531a94f48637c6a68ba738183df9fbf00fa72882
[linux-2.6-microblaze.git] / fs / ext4 / inode.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  64-bit file support on 64-bit platforms by Jakub Jelinek
17  *      (jj@sunsite.ms.mff.cuni.cz)
18  *
19  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20  */
21
22 #include <linux/fs.h>
23 #include <linux/mount.h>
24 #include <linux/time.h>
25 #include <linux/highuid.h>
26 #include <linux/pagemap.h>
27 #include <linux/dax.h>
28 #include <linux/quotaops.h>
29 #include <linux/string.h>
30 #include <linux/buffer_head.h>
31 #include <linux/writeback.h>
32 #include <linux/pagevec.h>
33 #include <linux/mpage.h>
34 #include <linux/namei.h>
35 #include <linux/uio.h>
36 #include <linux/bio.h>
37 #include <linux/workqueue.h>
38 #include <linux/kernel.h>
39 #include <linux/printk.h>
40 #include <linux/slab.h>
41 #include <linux/bitops.h>
42 #include <linux/iomap.h>
43 #include <linux/iversion.h>
44 #include <linux/dax.h>
45
46 #include "ext4_jbd2.h"
47 #include "xattr.h"
48 #include "acl.h"
49 #include "truncate.h"
50
51 #include <trace/events/ext4.h>
52
53 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
54                               struct ext4_inode_info *ei)
55 {
56         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
57         __u32 csum;
58         __u16 dummy_csum = 0;
59         int offset = offsetof(struct ext4_inode, i_checksum_lo);
60         unsigned int csum_size = sizeof(dummy_csum);
61
62         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
63         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
64         offset += csum_size;
65         csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
66                            EXT4_GOOD_OLD_INODE_SIZE - offset);
67
68         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
69                 offset = offsetof(struct ext4_inode, i_checksum_hi);
70                 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
71                                    EXT4_GOOD_OLD_INODE_SIZE,
72                                    offset - EXT4_GOOD_OLD_INODE_SIZE);
73                 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
74                         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
75                                            csum_size);
76                         offset += csum_size;
77                 }
78                 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
79                                    EXT4_INODE_SIZE(inode->i_sb) - offset);
80         }
81
82         return csum;
83 }
84
85 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
86                                   struct ext4_inode_info *ei)
87 {
88         __u32 provided, calculated;
89
90         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
91             cpu_to_le32(EXT4_OS_LINUX) ||
92             !ext4_has_metadata_csum(inode->i_sb))
93                 return 1;
94
95         provided = le16_to_cpu(raw->i_checksum_lo);
96         calculated = ext4_inode_csum(inode, raw, ei);
97         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
98             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
99                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
100         else
101                 calculated &= 0xFFFF;
102
103         return provided == calculated;
104 }
105
106 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
107                          struct ext4_inode_info *ei)
108 {
109         __u32 csum;
110
111         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
112             cpu_to_le32(EXT4_OS_LINUX) ||
113             !ext4_has_metadata_csum(inode->i_sb))
114                 return;
115
116         csum = ext4_inode_csum(inode, raw, ei);
117         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
118         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
119             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
120                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
121 }
122
123 static inline int ext4_begin_ordered_truncate(struct inode *inode,
124                                               loff_t new_size)
125 {
126         trace_ext4_begin_ordered_truncate(inode, new_size);
127         /*
128          * If jinode is zero, then we never opened the file for
129          * writing, so there's no need to call
130          * jbd2_journal_begin_ordered_truncate() since there's no
131          * outstanding writes we need to flush.
132          */
133         if (!EXT4_I(inode)->jinode)
134                 return 0;
135         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
136                                                    EXT4_I(inode)->jinode,
137                                                    new_size);
138 }
139
140 static void ext4_invalidatepage(struct page *page, unsigned int offset,
141                                 unsigned int length);
142 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
143 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
144                                   int pextents);
145
146 /*
147  * Test whether an inode is a fast symlink.
148  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
149  */
150 int ext4_inode_is_fast_symlink(struct inode *inode)
151 {
152         if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
153                 int ea_blocks = EXT4_I(inode)->i_file_acl ?
154                                 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
155
156                 if (ext4_has_inline_data(inode))
157                         return 0;
158
159                 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
160         }
161         return S_ISLNK(inode->i_mode) && inode->i_size &&
162                (inode->i_size < EXT4_N_BLOCKS * 4);
163 }
164
165 /*
166  * Called at the last iput() if i_nlink is zero.
167  */
168 void ext4_evict_inode(struct inode *inode)
169 {
170         handle_t *handle;
171         int err;
172         /*
173          * Credits for final inode cleanup and freeing:
174          * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
175          * (xattr block freeing), bitmap, group descriptor (inode freeing)
176          */
177         int extra_credits = 6;
178         struct ext4_xattr_inode_array *ea_inode_array = NULL;
179         bool freeze_protected = false;
180
181         trace_ext4_evict_inode(inode);
182
183         if (inode->i_nlink) {
184                 /*
185                  * When journalling data dirty buffers are tracked only in the
186                  * journal. So although mm thinks everything is clean and
187                  * ready for reaping the inode might still have some pages to
188                  * write in the running transaction or waiting to be
189                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
190                  * (via truncate_inode_pages()) to discard these buffers can
191                  * cause data loss. Also even if we did not discard these
192                  * buffers, we would have no way to find them after the inode
193                  * is reaped and thus user could see stale data if he tries to
194                  * read them before the transaction is checkpointed. So be
195                  * careful and force everything to disk here... We use
196                  * ei->i_datasync_tid to store the newest transaction
197                  * containing inode's data.
198                  *
199                  * Note that directories do not have this problem because they
200                  * don't use page cache.
201                  */
202                 if (inode->i_ino != EXT4_JOURNAL_INO &&
203                     ext4_should_journal_data(inode) &&
204                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
205                     inode->i_data.nrpages) {
206                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
207                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
208
209                         jbd2_complete_transaction(journal, commit_tid);
210                         filemap_write_and_wait(&inode->i_data);
211                 }
212                 truncate_inode_pages_final(&inode->i_data);
213
214                 goto no_delete;
215         }
216
217         if (is_bad_inode(inode))
218                 goto no_delete;
219         dquot_initialize(inode);
220
221         if (ext4_should_order_data(inode))
222                 ext4_begin_ordered_truncate(inode, 0);
223         truncate_inode_pages_final(&inode->i_data);
224
225         /*
226          * For inodes with journalled data, transaction commit could have
227          * dirtied the inode. Flush worker is ignoring it because of I_FREEING
228          * flag but we still need to remove the inode from the writeback lists.
229          */
230         if (!list_empty_careful(&inode->i_io_list)) {
231                 WARN_ON_ONCE(!ext4_should_journal_data(inode));
232                 inode_io_list_del(inode);
233         }
234
235         /*
236          * Protect us against freezing - iput() caller didn't have to have any
237          * protection against it. When we are in a running transaction though,
238          * we are already protected against freezing and we cannot grab further
239          * protection due to lock ordering constraints.
240          */
241         if (!ext4_journal_current_handle()) {
242                 sb_start_intwrite(inode->i_sb);
243                 freeze_protected = true;
244         }
245
246         if (!IS_NOQUOTA(inode))
247                 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
248
249         /*
250          * Block bitmap, group descriptor, and inode are accounted in both
251          * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
252          */
253         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
254                          ext4_blocks_for_truncate(inode) + extra_credits - 3);
255         if (IS_ERR(handle)) {
256                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
257                 /*
258                  * If we're going to skip the normal cleanup, we still need to
259                  * make sure that the in-core orphan linked list is properly
260                  * cleaned up.
261                  */
262                 ext4_orphan_del(NULL, inode);
263                 if (freeze_protected)
264                         sb_end_intwrite(inode->i_sb);
265                 goto no_delete;
266         }
267
268         if (IS_SYNC(inode))
269                 ext4_handle_sync(handle);
270
271         /*
272          * Set inode->i_size to 0 before calling ext4_truncate(). We need
273          * special handling of symlinks here because i_size is used to
274          * determine whether ext4_inode_info->i_data contains symlink data or
275          * block mappings. Setting i_size to 0 will remove its fast symlink
276          * status. Erase i_data so that it becomes a valid empty block map.
277          */
278         if (ext4_inode_is_fast_symlink(inode))
279                 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
280         inode->i_size = 0;
281         err = ext4_mark_inode_dirty(handle, inode);
282         if (err) {
283                 ext4_warning(inode->i_sb,
284                              "couldn't mark inode dirty (err %d)", err);
285                 goto stop_handle;
286         }
287         if (inode->i_blocks) {
288                 err = ext4_truncate(inode);
289                 if (err) {
290                         ext4_error_err(inode->i_sb, -err,
291                                        "couldn't truncate inode %lu (err %d)",
292                                        inode->i_ino, err);
293                         goto stop_handle;
294                 }
295         }
296
297         /* Remove xattr references. */
298         err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
299                                       extra_credits);
300         if (err) {
301                 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
302 stop_handle:
303                 ext4_journal_stop(handle);
304                 ext4_orphan_del(NULL, inode);
305                 if (freeze_protected)
306                         sb_end_intwrite(inode->i_sb);
307                 ext4_xattr_inode_array_free(ea_inode_array);
308                 goto no_delete;
309         }
310
311         /*
312          * Kill off the orphan record which ext4_truncate created.
313          * AKPM: I think this can be inside the above `if'.
314          * Note that ext4_orphan_del() has to be able to cope with the
315          * deletion of a non-existent orphan - this is because we don't
316          * know if ext4_truncate() actually created an orphan record.
317          * (Well, we could do this if we need to, but heck - it works)
318          */
319         ext4_orphan_del(handle, inode);
320         EXT4_I(inode)->i_dtime  = (__u32)ktime_get_real_seconds();
321
322         /*
323          * One subtle ordering requirement: if anything has gone wrong
324          * (transaction abort, IO errors, whatever), then we can still
325          * do these next steps (the fs will already have been marked as
326          * having errors), but we can't free the inode if the mark_dirty
327          * fails.
328          */
329         if (ext4_mark_inode_dirty(handle, inode))
330                 /* If that failed, just do the required in-core inode clear. */
331                 ext4_clear_inode(inode);
332         else
333                 ext4_free_inode(handle, inode);
334         ext4_journal_stop(handle);
335         if (freeze_protected)
336                 sb_end_intwrite(inode->i_sb);
337         ext4_xattr_inode_array_free(ea_inode_array);
338         return;
339 no_delete:
340         if (!list_empty(&EXT4_I(inode)->i_fc_list))
341                 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM, NULL);
342         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
343 }
344
345 #ifdef CONFIG_QUOTA
346 qsize_t *ext4_get_reserved_space(struct inode *inode)
347 {
348         return &EXT4_I(inode)->i_reserved_quota;
349 }
350 #endif
351
352 /*
353  * Called with i_data_sem down, which is important since we can call
354  * ext4_discard_preallocations() from here.
355  */
356 void ext4_da_update_reserve_space(struct inode *inode,
357                                         int used, int quota_claim)
358 {
359         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
360         struct ext4_inode_info *ei = EXT4_I(inode);
361
362         spin_lock(&ei->i_block_reservation_lock);
363         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
364         if (unlikely(used > ei->i_reserved_data_blocks)) {
365                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
366                          "with only %d reserved data blocks",
367                          __func__, inode->i_ino, used,
368                          ei->i_reserved_data_blocks);
369                 WARN_ON(1);
370                 used = ei->i_reserved_data_blocks;
371         }
372
373         /* Update per-inode reservations */
374         ei->i_reserved_data_blocks -= used;
375         percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
376
377         spin_unlock(&ei->i_block_reservation_lock);
378
379         /* Update quota subsystem for data blocks */
380         if (quota_claim)
381                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
382         else {
383                 /*
384                  * We did fallocate with an offset that is already delayed
385                  * allocated. So on delayed allocated writeback we should
386                  * not re-claim the quota for fallocated blocks.
387                  */
388                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
389         }
390
391         /*
392          * If we have done all the pending block allocations and if
393          * there aren't any writers on the inode, we can discard the
394          * inode's preallocations.
395          */
396         if ((ei->i_reserved_data_blocks == 0) &&
397             !inode_is_open_for_write(inode))
398                 ext4_discard_preallocations(inode, 0);
399 }
400
401 static int __check_block_validity(struct inode *inode, const char *func,
402                                 unsigned int line,
403                                 struct ext4_map_blocks *map)
404 {
405         if (ext4_has_feature_journal(inode->i_sb) &&
406             (inode->i_ino ==
407              le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
408                 return 0;
409         if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
410                 ext4_error_inode(inode, func, line, map->m_pblk,
411                                  "lblock %lu mapped to illegal pblock %llu "
412                                  "(length %d)", (unsigned long) map->m_lblk,
413                                  map->m_pblk, map->m_len);
414                 return -EFSCORRUPTED;
415         }
416         return 0;
417 }
418
419 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
420                        ext4_lblk_t len)
421 {
422         int ret;
423
424         if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
425                 return fscrypt_zeroout_range(inode, lblk, pblk, len);
426
427         ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
428         if (ret > 0)
429                 ret = 0;
430
431         return ret;
432 }
433
434 #define check_block_validity(inode, map)        \
435         __check_block_validity((inode), __func__, __LINE__, (map))
436
437 #ifdef ES_AGGRESSIVE_TEST
438 static void ext4_map_blocks_es_recheck(handle_t *handle,
439                                        struct inode *inode,
440                                        struct ext4_map_blocks *es_map,
441                                        struct ext4_map_blocks *map,
442                                        int flags)
443 {
444         int retval;
445
446         map->m_flags = 0;
447         /*
448          * There is a race window that the result is not the same.
449          * e.g. xfstests #223 when dioread_nolock enables.  The reason
450          * is that we lookup a block mapping in extent status tree with
451          * out taking i_data_sem.  So at the time the unwritten extent
452          * could be converted.
453          */
454         down_read(&EXT4_I(inode)->i_data_sem);
455         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
456                 retval = ext4_ext_map_blocks(handle, inode, map, 0);
457         } else {
458                 retval = ext4_ind_map_blocks(handle, inode, map, 0);
459         }
460         up_read((&EXT4_I(inode)->i_data_sem));
461
462         /*
463          * We don't check m_len because extent will be collpased in status
464          * tree.  So the m_len might not equal.
465          */
466         if (es_map->m_lblk != map->m_lblk ||
467             es_map->m_flags != map->m_flags ||
468             es_map->m_pblk != map->m_pblk) {
469                 printk("ES cache assertion failed for inode: %lu "
470                        "es_cached ex [%d/%d/%llu/%x] != "
471                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
472                        inode->i_ino, es_map->m_lblk, es_map->m_len,
473                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
474                        map->m_len, map->m_pblk, map->m_flags,
475                        retval, flags);
476         }
477 }
478 #endif /* ES_AGGRESSIVE_TEST */
479
480 /*
481  * The ext4_map_blocks() function tries to look up the requested blocks,
482  * and returns if the blocks are already mapped.
483  *
484  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
485  * and store the allocated blocks in the result buffer head and mark it
486  * mapped.
487  *
488  * If file type is extents based, it will call ext4_ext_map_blocks(),
489  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
490  * based files
491  *
492  * On success, it returns the number of blocks being mapped or allocated.  if
493  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
494  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
495  *
496  * It returns 0 if plain look up failed (blocks have not been allocated), in
497  * that case, @map is returned as unmapped but we still do fill map->m_len to
498  * indicate the length of a hole starting at map->m_lblk.
499  *
500  * It returns the error in case of allocation failure.
501  */
502 int ext4_map_blocks(handle_t *handle, struct inode *inode,
503                     struct ext4_map_blocks *map, int flags)
504 {
505         struct extent_status es;
506         int retval;
507         int ret = 0;
508 #ifdef ES_AGGRESSIVE_TEST
509         struct ext4_map_blocks orig_map;
510
511         memcpy(&orig_map, map, sizeof(*map));
512 #endif
513
514         map->m_flags = 0;
515         ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
516                   flags, map->m_len, (unsigned long) map->m_lblk);
517
518         /*
519          * ext4_map_blocks returns an int, and m_len is an unsigned int
520          */
521         if (unlikely(map->m_len > INT_MAX))
522                 map->m_len = INT_MAX;
523
524         /* We can handle the block number less than EXT_MAX_BLOCKS */
525         if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
526                 return -EFSCORRUPTED;
527
528         /* Lookup extent status tree firstly */
529         if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) &&
530             ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
531                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
532                         map->m_pblk = ext4_es_pblock(&es) +
533                                         map->m_lblk - es.es_lblk;
534                         map->m_flags |= ext4_es_is_written(&es) ?
535                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
536                         retval = es.es_len - (map->m_lblk - es.es_lblk);
537                         if (retval > map->m_len)
538                                 retval = map->m_len;
539                         map->m_len = retval;
540                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
541                         map->m_pblk = 0;
542                         retval = es.es_len - (map->m_lblk - es.es_lblk);
543                         if (retval > map->m_len)
544                                 retval = map->m_len;
545                         map->m_len = retval;
546                         retval = 0;
547                 } else {
548                         BUG();
549                 }
550 #ifdef ES_AGGRESSIVE_TEST
551                 ext4_map_blocks_es_recheck(handle, inode, map,
552                                            &orig_map, flags);
553 #endif
554                 goto found;
555         }
556
557         /*
558          * Try to see if we can get the block without requesting a new
559          * file system block.
560          */
561         down_read(&EXT4_I(inode)->i_data_sem);
562         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
563                 retval = ext4_ext_map_blocks(handle, inode, map, 0);
564         } else {
565                 retval = ext4_ind_map_blocks(handle, inode, map, 0);
566         }
567         if (retval > 0) {
568                 unsigned int status;
569
570                 if (unlikely(retval != map->m_len)) {
571                         ext4_warning(inode->i_sb,
572                                      "ES len assertion failed for inode "
573                                      "%lu: retval %d != map->m_len %d",
574                                      inode->i_ino, retval, map->m_len);
575                         WARN_ON(1);
576                 }
577
578                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
579                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
580                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
581                     !(status & EXTENT_STATUS_WRITTEN) &&
582                     ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
583                                        map->m_lblk + map->m_len - 1))
584                         status |= EXTENT_STATUS_DELAYED;
585                 ret = ext4_es_insert_extent(inode, map->m_lblk,
586                                             map->m_len, map->m_pblk, status);
587                 if (ret < 0)
588                         retval = ret;
589         }
590         up_read((&EXT4_I(inode)->i_data_sem));
591
592 found:
593         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
594                 ret = check_block_validity(inode, map);
595                 if (ret != 0)
596                         return ret;
597         }
598
599         /* If it is only a block(s) look up */
600         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
601                 return retval;
602
603         /*
604          * Returns if the blocks have already allocated
605          *
606          * Note that if blocks have been preallocated
607          * ext4_ext_get_block() returns the create = 0
608          * with buffer head unmapped.
609          */
610         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
611                 /*
612                  * If we need to convert extent to unwritten
613                  * we continue and do the actual work in
614                  * ext4_ext_map_blocks()
615                  */
616                 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
617                         return retval;
618
619         /*
620          * Here we clear m_flags because after allocating an new extent,
621          * it will be set again.
622          */
623         map->m_flags &= ~EXT4_MAP_FLAGS;
624
625         /*
626          * New blocks allocate and/or writing to unwritten extent
627          * will possibly result in updating i_data, so we take
628          * the write lock of i_data_sem, and call get_block()
629          * with create == 1 flag.
630          */
631         down_write(&EXT4_I(inode)->i_data_sem);
632
633         /*
634          * We need to check for EXT4 here because migrate
635          * could have changed the inode type in between
636          */
637         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
638                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
639         } else {
640                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
641
642                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
643                         /*
644                          * We allocated new blocks which will result in
645                          * i_data's format changing.  Force the migrate
646                          * to fail by clearing migrate flags
647                          */
648                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
649                 }
650
651                 /*
652                  * Update reserved blocks/metadata blocks after successful
653                  * block allocation which had been deferred till now. We don't
654                  * support fallocate for non extent files. So we can update
655                  * reserve space here.
656                  */
657                 if ((retval > 0) &&
658                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
659                         ext4_da_update_reserve_space(inode, retval, 1);
660         }
661
662         if (retval > 0) {
663                 unsigned int status;
664
665                 if (unlikely(retval != map->m_len)) {
666                         ext4_warning(inode->i_sb,
667                                      "ES len assertion failed for inode "
668                                      "%lu: retval %d != map->m_len %d",
669                                      inode->i_ino, retval, map->m_len);
670                         WARN_ON(1);
671                 }
672
673                 /*
674                  * We have to zeroout blocks before inserting them into extent
675                  * status tree. Otherwise someone could look them up there and
676                  * use them before they are really zeroed. We also have to
677                  * unmap metadata before zeroing as otherwise writeback can
678                  * overwrite zeros with stale data from block device.
679                  */
680                 if (flags & EXT4_GET_BLOCKS_ZERO &&
681                     map->m_flags & EXT4_MAP_MAPPED &&
682                     map->m_flags & EXT4_MAP_NEW) {
683                         ret = ext4_issue_zeroout(inode, map->m_lblk,
684                                                  map->m_pblk, map->m_len);
685                         if (ret) {
686                                 retval = ret;
687                                 goto out_sem;
688                         }
689                 }
690
691                 /*
692                  * If the extent has been zeroed out, we don't need to update
693                  * extent status tree.
694                  */
695                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
696                     ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
697                         if (ext4_es_is_written(&es))
698                                 goto out_sem;
699                 }
700                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
701                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
702                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
703                     !(status & EXTENT_STATUS_WRITTEN) &&
704                     ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
705                                        map->m_lblk + map->m_len - 1))
706                         status |= EXTENT_STATUS_DELAYED;
707                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
708                                             map->m_pblk, status);
709                 if (ret < 0) {
710                         retval = ret;
711                         goto out_sem;
712                 }
713         }
714
715 out_sem:
716         up_write((&EXT4_I(inode)->i_data_sem));
717         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
718                 ret = check_block_validity(inode, map);
719                 if (ret != 0)
720                         return ret;
721
722                 /*
723                  * Inodes with freshly allocated blocks where contents will be
724                  * visible after transaction commit must be on transaction's
725                  * ordered data list.
726                  */
727                 if (map->m_flags & EXT4_MAP_NEW &&
728                     !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
729                     !(flags & EXT4_GET_BLOCKS_ZERO) &&
730                     !ext4_is_quota_file(inode) &&
731                     ext4_should_order_data(inode)) {
732                         loff_t start_byte =
733                                 (loff_t)map->m_lblk << inode->i_blkbits;
734                         loff_t length = (loff_t)map->m_len << inode->i_blkbits;
735
736                         if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
737                                 ret = ext4_jbd2_inode_add_wait(handle, inode,
738                                                 start_byte, length);
739                         else
740                                 ret = ext4_jbd2_inode_add_write(handle, inode,
741                                                 start_byte, length);
742                         if (ret)
743                                 return ret;
744                 }
745         }
746         if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN ||
747                                 map->m_flags & EXT4_MAP_MAPPED))
748                 ext4_fc_track_range(handle, inode, map->m_lblk,
749                                         map->m_lblk + map->m_len - 1);
750         if (retval < 0)
751                 ext_debug(inode, "failed with err %d\n", retval);
752         return retval;
753 }
754
755 /*
756  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
757  * we have to be careful as someone else may be manipulating b_state as well.
758  */
759 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
760 {
761         unsigned long old_state;
762         unsigned long new_state;
763
764         flags &= EXT4_MAP_FLAGS;
765
766         /* Dummy buffer_head? Set non-atomically. */
767         if (!bh->b_page) {
768                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
769                 return;
770         }
771         /*
772          * Someone else may be modifying b_state. Be careful! This is ugly but
773          * once we get rid of using bh as a container for mapping information
774          * to pass to / from get_block functions, this can go away.
775          */
776         do {
777                 old_state = READ_ONCE(bh->b_state);
778                 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
779         } while (unlikely(
780                  cmpxchg(&bh->b_state, old_state, new_state) != old_state));
781 }
782
783 static int _ext4_get_block(struct inode *inode, sector_t iblock,
784                            struct buffer_head *bh, int flags)
785 {
786         struct ext4_map_blocks map;
787         int ret = 0;
788
789         if (ext4_has_inline_data(inode))
790                 return -ERANGE;
791
792         map.m_lblk = iblock;
793         map.m_len = bh->b_size >> inode->i_blkbits;
794
795         ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
796                               flags);
797         if (ret > 0) {
798                 map_bh(bh, inode->i_sb, map.m_pblk);
799                 ext4_update_bh_state(bh, map.m_flags);
800                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
801                 ret = 0;
802         } else if (ret == 0) {
803                 /* hole case, need to fill in bh->b_size */
804                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
805         }
806         return ret;
807 }
808
809 int ext4_get_block(struct inode *inode, sector_t iblock,
810                    struct buffer_head *bh, int create)
811 {
812         return _ext4_get_block(inode, iblock, bh,
813                                create ? EXT4_GET_BLOCKS_CREATE : 0);
814 }
815
816 /*
817  * Get block function used when preparing for buffered write if we require
818  * creating an unwritten extent if blocks haven't been allocated.  The extent
819  * will be converted to written after the IO is complete.
