Merge branch 'spi-5.5' into spi-linus
[linux-2.6-microblaze.git] / fs / ext4 / inode.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  64-bit file support on 64-bit platforms by Jakub Jelinek
17  *      (jj@sunsite.ms.mff.cuni.cz)
18  *
19  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20  */
21
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/dax.h>
27 #include <linux/quotaops.h>
28 #include <linux/string.h>
29 #include <linux/buffer_head.h>
30 #include <linux/writeback.h>
31 #include <linux/pagevec.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/uio.h>
35 #include <linux/bio.h>
36 #include <linux/workqueue.h>
37 #include <linux/kernel.h>
38 #include <linux/printk.h>
39 #include <linux/slab.h>
40 #include <linux/bitops.h>
41 #include <linux/iomap.h>
42 #include <linux/iversion.h>
43
44 #include "ext4_jbd2.h"
45 #include "xattr.h"
46 #include "acl.h"
47 #include "truncate.h"
48
49 #include <trace/events/ext4.h>
50
51 #define MPAGE_DA_EXTENT_TAIL 0x01
52
53 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
54                               struct ext4_inode_info *ei)
55 {
56         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
57         __u32 csum;
58         __u16 dummy_csum = 0;
59         int offset = offsetof(struct ext4_inode, i_checksum_lo);
60         unsigned int csum_size = sizeof(dummy_csum);
61
62         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
63         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
64         offset += csum_size;
65         csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
66                            EXT4_GOOD_OLD_INODE_SIZE - offset);
67
68         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
69                 offset = offsetof(struct ext4_inode, i_checksum_hi);
70                 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
71                                    EXT4_GOOD_OLD_INODE_SIZE,
72                                    offset - EXT4_GOOD_OLD_INODE_SIZE);
73                 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
74                         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
75                                            csum_size);
76                         offset += csum_size;
77                 }
78                 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
79                                    EXT4_INODE_SIZE(inode->i_sb) - offset);
80         }
81
82         return csum;
83 }
84
85 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
86                                   struct ext4_inode_info *ei)
87 {
88         __u32 provided, calculated;
89
90         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
91             cpu_to_le32(EXT4_OS_LINUX) ||
92             !ext4_has_metadata_csum(inode->i_sb))
93                 return 1;
94
95         provided = le16_to_cpu(raw->i_checksum_lo);
96         calculated = ext4_inode_csum(inode, raw, ei);
97         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
98             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
99                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
100         else
101                 calculated &= 0xFFFF;
102
103         return provided == calculated;
104 }
105
106 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
107                                 struct ext4_inode_info *ei)
108 {
109         __u32 csum;
110
111         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
112             cpu_to_le32(EXT4_OS_LINUX) ||
113             !ext4_has_metadata_csum(inode->i_sb))
114                 return;
115
116         csum = ext4_inode_csum(inode, raw, ei);
117         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
118         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
119             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
120                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
121 }
122
123 static inline int ext4_begin_ordered_truncate(struct inode *inode,
124                                               loff_t new_size)
125 {
126         trace_ext4_begin_ordered_truncate(inode, new_size);
127         /*
128          * If jinode is zero, then we never opened the file for
129          * writing, so there's no need to call
130          * jbd2_journal_begin_ordered_truncate() since there's no
131          * outstanding writes we need to flush.
132          */
133         if (!EXT4_I(inode)->jinode)
134                 return 0;
135         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
136                                                    EXT4_I(inode)->jinode,
137                                                    new_size);
138 }
139
140 static void ext4_invalidatepage(struct page *page, unsigned int offset,
141                                 unsigned int length);
142 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
143 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
144 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
145                                   int pextents);
146
147 /*
148  * Test whether an inode is a fast symlink.
149  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
150  */
151 int ext4_inode_is_fast_symlink(struct inode *inode)
152 {
153         if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
154                 int ea_blocks = EXT4_I(inode)->i_file_acl ?
155                                 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
156
157                 if (ext4_has_inline_data(inode))
158                         return 0;
159
160                 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
161         }
162         return S_ISLNK(inode->i_mode) && inode->i_size &&
163                (inode->i_size < EXT4_N_BLOCKS * 4);
164 }
165
166 /*
167  * Called at the last iput() if i_nlink is zero.
168  */
169 void ext4_evict_inode(struct inode *inode)
170 {
171         handle_t *handle;
172         int err;
173         /*
174          * Credits for final inode cleanup and freeing:
175          * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
176          * (xattr block freeing), bitmap, group descriptor (inode freeing)
177          */
178         int extra_credits = 6;
179         struct ext4_xattr_inode_array *ea_inode_array = NULL;
180
181         trace_ext4_evict_inode(inode);
182
183         if (inode->i_nlink) {
184                 /*
185                  * When journalling data dirty buffers are tracked only in the
186                  * journal. So although mm thinks everything is clean and
187                  * ready for reaping the inode might still have some pages to
188                  * write in the running transaction or waiting to be
189                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
190                  * (via truncate_inode_pages()) to discard these buffers can
191                  * cause data loss. Also even if we did not discard these
192                  * buffers, we would have no way to find them after the inode
193                  * is reaped and thus user could see stale data if he tries to
194                  * read them before the transaction is checkpointed. So be
195                  * careful and force everything to disk here... We use
196                  * ei->i_datasync_tid to store the newest transaction
197                  * containing inode's data.
198                  *
199                  * Note that directories do not have this problem because they
200                  * don't use page cache.
201                  */
202                 if (inode->i_ino != EXT4_JOURNAL_INO &&
203                     ext4_should_journal_data(inode) &&
204                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
205                     inode->i_data.nrpages) {
206                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
207                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
208
209                         jbd2_complete_transaction(journal, commit_tid);
210                         filemap_write_and_wait(&inode->i_data);
211                 }
212                 truncate_inode_pages_final(&inode->i_data);
213
214                 goto no_delete;
215         }
216
217         if (is_bad_inode(inode))
218                 goto no_delete;
219         dquot_initialize(inode);
220
221         if (ext4_should_order_data(inode))
222                 ext4_begin_ordered_truncate(inode, 0);
223         truncate_inode_pages_final(&inode->i_data);
224
225         /*
226          * Protect us against freezing - iput() caller didn't have to have any
227          * protection against it
228          */
229         sb_start_intwrite(inode->i_sb);
230
231         if (!IS_NOQUOTA(inode))
232                 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
233
234         /*
235          * Block bitmap, group descriptor, and inode are accounted in both
236          * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
237          */
238         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
239                          ext4_blocks_for_truncate(inode) + extra_credits - 3);
240         if (IS_ERR(handle)) {
241                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
242                 /*
243                  * If we're going to skip the normal cleanup, we still need to
244                  * make sure that the in-core orphan linked list is properly
245                  * cleaned up.
246                  */
247                 ext4_orphan_del(NULL, inode);
248                 sb_end_intwrite(inode->i_sb);
249                 goto no_delete;
250         }
251
252         if (IS_SYNC(inode))
253                 ext4_handle_sync(handle);
254
255         /*
256          * Set inode->i_size to 0 before calling ext4_truncate(). We need
257          * special handling of symlinks here because i_size is used to
258          * determine whether ext4_inode_info->i_data contains symlink data or
259          * block mappings. Setting i_size to 0 will remove its fast symlink
260          * status. Erase i_data so that it becomes a valid empty block map.
261          */
262         if (ext4_inode_is_fast_symlink(inode))
263                 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
264         inode->i_size = 0;
265         err = ext4_mark_inode_dirty(handle, inode);
266         if (err) {
267                 ext4_warning(inode->i_sb,
268                              "couldn't mark inode dirty (err %d)", err);
269                 goto stop_handle;
270         }
271         if (inode->i_blocks) {
272                 err = ext4_truncate(inode);
273                 if (err) {
274                         ext4_error(inode->i_sb,
275                                    "couldn't truncate inode %lu (err %d)",
276                                    inode->i_ino, err);
277                         goto stop_handle;
278                 }
279         }
280
281         /* Remove xattr references. */
282         err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
283                                       extra_credits);
284         if (err) {
285                 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
286 stop_handle:
287                 ext4_journal_stop(handle);
288                 ext4_orphan_del(NULL, inode);
289                 sb_end_intwrite(inode->i_sb);
290                 ext4_xattr_inode_array_free(ea_inode_array);
291                 goto no_delete;
292         }
293
294         /*
295          * Kill off the orphan record which ext4_truncate created.
296          * AKPM: I think this can be inside the above `if'.
297          * Note that ext4_orphan_del() has to be able to cope with the
298          * deletion of a non-existent orphan - this is because we don't
299          * know if ext4_truncate() actually created an orphan record.
300          * (Well, we could do this if we need to, but heck - it works)
301          */
302         ext4_orphan_del(handle, inode);
303         EXT4_I(inode)->i_dtime  = (__u32)ktime_get_real_seconds();
304
305         /*
306          * One subtle ordering requirement: if anything has gone wrong
307          * (transaction abort, IO errors, whatever), then we can still
308          * do these next steps (the fs will already have been marked as
309          * having errors), but we can't free the inode if the mark_dirty
310          * fails.
311          */
312         if (ext4_mark_inode_dirty(handle, inode))
313                 /* If that failed, just do the required in-core inode clear. */
314                 ext4_clear_inode(inode);
315         else
316                 ext4_free_inode(handle, inode);
317         ext4_journal_stop(handle);
318         sb_end_intwrite(inode->i_sb);
319         ext4_xattr_inode_array_free(ea_inode_array);
320         return;
321 no_delete:
322         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
323 }
324
325 #ifdef CONFIG_QUOTA
326 qsize_t *ext4_get_reserved_space(struct inode *inode)
327 {
328         return &EXT4_I(inode)->i_reserved_quota;
329 }
330 #endif
331
332 /*
333  * Called with i_data_sem down, which is important since we can call
334  * ext4_discard_preallocations() from here.
335  */
336 void ext4_da_update_reserve_space(struct inode *inode,
337                                         int used, int quota_claim)
338 {
339         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
340         struct ext4_inode_info *ei = EXT4_I(inode);
341
342         spin_lock(&ei->i_block_reservation_lock);
343         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
344         if (unlikely(used > ei->i_reserved_data_blocks)) {
345                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
346                          "with only %d reserved data blocks",
347                          __func__, inode->i_ino, used,
348                          ei->i_reserved_data_blocks);
349                 WARN_ON(1);
350                 used = ei->i_reserved_data_blocks;
351         }
352
353         /* Update per-inode reservations */
354         ei->i_reserved_data_blocks -= used;
355         percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
356
357         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
358
359         /* Update quota subsystem for data blocks */
360         if (quota_claim)
361                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
362         else {
363                 /*
364                  * We did fallocate with an offset that is already delayed
365                  * allocated. So on delayed allocated writeback we should
366                  * not re-claim the quota for fallocated blocks.
367                  */
368                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
369         }
370
371         /*
372          * If we have done all the pending block allocations and if
373          * there aren't any writers on the inode, we can discard the
374          * inode's preallocations.
375          */
376         if ((ei->i_reserved_data_blocks == 0) &&
377             !inode_is_open_for_write(inode))
378                 ext4_discard_preallocations(inode);
379 }
380
381 static int __check_block_validity(struct inode *inode, const char *func,
382                                 unsigned int line,
383                                 struct ext4_map_blocks *map)
384 {
385         if (ext4_has_feature_journal(inode->i_sb) &&
386             (inode->i_ino ==
387              le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
388                 return 0;
389         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
390                                    map->m_len)) {
391                 ext4_error_inode(inode, func, line, map->m_pblk,
392                                  "lblock %lu mapped to illegal pblock %llu "
393                                  "(length %d)", (unsigned long) map->m_lblk,
394                                  map->m_pblk, map->m_len);
395                 return -EFSCORRUPTED;
396         }
397         return 0;
398 }
399
400 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
401                        ext4_lblk_t len)
402 {
403         int ret;
404
405         if (IS_ENCRYPTED(inode))
406                 return fscrypt_zeroout_range(inode, lblk, pblk, len);
407
408         ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
409         if (ret > 0)
410                 ret = 0;
411
412         return ret;
413 }
414
415 #define check_block_validity(inode, map)        \
416         __check_block_validity((inode), __func__, __LINE__, (map))
417
418 #ifdef ES_AGGRESSIVE_TEST
419 static void ext4_map_blocks_es_recheck(handle_t *handle,
420                                        struct inode *inode,
421                                        struct ext4_map_blocks *es_map,
422                                        struct ext4_map_blocks *map,
423                                        int flags)
424 {
425         int retval;
426
427         map->m_flags = 0;
428         /*
429          * There is a race window that the result is not the same.
430          * e.g. xfstests #223 when dioread_nolock enables.  The reason
431          * is that we lookup a block mapping in extent status tree with
432          * out taking i_data_sem.  So at the time the unwritten extent
433          * could be converted.
434          */
435         down_read(&EXT4_I(inode)->i_data_sem);
436         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
437                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
438                                              EXT4_GET_BLOCKS_KEEP_SIZE);
439         } else {
440                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
441                                              EXT4_GET_BLOCKS_KEEP_SIZE);
442         }
443         up_read((&EXT4_I(inode)->i_data_sem));
444
445         /*
446          * We don't check m_len because extent will be collpased in status
447          * tree.  So the m_len might not equal.
448          */
449         if (es_map->m_lblk != map->m_lblk ||
450             es_map->m_flags != map->m_flags ||
451             es_map->m_pblk != map->m_pblk) {
452                 printk("ES cache assertion failed for inode: %lu "
453                        "es_cached ex [%d/%d/%llu/%x] != "
454                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
455                        inode->i_ino, es_map->m_lblk, es_map->m_len,
456                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
457                        map->m_len, map->m_pblk, map->m_flags,
458                        retval, flags);
459         }
460 }
461 #endif /* ES_AGGRESSIVE_TEST */
462
463 /*
464  * The ext4_map_blocks() function tries to look up the requested blocks,
465  * and returns if the blocks are already mapped.
466  *
467  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
468  * and store the allocated blocks in the result buffer head and mark it
469  * mapped.
470  *
471  * If file type is extents based, it will call ext4_ext_map_blocks(),
472  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
473  * based files
474  *
475  * On success, it returns the number of blocks being mapped or allocated.  if
476  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
477  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
478  *
479  * It returns 0 if plain look up failed (blocks have not been allocated), in
480  * that case, @map is returned as unmapped but we still do fill map->m_len to
481  * indicate the length of a hole starting at map->m_lblk.
482  *
483  * It returns the error in case of allocation failure.
484  */
485 int ext4_map_blocks(handle_t *handle, struct inode *inode,
486                     struct ext4_map_blocks *map, int flags)
487 {
488         struct extent_status es;
489         int retval;
490         int ret = 0;
491 #ifdef ES_AGGRESSIVE_TEST
492         struct ext4_map_blocks orig_map;
493
494         memcpy(&orig_map, map, sizeof(*map));
495 #endif
496
497         map->m_flags = 0;
498         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
499                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
500                   (unsigned long) map->m_lblk);
501
502         /*
503          * ext4_map_blocks returns an int, and m_len is an unsigned int
504          */
505         if (unlikely(map->m_len > INT_MAX))
506                 map->m_len = INT_MAX;
507
508         /* We can handle the block number less than EXT_MAX_BLOCKS */
509         if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
510                 return -EFSCORRUPTED;
511
512         /* Lookup extent status tree firstly */
513         if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
514                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
515                         map->m_pblk = ext4_es_pblock(&es) +
516                                         map->m_lblk - es.es_lblk;
517                         map->m_flags |= ext4_es_is_written(&es) ?
518                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
519                         retval = es.es_len - (map->m_lblk - es.es_lblk);
520                         if (retval > map->m_len)
521                                 retval = map->m_len;
522                         map->m_len = retval;
523                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
524                         map->m_pblk = 0;
525                         retval = es.es_len - (map->m_lblk - es.es_lblk);
526                         if (retval > map->m_len)
527                                 retval = map->m_len;
528                         map->m_len = retval;
529                         retval = 0;
530                 } else {
531                         BUG();
532                 }
533 #ifdef ES_AGGRESSIVE_TEST
534                 ext4_map_blocks_es_recheck(handle, inode, map,
535                                            &orig_map, flags);
536 #endif
537                 goto found;
538         }
539
540         /*
541          * Try to see if we can get the block without requesting a new
542          * file system block.
543          */
544         down_read(&EXT4_I(inode)->i_data_sem);
545         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
546                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
547                                              EXT4_GET_BLOCKS_KEEP_SIZE);
548         } else {
549                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
550                                              EXT4_GET_BLOCKS_KEEP_SIZE);
551         }
552         if (retval > 0) {
553                 unsigned int status;
554
555                 if (unlikely(retval != map->m_len)) {
556                         ext4_warning(inode->i_sb,
557                                      "ES len assertion failed for inode "
558                                      "%lu: retval %d != map->m_len %d",
559                                      inode->i_ino, retval, map->m_len);
560                         WARN_ON(1);
561                 }
562
563                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
564                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
565                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
566                     !(status & EXTENT_STATUS_WRITTEN) &&
567                     ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
568                                        map->m_lblk + map->m_len - 1))
569                         status |= EXTENT_STATUS_DELAYED;
570                 ret = ext4_es_insert_extent(inode, map->m_lblk,
571                                             map->m_len, map->m_pblk, status);
572                 if (ret < 0)
573                         retval = ret;
574         }
575         up_read((&EXT4_I(inode)->i_data_sem));
576
577 found:
578         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
579                 ret = check_block_validity(inode, map);
580                 if (ret != 0)
581                         return ret;
582         }
583
584         /* If it is only a block(s) look up */
585         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
586                 return retval;
587
588         /*
589          * Returns if the blocks have already allocated
590          *
591          * Note that if blocks have been preallocated
592          * ext4_ext_get_block() returns the create = 0
593          * with buffer head unmapped.
594          */
595         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
596                 /*
597                  * If we need to convert extent to unwritten
598                  * we continue and do the actual work in
599                  * ext4_ext_map_blocks()
600                  */
601                 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
602                         return retval;
603
604         /*
605          * Here we clear m_flags because after allocating an new extent,
606          * it will be set again.
607          */
608         map->m_flags &= ~EXT4_MAP_FLAGS;
609
610         /*
611          * New blocks allocate and/or writing to unwritten extent
612          * will possibly result in updating i_data, so we take
613          * the write lock of i_data_sem, and call get_block()
614          * with create == 1 flag.
615          */
616         down_write(&EXT4_I(inode)->i_data_sem);
617
618         /*
619          * We need to check for EXT4 here because migrate
620          * could have changed the inode type in between
621          */
622         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
623                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
624         } else {
625                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
626
627                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
628                         /*
629                          * We allocated new blocks which will result in
630                          * i_data's format changing.  Force the migrate
631                          * to fail by clearing migrate flags
632                          */
633                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
634                 }
635
636                 /*
637                  * Update reserved blocks/metadata blocks after successful
638                  * block allocation which had been deferred till now. We don't
639                  * support fallocate for non extent files. So we can update
640                  * reserve space here.
641                  */
642                 if ((retval > 0) &&
643                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
644                         ext4_da_update_reserve_space(inode, retval, 1);
645         }
646
647         if (retval > 0) {
648                 unsigned int status;
649
650                 if (unlikely(retval != map->m_len)) {
651                         ext4_warning(inode->i_sb,
652                                      "ES len assertion failed for inode "
653                                      "%lu: retval %d != map->m_len %d",
654                                      inode->i_ino, retval, map->m_len);
655                         WARN_ON(1);
656                 }
657
658                 /*
659                  * We have to zeroout blocks before inserting them into extent
660                  * status tree. Otherwise someone could look them up there and
661                  * use them before they are really zeroed. We also have to
662                  * unmap metadata before zeroing as otherwise writeback can
663                  * overwrite zeros with stale data from block device.
664                  */
665                 if (flags & EXT4_GET_BLOCKS_ZERO &&
666                     map->m_flags & EXT4_MAP_MAPPED &&
667                     map->m_flags & EXT4_MAP_NEW) {
668                         ret = ext4_issue_zeroout(inode, map->m_lblk,
669                                                  map->m_pblk, map->m_len);
670                         if (ret) {
671                                 retval = ret;
672                                 goto out_sem;
673                         }
674                 }
675
676                 /*
677                  * If the extent has been zeroed out, we don't need to update
678                  * extent status tree.
679                  */
680                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
681                     ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
682                         if (ext4_es_is_written(&es))
683                                 goto out_sem;
684                 }
685                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
686                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
687                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
688                     !(status & EXTENT_STATUS_WRITTEN) &&
689                     ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
690                                        map->m_lblk + map->m_len - 1))
691                         status |= EXTENT_STATUS_DELAYED;
692                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
693                                             map->m_pblk, status);
694                 if (ret < 0) {
695                         retval = ret;
696                         goto out_sem;
697                 }
698         }
699
700 out_sem:
701         up_write((&EXT4_I(inode)->i_data_sem));
702         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
703                 ret = check_block_validity(inode, map);
704                 if (ret != 0)
705                         return ret;
706
707                 /*
708                  * Inodes with freshly allocated blocks where contents will be
709                  * visible after transaction commit must be on transaction's
710                  * ordered data list.
711                  */
712                 if (map->m_flags & EXT4_MAP_NEW &&
713                     !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
714                     !(flags & EXT4_GET_BLOCKS_ZERO) &&
715                     !ext4_is_quota_file(inode) &&
716                     ext4_should_order_data(inode)) {
717                         loff_t start_byte =
718                                 (loff_t)map->m_lblk << inode->i_blkbits;
719                         loff_t length = (loff_t)map->m_len << inode->i_blkbits;
720
721                         if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
722                                 ret = ext4_jbd2_inode_add_wait(handle, inode,
723                                                 start_byte, length);
724                         else
725                                 ret = ext4_jbd2_inode_add_write(handle, inode,
726                                                 start_byte, length);
727                         if (ret)
728                                 return ret;
729                 }
730         }
731         return retval;
732 }
733
734 /*
735  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
736  * we have to be careful as someone else may be manipulating b_state as well.
737  */
738 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
739 {
740         unsigned long old_state;
741         unsigned long new_state;
742
743         flags &= EXT4_MAP_FLAGS;
744
745         /* Dummy buffer_head? Set non-atomically. */
746         if (!bh->b_page) {
747                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
748                 return;
749         }
750         /*
751          * Someone else may be modifying b_state. Be careful! This is ugly but
752          * once we get rid of using bh as a container for mapping information
753          * to pass to / from get_block functions, this can go away.
754          */
755         do {
756                 old_state = READ_ONCE(bh->b_state);
757                 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
758         } while (unlikely(
759                  cmpxchg(&bh->b_state, old_state, new_state) != old_state));
760 }
761
762 static int _ext4_get_block(struct inode *inode, sector_t iblock,
763                            struct buffer_head *bh, int flags)
764 {
765         struct ext4_map_blocks map;
766         int ret = 0;
767
768         if (ext4_has_inline_data(inode))
769                 return -ERANGE;
770
771         map.m_lblk = iblock;
772         map.m_len = bh->b_size >> inode->i_blkbits;
773
774         ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
775                               flags);
776         if (ret > 0) {
777                 map_bh(bh, inode->i_sb, map.m_pblk);
778                 ext4_update_bh_state(bh, map.m_flags);
779                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
780                 ret = 0;
781         } else if (ret == 0) {
782                 /* hole case, need to fill in bh->b_size */
783                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
784         }
785         return ret;
786 }
787
788 int ext4_get_block(struct inode *inode, sector_t iblock,
789                    struct buffer_head *bh, int create)
790 {
791         return _ext4_get_block(inode, iblock, bh,
792                                create ? EXT4_GET_BLOCKS_CREATE : 0);
793 }
794
795 /*
796  * Get block function used when preparing for buffered write if we require
797  * creating an unwritten extent if blocks haven't been allocated.  The extent
798  * will be converted to written after the IO is complete.
