloc->bh = NULL;
5751                 }
5752         }
5753         ext4_std_error(inode->i_sb, err);
5754         return err;
5755 }
5756
5757 static int __ext4_expand_extra_isize(struct inode *inode,
5758                                      unsigned int new_extra_isize,
5759                                      struct ext4_iloc *iloc,
5760                                      handle_t *handle, int *no_expand)
5761 {
5762         struct ext4_inode *raw_inode;
5763         struct ext4_xattr_ibody_header *header;
5764         unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5765         struct ext4_inode_info *ei = EXT4_I(inode);
5766         int error;
5767
5768         /* this was checked at iget time, but double check for good measure */
5769         if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5770             (ei->i_extra_isize & 3)) {
5771                 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5772                                  ei->i_extra_isize,
5773                                  EXT4_INODE_SIZE(inode->i_sb));
5774                 return -EFSCORRUPTED;
5775         }
5776         if ((new_extra_isize < ei->i_extra_isize) ||
5777             (new_extra_isize < 4) ||
5778             (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5779                 return -EINVAL; /* Should never happen */
5780
5781         raw_inode = ext4_raw_inode(iloc);
5782
5783         header = IHDR(inode, raw_inode);
5784
5785         /* No extended attributes present */
5786         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5787             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5788                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5789                        EXT4_I(inode)->i_extra_isize, 0,
5790                        new_extra_isize - EXT4_I(inode)->i_extra_isize);
5791                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5792                 return 0;
5793         }
5794
5795         /* try to expand with EAs present */
5796         error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5797                                            raw_inode, handle);
5798         if (error) {
5799                 /*
5800                  * Inode size expansion failed; don't try again
5801                  */
5802                 *no_expand = 1;
5803         }
5804
5805         return error;
5806 }
5807
5808 /*
5809  * Expand an inode by new_extra_isize bytes.
5810  * Returns 0 on success or negative error number on failure.
5811  */
5812 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5813                                           unsigned int new_extra_isize,
5814                                           struct ext4_iloc iloc,
5815                                           handle_t *handle)
5816 {
5817         int no_expand;
5818         int error;
5819
5820         if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5821                 return -EOVERFLOW;
5822
5823         /*
5824          * In nojournal mode, we can immediately attempt to expand
5825          * the inode.  When journaled, we first need to obtain extra
5826          * buffer credits since we may write into the EA block
5827          * with this same handle. If journal_extend fails, then it will
5828          * only result in a minor loss of functionality for that inode.
5829          * If this is felt to be critical, then e2fsck should be run to
5830          * force a large enough s_min_extra_isize.
5831          */
5832         if (ext4_journal_extend(handle,
5833                                 EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5834                 return -ENOSPC;
5835
5836         if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5837                 return -EBUSY;
5838
5839         error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5840                                           handle, &no_expand);
5841         ext4_write_unlock_xattr(inode, &no_expand);
5842
5843         return error;
5844 }
5845
5846 int ext4_expand_extra_isize(struct inode *inode,
5847                             unsigned int new_extra_isize,
5848                             struct ext4_iloc *iloc)
5849 {
5850         handle_t *handle;
5851         int no_expand;
5852         int error, rc;
5853
5854         if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5855                 brelse(iloc->bh);
5856                 return -EOVERFLOW;
5857         }
5858
5859         handle = ext4_journal_start(inode, EXT4_HT_INODE,
5860                                     EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5861         if (IS_ERR(handle)) {
5862                 error = PTR_ERR(handle);
5863                 brelse(iloc->bh);
5864                 return error;
5865         }
5866
5867         ext4_write_lock_xattr(inode, &no_expand);
5868
5869         BUFFER_TRACE(iloc->bh, "get_write_access");
5870         error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh,
5871                                               EXT4_JTR_NONE);
5872         if (error) {
5873                 brelse(iloc->bh);
5874                 goto out_unlock;
5875         }
5876
5877         error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5878                                           handle, &no_expand);
5879
5880         rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5881         if (!error)
5882                 error = rc;
5883
5884 out_unlock:
5885         ext4_write_unlock_xattr(inode, &no_expand);
5886         ext4_journal_stop(handle);
5887         return error;
5888 }
5889
5890 /*
5891  * What we do here is to mark the in-core inode as clean with respect to inode
5892  * dirtiness (it may still be data-dirty).
5893  * This means that the in-core inode may be reaped by prune_icache
5894  * without having to perform any I/O.  This is a very good thing,
5895  * because *any* task may call prune_icache - even ones which
5896  * have a transaction open against a different journal.
5897  *
5898  * Is this cheating?  Not really.  Sure, we haven't written the
5899  * inode out, but prune_icache isn't a user-visible syncing function.
5900  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5901  * we start and wait on commits.