820  */
821 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
822                              struct buffer_head *bh_result, int create)
823 {
824         ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
825                    inode->i_ino, create);
826         return _ext4_get_block(inode, iblock, bh_result,
827                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
828 }
829
830 /* Maximum number of blocks we map for direct IO at once. */
831 #define DIO_MAX_BLOCKS 4096
832
833 /*
834  * `handle' can be NULL if create is zero
835  */
836 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
837                                 ext4_lblk_t block, int map_flags)
838 {
839         struct ext4_map_blocks map;
840         struct buffer_head *bh;
841         int create = map_flags & EXT4_GET_BLOCKS_CREATE;
842         int err;
843
844         ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
845                     || handle != NULL || create == 0);
846
847         map.m_lblk = block;
848         map.m_len = 1;
849         err = ext4_map_blocks(handle, inode, &map, map_flags);
850
851         if (err == 0)
852                 return create ? ERR_PTR(-ENOSPC) : NULL;
853         if (err < 0)
854                 return ERR_PTR(err);
855
856         bh = sb_getblk(inode->i_sb, map.m_pblk);
857         if (unlikely(!bh))
858                 return ERR_PTR(-ENOMEM);
859         if (map.m_flags & EXT4_MAP_NEW) {
860                 ASSERT(create != 0);
861                 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
862                             || (handle != NULL));
863
864                 /*
865                  * Now that we do not always journal data, we should
866                  * keep in mind whether this should always journal the
867                  * new buffer as metadata.  For now, regular file
868                  * writes use ext4_get_block instead, so it's not a
869                  * problem.
870                  */
871                 lock_buffer(bh);
872                 BUFFER_TRACE(bh, "call get_create_access");
873                 err = ext4_journal_get_create_access(handle, inode->i_sb, bh,
874                                                      EXT4_JTR_NONE);
875                 if (unlikely(err)) {
876                         unlock_buffer(bh);
877                         goto errout;
878                 }
879                 if (!buffer_uptodate(bh)) {
880                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
881                         set_buffer_uptodate(bh);
882                 }
883                 unlock_buffer(bh);
884                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
885                 err = ext4_handle_dirty_metadata(handle, inode, bh);
886                 if (unlikely(err))
887                         goto errout;
888         } else
889                 BUFFER_TRACE(bh, "not a new buffer");
890         return bh;
891 errout:
892         brelse(bh);
893         return ERR_PTR(err);
894 }
895
896 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
897                                ext4_lblk_t block, int map_flags)
898 {
899         struct buffer_head *bh;
900         int ret;
901
902         bh = ext4_getblk(handle, inode, block, map_flags);
903         if (IS_ERR(bh))
904                 return bh;
905         if (!bh || ext4_buffer_uptodate(bh))
906                 return bh;
907
908         ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true);
909         if (ret) {
910                 put_bh(bh);
911                 return ERR_PTR(ret);
912         }
913         return bh;
914 }
915
916 /* Read a contiguous batch of blocks. */
917 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
918                      bool wait, struct buffer_head **bhs)
919 {
920         int i, err;
921
922         for (i = 0; i < bh_count; i++) {
923                 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
924                 if (IS_ERR(bhs[i])) {
925                         err = PTR_ERR(bhs[i]);
926                         bh_count = i;
927                         goto out_brelse;
928                 }
929         }
930
931         for (i = 0; i < bh_count; i++)
932                 /* Note that NULL bhs[i] is valid because of holes. */
933                 if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
934                         ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false);
935
936         if (!wait)
937                 return 0;
938
939         for (i = 0; i < bh_count; i++)
940                 if (bhs[i])
941                         wait_on_buffer(bhs[i]);
942
943         for (i = 0; i < bh_count; i++) {
944                 if (bhs[i] && !buffer_uptodate(bhs[i])) {
945                         err = -EIO;
946                         goto out_brelse;
947                 }
948         }
949         return 0;
950
951 out_brelse:
952         for (i = 0; i < bh_count; i++) {
953                 brelse(bhs[i]);
954                 bhs[i] = NULL;
955         }
956         return err;
957 }
958
959 int ext4_walk_page_buffers(handle_t *handle, struct inode *inode,
960                            struct buffer_head *head,
961                            unsigned from,
962                            unsigned to,
963                            int *partial,
964                            int (*fn)(handle_t *handle, struct inode *inode,
965                                      struct buffer_head *bh))
966 {
967         struct buffer_head *bh;
968         unsigned block_start, block_end;
969         unsigned blocksize = head->b_size;
970         int err, ret = 0;
971         struct buffer_head *next;
972
973         for (bh = head, block_start = 0;
974              ret == 0 && (bh != head || !block_start);
975              block_start = block_end, bh = next) {
976                 next = bh->b_this_page;
977                 block_end = block_start + blocksize;
978                 if (block_end <= from || block_start >= to) {
979                         if (partial && !buffer_uptodate(bh))
980                                 *partial = 1;
981                         continue;
982                 }
983                 err = (*fn)(handle, inode, bh);
984                 if (!ret)
985                         ret = err;
986         }
987         return ret;
988 }
989
990 /*
991  * To preserve ordering, it is essential that the hole instantiation and
992  * the data write be encapsulated in a single transaction.  We cannot
993  * close off a transaction and start a new one between the ext4_get_block()
994  * and the commit_write().  So doing the jbd2_journal_start at the start of
995  * prepare_write() is the right place.
996  *
997  * Also, this function can nest inside ext4_writepage().  In that case, we
998  * *know* that ext4_writepage() has generated enough buffer credits to do the
999  * whole page.  So we won't block on the journal in that case, which is good,
1000  * because the caller may be PF_MEMALLOC.
1001  *
1002  * By accident, ext4 can be reentered when a transaction is open via
1003  * quota file writes.  If we were to commit the transaction while thus
1004  * reentered, there can be a deadlock - we would be holding a quota
1005  * lock, and the commit would never complete if another thread had a
1006  * transaction open and was blocking on the quota lock - a ranking
1007  * violation.
1008  *
1009  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1010  * will _not_ run commit under these circumstances because handle->h_ref
1011  * is elevated.  We'll still have enough credits for the tiny quotafile
1012  * write.
1013  */
1014 int do_journal_get_write_access(handle_t *handle, struct inode *inode,
1015                                 struct buffer_head *bh)
1016 {
1017         int dirty = buffer_dirty(bh);
1018         int ret;
1019
1020         if (!buffer_mapped(bh) || buffer_freed(bh))
1021                 return 0;
1022         /*
1023          * __block_write_begin() could have dirtied some buffers. Clean
1024          * the dirty bit as jbd2_journal_get_write_access() could complain
1025          * otherwise about fs integrity issues. Setting of the dirty bit
1026          * by __block_write_begin() isn't a real problem here as we clear
1027          * the bit before releasing a page lock and thus writeback cannot
1028          * ever write the buffer.
1029          */
1030         if (dirty)
1031                 clear_buffer_dirty(bh);
1032         BUFFER_TRACE(bh, "get write access");
1033         ret = ext4_journal_get_write_access(handle, inode->i_sb, bh,
1034                                             EXT4_JTR_NONE);
1035         if (!ret && dirty)
1036                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1037         return ret;
1038 }
1039
1040 #ifdef CONFIG_FS_ENCRYPTION
1041 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1042                                   get_block_t *get_block)
1043 {
1044         unsigned from = pos & (PAGE_SIZE - 1);
1045         unsigned to = from + len;
1046         struct inode *inode = page->mapping->host;
1047         unsigned block_start, block_end;
1048         sector_t block;
1049         int err = 0;
1050         unsigned blocksize = inode->i_sb->s_blocksize;
1051         unsigned bbits;
1052         struct buffer_head *bh, *head, *wait[2];
1053         int nr_wait = 0;
1054         int i;
1055
1056         BUG_ON(!PageLocked(page));
1057         BUG_ON(from > PAGE_SIZE);
1058         BUG_ON(to > PAGE_SIZE);
1059         BUG_ON(from > to);
1060
1061         if (!page_has_buffers(page))
1062                 create_empty_buffers(page, blocksize, 0);
1063         head = page_buffers(page);
1064         bbits = ilog2(blocksize);
1065         block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1066
1067         for (bh = head, block_start = 0; bh != head || !block_start;
1068             block++, block_start = block_end, bh = bh->b_this_page) {
1069                 block_end = block_start + blocksize;
1070                 if (block_end <= from || block_start >= to) {
1071                         if (PageUptodate(page)) {
1072                                 set_buffer_uptodate(bh);
1073                         }
1074                         continue;
1075                 }
1076                 if (buffer_new(bh))
1077                         clear_buffer_new(bh);
1078                 if (!buffer_mapped(bh)) {
1079                         WARN_ON(bh->b_size != blocksize);
1080                         err = get_block(inode, block, bh, 1);
1081                         if (err)
1082                                 break;
1083                         if (buffer_new(bh)) {
1084                                 if (PageUptodate(page)) {
1085                                         clear_buffer_new(bh);
1086                                         set_buffer_uptodate(bh);
1087                                         mark_buffer_dirty(bh);
1088                                         continue;
1089                                 }
1090                                 if (block_end > to || block_start < from)
1091                                         zero_user_segments(page, to, block_end,
1092                                                            block_start, from);
1093                                 continue;
1094                         }
1095                 }
1096                 if (PageUptodate(page)) {
1097                         set_buffer_uptodate(bh);
1098                         continue;
1099                 }
1100                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1101                     !buffer_unwritten(bh) &&
1102                     (block_start < from || block_end > to)) {
1103                         ext4_read_bh_lock(bh, 0, false);
1104                         wait[nr_wait++] = bh;
1105                 }
1106         }
1107         /*
1108          * If we issued read requests, let them complete.
1109          */
1110         for (i = 0; i < nr_wait; i++) {
1111                 wait_on_buffer(wait[i]);
1112                 if (!buffer_uptodate(wait[i]))
1113                         err = -EIO;
1114         }
1115         if (unlikely(err)) {
1116                 page_zero_new_buffers(page, from, to);
1117         } else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1118                 for (i = 0; i < nr_wait; i++) {
1119                         int err2;
1120
1121                         err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize,
1122                                                                 bh_offset(wait[i]));
1123                         if (err2) {
1124                                 clear_buffer_uptodate(wait[i]);
1125                                 err = err2;
1126                         }
1127                 }
1128         }
1129
1130         return err;
1131 }
1132 #endif
1133
1134 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1135                             loff_t pos, unsigned len, unsigned flags,
1136                             struct page **pagep, void **fsdata)
1137 {
1138         struct inode *inode = mapping->host;
1139         int ret, needed_blocks;
1140         handle_t *handle;
1141         int retries = 0;
1142         struct page *page;
1143         pgoff_t index;
1144         unsigned from, to;
1145
1146         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1147                 return -EIO;
1148
1149         trace_ext4_write_begin(inode, pos, len, flags);
1150         /*
1151          * Reserve one block more for addition to orphan list in case
1152          * we allocate blocks but write fails for some reason
1153          */
1154         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1155         index = pos >> PAGE_SHIFT;
1156         from = pos & (PAGE_SIZE - 1);
1157         to = from + len;
1158
1159         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1160                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1161                                                     flags, pagep);
1162                 if (ret < 0)
1163                         return ret;
1164                 if (ret == 1)
1165                         return 0;
1166         }
1167
1168         /*
1169          * grab_cache_page_write_begin() can take a long time if the
1170          * system is thrashing due to memory pressure, or if the page
1171          * is being written back.  So grab it first before we start
1172          * the transaction handle.  This also allows us to allocate
1173          * the page (if needed) without using GFP_NOFS.
1174          */
1175 retry_grab:
1176         page = grab_cache_page_write_begin(mapping, index, flags);
1177         if (!page)
1178                 return -ENOMEM;
1179         unlock_page(page);
1180
1181 retry_journal:
1182         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1183         if (IS_ERR(handle)) {
1184                 put_page(page);
1185                 return PTR_ERR(handle);
1186         }
1187
1188         lock_page(page);
1189         if (page->mapping != mapping) {
1190                 /* The page got truncated from under us */
1191                 unlock_page(page);
1192                 put_page(page);
1193                 ext4_journal_stop(handle);
1194                 goto retry_grab;
1195         }
1196         /* In case writeback began while the page was unlocked */
1197         wait_for_stable_page(page);
1198
1199 #ifdef CONFIG_FS_ENCRYPTION
1200         if (ext4_should_dioread_nolock(inode))
1201                 ret = ext4_block_write_begin(page, pos, len,
1202                                              ext4_get_block_unwritten);
1203         else
1204                 ret = ext4_block_write_begin(page, pos, len,
1205                                              ext4_get_block);
1206 #else
1207         if (ext4_should_dioread_nolock(inode))
1208                 ret = __block_write_begin(page, pos, len,
1209                                           ext4_get_block_unwritten);
1210         else
1211                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1212 #endif
1213         if (!ret && ext4_should_journal_data(inode)) {
1214                 ret = ext4_walk_page_buffers(handle, inode,
1215                                              page_buffers(page), from, to, NULL,
1216                                              do_journal_get_write_access);
1217         }
1218
1219         if (ret) {
1220                 bool extended = (pos + len > inode->i_size) &&
1221                                 !ext4_verity_in_progress(inode);
1222
1223                 unlock_page(page);
1224                 /*
1225                  * __block_write_begin may have instantiated a few blocks
1226                  * outside i_size.  Trim these off again. Don't need
1227                  * i_size_read because we hold i_rwsem.
1228                  *
1229                  * Add inode to orphan list in case we crash before
1230                  * truncate finishes
1231                  */
1232                 if (extended && ext4_can_truncate(inode))
1233                         ext4_orphan_add(handle, inode);
1234
1235                 ext4_journal_stop(handle);
1236                 if (extended) {
1237                         ext4_truncate_failed_write(inode);
1238                         /*
1239                          * If truncate failed early the inode might
1240                          * still be on the orphan list; we need to
1241                          * make sure the inode is removed from the
1242                          * orphan list in that case.
1243                          */
1244                         if (inode->i_nlink)
1245                                 ext4_orphan_del(NULL, inode);
1246                 }
1247
1248                 if (ret == -ENOSPC &&
1249                     ext4_should_retry_alloc(inode->i_sb, &retries))
1250                         goto retry_journal;
1251                 put_page(page);
1252                 return ret;
1253         }
1254         *pagep = page;
1255         return ret;
1256 }
1257
1258 /* For write_end() in data=journal mode */
1259 static int write_end_fn(handle_t *handle, struct inode *inode,
1260                         struct buffer_head *bh)
1261 {
1262         int ret;
1263         if (!buffer_mapped(bh) || buffer_freed(bh))
1264                 return 0;
1265         set_buffer_uptodate(bh);
1266         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1267         clear_buffer_meta(bh);
1268         clear_buffer_prio(bh);
1269         return ret;
1270 }
1271
1272 /*
1273  * We need to pick up the new inode size which generic_commit_write gave us
1274  * `file' can be NULL - eg, when called from page_symlink().
1275  *
1276  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1277  * buffers are managed internally.
1278  */
1279 static int ext4_write_end(struct file *file,
1280                           struct address_space *mapping,
1281                           loff_t pos, unsigned len, unsigned copied,
1282                           struct page *page, void *fsdata)
1283 {
1284         handle_t *handle = ext4_journal_current_handle();
1285         struct inode *inode = mapping->host;
1286         loff_t old_size = inode->i_size;
1287         int ret = 0, ret2;
1288         int i_size_changed = 0;
1289         bool verity = ext4_verity_in_progress(inode);
1290
1291         trace_ext4_write_end(inode, pos, len, copied);
1292
1293         if (ext4_has_inline_data(inode))
1294                 return ext4_write_inline_data_end(inode, pos, len, copied, page);
1295
1296         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1297         /*
1298          * it's important to update i_size while still holding page lock:
1299          * page writeout could otherwise come in and zero beyond i_size.
1300          *
1301          * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1302          * blocks are being written past EOF, so skip the i_size update.
1303          */
1304         if (!verity)
1305                 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1306         unlock_page(page);
1307         put_page(page);
1308
1309         if (old_size < pos && !verity)
1310                 pagecache_isize_extended(inode, old_size, pos);
1311         /*
1312          * Don't mark the inode dirty under page lock. First, it unnecessarily
1313          * makes the holding time of page lock longer. Second, it forces lock
1314          * ordering of page lock and transaction start for journaling
1315          * filesystems.
1316          */
1317         if (i_size_changed)
1318                 ret = ext4_mark_inode_dirty(handle, inode);
1319
1320         if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1321                 /* if we have allocated more blocks and copied
1322                  * less. We will have blocks allocated outside
1323                  * inode->i_size. So truncate them
1324                  */
1325                 ext4_orphan_add(handle, inode);
1326
1327         ret2 = ext4_journal_stop(handle);
1328         if (!ret)
1329                 ret = ret2;
1330
1331         if (pos + len > inode->i_size && !verity) {
1332                 ext4_truncate_failed_write(inode);
1333                 /*
1334                  * If truncate failed early the inode might still be
1335                  * on the orphan list; we need to make sure the inode
1336                  * is removed from the orphan list in that case.
1337                  */
1338                 if (inode->i_nlink)
1339                         ext4_orphan_del(NULL, inode);
1340         }
1341
1342         return ret ? ret : copied;
1343 }
1344
1345 /*
1346  * This is a private version of page_zero_new_buffers() which doesn't
1347  * set the buffer to be dirty, since in data=journalled mode we need
1348  * to call ext4_handle_dirty_metadata() instead.
1349  */
1350 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1351                                             struct inode *inode,
1352                                             struct page *page,
1353                                             unsigned from, unsigned to)
1354 {
1355         unsigned int block_start = 0, block_end;
1356         struct buffer_head *head, *bh;
1357
1358         bh = head = page_buffers(page);
1359         do {
1360                 block_end = block_start + bh->b_size;
1361                 if (buffer_new(bh)) {
1362                         if (block_end > from && block_start < to) {
1363                                 if (!PageUptodate(page)) {
1364                                         unsigned start, size;
1365
1366                                         start = max(from, block_start);
1367                                         size = min(to, block_end) - start;
1368
1369                                         zero_user(page, start, size);
1370                                         write_end_fn(handle, inode, bh);
1371                                 }
1372                                 clear_buffer_new(bh);
1373                         }
1374                 }
1375                 block_start = block_end;
1376                 bh = bh->b_this_page;
1377         } while (bh != head);
1378 }
1379
1380 static int ext4_journalled_write_end(struct file *file,
1381                                      struct address_space *mapping,
1382                                      loff_t pos, unsigned len, unsigned copied,
1383                                      struct page *page, void *fsdata)
1384 {
1385         handle_t *handle = ext4_journal_current_handle();
1386         struct inode *inode = mapping->host;
1387         loff_t old_size = inode->i_size;
1388         int ret = 0, ret2;
1389         int partial = 0;
1390         unsigned from, to;
1391         int size_changed = 0;
1392         bool verity = ext4_verity_in_progress(inode);
1393
1394         trace_ext4_journalled_write_end(inode, pos, len, copied);
1395         from = pos & (PAGE_SIZE - 1);
1396         to = from + len;
1397
1398         BUG_ON(!ext4_handle_valid(handle));
1399
1400         if (ext4_has_inline_data(inode))
1401                 return ext4_write_inline_data_end(inode, pos, len, copied, page);
1402
1403         if (unlikely(copied < len) && !PageUptodate(page)) {
1404                 copied = 0;
1405                 ext4_journalled_zero_new_buffers(handle, inode, page, from, to);
1406         } else {
1407                 if (unlikely(copied < len))
1408                         ext4_journalled_zero_new_buffers(handle, inode, page,
1409                                                          from + copied, to);
1410                 ret = ext4_walk_page_buffers(handle, inode, page_buffers(page),
1411                                              from, from + copied, &partial,
1412                                              write_end_fn);
1413                 if (!partial)
1414                         SetPageUptodate(page);
1415         }
1416         if (!verity)
1417                 size_changed = ext4_update_inode_size(inode, pos + copied);
1418         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1419         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1420         unlock_page(page);
1421         put_page(page);
1422
1423         if (old_size < pos && !verity)
1424                 pagecache_isize_extended(inode, old_size, pos);
1425
1426         if (size_changed) {
1427                 ret2 = ext4_mark_inode_dirty(handle, inode);
1428                 if (!ret)
1429                         ret = ret2;
1430         }
1431
1432         if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1433                 /* if we have allocated more blocks and copied
1434                  * less. We will have blocks allocated outside
1435                  * inode->i_size. So truncate them
1436                  */
1437                 ext4_orphan_add(handle, inode);
1438
1439         ret2 = ext4_journal_stop(handle);
1440         if (!ret)
1441                 ret = ret2;
1442         if (pos + len > inode->i_size && !verity) {
1443                 ext4_truncate_failed_write(inode);
1444                 /*
1445                  * If truncate failed early the inode might still be
1446                  * on the orphan list; we need to make sure the inode
1447                  * is removed from the orphan list in that case.
1448                  */
1449                 if (inode->i_nlink)
1450                         ext4_orphan_del(NULL, inode);
1451         }
1452
1453         return ret ? ret : copied;
1454 }
1455
1456 /*
1457  * Reserve space for a single cluster
1458  */
1459 static int ext4_da_reserve_space(struct inode *inode)
1460 {
1461         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1462         struct ext4_inode_info *ei = EXT4_I(inode);
1463         int ret;
1464
1465         /*
1466          * We will charge metadata quota at writeout time; this saves
1467          * us from metadata over-estimation, though we may go over by
1468          * a small amount in the end.  Here we just reserve for data.
1469          */
1470         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1471         if (ret)
1472                 return ret;
1473
1474         spin_lock(&ei->i_block_reservation_lock);
1475         if (ext4_claim_free_clusters(sbi, 1, 0)) {
1476                 spin_unlock(&ei->i_block_reservation_lock);
1477                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1478                 return -ENOSPC;
1479         }
1480         ei->i_reserved_data_blocks++;
1481         trace_ext4_da_reserve_space(inode);
1482         spin_unlock(&ei->i_block_reservation_lock);
1483
1484         return 0;       /* success */
1485 }
1486
1487 void ext4_da_release_space(struct inode *inode, int to_free)
1488 {
1489         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1490         struct ext4_inode_info *ei = EXT4_I(inode);
1491
1492         if (!to_free)
1493                 return;         /* Nothing to release, exit */
1494
1495         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1496
1497         trace_ext4_da_release_space(inode, to_free);
1498         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1499                 /*
1500                  * if there aren't enough reserved blocks, then the
1501                  * counter is messed up somewhere.  Since this
1502                  * function is called from invalidate page, it's
1503                  * harmless to return without any action.
1504                  */
1505                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1506                          "ino %lu, to_free %d with only %d reserved "
1507                          "data blocks", inode->i_ino, to_free,
1508                          ei->i_reserved_data_blocks);
1509                 WARN_ON(1);
1510                 to_free = ei->i_reserved_data_blocks;
1511         }
1512         ei->i_reserved_data_blocks -= to_free;
1513
1514         /* update fs dirty data blocks counter */
1515         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1516
1517         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1518
1519         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1520 }
1521
1522 /*
1523  * Delayed allocation stuff
1524  */
1525
1526 struct mpage_da_data {
1527         struct inode *inode;
1528         struct writeback_control *wbc;
1529
1530         pgoff_t first_page;     /* The first page to write */
1531         pgoff_t next_page;      /* Current page to examine */
1532         pgoff_t last_page;      /* Last page to examine */
1533         /*
1534          * Extent to map - this can be after first_page because that can be
1535          * fully mapped. We somewhat abuse m_flags to store whether the extent
1536          * is delalloc or unwritten.
1537          */
1538         struct ext4_map_blocks map;
1539         struct ext4_io_submit io_submit;        /* IO submission data */
1540         unsigned int do_map:1;
1541         unsigned int scanned_until_end:1;
1542 };
1543
1544 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1545                                        bool invalidate)
1546 {
1547         int nr_pages, i;
1548         pgoff_t index, end;
1549         struct pagevec pvec;
1550         struct inode *inode = mpd->inode;
1551         struct address_space *mapping = inode->i_mapping;
1552
1553         /* This is necessary when next_page == 0. */
1554         if (mpd->first_page >= mpd->next_page)
1555                 return;
1556
1557         mpd->scanned_until_end = 0;
1558         index = mpd->first_page;
1559         end   = mpd->next_page - 1;
1560         if (invalidate) {
1561                 ext4_lblk_t start, last;
1562                 start = index << (PAGE_SHIFT - inode->i_blkbits);
1563                 last = end << (PAGE_SHIFT - inode->i_blkbits);
1564                 ext4_es_remove_extent(inode, start, last - start + 1);
1565         }
1566
1567         pagevec_init(&pvec);
1568         while (index <= end) {
1569                 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1570                 if (nr_pages == 0)
1571                         break;
1572                 for (i = 0; i < nr_pages; i++) {
1573                         struct page *page = pvec.pages[i];
1574
1575                         BUG_ON(!PageLocked(page));
1576                         BUG_ON(PageWriteback(page));
1577                         if (invalidate) {
1578                                 if (page_mapped(page))
1579                                         clear_page_dirty_for_io(page);
1580                                 block_invalidatepage(page, 0, PAGE_SIZE);
1581                                 ClearPageUptodate(page);
1582                         }
1583                         unlock_page(page);
1584                 }
1585                 pagevec_release(&pvec);
1586         }
1587 }
1588
1589 static void ext4_print_free_blocks(struct inode *inode)
1590 {
1591         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1592         struct super_block *sb = inode->i_sb;
1593         struct ext4_inode_info *ei = EXT4_I(inode);
1594
1595         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1596                EXT4_C2B(EXT4_SB(inode->i_sb),
1597                         ext4_count_free_clusters(sb)));
1598         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1599         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1600                (long long) EXT4_C2B(EXT4_SB(sb),
1601                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1602         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1603                (long long) EXT4_C2B(EXT4_SB(sb),
1604                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1605         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1606         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1607                  ei->i_reserved_data_blocks);
1608         return;
1609 }
1610
1611 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct inode *inode,
1612                                       struct buffer_head *bh)
1613 {
1614         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1615 }
1616
1617 /*
1618  * ext4_insert_delayed_block - adds a delayed block to the extents status
1619  *                             tree, incrementing the reserved cluster/block
1620  *                             count or making a pending reservation
1621  *                             where needed
1622  *
1623  * @inode - file containing the newly added block
1624  * @lblk - logical block to be added
1625  *
1626  * Returns 0 on success, negative error code on failure.