799  */
800 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
801                              struct buffer_head *bh_result, int create)
802 {
803         ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
804                    inode->i_ino, create);
805         return _ext4_get_block(inode, iblock, bh_result,
806                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
807 }
808
809 /* Maximum number of blocks we map for direct IO at once. */
810 #define DIO_MAX_BLOCKS 4096
811
812 /*
813  * `handle' can be NULL if create is zero
814  */
815 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
816                                 ext4_lblk_t block, int map_flags)
817 {
818         struct ext4_map_blocks map;
819         struct buffer_head *bh;
820         int create = map_flags & EXT4_GET_BLOCKS_CREATE;
821         int err;
822
823         J_ASSERT(handle != NULL || create == 0);
824
825         map.m_lblk = block;
826         map.m_len = 1;
827         err = ext4_map_blocks(handle, inode, &map, map_flags);
828
829         if (err == 0)
830                 return create ? ERR_PTR(-ENOSPC) : NULL;
831         if (err < 0)
832                 return ERR_PTR(err);
833
834         bh = sb_getblk(inode->i_sb, map.m_pblk);
835         if (unlikely(!bh))
836                 return ERR_PTR(-ENOMEM);
837         if (map.m_flags & EXT4_MAP_NEW) {
838                 J_ASSERT(create != 0);
839                 J_ASSERT(handle != NULL);
840
841                 /*
842                  * Now that we do not always journal data, we should
843                  * keep in mind whether this should always journal the
844                  * new buffer as metadata.  For now, regular file
845                  * writes use ext4_get_block instead, so it's not a
846                  * problem.
847                  */
848                 lock_buffer(bh);
849                 BUFFER_TRACE(bh, "call get_create_access");
850                 err = ext4_journal_get_create_access(handle, bh);
851                 if (unlikely(err)) {
852                         unlock_buffer(bh);
853                         goto errout;
854                 }
855                 if (!buffer_uptodate(bh)) {
856                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
857                         set_buffer_uptodate(bh);
858                 }
859                 unlock_buffer(bh);
860                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
861                 err = ext4_handle_dirty_metadata(handle, inode, bh);
862                 if (unlikely(err))
863                         goto errout;
864         } else
865                 BUFFER_TRACE(bh, "not a new buffer");
866         return bh;
867 errout:
868         brelse(bh);
869         return ERR_PTR(err);
870 }
871
872 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
873                                ext4_lblk_t block, int map_flags)
874 {
875         struct buffer_head *bh;
876
877         bh = ext4_getblk(handle, inode, block, map_flags);
878         if (IS_ERR(bh))
879                 return bh;
880         if (!bh || ext4_buffer_uptodate(bh))
881                 return bh;
882         ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
883         wait_on_buffer(bh);
884         if (buffer_uptodate(bh))
885                 return bh;
886         put_bh(bh);
887         return ERR_PTR(-EIO);
888 }
889
890 /* Read a contiguous batch of blocks. */
891 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
892                      bool wait, struct buffer_head **bhs)
893 {
894         int i, err;
895
896         for (i = 0; i < bh_count; i++) {
897                 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
898                 if (IS_ERR(bhs[i])) {
899                         err = PTR_ERR(bhs[i]);
900                         bh_count = i;
901                         goto out_brelse;
902                 }
903         }
904
905         for (i = 0; i < bh_count; i++)
906                 /* Note that NULL bhs[i] is valid because of holes. */
907                 if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
908                         ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1,
909                                     &bhs[i]);
910
911         if (!wait)
912                 return 0;
913
914         for (i = 0; i < bh_count; i++)
915                 if (bhs[i])
916                         wait_on_buffer(bhs[i]);
917
918         for (i = 0; i < bh_count; i++) {
919                 if (bhs[i] && !buffer_uptodate(bhs[i])) {
920                         err = -EIO;
921                         goto out_brelse;
922                 }
923         }
924         return 0;
925
926 out_brelse:
927         for (i = 0; i < bh_count; i++) {
928                 brelse(bhs[i]);
929                 bhs[i] = NULL;
930         }
931         return err;
932 }
933
934 int ext4_walk_page_buffers(handle_t *handle,
935                            struct buffer_head *head,
936                            unsigned from,
937                            unsigned to,
938                            int *partial,
939                            int (*fn)(handle_t *handle,
940                                      struct buffer_head *bh))
941 {
942         struct buffer_head *bh;
943         unsigned block_start, block_end;
944         unsigned blocksize = head->b_size;
945         int err, ret = 0;
946         struct buffer_head *next;
947
948         for (bh = head, block_start = 0;
949              ret == 0 && (bh != head || !block_start);
950              block_start = block_end, bh = next) {
951                 next = bh->b_this_page;
952                 block_end = block_start + blocksize;
953                 if (block_end <= from || block_start >= to) {
954                         if (partial && !buffer_uptodate(bh))
955                                 *partial = 1;
956                         continue;
957                 }
958                 err = (*fn)(handle, bh);
959                 if (!ret)
960                         ret = err;
961         }
962         return ret;
963 }
964
965 /*
966  * To preserve ordering, it is essential that the hole instantiation and
967  * the data write be encapsulated in a single transaction.  We cannot
968  * close off a transaction and start a new one between the ext4_get_block()
969  * and the commit_write().  So doing the jbd2_journal_start at the start of
970  * prepare_write() is the right place.
971  *
972  * Also, this function can nest inside ext4_writepage().  In that case, we
973  * *know* that ext4_writepage() has generated enough buffer credits to do the
974  * whole page.  So we won't block on the journal in that case, which is good,
975  * because the caller may be PF_MEMALLOC.
976  *
977  * By accident, ext4 can be reentered when a transaction is open via
978  * quota file writes.  If we were to commit the transaction while thus
979  * reentered, there can be a deadlock - we would be holding a quota
980  * lock, and the commit would never complete if another thread had a
981  * transaction open and was blocking on the quota lock - a ranking
982  * violation.
983  *
984  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
985  * will _not_ run commit under these circumstances because handle->h_ref
986  * is elevated.  We'll still have enough credits for the tiny quotafile
987  * write.
988  */
989 int do_journal_get_write_access(handle_t *handle,
990                                 struct buffer_head *bh)
991 {
992         int dirty = buffer_dirty(bh);
993         int ret;
994
995         if (!buffer_mapped(bh) || buffer_freed(bh))
996                 return 0;
997         /*
998          * __block_write_begin() could have dirtied some buffers. Clean
999          * the dirty bit as jbd2_journal_get_write_access() could complain
1000          * otherwise about fs integrity issues. Setting of the dirty bit
1001          * by __block_write_begin() isn't a real problem here as we clear
1002          * the bit before releasing a page lock and thus writeback cannot
1003          * ever write the buffer.
1004          */
1005         if (dirty)
1006                 clear_buffer_dirty(bh);
1007         BUFFER_TRACE(bh, "get write access");
1008         ret = ext4_journal_get_write_access(handle, bh);
1009         if (!ret && dirty)
1010                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1011         return ret;
1012 }
1013
1014 #ifdef CONFIG_FS_ENCRYPTION
1015 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1016                                   get_block_t *get_block)
1017 {
1018         unsigned from = pos & (PAGE_SIZE - 1);
1019         unsigned to = from + len;
1020         struct inode *inode = page->mapping->host;
1021         unsigned block_start, block_end;
1022         sector_t block;
1023         int err = 0;
1024         unsigned blocksize = inode->i_sb->s_blocksize;
1025         unsigned bbits;
1026         struct buffer_head *bh, *head, *wait[2];
1027         int nr_wait = 0;
1028         int i;
1029
1030         BUG_ON(!PageLocked(page));
1031         BUG_ON(from > PAGE_SIZE);
1032         BUG_ON(to > PAGE_SIZE);
1033         BUG_ON(from > to);
1034
1035         if (!page_has_buffers(page))
1036                 create_empty_buffers(page, blocksize, 0);
1037         head = page_buffers(page);
1038         bbits = ilog2(blocksize);
1039         block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1040
1041         for (bh = head, block_start = 0; bh != head || !block_start;
1042             block++, block_start = block_end, bh = bh->b_this_page) {
1043                 block_end = block_start + blocksize;
1044                 if (block_end <= from || block_start >= to) {
1045                         if (PageUptodate(page)) {
1046                                 if (!buffer_uptodate(bh))
1047                                         set_buffer_uptodate(bh);
1048                         }
1049                         continue;
1050                 }
1051                 if (buffer_new(bh))
1052                         clear_buffer_new(bh);
1053                 if (!buffer_mapped(bh)) {
1054                         WARN_ON(bh->b_size != blocksize);
1055                         err = get_block(inode, block, bh, 1);
1056                         if (err)
1057                                 break;
1058                         if (buffer_new(bh)) {
1059                                 if (PageUptodate(page)) {
1060                                         clear_buffer_new(bh);
1061                                         set_buffer_uptodate(bh);
1062                                         mark_buffer_dirty(bh);
1063                                         continue;
1064                                 }
1065                                 if (block_end > to || block_start < from)
1066                                         zero_user_segments(page, to, block_end,
1067                                                            block_start, from);
1068                                 continue;
1069                         }
1070                 }
1071                 if (PageUptodate(page)) {
1072                         if (!buffer_uptodate(bh))
1073                                 set_buffer_uptodate(bh);
1074                         continue;
1075                 }
1076                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1077                     !buffer_unwritten(bh) &&
1078                     (block_start < from || block_end > to)) {
1079                         ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1080                         wait[nr_wait++] = bh;
1081                 }
1082         }
1083         /*
1084          * If we issued read requests, let them complete.
1085          */
1086         for (i = 0; i < nr_wait; i++) {
1087                 wait_on_buffer(wait[i]);
1088                 if (!buffer_uptodate(wait[i]))
1089                         err = -EIO;
1090         }
1091         if (unlikely(err)) {
1092                 page_zero_new_buffers(page, from, to);
1093         } else if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode)) {
1094                 for (i = 0; i < nr_wait; i++) {
1095                         int err2;
1096
1097                         err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize,
1098                                                                 bh_offset(wait[i]));
1099                         if (err2) {
1100                                 clear_buffer_uptodate(wait[i]);
1101                                 err = err2;
1102                         }
1103                 }
1104         }
1105
1106         return err;
1107 }
1108 #endif
1109
1110 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1111                             loff_t pos, unsigned len, unsigned flags,
1112                             struct page **pagep, void **fsdata)
1113 {
1114         struct inode *inode = mapping->host;
1115         int ret, needed_blocks;
1116         handle_t *handle;
1117         int retries = 0;
1118         struct page *page;
1119         pgoff_t index;
1120         unsigned from, to;
1121
1122         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1123                 return -EIO;
1124
1125         trace_ext4_write_begin(inode, pos, len, flags);
1126         /*
1127          * Reserve one block more for addition to orphan list in case
1128          * we allocate blocks but write fails for some reason
1129          */
1130         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1131         index = pos >> PAGE_SHIFT;
1132         from = pos & (PAGE_SIZE - 1);
1133         to = from + len;
1134
1135         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1136                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1137                                                     flags, pagep);
1138                 if (ret < 0)
1139                         return ret;
1140                 if (ret == 1)
1141                         return 0;
1142         }
1143
1144         /*
1145          * grab_cache_page_write_begin() can take a long time if the
1146          * system is thrashing due to memory pressure, or if the page
1147          * is being written back.  So grab it first before we start
1148          * the transaction handle.  This also allows us to allocate
1149          * the page (if needed) without using GFP_NOFS.
1150          */
1151 retry_grab:
1152         page = grab_cache_page_write_begin(mapping, index, flags);
1153         if (!page)
1154                 return -ENOMEM;
1155         unlock_page(page);
1156
1157 retry_journal:
1158         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1159         if (IS_ERR(handle)) {
1160                 put_page(page);
1161                 return PTR_ERR(handle);
1162         }
1163
1164         lock_page(page);
1165         if (page->mapping != mapping) {
1166                 /* The page got truncated from under us */
1167                 unlock_page(page);
1168                 put_page(page);
1169                 ext4_journal_stop(handle);
1170                 goto retry_grab;
1171         }
1172         /* In case writeback began while the page was unlocked */
1173         wait_for_stable_page(page);
1174
1175 #ifdef CONFIG_FS_ENCRYPTION
1176         if (ext4_should_dioread_nolock(inode))
1177                 ret = ext4_block_write_begin(page, pos, len,
1178                                              ext4_get_block_unwritten);
1179         else
1180                 ret = ext4_block_write_begin(page, pos, len,
1181                                              ext4_get_block);
1182 #else
1183         if (ext4_should_dioread_nolock(inode))
1184                 ret = __block_write_begin(page, pos, len,
1185                                           ext4_get_block_unwritten);
1186         else
1187                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1188 #endif
1189         if (!ret && ext4_should_journal_data(inode)) {
1190                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1191                                              from, to, NULL,
1192                                              do_journal_get_write_access);
1193         }
1194
1195         if (ret) {
1196                 bool extended = (pos + len > inode->i_size) &&
1197                                 !ext4_verity_in_progress(inode);
1198
1199                 unlock_page(page);
1200                 /*
1201                  * __block_write_begin may have instantiated a few blocks
1202                  * outside i_size.  Trim these off again. Don't need
1203                  * i_size_read because we hold i_mutex.
1204                  *
1205                  * Add inode to orphan list in case we crash before
1206                  * truncate finishes
1207                  */
1208                 if (extended && ext4_can_truncate(inode))
1209                         ext4_orphan_add(handle, inode);
1210
1211                 ext4_journal_stop(handle);
1212                 if (extended) {
1213                         ext4_truncate_failed_write(inode);
1214                         /*
1215                          * If truncate failed early the inode might
1216                          * still be on the orphan list; we need to
1217                          * make sure the inode is removed from the
1218                          * orphan list in that case.
1219                          */
1220                         if (inode->i_nlink)
1221                                 ext4_orphan_del(NULL, inode);
1222                 }
1223
1224                 if (ret == -ENOSPC &&
1225                     ext4_should_retry_alloc(inode->i_sb, &retries))
1226                         goto retry_journal;
1227                 put_page(page);
1228                 return ret;
1229         }
1230         *pagep = page;
1231         return ret;
1232 }
1233
1234 /* For write_end() in data=journal mode */
1235 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1236 {
1237         int ret;
1238         if (!buffer_mapped(bh) || buffer_freed(bh))
1239                 return 0;
1240         set_buffer_uptodate(bh);
1241         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1242         clear_buffer_meta(bh);
1243         clear_buffer_prio(bh);
1244         return ret;
1245 }
1246
1247 /*
1248  * We need to pick up the new inode size which generic_commit_write gave us
1249  * `file' can be NULL - eg, when called from page_symlink().
1250  *
1251  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1252  * buffers are managed internally.
1253  */
1254 static int ext4_write_end(struct file *file,
1255                           struct address_space *mapping,
1256                           loff_t pos, unsigned len, unsigned copied,
1257                           struct page *page, void *fsdata)
1258 {
1259         handle_t *handle = ext4_journal_current_handle();
1260         struct inode *inode = mapping->host;
1261         loff_t old_size = inode->i_size;
1262         int ret = 0, ret2;
1263         int i_size_changed = 0;
1264         int inline_data = ext4_has_inline_data(inode);
1265         bool verity = ext4_verity_in_progress(inode);
1266
1267         trace_ext4_write_end(inode, pos, len, copied);
1268         if (inline_data) {
1269                 ret = ext4_write_inline_data_end(inode, pos, len,
1270                                                  copied, page);
1271                 if (ret < 0) {
1272                         unlock_page(page);
1273                         put_page(page);
1274                         goto errout;
1275                 }
1276                 copied = ret;
1277         } else
1278                 copied = block_write_end(file, mapping, pos,
1279                                          len, copied, page, fsdata);
1280         /*
1281          * it's important to update i_size while still holding page lock:
1282          * page writeout could otherwise come in and zero beyond i_size.
1283          *
1284          * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1285          * blocks are being written past EOF, so skip the i_size update.
1286          */
1287         if (!verity)
1288                 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1289         unlock_page(page);
1290         put_page(page);
1291
1292         if (old_size < pos && !verity)
1293                 pagecache_isize_extended(inode, old_size, pos);
1294         /*
1295          * Don't mark the inode dirty under page lock. First, it unnecessarily
1296          * makes the holding time of page lock longer. Second, it forces lock
1297          * ordering of page lock and transaction start for journaling
1298          * filesystems.
1299          */
1300         if (i_size_changed || inline_data)
1301                 ext4_mark_inode_dirty(handle, inode);
1302
1303         if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1304                 /* if we have allocated more blocks and copied
1305                  * less. We will have blocks allocated outside
1306                  * inode->i_size. So truncate them
1307                  */
1308                 ext4_orphan_add(handle, inode);
1309 errout:
1310         ret2 = ext4_journal_stop(handle);
1311         if (!ret)
1312                 ret = ret2;
1313
1314         if (pos + len > inode->i_size && !verity) {
1315                 ext4_truncate_failed_write(inode);
1316                 /*
1317                  * If truncate failed early the inode might still be
1318                  * on the orphan list; we need to make sure the inode
1319                  * is removed from the orphan list in that case.
1320                  */
1321                 if (inode->i_nlink)
1322                         ext4_orphan_del(NULL, inode);
1323         }
1324
1325         return ret ? ret : copied;
1326 }
1327
1328 /*
1329  * This is a private version of page_zero_new_buffers() which doesn't
1330  * set the buffer to be dirty, since in data=journalled mode we need
1331  * to call ext4_handle_dirty_metadata() instead.
1332  */
1333 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1334                                             struct page *page,
1335                                             unsigned from, unsigned to)
1336 {
1337         unsigned int block_start = 0, block_end;
1338         struct buffer_head *head, *bh;
1339
1340         bh = head = page_buffers(page);
1341         do {
1342                 block_end = block_start + bh->b_size;
1343                 if (buffer_new(bh)) {
1344                         if (block_end > from && block_start < to) {
1345                                 if (!PageUptodate(page)) {
1346                                         unsigned start, size;
1347
1348                                         start = max(from, block_start);
1349                                         size = min(to, block_end) - start;
1350
1351                                         zero_user(page, start, size);
1352                                         write_end_fn(handle, bh);
1353                                 }
1354                                 clear_buffer_new(bh);
1355                         }
1356                 }
1357                 block_start = block_end;
1358                 bh = bh->b_this_page;
1359         } while (bh != head);
1360 }
1361
1362 static int ext4_journalled_write_end(struct file *file,
1363                                      struct address_space *mapping,
1364                                      loff_t pos, unsigned len, unsigned copied,
1365                                      struct page *page, void *fsdata)
1366 {
1367         handle_t *handle = ext4_journal_current_handle();
1368         struct inode *inode = mapping->host;
1369         loff_t old_size = inode->i_size;
1370         int ret = 0, ret2;
1371         int partial = 0;
1372         unsigned from, to;
1373         int size_changed = 0;
1374         int inline_data = ext4_has_inline_data(inode);
1375         bool verity = ext4_verity_in_progress(inode);
1376
1377         trace_ext4_journalled_write_end(inode, pos, len, copied);
1378         from = pos & (PAGE_SIZE - 1);
1379         to = from + len;
1380
1381         BUG_ON(!ext4_handle_valid(handle));
1382
1383         if (inline_data) {
1384                 ret = ext4_write_inline_data_end(inode, pos, len,
1385                                                  copied, page);
1386                 if (ret < 0) {
1387                         unlock_page(page);
1388                         put_page(page);
1389                         goto errout;
1390                 }
1391                 copied = ret;
1392         } else if (unlikely(copied < len) && !PageUptodate(page)) {
1393                 copied = 0;
1394                 ext4_journalled_zero_new_buffers(handle, page, from, to);
1395         } else {
1396                 if (unlikely(copied < len))
1397                         ext4_journalled_zero_new_buffers(handle, page,
1398                                                          from + copied, to);
1399                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1400                                              from + copied, &partial,
1401                                              write_end_fn);
1402                 if (!partial)
1403                         SetPageUptodate(page);
1404         }
1405         if (!verity)
1406                 size_changed = ext4_update_inode_size(inode, pos + copied);
1407         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1408         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1409         unlock_page(page);
1410         put_page(page);
1411
1412         if (old_size < pos && !verity)
1413                 pagecache_isize_extended(inode, old_size, pos);
1414
1415         if (size_changed || inline_data) {
1416                 ret2 = ext4_mark_inode_dirty(handle, inode);
1417                 if (!ret)
1418                         ret = ret2;
1419         }
1420
1421         if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1422                 /* if we have allocated more blocks and copied
1423                  * less. We will have blocks allocated outside
1424                  * inode->i_size. So truncate them
1425                  */
1426                 ext4_orphan_add(handle, inode);
1427
1428 errout:
1429         ret2 = ext4_journal_stop(handle);
1430         if (!ret)
1431                 ret = ret2;
1432         if (pos + len > inode->i_size && !verity) {
1433                 ext4_truncate_failed_write(inode);
1434                 /*
1435                  * If truncate failed early the inode might still be
1436                  * on the orphan list; we need to make sure the inode
1437                  * is removed from the orphan list in that case.
1438                  */
1439                 if (inode->i_nlink)
1440                         ext4_orphan_del(NULL, inode);
1441         }
1442
1443         return ret ? ret : copied;
1444 }
1445
1446 /*
1447  * Reserve space for a single cluster
1448  */
1449 static int ext4_da_reserve_space(struct inode *inode)
1450 {
1451         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1452         struct ext4_inode_info *ei = EXT4_I(inode);
1453         int ret;
1454
1455         /*
1456          * We will charge metadata quota at writeout time; this saves
1457          * us from metadata over-estimation, though we may go over by
1458          * a small amount in the end.  Here we just reserve for data.
1459          */
1460         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1461         if (ret)
1462                 return ret;
1463
1464         spin_lock(&ei->i_block_reservation_lock);
1465         if (ext4_claim_free_clusters(sbi, 1, 0)) {
1466                 spin_unlock(&ei->i_block_reservation_lock);
1467                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1468                 return -ENOSPC;
1469         }
1470         ei->i_reserved_data_blocks++;
1471         trace_ext4_da_reserve_space(inode);
1472         spin_unlock(&ei->i_block_reservation_lock);
1473
1474         return 0;       /* success */
1475 }
1476
1477 void ext4_da_release_space(struct inode *inode, int to_free)
1478 {
1479         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1480         struct ext4_inode_info *ei = EXT4_I(inode);
1481
1482         if (!to_free)
1483                 return;         /* Nothing to release, exit */
1484
1485         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1486
1487         trace_ext4_da_release_space(inode, to_free);
1488         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1489                 /*
1490                  * if there aren't enough reserved blocks, then the
1491                  * counter is messed up somewhere.  Since this
1492                  * function is called from invalidate page, it's
1493                  * harmless to return without any action.
1494                  */
1495                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1496                          "ino %lu, to_free %d with only %d reserved "
1497                          "data blocks", inode->i_ino, to_free,
1498                          ei->i_reserved_data_blocks);
1499                 WARN_ON(1);
1500                 to_free = ei->i_reserved_data_blocks;
1501         }
1502         ei->i_reserved_data_blocks -= to_free;
1503
1504         /* update fs dirty data blocks counter */
1505         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1506
1507         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1508
1509         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1510 }
1511
1512 /*
1513  * Delayed allocation stuff
1514  */
1515
1516 struct mpage_da_data {
1517         struct inode *inode;
1518         struct writeback_control *wbc;
1519
1520         pgoff_t first_page;     /* The first page to write */
1521         pgoff_t next_page;      /* Current page to examine */
1522         pgoff_t last_page;      /* Last page to examine */
1523         /*
1524          * Extent to map - this can be after first_page because that can be
1525          * fully mapped. We somewhat abuse m_flags to store whether the extent
1526          * is delalloc or unwritten.
1527          */
1528         struct ext4_map_blocks map;
1529         struct ext4_io_submit io_submit;        /* IO submission data */
1530         unsigned int do_map:1;
1531 };
1532
1533 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1534                                        bool invalidate)
1535 {
1536         int nr_pages, i;
1537         pgoff_t index, end;
1538         struct pagevec pvec;
1539         struct inode *inode = mpd->inode;
1540         struct address_space *mapping = inode->i_mapping;
1541
1542         /* This is necessary when next_page == 0. */
1543         if (mpd->first_page >= mpd->next_page)
1544                 return;
1545
1546         index = mpd->first_page;
1547         end   = mpd->next_page - 1;
1548         if (invalidate) {
1549                 ext4_lblk_t start, last;
1550                 start = index << (PAGE_SHIFT - inode->i_blkbits);
1551                 last = end << (PAGE_SHIFT - inode->i_blkbits);
1552                 ext4_es_remove_extent(inode, start, last - start + 1);
1553         }
1554
1555         pagevec_init(&pvec);
1556         while (index <= end) {
1557                 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1558                 if (nr_pages == 0)
1559                         break;
1560                 for (i = 0; i < nr_pages; i++) {
1561                         struct page *page = pvec.pages[i];
1562
1563                         BUG_ON(!PageLocked(page));
1564                         BUG_ON(PageWriteback(page));
1565                         if (invalidate) {
1566                                 if (page_mapped(page))
1567                                         clear_page_dirty_for_io(page);
1568                                 block_invalidatepage(page, 0, PAGE_SIZE);
1569                                 ClearPageUptodate(page);
1570                         }
1571                         unlock_page(page);
1572                 }
1573                 pagevec_release(&pvec);
1574         }
1575 }
1576
1577 static void ext4_print_free_blocks(struct inode *inode)
1578 {
1579         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1580         struct super_block *sb = inode->i_sb;
1581         struct ext4_inode_info *ei = EXT4_I(inode);
1582
1583         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1584                EXT4_C2B(EXT4_SB(inode->i_sb),
1585                         ext4_count_free_clusters(sb)));
1586         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1587         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1588                (long long) EXT4_C2B(EXT4_SB(sb),
1589                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1590         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1591                (long long) EXT4_C2B(EXT4_SB(sb),
1592                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1593         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1594         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1595                  ei->i_reserved_data_blocks);
1596         return;
1597 }
1598
1599 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1600 {
1601         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1602 }
1603
1604 /*
1605  * ext4_insert_delayed_block - adds a delayed block to the extents status
1606  *                             tree, incrementing the reserved cluster/block
1607  *                             count or making a pending reservation
1608  *                             where needed
1609  *
1610  * @inode - file containing the newly added block
1611  * @lblk - logical block to be added
1612  *
1613  * Returns 0 on success, negative error code on failure.
