ext4: support direct I/O with fscrypt using blk-crypto
[linux-2.6-microblaze.git] / fs / ext4 / inode.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  64-bit file support on 64-bit platforms by Jakub Jelinek
17  *      (jj@sunsite.ms.mff.cuni.cz)
18  *
19  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20  */
21
22 #include <linux/fs.h>
23 #include <linux/mount.h>
24 #include <linux/time.h>
25 #include <linux/highuid.h>
26 #include <linux/pagemap.h>
27 #include <linux/dax.h>
28 #include <linux/quotaops.h>
29 #include <linux/string.h>
30 #include <linux/buffer_head.h>
31 #include <linux/writeback.h>
32 #include <linux/pagevec.h>
33 #include <linux/mpage.h>
34 #include <linux/namei.h>
35 #include <linux/uio.h>
36 #include <linux/bio.h>
37 #include <linux/workqueue.h>
38 #include <linux/kernel.h>
39 #include <linux/printk.h>
40 #include <linux/slab.h>
41 #include <linux/bitops.h>
42 #include <linux/iomap.h>
43 #include <linux/iversion.h>
44 #include <linux/dax.h>
45
46 #include "ext4_jbd2.h"
47 #include "xattr.h"
48 #include "acl.h"
49 #include "truncate.h"
50
51 #include <trace/events/ext4.h>
52
53 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
54                               struct ext4_inode_info *ei)
55 {
56         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
57         __u32 csum;
58         __u16 dummy_csum = 0;
59         int offset = offsetof(struct ext4_inode, i_checksum_lo);
60         unsigned int csum_size = sizeof(dummy_csum);
61
62         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
63         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
64         offset += csum_size;
65         csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
66                            EXT4_GOOD_OLD_INODE_SIZE - offset);
67
68         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
69                 offset = offsetof(struct ext4_inode, i_checksum_hi);
70                 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
71                                    EXT4_GOOD_OLD_INODE_SIZE,
72                                    offset - EXT4_GOOD_OLD_INODE_SIZE);
73                 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
74                         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
75                                            csum_size);
76                         offset += csum_size;
77                 }
78                 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
79                                    EXT4_INODE_SIZE(inode->i_sb) - offset);
80         }
81
82         return csum;
83 }
84
85 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
86                                   struct ext4_inode_info *ei)
87 {
88         __u32 provided, calculated;
89
90         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
91             cpu_to_le32(EXT4_OS_LINUX) ||
92             !ext4_has_metadata_csum(inode->i_sb))
93                 return 1;
94
95         provided = le16_to_cpu(raw->i_checksum_lo);
96         calculated = ext4_inode_csum(inode, raw, ei);
97         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
98             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
99                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
100         else
101                 calculated &= 0xFFFF;
102
103         return provided == calculated;
104 }
105
106 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
107                          struct ext4_inode_info *ei)
108 {
109         __u32 csum;
110
111         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
112             cpu_to_le32(EXT4_OS_LINUX) ||
113             !ext4_has_metadata_csum(inode->i_sb))
114                 return;
115
116         csum = ext4_inode_csum(inode, raw, ei);
117         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
118         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
119             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
120                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
121 }
122
123 static inline int ext4_begin_ordered_truncate(struct inode *inode,
124                                               loff_t new_size)
125 {
126         trace_ext4_begin_ordered_truncate(inode, new_size);
127         /*
128          * If jinode is zero, then we never opened the file for
129          * writing, so there's no need to call
130          * jbd2_journal_begin_ordered_truncate() since there's no
131          * outstanding writes we need to flush.
132          */
133         if (!EXT4_I(inode)->jinode)
134                 return 0;
135         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
136                                                    EXT4_I(inode)->jinode,
137                                                    new_size);
138 }
139
140 static void ext4_invalidatepage(struct page *page, unsigned int offset,
141                                 unsigned int length);
142 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
143 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
144                                   int pextents);
145
146 /*
147  * Test whether an inode is a fast symlink.