1627  */
1628 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1629 {
1630         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1631         int ret;
1632         bool allocated = false;
1633         bool reserved = false;
1634
1635         /*
1636          * If the cluster containing lblk is shared with a delayed,
1637          * written, or unwritten extent in a bigalloc file system, it's
1638          * already been accounted for and does not need to be reserved.
1639          * A pending reservation must be made for the cluster if it's
1640          * shared with a written or unwritten extent and doesn't already
1641          * have one.  Written and unwritten extents can be purged from the
1642          * extents status tree if the system is under memory pressure, so
1643          * it's necessary to examine the extent tree if a search of the
1644          * extents status tree doesn't get a match.
1645          */
1646         if (sbi->s_cluster_ratio == 1) {
1647                 ret = ext4_da_reserve_space(inode);
1648                 if (ret != 0)   /* ENOSPC */
1649                         goto errout;
1650                 reserved = true;
1651         } else {   /* bigalloc */
1652                 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1653                         if (!ext4_es_scan_clu(inode,
1654                                               &ext4_es_is_mapped, lblk)) {
1655                                 ret = ext4_clu_mapped(inode,
1656                                                       EXT4_B2C(sbi, lblk));
1657                                 if (ret < 0)
1658                                         goto errout;
1659                                 if (ret == 0) {
1660                                         ret = ext4_da_reserve_space(inode);
1661                                         if (ret != 0)   /* ENOSPC */
1662                                                 goto errout;
1663                                         reserved = true;
1664                                 } else {
1665                                         allocated = true;
1666                                 }
1667                         } else {
1668                                 allocated = true;
1669                         }
1670                 }
1671         }
1672
1673         ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1674         if (ret && reserved)
1675                 ext4_da_release_space(inode, 1);
1676
1677 errout:
1678         return ret;
1679 }
1680
1681 /*
1682  * This function is grabs code from the very beginning of
1683  * ext4_map_blocks, but assumes that the caller is from delayed write
1684  * time. This function looks up the requested blocks and sets the
1685  * buffer delay bit under the protection of i_data_sem.
1686  */
1687 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1688                               struct ext4_map_blocks *map,
1689                               struct buffer_head *bh)
1690 {
1691         struct extent_status es;
1692         int retval;
1693         sector_t invalid_block = ~((sector_t) 0xffff);
1694 #ifdef ES_AGGRESSIVE_TEST
1695         struct ext4_map_blocks orig_map;
1696
1697         memcpy(&orig_map, map, sizeof(*map));
1698 #endif
1699
1700         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1701                 invalid_block = ~0;
1702
1703         map->m_flags = 0;
1704         ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1705                   (unsigned long) map->m_lblk);
1706
1707         /* Lookup extent status tree firstly */
1708         if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1709                 if (ext4_es_is_hole(&es)) {
1710                         retval = 0;
1711                         down_read(&EXT4_I(inode)->i_data_sem);
1712                         goto add_delayed;
1713                 }
1714
1715                 /*
1716                  * Delayed extent could be allocated by fallocate.
1717                  * So we need to check it.
1718                  */
1719                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1720                         map_bh(bh, inode->i_sb, invalid_block);
1721                         set_buffer_new(bh);
1722                         set_buffer_delay(bh);
1723                         return 0;
1724                 }
1725
1726                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1727                 retval = es.es_len - (iblock - es.es_lblk);
1728                 if (retval > map->m_len)
1729                         retval = map->m_len;
1730                 map->m_len = retval;
1731                 if (ext4_es_is_written(&es))
1732                         map->m_flags |= EXT4_MAP_MAPPED;
1733                 else if (ext4_es_is_unwritten(&es))
1734                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1735                 else
1736                         BUG();
1737
1738 #ifdef ES_AGGRESSIVE_TEST
1739                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1740 #endif
1741                 return retval;
1742         }
1743
1744         /*
1745          * Try to see if we can get the block without requesting a new
1746          * file system block.
1747          */
1748         down_read(&EXT4_I(inode)->i_data_sem);
1749         if (ext4_has_inline_data(inode))
1750                 retval = 0;
1751         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1752                 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1753         else
1754                 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1755
1756 add_delayed:
1757         if (retval == 0) {
1758                 int ret;
1759
1760                 /*
1761                  * XXX: __block_prepare_write() unmaps passed block,
1762                  * is it OK?
1763                  */
1764
1765                 ret = ext4_insert_delayed_block(inode, map->m_lblk);
1766                 if (ret != 0) {
1767                         retval = ret;
1768                         goto out_unlock;
1769                 }
1770
1771                 map_bh(bh, inode->i_sb, invalid_block);
1772                 set_buffer_new(bh);
1773                 set_buffer_delay(bh);
1774         } else if (retval > 0) {
1775                 int ret;
1776                 unsigned int status;
1777
1778                 if (unlikely(retval != map->m_len)) {
1779                         ext4_warning(inode->i_sb,
1780                                      "ES len assertion failed for inode "
1781                                      "%lu: retval %d != map->m_len %d",
1782                                      inode->i_ino, retval, map->m_len);
1783                         WARN_ON(1);
1784                 }
1785
1786                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1787                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1788                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1789                                             map->m_pblk, status);
1790                 if (ret != 0)
1791                         retval = ret;
1792         }
1793
1794 out_unlock:
1795         up_read((&EXT4_I(inode)->i_data_sem));
1796
1797         return retval;
1798 }
1799
1800 /*
1801  * This is a special get_block_t callback which is used by
1802  * ext4_da_write_begin().  It will either return mapped block or
1803  * reserve space for a single block.
1804  *
1805  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1806  * We also have b_blocknr = -1 and b_bdev initialized properly
1807  *
1808  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1809  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1810  * initialized properly.
1811  */
1812 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1813                            struct buffer_head *bh, int create)
1814 {
1815         struct ext4_map_blocks map;
1816         int ret = 0;
1817
1818         BUG_ON(create == 0);
1819         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1820
1821         map.m_lblk = iblock;
1822         map.m_len = 1;
1823
1824         /*
1825          * first, we need to know whether the block is allocated already
1826          * preallocated blocks are unmapped but should treated
1827          * the same as allocated blocks.
1828          */
1829         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1830         if (ret <= 0)
1831                 return ret;
1832
1833         map_bh(bh, inode->i_sb, map.m_pblk);
1834         ext4_update_bh_state(bh, map.m_flags);
1835
1836         if (buffer_unwritten(bh)) {
1837                 /* A delayed write to unwritten bh should be marked
1838                  * new and mapped.  Mapped ensures that we don't do
1839                  * get_block multiple times when we write to the same
1840                  * offset and new ensures that we do proper zero out
1841                  * for partial write.
1842                  */
1843                 set_buffer_new(bh);
1844                 set_buffer_mapped(bh);
1845         }
1846         return 0;
1847 }
1848
1849 static int __ext4_journalled_writepage(struct page *page,
1850                                        unsigned int len)
1851 {
1852         struct address_space *mapping = page->mapping;
1853         struct inode *inode = mapping->host;
1854         handle_t *handle = NULL;
1855         int ret = 0, err = 0;
1856         int inline_data = ext4_has_inline_data(inode);
1857         struct buffer_head *inode_bh = NULL;
1858         loff_t size;
1859
1860         ClearPageChecked(page);
1861
1862         if (inline_data) {
1863                 BUG_ON(page->index != 0);
1864                 BUG_ON(len > ext4_get_max_inline_size(inode));
1865                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1866                 if (inode_bh == NULL)
1867                         goto out;
1868         }
1869         /*
1870          * We need to release the page lock before we start the
1871          * journal, so grab a reference so the page won't disappear
1872          * out from under us.
1873          */
1874         get_page(page);
1875         unlock_page(page);
1876
1877         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1878                                     ext4_writepage_trans_blocks(inode));
1879         if (IS_ERR(handle)) {
1880                 ret = PTR_ERR(handle);
1881                 put_page(page);
1882                 goto out_no_pagelock;
1883         }
1884         BUG_ON(!ext4_handle_valid(handle));
1885
1886         lock_page(page);
1887         put_page(page);
1888         size = i_size_read(inode);
1889         if (page->mapping != mapping || page_offset(page) > size) {
1890                 /* The page got truncated from under us */
1891                 ext4_journal_stop(handle);
1892                 ret = 0;
1893                 goto out;
1894         }
1895
1896         if (inline_data) {
1897                 ret = ext4_mark_inode_dirty(handle, inode);
1898         } else {
1899                 struct buffer_head *page_bufs = page_buffers(page);
1900
1901                 if (page->index == size >> PAGE_SHIFT)
1902                         len = size & ~PAGE_MASK;
1903                 else
1904                         len = PAGE_SIZE;
1905
1906                 ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
1907                                              NULL, do_journal_get_write_access);
1908
1909                 err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
1910                                              NULL, write_end_fn);
1911         }
1912         if (ret == 0)
1913                 ret = err;
1914         err = ext4_jbd2_inode_add_write(handle, inode, page_offset(page), len);
1915         if (ret == 0)
1916                 ret = err;
1917         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1918         err = ext4_journal_stop(handle);
1919         if (!ret)
1920                 ret = err;
1921
1922         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1923 out:
1924         unlock_page(page);
1925 out_no_pagelock:
1926         brelse(inode_bh);
1927         return ret;
1928 }
1929
1930 /*
1931  * Note that we don't need to start a transaction unless we're journaling data
1932  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1933  * need to file the inode to the transaction's list in ordered mode because if
1934  * we are writing back data added by write(), the inode is already there and if
1935  * we are writing back data modified via mmap(), no one guarantees in which
1936  * transaction the data will hit the disk. In case we are journaling data, we
1937  * cannot start transaction directly because transaction start ranks above page
1938  * lock so we have to do some magic.
1939  *
1940  * This function can get called via...
1941  *   - ext4_writepages after taking page lock (have journal handle)
1942  *   - journal_submit_inode_data_buffers (no journal handle)
1943  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1944  *   - grab_page_cache when doing write_begin (have journal handle)
1945  *
1946  * We don't do any block allocation in this function. If we have page with
1947  * multiple blocks we need to write those buffer_heads that are mapped. This
1948  * is important for mmaped based write. So if we do with blocksize 1K
1949  * truncate(f, 1024);
1950  * a = mmap(f, 0, 4096);
1951  * a[0] = 'a';
1952  * truncate(f, 4096);
1953  * we have in the page first buffer_head mapped via page_mkwrite call back
1954  * but other buffer_heads would be unmapped but dirty (dirty done via the
1955  * do_wp_page). So writepage should write the first block. If we modify
1956  * the mmap area beyond 1024 we will again get a page_fault and the
1957  * page_mkwrite callback will do the block allocation and mark the
1958  * buffer_heads mapped.
1959  *
1960  * We redirty the page if we have any buffer_heads that is either delay or
1961  * unwritten in the page.
1962  *
1963  * We can get recursively called as show below.
1964  *
1965  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1966  *              ext4_writepage()
1967  *
1968  * But since we don't do any block allocation we should not deadlock.
1969  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1970  */
1971 static int ext4_writepage(struct page *page,
1972                           struct writeback_control *wbc)
1973 {
1974         int ret = 0;
1975         loff_t size;
1976         unsigned int len;
1977         struct buffer_head *page_bufs = NULL;
1978         struct inode *inode = page->mapping->host;
1979         struct ext4_io_submit io_submit;
1980         bool keep_towrite = false;
1981
1982         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
1983                 inode->i_mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
1984                 unlock_page(page);
1985                 return -EIO;
1986         }
1987
1988         trace_ext4_writepage(page);
1989         size = i_size_read(inode);
1990         if (page->index == size >> PAGE_SHIFT &&
1991             !ext4_verity_in_progress(inode))
1992                 len = size & ~PAGE_MASK;
1993         else
1994                 len = PAGE_SIZE;
1995
1996         /* Should never happen but for bugs in other kernel subsystems */
1997         if (!page_has_buffers(page)) {
1998                 ext4_warning_inode(inode,
1999                    "page %lu does not have buffers attached", page->index);
2000                 ClearPageDirty(page);
2001                 unlock_page(page);
2002                 return 0;
2003         }
2004
2005         page_bufs = page_buffers(page);
2006         /*
2007          * We cannot do block allocation or other extent handling in this
2008          * function. If there are buffers needing that, we have to redirty
2009          * the page. But we may reach here when we do a journal commit via
2010          * journal_submit_inode_data_buffers() and in that case we must write
2011          * allocated buffers to achieve data=ordered mode guarantees.
2012          *
2013          * Also, if there is only one buffer per page (the fs block
2014          * size == the page size), if one buffer needs block
2015          * allocation or needs to modify the extent tree to clear the
2016          * unwritten flag, we know that the page can't be written at
2017          * all, so we might as well refuse the write immediately.
2018          * Unfortunately if the block size != page size, we can't as
2019          * easily detect this case using ext4_walk_page_buffers(), but
2020          * for the extremely common case, this is an optimization that
2021          * skips a useless round trip through ext4_bio_write_page().
2022          */
2023         if (ext4_walk_page_buffers(NULL, inode, page_bufs, 0, len, NULL,
2024                                    ext4_bh_delay_or_unwritten)) {
2025                 redirty_page_for_writepage(wbc, page);
2026                 if ((current->flags & PF_MEMALLOC) ||
2027                     (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2028                         /*
2029                          * For memory cleaning there's no point in writing only
2030                          * some buffers. So just bail out. Warn if we came here
2031                          * from direct reclaim.
2032                          */
2033                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2034                                                         == PF_MEMALLOC);
2035                         unlock_page(page);
2036                         return 0;
2037                 }
2038                 keep_towrite = true;
2039         }
2040
2041         if (PageChecked(page) && ext4_should_journal_data(inode))
2042                 /*
2043                  * It's mmapped pagecache.  Add buffers and journal it.  There
2044                  * doesn't seem much point in redirtying the page here.
2045                  */
2046                 return __ext4_journalled_writepage(page, len);
2047
2048         ext4_io_submit_init(&io_submit, wbc);
2049         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2050         if (!io_submit.io_end) {
2051                 redirty_page_for_writepage(wbc, page);
2052                 unlock_page(page);
2053                 return -ENOMEM;
2054         }
2055         ret = ext4_bio_write_page(&io_submit, page, len, keep_towrite);
2056         ext4_io_submit(&io_submit);
2057         /* Drop io_end reference we got from init */
2058         ext4_put_io_end_defer(io_submit.io_end);
2059         return ret;
2060 }
2061
2062 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2063 {
2064         int len;
2065         loff_t size;
2066         int err;
2067
2068         BUG_ON(page->index != mpd->first_page);
2069         clear_page_dirty_for_io(page);
2070         /*
2071          * We have to be very careful here!  Nothing protects writeback path
2072          * against i_size changes and the page can be writeably mapped into
2073          * page tables. So an application can be growing i_size and writing
2074          * data through mmap while writeback runs. clear_page_dirty_for_io()
2075          * write-protects our page in page tables and the page cannot get
2076          * written to again until we release page lock. So only after
2077          * clear_page_dirty_for_io() we are safe to sample i_size for
2078          * ext4_bio_write_page() to zero-out tail of the written page. We rely
2079          * on the barrier provided by TestClearPageDirty in
2080          * clear_page_dirty_for_io() to make sure i_size is really sampled only
2081          * after page tables are updated.
2082          */
2083         size = i_size_read(mpd->inode);
2084         if (page->index == size >> PAGE_SHIFT &&
2085             !ext4_verity_in_progress(mpd->inode))
2086                 len = size & ~PAGE_MASK;
2087         else
2088                 len = PAGE_SIZE;
2089         err = ext4_bio_write_page(&mpd->io_submit, page, len, false);
2090         if (!err)
2091                 mpd->wbc->nr_to_write--;
2092         mpd->first_page++;
2093
2094         return err;
2095 }
2096
2097 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
2098
2099 /*
2100  * mballoc gives us at most this number of blocks...
2101  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2102  * The rest of mballoc seems to handle chunks up to full group size.
2103  */
2104 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2105
2106 /*
2107  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2108  *
2109  * @mpd - extent of blocks
2110  * @lblk - logical number of the block in the file
2111  * @bh - buffer head we want to add to the extent
2112  *
2113  * The function is used to collect contig. blocks in the same state. If the
2114  * buffer doesn't require mapping for writeback and we haven't started the
2115  * extent of buffers to map yet, the function returns 'true' immediately - the
2116  * caller can write the buffer right away. Otherwise the function returns true
2117  * if the block has been added to the extent, false if the block couldn't be
2118  * added.
2119  */
2120 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2121                                    struct buffer_head *bh)
2122 {
2123         struct ext4_map_blocks *map = &mpd->map;
2124
2125         /* Buffer that doesn't need mapping for writeback? */
2126         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2127             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2128                 /* So far no extent to map => we write the buffer right away */
2129                 if (map->m_len == 0)
2130                         return true;
2131                 return false;
2132         }
2133
2134         /* First block in the extent? */
2135         if (map->m_len == 0) {
2136                 /* We cannot map unless handle is started... */
2137                 if (!mpd->do_map)
2138                         return false;
2139                 map->m_lblk = lblk;
2140                 map->m_len = 1;
2141                 map->m_flags = bh->b_state & BH_FLAGS;
2142                 return true;
2143         }
2144
2145         /* Don't go larger than mballoc is willing to allocate */
2146         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2147                 return false;
2148
2149         /* Can we merge the block to our big extent? */
2150         if (lblk == map->m_lblk + map->m_len &&
2151             (bh->b_state & BH_FLAGS) == map->m_flags) {
2152                 map->m_len++;
2153                 return true;
2154         }
2155         return false;
2156 }
2157
2158 /*
2159  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2160  *
2161  * @mpd - extent of blocks for mapping
2162  * @head - the first buffer in the page
2163  * @bh - buffer we should start processing from
2164  * @lblk - logical number of the block in the file corresponding to @bh
2165  *
2166  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2167  * the page for IO if all buffers in this page were mapped and there's no
2168  * accumulated extent of buffers to map or add buffers in the page to the
2169  * extent of buffers to map. The function returns 1 if the caller can continue
2170  * by processing the next page, 0 if it should stop adding buffers to the
2171  * extent to map because we cannot extend it anymore. It can also return value
2172  * < 0 in case of error during IO submission.
2173  */
2174 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2175                                    struct buffer_head *head,
2176                                    struct buffer_head *bh,
2177                                    ext4_lblk_t lblk)
2178 {
2179         struct inode *inode = mpd->inode;
2180         int err;
2181         ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2182                                                         >> inode->i_blkbits;
2183
2184         if (ext4_verity_in_progress(inode))
2185                 blocks = EXT_MAX_BLOCKS;
2186
2187         do {
2188                 BUG_ON(buffer_locked(bh));
2189
2190                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2191                         /* Found extent to map? */
2192                         if (mpd->map.m_len)
2193                                 return 0;
2194                         /* Buffer needs mapping and handle is not started? */
2195                         if (!mpd->do_map)
2196                                 return 0;
2197                         /* Everything mapped so far and we hit EOF */
2198                         break;
2199                 }
2200         } while (lblk++, (bh = bh->b_this_page) != head);
2201         /* So far everything mapped? Submit the page for IO. */
2202         if (mpd->map.m_len == 0) {
2203                 err = mpage_submit_page(mpd, head->b_page);
2204                 if (err < 0)
2205                         return err;
2206         }
2207         if (lblk >= blocks) {
2208                 mpd->scanned_until_end = 1;
2209                 return 0;
2210         }
2211         return 1;
2212 }
2213
2214 /*
2215  * mpage_process_page - update page buffers corresponding to changed extent and
2216  *                     may submit fully mapped page for IO
2217  *
2218  * @mpd         - description of extent to map, on return next extent to map
2219  * @m_lblk      - logical block mapping.
2220  * @m_pblk      - corresponding physical mapping.
2221  * @map_bh      - determines on return whether this page requires any further
2222  *                mapping or not.
2223  * Scan given page buffers corresponding to changed extent and update buffer
2224  * state according to new extent state.
2225  * We map delalloc buffers to their physical location, clear unwritten bits.
2226  * If the given page is not fully mapped, we update @map to the next extent in
2227  * the given page that needs mapping & return @map_bh as true.
2228  */
2229 static int mpage_process_page(struct mpage_da_data *mpd, struct page *page,
2230                               ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2231                               bool *map_bh)
2232 {
2233         struct buffer_head *head, *bh;
2234         ext4_io_end_t *io_end = mpd->io_submit.io_end;
2235         ext4_lblk_t lblk = *m_lblk;
2236         ext4_fsblk_t pblock = *m_pblk;
2237         int err = 0;
2238         int blkbits = mpd->inode->i_blkbits;
2239         ssize_t io_end_size = 0;
2240         struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2241
2242         bh = head = page_buffers(page);
2243         do {
2244                 if (lblk < mpd->map.m_lblk)
2245                         continue;
2246                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2247                         /*
2248                          * Buffer after end of mapped extent.
2249                          * Find next buffer in the page to map.
2250                          */
2251                         mpd->map.m_len = 0;
2252                         mpd->map.m_flags = 0;
2253                         io_end_vec->size += io_end_size;
2254
2255                         err = mpage_process_page_bufs(mpd, head, bh, lblk);
2256                         if (err > 0)
2257                                 err = 0;
2258                         if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2259                                 io_end_vec = ext4_alloc_io_end_vec(io_end);
2260                                 if (IS_ERR(io_end_vec)) {
2261                                         err = PTR_ERR(io_end_vec);
2262                                         goto out;
2263                                 }
2264                                 io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits;
2265                         }
2266                         *map_bh = true;
2267                         goto out;
2268                 }
2269                 if (buffer_delay(bh)) {
2270                         clear_buffer_delay(bh);
2271                         bh->b_blocknr = pblock++;
2272                 }
2273                 clear_buffer_unwritten(bh);
2274                 io_end_size += (1 << blkbits);
2275         } while (lblk++, (bh = bh->b_this_page) != head);
2276
2277         io_end_vec->size += io_end_size;
2278         *map_bh = false;
2279 out:
2280         *m_lblk = lblk;
2281         *m_pblk = pblock;
2282         return err;
2283 }
2284
2285 /*
2286  * mpage_map_buffers - update buffers corresponding to changed extent and
2287  *                     submit fully mapped pages for IO
2288  *
2289  * @mpd - description of extent to map, on return next extent to map
2290  *
2291  * Scan buffers corresponding to changed extent (we expect corresponding pages
2292  * to be already locked) and update buffer state according to new extent state.
2293  * We map delalloc buffers to their physical location, clear unwritten bits,
2294  * and mark buffers as uninit when we perform writes to unwritten extents
2295  * and do extent conversion after IO is finished. If the last page is not fully
2296  * mapped, we update @map to the next extent in the last page that needs
2297  * mapping. Otherwise we submit the page for IO.
2298  */
2299 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2300 {
2301         struct pagevec pvec;
2302         int nr_pages, i;
2303         struct inode *inode = mpd->inode;
2304         int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2305         pgoff_t start, end;
2306         ext4_lblk_t lblk;
2307         ext4_fsblk_t pblock;
2308         int err;
2309         bool map_bh = false;
2310
2311         start = mpd->map.m_lblk >> bpp_bits;
2312         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2313         lblk = start << bpp_bits;
2314         pblock = mpd->map.m_pblk;
2315
2316         pagevec_init(&pvec);
2317         while (start <= end) {
2318                 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2319                                                 &start, end);
2320                 if (nr_pages == 0)
2321                         break;
2322                 for (i = 0; i < nr_pages; i++) {
2323                         struct page *page = pvec.pages[i];
2324
2325                         err = mpage_process_page(mpd, page, &lblk, &pblock,
2326                                                  &map_bh);
2327                         /*
2328                          * If map_bh is true, means page may require further bh
2329                          * mapping, or maybe the page was submitted for IO.
2330                          * So we return to call further extent mapping.
2331                          */
2332                         if (err < 0 || map_bh)
2333                                 goto out;
2334                         /* Page fully mapped - let IO run! */
2335                         err = mpage_submit_page(mpd, page);
2336                         if (err < 0)
2337                                 goto out;
2338                 }
2339                 pagevec_release(&pvec);
2340         }
2341         /* Extent fully mapped and matches with page boundary. We are done. */
2342         mpd->map.m_len = 0;
2343         mpd->map.m_flags = 0;
2344         return 0;
2345 out:
2346         pagevec_release(&pvec);
2347         return err;
2348 }
2349
2350 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2351 {
2352         struct inode *inode = mpd->inode;
2353         struct ext4_map_blocks *map = &mpd->map;
2354         int get_blocks_flags;
2355         int err, dioread_nolock;
2356
2357         trace_ext4_da_write_pages_extent(inode, map);
2358         /*
2359          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2360          * to convert an unwritten extent to be initialized (in the case
2361          * where we have written into one or more preallocated blocks).  It is
2362          * possible that we're going to need more metadata blocks than
2363          * previously reserved. However we must not fail because we're in
2364          * writeback and there is nothing we can do about it so it might result
2365          * in data loss.  So use reserved blocks to allocate metadata if
2366          * possible.
2367          *
2368          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2369          * the blocks in question are delalloc blocks.  This indicates
2370          * that the blocks and quotas has already been checked when
2371          * the data was copied into the page cache.