1614  */
1615 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1616 {
1617         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1618         int ret;
1619         bool allocated = false;
1620
1621         /*
1622          * If the cluster containing lblk is shared with a delayed,
1623          * written, or unwritten extent in a bigalloc file system, it's
1624          * already been accounted for and does not need to be reserved.
1625          * A pending reservation must be made for the cluster if it's
1626          * shared with a written or unwritten extent and doesn't already
1627          * have one.  Written and unwritten extents can be purged from the
1628          * extents status tree if the system is under memory pressure, so
1629          * it's necessary to examine the extent tree if a search of the
1630          * extents status tree doesn't get a match.
1631          */
1632         if (sbi->s_cluster_ratio == 1) {
1633                 ret = ext4_da_reserve_space(inode);
1634                 if (ret != 0)   /* ENOSPC */
1635                         goto errout;
1636         } else {   /* bigalloc */
1637                 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1638                         if (!ext4_es_scan_clu(inode,
1639                                               &ext4_es_is_mapped, lblk)) {
1640                                 ret = ext4_clu_mapped(inode,
1641                                                       EXT4_B2C(sbi, lblk));
1642                                 if (ret < 0)
1643                                         goto errout;
1644                                 if (ret == 0) {
1645                                         ret = ext4_da_reserve_space(inode);
1646                                         if (ret != 0)   /* ENOSPC */
1647                                                 goto errout;
1648                                 } else {
1649                                         allocated = true;
1650                                 }
1651                         } else {
1652                                 allocated = true;
1653                         }
1654                 }
1655         }
1656
1657         ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1658
1659 errout:
1660         return ret;
1661 }
1662
1663 /*
1664  * This function is grabs code from the very beginning of
1665  * ext4_map_blocks, but assumes that the caller is from delayed write
1666  * time. This function looks up the requested blocks and sets the
1667  * buffer delay bit under the protection of i_data_sem.
1668  */
1669 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1670                               struct ext4_map_blocks *map,
1671                               struct buffer_head *bh)
1672 {
1673         struct extent_status es;
1674         int retval;
1675         sector_t invalid_block = ~((sector_t) 0xffff);
1676 #ifdef ES_AGGRESSIVE_TEST
1677         struct ext4_map_blocks orig_map;
1678
1679         memcpy(&orig_map, map, sizeof(*map));
1680 #endif
1681
1682         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1683                 invalid_block = ~0;
1684
1685         map->m_flags = 0;
1686         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1687                   "logical block %lu\n", inode->i_ino, map->m_len,
1688                   (unsigned long) map->m_lblk);
1689
1690         /* Lookup extent status tree firstly */
1691         if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1692                 if (ext4_es_is_hole(&es)) {
1693                         retval = 0;
1694                         down_read(&EXT4_I(inode)->i_data_sem);
1695                         goto add_delayed;
1696                 }
1697
1698                 /*
1699                  * Delayed extent could be allocated by fallocate.
1700                  * So we need to check it.
1701                  */
1702                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1703                         map_bh(bh, inode->i_sb, invalid_block);
1704                         set_buffer_new(bh);
1705                         set_buffer_delay(bh);
1706                         return 0;
1707                 }
1708
1709                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1710                 retval = es.es_len - (iblock - es.es_lblk);
1711                 if (retval > map->m_len)
1712                         retval = map->m_len;
1713                 map->m_len = retval;
1714                 if (ext4_es_is_written(&es))
1715                         map->m_flags |= EXT4_MAP_MAPPED;
1716                 else if (ext4_es_is_unwritten(&es))
1717                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1718                 else
1719                         BUG();
1720
1721 #ifdef ES_AGGRESSIVE_TEST
1722                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1723 #endif
1724                 return retval;
1725         }
1726
1727         /*
1728          * Try to see if we can get the block without requesting a new
1729          * file system block.
1730          */
1731         down_read(&EXT4_I(inode)->i_data_sem);
1732         if (ext4_has_inline_data(inode))
1733                 retval = 0;
1734         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1735                 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1736         else
1737                 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1738
1739 add_delayed:
1740         if (retval == 0) {
1741                 int ret;
1742
1743                 /*
1744                  * XXX: __block_prepare_write() unmaps passed block,
1745                  * is it OK?
1746                  */
1747
1748                 ret = ext4_insert_delayed_block(inode, map->m_lblk);
1749                 if (ret != 0) {
1750                         retval = ret;
1751                         goto out_unlock;
1752                 }
1753
1754                 map_bh(bh, inode->i_sb, invalid_block);
1755                 set_buffer_new(bh);
1756                 set_buffer_delay(bh);
1757         } else if (retval > 0) {
1758                 int ret;
1759                 unsigned int status;
1760
1761                 if (unlikely(retval != map->m_len)) {
1762                         ext4_warning(inode->i_sb,
1763                                      "ES len assertion failed for inode "
1764                                      "%lu: retval %d != map->m_len %d",
1765                                      inode->i_ino, retval, map->m_len);
1766                         WARN_ON(1);
1767                 }
1768
1769                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1770                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1771                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1772                                             map->m_pblk, status);
1773                 if (ret != 0)
1774                         retval = ret;
1775         }
1776
1777 out_unlock:
1778         up_read((&EXT4_I(inode)->i_data_sem));
1779
1780         return retval;
1781 }
1782
1783 /*
1784  * This is a special get_block_t callback which is used by
1785  * ext4_da_write_begin().  It will either return mapped block or
1786  * reserve space for a single block.
1787  *
1788  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1789  * We also have b_blocknr = -1 and b_bdev initialized properly
1790  *
1791  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1792  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1793  * initialized properly.
1794  */
1795 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1796                            struct buffer_head *bh, int create)
1797 {
1798         struct ext4_map_blocks map;
1799         int ret = 0;
1800
1801         BUG_ON(create == 0);
1802         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1803
1804         map.m_lblk = iblock;
1805         map.m_len = 1;
1806
1807         /*
1808          * first, we need to know whether the block is allocated already
1809          * preallocated blocks are unmapped but should treated
1810          * the same as allocated blocks.
1811          */
1812         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1813         if (ret <= 0)
1814                 return ret;
1815
1816         map_bh(bh, inode->i_sb, map.m_pblk);
1817         ext4_update_bh_state(bh, map.m_flags);
1818
1819         if (buffer_unwritten(bh)) {
1820                 /* A delayed write to unwritten bh should be marked
1821                  * new and mapped.  Mapped ensures that we don't do
1822                  * get_block multiple times when we write to the same
1823                  * offset and new ensures that we do proper zero out
1824                  * for partial write.
1825                  */
1826                 set_buffer_new(bh);
1827                 set_buffer_mapped(bh);
1828         }
1829         return 0;
1830 }
1831
1832 static int bget_one(handle_t *handle, struct buffer_head *bh)
1833 {
1834         get_bh(bh);
1835         return 0;
1836 }
1837
1838 static int bput_one(handle_t *handle, struct buffer_head *bh)
1839 {
1840         put_bh(bh);
1841         return 0;
1842 }
1843
1844 static int __ext4_journalled_writepage(struct page *page,
1845                                        unsigned int len)
1846 {
1847         struct address_space *mapping = page->mapping;
1848         struct inode *inode = mapping->host;
1849         struct buffer_head *page_bufs = NULL;
1850         handle_t *handle = NULL;
1851         int ret = 0, err = 0;
1852         int inline_data = ext4_has_inline_data(inode);
1853         struct buffer_head *inode_bh = NULL;
1854
1855         ClearPageChecked(page);
1856
1857         if (inline_data) {
1858                 BUG_ON(page->index != 0);
1859                 BUG_ON(len > ext4_get_max_inline_size(inode));
1860                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1861                 if (inode_bh == NULL)
1862                         goto out;
1863         } else {
1864                 page_bufs = page_buffers(page);
1865                 if (!page_bufs) {
1866                         BUG();
1867                         goto out;
1868                 }
1869                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1870                                        NULL, bget_one);
1871         }
1872         /*
1873          * We need to release the page lock before we start the
1874          * journal, so grab a reference so the page won't disappear
1875          * out from under us.
1876          */
1877         get_page(page);
1878         unlock_page(page);
1879
1880         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1881                                     ext4_writepage_trans_blocks(inode));
1882         if (IS_ERR(handle)) {
1883                 ret = PTR_ERR(handle);
1884                 put_page(page);
1885                 goto out_no_pagelock;
1886         }
1887         BUG_ON(!ext4_handle_valid(handle));
1888
1889         lock_page(page);
1890         put_page(page);
1891         if (page->mapping != mapping) {
1892                 /* The page got truncated from under us */
1893                 ext4_journal_stop(handle);
1894                 ret = 0;
1895                 goto out;
1896         }
1897
1898         if (inline_data) {
1899                 ret = ext4_mark_inode_dirty(handle, inode);
1900         } else {
1901                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1902                                              do_journal_get_write_access);
1903
1904                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1905                                              write_end_fn);
1906         }
1907         if (ret == 0)
1908                 ret = err;
1909         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1910         err = ext4_journal_stop(handle);
1911         if (!ret)
1912                 ret = err;
1913
1914         if (!ext4_has_inline_data(inode))
1915                 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1916                                        NULL, bput_one);
1917         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1918 out:
1919         unlock_page(page);
1920 out_no_pagelock:
1921         brelse(inode_bh);
1922         return ret;
1923 }
1924
1925 /*
1926  * Note that we don't need to start a transaction unless we're journaling data
1927  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1928  * need to file the inode to the transaction's list in ordered mode because if
1929  * we are writing back data added by write(), the inode is already there and if
1930  * we are writing back data modified via mmap(), no one guarantees in which
1931  * transaction the data will hit the disk. In case we are journaling data, we
1932  * cannot start transaction directly because transaction start ranks above page
1933  * lock so we have to do some magic.
1934  *
1935  * This function can get called via...
1936  *   - ext4_writepages after taking page lock (have journal handle)
1937  *   - journal_submit_inode_data_buffers (no journal handle)
1938  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1939  *   - grab_page_cache when doing write_begin (have journal handle)
1940  *
1941  * We don't do any block allocation in this function. If we have page with
1942  * multiple blocks we need to write those buffer_heads that are mapped. This
1943  * is important for mmaped based write. So if we do with blocksize 1K
1944  * truncate(f, 1024);
1945  * a = mmap(f, 0, 4096);
1946  * a[0] = 'a';
1947  * truncate(f, 4096);
1948  * we have in the page first buffer_head mapped via page_mkwrite call back
1949  * but other buffer_heads would be unmapped but dirty (dirty done via the
1950  * do_wp_page). So writepage should write the first block. If we modify
1951  * the mmap area beyond 1024 we will again get a page_fault and the
1952  * page_mkwrite callback will do the block allocation and mark the
1953  * buffer_heads mapped.
1954  *
1955  * We redirty the page if we have any buffer_heads that is either delay or
1956  * unwritten in the page.
1957  *
1958  * We can get recursively called as show below.
1959  *
1960  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1961  *              ext4_writepage()
1962  *
1963  * But since we don't do any block allocation we should not deadlock.
1964  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1965  */
1966 static int ext4_writepage(struct page *page,
1967                           struct writeback_control *wbc)
1968 {
1969         int ret = 0;
1970         loff_t size;
1971         unsigned int len;
1972         struct buffer_head *page_bufs = NULL;
1973         struct inode *inode = page->mapping->host;
1974         struct ext4_io_submit io_submit;
1975         bool keep_towrite = false;
1976
1977         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
1978                 ext4_invalidatepage(page, 0, PAGE_SIZE);
1979                 unlock_page(page);
1980                 return -EIO;
1981         }
1982
1983         trace_ext4_writepage(page);
1984         size = i_size_read(inode);
1985         if (page->index == size >> PAGE_SHIFT &&
1986             !ext4_verity_in_progress(inode))
1987                 len = size & ~PAGE_MASK;
1988         else
1989                 len = PAGE_SIZE;
1990
1991         page_bufs = page_buffers(page);
1992         /*
1993          * We cannot do block allocation or other extent handling in this
1994          * function. If there are buffers needing that, we have to redirty
1995          * the page. But we may reach here when we do a journal commit via
1996          * journal_submit_inode_data_buffers() and in that case we must write
1997          * allocated buffers to achieve data=ordered mode guarantees.
1998          *
1999          * Also, if there is only one buffer per page (the fs block
2000          * size == the page size), if one buffer needs block
2001          * allocation or needs to modify the extent tree to clear the
2002          * unwritten flag, we know that the page can't be written at
2003          * all, so we might as well refuse the write immediately.
2004          * Unfortunately if the block size != page size, we can't as
2005          * easily detect this case using ext4_walk_page_buffers(), but
2006          * for the extremely common case, this is an optimization that
2007          * skips a useless round trip through ext4_bio_write_page().
2008          */
2009         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2010                                    ext4_bh_delay_or_unwritten)) {
2011                 redirty_page_for_writepage(wbc, page);
2012                 if ((current->flags & PF_MEMALLOC) ||
2013                     (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2014                         /*
2015                          * For memory cleaning there's no point in writing only
2016                          * some buffers. So just bail out. Warn if we came here
2017                          * from direct reclaim.
2018                          */
2019                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2020                                                         == PF_MEMALLOC);
2021                         unlock_page(page);
2022                         return 0;
2023                 }
2024                 keep_towrite = true;
2025         }
2026
2027         if (PageChecked(page) && ext4_should_journal_data(inode))
2028                 /*
2029                  * It's mmapped pagecache.  Add buffers and journal it.  There
2030                  * doesn't seem much point in redirtying the page here.
2031                  */
2032                 return __ext4_journalled_writepage(page, len);
2033
2034         ext4_io_submit_init(&io_submit, wbc);
2035         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2036         if (!io_submit.io_end) {
2037                 redirty_page_for_writepage(wbc, page);
2038                 unlock_page(page);
2039                 return -ENOMEM;
2040         }
2041         ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2042         ext4_io_submit(&io_submit);
2043         /* Drop io_end reference we got from init */
2044         ext4_put_io_end_defer(io_submit.io_end);
2045         return ret;
2046 }
2047
2048 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2049 {
2050         int len;
2051         loff_t size;
2052         int err;
2053
2054         BUG_ON(page->index != mpd->first_page);
2055         clear_page_dirty_for_io(page);
2056         /*
2057          * We have to be very careful here!  Nothing protects writeback path
2058          * against i_size changes and the page can be writeably mapped into
2059          * page tables. So an application can be growing i_size and writing
2060          * data through mmap while writeback runs. clear_page_dirty_for_io()
2061          * write-protects our page in page tables and the page cannot get
2062          * written to again until we release page lock. So only after
2063          * clear_page_dirty_for_io() we are safe to sample i_size for
2064          * ext4_bio_write_page() to zero-out tail of the written page. We rely
2065          * on the barrier provided by TestClearPageDirty in
2066          * clear_page_dirty_for_io() to make sure i_size is really sampled only
2067          * after page tables are updated.
2068          */
2069         size = i_size_read(mpd->inode);
2070         if (page->index == size >> PAGE_SHIFT &&
2071             !ext4_verity_in_progress(mpd->inode))
2072                 len = size & ~PAGE_MASK;
2073         else
2074                 len = PAGE_SIZE;
2075         err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2076         if (!err)
2077                 mpd->wbc->nr_to_write--;
2078         mpd->first_page++;
2079
2080         return err;
2081 }
2082
2083 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2084
2085 /*
2086  * mballoc gives us at most this number of blocks...
2087  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2088  * The rest of mballoc seems to handle chunks up to full group size.
2089  */
2090 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2091
2092 /*
2093  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2094  *
2095  * @mpd - extent of blocks
2096  * @lblk - logical number of the block in the file
2097  * @bh - buffer head we want to add to the extent
2098  *
2099  * The function is used to collect contig. blocks in the same state. If the
2100  * buffer doesn't require mapping for writeback and we haven't started the
2101  * extent of buffers to map yet, the function returns 'true' immediately - the
2102  * caller can write the buffer right away. Otherwise the function returns true
2103  * if the block has been added to the extent, false if the block couldn't be
2104  * added.
2105  */
2106 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2107                                    struct buffer_head *bh)
2108 {
2109         struct ext4_map_blocks *map = &mpd->map;
2110
2111         /* Buffer that doesn't need mapping for writeback? */
2112         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2113             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2114                 /* So far no extent to map => we write the buffer right away */
2115                 if (map->m_len == 0)
2116                         return true;
2117                 return false;
2118         }
2119
2120         /* First block in the extent? */
2121         if (map->m_len == 0) {
2122                 /* We cannot map unless handle is started... */
2123                 if (!mpd->do_map)
2124                         return false;
2125                 map->m_lblk = lblk;
2126                 map->m_len = 1;
2127                 map->m_flags = bh->b_state & BH_FLAGS;
2128                 return true;
2129         }
2130
2131         /* Don't go larger than mballoc is willing to allocate */
2132         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2133                 return false;
2134
2135         /* Can we merge the block to our big extent? */
2136         if (lblk == map->m_lblk + map->m_len &&
2137             (bh->b_state & BH_FLAGS) == map->m_flags) {
2138                 map->m_len++;
2139                 return true;
2140         }
2141         return false;
2142 }
2143
2144 /*
2145  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2146  *
2147  * @mpd - extent of blocks for mapping
2148  * @head - the first buffer in the page
2149  * @bh - buffer we should start processing from
2150  * @lblk - logical number of the block in the file corresponding to @bh
2151  *
2152  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2153  * the page for IO if all buffers in this page were mapped and there's no
2154  * accumulated extent of buffers to map or add buffers in the page to the
2155  * extent of buffers to map. The function returns 1 if the caller can continue
2156  * by processing the next page, 0 if it should stop adding buffers to the
2157  * extent to map because we cannot extend it anymore. It can also return value
2158  * < 0 in case of error during IO submission.
2159  */
2160 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2161                                    struct buffer_head *head,
2162                                    struct buffer_head *bh,
2163                                    ext4_lblk_t lblk)
2164 {
2165         struct inode *inode = mpd->inode;
2166         int err;
2167         ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2168                                                         >> inode->i_blkbits;
2169
2170         if (ext4_verity_in_progress(inode))
2171                 blocks = EXT_MAX_BLOCKS;
2172
2173         do {
2174                 BUG_ON(buffer_locked(bh));
2175
2176                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2177                         /* Found extent to map? */
2178                         if (mpd->map.m_len)
2179                                 return 0;
2180                         /* Buffer needs mapping and handle is not started? */
2181                         if (!mpd->do_map)
2182                                 return 0;
2183                         /* Everything mapped so far and we hit EOF */
2184                         break;
2185                 }
2186         } while (lblk++, (bh = bh->b_this_page) != head);
2187         /* So far everything mapped? Submit the page for IO. */
2188         if (mpd->map.m_len == 0) {
2189                 err = mpage_submit_page(mpd, head->b_page);
2190                 if (err < 0)
2191                         return err;
2192         }
2193         return lblk < blocks;
2194 }
2195
2196 /*
2197  * mpage_process_page - update page buffers corresponding to changed extent and
2198  *                     may submit fully mapped page for IO
2199  *
2200  * @mpd         - description of extent to map, on return next extent to map
2201  * @m_lblk      - logical block mapping.
2202  * @m_pblk      - corresponding physical mapping.
2203  * @map_bh      - determines on return whether this page requires any further
2204  *                mapping or not.
2205  * Scan given page buffers corresponding to changed extent and update buffer
2206  * state according to new extent state.
2207  * We map delalloc buffers to their physical location, clear unwritten bits.
2208  * If the given page is not fully mapped, we update @map to the next extent in
2209  * the given page that needs mapping & return @map_bh as true.
2210  */
2211 static int mpage_process_page(struct mpage_da_data *mpd, struct page *page,
2212                               ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2213                               bool *map_bh)
2214 {
2215         struct buffer_head *head, *bh;
2216         ext4_io_end_t *io_end = mpd->io_submit.io_end;
2217         ext4_lblk_t lblk = *m_lblk;
2218         ext4_fsblk_t pblock = *m_pblk;
2219         int err = 0;
2220         int blkbits = mpd->inode->i_blkbits;
2221         ssize_t io_end_size = 0;
2222         struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2223
2224         bh = head = page_buffers(page);
2225         do {
2226                 if (lblk < mpd->map.m_lblk)
2227                         continue;
2228                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2229                         /*
2230                          * Buffer after end of mapped extent.
2231                          * Find next buffer in the page to map.
2232                          */
2233                         mpd->map.m_len = 0;
2234                         mpd->map.m_flags = 0;
2235                         io_end_vec->size += io_end_size;
2236                         io_end_size = 0;
2237
2238                         err = mpage_process_page_bufs(mpd, head, bh, lblk);
2239                         if (err > 0)
2240                                 err = 0;
2241                         if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2242                                 io_end_vec = ext4_alloc_io_end_vec(io_end);
2243                                 if (IS_ERR(io_end_vec)) {
2244                                         err = PTR_ERR(io_end_vec);
2245                                         goto out;
2246                                 }
2247                                 io_end_vec->offset = mpd->map.m_lblk << blkbits;
2248                         }
2249                         *map_bh = true;
2250                         goto out;
2251                 }
2252                 if (buffer_delay(bh)) {
2253                         clear_buffer_delay(bh);
2254                         bh->b_blocknr = pblock++;
2255                 }
2256                 clear_buffer_unwritten(bh);
2257                 io_end_size += (1 << blkbits);
2258         } while (lblk++, (bh = bh->b_this_page) != head);
2259
2260         io_end_vec->size += io_end_size;
2261         io_end_size = 0;
2262         *map_bh = false;
2263 out:
2264         *m_lblk = lblk;
2265         *m_pblk = pblock;
2266         return err;
2267 }
2268
2269 /*
2270  * mpage_map_buffers - update buffers corresponding to changed extent and
2271  *                     submit fully mapped pages for IO
2272  *
2273  * @mpd - description of extent to map, on return next extent to map
2274  *
2275  * Scan buffers corresponding to changed extent (we expect corresponding pages
2276  * to be already locked) and update buffer state according to new extent state.
2277  * We map delalloc buffers to their physical location, clear unwritten bits,
2278  * and mark buffers as uninit when we perform writes to unwritten extents
2279  * and do extent conversion after IO is finished. If the last page is not fully
2280  * mapped, we update @map to the next extent in the last page that needs
2281  * mapping. Otherwise we submit the page for IO.
2282  */
2283 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2284 {
2285         struct pagevec pvec;
2286         int nr_pages, i;
2287         struct inode *inode = mpd->inode;
2288         int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2289         pgoff_t start, end;
2290         ext4_lblk_t lblk;
2291         ext4_fsblk_t pblock;
2292         int err;
2293         bool map_bh = false;
2294
2295         start = mpd->map.m_lblk >> bpp_bits;
2296         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2297         lblk = start << bpp_bits;
2298         pblock = mpd->map.m_pblk;
2299
2300         pagevec_init(&pvec);
2301         while (start <= end) {
2302                 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2303                                                 &start, end);
2304                 if (nr_pages == 0)
2305                         break;
2306                 for (i = 0; i < nr_pages; i++) {
2307                         struct page *page = pvec.pages[i];
2308
2309                         err = mpage_process_page(mpd, page, &lblk, &pblock,
2310                                                  &map_bh);
2311                         /*
2312                          * If map_bh is true, means page may require further bh
2313                          * mapping, or maybe the page was submitted for IO.
2314                          * So we return to call further extent mapping.