5902  */
5903 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
5904                                 const char *func, unsigned int line)
5905 {
5906         struct ext4_iloc iloc;
5907         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5908         int err;
5909
5910         might_sleep();
5911         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5912         err = ext4_reserve_inode_write(handle, inode, &iloc);
5913         if (err)
5914                 goto out;
5915
5916         if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5917                 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5918                                                iloc, handle);
5919
5920         err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5921 out:
5922         if (unlikely(err))
5923                 ext4_error_inode_err(inode, func, line, 0, err,
5924                                         "mark_inode_dirty error");
5925         return err;
5926 }
5927
5928 /*
5929  * ext4_dirty_inode() is called from __mark_inode_dirty()
5930  *
5931  * We're really interested in the case where a file is being extended.
5932  * i_size has been changed by generic_commit_write() and we thus need
5933  * to include the updated inode in the current transaction.
5934  *
5935  * Also, dquot_alloc_block() will always dirty the inode when blocks
5936  * are allocated to the file.
5937  *
5938  * If the inode is marked synchronous, we don't honour that here - doing
5939  * so would cause a commit on atime updates, which we don't bother doing.
5940  * We handle synchronous inodes at the highest possible level.
5941  */
5942 void ext4_dirty_inode(struct inode *inode, int flags)
5943 {
5944         handle_t *handle;
5945
5946         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5947         if (IS_ERR(handle))
5948                 return;
5949         ext4_mark_inode_dirty(handle, inode);
5950         ext4_journal_stop(handle);
5951 }
5952
5953 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5954 {
5955         journal_t *journal;
5956         handle_t *handle;
5957         int err;
5958         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5959
5960         /*
5961          * We have to be very careful here: changing a data block's
5962          * journaling status dynamically is dangerous.  If we write a
5963          * data block to the journal, change the status and then delete
5964          * that block, we risk forgetting to revoke the old log record
5965          * from the journal and so a subsequent replay can corrupt data.
5966          * So, first we make sure that the journal is empty and that
5967          * nobody is changing anything.
5968          */
5969
5970         journal = EXT4_JOURNAL(inode);
5971         if (!journal)
5972                 return 0;
5973         if (is_journal_aborted(journal))
5974                 return -EROFS;
5975
5976         /* Wait for all existing dio workers */
5977         inode_dio_wait(inode);
5978
5979         /*
5980          * Before flushing the journal and switching inode's aops, we have
5981          * to flush all dirty data the inode has. There can be outstanding
5982          * delayed allocations, there can be unwritten extents created by
5983          * fallocate or buffered writes in dioread_nolock mode covered by
5984          * dirty data which can be converted only after flushing the dirty
5985          * data (and journalled aops don't know how to handle these cases).
5986          */
5987         if (val) {
5988                 filemap_invalidate_lock(inode->i_mapping);
5989                 err = filemap_write_and_wait(inode->i_mapping);
5990                 if (err < 0) {
5991                         filemap_invalidate_unlock(inode->i_mapping);
5992                         return err;
5993                 }
5994         }
5995
5996         percpu_down_write(&sbi->s_writepages_rwsem);
5997         jbd2_journal_lock_updates(journal);
5998
5999         /*
6000          * OK, there are no updates running now, and all cached data is
6001          * synced to disk.  We are now in a completely consistent state
6002          * which doesn't have anything in the journal, and we know that
6003          * no filesystem updates are running, so it is safe to modify
6004          * the inode's in-core data-journaling state flag now.
6005          */
6006
6007         if (val)
6008                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6009         else {
6010                 err = jbd2_journal_flush(journal, 0);
6011                 if (err < 0) {
6012                         jbd2_journal_unlock_updates(journal);
6013                         percpu_up_write(&sbi->s_writepages_rwsem);
6014                         return err;
6015                 }
6016                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6017         }
6018         ext4_set_aops(inode);
6019
6020         jbd2_journal_unlock_updates(journal);
6021         percpu_up_write(&sbi->s_writepages_rwsem);
6022
6023         if (val)
6024                 filemap_invalidate_unlock(inode->i_mapping);
6025
6026         /* Finally we can mark the inode as dirty. */
6027
6028         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6029         if (IS_ERR(handle))
6030                 return PTR_ERR(handle);
6031
6032         ext4_fc_mark_ineligible(inode->i_sb,
6033                 EXT4_FC_REASON_JOURNAL_FLAG_CHANGE, handle);
6034         err = ext4_mark_inode_dirty(handle, inode);
6035         ext4_handle_sync(handle);
6036         ext4_journal_stop(handle);
6037         ext4_std_error(inode->i_sb, err);
6038
6039         return err;
6040 }
6041
6042 static int ext4_bh_unmapped(handle_t *handle, struct inode *inode,
6043                             struct buffer_head *bh)
6044 {
6045         return !buffer_mapped(bh);
6046 }
6047
6048 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6049 {
6050         struct vm_area_struct *vma = vmf->vma;
6051         struct page *page = vmf->page;
6052         loff_t size;
6053         unsigned long len;
6054         int err;
6055         vm_fault_t ret;
6056         struct file *file = vma->vm_file;
6057         struct inode *inode = file_inode(file);
6058         struct address_space *mapping = inode->i_mapping;
6059         handle_t *handle;
6060         get_block_t *get_block;
6061         int retries = 0;
6062
6063         if (unlikely(IS_IMMUTABLE(inode)))
6064                 return VM_FAULT_SIGBUS;
6065
6066         sb_start_pagefault(inode->i_sb);
6067         file_update_time(vma->vm_file);
6068
6069         filemap_invalidate_lock_shared(mapping);
6070
6071         err = ext4_convert_inline_data(inode);
6072         if (err)
6073                 goto out_ret;
6074
6075         /*
6076          * On data journalling we skip straight to the transaction handle:
6077          * there's no delalloc; page truncated will be checked later; the
6078          * early return w/ all buffers mapped (calculates size/len) can't
6079          * be used; and there's no dioread_nolock, so only ext4_get_block.