2372          */
2373         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2374                            EXT4_GET_BLOCKS_METADATA_NOFAIL |
2375                            EXT4_GET_BLOCKS_IO_SUBMIT;
2376         dioread_nolock = ext4_should_dioread_nolock(inode);
2377         if (dioread_nolock)
2378                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2379         if (map->m_flags & BIT(BH_Delay))
2380                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2381
2382         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2383         if (err < 0)
2384                 return err;
2385         if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2386                 if (!mpd->io_submit.io_end->handle &&
2387                     ext4_handle_valid(handle)) {
2388                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2389                         handle->h_rsv_handle = NULL;
2390                 }
2391                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2392         }
2393
2394         BUG_ON(map->m_len == 0);
2395         return 0;
2396 }
2397
2398 /*
2399  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2400  *                               mpd->len and submit pages underlying it for IO
2401  *
2402  * @handle - handle for journal operations
2403  * @mpd - extent to map
2404  * @give_up_on_write - we set this to true iff there is a fatal error and there
2405  *                     is no hope of writing the data. The caller should discard
2406  *                     dirty pages to avoid infinite loops.
2407  *
2408  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2409  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2410  * them to initialized or split the described range from larger unwritten
2411  * extent. Note that we need not map all the described range since allocation
2412  * can return less blocks or the range is covered by more unwritten extents. We
2413  * cannot map more because we are limited by reserved transaction credits. On
2414  * the other hand we always make sure that the last touched page is fully
2415  * mapped so that it can be written out (and thus forward progress is
2416  * guaranteed). After mapping we submit all mapped pages for IO.
2417  */
2418 static int mpage_map_and_submit_extent(handle_t *handle,
2419                                        struct mpage_da_data *mpd,
2420                                        bool *give_up_on_write)
2421 {
2422         struct inode *inode = mpd->inode;
2423         struct ext4_map_blocks *map = &mpd->map;
2424         int err;
2425         loff_t disksize;
2426         int progress = 0;
2427         ext4_io_end_t *io_end = mpd->io_submit.io_end;
2428         struct ext4_io_end_vec *io_end_vec;
2429
2430         io_end_vec = ext4_alloc_io_end_vec(io_end);
2431         if (IS_ERR(io_end_vec))
2432                 return PTR_ERR(io_end_vec);
2433         io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2434         do {
2435                 err = mpage_map_one_extent(handle, mpd);
2436                 if (err < 0) {
2437                         struct super_block *sb = inode->i_sb;
2438
2439                         if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2440                             ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
2441                                 goto invalidate_dirty_pages;
2442                         /*
2443                          * Let the uper layers retry transient errors.
2444                          * In the case of ENOSPC, if ext4_count_free_blocks()
2445                          * is non-zero, a commit should free up blocks.
2446                          */
2447                         if ((err == -ENOMEM) ||
2448                             (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2449                                 if (progress)
2450                                         goto update_disksize;
2451                                 return err;
2452                         }
2453                         ext4_msg(sb, KERN_CRIT,
2454                                  "Delayed block allocation failed for "
2455                                  "inode %lu at logical offset %llu with"
2456                                  " max blocks %u with error %d",
2457                                  inode->i_ino,
2458                                  (unsigned long long)map->m_lblk,
2459                                  (unsigned)map->m_len, -err);
2460                         ext4_msg(sb, KERN_CRIT,
2461                                  "This should not happen!! Data will "
2462                                  "be lost\n");
2463                         if (err == -ENOSPC)
2464                                 ext4_print_free_blocks(inode);
2465                 invalidate_dirty_pages:
2466                         *give_up_on_write = true;
2467                         return err;
2468                 }
2469                 progress = 1;
2470                 /*
2471                  * Update buffer state, submit mapped pages, and get us new
2472                  * extent to map
2473                  */
2474                 err = mpage_map_and_submit_buffers(mpd);
2475                 if (err < 0)
2476                         goto update_disksize;
2477         } while (map->m_len);
2478
2479 update_disksize:
2480         /*
2481          * Update on-disk size after IO is submitted.  Races with
2482          * truncate are avoided by checking i_size under i_data_sem.
2483          */
2484         disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2485         if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2486                 int err2;
2487                 loff_t i_size;
2488
2489                 down_write(&EXT4_I(inode)->i_data_sem);
2490                 i_size = i_size_read(inode);
2491                 if (disksize > i_size)
2492                         disksize = i_size;
2493                 if (disksize > EXT4_I(inode)->i_disksize)
2494                         EXT4_I(inode)->i_disksize = disksize;
2495                 up_write(&EXT4_I(inode)->i_data_sem);
2496                 err2 = ext4_mark_inode_dirty(handle, inode);
2497                 if (err2) {
2498                         ext4_error_err(inode->i_sb, -err2,
2499                                        "Failed to mark inode %lu dirty",
2500                                        inode->i_ino);
2501                 }
2502                 if (!err)
2503                         err = err2;
2504         }
2505         return err;
2506 }
2507
2508 /*
2509  * Calculate the total number of credits to reserve for one writepages
2510  * iteration. This is called from ext4_writepages(). We map an extent of
2511  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2512  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2513  * bpp - 1 blocks in bpp different extents.
2514  */
2515 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2516 {
2517         int bpp = ext4_journal_blocks_per_page(inode);
2518
2519         return ext4_meta_trans_blocks(inode,
2520                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2521 }
2522
2523 /*
2524  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2525  *                               and underlying extent to map
2526  *
2527  * @mpd - where to look for pages
2528  *
2529  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2530  * IO immediately. When we find a page which isn't mapped we start accumulating
2531  * extent of buffers underlying these pages that needs mapping (formed by
2532  * either delayed or unwritten buffers). We also lock the pages containing
2533  * these buffers. The extent found is returned in @mpd structure (starting at
2534  * mpd->lblk with length mpd->len blocks).
2535  *
2536  * Note that this function can attach bios to one io_end structure which are
2537  * neither logically nor physically contiguous. Although it may seem as an
2538  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2539  * case as we need to track IO to all buffers underlying a page in one io_end.
2540  */
2541 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2542 {
2543         struct address_space *mapping = mpd->inode->i_mapping;
2544         struct pagevec pvec;
2545         unsigned int nr_pages;
2546         long left = mpd->wbc->nr_to_write;
2547         pgoff_t index = mpd->first_page;
2548         pgoff_t end = mpd->last_page;
2549         xa_mark_t tag;
2550         int i, err = 0;
2551         int blkbits = mpd->inode->i_blkbits;
2552         ext4_lblk_t lblk;
2553         struct buffer_head *head;
2554
2555         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2556                 tag = PAGECACHE_TAG_TOWRITE;
2557         else
2558                 tag = PAGECACHE_TAG_DIRTY;
2559
2560         pagevec_init(&pvec);
2561         mpd->map.m_len = 0;
2562         mpd->next_page = index;
2563         while (index <= end) {
2564                 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2565                                 tag);
2566                 if (nr_pages == 0)
2567                         break;
2568
2569                 for (i = 0; i < nr_pages; i++) {
2570                         struct page *page = pvec.pages[i];
2571
2572                         /*
2573                          * Accumulated enough dirty pages? This doesn't apply
2574                          * to WB_SYNC_ALL mode. For integrity sync we have to
2575                          * keep going because someone may be concurrently
2576                          * dirtying pages, and we might have synced a lot of
2577                          * newly appeared dirty pages, but have not synced all
2578                          * of the old dirty pages.
2579                          */
2580                         if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2581                                 goto out;
2582
2583                         /* If we can't merge this page, we are done. */
2584                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2585                                 goto out;
2586
2587                         lock_page(page);
2588                         /*
2589                          * If the page is no longer dirty, or its mapping no
2590                          * longer corresponds to inode we are writing (which
2591                          * means it has been truncated or invalidated), or the
2592                          * page is already under writeback and we are not doing
2593                          * a data integrity writeback, skip the page
2594                          */
2595                         if (!PageDirty(page) ||
2596                             (PageWriteback(page) &&
2597                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2598                             unlikely(page->mapping != mapping)) {
2599                                 unlock_page(page);
2600                                 continue;
2601                         }
2602
2603                         wait_on_page_writeback(page);
2604                         BUG_ON(PageWriteback(page));
2605
2606                         /*
2607                          * Should never happen but for buggy code in
2608                          * other subsystems that call
2609                          * set_page_dirty() without properly warning
2610                          * the file system first.  See [1] for more
2611                          * information.
2612                          *
2613                          * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz
2614                          */
2615                         if (!page_has_buffers(page)) {
2616                                 ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", page->index);
2617                                 ClearPageDirty(page);
2618                                 unlock_page(page);
2619                                 continue;
2620                         }
2621
2622                         if (mpd->map.m_len == 0)
2623                                 mpd->first_page = page->index;
2624                         mpd->next_page = page->index + 1;
2625                         /* Add all dirty buffers to mpd */
2626                         lblk = ((ext4_lblk_t)page->index) <<
2627                                 (PAGE_SHIFT - blkbits);
2628                         head = page_buffers(page);
2629                         err = mpage_process_page_bufs(mpd, head, head, lblk);
2630                         if (err <= 0)
2631                                 goto out;
2632                         err = 0;
2633                         left--;
2634                 }
2635                 pagevec_release(&pvec);
2636                 cond_resched();
2637         }
2638         mpd->scanned_until_end = 1;
2639         return 0;
2640 out:
2641         pagevec_release(&pvec);
2642         return err;
2643 }
2644
2645 static int ext4_writepages(struct address_space *mapping,
2646                            struct writeback_control *wbc)
2647 {
2648         pgoff_t writeback_index = 0;
2649         long nr_to_write = wbc->nr_to_write;
2650         int range_whole = 0;
2651         int cycled = 1;
2652         handle_t *handle = NULL;
2653         struct mpage_da_data mpd;
2654         struct inode *inode = mapping->host;
2655         int needed_blocks, rsv_blocks = 0, ret = 0;
2656         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2657         struct blk_plug plug;
2658         bool give_up_on_write = false;
2659
2660         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2661                 return -EIO;
2662
2663         percpu_down_read(&sbi->s_writepages_rwsem);
2664         trace_ext4_writepages(inode, wbc);
2665
2666         /*
2667          * No pages to write? This is mainly a kludge to avoid starting
2668          * a transaction for special inodes like journal inode on last iput()
2669          * because that could violate lock ordering on umount
2670          */
2671         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2672                 goto out_writepages;
2673
2674         if (ext4_should_journal_data(inode)) {
2675                 ret = generic_writepages(mapping, wbc);
2676                 goto out_writepages;
2677         }
2678
2679         /*
2680          * If the filesystem has aborted, it is read-only, so return
2681          * right away instead of dumping stack traces later on that
2682          * will obscure the real source of the problem.  We test
2683          * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2684          * the latter could be true if the filesystem is mounted
2685          * read-only, and in that case, ext4_writepages should
2686          * *never* be called, so if that ever happens, we would want
2687          * the stack trace.
2688          */
2689         if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2690                      ext4_test_mount_flag(inode->i_sb, EXT4_MF_FS_ABORTED))) {
2691                 ret = -EROFS;
2692                 goto out_writepages;
2693         }
2694
2695         /*
2696          * If we have inline data and arrive here, it means that
2697          * we will soon create the block for the 1st page, so
2698          * we'd better clear the inline data here.
2699          */
2700         if (ext4_has_inline_data(inode)) {
2701                 /* Just inode will be modified... */
2702                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2703                 if (IS_ERR(handle)) {
2704                         ret = PTR_ERR(handle);
2705                         goto out_writepages;
2706                 }
2707                 BUG_ON(ext4_test_inode_state(inode,
2708                                 EXT4_STATE_MAY_INLINE_DATA));
2709                 ext4_destroy_inline_data(handle, inode);
2710                 ext4_journal_stop(handle);
2711         }
2712
2713         if (ext4_should_dioread_nolock(inode)) {
2714                 /*
2715                  * We may need to convert up to one extent per block in
2716                  * the page and we may dirty the inode.
2717                  */
2718                 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2719                                                 PAGE_SIZE >> inode->i_blkbits);
2720         }
2721
2722         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2723                 range_whole = 1;
2724
2725         if (wbc->range_cyclic) {
2726                 writeback_index = mapping->writeback_index;
2727                 if (writeback_index)
2728                         cycled = 0;
2729                 mpd.first_page = writeback_index;
2730                 mpd.last_page = -1;
2731         } else {
2732                 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2733                 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2734         }
2735
2736         mpd.inode = inode;
2737         mpd.wbc = wbc;
2738         ext4_io_submit_init(&mpd.io_submit, wbc);
2739 retry:
2740         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2741                 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2742         blk_start_plug(&plug);
2743
2744         /*
2745          * First writeback pages that don't need mapping - we can avoid
2746          * starting a transaction unnecessarily and also avoid being blocked
2747          * in the block layer on device congestion while having transaction
2748          * started.
2749          */
2750         mpd.do_map = 0;
2751         mpd.scanned_until_end = 0;
2752         mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2753         if (!mpd.io_submit.io_end) {
2754                 ret = -ENOMEM;
2755                 goto unplug;
2756         }
2757         ret = mpage_prepare_extent_to_map(&mpd);
2758         /* Unlock pages we didn't use */
2759         mpage_release_unused_pages(&mpd, false);
2760         /* Submit prepared bio */
2761         ext4_io_submit(&mpd.io_submit);
2762         ext4_put_io_end_defer(mpd.io_submit.io_end);
2763         mpd.io_submit.io_end = NULL;
2764         if (ret < 0)
2765                 goto unplug;
2766
2767         while (!mpd.scanned_until_end && wbc->nr_to_write > 0) {
2768                 /* For each extent of pages we use new io_end */
2769                 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2770                 if (!mpd.io_submit.io_end) {
2771                         ret = -ENOMEM;
2772                         break;
2773                 }
2774
2775                 /*
2776                  * We have two constraints: We find one extent to map and we
2777                  * must always write out whole page (makes a difference when
2778                  * blocksize < pagesize) so that we don't block on IO when we
2779                  * try to write out the rest of the page. Journalled mode is
2780                  * not supported by delalloc.
2781                  */
2782                 BUG_ON(ext4_should_journal_data(inode));
2783                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2784
2785                 /* start a new transaction */
2786                 handle = ext4_journal_start_with_reserve(inode,
2787                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2788                 if (IS_ERR(handle)) {
2789                         ret = PTR_ERR(handle);
2790                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2791                                "%ld pages, ino %lu; err %d", __func__,
2792                                 wbc->nr_to_write, inode->i_ino, ret);
2793                         /* Release allocated io_end */
2794                         ext4_put_io_end(mpd.io_submit.io_end);
2795                         mpd.io_submit.io_end = NULL;
2796                         break;
2797                 }
2798                 mpd.do_map = 1;
2799
2800                 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2801                 ret = mpage_prepare_extent_to_map(&mpd);
2802                 if (!ret && mpd.map.m_len)
2803                         ret = mpage_map_and_submit_extent(handle, &mpd,
2804                                         &give_up_on_write);
2805                 /*
2806                  * Caution: If the handle is synchronous,
2807                  * ext4_journal_stop() can wait for transaction commit
2808                  * to finish which may depend on writeback of pages to
2809                  * complete or on page lock to be released.  In that
2810                  * case, we have to wait until after we have
2811                  * submitted all the IO, released page locks we hold,
2812                  * and dropped io_end reference (for extent conversion
2813                  * to be able to complete) before stopping the handle.
2814                  */
2815                 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2816                         ext4_journal_stop(handle);
2817                         handle = NULL;
2818                         mpd.do_map = 0;
2819                 }
2820                 /* Unlock pages we didn't use */
2821                 mpage_release_unused_pages(&mpd, give_up_on_write);
2822                 /* Submit prepared bio */
2823                 ext4_io_submit(&mpd.io_submit);
2824
2825                 /*
2826                  * Drop our io_end reference we got from init. We have
2827                  * to be careful and use deferred io_end finishing if
2828                  * we are still holding the transaction as we can
2829                  * release the last reference to io_end which may end
2830                  * up doing unwritten extent conversion.
2831                  */
2832                 if (handle) {
2833                         ext4_put_io_end_defer(mpd.io_submit.io_end);
2834                         ext4_journal_stop(handle);
2835                 } else
2836                         ext4_put_io_end(mpd.io_submit.io_end);
2837                 mpd.io_submit.io_end = NULL;
2838
2839                 if (ret == -ENOSPC && sbi->s_journal) {
2840                         /*
2841                          * Commit the transaction which would
2842                          * free blocks released in the transaction
2843                          * and try again
2844                          */
2845                         jbd2_journal_force_commit_nested(sbi->s_journal);
2846                         ret = 0;
2847                         continue;
2848                 }
2849                 /* Fatal error - ENOMEM, EIO... */
2850                 if (ret)
2851                         break;
2852         }
2853 unplug:
2854         blk_finish_plug(&plug);
2855         if (!ret && !cycled && wbc->nr_to_write > 0) {
2856                 cycled = 1;
2857                 mpd.last_page = writeback_index - 1;
2858                 mpd.first_page = 0;
2859                 goto retry;
2860         }
2861
2862         /* Update index */
2863         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2864                 /*
2865                  * Set the writeback_index so that range_cyclic
2866                  * mode will write it back later
2867                  */
2868                 mapping->writeback_index = mpd.first_page;
2869
2870 out_writepages:
2871         trace_ext4_writepages_result(inode, wbc, ret,
2872                                      nr_to_write - wbc->nr_to_write);
2873         percpu_up_read(&sbi->s_writepages_rwsem);
2874         return ret;
2875 }
2876
2877 static int ext4_dax_writepages(struct address_space *mapping,
2878                                struct writeback_control *wbc)
2879 {
2880         int ret;
2881         long nr_to_write = wbc->nr_to_write;
2882         struct inode *inode = mapping->host;
2883         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2884
2885         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2886                 return -EIO;
2887
2888         percpu_down_read(&sbi->s_writepages_rwsem);
2889         trace_ext4_writepages(inode, wbc);
2890
2891         ret = dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc);
2892         trace_ext4_writepages_result(inode, wbc, ret,
2893                                      nr_to_write - wbc->nr_to_write);
2894         percpu_up_read(&sbi->s_writepages_rwsem);
2895         return ret;
2896 }
2897
2898 static int ext4_nonda_switch(struct super_block *sb)
2899 {
2900         s64 free_clusters, dirty_clusters;
2901         struct ext4_sb_info *sbi = EXT4_SB(sb);
2902
2903         /*
2904          * switch to non delalloc mode if we are running low
2905          * on free block. The free block accounting via percpu
2906          * counters can get slightly wrong with percpu_counter_batch getting
2907          * accumulated on each CPU without updating global counters
2908          * Delalloc need an accurate free block accounting. So switch
2909          * to non delalloc when we are near to error range.
2910          */
2911         free_clusters =
2912                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2913         dirty_clusters =
2914                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2915         /*
2916          * Start pushing delalloc when 1/2 of free blocks are dirty.
2917          */
2918         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2919                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2920
2921         if (2 * free_clusters < 3 * dirty_clusters ||
2922             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2923                 /*
2924                  * free block count is less than 150% of dirty blocks
2925                  * or free blocks is less than watermark
2926                  */
2927                 return 1;
2928         }
2929         return 0;
2930 }
2931
2932 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2933                                loff_t pos, unsigned len, unsigned flags,
2934                                struct page **pagep, void **fsdata)
2935 {
2936         int ret, retries = 0;
2937         struct page *page;
2938         pgoff_t index;
2939         struct inode *inode = mapping->host;
2940
2941         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2942                 return -EIO;
2943
2944         index = pos >> PAGE_SHIFT;
2945
2946         if (ext4_nonda_switch(inode->i_sb) || S_ISLNK(inode->i_mode) ||
2947             ext4_verity_in_progress(inode)) {
2948                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2949                 return ext4_write_begin(file, mapping, pos,
2950                                         len, flags, pagep, fsdata);
2951         }
2952         *fsdata = (void *)0;
2953         trace_ext4_da_write_begin(inode, pos, len, flags);
2954
2955         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2956                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2957                                                       pos, len, flags,
2958                                                       pagep, fsdata);
2959                 if (ret < 0)
2960                         return ret;
2961                 if (ret == 1)
2962                         return 0;
2963         }
2964
2965 retry:
2966         page = grab_cache_page_write_begin(mapping, index, flags);
2967         if (!page)
2968                 return -ENOMEM;
2969
2970         /* In case writeback began while the page was unlocked */
2971         wait_for_stable_page(page);
2972
2973 #ifdef CONFIG_FS_ENCRYPTION
2974         ret = ext4_block_write_begin(page, pos, len,
2975                                      ext4_da_get_block_prep);
2976 #else
2977         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2978 #endif
2979         if (ret < 0) {
2980                 unlock_page(page);
2981                 put_page(page);
2982                 /*
2983                  * block_write_begin may have instantiated a few blocks
2984                  * outside i_size.  Trim these off again. Don't need
2985                  * i_size_read because we hold inode lock.
2986                  */
2987                 if (pos + len > inode->i_size)
2988                         ext4_truncate_failed_write(inode);
2989
2990                 if (ret == -ENOSPC &&
2991                     ext4_should_retry_alloc(inode->i_sb, &retries))
2992                         goto retry;
2993                 return ret;
2994         }
2995
2996         *pagep = page;
2997         return ret;
2998 }
2999
3000 /*
3001  * Check if we should update i_disksize
3002  * when write to the end of file but not require block allocation
3003  */
3004 static int ext4_da_should_update_i_disksize(struct page *page,
3005                                             unsigned long offset)
3006 {
3007         struct buffer_head *bh;
3008         struct inode *inode = page->mapping->host;
3009         unsigned int idx;
3010         int i;
3011
3012         bh = page_buffers(page);
3013         idx = offset >> inode->i_blkbits;
3014
3015         for (i = 0; i < idx; i++)
3016                 bh = bh->b_this_page;
3017
3018         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3019                 return 0;
3020         return 1;
3021 }
3022
3023 static int ext4_da_write_end(struct file *file,
3024                              struct address_space *mapping,
3025                              loff_t pos, unsigned len, unsigned copied,
3026                              struct page *page, void *fsdata)
3027 {
3028         struct inode *inode = mapping->host;
3029         loff_t new_i_size;
3030         unsigned long start, end;
3031         int write_mode = (int)(unsigned long)fsdata;
3032
3033         if (write_mode == FALL_BACK_TO_NONDELALLOC)
3034                 return ext4_write_end(file, mapping, pos,
3035                                       len, copied, page, fsdata);
3036
3037         trace_ext4_da_write_end(inode, pos, len, copied);
3038
3039         if (write_mode != CONVERT_INLINE_DATA &&
3040             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3041             ext4_has_inline_data(inode))
3042                 return ext4_write_inline_data_end(inode, pos, len, copied, page);
3043
3044         start = pos & (PAGE_SIZE - 1);
3045         end = start + copied - 1;
3046
3047         /*
3048          * Since we are holding inode lock, we are sure i_disksize <=
3049          * i_size. We also know that if i_disksize < i_size, there are
3050          * delalloc writes pending in the range upto i_size. If the end of
3051          * the current write is <= i_size, there's no need to touch
3052          * i_disksize since writeback will push i_disksize upto i_size
3053          * eventually. If the end of the current write is > i_size and
3054          * inside an allocated block (ext4_da_should_update_i_disksize()
3055          * check), we need to update i_disksize here as neither
3056          * ext4_writepage() nor certain ext4_writepages() paths not
3057          * allocating blocks update i_disksize.
3058          *
3059          * Note that we defer inode dirtying to generic_write_end() /
3060          * ext4_da_write_inline_data_end().
3061          */
3062         new_i_size = pos + copied;
3063         if (copied && new_i_size > inode->i_size &&
3064             ext4_da_should_update_i_disksize(page, end))
3065                 ext4_update_i_disksize(inode, new_i_size);
3066
3067         return generic_write_end(file, mapping, pos, len, copied, page, fsdata);
3068 }
3069
3070 /*
3071  * Force all delayed allocation blocks to be allocated for a given inode.
3072  */
3073 int ext4_alloc_da_blocks(struct inode *inode)
3074 {
3075         trace_ext4_alloc_da_blocks(inode);
3076
3077         if (!EXT4_I(inode)->i_reserved_data_blocks)
3078                 return 0;
3079
3080         /*
3081          * We do something simple for now.  The filemap_flush() will
3082          * also start triggering a write of the data blocks, which is
3083          * not strictly speaking necessary (and for users of
3084          * laptop_mode, not even desirable).  However, to do otherwise
3085          * would require replicating code paths in:
3086          *
3087          * ext4_writepages() ->
3088          *    write_cache_pages() ---> (via passed in callback function)
3089          *        __mpage_da_writepage() -->
3090          *           mpage_add_bh_to_extent()
3091          *           mpage_da_map_blocks()
3092          *
3093          * The problem is that write_cache_pages(), located in
3094          * mm/page-writeback.c, marks pages clean in preparation for
3095          * doing I/O, which is not desirable if we're not planning on
3096          * doing I/O at all.
3097          *
3098          * We could call write_cache_pages(), and then redirty all of
3099          * the pages by calling redirty_page_for_writepage() but that
3100          * would be ugly in the extreme.  So instead we would need to
3101          * replicate parts of the code in the above functions,
3102          * simplifying them because we wouldn't actually intend to
3103          * write out the pages, but rather only collect contiguous
3104          * logical block extents, call the multi-block allocator, and
3105          * then update the buffer heads with the block allocations.
3106          *
3107          * For now, though, we'll cheat by calling filemap_flush(),
3108          * which will map the blocks, and start the I/O, but not
3109          * actually wait for the I/O to complete.