2315                          */
2316                         if (err < 0 || map_bh == true)
2317                                 goto out;
2318                         /* Page fully mapped - let IO run! */
2319                         err = mpage_submit_page(mpd, page);
2320                         if (err < 0)
2321                                 goto out;
2322                 }
2323                 pagevec_release(&pvec);
2324         }
2325         /* Extent fully mapped and matches with page boundary. We are done. */
2326         mpd->map.m_len = 0;
2327         mpd->map.m_flags = 0;
2328         return 0;
2329 out:
2330         pagevec_release(&pvec);
2331         return err;
2332 }
2333
2334 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2335 {
2336         struct inode *inode = mpd->inode;
2337         struct ext4_map_blocks *map = &mpd->map;
2338         int get_blocks_flags;
2339         int err, dioread_nolock;
2340
2341         trace_ext4_da_write_pages_extent(inode, map);
2342         /*
2343          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2344          * to convert an unwritten extent to be initialized (in the case
2345          * where we have written into one or more preallocated blocks).  It is
2346          * possible that we're going to need more metadata blocks than
2347          * previously reserved. However we must not fail because we're in
2348          * writeback and there is nothing we can do about it so it might result
2349          * in data loss.  So use reserved blocks to allocate metadata if
2350          * possible.
2351          *
2352          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2353          * the blocks in question are delalloc blocks.  This indicates
2354          * that the blocks and quotas has already been checked when
2355          * the data was copied into the page cache.
2356          */
2357         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2358                            EXT4_GET_BLOCKS_METADATA_NOFAIL |
2359                            EXT4_GET_BLOCKS_IO_SUBMIT;
2360         dioread_nolock = ext4_should_dioread_nolock(inode);
2361         if (dioread_nolock)
2362                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2363         if (map->m_flags & (1 << BH_Delay))
2364                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2365
2366         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2367         if (err < 0)
2368                 return err;
2369         if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2370                 if (!mpd->io_submit.io_end->handle &&
2371                     ext4_handle_valid(handle)) {
2372                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2373                         handle->h_rsv_handle = NULL;
2374                 }
2375                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2376         }
2377
2378         BUG_ON(map->m_len == 0);
2379         return 0;
2380 }
2381
2382 /*
2383  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2384  *                               mpd->len and submit pages underlying it for IO
2385  *
2386  * @handle - handle for journal operations
2387  * @mpd - extent to map
2388  * @give_up_on_write - we set this to true iff there is a fatal error and there
2389  *                     is no hope of writing the data. The caller should discard
2390  *                     dirty pages to avoid infinite loops.
2391  *
2392  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2393  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2394  * them to initialized or split the described range from larger unwritten
2395  * extent. Note that we need not map all the described range since allocation
2396  * can return less blocks or the range is covered by more unwritten extents. We
2397  * cannot map more because we are limited by reserved transaction credits. On
2398  * the other hand we always make sure that the last touched page is fully
2399  * mapped so that it can be written out (and thus forward progress is
2400  * guaranteed). After mapping we submit all mapped pages for IO.
2401  */
2402 static int mpage_map_and_submit_extent(handle_t *handle,
2403                                        struct mpage_da_data *mpd,
2404                                        bool *give_up_on_write)
2405 {
2406         struct inode *inode = mpd->inode;
2407         struct ext4_map_blocks *map = &mpd->map;
2408         int err;
2409         loff_t disksize;
2410         int progress = 0;
2411         ext4_io_end_t *io_end = mpd->io_submit.io_end;
2412         struct ext4_io_end_vec *io_end_vec;
2413
2414         io_end_vec = ext4_alloc_io_end_vec(io_end);
2415         if (IS_ERR(io_end_vec))
2416                 return PTR_ERR(io_end_vec);
2417         io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2418         do {
2419                 err = mpage_map_one_extent(handle, mpd);
2420                 if (err < 0) {
2421                         struct super_block *sb = inode->i_sb;
2422
2423                         if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2424                             EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2425                                 goto invalidate_dirty_pages;
2426                         /*
2427                          * Let the uper layers retry transient errors.
2428                          * In the case of ENOSPC, if ext4_count_free_blocks()
2429                          * is non-zero, a commit should free up blocks.
2430                          */
2431                         if ((err == -ENOMEM) ||
2432                             (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2433                                 if (progress)
2434                                         goto update_disksize;
2435                                 return err;
2436                         }
2437                         ext4_msg(sb, KERN_CRIT,
2438                                  "Delayed block allocation failed for "
2439                                  "inode %lu at logical offset %llu with"
2440                                  " max blocks %u with error %d",
2441                                  inode->i_ino,
2442                                  (unsigned long long)map->m_lblk,
2443                                  (unsigned)map->m_len, -err);
2444                         ext4_msg(sb, KERN_CRIT,
2445                                  "This should not happen!! Data will "
2446                                  "be lost\n");
2447                         if (err == -ENOSPC)
2448                                 ext4_print_free_blocks(inode);
2449                 invalidate_dirty_pages:
2450                         *give_up_on_write = true;
2451                         return err;
2452                 }
2453                 progress = 1;
2454                 /*
2455                  * Update buffer state, submit mapped pages, and get us new
2456                  * extent to map
2457                  */
2458                 err = mpage_map_and_submit_buffers(mpd);
2459                 if (err < 0)
2460                         goto update_disksize;
2461         } while (map->m_len);
2462
2463 update_disksize:
2464         /*
2465          * Update on-disk size after IO is submitted.  Races with
2466          * truncate are avoided by checking i_size under i_data_sem.
2467          */
2468         disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2469         if (disksize > EXT4_I(inode)->i_disksize) {
2470                 int err2;
2471                 loff_t i_size;
2472
2473                 down_write(&EXT4_I(inode)->i_data_sem);
2474                 i_size = i_size_read(inode);
2475                 if (disksize > i_size)
2476                         disksize = i_size;
2477                 if (disksize > EXT4_I(inode)->i_disksize)
2478                         EXT4_I(inode)->i_disksize = disksize;
2479                 up_write(&EXT4_I(inode)->i_data_sem);
2480                 err2 = ext4_mark_inode_dirty(handle, inode);
2481                 if (err2)
2482                         ext4_error(inode->i_sb,
2483                                    "Failed to mark inode %lu dirty",
2484                                    inode->i_ino);
2485                 if (!err)
2486                         err = err2;
2487         }
2488         return err;
2489 }
2490
2491 /*
2492  * Calculate the total number of credits to reserve for one writepages
2493  * iteration. This is called from ext4_writepages(). We map an extent of
2494  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2495  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2496  * bpp - 1 blocks in bpp different extents.
2497  */
2498 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2499 {
2500         int bpp = ext4_journal_blocks_per_page(inode);
2501
2502         return ext4_meta_trans_blocks(inode,
2503                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2504 }
2505
2506 /*
2507  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2508  *                               and underlying extent to map
2509  *
2510  * @mpd - where to look for pages
2511  *
2512  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2513  * IO immediately. When we find a page which isn't mapped we start accumulating
2514  * extent of buffers underlying these pages that needs mapping (formed by
2515  * either delayed or unwritten buffers). We also lock the pages containing
2516  * these buffers. The extent found is returned in @mpd structure (starting at
2517  * mpd->lblk with length mpd->len blocks).
2518  *
2519  * Note that this function can attach bios to one io_end structure which are
2520  * neither logically nor physically contiguous. Although it may seem as an
2521  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2522  * case as we need to track IO to all buffers underlying a page in one io_end.
2523  */
2524 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2525 {
2526         struct address_space *mapping = mpd->inode->i_mapping;
2527         struct pagevec pvec;
2528         unsigned int nr_pages;
2529         long left = mpd->wbc->nr_to_write;
2530         pgoff_t index = mpd->first_page;
2531         pgoff_t end = mpd->last_page;
2532         xa_mark_t tag;
2533         int i, err = 0;
2534         int blkbits = mpd->inode->i_blkbits;
2535         ext4_lblk_t lblk;
2536         struct buffer_head *head;
2537
2538         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2539                 tag = PAGECACHE_TAG_TOWRITE;
2540         else
2541                 tag = PAGECACHE_TAG_DIRTY;
2542
2543         pagevec_init(&pvec);
2544         mpd->map.m_len = 0;
2545         mpd->next_page = index;
2546         while (index <= end) {
2547                 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2548                                 tag);
2549                 if (nr_pages == 0)
2550                         goto out;
2551
2552                 for (i = 0; i < nr_pages; i++) {
2553                         struct page *page = pvec.pages[i];
2554
2555                         /*
2556                          * Accumulated enough dirty pages? This doesn't apply
2557                          * to WB_SYNC_ALL mode. For integrity sync we have to
2558                          * keep going because someone may be concurrently
2559                          * dirtying pages, and we might have synced a lot of
2560                          * newly appeared dirty pages, but have not synced all
2561                          * of the old dirty pages.
2562                          */
2563                         if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2564                                 goto out;
2565
2566                         /* If we can't merge this page, we are done. */
2567                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2568                                 goto out;
2569
2570                         lock_page(page);
2571                         /*
2572                          * If the page is no longer dirty, or its mapping no
2573                          * longer corresponds to inode we are writing (which
2574                          * means it has been truncated or invalidated), or the
2575                          * page is already under writeback and we are not doing
2576                          * a data integrity writeback, skip the page
2577                          */
2578                         if (!PageDirty(page) ||
2579                             (PageWriteback(page) &&
2580                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2581                             unlikely(page->mapping != mapping)) {
2582                                 unlock_page(page);
2583                                 continue;
2584                         }
2585
2586                         wait_on_page_writeback(page);
2587                         BUG_ON(PageWriteback(page));
2588
2589                         if (mpd->map.m_len == 0)
2590                                 mpd->first_page = page->index;
2591                         mpd->next_page = page->index + 1;
2592                         /* Add all dirty buffers to mpd */
2593                         lblk = ((ext4_lblk_t)page->index) <<
2594                                 (PAGE_SHIFT - blkbits);
2595                         head = page_buffers(page);
2596                         err = mpage_process_page_bufs(mpd, head, head, lblk);
2597                         if (err <= 0)
2598                                 goto out;
2599                         err = 0;
2600                         left--;
2601                 }
2602                 pagevec_release(&pvec);
2603                 cond_resched();
2604         }
2605         return 0;
2606 out:
2607         pagevec_release(&pvec);
2608         return err;
2609 }
2610
2611 static int ext4_writepages(struct address_space *mapping,
2612                            struct writeback_control *wbc)
2613 {
2614         pgoff_t writeback_index = 0;
2615         long nr_to_write = wbc->nr_to_write;
2616         int range_whole = 0;
2617         int cycled = 1;
2618         handle_t *handle = NULL;
2619         struct mpage_da_data mpd;
2620         struct inode *inode = mapping->host;
2621         int needed_blocks, rsv_blocks = 0, ret = 0;
2622         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2623         bool done;
2624         struct blk_plug plug;
2625         bool give_up_on_write = false;
2626
2627         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2628                 return -EIO;
2629
2630         percpu_down_read(&sbi->s_journal_flag_rwsem);
2631         trace_ext4_writepages(inode, wbc);
2632
2633         /*
2634          * No pages to write? This is mainly a kludge to avoid starting
2635          * a transaction for special inodes like journal inode on last iput()
2636          * because that could violate lock ordering on umount
2637          */
2638         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2639                 goto out_writepages;
2640
2641         if (ext4_should_journal_data(inode)) {
2642                 ret = generic_writepages(mapping, wbc);
2643                 goto out_writepages;
2644         }
2645
2646         /*
2647          * If the filesystem has aborted, it is read-only, so return
2648          * right away instead of dumping stack traces later on that
2649          * will obscure the real source of the problem.  We test
2650          * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2651          * the latter could be true if the filesystem is mounted
2652          * read-only, and in that case, ext4_writepages should
2653          * *never* be called, so if that ever happens, we would want
2654          * the stack trace.
2655          */
2656         if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2657                      sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2658                 ret = -EROFS;
2659                 goto out_writepages;
2660         }
2661
2662         /*
2663          * If we have inline data and arrive here, it means that
2664          * we will soon create the block for the 1st page, so
2665          * we'd better clear the inline data here.
2666          */
2667         if (ext4_has_inline_data(inode)) {
2668                 /* Just inode will be modified... */
2669                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2670                 if (IS_ERR(handle)) {
2671                         ret = PTR_ERR(handle);
2672                         goto out_writepages;
2673                 }
2674                 BUG_ON(ext4_test_inode_state(inode,
2675                                 EXT4_STATE_MAY_INLINE_DATA));
2676                 ext4_destroy_inline_data(handle, inode);
2677                 ext4_journal_stop(handle);
2678         }
2679
2680         if (ext4_should_dioread_nolock(inode)) {
2681                 /*
2682                  * We may need to convert up to one extent per block in
2683                  * the page and we may dirty the inode.
2684                  */
2685                 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2686                                                 PAGE_SIZE >> inode->i_blkbits);
2687         }
2688
2689         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2690                 range_whole = 1;
2691
2692         if (wbc->range_cyclic) {
2693                 writeback_index = mapping->writeback_index;
2694                 if (writeback_index)
2695                         cycled = 0;
2696                 mpd.first_page = writeback_index;
2697                 mpd.last_page = -1;
2698         } else {
2699                 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2700                 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2701         }
2702
2703         mpd.inode = inode;
2704         mpd.wbc = wbc;
2705         ext4_io_submit_init(&mpd.io_submit, wbc);
2706 retry:
2707         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2708                 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2709         done = false;
2710         blk_start_plug(&plug);
2711
2712         /*
2713          * First writeback pages that don't need mapping - we can avoid
2714          * starting a transaction unnecessarily and also avoid being blocked
2715          * in the block layer on device congestion while having transaction
2716          * started.
2717          */
2718         mpd.do_map = 0;
2719         mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2720         if (!mpd.io_submit.io_end) {
2721                 ret = -ENOMEM;
2722                 goto unplug;
2723         }
2724         ret = mpage_prepare_extent_to_map(&mpd);
2725         /* Unlock pages we didn't use */
2726         mpage_release_unused_pages(&mpd, false);
2727         /* Submit prepared bio */
2728         ext4_io_submit(&mpd.io_submit);
2729         ext4_put_io_end_defer(mpd.io_submit.io_end);
2730         mpd.io_submit.io_end = NULL;
2731         if (ret < 0)
2732                 goto unplug;
2733
2734         while (!done && mpd.first_page <= mpd.last_page) {
2735                 /* For each extent of pages we use new io_end */
2736                 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2737                 if (!mpd.io_submit.io_end) {
2738                         ret = -ENOMEM;
2739                         break;
2740                 }
2741
2742                 /*
2743                  * We have two constraints: We find one extent to map and we
2744                  * must always write out whole page (makes a difference when
2745                  * blocksize < pagesize) so that we don't block on IO when we
2746                  * try to write out the rest of the page. Journalled mode is
2747                  * not supported by delalloc.
2748                  */
2749                 BUG_ON(ext4_should_journal_data(inode));
2750                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2751
2752                 /* start a new transaction */
2753                 handle = ext4_journal_start_with_reserve(inode,
2754                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2755                 if (IS_ERR(handle)) {
2756                         ret = PTR_ERR(handle);
2757                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2758                                "%ld pages, ino %lu; err %d", __func__,
2759                                 wbc->nr_to_write, inode->i_ino, ret);
2760                         /* Release allocated io_end */
2761                         ext4_put_io_end(mpd.io_submit.io_end);
2762                         mpd.io_submit.io_end = NULL;
2763                         break;
2764                 }
2765                 mpd.do_map = 1;
2766
2767                 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2768                 ret = mpage_prepare_extent_to_map(&mpd);
2769                 if (!ret) {
2770                         if (mpd.map.m_len)
2771                                 ret = mpage_map_and_submit_extent(handle, &mpd,
2772                                         &give_up_on_write);
2773                         else {
2774                                 /*
2775                                  * We scanned the whole range (or exhausted
2776                                  * nr_to_write), submitted what was mapped and
2777                                  * didn't find anything needing mapping. We are
2778                                  * done.
2779                                  */
2780                                 done = true;
2781                         }
2782                 }
2783                 /*
2784                  * Caution: If the handle is synchronous,
2785                  * ext4_journal_stop() can wait for transaction commit
2786                  * to finish which may depend on writeback of pages to
2787                  * complete or on page lock to be released.  In that
2788                  * case, we have to wait until after after we have
2789                  * submitted all the IO, released page locks we hold,
2790                  * and dropped io_end reference (for extent conversion
2791                  * to be able to complete) before stopping the handle.
2792                  */
2793                 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2794                         ext4_journal_stop(handle);
2795                         handle = NULL;
2796                         mpd.do_map = 0;
2797                 }
2798                 /* Unlock pages we didn't use */
2799                 mpage_release_unused_pages(&mpd, give_up_on_write);
2800                 /* Submit prepared bio */
2801                 ext4_io_submit(&mpd.io_submit);
2802
2803                 /*
2804                  * Drop our io_end reference we got from init. We have
2805                  * to be careful and use deferred io_end finishing if
2806                  * we are still holding the transaction as we can
2807                  * release the last reference to io_end which may end
2808                  * up doing unwritten extent conversion.
2809                  */
2810                 if (handle) {
2811                         ext4_put_io_end_defer(mpd.io_submit.io_end);
2812                         ext4_journal_stop(handle);
2813                 } else
2814                         ext4_put_io_end(mpd.io_submit.io_end);
2815                 mpd.io_submit.io_end = NULL;
2816
2817                 if (ret == -ENOSPC && sbi->s_journal) {
2818                         /*
2819                          * Commit the transaction which would
2820                          * free blocks released in the transaction
2821                          * and try again
2822                          */
2823                         jbd2_journal_force_commit_nested(sbi->s_journal);
2824                         ret = 0;
2825                         continue;
2826                 }
2827                 /* Fatal error - ENOMEM, EIO... */
2828                 if (ret)
2829                         break;
2830         }
2831 unplug:
2832         blk_finish_plug(&plug);
2833         if (!ret && !cycled && wbc->nr_to_write > 0) {
2834                 cycled = 1;
2835                 mpd.last_page = writeback_index - 1;
2836                 mpd.first_page = 0;
2837                 goto retry;
2838         }
2839
2840         /* Update index */
2841         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2842                 /*
2843                  * Set the writeback_index so that range_cyclic
2844                  * mode will write it back later
2845                  */
2846                 mapping->writeback_index = mpd.first_page;
2847
2848 out_writepages:
2849         trace_ext4_writepages_result(inode, wbc, ret,
2850                                      nr_to_write - wbc->nr_to_write);
2851         percpu_up_read(&sbi->s_journal_flag_rwsem);
2852         return ret;
2853 }
2854
2855 static int ext4_dax_writepages(struct address_space *mapping,
2856                                struct writeback_control *wbc)
2857 {
2858         int ret;
2859         long nr_to_write = wbc->nr_to_write;
2860         struct inode *inode = mapping->host;
2861         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2862
2863         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2864                 return -EIO;
2865
2866         percpu_down_read(&sbi->s_journal_flag_rwsem);
2867         trace_ext4_writepages(inode, wbc);
2868
2869         ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev, wbc);
2870         trace_ext4_writepages_result(inode, wbc, ret,
2871                                      nr_to_write - wbc->nr_to_write);
2872         percpu_up_read(&sbi->s_journal_flag_rwsem);
2873         return ret;
2874 }
2875
2876 static int ext4_nonda_switch(struct super_block *sb)
2877 {
2878         s64 free_clusters, dirty_clusters;
2879         struct ext4_sb_info *sbi = EXT4_SB(sb);
2880
2881         /*
2882          * switch to non delalloc mode if we are running low
2883          * on free block. The free block accounting via percpu
2884          * counters can get slightly wrong with percpu_counter_batch getting
2885          * accumulated on each CPU without updating global counters
2886          * Delalloc need an accurate free block accounting. So switch
2887          * to non delalloc when we are near to error range.
2888          */
2889         free_clusters =
2890                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2891         dirty_clusters =
2892                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2893         /*
2894          * Start pushing delalloc when 1/2 of free blocks are dirty.
2895          */
2896         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2897                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2898
2899         if (2 * free_clusters < 3 * dirty_clusters ||
2900             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2901                 /*
2902                  * free block count is less than 150% of dirty blocks
2903                  * or free blocks is less than watermark
2904                  */
2905                 return 1;
2906         }
2907         return 0;
2908 }
2909
2910 /* We always reserve for an inode update; the superblock could be there too */
2911 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2912 {
2913         if (likely(ext4_has_feature_large_file(inode->i_sb)))
2914                 return 1;
2915
2916         if (pos + len <= 0x7fffffffULL)
2917                 return 1;
2918
2919         /* We might need to update the superblock to set LARGE_FILE */
2920         return 2;
2921 }
2922
2923 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2924                                loff_t pos, unsigned len, unsigned flags,
2925                                struct page **pagep, void **fsdata)
2926 {
2927         int ret, retries = 0;
2928         struct page *page;
2929         pgoff_t index;
2930         struct inode *inode = mapping->host;
2931         handle_t *handle;
2932
2933         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2934                 return -EIO;
2935
2936         index = pos >> PAGE_SHIFT;
2937
2938         if (ext4_nonda_switch(inode->i_sb) || S_ISLNK(inode->i_mode) ||
2939             ext4_verity_in_progress(inode)) {
2940                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2941                 return ext4_write_begin(file, mapping, pos,
2942                                         len, flags, pagep, fsdata);
2943         }
2944         *fsdata = (void *)0;
2945         trace_ext4_da_write_begin(inode, pos, len, flags);
2946
2947         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2948                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2949                                                       pos, len, flags,
2950                                                       pagep, fsdata);
2951                 if (ret < 0)
2952                         return ret;
2953                 if (ret == 1)
2954                         return 0;
2955         }
2956
2957         /*
2958          * grab_cache_page_write_begin() can take a long time if the
2959          * system is thrashing due to memory pressure, or if the page
2960          * is being written back.  So grab it first before we start
2961          * the transaction handle.  This also allows us to allocate
2962          * the page (if needed) without using GFP_NOFS.
2963          */
2964 retry_grab:
2965         page = grab_cache_page_write_begin(mapping, index, flags);
2966         if (!page)
2967                 return -ENOMEM;
2968         unlock_page(page);
2969
2970         /*
2971          * With delayed allocation, we don't log the i_disksize update
2972          * if there is delayed block allocation. But we still need
2973          * to journalling the i_disksize update if writes to the end
2974          * of file which has an already mapped buffer.
2975          */
2976 retry_journal:
2977         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2978                                 ext4_da_write_credits(inode, pos, len));
2979         if (IS_ERR(handle)) {
2980                 put_page(page);
2981                 return PTR_ERR(handle);
2982         }
2983
2984         lock_page(page);
2985         if (page->mapping != mapping) {
2986                 /* The page got truncated from under us */
2987                 unlock_page(page);
2988                 put_page(page);
2989                 ext4_journal_stop(handle);
2990                 goto retry_grab;
2991         }
2992         /* In case writeback began while the page was unlocked */
2993         wait_for_stable_page(page);
2994
2995 #ifdef CONFIG_FS_ENCRYPTION
2996         ret = ext4_block_write_begin(page, pos, len,
2997                                      ext4_da_get_block_prep);
2998 #else
2999         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3000 #endif
3001         if (ret < 0) {
3002                 unlock_page(page);
3003                 ext4_journal_stop(handle);
3004                 /*
3005                  * block_write_begin may have instantiated a few blocks
3006                  * outside i_size.  Trim these off again. Don't need
3007                  * i_size_read because we hold i_mutex.
3008                  */
3009                 if (pos + len > inode->i_size)
3010                         ext4_truncate_failed_write(inode);
3011
3012                 if (ret == -ENOSPC &&
3013                     ext4_should_retry_alloc(inode->i_sb, &retries))
3014                         goto retry_journal;
3015
3016                 put_page(page);
3017                 return ret;
3018         }
3019
3020         *pagep = page;
3021         return ret;
3022 }
3023
3024 /*
3025  * Check if we should update i_disksize
3026  * when write to the end of file but not require block allocation
3027  */
3028 static int ext4_da_should_update_i_disksize(struct page *page,
3029                                             unsigned long offset)
3030 {
3031         struct buffer_head *bh;
3032         struct inode *inode = page->mapping->host;
3033         unsigned int idx;
3034         int i;
3035
3036         bh = page_buffers(page);
3037         idx = offset >> inode->i_blkbits;
3038
3039         for (i = 0; i < idx; i++)
3040                 bh = bh->b_this_page;
3041
3042         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3043                 return 0;
3044         return 1;
3045 }
3046
3047 static int ext4_da_write_end(struct file *file,
3048                              struct address_space *mapping,
3049                              loff_t pos, unsigned len, unsigned copied,
3050                              struct page *page, void *fsdata)
3051 {
3052         struct inode *inode = mapping->host;
3053         int ret = 0, ret2;
3054         handle_t *handle = ext4_journal_current_handle();
3055         loff_t new_i_size;
3056         unsigned long start, end;
3057         int write_mode = (int)(unsigned long)fsdata;
3058
3059         if (write_mode == FALL_BACK_TO_NONDELALLOC)
3060                 return ext4_write_end(file, mapping, pos,
3061                                       len, copied, page, fsdata);
3062
3063         trace_ext4_da_write_end(inode, pos, len, copied);
3064         start = pos & (PAGE_SIZE - 1);
3065         end = start + copied - 1;
3066
3067         /*
3068          * generic_write_end() will run mark_inode_dirty() if i_size
3069          * changes.  So let's piggyback the i_disksize mark_inode_dirty
3070          * into that.