6080          */
6081         if (ext4_should_journal_data(inode))
6082                 goto retry_alloc;
6083
6084         /* Delalloc case is easy... */
6085         if (test_opt(inode->i_sb, DELALLOC) &&
6086             !ext4_nonda_switch(inode->i_sb)) {
6087                 do {
6088                         err = block_page_mkwrite(vma, vmf,
6089                                                    ext4_da_get_block_prep);
6090                 } while (err == -ENOSPC &&
6091                        ext4_should_retry_alloc(inode->i_sb, &retries));
6092                 goto out_ret;
6093         }
6094
6095         lock_page(page);
6096         size = i_size_read(inode);
6097         /* Page got truncated from under us? */
6098         if (page->mapping != mapping || page_offset(page) > size) {
6099                 unlock_page(page);
6100                 ret = VM_FAULT_NOPAGE;
6101                 goto out;
6102         }
6103
6104         if (page->index == size >> PAGE_SHIFT)
6105                 len = size & ~PAGE_MASK;
6106         else
6107                 len = PAGE_SIZE;
6108         /*
6109          * Return if we have all the buffers mapped. This avoids the need to do
6110          * journal_start/journal_stop which can block and take a long time
6111          *
6112          * This cannot be done for data journalling, as we have to add the
6113          * inode to the transaction's list to writeprotect pages on commit.
6114          */
6115         if (page_has_buffers(page)) {
6116                 if (!ext4_walk_page_buffers(NULL, inode, page_buffers(page),
6117                                             0, len, NULL,
6118                                             ext4_bh_unmapped)) {
6119                         /* Wait so that we don't change page under IO */
6120                         wait_for_stable_page(page);
6121                         ret = VM_FAULT_LOCKED;
6122                         goto out;
6123                 }
6124         }
6125         unlock_page(page);
6126         /* OK, we need to fill the hole... */
6127         if (ext4_should_dioread_nolock(inode))
6128                 get_block = ext4_get_block_unwritten;
6129         else
6130                 get_block = ext4_get_block;
6131 retry_alloc:
6132         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6133                                     ext4_writepage_trans_blocks(inode));
6134         if (IS_ERR(handle)) {
6135                 ret = VM_FAULT_SIGBUS;
6136                 goto out;
6137         }
6138         /*
6139          * Data journalling can't use block_page_mkwrite() because it
6140          * will set_buffer_dirty() before do_journal_get_write_access()
6141          * thus might hit warning messages for dirty metadata buffers.
6142          */
6143         if (!ext4_should_journal_data(inode)) {
6144                 err = block_page_mkwrite(vma, vmf, get_block);
6145         } else {
6146                 lock_page(page);
6147                 size = i_size_read(inode);
6148                 /* Page got truncated from under us? */
6149                 if (page->mapping != mapping || page_offset(page) > size) {
6150                         ret = VM_FAULT_NOPAGE;
6151                         goto out_error;
6152                 }
6153
6154                 if (page->index == size >> PAGE_SHIFT)
6155                         len = size & ~PAGE_MASK;
6156                 else
6157                         len = PAGE_SIZE;
6158
6159                 err = __block_write_begin(page, 0, len, ext4_get_block);
6160                 if (!err) {
6161                         ret = VM_FAULT_SIGBUS;
6162                         if (ext4_walk_page_buffers(handle, inode,
6163                                         page_buffers(page), 0, len, NULL,
6164                                         do_journal_get_write_access))
6165                                 goto out_error;
6166                         if (ext4_walk_page_buffers(handle, inode,
6167                                         page_buffers(page), 0, len, NULL,
6168                                         write_end_fn))
6169                                 goto out_error;
6170                         if (ext4_jbd2_inode_add_write(handle, inode,
6171                                                       page_offset(page), len))
6172                                 goto out_error;
6173                         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6174                 } else {
6175                         unlock_page(page);
6176                 }
6177         }
6178         ext4_journal_stop(handle);
6179         if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6180                 goto retry_alloc;
6181 out_ret:
6182         ret = block_page_mkwrite_return(err);
6183 out:
6184         filemap_invalidate_unlock_shared(mapping);
6185         sb_end_pagefault(inode->i_sb);
6186         return ret;
6187 out_error:
6188         unlock_page(page);
6189         ext4_journal_stop(handle);
6190         goto out;
6191 }