3110          */
3111         return filemap_flush(inode->i_mapping);
3112 }
3113
3114 /*
3115  * bmap() is special.  It gets used by applications such as lilo and by
3116  * the swapper to find the on-disk block of a specific piece of data.
3117  *
3118  * Naturally, this is dangerous if the block concerned is still in the
3119  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3120  * filesystem and enables swap, then they may get a nasty shock when the
3121  * data getting swapped to that swapfile suddenly gets overwritten by
3122  * the original zero's written out previously to the journal and
3123  * awaiting writeback in the kernel's buffer cache.
3124  *
3125  * So, if we see any bmap calls here on a modified, data-journaled file,
3126  * take extra steps to flush any blocks which might be in the cache.
3127  */
3128 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3129 {
3130         struct inode *inode = mapping->host;
3131         journal_t *journal;
3132         int err;
3133
3134         /*
3135          * We can get here for an inline file via the FIBMAP ioctl
3136          */
3137         if (ext4_has_inline_data(inode))
3138                 return 0;
3139
3140         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3141                         test_opt(inode->i_sb, DELALLOC)) {
3142                 /*
3143                  * With delalloc we want to sync the file
3144                  * so that we can make sure we allocate
3145                  * blocks for file
3146                  */
3147                 filemap_write_and_wait(mapping);
3148         }
3149
3150         if (EXT4_JOURNAL(inode) &&
3151             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3152                 /*
3153                  * This is a REALLY heavyweight approach, but the use of
3154                  * bmap on dirty files is expected to be extremely rare:
3155                  * only if we run lilo or swapon on a freshly made file
3156                  * do we expect this to happen.
3157                  *
3158                  * (bmap requires CAP_SYS_RAWIO so this does not
3159                  * represent an unprivileged user DOS attack --- we'd be
3160                  * in trouble if mortal users could trigger this path at
3161                  * will.)
3162                  *
3163                  * NB. EXT4_STATE_JDATA is not set on files other than
3164                  * regular files.  If somebody wants to bmap a directory
3165                  * or symlink and gets confused because the buffer
3166                  * hasn't yet been flushed to disk, they deserve
3167                  * everything they get.
3168                  */
3169
3170                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3171                 journal = EXT4_JOURNAL(inode);
3172                 jbd2_journal_lock_updates(journal);
3173                 err = jbd2_journal_flush(journal, 0);
3174                 jbd2_journal_unlock_updates(journal);
3175
3176                 if (err)
3177                         return 0;
3178         }
3179
3180         return iomap_bmap(mapping, block, &ext4_iomap_ops);
3181 }
3182
3183 static int ext4_readpage(struct file *file, struct page *page)
3184 {
3185         int ret = -EAGAIN;
3186         struct inode *inode = page->mapping->host;
3187
3188         trace_ext4_readpage(page);
3189
3190         if (ext4_has_inline_data(inode))
3191                 ret = ext4_readpage_inline(inode, page);
3192
3193         if (ret == -EAGAIN)
3194                 return ext4_mpage_readpages(inode, NULL, page);
3195
3196         return ret;
3197 }
3198
3199 static void ext4_readahead(struct readahead_control *rac)
3200 {
3201         struct inode *inode = rac->mapping->host;
3202
3203         /* If the file has inline data, no need to do readahead. */
3204         if (ext4_has_inline_data(inode))
3205                 return;
3206
3207         ext4_mpage_readpages(inode, rac, NULL);
3208 }
3209
3210 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3211                                 unsigned int length)
3212 {
3213         trace_ext4_invalidatepage(page, offset, length);
3214
3215         /* No journalling happens on data buffers when this function is used */
3216         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3217
3218         block_invalidatepage(page, offset, length);
3219 }
3220
3221 static int __ext4_journalled_invalidatepage(struct page *page,
3222                                             unsigned int offset,
3223                                             unsigned int length)
3224 {
3225         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3226
3227         trace_ext4_journalled_invalidatepage(page, offset, length);
3228
3229         /*
3230          * If it's a full truncate we just forget about the pending dirtying
3231          */
3232         if (offset == 0 && length == PAGE_SIZE)
3233                 ClearPageChecked(page);
3234
3235         return jbd2_journal_invalidatepage(journal, page, offset, length);
3236 }
3237
3238 /* Wrapper for aops... */
3239 static void ext4_journalled_invalidatepage(struct page *page,
3240                                            unsigned int offset,
3241                                            unsigned int length)
3242 {
3243         WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3244 }
3245
3246 static int ext4_releasepage(struct page *page, gfp_t wait)
3247 {
3248         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3249
3250         trace_ext4_releasepage(page);
3251
3252         /* Page has dirty journalled data -> cannot release */
3253         if (PageChecked(page))
3254                 return 0;
3255         if (journal)
3256                 return jbd2_journal_try_to_free_buffers(journal, page);
3257         else
3258                 return try_to_free_buffers(page);
3259 }
3260
3261 static bool ext4_inode_datasync_dirty(struct inode *inode)
3262 {
3263         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3264
3265         if (journal) {
3266                 if (jbd2_transaction_committed(journal,
3267                         EXT4_I(inode)->i_datasync_tid))
3268                         return false;
3269                 if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
3270                         return !list_empty(&EXT4_I(inode)->i_fc_list);
3271                 return true;
3272         }
3273
3274         /* Any metadata buffers to write? */
3275         if (!list_empty(&inode->i_mapping->private_list))
3276                 return true;
3277         return inode->i_state & I_DIRTY_DATASYNC;
3278 }
3279
3280 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3281                            struct ext4_map_blocks *map, loff_t offset,
3282                            loff_t length, unsigned int flags)
3283 {
3284         u8 blkbits = inode->i_blkbits;
3285
3286         /*
3287          * Writes that span EOF might trigger an I/O size update on completion,
3288          * so consider them to be dirty for the purpose of O_DSYNC, even if
3289          * there is no other metadata changes being made or are pending.
3290          */
3291         iomap->flags = 0;
3292         if (ext4_inode_datasync_dirty(inode) ||
3293             offset + length > i_size_read(inode))
3294                 iomap->flags |= IOMAP_F_DIRTY;
3295
3296         if (map->m_flags & EXT4_MAP_NEW)
3297                 iomap->flags |= IOMAP_F_NEW;
3298
3299         if (flags & IOMAP_DAX)
3300                 iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3301         else
3302                 iomap->bdev = inode->i_sb->s_bdev;
3303         iomap->offset = (u64) map->m_lblk << blkbits;
3304         iomap->length = (u64) map->m_len << blkbits;
3305
3306         if ((map->m_flags & EXT4_MAP_MAPPED) &&
3307             !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3308                 iomap->flags |= IOMAP_F_MERGED;
3309
3310         /*
3311          * Flags passed to ext4_map_blocks() for direct I/O writes can result
3312          * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3313          * set. In order for any allocated unwritten extents to be converted
3314          * into written extents correctly within the ->end_io() handler, we
3315          * need to ensure that the iomap->type is set appropriately. Hence, the
3316          * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3317          * been set first.
3318          */
3319         if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3320                 iomap->type = IOMAP_UNWRITTEN;
3321                 iomap->addr = (u64) map->m_pblk << blkbits;
3322                 if (flags & IOMAP_DAX)
3323                         iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3324         } else if (map->m_flags & EXT4_MAP_MAPPED) {
3325                 iomap->type = IOMAP_MAPPED;
3326                 iomap->addr = (u64) map->m_pblk << blkbits;
3327                 if (flags & IOMAP_DAX)
3328                         iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3329         } else {
3330                 iomap->type = IOMAP_HOLE;
3331                 iomap->addr = IOMAP_NULL_ADDR;
3332         }
3333 }
3334
3335 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3336                             unsigned int flags)
3337 {
3338         handle_t *handle;
3339         u8 blkbits = inode->i_blkbits;
3340         int ret, dio_credits, m_flags = 0, retries = 0;
3341
3342         /*
3343          * Trim the mapping request to the maximum value that we can map at
3344          * once for direct I/O.
3345          */
3346         if (map->m_len > DIO_MAX_BLOCKS)
3347                 map->m_len = DIO_MAX_BLOCKS;
3348         dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3349
3350 retry:
3351         /*
3352          * Either we allocate blocks and then don't get an unwritten extent, so
3353          * in that case we have reserved enough credits. Or, the blocks are
3354          * already allocated and unwritten. In that case, the extent conversion
3355          * fits into the credits as well.
3356          */
3357         handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3358         if (IS_ERR(handle))
3359                 return PTR_ERR(handle);
3360
3361         /*
3362          * DAX and direct I/O are the only two operations that are currently
3363          * supported with IOMAP_WRITE.
3364          */
3365         WARN_ON(!(flags & (IOMAP_DAX | IOMAP_DIRECT)));
3366         if (flags & IOMAP_DAX)
3367                 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3368         /*
3369          * We use i_size instead of i_disksize here because delalloc writeback
3370          * can complete at any point during the I/O and subsequently push the
3371          * i_disksize out to i_size. This could be beyond where direct I/O is
3372          * happening and thus expose allocated blocks to direct I/O reads.
3373          */
3374         else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode))
3375                 m_flags = EXT4_GET_BLOCKS_CREATE;
3376         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3377                 m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3378
3379         ret = ext4_map_blocks(handle, inode, map, m_flags);
3380
3381         /*
3382          * We cannot fill holes in indirect tree based inodes as that could
3383          * expose stale data in the case of a crash. Use the magic error code
3384          * to fallback to buffered I/O.
3385          */
3386         if (!m_flags && !ret)
3387                 ret = -ENOTBLK;
3388
3389         ext4_journal_stop(handle);
3390         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3391                 goto retry;
3392
3393         return ret;
3394 }
3395
3396
3397 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3398                 unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3399 {
3400         int ret;
3401         struct ext4_map_blocks map;
3402         u8 blkbits = inode->i_blkbits;
3403
3404         if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3405                 return -EINVAL;
3406
3407         if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3408                 return -ERANGE;
3409
3410         /*
3411          * Calculate the first and last logical blocks respectively.
3412          */
3413         map.m_lblk = offset >> blkbits;
3414         map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3415                           EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3416
3417         if (flags & IOMAP_WRITE) {
3418                 /*
3419                  * We check here if the blocks are already allocated, then we
3420                  * don't need to start a journal txn and we can directly return
3421                  * the mapping information. This could boost performance
3422                  * especially in multi-threaded overwrite requests.
3423                  */
3424                 if (offset + length <= i_size_read(inode)) {
3425                         ret = ext4_map_blocks(NULL, inode, &map, 0);
3426                         if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED))
3427                                 goto out;
3428                 }
3429                 ret = ext4_iomap_alloc(inode, &map, flags);
3430         } else {
3431                 ret = ext4_map_blocks(NULL, inode, &map, 0);
3432         }
3433
3434         if (ret < 0)
3435                 return ret;
3436 out:
3437         ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3438
3439         return 0;
3440 }
3441
3442 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3443                 loff_t length, unsigned flags, struct iomap *iomap,
3444                 struct iomap *srcmap)
3445 {
3446         int ret;
3447
3448         /*
3449          * Even for writes we don't need to allocate blocks, so just pretend
3450          * we are reading to save overhead of starting a transaction.
3451          */
3452         flags &= ~IOMAP_WRITE;
3453         ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3454         WARN_ON_ONCE(iomap->type != IOMAP_MAPPED);
3455         return ret;
3456 }
3457
3458 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3459                           ssize_t written, unsigned flags, struct iomap *iomap)
3460 {
3461         /*
3462          * Check to see whether an error occurred while writing out the data to
3463          * the allocated blocks. If so, return the magic error code so that we
3464          * fallback to buffered I/O and attempt to complete the remainder of
3465          * the I/O. Any blocks that may have been allocated in preparation for
3466          * the direct I/O will be reused during buffered I/O.
3467          */
3468         if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3469                 return -ENOTBLK;
3470
3471         return 0;
3472 }
3473
3474 const struct iomap_ops ext4_iomap_ops = {
3475         .iomap_begin            = ext4_iomap_begin,
3476         .iomap_end              = ext4_iomap_end,
3477 };
3478
3479 const struct iomap_ops ext4_iomap_overwrite_ops = {
3480         .iomap_begin            = ext4_iomap_overwrite_begin,
3481         .iomap_end              = ext4_iomap_end,
3482 };
3483
3484 static bool ext4_iomap_is_delalloc(struct inode *inode,
3485                                    struct ext4_map_blocks *map)
3486 {
3487         struct extent_status es;
3488         ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1;
3489
3490         ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3491                                   map->m_lblk, end, &es);
3492
3493         if (!es.es_len || es.es_lblk > end)
3494                 return false;
3495
3496         if (es.es_lblk > map->m_lblk) {
3497                 map->m_len = es.es_lblk - map->m_lblk;
3498                 return false;
3499         }
3500
3501         offset = map->m_lblk - es.es_lblk;
3502         map->m_len = es.es_len - offset;
3503
3504         return true;
3505 }
3506
3507 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3508                                    loff_t length, unsigned int flags,
3509                                    struct iomap *iomap, struct iomap *srcmap)
3510 {
3511         int ret;
3512         bool delalloc = false;
3513         struct ext4_map_blocks map;
3514         u8 blkbits = inode->i_blkbits;
3515
3516         if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3517                 return -EINVAL;
3518
3519         if (ext4_has_inline_data(inode)) {
3520                 ret = ext4_inline_data_iomap(inode, iomap);
3521                 if (ret != -EAGAIN) {
3522                         if (ret == 0 && offset >= iomap->length)
3523                                 ret = -ENOENT;
3524                         return ret;
3525                 }
3526         }
3527
3528         /*
3529          * Calculate the first and last logical block respectively.
3530          */
3531         map.m_lblk = offset >> blkbits;
3532         map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3533                           EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3534
3535         /*
3536          * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3537          * So handle it here itself instead of querying ext4_map_blocks().
3538          * Since ext4_map_blocks() will warn about it and will return
3539          * -EIO error.
3540          */
3541         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3542                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3543
3544                 if (offset >= sbi->s_bitmap_maxbytes) {
3545                         map.m_flags = 0;
3546                         goto set_iomap;
3547                 }
3548         }
3549
3550         ret = ext4_map_blocks(NULL, inode, &map, 0);
3551         if (ret < 0)
3552                 return ret;
3553         if (ret == 0)
3554                 delalloc = ext4_iomap_is_delalloc(inode, &map);
3555
3556 set_iomap:
3557         ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3558         if (delalloc && iomap->type == IOMAP_HOLE)
3559                 iomap->type = IOMAP_DELALLOC;
3560
3561         return 0;
3562 }
3563
3564 const struct iomap_ops ext4_iomap_report_ops = {
3565         .iomap_begin = ext4_iomap_begin_report,
3566 };
3567
3568 /*
3569  * Pages can be marked dirty completely asynchronously from ext4's journalling
3570  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3571  * much here because ->set_page_dirty is called under VFS locks.  The page is
3572  * not necessarily locked.
3573  *
3574  * We cannot just dirty the page and leave attached buffers clean, because the
3575  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3576  * or jbddirty because all the journalling code will explode.
3577  *
3578  * So what we do is to mark the page "pending dirty" and next time writepage
3579  * is called, propagate that into the buffers appropriately.
3580  */
3581 static int ext4_journalled_set_page_dirty(struct page *page)
3582 {
3583         SetPageChecked(page);
3584         return __set_page_dirty_nobuffers(page);
3585 }
3586
3587 static int ext4_set_page_dirty(struct page *page)
3588 {
3589         WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3590         WARN_ON_ONCE(!page_has_buffers(page));
3591         return __set_page_dirty_buffers(page);
3592 }
3593
3594 static int ext4_iomap_swap_activate(struct swap_info_struct *sis,
3595                                     struct file *file, sector_t *span)
3596 {
3597         return iomap_swapfile_activate(sis, file, span,
3598                                        &ext4_iomap_report_ops);
3599 }
3600
3601 static const struct address_space_operations ext4_aops = {
3602         .readpage               = ext4_readpage,
3603         .readahead              = ext4_readahead,
3604         .writepage              = ext4_writepage,
3605         .writepages             = ext4_writepages,
3606         .write_begin            = ext4_write_begin,
3607         .write_end              = ext4_write_end,
3608         .set_page_dirty         = ext4_set_page_dirty,
3609         .bmap                   = ext4_bmap,
3610         .invalidatepage         = ext4_invalidatepage,
3611         .releasepage            = ext4_releasepage,
3612         .direct_IO              = noop_direct_IO,
3613         .migratepage            = buffer_migrate_page,
3614         .is_partially_uptodate  = block_is_partially_uptodate,
3615         .error_remove_page      = generic_error_remove_page,
3616         .swap_activate          = ext4_iomap_swap_activate,
3617 };
3618
3619 static const struct address_space_operations ext4_journalled_aops = {
3620         .readpage               = ext4_readpage,
3621         .readahead              = ext4_readahead,
3622         .writepage              = ext4_writepage,
3623         .writepages             = ext4_writepages,
3624         .write_begin            = ext4_write_begin,
3625         .write_end              = ext4_journalled_write_end,
3626         .set_page_dirty         = ext4_journalled_set_page_dirty,
3627         .bmap                   = ext4_bmap,
3628         .invalidatepage         = ext4_journalled_invalidatepage,
3629         .releasepage            = ext4_releasepage,
3630         .direct_IO              = noop_direct_IO,
3631         .is_partially_uptodate  = block_is_partially_uptodate,
3632         .error_remove_page      = generic_error_remove_page,
3633         .swap_activate          = ext4_iomap_swap_activate,
3634 };
3635
3636 static const struct address_space_operations ext4_da_aops = {
3637         .readpage               = ext4_readpage,
3638         .readahead              = ext4_readahead,
3639         .writepage              = ext4_writepage,
3640         .writepages             = ext4_writepages,
3641         .write_begin            = ext4_da_write_begin,
3642         .write_end              = ext4_da_write_end,
3643         .set_page_dirty         = ext4_set_page_dirty,
3644         .bmap                   = ext4_bmap,
3645         .invalidatepage         = ext4_invalidatepage,
3646         .releasepage            = ext4_releasepage,
3647         .direct_IO              = noop_direct_IO,
3648         .migratepage            = buffer_migrate_page,
3649         .is_partially_uptodate  = block_is_partially_uptodate,
3650         .error_remove_page      = generic_error_remove_page,
3651         .swap_activate          = ext4_iomap_swap_activate,
3652 };
3653
3654 static const struct address_space_operations ext4_dax_aops = {
3655         .writepages             = ext4_dax_writepages,
3656         .direct_IO              = noop_direct_IO,
3657         .set_page_dirty         = __set_page_dirty_no_writeback,
3658         .bmap                   = ext4_bmap,
3659         .invalidatepage         = noop_invalidatepage,
3660         .swap_activate          = ext4_iomap_swap_activate,
3661 };
3662
3663 void ext4_set_aops(struct inode *inode)
3664 {
3665         switch (ext4_inode_journal_mode(inode)) {
3666         case EXT4_INODE_ORDERED_DATA_MODE:
3667         case EXT4_INODE_WRITEBACK_DATA_MODE:
3668                 break;
3669         case EXT4_INODE_JOURNAL_DATA_MODE:
3670                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3671                 return;
3672         default:
3673                 BUG();
3674         }
3675         if (IS_DAX(inode))
3676                 inode->i_mapping->a_ops = &ext4_dax_aops;
3677         else if (test_opt(inode->i_sb, DELALLOC))
3678                 inode->i_mapping->a_ops = &ext4_da_aops;
3679         else
3680                 inode->i_mapping->a_ops = &ext4_aops;
3681 }
3682
3683 static int __ext4_block_zero_page_range(handle_t *handle,
3684                 struct address_space *mapping, loff_t from, loff_t length)
3685 {
3686         ext4_fsblk_t index = from >> PAGE_SHIFT;
3687         unsigned offset = from & (PAGE_SIZE-1);
3688         unsigned blocksize, pos;
3689         ext4_lblk_t iblock;
3690         struct inode *inode = mapping->host;
3691         struct buffer_head *bh;
3692         struct page *page;
3693         int err = 0;
3694
3695         page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3696                                    mapping_gfp_constraint(mapping, ~__GFP_FS));
3697         if (!page)
3698                 return -ENOMEM;
3699
3700         blocksize = inode->i_sb->s_blocksize;
3701
3702         iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3703
3704         if (!page_has_buffers(page))
3705                 create_empty_buffers(page, blocksize, 0);
3706
3707         /* Find the buffer that contains "offset" */
3708         bh = page_buffers(page);
3709         pos = blocksize;
3710         while (offset >= pos) {
3711                 bh = bh->b_this_page;
3712                 iblock++;
3713                 pos += blocksize;
3714         }
3715         if (buffer_freed(bh)) {
3716                 BUFFER_TRACE(bh, "freed: skip");
3717                 goto unlock;
3718         }
3719         if (!buffer_mapped(bh)) {
3720                 BUFFER_TRACE(bh, "unmapped");
3721                 ext4_get_block(inode, iblock, bh, 0);
3722                 /* unmapped? It's a hole - nothing to do */
3723                 if (!buffer_mapped(bh)) {
3724                         BUFFER_TRACE(bh, "still unmapped");
3725                         goto unlock;
3726                 }
3727         }
3728
3729         /* Ok, it's mapped. Make sure it's up-to-date */
3730         if (PageUptodate(page))
3731                 set_buffer_uptodate(bh);
3732
3733         if (!buffer_uptodate(bh)) {
3734                 err = ext4_read_bh_lock(bh, 0, true);
3735                 if (err)
3736                         goto unlock;
3737                 if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
3738                         /* We expect the key to be set. */
3739                         BUG_ON(!fscrypt_has_encryption_key(inode));
3740                         err = fscrypt_decrypt_pagecache_blocks(page, blocksize,
3741                                                                bh_offset(bh));
3742                         if (err) {
3743                                 clear_buffer_uptodate(bh);
3744                                 goto unlock;
3745                         }
3746                 }
3747         }
3748         if (ext4_should_journal_data(inode)) {
3749                 BUFFER_TRACE(bh, "get write access");
3750                 err = ext4_journal_get_write_access(handle, inode->i_sb, bh,
3751                                                     EXT4_JTR_NONE);
3752                 if (err)
3753                         goto unlock;
3754         }
3755         zero_user(page, offset, length);
3756         BUFFER_TRACE(bh, "zeroed end of block");
3757
3758         if (ext4_should_journal_data(inode)) {
3759                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3760         } else {
3761                 err = 0;
3762                 mark_buffer_dirty(bh);
3763                 if (ext4_should_order_data(inode))
3764                         err = ext4_jbd2_inode_add_write(handle, inode, from,
3765                                         length);
3766         }
3767
3768 unlock:
3769         unlock_page(page);
3770         put_page(page);
3771         return err;
3772 }
3773
3774 /*
3775  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3776  * starting from file offset 'from'.  The range to be zero'd must
3777  * be contained with in one block.  If the specified range exceeds
3778  * the end of the block it will be shortened to end of the block
3779  * that corresponds to 'from'
3780  */
3781 static int ext4_block_zero_page_range(handle_t *handle,
3782                 struct address_space *mapping, loff_t from, loff_t length)
3783 {
3784         struct inode *inode = mapping->host;
3785         unsigned offset = from & (PAGE_SIZE-1);
3786         unsigned blocksize = inode->i_sb->s_blocksize;
3787         unsigned max = blocksize - (offset & (blocksize - 1));
3788
3789         /*
3790          * correct length if it does not fall between
3791          * 'from' and the end of the block
3792          */
3793         if (length > max || length < 0)
3794                 length = max;
3795
3796         if (IS_DAX(inode)) {
3797                 return dax_zero_range(inode, from, length, NULL,
3798                                       &ext4_iomap_ops);
3799         }
3800         return __ext4_block_zero_page_range(handle, mapping, from, length);
3801 }
3802
3803 /*
3804  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3805  * up to the end of the block which corresponds to `from'.
3806  * This required during truncate. We need to physically zero the tail end
3807  * of that block so it doesn't yield old data if the file is later grown.
3808  */
3809 static int ext4_block_truncate_page(handle_t *handle,
3810                 struct address_space *mapping, loff_t from)
3811 {
3812         unsigned offset = from & (PAGE_SIZE-1);
3813         unsigned length;
3814         unsigned blocksize;
3815         struct inode *inode = mapping->host;
3816
3817         /* If we are processing an encrypted inode during orphan list handling */
3818         if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3819                 return 0;
3820
3821         blocksize = inode->i_sb->s_blocksize;
3822         length = blocksize - (offset & (blocksize - 1));
3823
3824         return ext4_block_zero_page_range(handle, mapping, from, length);
3825 }
3826
3827 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3828                              loff_t lstart, loff_t length)
3829 {
3830         struct super_block *sb = inode->i_sb;
3831         struct address_space *mapping = inode->i_mapping;
3832         unsigned partial_start, partial_end;
3833         ext4_fsblk_t start, end;
3834         loff_t byte_end = (lstart + length - 1);
3835         int err = 0;
3836
3837         partial_start = lstart & (sb->s_blocksize - 1);
3838         partial_end = byte_end & (sb->s_blocksize - 1);
3839
3840         start = lstart >> sb->s_blocksize_bits;
3841         end = byte_end >> sb->s_blocksize_bits;
3842
3843         /* Handle partial zero within the single block */
3844         if (start == end &&
3845             (partial_start || (partial_end != sb->s_blocksize - 1))) {
3846                 err = ext4_block_zero_page_range(handle, mapping,
3847                                                  lstart, length);
3848                 return err;
3849         }
3850         /* Handle partial zero out on the start of the range */
3851         if (partial_start) {
3852                 err = ext4_block_zero_page_range(handle, mapping,
3853                                                  lstart, sb->s_blocksize);
3854                 if (err)
3855                         return err;
3856         }
3857         /* Handle partial zero out on the end of the range */
3858         if (partial_end != sb->s_blocksize - 1)
3859                 err = ext4_block_zero_page_range(handle, mapping,
3860                                                  byte_end - partial_end,
3861                                                  partial_end + 1);
3862         return err;
3863 }
3864
3865 int ext4_can_truncate(struct inode *inode)
3866 {
3867         if (S_ISREG(inode->i_mode))
3868                 return 1;
3869         if (S_ISDIR(inode->i_mode))
3870                 return 1;
3871         if (S_ISLNK(inode->i_mode))
3872                 return !ext4_inode_is_fast_symlink(inode);
3873         return 0;
3874 }
3875
3876 /*
3877  * We have to make sure i_disksize gets properly updated before we truncate
3878  * page cache due to hole punching or zero range. Otherwise i_disksize update
3879  * can get lost as it may have been postponed to submission of writeback but
3880  * that will never happen after we truncate page cache.