3071          */
3072         new_i_size = pos + copied;
3073         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3074                 if (ext4_has_inline_data(inode) ||
3075                     ext4_da_should_update_i_disksize(page, end)) {
3076                         ext4_update_i_disksize(inode, new_i_size);
3077                         /* We need to mark inode dirty even if
3078                          * new_i_size is less that inode->i_size
3079                          * bu greater than i_disksize.(hint delalloc)
3080                          */
3081                         ext4_mark_inode_dirty(handle, inode);
3082                 }
3083         }
3084
3085         if (write_mode != CONVERT_INLINE_DATA &&
3086             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3087             ext4_has_inline_data(inode))
3088                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3089                                                      page);
3090         else
3091                 ret2 = generic_write_end(file, mapping, pos, len, copied,
3092                                                         page, fsdata);
3093
3094         copied = ret2;
3095         if (ret2 < 0)
3096                 ret = ret2;
3097         ret2 = ext4_journal_stop(handle);
3098         if (!ret)
3099                 ret = ret2;
3100
3101         return ret ? ret : copied;
3102 }
3103
3104 /*
3105  * Force all delayed allocation blocks to be allocated for a given inode.
3106  */
3107 int ext4_alloc_da_blocks(struct inode *inode)
3108 {
3109         trace_ext4_alloc_da_blocks(inode);
3110
3111         if (!EXT4_I(inode)->i_reserved_data_blocks)
3112                 return 0;
3113
3114         /*
3115          * We do something simple for now.  The filemap_flush() will
3116          * also start triggering a write of the data blocks, which is
3117          * not strictly speaking necessary (and for users of
3118          * laptop_mode, not even desirable).  However, to do otherwise
3119          * would require replicating code paths in:
3120          *
3121          * ext4_writepages() ->
3122          *    write_cache_pages() ---> (via passed in callback function)
3123          *        __mpage_da_writepage() -->
3124          *           mpage_add_bh_to_extent()
3125          *           mpage_da_map_blocks()
3126          *
3127          * The problem is that write_cache_pages(), located in
3128          * mm/page-writeback.c, marks pages clean in preparation for
3129          * doing I/O, which is not desirable if we're not planning on
3130          * doing I/O at all.
3131          *
3132          * We could call write_cache_pages(), and then redirty all of
3133          * the pages by calling redirty_page_for_writepage() but that
3134          * would be ugly in the extreme.  So instead we would need to
3135          * replicate parts of the code in the above functions,
3136          * simplifying them because we wouldn't actually intend to
3137          * write out the pages, but rather only collect contiguous
3138          * logical block extents, call the multi-block allocator, and
3139          * then update the buffer heads with the block allocations.
3140          *
3141          * For now, though, we'll cheat by calling filemap_flush(),
3142          * which will map the blocks, and start the I/O, but not
3143          * actually wait for the I/O to complete.
3144          */
3145         return filemap_flush(inode->i_mapping);
3146 }
3147
3148 /*
3149  * bmap() is special.  It gets used by applications such as lilo and by
3150  * the swapper to find the on-disk block of a specific piece of data.
3151  *
3152  * Naturally, this is dangerous if the block concerned is still in the
3153  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3154  * filesystem and enables swap, then they may get a nasty shock when the
3155  * data getting swapped to that swapfile suddenly gets overwritten by
3156  * the original zero's written out previously to the journal and
3157  * awaiting writeback in the kernel's buffer cache.
3158  *
3159  * So, if we see any bmap calls here on a modified, data-journaled file,
3160  * take extra steps to flush any blocks which might be in the cache.
3161  */
3162 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3163 {
3164         struct inode *inode = mapping->host;
3165         journal_t *journal;
3166         int err;
3167
3168         /*
3169          * We can get here for an inline file via the FIBMAP ioctl
3170          */
3171         if (ext4_has_inline_data(inode))
3172                 return 0;
3173
3174         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3175                         test_opt(inode->i_sb, DELALLOC)) {
3176                 /*
3177                  * With delalloc we want to sync the file
3178                  * so that we can make sure we allocate
3179                  * blocks for file
3180                  */
3181                 filemap_write_and_wait(mapping);
3182         }
3183
3184         if (EXT4_JOURNAL(inode) &&
3185             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3186                 /*
3187                  * This is a REALLY heavyweight approach, but the use of
3188                  * bmap on dirty files is expected to be extremely rare:
3189                  * only if we run lilo or swapon on a freshly made file
3190                  * do we expect this to happen.
3191                  *
3192                  * (bmap requires CAP_SYS_RAWIO so this does not
3193                  * represent an unprivileged user DOS attack --- we'd be
3194                  * in trouble if mortal users could trigger this path at
3195                  * will.)
3196                  *
3197                  * NB. EXT4_STATE_JDATA is not set on files other than
3198                  * regular files.  If somebody wants to bmap a directory
3199                  * or symlink and gets confused because the buffer
3200                  * hasn't yet been flushed to disk, they deserve
3201                  * everything they get.
3202                  */
3203
3204                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3205                 journal = EXT4_JOURNAL(inode);
3206                 jbd2_journal_lock_updates(journal);
3207                 err = jbd2_journal_flush(journal);
3208                 jbd2_journal_unlock_updates(journal);
3209
3210                 if (err)
3211                         return 0;
3212         }
3213
3214         return generic_block_bmap(mapping, block, ext4_get_block);
3215 }
3216
3217 static int ext4_readpage(struct file *file, struct page *page)
3218 {
3219         int ret = -EAGAIN;
3220         struct inode *inode = page->mapping->host;
3221
3222         trace_ext4_readpage(page);
3223
3224         if (ext4_has_inline_data(inode))
3225                 ret = ext4_readpage_inline(inode, page);
3226
3227         if (ret == -EAGAIN)
3228                 return ext4_mpage_readpages(page->mapping, NULL, page, 1,
3229                                                 false);
3230
3231         return ret;
3232 }
3233
3234 static int
3235 ext4_readpages(struct file *file, struct address_space *mapping,
3236                 struct list_head *pages, unsigned nr_pages)
3237 {
3238         struct inode *inode = mapping->host;
3239
3240         /* If the file has inline data, no need to do readpages. */
3241         if (ext4_has_inline_data(inode))
3242                 return 0;
3243
3244         return ext4_mpage_readpages(mapping, pages, NULL, nr_pages, true);
3245 }
3246
3247 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3248                                 unsigned int length)
3249 {
3250         trace_ext4_invalidatepage(page, offset, length);
3251
3252         /* No journalling happens on data buffers when this function is used */
3253         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3254
3255         block_invalidatepage(page, offset, length);
3256 }
3257
3258 static int __ext4_journalled_invalidatepage(struct page *page,
3259                                             unsigned int offset,
3260                                             unsigned int length)
3261 {
3262         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3263
3264         trace_ext4_journalled_invalidatepage(page, offset, length);
3265
3266         /*
3267          * If it's a full truncate we just forget about the pending dirtying
3268          */
3269         if (offset == 0 && length == PAGE_SIZE)
3270                 ClearPageChecked(page);
3271
3272         return jbd2_journal_invalidatepage(journal, page, offset, length);
3273 }
3274
3275 /* Wrapper for aops... */
3276 static void ext4_journalled_invalidatepage(struct page *page,
3277                                            unsigned int offset,
3278                                            unsigned int length)
3279 {
3280         WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3281 }
3282
3283 static int ext4_releasepage(struct page *page, gfp_t wait)
3284 {
3285         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3286
3287         trace_ext4_releasepage(page);
3288
3289         /* Page has dirty journalled data -> cannot release */
3290         if (PageChecked(page))
3291                 return 0;
3292         if (journal)
3293                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3294         else
3295                 return try_to_free_buffers(page);
3296 }
3297
3298 static bool ext4_inode_datasync_dirty(struct inode *inode)
3299 {
3300         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3301
3302         if (journal)
3303                 return !jbd2_transaction_committed(journal,
3304                                         EXT4_I(inode)->i_datasync_tid);
3305         /* Any metadata buffers to write? */
3306         if (!list_empty(&inode->i_mapping->private_list))
3307                 return true;
3308         return inode->i_state & I_DIRTY_DATASYNC;
3309 }
3310
3311 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3312                            struct ext4_map_blocks *map, loff_t offset,
3313                            loff_t length)
3314 {
3315         u8 blkbits = inode->i_blkbits;
3316
3317         /*
3318          * Writes that span EOF might trigger an I/O size update on completion,
3319          * so consider them to be dirty for the purpose of O_DSYNC, even if
3320          * there is no other metadata changes being made or are pending.
3321          */
3322         iomap->flags = 0;
3323         if (ext4_inode_datasync_dirty(inode) ||
3324             offset + length > i_size_read(inode))
3325                 iomap->flags |= IOMAP_F_DIRTY;
3326
3327         if (map->m_flags & EXT4_MAP_NEW)
3328                 iomap->flags |= IOMAP_F_NEW;
3329
3330         iomap->bdev = inode->i_sb->s_bdev;
3331         iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3332         iomap->offset = (u64) map->m_lblk << blkbits;
3333         iomap->length = (u64) map->m_len << blkbits;
3334
3335         /*
3336          * Flags passed to ext4_map_blocks() for direct I/O writes can result
3337          * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3338          * set. In order for any allocated unwritten extents to be converted
3339          * into written extents correctly within the ->end_io() handler, we
3340          * need to ensure that the iomap->type is set appropriately. Hence, the
3341          * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3342          * been set first.
3343          */
3344         if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3345                 iomap->type = IOMAP_UNWRITTEN;
3346                 iomap->addr = (u64) map->m_pblk << blkbits;
3347         } else if (map->m_flags & EXT4_MAP_MAPPED) {
3348                 iomap->type = IOMAP_MAPPED;
3349                 iomap->addr = (u64) map->m_pblk << blkbits;
3350         } else {
3351                 iomap->type = IOMAP_HOLE;
3352                 iomap->addr = IOMAP_NULL_ADDR;
3353         }
3354 }
3355
3356 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3357                             unsigned int flags)
3358 {
3359         handle_t *handle;
3360         u8 blkbits = inode->i_blkbits;
3361         int ret, dio_credits, m_flags = 0, retries = 0;
3362
3363         /*
3364          * Trim the mapping request to the maximum value that we can map at
3365          * once for direct I/O.
3366          */
3367         if (map->m_len > DIO_MAX_BLOCKS)
3368                 map->m_len = DIO_MAX_BLOCKS;
3369         dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3370
3371 retry:
3372         /*
3373          * Either we allocate blocks and then don't get an unwritten extent, so
3374          * in that case we have reserved enough credits. Or, the blocks are
3375          * already allocated and unwritten. In that case, the extent conversion
3376          * fits into the credits as well.
3377          */
3378         handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3379         if (IS_ERR(handle))
3380                 return PTR_ERR(handle);
3381
3382         /*
3383          * DAX and direct I/O are the only two operations that are currently
3384          * supported with IOMAP_WRITE.
3385          */
3386         WARN_ON(!IS_DAX(inode) && !(flags & IOMAP_DIRECT));
3387         if (IS_DAX(inode))
3388                 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3389         /*
3390          * We use i_size instead of i_disksize here because delalloc writeback
3391          * can complete at any point during the I/O and subsequently push the
3392          * i_disksize out to i_size. This could be beyond where direct I/O is
3393          * happening and thus expose allocated blocks to direct I/O reads.
3394          */
3395         else if ((map->m_lblk * (1 << blkbits)) >= i_size_read(inode))
3396                 m_flags = EXT4_GET_BLOCKS_CREATE;
3397         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3398                 m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3399
3400         ret = ext4_map_blocks(handle, inode, map, m_flags);
3401
3402         /*
3403          * We cannot fill holes in indirect tree based inodes as that could
3404          * expose stale data in the case of a crash. Use the magic error code
3405          * to fallback to buffered I/O.
3406          */
3407         if (!m_flags && !ret)
3408                 ret = -ENOTBLK;
3409
3410         ext4_journal_stop(handle);
3411         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3412                 goto retry;
3413
3414         return ret;
3415 }
3416
3417
3418 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3419                 unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3420 {
3421         int ret;
3422         struct ext4_map_blocks map;
3423         u8 blkbits = inode->i_blkbits;
3424
3425         if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3426                 return -EINVAL;
3427
3428         if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3429                 return -ERANGE;
3430
3431         /*
3432          * Calculate the first and last logical blocks respectively.
3433          */
3434         map.m_lblk = offset >> blkbits;
3435         map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3436                           EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3437
3438         if (flags & IOMAP_WRITE)
3439                 ret = ext4_iomap_alloc(inode, &map, flags);
3440         else
3441                 ret = ext4_map_blocks(NULL, inode, &map, 0);
3442
3443         if (ret < 0)
3444                 return ret;
3445
3446         ext4_set_iomap(inode, iomap, &map, offset, length);
3447
3448         return 0;
3449 }
3450
3451 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3452                           ssize_t written, unsigned flags, struct iomap *iomap)
3453 {
3454         /*
3455          * Check to see whether an error occurred while writing out the data to
3456          * the allocated blocks. If so, return the magic error code so that we
3457          * fallback to buffered I/O and attempt to complete the remainder of
3458          * the I/O. Any blocks that may have been allocated in preparation for
3459          * the direct I/O will be reused during buffered I/O.
3460          */
3461         if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3462                 return -ENOTBLK;
3463
3464         return 0;
3465 }
3466
3467 const struct iomap_ops ext4_iomap_ops = {
3468         .iomap_begin            = ext4_iomap_begin,
3469         .iomap_end              = ext4_iomap_end,
3470 };
3471
3472 static bool ext4_iomap_is_delalloc(struct inode *inode,
3473                                    struct ext4_map_blocks *map)
3474 {
3475         struct extent_status es;
3476         ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1;
3477
3478         ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3479                                   map->m_lblk, end, &es);
3480
3481         if (!es.es_len || es.es_lblk > end)
3482                 return false;
3483
3484         if (es.es_lblk > map->m_lblk) {
3485                 map->m_len = es.es_lblk - map->m_lblk;
3486                 return false;
3487         }
3488
3489         offset = map->m_lblk - es.es_lblk;
3490         map->m_len = es.es_len - offset;
3491
3492         return true;
3493 }
3494
3495 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3496                                    loff_t length, unsigned int flags,
3497                                    struct iomap *iomap, struct iomap *srcmap)
3498 {
3499         int ret;
3500         bool delalloc = false;
3501         struct ext4_map_blocks map;
3502         u8 blkbits = inode->i_blkbits;
3503
3504         if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3505                 return -EINVAL;
3506
3507         if (ext4_has_inline_data(inode)) {
3508                 ret = ext4_inline_data_iomap(inode, iomap);
3509                 if (ret != -EAGAIN) {
3510                         if (ret == 0 && offset >= iomap->length)
3511                                 ret = -ENOENT;
3512                         return ret;
3513                 }
3514         }
3515
3516         /*
3517          * Calculate the first and last logical block respectively.
3518          */
3519         map.m_lblk = offset >> blkbits;
3520         map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3521                           EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3522
3523         ret = ext4_map_blocks(NULL, inode, &map, 0);
3524         if (ret < 0)
3525                 return ret;
3526         if (ret == 0)
3527                 delalloc = ext4_iomap_is_delalloc(inode, &map);
3528
3529         ext4_set_iomap(inode, iomap, &map, offset, length);
3530         if (delalloc && iomap->type == IOMAP_HOLE)
3531                 iomap->type = IOMAP_DELALLOC;
3532
3533         return 0;
3534 }
3535
3536 const struct iomap_ops ext4_iomap_report_ops = {
3537         .iomap_begin = ext4_iomap_begin_report,
3538 };
3539
3540 /*
3541  * Pages can be marked dirty completely asynchronously from ext4's journalling
3542  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3543  * much here because ->set_page_dirty is called under VFS locks.  The page is
3544  * not necessarily locked.
3545  *
3546  * We cannot just dirty the page and leave attached buffers clean, because the
3547  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3548  * or jbddirty because all the journalling code will explode.
3549  *
3550  * So what we do is to mark the page "pending dirty" and next time writepage
3551  * is called, propagate that into the buffers appropriately.
3552  */
3553 static int ext4_journalled_set_page_dirty(struct page *page)
3554 {
3555         SetPageChecked(page);
3556         return __set_page_dirty_nobuffers(page);
3557 }
3558
3559 static int ext4_set_page_dirty(struct page *page)
3560 {
3561         WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3562         WARN_ON_ONCE(!page_has_buffers(page));
3563         return __set_page_dirty_buffers(page);
3564 }
3565
3566 static const struct address_space_operations ext4_aops = {
3567         .readpage               = ext4_readpage,
3568         .readpages              = ext4_readpages,
3569         .writepage              = ext4_writepage,
3570         .writepages             = ext4_writepages,
3571         .write_begin            = ext4_write_begin,
3572         .write_end              = ext4_write_end,
3573         .set_page_dirty         = ext4_set_page_dirty,
3574         .bmap                   = ext4_bmap,
3575         .invalidatepage         = ext4_invalidatepage,
3576         .releasepage            = ext4_releasepage,
3577         .direct_IO              = noop_direct_IO,
3578         .migratepage            = buffer_migrate_page,
3579         .is_partially_uptodate  = block_is_partially_uptodate,
3580         .error_remove_page      = generic_error_remove_page,
3581 };
3582
3583 static const struct address_space_operations ext4_journalled_aops = {
3584         .readpage               = ext4_readpage,
3585         .readpages              = ext4_readpages,
3586         .writepage              = ext4_writepage,
3587         .writepages             = ext4_writepages,
3588         .write_begin            = ext4_write_begin,
3589         .write_end              = ext4_journalled_write_end,
3590         .set_page_dirty         = ext4_journalled_set_page_dirty,
3591         .bmap                   = ext4_bmap,
3592         .invalidatepage         = ext4_journalled_invalidatepage,
3593         .releasepage            = ext4_releasepage,
3594         .direct_IO              = noop_direct_IO,
3595         .is_partially_uptodate  = block_is_partially_uptodate,
3596         .error_remove_page      = generic_error_remove_page,
3597 };
3598
3599 static const struct address_space_operations ext4_da_aops = {
3600         .readpage               = ext4_readpage,
3601         .readpages              = ext4_readpages,
3602         .writepage              = ext4_writepage,
3603         .writepages             = ext4_writepages,
3604         .write_begin            = ext4_da_write_begin,
3605         .write_end              = ext4_da_write_end,
3606         .set_page_dirty         = ext4_set_page_dirty,
3607         .bmap                   = ext4_bmap,
3608         .invalidatepage         = ext4_invalidatepage,
3609         .releasepage            = ext4_releasepage,
3610         .direct_IO              = noop_direct_IO,
3611         .migratepage            = buffer_migrate_page,
3612         .is_partially_uptodate  = block_is_partially_uptodate,
3613         .error_remove_page      = generic_error_remove_page,
3614 };
3615
3616 static const struct address_space_operations ext4_dax_aops = {
3617         .writepages             = ext4_dax_writepages,
3618         .direct_IO              = noop_direct_IO,
3619         .set_page_dirty         = noop_set_page_dirty,
3620         .bmap                   = ext4_bmap,
3621         .invalidatepage         = noop_invalidatepage,
3622 };
3623
3624 void ext4_set_aops(struct inode *inode)
3625 {
3626         switch (ext4_inode_journal_mode(inode)) {
3627         case EXT4_INODE_ORDERED_DATA_MODE:
3628         case EXT4_INODE_WRITEBACK_DATA_MODE:
3629                 break;
3630         case EXT4_INODE_JOURNAL_DATA_MODE:
3631                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3632                 return;
3633         default:
3634                 BUG();
3635         }
3636         if (IS_DAX(inode))
3637                 inode->i_mapping->a_ops = &ext4_dax_aops;
3638         else if (test_opt(inode->i_sb, DELALLOC))
3639                 inode->i_mapping->a_ops = &ext4_da_aops;
3640         else
3641                 inode->i_mapping->a_ops = &ext4_aops;
3642 }
3643
3644 static int __ext4_block_zero_page_range(handle_t *handle,
3645                 struct address_space *mapping, loff_t from, loff_t length)
3646 {
3647         ext4_fsblk_t index = from >> PAGE_SHIFT;
3648         unsigned offset = from & (PAGE_SIZE-1);
3649         unsigned blocksize, pos;
3650         ext4_lblk_t iblock;
3651         struct inode *inode = mapping->host;
3652         struct buffer_head *bh;
3653         struct page *page;
3654         int err = 0;
3655
3656         page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3657                                    mapping_gfp_constraint(mapping, ~__GFP_FS));
3658         if (!page)
3659                 return -ENOMEM;
3660
3661         blocksize = inode->i_sb->s_blocksize;
3662
3663         iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3664
3665         if (!page_has_buffers(page))
3666                 create_empty_buffers(page, blocksize, 0);
3667
3668         /* Find the buffer that contains "offset" */
3669         bh = page_buffers(page);
3670         pos = blocksize;
3671         while (offset >= pos) {
3672                 bh = bh->b_this_page;
3673                 iblock++;
3674                 pos += blocksize;
3675         }
3676         if (buffer_freed(bh)) {
3677                 BUFFER_TRACE(bh, "freed: skip");
3678                 goto unlock;
3679         }
3680         if (!buffer_mapped(bh)) {
3681                 BUFFER_TRACE(bh, "unmapped");
3682                 ext4_get_block(inode, iblock, bh, 0);
3683                 /* unmapped? It's a hole - nothing to do */
3684                 if (!buffer_mapped(bh)) {
3685                         BUFFER_TRACE(bh, "still unmapped");
3686                         goto unlock;
3687                 }
3688         }
3689
3690         /* Ok, it's mapped. Make sure it's up-to-date */
3691         if (PageUptodate(page))
3692                 set_buffer_uptodate(bh);
3693
3694         if (!buffer_uptodate(bh)) {
3695                 err = -EIO;
3696                 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
3697                 wait_on_buffer(bh);
3698                 /* Uhhuh. Read error. Complain and punt. */
3699                 if (!buffer_uptodate(bh))
3700                         goto unlock;
3701                 if (S_ISREG(inode->i_mode) && IS_ENCRYPTED(inode)) {
3702                         /* We expect the key to be set. */
3703                         BUG_ON(!fscrypt_has_encryption_key(inode));
3704                         WARN_ON_ONCE(fscrypt_decrypt_pagecache_blocks(
3705                                         page, blocksize, bh_offset(bh)));
3706                 }
3707         }
3708         if (ext4_should_journal_data(inode)) {
3709                 BUFFER_TRACE(bh, "get write access");
3710                 err = ext4_journal_get_write_access(handle, bh);
3711                 if (err)
3712                         goto unlock;
3713         }
3714         zero_user(page, offset, length);
3715         BUFFER_TRACE(bh, "zeroed end of block");
3716
3717         if (ext4_should_journal_data(inode)) {
3718                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3719         } else {
3720                 err = 0;
3721                 mark_buffer_dirty(bh);
3722                 if (ext4_should_order_data(inode))
3723                         err = ext4_jbd2_inode_add_write(handle, inode, from,
3724                                         length);
3725         }
3726
3727 unlock:
3728         unlock_page(page);
3729         put_page(page);
3730         return err;
3731 }
3732
3733 /*
3734  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3735  * starting from file offset 'from'.  The range to be zero'd must
3736  * be contained with in one block.  If the specified range exceeds
3737  * the end of the block it will be shortened to end of the block
3738  * that cooresponds to 'from'
3739  */
3740 static int ext4_block_zero_page_range(handle_t *handle,
3741                 struct address_space *mapping, loff_t from, loff_t length)
3742 {
3743         struct inode *inode = mapping->host;
3744         unsigned offset = from & (PAGE_SIZE-1);
3745         unsigned blocksize = inode->i_sb->s_blocksize;
3746         unsigned max = blocksize - (offset & (blocksize - 1));
3747
3748         /*
3749          * correct length if it does not fall between
3750          * 'from' and the end of the block
3751          */
3752         if (length > max || length < 0)
3753                 length = max;
3754
3755         if (IS_DAX(inode)) {
3756                 return iomap_zero_range(inode, from, length, NULL,
3757                                         &ext4_iomap_ops);
3758         }
3759         return __ext4_block_zero_page_range(handle, mapping, from, length);
3760 }
3761
3762 /*
3763  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3764  * up to the end of the block which corresponds to `from'.