3881  */
3882 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3883                                       loff_t len)
3884 {
3885         handle_t *handle;
3886         int ret;
3887
3888         loff_t size = i_size_read(inode);
3889
3890         WARN_ON(!inode_is_locked(inode));
3891         if (offset > size || offset + len < size)
3892                 return 0;
3893
3894         if (EXT4_I(inode)->i_disksize >= size)
3895                 return 0;
3896
3897         handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3898         if (IS_ERR(handle))
3899                 return PTR_ERR(handle);
3900         ext4_update_i_disksize(inode, size);
3901         ret = ext4_mark_inode_dirty(handle, inode);
3902         ext4_journal_stop(handle);
3903
3904         return ret;
3905 }
3906
3907 static void ext4_wait_dax_page(struct inode *inode)
3908 {
3909         filemap_invalidate_unlock(inode->i_mapping);
3910         schedule();
3911         filemap_invalidate_lock(inode->i_mapping);
3912 }
3913
3914 int ext4_break_layouts(struct inode *inode)
3915 {
3916         struct page *page;
3917         int error;
3918
3919         if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock)))
3920                 return -EINVAL;
3921
3922         do {
3923                 page = dax_layout_busy_page(inode->i_mapping);
3924                 if (!page)
3925                         return 0;
3926
3927                 error = ___wait_var_event(&page->_refcount,
3928                                 atomic_read(&page->_refcount) == 1,
3929                                 TASK_INTERRUPTIBLE, 0, 0,
3930                                 ext4_wait_dax_page(inode));
3931         } while (error == 0);
3932
3933         return error;
3934 }
3935
3936 /*
3937  * ext4_punch_hole: punches a hole in a file by releasing the blocks
3938  * associated with the given offset and length
3939  *
3940  * @inode:  File inode
3941  * @offset: The offset where the hole will begin
3942  * @len:    The length of the hole
3943  *
3944  * Returns: 0 on success or negative on failure
3945  */
3946
3947 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3948 {
3949         struct super_block *sb = inode->i_sb;
3950         ext4_lblk_t first_block, stop_block;
3951         struct address_space *mapping = inode->i_mapping;
3952         loff_t first_block_offset, last_block_offset;
3953         handle_t *handle;
3954         unsigned int credits;
3955         int ret = 0, ret2 = 0;
3956
3957         trace_ext4_punch_hole(inode, offset, length, 0);
3958
3959         ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
3960         if (ext4_has_inline_data(inode)) {
3961                 filemap_invalidate_lock(mapping);
3962                 ret = ext4_convert_inline_data(inode);
3963                 filemap_invalidate_unlock(mapping);
3964                 if (ret)
3965                         return ret;
3966         }
3967
3968         /*
3969          * Write out all dirty pages to avoid race conditions
3970          * Then release them.
3971          */
3972         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3973                 ret = filemap_write_and_wait_range(mapping, offset,
3974                                                    offset + length - 1);
3975                 if (ret)
3976                         return ret;
3977         }
3978
3979         inode_lock(inode);
3980
3981         /* No need to punch hole beyond i_size */
3982         if (offset >= inode->i_size)
3983                 goto out_mutex;
3984
3985         /*
3986          * If the hole extends beyond i_size, set the hole
3987          * to end after the page that contains i_size
3988          */
3989         if (offset + length > inode->i_size) {
3990                 length = inode->i_size +
3991                    PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
3992                    offset;
3993         }
3994
3995         if (offset & (sb->s_blocksize - 1) ||
3996             (offset + length) & (sb->s_blocksize - 1)) {
3997                 /*
3998                  * Attach jinode to inode for jbd2 if we do any zeroing of
3999                  * partial block
4000                  */
4001                 ret = ext4_inode_attach_jinode(inode);
4002                 if (ret < 0)
4003                         goto out_mutex;
4004
4005         }
4006
4007         /* Wait all existing dio workers, newcomers will block on i_rwsem */
4008         inode_dio_wait(inode);
4009
4010         /*
4011          * Prevent page faults from reinstantiating pages we have released from
4012          * page cache.
4013          */
4014         filemap_invalidate_lock(mapping);
4015
4016         ret = ext4_break_layouts(inode);
4017         if (ret)
4018                 goto out_dio;
4019
4020         first_block_offset = round_up(offset, sb->s_blocksize);
4021         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4022
4023         /* Now release the pages and zero block aligned part of pages*/
4024         if (last_block_offset > first_block_offset) {
4025                 ret = ext4_update_disksize_before_punch(inode, offset, length);
4026                 if (ret)
4027                         goto out_dio;
4028                 truncate_pagecache_range(inode, first_block_offset,
4029                                          last_block_offset);
4030         }
4031
4032         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4033                 credits = ext4_writepage_trans_blocks(inode);
4034         else
4035                 credits = ext4_blocks_for_truncate(inode);
4036         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4037         if (IS_ERR(handle)) {
4038                 ret = PTR_ERR(handle);
4039                 ext4_std_error(sb, ret);
4040                 goto out_dio;
4041         }
4042
4043         ret = ext4_zero_partial_blocks(handle, inode, offset,
4044                                        length);
4045         if (ret)
4046                 goto out_stop;
4047
4048         first_block = (offset + sb->s_blocksize - 1) >>
4049                 EXT4_BLOCK_SIZE_BITS(sb);
4050         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4051
4052         /* If there are blocks to remove, do it */
4053         if (stop_block > first_block) {
4054
4055                 down_write(&EXT4_I(inode)->i_data_sem);
4056                 ext4_discard_preallocations(inode, 0);
4057
4058                 ret = ext4_es_remove_extent(inode, first_block,
4059                                             stop_block - first_block);
4060                 if (ret) {
4061                         up_write(&EXT4_I(inode)->i_data_sem);
4062                         goto out_stop;
4063                 }
4064
4065                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4066                         ret = ext4_ext_remove_space(inode, first_block,
4067                                                     stop_block - 1);
4068                 else
4069                         ret = ext4_ind_remove_space(handle, inode, first_block,
4070                                                     stop_block);
4071
4072                 up_write(&EXT4_I(inode)->i_data_sem);
4073         }
4074         ext4_fc_track_range(handle, inode, first_block, stop_block);
4075         if (IS_SYNC(inode))
4076                 ext4_handle_sync(handle);
4077
4078         inode->i_mtime = inode->i_ctime = current_time(inode);
4079         ret2 = ext4_mark_inode_dirty(handle, inode);
4080         if (unlikely(ret2))
4081                 ret = ret2;
4082         if (ret >= 0)
4083                 ext4_update_inode_fsync_trans(handle, inode, 1);
4084 out_stop:
4085         ext4_journal_stop(handle);
4086 out_dio:
4087         filemap_invalidate_unlock(mapping);
4088 out_mutex:
4089         inode_unlock(inode);
4090         return ret;
4091 }
4092
4093 int ext4_inode_attach_jinode(struct inode *inode)
4094 {
4095         struct ext4_inode_info *ei = EXT4_I(inode);
4096         struct jbd2_inode *jinode;
4097
4098         if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4099                 return 0;
4100
4101         jinode = jbd2_alloc_inode(GFP_KERNEL);
4102         spin_lock(&inode->i_lock);
4103         if (!ei->jinode) {
4104                 if (!jinode) {
4105                         spin_unlock(&inode->i_lock);
4106                         return -ENOMEM;
4107                 }
4108                 ei->jinode = jinode;
4109                 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4110                 jinode = NULL;
4111         }
4112         spin_unlock(&inode->i_lock);
4113         if (unlikely(jinode != NULL))
4114                 jbd2_free_inode(jinode);
4115         return 0;
4116 }
4117
4118 /*
4119  * ext4_truncate()
4120  *
4121  * We block out ext4_get_block() block instantiations across the entire
4122  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4123  * simultaneously on behalf of the same inode.
4124  *
4125  * As we work through the truncate and commit bits of it to the journal there
4126  * is one core, guiding principle: the file's tree must always be consistent on
4127  * disk.  We must be able to restart the truncate after a crash.
4128  *
4129  * The file's tree may be transiently inconsistent in memory (although it
4130  * probably isn't), but whenever we close off and commit a journal transaction,
4131  * the contents of (the filesystem + the journal) must be consistent and
4132  * restartable.  It's pretty simple, really: bottom up, right to left (although
4133  * left-to-right works OK too).
4134  *
4135  * Note that at recovery time, journal replay occurs *before* the restart of
4136  * truncate against the orphan inode list.
4137  *
4138  * The committed inode has the new, desired i_size (which is the same as
4139  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4140  * that this inode's truncate did not complete and it will again call
4141  * ext4_truncate() to have another go.  So there will be instantiated blocks
4142  * to the right of the truncation point in a crashed ext4 filesystem.  But
4143  * that's fine - as long as they are linked from the inode, the post-crash
4144  * ext4_truncate() run will find them and release them.
4145  */
4146 int ext4_truncate(struct inode *inode)
4147 {
4148         struct ext4_inode_info *ei = EXT4_I(inode);
4149         unsigned int credits;
4150         int err = 0, err2;
4151         handle_t *handle;
4152         struct address_space *mapping = inode->i_mapping;
4153
4154         /*
4155          * There is a possibility that we're either freeing the inode
4156          * or it's a completely new inode. In those cases we might not
4157          * have i_rwsem locked because it's not necessary.
4158          */
4159         if (!(inode->i_state & (I_NEW|I_FREEING)))
4160                 WARN_ON(!inode_is_locked(inode));
4161         trace_ext4_truncate_enter(inode);
4162
4163         if (!ext4_can_truncate(inode))
4164                 goto out_trace;
4165
4166         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4167                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4168
4169         if (ext4_has_inline_data(inode)) {
4170                 int has_inline = 1;
4171
4172                 err = ext4_inline_data_truncate(inode, &has_inline);
4173                 if (err || has_inline)
4174                         goto out_trace;
4175         }
4176
4177         /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4178         if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4179                 if (ext4_inode_attach_jinode(inode) < 0)
4180                         goto out_trace;
4181         }
4182
4183         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4184                 credits = ext4_writepage_trans_blocks(inode);
4185         else
4186                 credits = ext4_blocks_for_truncate(inode);
4187
4188         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4189         if (IS_ERR(handle)) {
4190                 err = PTR_ERR(handle);
4191                 goto out_trace;
4192         }
4193
4194         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4195                 ext4_block_truncate_page(handle, mapping, inode->i_size);
4196
4197         /*
4198          * We add the inode to the orphan list, so that if this
4199          * truncate spans multiple transactions, and we crash, we will
4200          * resume the truncate when the filesystem recovers.  It also
4201          * marks the inode dirty, to catch the new size.
4202          *
4203          * Implication: the file must always be in a sane, consistent
4204          * truncatable state while each transaction commits.
4205          */
4206         err = ext4_orphan_add(handle, inode);
4207         if (err)
4208                 goto out_stop;
4209
4210         down_write(&EXT4_I(inode)->i_data_sem);
4211
4212         ext4_discard_preallocations(inode, 0);
4213
4214         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4215                 err = ext4_ext_truncate(handle, inode);
4216         else
4217                 ext4_ind_truncate(handle, inode);
4218
4219         up_write(&ei->i_data_sem);
4220         if (err)
4221                 goto out_stop;
4222
4223         if (IS_SYNC(inode))
4224                 ext4_handle_sync(handle);
4225
4226 out_stop:
4227         /*
4228          * If this was a simple ftruncate() and the file will remain alive,
4229          * then we need to clear up the orphan record which we created above.
4230          * However, if this was a real unlink then we were called by
4231          * ext4_evict_inode(), and we allow that function to clean up the
4232          * orphan info for us.
4233          */
4234         if (inode->i_nlink)
4235                 ext4_orphan_del(handle, inode);
4236
4237         inode->i_mtime = inode->i_ctime = current_time(inode);
4238         err2 = ext4_mark_inode_dirty(handle, inode);
4239         if (unlikely(err2 && !err))
4240                 err = err2;
4241         ext4_journal_stop(handle);
4242
4243 out_trace:
4244         trace_ext4_truncate_exit(inode);
4245         return err;
4246 }
4247
4248 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4249 {
4250         if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4251                 return inode_peek_iversion_raw(inode);
4252         else
4253                 return inode_peek_iversion(inode);
4254 }
4255
4256 static int ext4_inode_blocks_set(struct ext4_inode *raw_inode,
4257                                  struct ext4_inode_info *ei)
4258 {
4259         struct inode *inode = &(ei->vfs_inode);
4260         u64 i_blocks = READ_ONCE(inode->i_blocks);
4261         struct super_block *sb = inode->i_sb;
4262
4263         if (i_blocks <= ~0U) {
4264                 /*
4265                  * i_blocks can be represented in a 32 bit variable
4266                  * as multiple of 512 bytes
4267                  */
4268                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4269                 raw_inode->i_blocks_high = 0;
4270                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4271                 return 0;
4272         }
4273
4274         /*
4275          * This should never happen since sb->s_maxbytes should not have
4276          * allowed this, sb->s_maxbytes was set according to the huge_file
4277          * feature in ext4_fill_super().
4278          */
4279         if (!ext4_has_feature_huge_file(sb))
4280                 return -EFSCORRUPTED;
4281
4282         if (i_blocks <= 0xffffffffffffULL) {
4283                 /*
4284                  * i_blocks can be represented in a 48 bit variable
4285                  * as multiple of 512 bytes
4286                  */
4287                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4288                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4289                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4290         } else {
4291                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4292                 /* i_block is stored in file system block size */
4293                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4294                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4295                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4296         }
4297         return 0;
4298 }
4299
4300 static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode)
4301 {
4302         struct ext4_inode_info *ei = EXT4_I(inode);
4303         uid_t i_uid;
4304         gid_t i_gid;
4305         projid_t i_projid;
4306         int block;
4307         int err;
4308
4309         err = ext4_inode_blocks_set(raw_inode, ei);
4310
4311         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4312         i_uid = i_uid_read(inode);
4313         i_gid = i_gid_read(inode);
4314         i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4315         if (!(test_opt(inode->i_sb, NO_UID32))) {
4316                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4317                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4318                 /*
4319                  * Fix up interoperability with old kernels. Otherwise,
4320                  * old inodes get re-used with the upper 16 bits of the
4321                  * uid/gid intact.
4322                  */
4323                 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4324                         raw_inode->i_uid_high = 0;
4325                         raw_inode->i_gid_high = 0;
4326                 } else {
4327                         raw_inode->i_uid_high =
4328                                 cpu_to_le16(high_16_bits(i_uid));
4329                         raw_inode->i_gid_high =
4330                                 cpu_to_le16(high_16_bits(i_gid));
4331                 }
4332         } else {
4333                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4334                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4335                 raw_inode->i_uid_high = 0;
4336                 raw_inode->i_gid_high = 0;
4337         }
4338         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4339
4340         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4341         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4342         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4343         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4344
4345         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4346         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4347         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4348                 raw_inode->i_file_acl_high =
4349                         cpu_to_le16(ei->i_file_acl >> 32);
4350         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4351         ext4_isize_set(raw_inode, ei->i_disksize);
4352
4353         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4354         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4355                 if (old_valid_dev(inode->i_rdev)) {
4356                         raw_inode->i_block[0] =
4357                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4358                         raw_inode->i_block[1] = 0;
4359                 } else {
4360                         raw_inode->i_block[0] = 0;
4361                         raw_inode->i_block[1] =
4362                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4363                         raw_inode->i_block[2] = 0;
4364                 }
4365         } else if (!ext4_has_inline_data(inode)) {
4366                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4367                         raw_inode->i_block[block] = ei->i_data[block];
4368         }
4369
4370         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4371                 u64 ivers = ext4_inode_peek_iversion(inode);
4372
4373                 raw_inode->i_disk_version = cpu_to_le32(ivers);
4374                 if (ei->i_extra_isize) {
4375                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4376                                 raw_inode->i_version_hi =
4377                                         cpu_to_le32(ivers >> 32);
4378                         raw_inode->i_extra_isize =
4379                                 cpu_to_le16(ei->i_extra_isize);
4380                 }
4381         }
4382
4383         if (i_projid != EXT4_DEF_PROJID &&
4384             !ext4_has_feature_project(inode->i_sb))
4385                 err = err ?: -EFSCORRUPTED;
4386
4387         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4388             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4389                 raw_inode->i_projid = cpu_to_le32(i_projid);
4390
4391         ext4_inode_csum_set(inode, raw_inode, ei);
4392         return err;
4393 }
4394
4395 /*
4396  * ext4_get_inode_loc returns with an extra refcount against the inode's
4397  * underlying buffer_head on success. If we pass 'inode' and it does not
4398  * have in-inode xattr, we have all inode data in memory that is needed
4399  * to recreate the on-disk version of this inode.
4400  */
4401 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino,
4402                                 struct inode *inode, struct ext4_iloc *iloc,
4403                                 ext4_fsblk_t *ret_block)
4404 {
4405         struct ext4_group_desc  *gdp;
4406         struct buffer_head      *bh;
4407         ext4_fsblk_t            block;
4408         struct blk_plug         plug;
4409         int                     inodes_per_block, inode_offset;
4410
4411         iloc->bh = NULL;
4412         if (ino < EXT4_ROOT_INO ||
4413             ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4414                 return -EFSCORRUPTED;
4415
4416         iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
4417         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4418         if (!gdp)
4419                 return -EIO;
4420
4421         /*
4422          * Figure out the offset within the block group inode table
4423          */
4424         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4425         inode_offset = ((ino - 1) %
4426                         EXT4_INODES_PER_GROUP(sb));
4427         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4428         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4429
4430         bh = sb_getblk(sb, block);
4431         if (unlikely(!bh))
4432                 return -ENOMEM;
4433         if (ext4_buffer_uptodate(bh))
4434                 goto has_buffer;
4435
4436         lock_buffer(bh);
4437         if (ext4_buffer_uptodate(bh)) {
4438                 /* Someone brought it uptodate while we waited */
4439                 unlock_buffer(bh);
4440                 goto has_buffer;
4441         }
4442
4443         /*
4444          * If we have all information of the inode in memory and this
4445          * is the only valid inode in the block, we need not read the
4446          * block.
4447          */
4448         if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4449                 struct buffer_head *bitmap_bh;
4450                 int i, start;
4451
4452                 start = inode_offset & ~(inodes_per_block - 1);
4453
4454                 /* Is the inode bitmap in cache? */
4455                 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4456                 if (unlikely(!bitmap_bh))
4457                         goto make_io;
4458
4459                 /*
4460                  * If the inode bitmap isn't in cache then the
4461                  * optimisation may end up performing two reads instead
4462                  * of one, so skip it.
4463                  */
4464                 if (!buffer_uptodate(bitmap_bh)) {
4465                         brelse(bitmap_bh);
4466                         goto make_io;
4467                 }
4468                 for (i = start; i < start + inodes_per_block; i++) {
4469                         if (i == inode_offset)
4470                                 continue;
4471                         if (ext4_test_bit(i, bitmap_bh->b_data))
4472                                 break;
4473                 }
4474                 brelse(bitmap_bh);
4475                 if (i == start + inodes_per_block) {
4476                         struct ext4_inode *raw_inode =
4477                                 (struct ext4_inode *) (bh->b_data + iloc->offset);
4478
4479                         /* all other inodes are free, so skip I/O */
4480                         memset(bh->b_data, 0, bh->b_size);
4481                         if (!ext4_test_inode_state(inode, EXT4_STATE_NEW))
4482                                 ext4_fill_raw_inode(inode, raw_inode);
4483                         set_buffer_uptodate(bh);
4484                         unlock_buffer(bh);
4485                         goto has_buffer;
4486                 }
4487         }
4488
4489 make_io:
4490         /*
4491          * If we need to do any I/O, try to pre-readahead extra
4492          * blocks from the inode table.
4493          */
4494         blk_start_plug(&plug);
4495         if (EXT4_SB(sb)->s_inode_readahead_blks) {
4496                 ext4_fsblk_t b, end, table;
4497                 unsigned num;
4498                 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4499
4500                 table = ext4_inode_table(sb, gdp);
4501                 /* s_inode_readahead_blks is always a power of 2 */
4502                 b = block & ~((ext4_fsblk_t) ra_blks - 1);
4503                 if (table > b)
4504                         b = table;
4505                 end = b + ra_blks;
4506                 num = EXT4_INODES_PER_GROUP(sb);
4507                 if (ext4_has_group_desc_csum(sb))
4508                         num -= ext4_itable_unused_count(sb, gdp);
4509                 table += num / inodes_per_block;
4510                 if (end > table)
4511                         end = table;
4512                 while (b <= end)
4513                         ext4_sb_breadahead_unmovable(sb, b++);
4514         }
4515
4516         /*
4517          * There are other valid inodes in the buffer, this inode
4518          * has in-inode xattrs, or we don't have this inode in memory.
4519          * Read the block from disk.
4520          */
4521         trace_ext4_load_inode(sb, ino);
4522         ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL);
4523         blk_finish_plug(&plug);
4524         wait_on_buffer(bh);
4525         ext4_simulate_fail_bh(sb, bh, EXT4_SIM_INODE_EIO);
4526         if (!buffer_uptodate(bh)) {
4527                 if (ret_block)
4528                         *ret_block = block;
4529                 brelse(bh);
4530                 return -EIO;
4531         }
4532 has_buffer:
4533         iloc->bh = bh;
4534         return 0;
4535 }
4536
4537 static int __ext4_get_inode_loc_noinmem(struct inode *inode,
4538                                         struct ext4_iloc *iloc)
4539 {
4540         ext4_fsblk_t err_blk = 0;
4541         int ret;
4542
4543         ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc,
4544                                         &err_blk);
4545
4546         if (ret == -EIO)
4547                 ext4_error_inode_block(inode, err_blk, EIO,
4548                                         "unable to read itable block");
4549
4550         return ret;
4551 }
4552
4553 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4554 {
4555         ext4_fsblk_t err_blk = 0;
4556         int ret;
4557
4558         ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc,
4559                                         &err_blk);
4560
4561         if (ret == -EIO)
4562                 ext4_error_inode_block(inode, err_blk, EIO,
4563                                         "unable to read itable block");
4564
4565         return ret;
4566 }
4567
4568
4569 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino,
4570                           struct ext4_iloc *iloc)
4571 {
4572         return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL);
4573 }
4574
4575 static bool ext4_should_enable_dax(struct inode *inode)
4576 {
4577         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4578
4579         if (test_opt2(inode->i_sb, DAX_NEVER))
4580                 return false;
4581         if (!S_ISREG(inode->i_mode))
4582                 return false;
4583         if (ext4_should_journal_data(inode))
4584                 return false;
4585         if (ext4_has_inline_data(inode))
4586                 return false;
4587         if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4588                 return false;
4589         if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4590                 return false;
4591         if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4592                 return false;
4593         if (test_opt(inode->i_sb, DAX_ALWAYS))
4594                 return true;
4595
4596         return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
4597 }
4598
4599 void ext4_set_inode_flags(struct inode *inode, bool init)
4600 {
4601         unsigned int flags = EXT4_I(inode)->i_flags;
4602         unsigned int new_fl = 0;
4603
4604         WARN_ON_ONCE(IS_DAX(inode) && init);
4605
4606         if (flags & EXT4_SYNC_FL)
4607                 new_fl |= S_SYNC;
4608         if (flags & EXT4_APPEND_FL)
4609                 new_fl |= S_APPEND;
4610         if (flags & EXT4_IMMUTABLE_FL)
4611                 new_fl |= S_IMMUTABLE;
4612         if (flags & EXT4_NOATIME_FL)
4613                 new_fl |= S_NOATIME;
4614         if (flags & EXT4_DIRSYNC_FL)
4615                 new_fl |= S_DIRSYNC;
4616
4617         /* Because of the way inode_set_flags() works we must preserve S_DAX
4618          * here if already set. */
4619         new_fl |= (inode->i_flags & S_DAX);
4620         if (init && ext4_should_enable_dax(inode))
4621                 new_fl |= S_DAX;
4622
4623         if (flags & EXT4_ENCRYPT_FL)
4624                 new_fl |= S_ENCRYPTED;
4625         if (flags & EXT4_CASEFOLD_FL)
4626                 new_fl |= S_CASEFOLD;
4627         if (flags & EXT4_VERITY_FL)
4628                 new_fl |= S_VERITY;
4629         inode_set_flags(inode, new_fl,
4630                         S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4631                         S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4632 }
4633
4634 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4635                                   struct ext4_inode_info *ei)
4636 {
4637         blkcnt_t i_blocks ;
4638         struct inode *inode = &(ei->vfs_inode);
4639         struct super_block *sb = inode->i_sb;
4640
4641         if (ext4_has_feature_huge_file(sb)) {
4642                 /* we are using combined 48 bit field */
4643                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4644                                         le32_to_cpu(raw_inode->i_blocks_lo);
4645                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4646                         /* i_blocks represent file system block size */
4647                         return i_blocks  << (inode->i_blkbits - 9);
4648                 } else {
4649                         return i_blocks;
4650                 }
4651         } else {
4652                 return le32_to_cpu(raw_inode->i_blocks_lo);
4653         }
4654 }
4655
4656 static inline int ext4_iget_extra_inode(struct inode *inode,
4657                                          struct ext4_inode *raw_inode,
4658                                          struct ext4_inode_info *ei)
4659 {
4660         __le32 *magic = (void *)raw_inode +
4661                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4662
4663         if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4664             EXT4_INODE_SIZE(inode->i_sb) &&
4665             *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4666                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4667                 return ext4_find_inline_data_nolock(inode);
4668         } else
4669                 EXT4_I(inode)->i_inline_off = 0;
4670         return 0;
4671 }
4672
4673 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4674 {
4675         if (!ext4_has_feature_project(inode->i_sb))
4676                 return -EOPNOTSUPP;
4677         *projid = EXT4_I(inode)->i_projid;
4678         return 0;
4679 }
4680
4681 /*
4682  * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4683  * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4684  * set.