3765  * This required during truncate. We need to physically zero the tail end
3766  * of that block so it doesn't yield old data if the file is later grown.
3767  */
3768 static int ext4_block_truncate_page(handle_t *handle,
3769                 struct address_space *mapping, loff_t from)
3770 {
3771         unsigned offset = from & (PAGE_SIZE-1);
3772         unsigned length;
3773         unsigned blocksize;
3774         struct inode *inode = mapping->host;
3775
3776         /* If we are processing an encrypted inode during orphan list handling */
3777         if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3778                 return 0;
3779
3780         blocksize = inode->i_sb->s_blocksize;
3781         length = blocksize - (offset & (blocksize - 1));
3782
3783         return ext4_block_zero_page_range(handle, mapping, from, length);
3784 }
3785
3786 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3787                              loff_t lstart, loff_t length)
3788 {
3789         struct super_block *sb = inode->i_sb;
3790         struct address_space *mapping = inode->i_mapping;
3791         unsigned partial_start, partial_end;
3792         ext4_fsblk_t start, end;
3793         loff_t byte_end = (lstart + length - 1);
3794         int err = 0;
3795
3796         partial_start = lstart & (sb->s_blocksize - 1);
3797         partial_end = byte_end & (sb->s_blocksize - 1);
3798
3799         start = lstart >> sb->s_blocksize_bits;
3800         end = byte_end >> sb->s_blocksize_bits;
3801
3802         /* Handle partial zero within the single block */
3803         if (start == end &&
3804             (partial_start || (partial_end != sb->s_blocksize - 1))) {
3805                 err = ext4_block_zero_page_range(handle, mapping,
3806                                                  lstart, length);
3807                 return err;
3808         }
3809         /* Handle partial zero out on the start of the range */
3810         if (partial_start) {
3811                 err = ext4_block_zero_page_range(handle, mapping,
3812                                                  lstart, sb->s_blocksize);
3813                 if (err)
3814                         return err;
3815         }
3816         /* Handle partial zero out on the end of the range */
3817         if (partial_end != sb->s_blocksize - 1)
3818                 err = ext4_block_zero_page_range(handle, mapping,
3819                                                  byte_end - partial_end,
3820                                                  partial_end + 1);
3821         return err;
3822 }
3823
3824 int ext4_can_truncate(struct inode *inode)
3825 {
3826         if (S_ISREG(inode->i_mode))
3827                 return 1;
3828         if (S_ISDIR(inode->i_mode))
3829                 return 1;
3830         if (S_ISLNK(inode->i_mode))
3831                 return !ext4_inode_is_fast_symlink(inode);
3832         return 0;
3833 }
3834
3835 /*
3836  * We have to make sure i_disksize gets properly updated before we truncate
3837  * page cache due to hole punching or zero range. Otherwise i_disksize update
3838  * can get lost as it may have been postponed to submission of writeback but
3839  * that will never happen after we truncate page cache.
3840  */
3841 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3842                                       loff_t len)
3843 {
3844         handle_t *handle;
3845         loff_t size = i_size_read(inode);
3846
3847         WARN_ON(!inode_is_locked(inode));
3848         if (offset > size || offset + len < size)
3849                 return 0;
3850
3851         if (EXT4_I(inode)->i_disksize >= size)
3852                 return 0;
3853
3854         handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3855         if (IS_ERR(handle))
3856                 return PTR_ERR(handle);
3857         ext4_update_i_disksize(inode, size);
3858         ext4_mark_inode_dirty(handle, inode);
3859         ext4_journal_stop(handle);
3860
3861         return 0;
3862 }
3863
3864 static void ext4_wait_dax_page(struct ext4_inode_info *ei)
3865 {
3866         up_write(&ei->i_mmap_sem);
3867         schedule();
3868         down_write(&ei->i_mmap_sem);
3869 }
3870
3871 int ext4_break_layouts(struct inode *inode)
3872 {
3873         struct ext4_inode_info *ei = EXT4_I(inode);
3874         struct page *page;
3875         int error;
3876
3877         if (WARN_ON_ONCE(!rwsem_is_locked(&ei->i_mmap_sem)))
3878                 return -EINVAL;
3879
3880         do {
3881                 page = dax_layout_busy_page(inode->i_mapping);
3882                 if (!page)
3883                         return 0;
3884
3885                 error = ___wait_var_event(&page->_refcount,
3886                                 atomic_read(&page->_refcount) == 1,
3887                                 TASK_INTERRUPTIBLE, 0, 0,
3888                                 ext4_wait_dax_page(ei));
3889         } while (error == 0);
3890
3891         return error;
3892 }
3893
3894 /*
3895  * ext4_punch_hole: punches a hole in a file by releasing the blocks
3896  * associated with the given offset and length
3897  *
3898  * @inode:  File inode
3899  * @offset: The offset where the hole will begin
3900  * @len:    The length of the hole
3901  *
3902  * Returns: 0 on success or negative on failure
3903  */
3904
3905 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3906 {
3907         struct super_block *sb = inode->i_sb;
3908         ext4_lblk_t first_block, stop_block;
3909         struct address_space *mapping = inode->i_mapping;
3910         loff_t first_block_offset, last_block_offset;
3911         handle_t *handle;
3912         unsigned int credits;
3913         int ret = 0;
3914
3915         if (!S_ISREG(inode->i_mode))
3916                 return -EOPNOTSUPP;
3917
3918         trace_ext4_punch_hole(inode, offset, length, 0);
3919
3920         ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
3921         if (ext4_has_inline_data(inode)) {
3922                 down_write(&EXT4_I(inode)->i_mmap_sem);
3923                 ret = ext4_convert_inline_data(inode);
3924                 up_write(&EXT4_I(inode)->i_mmap_sem);
3925                 if (ret)
3926                         return ret;
3927         }
3928
3929         /*
3930          * Write out all dirty pages to avoid race conditions
3931          * Then release them.
3932          */
3933         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3934                 ret = filemap_write_and_wait_range(mapping, offset,
3935                                                    offset + length - 1);
3936                 if (ret)
3937                         return ret;
3938         }
3939
3940         inode_lock(inode);
3941
3942         /* No need to punch hole beyond i_size */
3943         if (offset >= inode->i_size)
3944                 goto out_mutex;
3945
3946         /*
3947          * If the hole extends beyond i_size, set the hole
3948          * to end after the page that contains i_size
3949          */
3950         if (offset + length > inode->i_size) {
3951                 length = inode->i_size +
3952                    PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
3953                    offset;
3954         }
3955
3956         if (offset & (sb->s_blocksize - 1) ||
3957             (offset + length) & (sb->s_blocksize - 1)) {
3958                 /*
3959                  * Attach jinode to inode for jbd2 if we do any zeroing of
3960                  * partial block
3961                  */
3962                 ret = ext4_inode_attach_jinode(inode);
3963                 if (ret < 0)
3964                         goto out_mutex;
3965
3966         }
3967
3968         /* Wait all existing dio workers, newcomers will block on i_mutex */
3969         inode_dio_wait(inode);
3970
3971         /*
3972          * Prevent page faults from reinstantiating pages we have released from
3973          * page cache.
3974          */
3975         down_write(&EXT4_I(inode)->i_mmap_sem);
3976
3977         ret = ext4_break_layouts(inode);
3978         if (ret)
3979                 goto out_dio;
3980
3981         first_block_offset = round_up(offset, sb->s_blocksize);
3982         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3983
3984         /* Now release the pages and zero block aligned part of pages*/
3985         if (last_block_offset > first_block_offset) {
3986                 ret = ext4_update_disksize_before_punch(inode, offset, length);
3987                 if (ret)
3988                         goto out_dio;
3989                 truncate_pagecache_range(inode, first_block_offset,
3990                                          last_block_offset);
3991         }
3992
3993         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3994                 credits = ext4_writepage_trans_blocks(inode);
3995         else
3996                 credits = ext4_blocks_for_truncate(inode);
3997         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3998         if (IS_ERR(handle)) {
3999                 ret = PTR_ERR(handle);
4000                 ext4_std_error(sb, ret);
4001                 goto out_dio;
4002         }
4003
4004         ret = ext4_zero_partial_blocks(handle, inode, offset,
4005                                        length);
4006         if (ret)
4007                 goto out_stop;
4008
4009         first_block = (offset + sb->s_blocksize - 1) >>
4010                 EXT4_BLOCK_SIZE_BITS(sb);
4011         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4012
4013         /* If there are blocks to remove, do it */
4014         if (stop_block > first_block) {
4015
4016                 down_write(&EXT4_I(inode)->i_data_sem);
4017                 ext4_discard_preallocations(inode);
4018
4019                 ret = ext4_es_remove_extent(inode, first_block,
4020                                             stop_block - first_block);
4021                 if (ret) {
4022                         up_write(&EXT4_I(inode)->i_data_sem);
4023                         goto out_stop;
4024                 }
4025
4026                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4027                         ret = ext4_ext_remove_space(inode, first_block,
4028                                                     stop_block - 1);
4029                 else
4030                         ret = ext4_ind_remove_space(handle, inode, first_block,
4031                                                     stop_block);
4032
4033                 up_write(&EXT4_I(inode)->i_data_sem);
4034         }
4035         if (IS_SYNC(inode))
4036                 ext4_handle_sync(handle);
4037
4038         inode->i_mtime = inode->i_ctime = current_time(inode);
4039         ext4_mark_inode_dirty(handle, inode);
4040         if (ret >= 0)
4041                 ext4_update_inode_fsync_trans(handle, inode, 1);
4042 out_stop:
4043         ext4_journal_stop(handle);
4044 out_dio:
4045         up_write(&EXT4_I(inode)->i_mmap_sem);
4046 out_mutex:
4047         inode_unlock(inode);
4048         return ret;
4049 }
4050
4051 int ext4_inode_attach_jinode(struct inode *inode)
4052 {
4053         struct ext4_inode_info *ei = EXT4_I(inode);
4054         struct jbd2_inode *jinode;
4055
4056         if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4057                 return 0;
4058
4059         jinode = jbd2_alloc_inode(GFP_KERNEL);
4060         spin_lock(&inode->i_lock);
4061         if (!ei->jinode) {
4062                 if (!jinode) {
4063                         spin_unlock(&inode->i_lock);
4064                         return -ENOMEM;
4065                 }
4066                 ei->jinode = jinode;
4067                 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4068                 jinode = NULL;
4069         }
4070         spin_unlock(&inode->i_lock);
4071         if (unlikely(jinode != NULL))
4072                 jbd2_free_inode(jinode);
4073         return 0;
4074 }
4075
4076 /*
4077  * ext4_truncate()
4078  *
4079  * We block out ext4_get_block() block instantiations across the entire
4080  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4081  * simultaneously on behalf of the same inode.
4082  *
4083  * As we work through the truncate and commit bits of it to the journal there
4084  * is one core, guiding principle: the file's tree must always be consistent on
4085  * disk.  We must be able to restart the truncate after a crash.
4086  *
4087  * The file's tree may be transiently inconsistent in memory (although it
4088  * probably isn't), but whenever we close off and commit a journal transaction,
4089  * the contents of (the filesystem + the journal) must be consistent and
4090  * restartable.  It's pretty simple, really: bottom up, right to left (although
4091  * left-to-right works OK too).
4092  *
4093  * Note that at recovery time, journal replay occurs *before* the restart of
4094  * truncate against the orphan inode list.
4095  *
4096  * The committed inode has the new, desired i_size (which is the same as
4097  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4098  * that this inode's truncate did not complete and it will again call
4099  * ext4_truncate() to have another go.  So there will be instantiated blocks
4100  * to the right of the truncation point in a crashed ext4 filesystem.  But
4101  * that's fine - as long as they are linked from the inode, the post-crash
4102  * ext4_truncate() run will find them and release them.
4103  */
4104 int ext4_truncate(struct inode *inode)
4105 {
4106         struct ext4_inode_info *ei = EXT4_I(inode);
4107         unsigned int credits;
4108         int err = 0;
4109         handle_t *handle;
4110         struct address_space *mapping = inode->i_mapping;
4111
4112         /*
4113          * There is a possibility that we're either freeing the inode
4114          * or it's a completely new inode. In those cases we might not
4115          * have i_mutex locked because it's not necessary.
4116          */
4117         if (!(inode->i_state & (I_NEW|I_FREEING)))
4118                 WARN_ON(!inode_is_locked(inode));
4119         trace_ext4_truncate_enter(inode);
4120
4121         if (!ext4_can_truncate(inode))
4122                 return 0;
4123
4124         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4125
4126         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4127                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4128
4129         if (ext4_has_inline_data(inode)) {
4130                 int has_inline = 1;
4131
4132                 err = ext4_inline_data_truncate(inode, &has_inline);
4133                 if (err)
4134                         return err;
4135                 if (has_inline)
4136                         return 0;
4137         }
4138
4139         /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4140         if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4141                 if (ext4_inode_attach_jinode(inode) < 0)
4142                         return 0;
4143         }
4144
4145         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4146                 credits = ext4_writepage_trans_blocks(inode);
4147         else
4148                 credits = ext4_blocks_for_truncate(inode);
4149
4150         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4151         if (IS_ERR(handle))
4152                 return PTR_ERR(handle);
4153
4154         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4155                 ext4_block_truncate_page(handle, mapping, inode->i_size);
4156
4157         /*
4158          * We add the inode to the orphan list, so that if this
4159          * truncate spans multiple transactions, and we crash, we will
4160          * resume the truncate when the filesystem recovers.  It also
4161          * marks the inode dirty, to catch the new size.
4162          *
4163          * Implication: the file must always be in a sane, consistent
4164          * truncatable state while each transaction commits.
4165          */
4166         err = ext4_orphan_add(handle, inode);
4167         if (err)
4168                 goto out_stop;
4169
4170         down_write(&EXT4_I(inode)->i_data_sem);
4171
4172         ext4_discard_preallocations(inode);
4173
4174         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4175                 err = ext4_ext_truncate(handle, inode);
4176         else
4177                 ext4_ind_truncate(handle, inode);
4178
4179         up_write(&ei->i_data_sem);
4180         if (err)
4181                 goto out_stop;
4182
4183         if (IS_SYNC(inode))
4184                 ext4_handle_sync(handle);
4185
4186 out_stop:
4187         /*
4188          * If this was a simple ftruncate() and the file will remain alive,
4189          * then we need to clear up the orphan record which we created above.
4190          * However, if this was a real unlink then we were called by
4191          * ext4_evict_inode(), and we allow that function to clean up the
4192          * orphan info for us.
4193          */
4194         if (inode->i_nlink)
4195                 ext4_orphan_del(handle, inode);
4196
4197         inode->i_mtime = inode->i_ctime = current_time(inode);
4198         ext4_mark_inode_dirty(handle, inode);
4199         ext4_journal_stop(handle);
4200
4201         trace_ext4_truncate_exit(inode);
4202         return err;
4203 }
4204
4205 /*
4206  * ext4_get_inode_loc returns with an extra refcount against the inode's
4207  * underlying buffer_head on success. If 'in_mem' is true, we have all
4208  * data in memory that is needed to recreate the on-disk version of this
4209  * inode.
4210  */
4211 static int __ext4_get_inode_loc(struct inode *inode,
4212                                 struct ext4_iloc *iloc, int in_mem)
4213 {
4214         struct ext4_group_desc  *gdp;
4215         struct buffer_head      *bh;
4216         struct super_block      *sb = inode->i_sb;
4217         ext4_fsblk_t            block;
4218         struct blk_plug         plug;
4219         int                     inodes_per_block, inode_offset;
4220
4221         iloc->bh = NULL;
4222         if (inode->i_ino < EXT4_ROOT_INO ||
4223             inode->i_ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4224                 return -EFSCORRUPTED;
4225
4226         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4227         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4228         if (!gdp)
4229                 return -EIO;
4230
4231         /*
4232          * Figure out the offset within the block group inode table
4233          */
4234         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4235         inode_offset = ((inode->i_ino - 1) %
4236                         EXT4_INODES_PER_GROUP(sb));
4237         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4238         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4239
4240         bh = sb_getblk(sb, block);
4241         if (unlikely(!bh))
4242                 return -ENOMEM;
4243         if (!buffer_uptodate(bh)) {
4244                 lock_buffer(bh);
4245
4246                 /*
4247                  * If the buffer has the write error flag, we have failed
4248                  * to write out another inode in the same block.  In this
4249                  * case, we don't have to read the block because we may
4250                  * read the old inode data successfully.
4251                  */
4252                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4253                         set_buffer_uptodate(bh);
4254
4255                 if (buffer_uptodate(bh)) {
4256                         /* someone brought it uptodate while we waited */
4257                         unlock_buffer(bh);
4258                         goto has_buffer;
4259                 }
4260
4261                 /*
4262                  * If we have all information of the inode in memory and this
4263                  * is the only valid inode in the block, we need not read the
4264                  * block.
4265                  */
4266                 if (in_mem) {
4267                         struct buffer_head *bitmap_bh;
4268                         int i, start;
4269
4270                         start = inode_offset & ~(inodes_per_block - 1);
4271
4272                         /* Is the inode bitmap in cache? */
4273                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4274                         if (unlikely(!bitmap_bh))
4275                                 goto make_io;
4276
4277                         /*
4278                          * If the inode bitmap isn't in cache then the
4279                          * optimisation may end up performing two reads instead
4280                          * of one, so skip it.
4281                          */
4282                         if (!buffer_uptodate(bitmap_bh)) {
4283                                 brelse(bitmap_bh);
4284                                 goto make_io;
4285                         }
4286                         for (i = start; i < start + inodes_per_block; i++) {
4287                                 if (i == inode_offset)
4288                                         continue;
4289                                 if (ext4_test_bit(i, bitmap_bh->b_data))
4290                                         break;
4291                         }
4292                         brelse(bitmap_bh);
4293                         if (i == start + inodes_per_block) {
4294                                 /* all other inodes are free, so skip I/O */
4295                                 memset(bh->b_data, 0, bh->b_size);
4296                                 set_buffer_uptodate(bh);
4297                                 unlock_buffer(bh);
4298                                 goto has_buffer;
4299                         }
4300                 }
4301
4302 make_io:
4303                 /*
4304                  * If we need to do any I/O, try to pre-readahead extra
4305                  * blocks from the inode table.
4306                  */
4307                 blk_start_plug(&plug);
4308                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4309                         ext4_fsblk_t b, end, table;
4310                         unsigned num;
4311                         __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4312
4313                         table = ext4_inode_table(sb, gdp);
4314                         /* s_inode_readahead_blks is always a power of 2 */
4315                         b = block & ~((ext4_fsblk_t) ra_blks - 1);
4316                         if (table > b)
4317                                 b = table;
4318                         end = b + ra_blks;
4319                         num = EXT4_INODES_PER_GROUP(sb);
4320                         if (ext4_has_group_desc_csum(sb))
4321                                 num -= ext4_itable_unused_count(sb, gdp);
4322                         table += num / inodes_per_block;
4323                         if (end > table)
4324                                 end = table;
4325                         while (b <= end)
4326                                 sb_breadahead(sb, b++);
4327                 }
4328
4329                 /*
4330                  * There are other valid inodes in the buffer, this inode
4331                  * has in-inode xattrs, or we don't have this inode in memory.
4332                  * Read the block from disk.
4333                  */
4334                 trace_ext4_load_inode(inode);
4335                 get_bh(bh);
4336                 bh->b_end_io = end_buffer_read_sync;
4337                 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4338                 blk_finish_plug(&plug);
4339                 wait_on_buffer(bh);
4340                 if (!buffer_uptodate(bh)) {
4341                         EXT4_ERROR_INODE_BLOCK(inode, block,
4342                                                "unable to read itable block");
4343                         brelse(bh);
4344                         return -EIO;
4345                 }
4346         }
4347 has_buffer:
4348         iloc->bh = bh;
4349         return 0;
4350 }
4351
4352 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4353 {
4354         /* We have all inode data except xattrs in memory here. */
4355         return __ext4_get_inode_loc(inode, iloc,
4356                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4357 }
4358
4359 static bool ext4_should_use_dax(struct inode *inode)
4360 {
4361         if (!test_opt(inode->i_sb, DAX))
4362                 return false;
4363         if (!S_ISREG(inode->i_mode))
4364                 return false;
4365         if (ext4_should_journal_data(inode))
4366                 return false;
4367         if (ext4_has_inline_data(inode))
4368                 return false;
4369         if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4370                 return false;
4371         if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4372                 return false;
4373         return true;
4374 }
4375
4376 void ext4_set_inode_flags(struct inode *inode)
4377 {
4378         unsigned int flags = EXT4_I(inode)->i_flags;
4379         unsigned int new_fl = 0;
4380
4381         if (flags & EXT4_SYNC_FL)
4382                 new_fl |= S_SYNC;
4383         if (flags & EXT4_APPEND_FL)
4384                 new_fl |= S_APPEND;
4385         if (flags & EXT4_IMMUTABLE_FL)
4386                 new_fl |= S_IMMUTABLE;
4387         if (flags & EXT4_NOATIME_FL)
4388                 new_fl |= S_NOATIME;
4389         if (flags & EXT4_DIRSYNC_FL)
4390                 new_fl |= S_DIRSYNC;
4391         if (ext4_should_use_dax(inode))
4392                 new_fl |= S_DAX;
4393         if (flags & EXT4_ENCRYPT_FL)
4394                 new_fl |= S_ENCRYPTED;
4395         if (flags & EXT4_CASEFOLD_FL)
4396                 new_fl |= S_CASEFOLD;
4397         if (flags & EXT4_VERITY_FL)
4398                 new_fl |= S_VERITY;
4399         inode_set_flags(inode, new_fl,
4400                         S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4401                         S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4402 }
4403
4404 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4405                                   struct ext4_inode_info *ei)
4406 {
4407         blkcnt_t i_blocks ;
4408         struct inode *inode = &(ei->vfs_inode);
4409         struct super_block *sb = inode->i_sb;
4410
4411         if (ext4_has_feature_huge_file(sb)) {
4412                 /* we are using combined 48 bit field */
4413                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4414                                         le32_to_cpu(raw_inode->i_blocks_lo);
4415                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4416                         /* i_blocks represent file system block size */
4417                         return i_blocks  << (inode->i_blkbits - 9);
4418                 } else {
4419                         return i_blocks;
4420                 }
4421         } else {
4422                 return le32_to_cpu(raw_inode->i_blocks_lo);
4423         }
4424 }
4425
4426 static inline int ext4_iget_extra_inode(struct inode *inode,
4427                                          struct ext4_inode *raw_inode,
4428                                          struct ext4_inode_info *ei)
4429 {
4430         __le32 *magic = (void *)raw_inode +
4431                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4432
4433         if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4434             EXT4_INODE_SIZE(inode->i_sb) &&
4435             *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4436                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4437                 return ext4_find_inline_data_nolock(inode);
4438         } else
4439                 EXT4_I(inode)->i_inline_off = 0;
4440         return 0;
4441 }
4442
4443 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4444 {
4445         if (!ext4_has_feature_project(inode->i_sb))
4446                 return -EOPNOTSUPP;
4447         *projid = EXT4_I(inode)->i_projid;
4448         return 0;
4449 }
4450
4451 /*
4452  * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4453  * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4454  * set.
4455  */
4456 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4457 {
4458         if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4459                 inode_set_iversion_raw(inode, val);
4460         else
4461                 inode_set_iversion_queried(inode, val);
4462 }
4463 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4464 {
4465         if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4466                 return inode_peek_iversion_raw(inode);
4467         else
4468                 return inode_peek_iversion(inode);
4469 }
4470
4471 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4472                           ext4_iget_flags flags, const char *function,
4473                           unsigned int line)
4474 {
4475         struct ext4_iloc iloc;
4476         struct ext4_inode *raw_inode;
4477         struct ext4_inode_info *ei;
4478         struct inode *inode;
4479         journal_t *journal = EXT4_SB(sb)->s_journal;
4480         long ret;
4481         loff_t size;
4482         int block;
4483         uid_t i_uid;
4484         gid_t i_gid;
4485         projid_t i_projid;
4486
4487         if ((!(flags & EXT4_IGET_SPECIAL) &&
4488              (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)) ||
4489             (ino < EXT4_ROOT_INO) ||
4490             (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))) {
4491                 if (flags & EXT4_IGET_HANDLE)
4492                         return ERR_PTR(-ESTALE);
4493                 __ext4_error(sb, function, line,
4494                              "inode #%lu: comm %s: iget: illegal inode #",
4495                              ino, current->comm);
4496                 return ERR_PTR(-EFSCORRUPTED);
4497         }
4498
4499         inode = iget_locked(sb, ino);
4500         if (!inode)
4501                 return ERR_PTR(-ENOMEM);
4502         if (!(inode->i_state & I_NEW))
4503                 return inode;
4504
4505         ei = EXT4_I(inode);
4506         iloc.bh = NULL;
4507
4508         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4509         if (ret < 0)
4510                 goto bad_inode;
4511         raw_inode = ext4_raw_inode(&iloc);
4512
4513         if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4514                 ext4_error_inode(inode, function, line, 0,
4515                                  "iget: root inode unallocated");
4516                 ret = -EFSCORRUPTED;
4517                 goto bad_inode;
4518         }
4519
4520         if ((flags & EXT4_IGET_HANDLE) &&
4521             (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4522                 ret = -ESTALE;
4523                 goto bad_inode;
4524         }
4525
4526         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4527                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4528                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4529                         EXT4_INODE_SIZE(inode->i_sb) ||
4530                     (ei->i_extra_isize & 3)) {
4531                         ext4_error_inode(inode, function, line, 0,
4532                                          "iget: bad extra_isize %u "
4533                                          "(inode size %u)",
4534                                          ei->i_extra_isize,
4535                                          EXT4_INODE_SIZE(inode->i_sb));
4536                         ret = -EFSCORRUPTED;
4537                         goto bad_inode;
4538                 }
4539         } else
4540                 ei->i_extra_isize = 0;
4541
4542         /* Precompute checksum seed for inode metadata */
4543         if (ext4_has_metadata_csum(sb)) {
4544                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4545                 __u32 csum;
4546                 __le32 inum = cpu_to_le32(inode->i_ino);
4547                 __le32 gen = raw_inode->i_generation;
4548                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4549                                    sizeof(inum));
4550                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4551                                               sizeof(gen));
4552         }
4553
4554         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4555                 ext4_error_inode(inode, function, line, 0,
4556                                  "iget: checksum invalid");
4557                 ret = -EFSBADCRC;
4558                 goto bad_inode;
4559         }
4560
4561         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4562         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4563         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4564         if (ext4_has_feature_project(sb) &&
4565             EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4566             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4567                 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4568         else
4569                 i_projid = EXT4_DEF_PROJID;
4570
4571         if (!(test_opt(inode->i_sb, NO_UID32))) {
4572                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4573                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4574         }
4575         i_uid_write(inode, i_uid);
4576         i_gid_write(inode, i_gid);
4577         ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4578         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4579
4580         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4581         ei->i_inline_off = 0;
4582         ei->i_dir_start_lookup = 0;
4583         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4584         /* We now have enough fields to check if the inode was active or not.
4585          * This is needed because nfsd might try to access dead inodes
4586          * the test is that same one that e2fsck uses
4587          * NeilBrown 1999oct15
4588          */
4589         if (inode->i_nlink == 0) {
4590                 if ((inode->i_mode == 0 ||
4591                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4592                     ino != EXT4_BOOT_LOADER_INO) {
4593                         /* this inode is deleted */
4594                         ret = -ESTALE;
4595                         goto bad_inode;
4596                 }
4597                 /* The only unlinked inodes we let through here have
4598                  * valid i_mode and are being read by the orphan
4599                  * recovery code: that's fine, we're about to complete
4600                  * the process of deleting those.
4601                  * OR it is the EXT4_BOOT_LOADER_INO which is
4602                  * not initialized on a new filesystem. */
4603         }
4604         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4605         ext4_set_inode_flags(inode);
4606         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4607         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4608         if (ext4_has_feature_64bit(sb))
4609                 ei->i_file_acl |=
4610                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4611         inode->i_size = ext4_isize(sb, raw_inode);
4612         if ((size = i_size_read(inode)) < 0) {
4613                 ext4_error_inode(inode, function, line, 0,
4614                                  "iget: bad i_size value: %lld", size);
4615                 ret = -EFSCORRUPTED;
4616                 goto bad_inode;
4617         }
4618         ei->i_disksize = inode->i_size;
4619 #ifdef CONFIG_QUOTA
4620         ei->i_reserved_quota = 0;
4621 #endif
4622         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4623         ei->i_block_group = iloc.block_group;
4624         ei->i_last_alloc_group = ~0;
4625         /*
4626          * NOTE! The in-memory inode i_data array is in little-endian order
4627          * even on big-endian machines: we do NOT byteswap the block numbers!
4628          */
4629         for (block = 0; block < EXT4_N_BLOCKS; block++)
4630                 ei->i_data[block] = raw_inode->i_block[block];
4631         INIT_LIST_HEAD(&ei->i_orphan);
4632
4633         /*
4634          * Set transaction id's of transactions that have to be committed
4635          * to finish f[data]sync. We set them to currently running transaction
4636          * as we cannot be sure that the inode or some of its metadata isn't
4637          * part of the transaction - the inode could have been reclaimed and
4638          * now it is reread from disk.
4639          */
4640         if (journal) {
4641                 transaction_t *transaction;
4642                 tid_t tid;
4643
4644                 read_lock(&journal->j_state_lock);
4645                 if (journal->j_running_transaction)
4646                         transaction = journal->j_running_transaction;
4647                 else
4648                         transaction = journal->j_committing_transaction;
4649                 if (transaction)
4650                         tid = transaction->t_tid;
4651                 else
4652                         tid = journal->j_commit_sequence;
4653                 read_unlock(&journal->j_state_lock);
4654                 ei->i_sync_tid = tid;
4655                 ei->i_datasync_tid = tid;
4656         }
4657
4658         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4659                 if (ei->i_extra_isize == 0) {
4660                         /* The extra space is currently unused. Use it. */
4661                         BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4662                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4663                                             EXT4_GOOD_OLD_INODE_SIZE;
4664                 } else {
4665                         ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4666                         if (ret)
4667                                 goto bad_inode;
4668                 }
4669         }
4670
4671         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4672         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4673         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4674         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4675
4676         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4677                 u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4678
4679                 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4680                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4681                                 ivers |=
4682                     (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4683                 }
4684                 ext4_inode_set_iversion_queried(inode, ivers);
4685         }
4686
4687         ret = 0;
4688         if (ei->i_file_acl &&
4689             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4690                 ext4_error_inode(inode, function, line, 0,
4691                                  "iget: bad extended attribute block %llu",
4692                                  ei->i_file_acl);
4693                 ret = -EFSCORRUPTED;
4694                 goto bad_inode;
4695         } else if (!ext4_has_inline_data(inode)) {
4696                 /* validate the block references in the inode */
4697                 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4698                    (S_ISLNK(inode->i_mode) &&
4699                     !ext4_inode_is_fast_symlink(inode))) {
4700                         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4701                                 ret = ext4_ext_check_inode(inode);
4702                         else
4703                                 ret = ext4_ind_check_inode(inode);
4704                 }
4705         }
4706         if (ret)
4707                 goto bad_inode;
4708
4709         if (S_ISREG(inode->i_mode)) {
4710                 inode->i_op = &ext4_file_inode_operations;
4711                 inode->i_fop = &ext4_file_operations;
4712                 ext4_set_aops(inode);
4713         } else if (S_ISDIR(inode->i_mode)) {
4714                 inode->i_op = &ext4_dir_inode_operations;
4715                 inode->i_fop = &ext4_dir_operations;
4716         } else if (S_ISLNK(inode->i_mode)) {
4717                 /* VFS does not allow setting these so must be corruption */
4718                 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
4719                         ext4_error_inode(inode, function, line, 0,
4720                                          "iget: immutable or append flags "
4721                                          "not allowed on symlinks");
4722                         ret = -EFSCORRUPTED;
4723                         goto bad_inode;
4724                 }
4725                 if (IS_ENCRYPTED(inode)) {
4726                         inode->i_op = &ext4_encrypted_symlink_inode_operations;
4727                         ext4_set_aops(inode);
4728                 } else if (ext4_inode_is_fast_symlink(inode)) {
4729                         inode->i_link = (char *)ei->i_data;
4730                         inode->i_op = &ext4_fast_symlink_inode_operations;
4731                         nd_terminate_link(ei->i_data, inode->i_size,
4732                                 sizeof(ei->i_data) - 1);
4733                 } else {
4734                         inode->i_op = &ext4_symlink_inode_operations;
4735                         ext4_set_aops(inode);
4736                 }
4737                 inode_nohighmem(inode);
4738         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4739               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4740                 inode->i_op = &ext4_special_inode_operations;
4741                 if (raw_inode->i_block[0])
4742                         init_special_inode(inode, inode->i_mode,
4743                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4744                 else
4745                         init_special_inode(inode, inode->i_mode,
4746                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4747         } else if (ino == EXT4_BOOT_LOADER_INO) {
4748                 make_bad_inode(inode);
4749         } else {
4750                 ret = -EFSCORRUPTED;
4751                 ext4_error_inode(inode, function, line, 0,
4752                                  "iget: bogus i_mode (%o)", inode->i_mode);
4753                 goto bad_inode;
4754         }
4755         if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb))
4756                 ext4_error_inode(inode, function, line, 0,
4757                                  "casefold flag without casefold feature");
4758         brelse(iloc.bh);
4759
4760         unlock_new_inode(inode);
4761         return inode;
4762
4763 bad_inode:
4764         brelse(iloc.bh);
4765         iget_failed(inode);
4766         return ERR_PTR(ret);
4767 }
4768
4769 static int ext4_inode_blocks_set(handle_t *handle,
4770                                 struct ext4_inode *raw_inode,
4771                                 struct ext4_inode_info *ei)
4772 {
4773         struct inode *inode = &(ei->vfs_inode);
4774         u64 i_blocks = inode->i_blocks;
4775         struct super_block *sb = inode->i_sb;
4776
4777         if (i_blocks <= ~0U) {
4778                 /*
4779                  * i_blocks can be represented in a 32 bit variable
4780                  * as multiple of 512 bytes
4781                  */
4782                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4783                 raw_inode->i_blocks_high = 0;
4784                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4785                 return 0;
4786         }
4787         if (!ext4_has_feature_huge_file(sb))
4788                 return -EFBIG;
4789
4790         if (i_blocks <= 0xffffffffffffULL) {
4791                 /*
4792                  * i_blocks can be represented in a 48 bit variable
4793                  * as multiple of 512 bytes
4794                  */
4795                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4796                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4797                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4798         } else {
4799                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4800                 /* i_block is stored in file system block size */
4801                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4802                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4803                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4804         }
4805         return 0;
4806 }
4807
4808 struct other_inode {
4809         unsigned long           orig_ino;
4810         struct ext4_inode       *raw_inode;
4811 };
4812
4813 static int other_inode_match(struct inode * inode, unsigned long ino,
4814                              void *data)
4815 {
4816         struct other_inode *oi = (struct other_inode *) data;
4817
4818         if ((inode->i_ino != ino) ||
4819             (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4820                                I_DIRTY_INODE)) ||
4821             ((inode->i_state & I_DIRTY_TIME) == 0))
4822                 return 0;
4823         spin_lock(&inode->i_lock);
4824         if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4825                                 I_DIRTY_INODE)) == 0) &&
4826             (inode->i_state & I_DIRTY_TIME)) {
4827                 struct ext4_inode_info  *ei = EXT4_I(inode);
4828
4829                 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4830                 spin_unlock(&inode->i_lock);
4831
4832                 spin_lock(&ei->i_raw_lock);
4833                 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4834                 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4835                 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4836                 ext4_inode_csum_set(inode, oi->raw_inode, ei);
4837                 spin_unlock(&ei->i_raw_lock);
4838                 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4839                 return -1;
4840         }
4841         spin_unlock(&inode->i_lock);
4842         return -1;
4843 }
4844
4845 /*
4846  * Opportunistically update the other time fields for other inodes in
4847  * the same inode table block.
4848  */
4849 static void ext4_update_other_inodes_time(struct super_block *sb,
4850                                           unsigned long orig_ino, char *buf)
4851 {
4852         struct other_inode oi;
4853         unsigned long ino;
4854         int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4855         int inode_size = EXT4_INODE_SIZE(sb);
4856
4857         oi.orig_ino = orig_ino;
4858         /*
4859          * Calculate the first inode in the inode table block.  Inode
4860          * numbers are one-based.  That is, the first inode in a block
4861          * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4862          */
4863         ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4864         for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4865                 if (ino == orig_ino)
4866                         continue;
4867                 oi.raw_inode = (struct ext4_inode *) buf;
4868                 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4869         }
4870 }
4871
4872 /*
4873  * Post the struct inode info into an on-disk inode location in the
4874  * buffer-cache.  This gobbles the caller's reference to the
4875  * buffer_head in the inode location struct.
4876  *
4877  * The caller must have write access to iloc->bh.
4878  */
4879 static int ext4_do_update_inode(handle_t *handle,
4880                                 struct inode *inode,
4881                                 struct ext4_iloc *iloc)
4882 {
4883         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4884         struct ext4_inode_info *ei = EXT4_I(inode);
4885         struct buffer_head *bh = iloc->bh;
4886         struct super_block *sb = inode->i_sb;
4887         int err = 0, rc, block;
4888         int need_datasync = 0, set_large_file = 0;
4889         uid_t i_uid;
4890         gid_t i_gid;
4891         projid_t i_projid;
4892
4893         spin_lock(&ei->i_raw_lock);
4894
4895         /* For fields not tracked in the in-memory inode,
4896          * initialise them to zero for new inodes. */
4897         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4898                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4899
4900         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4901         i_uid = i_uid_read(inode);
4902         i_gid = i_gid_read(inode);
4903         i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4904         if (!(test_opt(inode->i_sb, NO_UID32))) {
4905                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4906                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4907 /*
4908  * Fix up interoperability with old kernels. Otherwise, old inodes get
4909  * re-used with the upper 16 bits of the uid/gid intact
4910  */
4911                 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4912                         raw_inode->i_uid_high = 0;
4913                         raw_inode->i_gid_high = 0;
4914                 } else {
4915                         raw_inode->i_uid_high =
4916                                 cpu_to_le16(high_16_bits(i_uid));
4917                         raw_inode->i_gid_high =
4918                                 cpu_to_le16(high_16_bits(i_gid));
4919                 }
4920         } else {
4921                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4922                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4923                 raw_inode->i_uid_high = 0;
4924                 raw_inode->i_gid_high = 0;
4925         }
4926         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4927
4928         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4929         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4930         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4931         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4932
4933         err = ext4_inode_blocks_set(handle, raw_inode, ei);
4934         if (err) {
4935                 spin_unlock(&ei->i_raw_lock);
4936                 goto out_brelse;
4937         }
4938         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4939         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4940         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4941                 raw_inode->i_file_acl_high =
4942                         cpu_to_le16(ei->i_file_acl >> 32);
4943         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4944         if (ei->i_disksize != ext4_isize(inode->i_sb, raw_inode)) {
4945                 ext4_isize_set(raw_inode, ei->i_disksize);
4946                 need_datasync = 1;
4947         }
4948         if (ei->i_disksize > 0x7fffffffULL) {
4949                 if (!ext4_has_feature_large_file(sb) ||
4950                                 EXT4_SB(sb)->s_es->s_rev_level ==
4951                     cpu_to_le32(EXT4_GOOD_OLD_REV))
4952                         set_large_file = 1;
4953         }
4954         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4955         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4956                 if (old_valid_dev(inode->i_rdev)) {
4957                         raw_inode->i_block[0] =
4958                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4959                         raw_inode->i_block[1] = 0;
4960                 } else {
4961                         raw_inode->i_block[0] = 0;
4962                         raw_inode->i_block[1] =
4963                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4964                         raw_inode->i_block[2] = 0;
4965                 }
4966         } else if (!ext4_has_inline_data(inode)) {
4967                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4968                         raw_inode->i_block[block] = ei->i_data[block];
4969         }
4970
4971         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4972                 u64 ivers = ext4_inode_peek_iversion(inode);
4973
4974                 raw_inode->i_disk_version = cpu_to_le32(ivers);
4975                 if (ei->i_extra_isize) {
4976                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4977                                 raw_inode->i_version_hi =
4978                                         cpu_to_le32(ivers >> 32);
4979                         raw_inode->i_extra_isize =
4980                                 cpu_to_le16(ei->i_extra_isize);
4981                 }
4982         }
4983
4984         BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
4985                i_projid != EXT4_DEF_PROJID);
4986
4987         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4988             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4989                 raw_inode->i_projid = cpu_to_le32(i_projid);
4990
4991         ext4_inode_csum_set(inode, raw_inode, ei);
4992         spin_unlock(&ei->i_raw_lock);
4993         if (inode->i_sb->s_flags & SB_LAZYTIME)
4994                 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
4995                                               bh->b_data);
4996
4997         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4998         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4999         if (!err)
5000                 err = rc;
5001         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5002         if (set_large_file) {
5003                 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5004                 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5005                 if (err)
5006                         goto out_brelse;
5007                 ext4_set_feature_large_file(sb);
5008                 ext4_handle_sync(handle);
5009                 err = ext4_handle_dirty_super(handle, sb);
5010         }
5011         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5012 out_brelse:
5013         brelse(bh);
5014         ext4_std_error(inode->i_sb, err);
5015         return err;
5016 }
5017
5018 /*
5019  * ext4_write_inode()
5020  *
5021  * We are called from a few places:
5022  *
5023  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5024  *   Here, there will be no transaction running. We wait for any running
5025  *   transaction to commit.
5026  *
5027  * - Within flush work (sys_sync(), kupdate and such).
5028  *   We wait on commit, if told to.
5029  *
5030  * - Within iput_final() -> write_inode_now()
5031  *   We wait on commit, if told to.
5032  *
5033  * In all cases it is actually safe for us to return without doing anything,
5034  * because the inode has been copied into a raw inode buffer in
5035  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5036  * writeback.
5037  *
5038  * Note that we are absolutely dependent upon all inode dirtiers doing the
5039  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5040  * which we are interested.
5041  *
5042  * It would be a bug for them to not do this.  The code:
5043  *
5044  *      mark_inode_dirty(inode)
5045  *      stuff();
5046  *      inode->i_size = expr;
5047  *
5048  * is in error because write_inode() could occur while `stuff()' is running,
5049  * and the new i_size will be lost.  Plus the inode will no longer be on the
5050  * superblock's dirty inode list.
5051  */
5052 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5053 {
5054         int err;
5055
5056         if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5057             sb_rdonly(inode->i_sb))
5058                 return 0;
5059
5060         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5061                 return -EIO;
5062
5063         if (EXT4_SB(inode->i_sb)->s_journal) {
5064                 if (ext4_journal_current_handle()) {
5065                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5066                         dump_stack();
5067                         return -EIO;
5068                 }
5069
5070                 /*
5071                  * No need to force transaction in WB_SYNC_NONE mode. Also
5072                  * ext4_sync_fs() will force the commit after everything is
5073                  * written.
5074                  */
5075                 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5076                         return 0;
5077
5078                 err = jbd2_complete_transaction(EXT4_SB(inode->i_sb)->s_journal,
5079                                                 EXT4_I(inode)->i_sync_tid);
5080         } else {
5081                 struct ext4_iloc iloc;
5082
5083                 err = __ext4_get_inode_loc(inode, &iloc, 0);
5084                 if (err)
5085                         return err;
5086                 /*
5087                  * sync(2) will flush the whole buffer cache. No need to do
5088                  * it here separately for each inode.
5089                  */
5090                 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5091                         sync_dirty_buffer(iloc.bh);
5092                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5093                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5094                                          "IO error syncing inode");
5095                         err = -EIO;
5096                 }
5097                 brelse(iloc.bh);
5098         }
5099         return err;
5100 }
5101
5102 /*
5103  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5104  * buffers that are attached to a page stradding i_size and are undergoing
5105  * commit. In that case we have to wait for commit to finish and try again.
5106  */
5107 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5108 {
5109         struct page *page;
5110         unsigned offset;
5111         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5112         tid_t commit_tid = 0;
5113         int ret;
5114
5115         offset = inode->i_size & (PAGE_SIZE - 1);
5116         /*
5117          * If the page is fully truncated, we don't need to wait for any commit
5118          * (and we even should not as __ext4_journalled_invalidatepage() may
5119          * strip all buffers from the page but keep the page dirty which can then
5120          * confuse e.g. concurrent ext4_writepage() seeing dirty page without
5121          * buffers). Also we don't need to wait for any commit if all buffers in
5122          * the page remain valid. This is most beneficial for the common case of
5123          * blocksize == PAGESIZE.
5124          */
5125         if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5126                 return;
5127         while (1) {
5128                 page = find_lock_page(inode->i_mapping,
5129                                       inode->i_size >> PAGE_SHIFT);
5130                 if (!page)
5131                         return;
5132                 ret = __ext4_journalled_invalidatepage(page, offset,
5133                                                 PAGE_SIZE - offset);
5134                 unlock_page(page);
5135                 put_page(page);
5136                 if (ret != -EBUSY)
5137                         return;
5138                 commit_tid = 0;
5139                 read_lock(&journal->j_state_lock);
5140                 if (journal->j_committing_transaction)
5141                         commit_tid = journal->j_committing_transaction->t_tid;
5142                 read_unlock(&journal->j_state_lock);
5143                 if (commit_tid)
5144                         jbd2_log_wait_commit(journal, commit_tid);
5145         }
5146 }
5147
5148 /*
5149  * ext4_setattr()
5150  *
5151  * Called from notify_change.
5152  *
5153  * We want to trap VFS attempts to truncate the file as soon as
5154  * possible.  In particular, we want to make sure that when the VFS
5155  * shrinks i_size, we put the inode on the orphan list and modify
5156  * i_disksize immediately, so that during the subsequent flushing of
5157  * dirty pages and freeing of disk blocks, we can guarantee that any
5158  * commit will leave the blocks being flushed in an unused state on
5159  * disk.  (On recovery, the inode will get truncated and the blocks will
5160  * be freed, so we have a strong guarantee that no future commit will
5161  * leave these blocks visible to the user.)
5162  *
5163  * Another thing we have to assure is that if we are in ordered mode
5164  * and inode is still attached to the committing transaction, we must
5165  * we start writeout of all the dirty pages which are being truncated.
5166  * This way we are sure that all the data written in the previous
5167  * transaction are already on disk (truncate waits for pages under
5168  * writeback).
5169  *
5170  * Called with inode->i_mutex down.
5171  */
5172 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5173 {
5174         struct inode *inode = d_inode(dentry);
5175         int error, rc = 0;
5176         int orphan = 0;
5177         const unsigned int ia_valid = attr->ia_valid;
5178
5179         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5180                 return -EIO;
5181
5182         if (unlikely(IS_IMMUTABLE(inode)))
5183                 return -EPERM;
5184
5185         if (unlikely(IS_APPEND(inode) &&
5186                      (ia_valid & (ATTR_MODE | ATTR_UID |
5187                                   ATTR_GID | ATTR_TIMES_SET))))
5188                 return -EPERM;
5189
5190         error = setattr_prepare(dentry, attr);
5191         if (error)
5192                 return error;
5193
5194         error = fscrypt_prepare_setattr(dentry, attr);
5195         if (error)
5196                 return error;
5197
5198         error = fsverity_prepare_setattr(dentry, attr);
5199         if (error)
5200                 return error;
5201
5202         if (is_quota_modification(inode, attr)) {
5203                 error = dquot_initialize(inode);
5204                 if (error)
5205                         return error;
5206         }
5207         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5208             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5209                 handle_t *handle;
5210
5211                 /* (user+group)*(old+new) structure, inode write (sb,
5212                  * inode block, ? - but truncate inode update has it) */
5213                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5214                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5215                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5216                 if (IS_ERR(handle)) {
5217                         error = PTR_ERR(handle);
5218                         goto err_out;
5219                 }
5220
5221                 /* dquot_transfer() calls back ext4_get_inode_usage() which
5222                  * counts xattr inode references.