4685  */
4686 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4687 {
4688         if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4689                 inode_set_iversion_raw(inode, val);
4690         else
4691                 inode_set_iversion_queried(inode, val);
4692 }
4693
4694 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4695                           ext4_iget_flags flags, const char *function,
4696                           unsigned int line)
4697 {
4698         struct ext4_iloc iloc;
4699         struct ext4_inode *raw_inode;
4700         struct ext4_inode_info *ei;
4701         struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4702         struct inode *inode;
4703         journal_t *journal = EXT4_SB(sb)->s_journal;
4704         long ret;
4705         loff_t size;
4706         int block;
4707         uid_t i_uid;
4708         gid_t i_gid;
4709         projid_t i_projid;
4710
4711         if ((!(flags & EXT4_IGET_SPECIAL) &&
4712              ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) ||
4713               ino == le32_to_cpu(es->s_usr_quota_inum) ||
4714               ino == le32_to_cpu(es->s_grp_quota_inum) ||
4715               ino == le32_to_cpu(es->s_prj_quota_inum) ||
4716               ino == le32_to_cpu(es->s_orphan_file_inum))) ||
4717             (ino < EXT4_ROOT_INO) ||
4718             (ino > le32_to_cpu(es->s_inodes_count))) {
4719                 if (flags & EXT4_IGET_HANDLE)
4720                         return ERR_PTR(-ESTALE);
4721                 __ext4_error(sb, function, line, false, EFSCORRUPTED, 0,
4722                              "inode #%lu: comm %s: iget: illegal inode #",
4723                              ino, current->comm);
4724                 return ERR_PTR(-EFSCORRUPTED);
4725         }
4726
4727         inode = iget_locked(sb, ino);
4728         if (!inode)
4729                 return ERR_PTR(-ENOMEM);
4730         if (!(inode->i_state & I_NEW))
4731                 return inode;
4732
4733         ei = EXT4_I(inode);
4734         iloc.bh = NULL;
4735
4736         ret = __ext4_get_inode_loc_noinmem(inode, &iloc);
4737         if (ret < 0)
4738                 goto bad_inode;
4739         raw_inode = ext4_raw_inode(&iloc);
4740
4741         if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4742                 ext4_error_inode(inode, function, line, 0,
4743                                  "iget: root inode unallocated");
4744                 ret = -EFSCORRUPTED;
4745                 goto bad_inode;
4746         }
4747
4748         if ((flags & EXT4_IGET_HANDLE) &&
4749             (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4750                 ret = -ESTALE;
4751                 goto bad_inode;
4752         }
4753
4754         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4755                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4756                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4757                         EXT4_INODE_SIZE(inode->i_sb) ||
4758                     (ei->i_extra_isize & 3)) {
4759                         ext4_error_inode(inode, function, line, 0,
4760                                          "iget: bad extra_isize %u "
4761                                          "(inode size %u)",
4762                                          ei->i_extra_isize,
4763                                          EXT4_INODE_SIZE(inode->i_sb));
4764                         ret = -EFSCORRUPTED;
4765                         goto bad_inode;
4766                 }
4767         } else
4768                 ei->i_extra_isize = 0;
4769
4770         /* Precompute checksum seed for inode metadata */
4771         if (ext4_has_metadata_csum(sb)) {
4772                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4773                 __u32 csum;
4774                 __le32 inum = cpu_to_le32(inode->i_ino);
4775                 __le32 gen = raw_inode->i_generation;
4776                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4777                                    sizeof(inum));
4778                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4779                                               sizeof(gen));
4780         }
4781
4782         if ((!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4783             ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) &&
4784              (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) {
4785                 ext4_error_inode_err(inode, function, line, 0,
4786                                 EFSBADCRC, "iget: checksum invalid");
4787                 ret = -EFSBADCRC;
4788                 goto bad_inode;
4789         }
4790
4791         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4792         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4793         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4794         if (ext4_has_feature_project(sb) &&
4795             EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4796             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4797                 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4798         else
4799                 i_projid = EXT4_DEF_PROJID;
4800
4801         if (!(test_opt(inode->i_sb, NO_UID32))) {
4802                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4803                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4804         }
4805         i_uid_write(inode, i_uid);
4806         i_gid_write(inode, i_gid);
4807         ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4808         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4809
4810         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4811         ei->i_inline_off = 0;
4812         ei->i_dir_start_lookup = 0;
4813         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4814         /* We now have enough fields to check if the inode was active or not.
4815          * This is needed because nfsd might try to access dead inodes
4816          * the test is that same one that e2fsck uses
4817          * NeilBrown 1999oct15
4818          */
4819         if (inode->i_nlink == 0) {
4820                 if ((inode->i_mode == 0 ||
4821                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4822                     ino != EXT4_BOOT_LOADER_INO) {
4823                         /* this inode is deleted */
4824                         ret = -ESTALE;
4825                         goto bad_inode;
4826                 }
4827                 /* The only unlinked inodes we let through here have
4828                  * valid i_mode and are being read by the orphan
4829                  * recovery code: that's fine, we're about to complete
4830                  * the process of deleting those.
4831                  * OR it is the EXT4_BOOT_LOADER_INO which is
4832                  * not initialized on a new filesystem. */
4833         }
4834         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4835         ext4_set_inode_flags(inode, true);
4836         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4837         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4838         if (ext4_has_feature_64bit(sb))
4839                 ei->i_file_acl |=
4840                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4841         inode->i_size = ext4_isize(sb, raw_inode);
4842         if ((size = i_size_read(inode)) < 0) {
4843                 ext4_error_inode(inode, function, line, 0,
4844                                  "iget: bad i_size value: %lld", size);
4845                 ret = -EFSCORRUPTED;
4846                 goto bad_inode;
4847         }
4848         /*
4849          * If dir_index is not enabled but there's dir with INDEX flag set,
4850          * we'd normally treat htree data as empty space. But with metadata
4851          * checksumming that corrupts checksums so forbid that.
4852          */
4853         if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4854             ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4855                 ext4_error_inode(inode, function, line, 0,
4856                          "iget: Dir with htree data on filesystem without dir_index feature.");
4857                 ret = -EFSCORRUPTED;
4858                 goto bad_inode;
4859         }
4860         ei->i_disksize = inode->i_size;
4861 #ifdef CONFIG_QUOTA
4862         ei->i_reserved_quota = 0;
4863 #endif
4864         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4865         ei->i_block_group = iloc.block_group;
4866         ei->i_last_alloc_group = ~0;
4867         /*
4868          * NOTE! The in-memory inode i_data array is in little-endian order
4869          * even on big-endian machines: we do NOT byteswap the block numbers!
4870          */
4871         for (block = 0; block < EXT4_N_BLOCKS; block++)
4872                 ei->i_data[block] = raw_inode->i_block[block];
4873         INIT_LIST_HEAD(&ei->i_orphan);
4874         ext4_fc_init_inode(&ei->vfs_inode);
4875
4876         /*
4877          * Set transaction id's of transactions that have to be committed
4878          * to finish f[data]sync. We set them to currently running transaction
4879          * as we cannot be sure that the inode or some of its metadata isn't
4880          * part of the transaction - the inode could have been reclaimed and
4881          * now it is reread from disk.
4882          */
4883         if (journal) {
4884                 transaction_t *transaction;
4885                 tid_t tid;
4886
4887                 read_lock(&journal->j_state_lock);
4888                 if (journal->j_running_transaction)
4889                         transaction = journal->j_running_transaction;
4890                 else
4891                         transaction = journal->j_committing_transaction;
4892                 if (transaction)
4893                         tid = transaction->t_tid;
4894                 else
4895                         tid = journal->j_commit_sequence;
4896                 read_unlock(&journal->j_state_lock);
4897                 ei->i_sync_tid = tid;
4898                 ei->i_datasync_tid = tid;
4899         }
4900
4901         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4902                 if (ei->i_extra_isize == 0) {
4903                         /* The extra space is currently unused. Use it. */
4904                         BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4905                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4906                                             EXT4_GOOD_OLD_INODE_SIZE;
4907                 } else {
4908                         ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4909                         if (ret)
4910                                 goto bad_inode;
4911                 }
4912         }
4913
4914         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4915         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4916         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4917         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4918
4919         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4920                 u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4921
4922                 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4923                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4924                                 ivers |=
4925                     (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4926                 }
4927                 ext4_inode_set_iversion_queried(inode, ivers);
4928         }
4929
4930         ret = 0;
4931         if (ei->i_file_acl &&
4932             !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
4933                 ext4_error_inode(inode, function, line, 0,
4934                                  "iget: bad extended attribute block %llu",
4935                                  ei->i_file_acl);
4936                 ret = -EFSCORRUPTED;
4937                 goto bad_inode;
4938         } else if (!ext4_has_inline_data(inode)) {
4939                 /* validate the block references in the inode */
4940                 if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) &&
4941                         (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4942                         (S_ISLNK(inode->i_mode) &&
4943                         !ext4_inode_is_fast_symlink(inode)))) {
4944                         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4945                                 ret = ext4_ext_check_inode(inode);
4946                         else
4947                                 ret = ext4_ind_check_inode(inode);
4948                 }
4949         }
4950         if (ret)
4951                 goto bad_inode;
4952
4953         if (S_ISREG(inode->i_mode)) {
4954                 inode->i_op = &ext4_file_inode_operations;
4955                 inode->i_fop = &ext4_file_operations;
4956                 ext4_set_aops(inode);
4957         } else if (S_ISDIR(inode->i_mode)) {
4958                 inode->i_op = &ext4_dir_inode_operations;
4959                 inode->i_fop = &ext4_dir_operations;
4960         } else if (S_ISLNK(inode->i_mode)) {
4961                 /* VFS does not allow setting these so must be corruption */
4962                 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
4963                         ext4_error_inode(inode, function, line, 0,
4964                                          "iget: immutable or append flags "
4965                                          "not allowed on symlinks");
4966                         ret = -EFSCORRUPTED;
4967                         goto bad_inode;
4968                 }
4969                 if (IS_ENCRYPTED(inode)) {
4970                         inode->i_op = &ext4_encrypted_symlink_inode_operations;
4971                         ext4_set_aops(inode);
4972                 } else if (ext4_inode_is_fast_symlink(inode)) {
4973                         inode->i_link = (char *)ei->i_data;
4974                         inode->i_op = &ext4_fast_symlink_inode_operations;
4975                         nd_terminate_link(ei->i_data, inode->i_size,
4976                                 sizeof(ei->i_data) - 1);
4977                 } else {
4978                         inode->i_op = &ext4_symlink_inode_operations;
4979                         ext4_set_aops(inode);
4980                 }
4981                 inode_nohighmem(inode);
4982         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4983               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4984                 inode->i_op = &ext4_special_inode_operations;
4985                 if (raw_inode->i_block[0])
4986                         init_special_inode(inode, inode->i_mode,
4987                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4988                 else
4989                         init_special_inode(inode, inode->i_mode,
4990                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4991         } else if (ino == EXT4_BOOT_LOADER_INO) {
4992                 make_bad_inode(inode);
4993         } else {
4994                 ret = -EFSCORRUPTED;
4995                 ext4_error_inode(inode, function, line, 0,
4996                                  "iget: bogus i_mode (%o)", inode->i_mode);
4997                 goto bad_inode;
4998         }
4999         if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb))
5000                 ext4_error_inode(inode, function, line, 0,
5001                                  "casefold flag without casefold feature");
5002         brelse(iloc.bh);
5003
5004         unlock_new_inode(inode);
5005         return inode;
5006
5007 bad_inode:
5008         brelse(iloc.bh);
5009         iget_failed(inode);
5010         return ERR_PTR(ret);
5011 }
5012
5013 static void __ext4_update_other_inode_time(struct super_block *sb,
5014                                            unsigned long orig_ino,
5015                                            unsigned long ino,
5016                                            struct ext4_inode *raw_inode)
5017 {
5018         struct inode *inode;
5019
5020         inode = find_inode_by_ino_rcu(sb, ino);
5021         if (!inode)
5022                 return;
5023
5024         if (!inode_is_dirtytime_only(inode))
5025                 return;
5026
5027         spin_lock(&inode->i_lock);
5028         if (inode_is_dirtytime_only(inode)) {
5029                 struct ext4_inode_info  *ei = EXT4_I(inode);
5030
5031                 inode->i_state &= ~I_DIRTY_TIME;
5032                 spin_unlock(&inode->i_lock);
5033
5034                 spin_lock(&ei->i_raw_lock);
5035                 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5036                 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5037                 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5038                 ext4_inode_csum_set(inode, raw_inode, ei);
5039                 spin_unlock(&ei->i_raw_lock);
5040                 trace_ext4_other_inode_update_time(inode, orig_ino);
5041                 return;
5042         }
5043         spin_unlock(&inode->i_lock);
5044 }
5045
5046 /*
5047  * Opportunistically update the other time fields for other inodes in
5048  * the same inode table block.
5049  */
5050 static void ext4_update_other_inodes_time(struct super_block *sb,
5051                                           unsigned long orig_ino, char *buf)
5052 {
5053         unsigned long ino;
5054         int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5055         int inode_size = EXT4_INODE_SIZE(sb);
5056
5057         /*
5058          * Calculate the first inode in the inode table block.  Inode
5059          * numbers are one-based.  That is, the first inode in a block
5060          * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5061          */
5062         ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5063         rcu_read_lock();
5064         for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5065                 if (ino == orig_ino)
5066                         continue;
5067                 __ext4_update_other_inode_time(sb, orig_ino, ino,
5068                                                (struct ext4_inode *)buf);
5069         }
5070         rcu_read_unlock();
5071 }
5072
5073 /*
5074  * Post the struct inode info into an on-disk inode location in the
5075  * buffer-cache.  This gobbles the caller's reference to the
5076  * buffer_head in the inode location struct.
5077  *
5078  * The caller must have write access to iloc->bh.
5079  */
5080 static int ext4_do_update_inode(handle_t *handle,
5081                                 struct inode *inode,
5082                                 struct ext4_iloc *iloc)
5083 {
5084         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5085         struct ext4_inode_info *ei = EXT4_I(inode);
5086         struct buffer_head *bh = iloc->bh;
5087         struct super_block *sb = inode->i_sb;
5088         int err;
5089         int need_datasync = 0, set_large_file = 0;
5090
5091         spin_lock(&ei->i_raw_lock);
5092
5093         /*
5094          * For fields not tracked in the in-memory inode, initialise them
5095          * to zero for new inodes.
5096          */
5097         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5098                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5099
5100         if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode))
5101                 need_datasync = 1;
5102         if (ei->i_disksize > 0x7fffffffULL) {
5103                 if (!ext4_has_feature_large_file(sb) ||
5104                     EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV))
5105                         set_large_file = 1;
5106         }
5107
5108         err = ext4_fill_raw_inode(inode, raw_inode);
5109         spin_unlock(&ei->i_raw_lock);
5110         if (err) {
5111                 EXT4_ERROR_INODE(inode, "corrupted inode contents");
5112                 goto out_brelse;
5113         }
5114
5115         if (inode->i_sb->s_flags & SB_LAZYTIME)
5116                 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5117                                               bh->b_data);
5118
5119         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5120         err = ext4_handle_dirty_metadata(handle, NULL, bh);
5121         if (err)
5122                 goto out_error;
5123         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5124         if (set_large_file) {
5125                 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5126                 err = ext4_journal_get_write_access(handle, sb,
5127                                                     EXT4_SB(sb)->s_sbh,
5128                                                     EXT4_JTR_NONE);
5129                 if (err)
5130                         goto out_error;
5131                 lock_buffer(EXT4_SB(sb)->s_sbh);
5132                 ext4_set_feature_large_file(sb);
5133                 ext4_superblock_csum_set(sb);
5134                 unlock_buffer(EXT4_SB(sb)->s_sbh);
5135                 ext4_handle_sync(handle);
5136                 err = ext4_handle_dirty_metadata(handle, NULL,
5137                                                  EXT4_SB(sb)->s_sbh);
5138         }
5139         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5140 out_error:
5141         ext4_std_error(inode->i_sb, err);
5142 out_brelse:
5143         brelse(bh);
5144         return err;
5145 }
5146
5147 /*
5148  * ext4_write_inode()
5149  *
5150  * We are called from a few places:
5151  *
5152  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5153  *   Here, there will be no transaction running. We wait for any running
5154  *   transaction to commit.
5155  *
5156  * - Within flush work (sys_sync(), kupdate and such).
5157  *   We wait on commit, if told to.
5158  *
5159  * - Within iput_final() -> write_inode_now()
5160  *   We wait on commit, if told to.
5161  *
5162  * In all cases it is actually safe for us to return without doing anything,
5163  * because the inode has been copied into a raw inode buffer in
5164  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5165  * writeback.
5166  *
5167  * Note that we are absolutely dependent upon all inode dirtiers doing the
5168  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5169  * which we are interested.
5170  *
5171  * It would be a bug for them to not do this.  The code:
5172  *
5173  *      mark_inode_dirty(inode)
5174  *      stuff();
5175  *      inode->i_size = expr;
5176  *
5177  * is in error because write_inode() could occur while `stuff()' is running,
5178  * and the new i_size will be lost.  Plus the inode will no longer be on the
5179  * superblock's dirty inode list.
5180  */
5181 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5182 {
5183         int err;
5184
5185         if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5186             sb_rdonly(inode->i_sb))
5187                 return 0;
5188
5189         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5190                 return -EIO;
5191
5192         if (EXT4_SB(inode->i_sb)->s_journal) {
5193                 if (ext4_journal_current_handle()) {
5194                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5195                         dump_stack();
5196                         return -EIO;
5197                 }
5198
5199                 /*
5200                  * No need to force transaction in WB_SYNC_NONE mode. Also
5201                  * ext4_sync_fs() will force the commit after everything is
5202                  * written.
5203                  */
5204                 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5205                         return 0;
5206
5207                 err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal,
5208                                                 EXT4_I(inode)->i_sync_tid);
5209         } else {
5210                 struct ext4_iloc iloc;
5211
5212                 err = __ext4_get_inode_loc_noinmem(inode, &iloc);
5213                 if (err)
5214                         return err;
5215                 /*
5216                  * sync(2) will flush the whole buffer cache. No need to do
5217                  * it here separately for each inode.
5218                  */
5219                 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5220                         sync_dirty_buffer(iloc.bh);
5221                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5222                         ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5223                                                "IO error syncing inode");
5224                         err = -EIO;
5225                 }
5226                 brelse(iloc.bh);
5227         }
5228         return err;
5229 }
5230
5231 /*
5232  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5233  * buffers that are attached to a page stradding i_size and are undergoing
5234  * commit. In that case we have to wait for commit to finish and try again.
5235  */
5236 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5237 {
5238         struct page *page;
5239         unsigned offset;
5240         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5241         tid_t commit_tid = 0;
5242         int ret;
5243
5244         offset = inode->i_size & (PAGE_SIZE - 1);
5245         /*
5246          * If the page is fully truncated, we don't need to wait for any commit
5247          * (and we even should not as __ext4_journalled_invalidatepage() may
5248          * strip all buffers from the page but keep the page dirty which can then
5249          * confuse e.g. concurrent ext4_writepage() seeing dirty page without
5250          * buffers). Also we don't need to wait for any commit if all buffers in
5251          * the page remain valid. This is most beneficial for the common case of
5252          * blocksize == PAGESIZE.
5253          */
5254         if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5255                 return;
5256         while (1) {
5257                 page = find_lock_page(inode->i_mapping,
5258                                       inode->i_size >> PAGE_SHIFT);
5259                 if (!page)
5260                         return;
5261                 ret = __ext4_journalled_invalidatepage(page, offset,
5262                                                 PAGE_SIZE - offset);
5263                 unlock_page(page);
5264                 put_page(page);
5265                 if (ret != -EBUSY)
5266                         return;
5267                 commit_tid = 0;
5268                 read_lock(&journal->j_state_lock);
5269                 if (journal->j_committing_transaction)
5270                         commit_tid = journal->j_committing_transaction->t_tid;
5271                 read_unlock(&journal->j_state_lock);
5272                 if (commit_tid)
5273                         jbd2_log_wait_commit(journal, commit_tid);
5274         }
5275 }
5276
5277 /*
5278  * ext4_setattr()
5279  *
5280  * Called from notify_change.
5281  *
5282  * We want to trap VFS attempts to truncate the file as soon as
5283  * possible.  In particular, we want to make sure that when the VFS
5284  * shrinks i_size, we put the inode on the orphan list and modify
5285  * i_disksize immediately, so that during the subsequent flushing of
5286  * dirty pages and freeing of disk blocks, we can guarantee that any
5287  * commit will leave the blocks being flushed in an unused state on
5288  * disk.  (On recovery, the inode will get truncated and the blocks will
5289  * be freed, so we have a strong guarantee that no future commit will
5290  * leave these blocks visible to the user.)
5291  *
5292  * Another thing we have to assure is that if we are in ordered mode
5293  * and inode is still attached to the committing transaction, we must
5294  * we start writeout of all the dirty pages which are being truncated.
5295  * This way we are sure that all the data written in the previous
5296  * transaction are already on disk (truncate waits for pages under
5297  * writeback).
5298  *
5299  * Called with inode->i_rwsem down.
5300  */
5301 int ext4_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
5302                  struct iattr *attr)
5303 {
5304         struct inode *inode = d_inode(dentry);
5305         int error, rc = 0;
5306         int orphan = 0;
5307         const unsigned int ia_valid = attr->ia_valid;
5308
5309         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5310                 return -EIO;
5311
5312         if (unlikely(IS_IMMUTABLE(inode)))
5313                 return -EPERM;
5314
5315         if (unlikely(IS_APPEND(inode) &&
5316                      (ia_valid & (ATTR_MODE | ATTR_UID |
5317                                   ATTR_GID | ATTR_TIMES_SET))))
5318                 return -EPERM;
5319
5320         error = setattr_prepare(mnt_userns, dentry, attr);
5321         if (error)
5322                 return error;
5323
5324         error = fscrypt_prepare_setattr(dentry, attr);
5325         if (error)
5326                 return error;
5327
5328         error = fsverity_prepare_setattr(dentry, attr);
5329         if (error)
5330                 return error;
5331
5332         if (is_quota_modification(inode, attr)) {
5333                 error = dquot_initialize(inode);
5334                 if (error)
5335                         return error;
5336         }
5337
5338         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5339             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5340                 handle_t *handle;
5341
5342                 /* (user+group)*(old+new) structure, inode write (sb,
5343                  * inode block, ? - but truncate inode update has it) */
5344                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5345                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5346                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5347                 if (IS_ERR(handle)) {
5348                         error = PTR_ERR(handle);
5349                         goto err_out;
5350                 }
5351
5352                 /* dquot_transfer() calls back ext4_get_inode_usage() which
5353                  * counts xattr inode references.
5354                  */
5355                 down_read(&EXT4_I(inode)->xattr_sem);
5356                 error = dquot_transfer(inode, attr);
5357                 up_read(&EXT4_I(inode)->xattr_sem);
5358
5359                 if (error) {
5360                         ext4_journal_stop(handle);
5361                         return error;
5362                 }
5363                 /* Update corresponding info in inode so that everything is in
5364                  * one transaction */
5365                 if (attr->ia_valid & ATTR_UID)
5366                         inode->i_uid = attr->ia_uid;
5367                 if (attr->ia_valid & ATTR_GID)
5368                         inode->i_gid = attr->ia_gid;
5369                 error = ext4_mark_inode_dirty(handle, inode);
5370                 ext4_journal_stop(handle);
5371                 if (unlikely(error)) {
5372                         return error;
5373                 }
5374         }
5375
5376         if (attr->ia_valid & ATTR_SIZE) {
5377                 handle_t *handle;
5378                 loff_t oldsize = inode->i_size;
5379                 int shrink = (attr->ia_size < inode->i_size);
5380
5381                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5382                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5383
5384                         if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5385                                 return -EFBIG;
5386                         }
5387                 }
5388                 if (!S_ISREG(inode->i_mode)) {
5389                         return -EINVAL;
5390                 }
5391
5392                 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5393                         inode_inc_iversion(inode);
5394
5395                 if (shrink) {
5396                         if (ext4_should_order_data(inode)) {
5397                                 error = ext4_begin_ordered_truncate(inode,
5398                                                             attr->ia_size);
5399                                 if (error)
5400                                         goto err_out;
5401                         }
5402                         /*
5403                          * Blocks are going to be removed from the inode. Wait
5404                          * for dio in flight.