5223                  */
5224                 down_read(&EXT4_I(inode)->xattr_sem);
5225                 error = dquot_transfer(inode, attr);
5226                 up_read(&EXT4_I(inode)->xattr_sem);
5227
5228                 if (error) {
5229                         ext4_journal_stop(handle);
5230                         return error;
5231                 }
5232                 /* Update corresponding info in inode so that everything is in
5233                  * one transaction */
5234                 if (attr->ia_valid & ATTR_UID)
5235                         inode->i_uid = attr->ia_uid;
5236                 if (attr->ia_valid & ATTR_GID)
5237                         inode->i_gid = attr->ia_gid;
5238                 error = ext4_mark_inode_dirty(handle, inode);
5239                 ext4_journal_stop(handle);
5240         }
5241
5242         if (attr->ia_valid & ATTR_SIZE) {
5243                 handle_t *handle;
5244                 loff_t oldsize = inode->i_size;
5245                 int shrink = (attr->ia_size < inode->i_size);
5246
5247                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5248                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5249
5250                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
5251                                 return -EFBIG;
5252                 }
5253                 if (!S_ISREG(inode->i_mode))
5254                         return -EINVAL;
5255
5256                 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5257                         inode_inc_iversion(inode);
5258
5259                 if (shrink) {
5260                         if (ext4_should_order_data(inode)) {
5261                                 error = ext4_begin_ordered_truncate(inode,
5262                                                             attr->ia_size);
5263                                 if (error)
5264                                         goto err_out;
5265                         }
5266                         /*
5267                          * Blocks are going to be removed from the inode. Wait
5268                          * for dio in flight.
5269                          */
5270                         inode_dio_wait(inode);
5271                 }
5272
5273                 down_write(&EXT4_I(inode)->i_mmap_sem);
5274
5275                 rc = ext4_break_layouts(inode);
5276                 if (rc) {
5277                         up_write(&EXT4_I(inode)->i_mmap_sem);
5278                         return rc;
5279                 }
5280
5281                 if (attr->ia_size != inode->i_size) {
5282                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5283                         if (IS_ERR(handle)) {
5284                                 error = PTR_ERR(handle);
5285                                 goto out_mmap_sem;
5286                         }
5287                         if (ext4_handle_valid(handle) && shrink) {
5288                                 error = ext4_orphan_add(handle, inode);
5289                                 orphan = 1;
5290                         }
5291                         /*
5292                          * Update c/mtime on truncate up, ext4_truncate() will
5293                          * update c/mtime in shrink case below
5294                          */
5295                         if (!shrink) {
5296                                 inode->i_mtime = current_time(inode);
5297                                 inode->i_ctime = inode->i_mtime;
5298                         }
5299                         down_write(&EXT4_I(inode)->i_data_sem);
5300                         EXT4_I(inode)->i_disksize = attr->ia_size;
5301                         rc = ext4_mark_inode_dirty(handle, inode);
5302                         if (!error)
5303                                 error = rc;
5304                         /*
5305                          * We have to update i_size under i_data_sem together
5306                          * with i_disksize to avoid races with writeback code
5307                          * running ext4_wb_update_i_disksize().
5308                          */
5309                         if (!error)
5310                                 i_size_write(inode, attr->ia_size);
5311                         up_write(&EXT4_I(inode)->i_data_sem);
5312                         ext4_journal_stop(handle);
5313                         if (error)
5314                                 goto out_mmap_sem;
5315                         if (!shrink) {
5316                                 pagecache_isize_extended(inode, oldsize,
5317                                                          inode->i_size);
5318                         } else if (ext4_should_journal_data(inode)) {
5319                                 ext4_wait_for_tail_page_commit(inode);
5320                         }
5321                 }
5322
5323                 /*
5324                  * Truncate pagecache after we've waited for commit
5325                  * in data=journal mode to make pages freeable.
5326                  */
5327                 truncate_pagecache(inode, inode->i_size);
5328                 /*
5329                  * Call ext4_truncate() even if i_size didn't change to
5330                  * truncate possible preallocated blocks.
5331                  */
5332                 if (attr->ia_size <= oldsize) {
5333                         rc = ext4_truncate(inode);
5334                         if (rc)
5335                                 error = rc;
5336                 }
5337 out_mmap_sem:
5338                 up_write(&EXT4_I(inode)->i_mmap_sem);
5339         }
5340
5341         if (!error) {
5342                 setattr_copy(inode, attr);
5343                 mark_inode_dirty(inode);
5344         }
5345
5346         /*
5347          * If the call to ext4_truncate failed to get a transaction handle at
5348          * all, we need to clean up the in-core orphan list manually.
5349          */
5350         if (orphan && inode->i_nlink)
5351                 ext4_orphan_del(NULL, inode);
5352
5353         if (!error && (ia_valid & ATTR_MODE))
5354                 rc = posix_acl_chmod(inode, inode->i_mode);
5355
5356 err_out:
5357         ext4_std_error(inode->i_sb, error);
5358         if (!error)
5359                 error = rc;
5360         return error;
5361 }
5362
5363 int ext4_getattr(const struct path *path, struct kstat *stat,
5364                  u32 request_mask, unsigned int query_flags)
5365 {
5366         struct inode *inode = d_inode(path->dentry);
5367         struct ext4_inode *raw_inode;
5368         struct ext4_inode_info *ei = EXT4_I(inode);
5369         unsigned int flags;
5370
5371         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5372                 stat->result_mask |= STATX_BTIME;
5373                 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5374                 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5375         }
5376
5377         flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5378         if (flags & EXT4_APPEND_FL)
5379                 stat->attributes |= STATX_ATTR_APPEND;
5380         if (flags & EXT4_COMPR_FL)
5381                 stat->attributes |= STATX_ATTR_COMPRESSED;
5382         if (flags & EXT4_ENCRYPT_FL)
5383                 stat->attributes |= STATX_ATTR_ENCRYPTED;
5384         if (flags & EXT4_IMMUTABLE_FL)
5385                 stat->attributes |= STATX_ATTR_IMMUTABLE;
5386         if (flags & EXT4_NODUMP_FL)
5387                 stat->attributes |= STATX_ATTR_NODUMP;
5388         if (flags & EXT4_VERITY_FL)
5389                 stat->attributes |= STATX_ATTR_VERITY;
5390
5391         stat->attributes_mask |= (STATX_ATTR_APPEND |
5392                                   STATX_ATTR_COMPRESSED |
5393                                   STATX_ATTR_ENCRYPTED |
5394                                   STATX_ATTR_IMMUTABLE |
5395                                   STATX_ATTR_NODUMP |
5396                                   STATX_ATTR_VERITY);
5397
5398         generic_fillattr(inode, stat);
5399         return 0;
5400 }
5401
5402 int ext4_file_getattr(const struct path *path, struct kstat *stat,
5403                       u32 request_mask, unsigned int query_flags)
5404 {
5405         struct inode *inode = d_inode(path->dentry);
5406         u64 delalloc_blocks;
5407
5408         ext4_getattr(path, stat, request_mask, query_flags);
5409
5410         /*
5411          * If there is inline data in the inode, the inode will normally not
5412          * have data blocks allocated (it may have an external xattr block).
5413          * Report at least one sector for such files, so tools like tar, rsync,
5414          * others don't incorrectly think the file is completely sparse.
5415          */
5416         if (unlikely(ext4_has_inline_data(inode)))
5417                 stat->blocks += (stat->size + 511) >> 9;
5418
5419         /*
5420          * We can't update i_blocks if the block allocation is delayed
5421          * otherwise in the case of system crash before the real block
5422          * allocation is done, we will have i_blocks inconsistent with
5423          * on-disk file blocks.
5424          * We always keep i_blocks updated together with real
5425          * allocation. But to not confuse with user, stat
5426          * will return the blocks that include the delayed allocation
5427          * blocks for this file.
5428          */
5429         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5430                                    EXT4_I(inode)->i_reserved_data_blocks);
5431         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5432         return 0;
5433 }
5434
5435 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5436                                    int pextents)
5437 {
5438         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5439                 return ext4_ind_trans_blocks(inode, lblocks);
5440         return ext4_ext_index_trans_blocks(inode, pextents);
5441 }
5442
5443 /*
5444  * Account for index blocks, block groups bitmaps and block group
5445  * descriptor blocks if modify datablocks and index blocks
5446  * worse case, the indexs blocks spread over different block groups
5447  *
5448  * If datablocks are discontiguous, they are possible to spread over
5449  * different block groups too. If they are contiguous, with flexbg,
5450  * they could still across block group boundary.
5451  *
5452  * Also account for superblock, inode, quota and xattr blocks
5453  */
5454 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5455                                   int pextents)
5456 {
5457         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5458         int gdpblocks;
5459         int idxblocks;
5460         int ret = 0;
5461
5462         /*
5463          * How many index blocks need to touch to map @lblocks logical blocks
5464          * to @pextents physical extents?
5465          */
5466         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5467
5468         ret = idxblocks;
5469
5470         /*
5471          * Now let's see how many group bitmaps and group descriptors need
5472          * to account
5473          */
5474         groups = idxblocks + pextents;
5475         gdpblocks = groups;
5476         if (groups > ngroups)
5477                 groups = ngroups;
5478         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5479                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5480
5481         /* bitmaps and block group descriptor blocks */
5482         ret += groups + gdpblocks;
5483
5484         /* Blocks for super block, inode, quota and xattr blocks */
5485         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5486
5487         return ret;
5488 }
5489
5490 /*
5491  * Calculate the total number of credits to reserve to fit
5492  * the modification of a single pages into a single transaction,
5493  * which may include multiple chunks of block allocations.
5494  *
5495  * This could be called via ext4_write_begin()
5496  *
5497  * We need to consider the worse case, when
5498  * one new block per extent.
5499  */
5500 int ext4_writepage_trans_blocks(struct inode *inode)
5501 {
5502         int bpp = ext4_journal_blocks_per_page(inode);
5503         int ret;
5504
5505         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5506
5507         /* Account for data blocks for journalled mode */
5508         if (ext4_should_journal_data(inode))
5509                 ret += bpp;
5510         return ret;
5511 }
5512
5513 /*
5514  * Calculate the journal credits for a chunk of data modification.
5515  *
5516  * This is called from DIO, fallocate or whoever calling
5517  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5518  *
5519  * journal buffers for data blocks are not included here, as DIO
5520  * and fallocate do no need to journal data buffers.
5521  */
5522 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5523 {
5524         return ext4_meta_trans_blocks(inode, nrblocks, 1);
5525 }
5526
5527 /*
5528  * The caller must have previously called ext4_reserve_inode_write().
5529  * Give this, we know that the caller already has write access to iloc->bh.
5530  */
5531 int ext4_mark_iloc_dirty(handle_t *handle,
5532                          struct inode *inode, struct ext4_iloc *iloc)
5533 {
5534         int err = 0;
5535
5536         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5537                 put_bh(iloc->bh);
5538                 return -EIO;
5539         }
5540         if (IS_I_VERSION(inode))
5541                 inode_inc_iversion(inode);
5542
5543         /* the do_update_inode consumes one bh->b_count */
5544         get_bh(iloc->bh);
5545
5546         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5547         err = ext4_do_update_inode(handle, inode, iloc);
5548         put_bh(iloc->bh);
5549         return err;
5550 }
5551
5552 /*
5553  * On success, We end up with an outstanding reference count against
5554  * iloc->bh.  This _must_ be cleaned up later.
5555  */
5556
5557 int
5558 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5559                          struct ext4_iloc *iloc)
5560 {
5561         int err;
5562
5563         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5564                 return -EIO;
5565
5566         err = ext4_get_inode_loc(inode, iloc);
5567         if (!err) {
5568                 BUFFER_TRACE(iloc->bh, "get_write_access");
5569                 err = ext4_journal_get_write_access(handle, iloc->bh);
5570                 if (err) {
5571                         brelse(iloc->bh);
5572                         iloc->bh = NULL;
5573                 }
5574         }
5575         ext4_std_error(inode->i_sb, err);
5576         return err;
5577 }
5578
5579 static int __ext4_expand_extra_isize(struct inode *inode,
5580                                      unsigned int new_extra_isize,
5581                                      struct ext4_iloc *iloc,
5582                                      handle_t *handle, int *no_expand)
5583 {
5584         struct ext4_inode *raw_inode;
5585         struct ext4_xattr_ibody_header *header;
5586         unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5587         struct ext4_inode_info *ei = EXT4_I(inode);
5588         int error;
5589
5590         /* this was checked at iget time, but double check for good measure */
5591         if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5592             (ei->i_extra_isize & 3)) {
5593                 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5594                                  ei->i_extra_isize,
5595                                  EXT4_INODE_SIZE(inode->i_sb));
5596                 return -EFSCORRUPTED;
5597         }
5598         if ((new_extra_isize < ei->i_extra_isize) ||
5599             (new_extra_isize < 4) ||
5600             (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5601                 return -EINVAL; /* Should never happen */
5602
5603         raw_inode = ext4_raw_inode(iloc);
5604
5605         header = IHDR(inode, raw_inode);
5606
5607         /* No extended attributes present */
5608         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5609             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5610                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5611                        EXT4_I(inode)->i_extra_isize, 0,
5612                        new_extra_isize - EXT4_I(inode)->i_extra_isize);
5613                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5614                 return 0;
5615         }
5616
5617         /* try to expand with EAs present */
5618         error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5619                                            raw_inode, handle);
5620         if (error) {
5621                 /*
5622                  * Inode size expansion failed; don't try again
5623                  */
5624                 *no_expand = 1;
5625         }
5626
5627         return error;
5628 }
5629
5630 /*
5631  * Expand an inode by new_extra_isize bytes.
5632  * Returns 0 on success or negative error number on failure.
5633  */
5634 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5635                                           unsigned int new_extra_isize,
5636                                           struct ext4_iloc iloc,
5637                                           handle_t *handle)
5638 {
5639         int no_expand;
5640         int error;
5641
5642         if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5643                 return -EOVERFLOW;
5644
5645         /*
5646          * In nojournal mode, we can immediately attempt to expand
5647          * the inode.  When journaled, we first need to obtain extra
5648          * buffer credits since we may write into the EA block
5649          * with this same handle. If journal_extend fails, then it will
5650          * only result in a minor loss of functionality for that inode.
5651          * If this is felt to be critical, then e2fsck should be run to
5652          * force a large enough s_min_extra_isize.
5653          */
5654         if (ext4_journal_extend(handle,
5655                                 EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5656                 return -ENOSPC;
5657
5658         if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5659                 return -EBUSY;
5660
5661         error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5662                                           handle, &no_expand);
5663         ext4_write_unlock_xattr(inode, &no_expand);
5664
5665         return error;
5666 }
5667
5668 int ext4_expand_extra_isize(struct inode *inode,
5669                             unsigned int new_extra_isize,
5670                             struct ext4_iloc *iloc)
5671 {
5672         handle_t *handle;
5673         int no_expand;
5674         int error, rc;
5675
5676         if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5677                 brelse(iloc->bh);
5678                 return -EOVERFLOW;
5679         }
5680
5681         handle = ext4_journal_start(inode, EXT4_HT_INODE,
5682                                     EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5683         if (IS_ERR(handle)) {
5684                 error = PTR_ERR(handle);
5685                 brelse(iloc->bh);
5686                 return error;
5687         }
5688
5689         ext4_write_lock_xattr(inode, &no_expand);
5690
5691         BUFFER_TRACE(iloc->bh, "get_write_access");
5692         error = ext4_journal_get_write_access(handle, iloc->bh);
5693         if (error) {
5694                 brelse(iloc->bh);
5695                 goto out_unlock;
5696         }
5697
5698         error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5699                                           handle, &no_expand);
5700
5701         rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5702         if (!error)
5703                 error = rc;
5704
5705 out_unlock:
5706         ext4_write_unlock_xattr(inode, &no_expand);
5707         ext4_journal_stop(handle);
5708         return error;
5709 }
5710
5711 /*
5712  * What we do here is to mark the in-core inode as clean with respect to inode
5713  * dirtiness (it may still be data-dirty).
5714  * This means that the in-core inode may be reaped by prune_icache
5715  * without having to perform any I/O.  This is a very good thing,
5716  * because *any* task may call prune_icache - even ones which
5717  * have a transaction open against a different journal.
5718  *
5719  * Is this cheating?  Not really.  Sure, we haven't written the
5720  * inode out, but prune_icache isn't a user-visible syncing function.
5721  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5722  * we start and wait on commits.
5723  */
5724 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5725 {
5726         struct ext4_iloc iloc;
5727         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5728         int err;
5729
5730         might_sleep();
5731         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5732         err = ext4_reserve_inode_write(handle, inode, &iloc);
5733         if (err)
5734                 return err;
5735
5736         if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5737                 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5738                                                iloc, handle);
5739
5740         return ext4_mark_iloc_dirty(handle, inode, &iloc);
5741 }
5742
5743 /*
5744  * ext4_dirty_inode() is called from __mark_inode_dirty()
5745  *
5746  * We're really interested in the case where a file is being extended.
5747  * i_size has been changed by generic_commit_write() and we thus need
5748  * to include the updated inode in the current transaction.
5749  *
5750  * Also, dquot_alloc_block() will always dirty the inode when blocks
5751  * are allocated to the file.
5752  *
5753  * If the inode is marked synchronous, we don't honour that here - doing
5754  * so would cause a commit on atime updates, which we don't bother doing.
5755  * We handle synchronous inodes at the highest possible level.
5756  *
5757  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
5758  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5759  * to copy into the on-disk inode structure are the timestamp files.
5760  */
5761 void ext4_dirty_inode(struct inode *inode, int flags)
5762 {
5763         handle_t *handle;
5764
5765         if (flags == I_DIRTY_TIME)
5766                 return;
5767         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5768         if (IS_ERR(handle))
5769                 goto out;
5770
5771         ext4_mark_inode_dirty(handle, inode);
5772
5773         ext4_journal_stop(handle);
5774 out:
5775         return;
5776 }
5777
5778 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5779 {
5780         journal_t *journal;
5781         handle_t *handle;
5782         int err;
5783         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5784
5785         /*
5786          * We have to be very careful here: changing a data block's
5787          * journaling status dynamically is dangerous.  If we write a
5788          * data block to the journal, change the status and then delete
5789          * that block, we risk forgetting to revoke the old log record
5790          * from the journal and so a subsequent replay can corrupt data.
5791          * So, first we make sure that the journal is empty and that
5792          * nobody is changing anything.
5793          */
5794
5795         journal = EXT4_JOURNAL(inode);
5796         if (!journal)
5797                 return 0;
5798         if (is_journal_aborted(journal))
5799                 return -EROFS;
5800
5801         /* Wait for all existing dio workers */
5802         inode_dio_wait(inode);
5803
5804         /*
5805          * Before flushing the journal and switching inode's aops, we have
5806          * to flush all dirty data the inode has. There can be outstanding
5807          * delayed allocations, there can be unwritten extents created by
5808          * fallocate or buffered writes in dioread_nolock mode covered by
5809          * dirty data which can be converted only after flushing the dirty
5810          * data (and journalled aops don't know how to handle these cases).
5811          */
5812         if (val) {
5813                 down_write(&EXT4_I(inode)->i_mmap_sem);
5814                 err = filemap_write_and_wait(inode->i_mapping);
5815                 if (err < 0) {
5816                         up_write(&EXT4_I(inode)->i_mmap_sem);
5817                         return err;
5818                 }
5819         }
5820
5821         percpu_down_write(&sbi->s_journal_flag_rwsem);
5822         jbd2_journal_lock_updates(journal);
5823
5824         /*
5825          * OK, there are no updates running now, and all cached data is
5826          * synced to disk.  We are now in a completely consistent state
5827          * which doesn't have anything in the journal, and we know that
5828          * no filesystem updates are running, so it is safe to modify
5829          * the inode's in-core data-journaling state flag now.
5830          */
5831
5832         if (val)
5833                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5834         else {
5835                 err = jbd2_journal_flush(journal);
5836                 if (err < 0) {
5837                         jbd2_journal_unlock_updates(journal);
5838                         percpu_up_write(&sbi->s_journal_flag_rwsem);
5839                         return err;
5840                 }
5841                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5842         }
5843         ext4_set_aops(inode);
5844
5845         jbd2_journal_unlock_updates(journal);
5846         percpu_up_write(&sbi->s_journal_flag_rwsem);
5847
5848         if (val)
5849                 up_write(&EXT4_I(inode)->i_mmap_sem);
5850
5851         /* Finally we can mark the inode as dirty. */
5852
5853         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5854         if (IS_ERR(handle))
5855                 return PTR_ERR(handle);
5856
5857         err = ext4_mark_inode_dirty(handle, inode);
5858         ext4_handle_sync(handle);
5859         ext4_journal_stop(handle);
5860         ext4_std_error(inode->i_sb, err);
5861
5862         return err;
5863 }
5864
5865 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5866 {
5867         return !buffer_mapped(bh);
5868 }
5869
5870 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
5871 {
5872         struct vm_area_struct *vma = vmf->vma;
5873         struct page *page = vmf->page;
5874         loff_t size;
5875         unsigned long len;
5876         int err;
5877         vm_fault_t ret;
5878         struct file *file = vma->vm_file;
5879         struct inode *inode = file_inode(file);
5880         struct address_space *mapping = inode->i_mapping;
5881         handle_t *handle;
5882         get_block_t *get_block;
5883         int retries = 0;
5884
5885         if (unlikely(IS_IMMUTABLE(inode)))
5886                 return VM_FAULT_SIGBUS;
5887
5888         sb_start_pagefault(inode->i_sb);
5889         file_update_time(vma->vm_file);
5890
5891         down_read(&EXT4_I(inode)->i_mmap_sem);
5892
5893         err = ext4_convert_inline_data(inode);
5894         if (err)
5895                 goto out_ret;
5896
5897         /* Delalloc case is easy... */
5898         if (test_opt(inode->i_sb, DELALLOC) &&
5899             !ext4_should_journal_data(inode) &&
5900             !ext4_nonda_switch(inode->i_sb)) {
5901                 do {
5902                         err = block_page_mkwrite(vma, vmf,
5903                                                    ext4_da_get_block_prep);
5904                 } while (err == -ENOSPC &&
5905                        ext4_should_retry_alloc(inode->i_sb, &retries));
5906                 goto out_ret;
5907         }
5908
5909         lock_page(page);
5910         size = i_size_read(inode);
5911         /* Page got truncated from under us? */
5912         if (page->mapping != mapping || page_offset(page) > size) {
5913                 unlock_page(page);
5914                 ret = VM_FAULT_NOPAGE;
5915                 goto out;
5916         }
5917
5918         if (page->index == size >> PAGE_SHIFT)
5919                 len = size & ~PAGE_MASK;
5920         else
5921                 len = PAGE_SIZE;
5922         /*
5923          * Return if we have all the buffers mapped. This avoids the need to do
5924          * journal_start/journal_stop which can block and take a long time
5925          */
5926         if (page_has_buffers(page)) {
5927                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5928                                             0, len, NULL,
5929                                             ext4_bh_unmapped)) {
5930                         /* Wait so that we don't change page under IO */
5931                         wait_for_stable_page(page);
5932                         ret = VM_FAULT_LOCKED;
5933                         goto out;
5934                 }
5935         }
5936         unlock_page(page);
5937         /* OK, we need to fill the hole... */
5938         if (ext4_should_dioread_nolock(inode))
5939                 get_block = ext4_get_block_unwritten;
5940         else
5941                 get_block = ext4_get_block;
5942 retry_alloc:
5943         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5944                                     ext4_writepage_trans_blocks(inode));
5945         if (IS_ERR(handle)) {
5946                 ret = VM_FAULT_SIGBUS;
5947                 goto out;
5948         }
5949         err = block_page_mkwrite(vma, vmf, get_block);
5950         if (!err && ext4_should_journal_data(inode)) {
5951                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5952                           PAGE_SIZE, NULL, do_journal_get_write_access)) {
5953                         unlock_page(page);
5954                         ret = VM_FAULT_SIGBUS;
5955                         ext4_journal_stop(handle);
5956                         goto out;
5957                 }
5958                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5959         }
5960         ext4_journal_stop(handle);
5961         if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5962                 goto retry_alloc;
5963 out_ret:
5964         ret = block_page_mkwrite_return(err);
5965 out:
5966         up_read(&EXT4_I(inode)->i_mmap_sem);
5967         sb_end_pagefault(inode->i_sb);
5968         return ret;
5969 }
5970
5971 vm_fault_t ext4_filemap_fault(struct vm_fault *vmf)
5972 {
5973         struct inode *inode = file_inode(vmf->vma->vm_file);
5974         vm_fault_t ret;
5975
5976         down_read(&EXT4_I(inode)->i_mmap_sem);
5977         ret = filemap_fault(vmf);
5978         up_read(&EXT4_I(inode)->i_mmap_sem);
5979
5980         return ret;
5981 }