5405                          */
5406                         inode_dio_wait(inode);
5407                 }
5408
5409                 filemap_invalidate_lock(inode->i_mapping);
5410
5411                 rc = ext4_break_layouts(inode);
5412                 if (rc) {
5413                         filemap_invalidate_unlock(inode->i_mapping);
5414                         goto err_out;
5415                 }
5416
5417                 if (attr->ia_size != inode->i_size) {
5418                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5419                         if (IS_ERR(handle)) {
5420                                 error = PTR_ERR(handle);
5421                                 goto out_mmap_sem;
5422                         }
5423                         if (ext4_handle_valid(handle) && shrink) {
5424                                 error = ext4_orphan_add(handle, inode);
5425                                 orphan = 1;
5426                         }
5427                         /*
5428                          * Update c/mtime on truncate up, ext4_truncate() will
5429                          * update c/mtime in shrink case below
5430                          */
5431                         if (!shrink) {
5432                                 inode->i_mtime = current_time(inode);
5433                                 inode->i_ctime = inode->i_mtime;
5434                         }
5435
5436                         if (shrink)
5437                                 ext4_fc_track_range(handle, inode,
5438                                         (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5439                                         inode->i_sb->s_blocksize_bits,
5440                                         EXT_MAX_BLOCKS - 1);
5441                         else
5442                                 ext4_fc_track_range(
5443                                         handle, inode,
5444                                         (oldsize > 0 ? oldsize - 1 : oldsize) >>
5445                                         inode->i_sb->s_blocksize_bits,
5446                                         (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5447                                         inode->i_sb->s_blocksize_bits);
5448
5449                         down_write(&EXT4_I(inode)->i_data_sem);
5450                         EXT4_I(inode)->i_disksize = attr->ia_size;
5451                         rc = ext4_mark_inode_dirty(handle, inode);
5452                         if (!error)
5453                                 error = rc;
5454                         /*
5455                          * We have to update i_size under i_data_sem together
5456                          * with i_disksize to avoid races with writeback code
5457                          * running ext4_wb_update_i_disksize().
5458                          */
5459                         if (!error)
5460                                 i_size_write(inode, attr->ia_size);
5461                         up_write(&EXT4_I(inode)->i_data_sem);
5462                         ext4_journal_stop(handle);
5463                         if (error)
5464                                 goto out_mmap_sem;
5465                         if (!shrink) {
5466                                 pagecache_isize_extended(inode, oldsize,
5467                                                          inode->i_size);
5468                         } else if (ext4_should_journal_data(inode)) {
5469                                 ext4_wait_for_tail_page_commit(inode);
5470                         }
5471                 }
5472
5473                 /*
5474                  * Truncate pagecache after we've waited for commit
5475                  * in data=journal mode to make pages freeable.
5476                  */
5477                 truncate_pagecache(inode, inode->i_size);
5478                 /*
5479                  * Call ext4_truncate() even if i_size didn't change to
5480                  * truncate possible preallocated blocks.
5481                  */
5482                 if (attr->ia_size <= oldsize) {
5483                         rc = ext4_truncate(inode);
5484                         if (rc)
5485                                 error = rc;
5486                 }
5487 out_mmap_sem:
5488                 filemap_invalidate_unlock(inode->i_mapping);
5489         }
5490
5491         if (!error) {
5492                 setattr_copy(mnt_userns, inode, attr);
5493                 mark_inode_dirty(inode);
5494         }
5495
5496         /*
5497          * If the call to ext4_truncate failed to get a transaction handle at
5498          * all, we need to clean up the in-core orphan list manually.
5499          */
5500         if (orphan && inode->i_nlink)
5501                 ext4_orphan_del(NULL, inode);
5502
5503         if (!error && (ia_valid & ATTR_MODE))
5504                 rc = posix_acl_chmod(mnt_userns, inode, inode->i_mode);
5505
5506 err_out:
5507         if  (error)
5508                 ext4_std_error(inode->i_sb, error);
5509         if (!error)
5510                 error = rc;
5511         return error;
5512 }
5513
5514 int ext4_getattr(struct user_namespace *mnt_userns, const struct path *path,
5515                  struct kstat *stat, u32 request_mask, unsigned int query_flags)
5516 {
5517         struct inode *inode = d_inode(path->dentry);
5518         struct ext4_inode *raw_inode;
5519         struct ext4_inode_info *ei = EXT4_I(inode);
5520         unsigned int flags;
5521
5522         if ((request_mask & STATX_BTIME) &&
5523             EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5524                 stat->result_mask |= STATX_BTIME;
5525                 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5526                 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5527         }
5528
5529         flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5530         if (flags & EXT4_APPEND_FL)
5531                 stat->attributes |= STATX_ATTR_APPEND;
5532         if (flags & EXT4_COMPR_FL)
5533                 stat->attributes |= STATX_ATTR_COMPRESSED;
5534         if (flags & EXT4_ENCRYPT_FL)
5535                 stat->attributes |= STATX_ATTR_ENCRYPTED;
5536         if (flags & EXT4_IMMUTABLE_FL)
5537                 stat->attributes |= STATX_ATTR_IMMUTABLE;
5538         if (flags & EXT4_NODUMP_FL)
5539                 stat->attributes |= STATX_ATTR_NODUMP;
5540         if (flags & EXT4_VERITY_FL)
5541                 stat->attributes |= STATX_ATTR_VERITY;
5542
5543         stat->attributes_mask |= (STATX_ATTR_APPEND |
5544                                   STATX_ATTR_COMPRESSED |
5545                                   STATX_ATTR_ENCRYPTED |
5546                                   STATX_ATTR_IMMUTABLE |
5547                                   STATX_ATTR_NODUMP |
5548                                   STATX_ATTR_VERITY);
5549
5550         generic_fillattr(mnt_userns, inode, stat);
5551         return 0;
5552 }
5553
5554 int ext4_file_getattr(struct user_namespace *mnt_userns,
5555                       const struct path *path, struct kstat *stat,
5556                       u32 request_mask, unsigned int query_flags)
5557 {
5558         struct inode *inode = d_inode(path->dentry);
5559         u64 delalloc_blocks;
5560
5561         ext4_getattr(mnt_userns, path, stat, request_mask, query_flags);
5562
5563         /*
5564          * If there is inline data in the inode, the inode will normally not
5565          * have data blocks allocated (it may have an external xattr block).
5566          * Report at least one sector for such files, so tools like tar, rsync,
5567          * others don't incorrectly think the file is completely sparse.
5568          */
5569         if (unlikely(ext4_has_inline_data(inode)))
5570                 stat->blocks += (stat->size + 511) >> 9;
5571
5572         /*
5573          * We can't update i_blocks if the block allocation is delayed
5574          * otherwise in the case of system crash before the real block
5575          * allocation is done, we will have i_blocks inconsistent with
5576          * on-disk file blocks.
5577          * We always keep i_blocks updated together with real
5578          * allocation. But to not confuse with user, stat
5579          * will return the blocks that include the delayed allocation
5580          * blocks for this file.
5581          */
5582         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5583                                    EXT4_I(inode)->i_reserved_data_blocks);
5584         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5585         return 0;
5586 }
5587
5588 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5589                                    int pextents)
5590 {
5591         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5592                 return ext4_ind_trans_blocks(inode, lblocks);
5593         return ext4_ext_index_trans_blocks(inode, pextents);
5594 }
5595
5596 /*
5597  * Account for index blocks, block groups bitmaps and block group
5598  * descriptor blocks if modify datablocks and index blocks
5599  * worse case, the indexs blocks spread over different block groups
5600  *
5601  * If datablocks are discontiguous, they are possible to spread over
5602  * different block groups too. If they are contiguous, with flexbg,
5603  * they could still across block group boundary.
5604  *
5605  * Also account for superblock, inode, quota and xattr blocks
5606  */
5607 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5608                                   int pextents)
5609 {
5610         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5611         int gdpblocks;
5612         int idxblocks;
5613         int ret = 0;
5614
5615         /*
5616          * How many index blocks need to touch to map @lblocks logical blocks
5617          * to @pextents physical extents?
5618          */
5619         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5620
5621         ret = idxblocks;
5622
5623         /*
5624          * Now let's see how many group bitmaps and group descriptors need
5625          * to account
5626          */
5627         groups = idxblocks + pextents;
5628         gdpblocks = groups;
5629         if (groups > ngroups)
5630                 groups = ngroups;
5631         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5632                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5633
5634         /* bitmaps and block group descriptor blocks */
5635         ret += groups + gdpblocks;
5636
5637         /* Blocks for super block, inode, quota and xattr blocks */
5638         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5639
5640         return ret;
5641 }
5642
5643 /*
5644  * Calculate the total number of credits to reserve to fit
5645  * the modification of a single pages into a single transaction,
5646  * which may include multiple chunks of block allocations.
5647  *
5648  * This could be called via ext4_write_begin()
5649  *
5650  * We need to consider the worse case, when
5651  * one new block per extent.
5652  */
5653 int ext4_writepage_trans_blocks(struct inode *inode)
5654 {
5655         int bpp = ext4_journal_blocks_per_page(inode);
5656         int ret;
5657
5658         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5659
5660         /* Account for data blocks for journalled mode */
5661         if (ext4_should_journal_data(inode))
5662                 ret += bpp;
5663         return ret;
5664 }
5665
5666 /*
5667  * Calculate the journal credits for a chunk of data modification.
5668  *
5669  * This is called from DIO, fallocate or whoever calling
5670  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5671  *
5672  * journal buffers for data blocks are not included here, as DIO
5673  * and fallocate do no need to journal data buffers.
5674  */
5675 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5676 {
5677         return ext4_meta_trans_blocks(inode, nrblocks, 1);
5678 }
5679
5680 /*
5681  * The caller must have previously called ext4_reserve_inode_write().
5682  * Give this, we know that the caller already has write access to iloc->bh.
5683  */
5684 int ext4_mark_iloc_dirty(handle_t *handle,
5685                          struct inode *inode, struct ext4_iloc *iloc)
5686 {
5687         int err = 0;
5688
5689         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5690                 put_bh(iloc->bh);
5691                 return -EIO;
5692         }
5693         ext4_fc_track_inode(handle, inode);
5694
5695         if (IS_I_VERSION(inode))
5696                 inode_inc_iversion(inode);
5697
5698         /* the do_update_inode consumes one bh->b_count */
5699         get_bh(iloc->bh);
5700
5701         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5702         err = ext4_do_update_inode(handle, inode, iloc);
5703         put_bh(iloc->bh);
5704         return err;
5705 }
5706
5707 /*
5708  * On success, We end up with an outstanding reference count against
5709  * iloc->bh.  This _must_ be cleaned up later.
5710  */
5711
5712 int
5713 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5714                          struct ext4_iloc *iloc)
5715 {
5716         int err;
5717
5718         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5719                 return -EIO;
5720
5721         err = ext4_get_inode_loc(inode, iloc);
5722         if (!err) {
5723                 BUFFER_TRACE(iloc->bh, "get_write_access");
5724                 err = ext4_journal_get_write_access(handle, inode->i_sb,
5725                                                     iloc->bh, EXT4_JTR_NONE);
5726                 if (err) {
5727                         brelse(iloc->bh);
5728                         iloc->bh = NULL;
5729                 }
5730         }
5731         ext4_std_error(inode->i_sb, err);
5732         return err;
5733 }
5734
5735 static int __ext4_expand_extra_isize(struct inode *inode,
5736                                      unsigned int new_extra_isize,
5737                                      struct ext4_iloc *iloc,
5738                                      handle_t *handle, int *no_expand)
5739 {
5740         struct ext4_inode *raw_inode;
5741         struct ext4_xattr_ibody_header *header;
5742         unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5743         struct ext4_inode_info *ei = EXT4_I(inode);
5744         int error;
5745
5746         /* this was checked at iget time, but double check for good measure */
5747         if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5748             (ei->i_extra_isize & 3)) {
5749                 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5750                                  ei->i_extra_isize,
5751                                  EXT4_INODE_SIZE(inode->i_sb));
5752                 return -EFSCORRUPTED;
5753         }
5754         if ((new_extra_isize < ei->i_extra_isize) ||
5755             (new_extra_isize < 4) ||
5756             (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5757                 return -EINVAL; /* Should never happen */
5758
5759         raw_inode = ext4_raw_inode(iloc);
5760
5761         header = IHDR(inode, raw_inode);
5762
5763         /* No extended attributes present */
5764         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5765             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5766                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5767                        EXT4_I(inode)->i_extra_isize, 0,
5768                        new_extra_isize - EXT4_I(inode)->i_extra_isize);
5769                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5770                 return 0;
5771         }
5772
5773         /* try to expand with EAs present */
5774         error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5775                                            raw_inode, handle);
5776         if (error) {
5777                 /*
5778                  * Inode size expansion failed; don't try again
5779                  */
5780                 *no_expand = 1;
5781         }
5782
5783         return error;
5784 }
5785
5786 /*
5787  * Expand an inode by new_extra_isize bytes.
5788  * Returns 0 on success or negative error number on failure.
5789  */
5790 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5791                                           unsigned int new_extra_isize,
5792                                           struct ext4_iloc iloc,
5793                                           handle_t *handle)
5794 {
5795         int no_expand;
5796         int error;
5797
5798         if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5799                 return -EOVERFLOW;
5800
5801         /*
5802          * In nojournal mode, we can immediately attempt to expand
5803          * the inode.  When journaled, we first need to obtain extra
5804          * buffer credits since we may write into the EA block
5805          * with this same handle. If journal_extend fails, then it will
5806          * only result in a minor loss of functionality for that inode.
5807          * If this is felt to be critical, then e2fsck should be run to
5808          * force a large enough s_min_extra_isize.
5809          */
5810         if (ext4_journal_extend(handle,
5811                                 EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5812                 return -ENOSPC;
5813
5814         if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5815                 return -EBUSY;
5816
5817         error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5818                                           handle, &no_expand);
5819         ext4_write_unlock_xattr(inode, &no_expand);
5820
5821         return error;
5822 }
5823
5824 int ext4_expand_extra_isize(struct inode *inode,
5825                             unsigned int new_extra_isize,
5826                             struct ext4_iloc *iloc)
5827 {
5828         handle_t *handle;
5829         int no_expand;
5830         int error, rc;
5831
5832         if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5833                 brelse(iloc->bh);
5834                 return -EOVERFLOW;
5835         }
5836
5837         handle = ext4_journal_start(inode, EXT4_HT_INODE,
5838                                     EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5839         if (IS_ERR(handle)) {
5840                 error = PTR_ERR(handle);
5841                 brelse(iloc->bh);
5842                 return error;
5843         }
5844
5845         ext4_write_lock_xattr(inode, &no_expand);
5846
5847         BUFFER_TRACE(iloc->bh, "get_write_access");
5848         error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh,
5849                                               EXT4_JTR_NONE);
5850         if (error) {
5851                 brelse(iloc->bh);
5852                 goto out_unlock;
5853         }
5854
5855         error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5856                                           handle, &no_expand);
5857
5858         rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5859         if (!error)
5860                 error = rc;
5861
5862 out_unlock:
5863         ext4_write_unlock_xattr(inode, &no_expand);
5864         ext4_journal_stop(handle);
5865         return error;
5866 }
5867
5868 /*
5869  * What we do here is to mark the in-core inode as clean with respect to inode
5870  * dirtiness (it may still be data-dirty).
5871  * This means that the in-core inode may be reaped by prune_icache
5872  * without having to perform any I/O.  This is a very good thing,
5873  * because *any* task may call prune_icache - even ones which
5874  * have a transaction open against a different journal.
5875  *
5876  * Is this cheating?  Not really.  Sure, we haven't written the
5877  * inode out, but prune_icache isn't a user-visible syncing function.
5878  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5879  * we start and wait on commits.
5880  */
5881 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
5882                                 const char *func, unsigned int line)
5883 {
5884         struct ext4_iloc iloc;
5885         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5886         int err;
5887
5888         might_sleep();
5889         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5890         err = ext4_reserve_inode_write(handle, inode, &iloc);
5891         if (err)
5892                 goto out;
5893
5894         if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5895                 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5896                                                iloc, handle);
5897
5898         err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5899 out:
5900         if (unlikely(err))
5901                 ext4_error_inode_err(inode, func, line, 0, err,
5902                                         "mark_inode_dirty error");
5903         return err;
5904 }
5905
5906 /*
5907  * ext4_dirty_inode() is called from __mark_inode_dirty()
5908  *
5909  * We're really interested in the case where a file is being extended.
5910  * i_size has been changed by generic_commit_write() and we thus need
5911  * to include the updated inode in the current transaction.
5912  *
5913  * Also, dquot_alloc_block() will always dirty the inode when blocks
5914  * are allocated to the file.
5915  *
5916  * If the inode is marked synchronous, we don't honour that here - doing
5917  * so would cause a commit on atime updates, which we don't bother doing.
5918  * We handle synchronous inodes at the highest possible level.
5919  */
5920 void ext4_dirty_inode(struct inode *inode, int flags)
5921 {
5922         handle_t *handle;
5923
5924         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5925         if (IS_ERR(handle))
5926                 return;
5927         ext4_mark_inode_dirty(handle, inode);
5928         ext4_journal_stop(handle);
5929 }
5930
5931 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5932 {
5933         journal_t *journal;
5934         handle_t *handle;
5935         int err;
5936         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5937
5938         /*
5939          * We have to be very careful here: changing a data block's
5940          * journaling status dynamically is dangerous.  If we write a
5941          * data block to the journal, change the status and then delete
5942          * that block, we risk forgetting to revoke the old log record
5943          * from the journal and so a subsequent replay can corrupt data.
5944          * So, first we make sure that the journal is empty and that
5945          * nobody is changing anything.
5946          */
5947
5948         journal = EXT4_JOURNAL(inode);
5949         if (!journal)
5950                 return 0;
5951         if (is_journal_aborted(journal))
5952                 return -EROFS;
5953
5954         /* Wait for all existing dio workers */
5955         inode_dio_wait(inode);
5956
5957         /*
5958          * Before flushing the journal and switching inode's aops, we have
5959          * to flush all dirty data the inode has. There can be outstanding
5960          * delayed allocations, there can be unwritten extents created by
5961          * fallocate or buffered writes in dioread_nolock mode covered by
5962          * dirty data which can be converted only after flushing the dirty
5963          * data (and journalled aops don't know how to handle these cases).
5964          */
5965         if (val) {
5966                 filemap_invalidate_lock(inode->i_mapping);
5967                 err = filemap_write_and_wait(inode->i_mapping);
5968                 if (err < 0) {
5969                         filemap_invalidate_unlock(inode->i_mapping);
5970                         return err;
5971                 }
5972         }
5973
5974         percpu_down_write(&sbi->s_writepages_rwsem);
5975         jbd2_journal_lock_updates(journal);
5976
5977         /*
5978          * OK, there are no updates running now, and all cached data is
5979          * synced to disk.  We are now in a completely consistent state
5980          * which doesn't have anything in the journal, and we know that
5981          * no filesystem updates are running, so it is safe to modify
5982          * the inode's in-core data-journaling state flag now.
5983          */
5984
5985         if (val)
5986                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5987         else {
5988                 err = jbd2_journal_flush(journal, 0);
5989                 if (err < 0) {
5990                         jbd2_journal_unlock_updates(journal);
5991                         percpu_up_write(&sbi->s_writepages_rwsem);
5992                         return err;
5993                 }
5994                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5995         }
5996         ext4_set_aops(inode);
5997
5998         jbd2_journal_unlock_updates(journal);
5999         percpu_up_write(&sbi->s_writepages_rwsem);
6000
6001         if (val)
6002                 filemap_invalidate_unlock(inode->i_mapping);
6003
6004         /* Finally we can mark the inode as dirty. */
6005
6006         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6007         if (IS_ERR(handle))
6008                 return PTR_ERR(handle);
6009
6010         ext4_fc_mark_ineligible(inode->i_sb,
6011                 EXT4_FC_REASON_JOURNAL_FLAG_CHANGE, handle);
6012         err = ext4_mark_inode_dirty(handle, inode);
6013         ext4_handle_sync(handle);
6014         ext4_journal_stop(handle);
6015         ext4_std_error(inode->i_sb, err);
6016
6017         return err;
6018 }
6019
6020 static int ext4_bh_unmapped(handle_t *handle, struct inode *inode,
6021                             struct buffer_head *bh)
6022 {
6023         return !buffer_mapped(bh);
6024 }
6025
6026 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6027 {
6028         struct vm_area_struct *vma = vmf->vma;
6029         struct page *page = vmf->page;
6030         loff_t size;
6031         unsigned long len;
6032         int err;
6033         vm_fault_t ret;
6034         struct file *file = vma->vm_file;
6035         struct inode *inode = file_inode(file);
6036         struct address_space *mapping = inode->i_mapping;
6037         handle_t *handle;
6038         get_block_t *get_block;
6039         int retries = 0;
6040
6041         if (unlikely(IS_IMMUTABLE(inode)))
6042                 return VM_FAULT_SIGBUS;
6043
6044         sb_start_pagefault(inode->i_sb);
6045         file_update_time(vma->vm_file);
6046
6047         filemap_invalidate_lock_shared(mapping);
6048
6049         err = ext4_convert_inline_data(inode);
6050         if (err)
6051                 goto out_ret;
6052
6053         /*
6054          * On data journalling we skip straight to the transaction handle:
6055          * there's no delalloc; page truncated will be checked later; the
6056          * early return w/ all buffers mapped (calculates size/len) can't
6057          * be used; and there's no dioread_nolock, so only ext4_get_block.
6058          */
6059         if (ext4_should_journal_data(inode))
6060                 goto retry_alloc;
6061
6062         /* Delalloc case is easy... */
6063         if (test_opt(inode->i_sb, DELALLOC) &&
6064             !ext4_nonda_switch(inode->i_sb)) {
6065                 do {
6066                         err = block_page_mkwrite(vma, vmf,
6067                                                    ext4_da_get_block_prep);
6068                 } while (err == -ENOSPC &&
6069                        ext4_should_retry_alloc(inode->i_sb, &retries));
6070                 goto out_ret;
6071         }
6072
6073         lock_page(page);
6074         size = i_size_read(inode);
6075         /* Page got truncated from under us? */
6076         if (page->mapping != mapping || page_offset(page) > size) {
6077                 unlock_page(page);
6078                 ret = VM_FAULT_NOPAGE;
6079                 goto out;
6080         }
6081
6082         if (page->index == size >> PAGE_SHIFT)
6083                 len = size & ~PAGE_MASK;
6084         else
6085                 len = PAGE_SIZE;
6086         /*
6087          * Return if we have all the buffers mapped. This avoids the need to do
6088          * journal_start/journal_stop which can block and take a long time
6089          *
6090          * This cannot be done for data journalling, as we have to add the
6091          * inode to the transaction's list to writeprotect pages on commit.
6092          */
6093         if (page_has_buffers(page)) {
6094                 if (!ext4_walk_page_buffers(NULL, inode, page_buffers(page),
6095                                             0, len, NULL,
6096                                             ext4_bh_unmapped)) {
6097                         /* Wait so that we don't change page under IO */
6098                         wait_for_stable_page(page);
6099                         ret = VM_FAULT_LOCKED;
6100                         goto out;
6101                 }
6102         }
6103         unlock_page(page);
6104         /* OK, we need to fill the hole... */
6105         if (ext4_should_dioread_nolock(inode))
6106                 get_block = ext4_get_block_unwritten;
6107         else
6108                 get_block = ext4_get_block;
6109 retry_alloc:
6110         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6111                                     ext4_writepage_trans_blocks(inode));
6112         if (IS_ERR(handle)) {
6113                 ret = VM_FAULT_SIGBUS;
6114                 goto out;
6115         }
6116         /*
6117          * Data journalling can't use block_page_mkwrite() because it
6118          * will set_buffer_dirty() before do_journal_get_write_access()
6119          * thus might hit warning messages for dirty metadata buffers.
6120          */
6121         if (!ext4_should_journal_data(inode)) {
6122                 err = block_page_mkwrite(vma, vmf, get_block);
6123         } else {
6124                 lock_page(page);
6125                 size = i_size_read(inode);
6126                 /* Page got truncated from under us? */
6127                 if (page->mapping != mapping || page_offset(page) > size) {
6128                         ret = VM_FAULT_NOPAGE;
6129                         goto out_error;
6130                 }
6131
6132                 if (page->index == size >> PAGE_SHIFT)
6133                         len = size & ~PAGE_MASK;
6134                 else
6135                         len = PAGE_SIZE;
6136
6137                 err = __block_write_begin(page, 0, len, ext4_get_block);
6138                 if (!err) {
6139                         ret = VM_FAULT_SIGBUS;
6140                         if (ext4_walk_page_buffers(handle, inode,
6141                                         page_buffers(page), 0, len, NULL,
6142                                         do_journal_get_write_access))
6143                                 goto out_error;
6144                         if (ext4_walk_page_buffers(handle, inode,
6145                                         page_buffers(page), 0, len, NULL,
6146                                         write_end_fn))
6147                                 goto out_error;
6148                         if (ext4_jbd2_inode_add_write(handle, inode,
6149                                                       page_offset(page), len))
6150                                 goto out_error;
6151                         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6152                 } else {
6153                         unlock_page(page);
6154                 }
6155         }
6156         ext4_journal_stop(handle);
6157         if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6158                 goto retry_alloc;
6159 out_ret:
6160         ret = block_page_mkwrite_return(err);
6161 out:
6162         filemap_invalidate_unlock_shared(mapping);
6163         sb_end_pagefault(inode->i_sb);
6164         return ret;
6165 out_error:
6166         unlock_page(page);
6167         ext4_journal_stop(handle);
6168         goto out;
6169 }