148  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
149  */
150 int ext4_inode_is_fast_symlink(struct inode *inode)
151 {
152         if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
153                 int ea_blocks = EXT4_I(inode)->i_file_acl ?
154                                 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
155
156                 if (ext4_has_inline_data(inode))
157                         return 0;
158
159                 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
160         }
161         return S_ISLNK(inode->i_mode) && inode->i_size &&
162                (inode->i_size < EXT4_N_BLOCKS * 4);
163 }
164
165 /*
166  * Called at the last iput() if i_nlink is zero.
167  */
168 void ext4_evict_inode(struct inode *inode)
169 {
170         handle_t *handle;
171         int err;
172         /*
173          * Credits for final inode cleanup and freeing:
174          * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
175          * (xattr block freeing), bitmap, group descriptor (inode freeing)
176          */
177         int extra_credits = 6;
178         struct ext4_xattr_inode_array *ea_inode_array = NULL;
179         bool freeze_protected = false;
180
181         trace_ext4_evict_inode(inode);
182
183         if (inode->i_nlink) {
184                 /*
185                  * When journalling data dirty buffers are tracked only in the
186                  * journal. So although mm thinks everything is clean and
187                  * ready for reaping the inode might still have some pages to
188                  * write in the running transaction or waiting to be
189                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
190                  * (via truncate_inode_pages()) to discard these buffers can
191                  * cause data loss. Also even if we did not discard these
192                  * buffers, we would have no way to find them after the inode
193                  * is reaped and thus user could see stale data if he tries to
194                  * read them before the transaction is checkpointed. So be
195                  * careful and force everything to disk here... We use
196                  * ei->i_datasync_tid to store the newest transaction
197                  * containing inode's data.
198                  *
199                  * Note that directories do not have this problem because they
200                  * don't use page cache.
201                  */
202                 if (inode->i_ino != EXT4_JOURNAL_INO &&
203                     ext4_should_journal_data(inode) &&
204                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
205                     inode->i_data.nrpages) {
206                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
207                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
208
209                         jbd2_complete_transaction(journal, commit_tid);
210                         filemap_write_and_wait(&inode->i_data);
211                 }
212                 truncate_inode_pages_final(&inode->i_data);
213
214                 goto no_delete;
215         }
216
217         if (is_bad_inode(inode))
218                 goto no_delete;
219         dquot_initialize(inode);
220
221         if (ext4_should_order_data(inode))
222                 ext4_begin_ordered_truncate(inode, 0);
223         truncate_inode_pages_final(&inode->i_data);
224
225         /*
226          * For inodes with journalled data, transaction commit could have
227          * dirtied the inode. Flush worker is ignoring it because of I_FREEING
228          * flag but we still need to remove the inode from the writeback lists.
229          */
230         if (!list_empty_careful(&inode->i_io_list)) {
231                 WARN_ON_ONCE(!ext4_should_journal_data(inode));
232                 inode_io_list_del(inode);
233         }
234
235         /*
236          * Protect us against freezing - iput() caller didn't have to have any
237          * protection against it. When we are in a running transaction though,
238          * we are already protected against freezing and we cannot grab further
239          * protection due to lock ordering constraints.
240          */
241         if (!ext4_journal_current_handle()) {
242                 sb_start_intwrite(inode->i_sb);
243                 freeze_protected = true;
244         }
245
246         if (!IS_NOQUOTA(inode))
247                 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
248
249         /*
250          * Block bitmap, group descriptor, and inode are accounted in both
251          * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
252          */
253         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
254                          ext4_blocks_for_truncate(inode) + extra_credits - 3);
255         if (IS_ERR(handle)) {
256                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
257                 /*
258                  * If we're going to skip the normal cleanup, we still need to
259                  * make sure that the in-core orphan linked list is properly
260                  * cleaned up.
261                  */
262                 ext4_orphan_del(NULL, inode);
263                 if (freeze_protected)
264                         sb_end_intwrite(inode->i_sb);
265                 goto no_delete;
266         }
267
268         if (IS_SYNC(inode))
269                 ext4_handle_sync(handle);
270
271         /*
272          * Set inode->i_size to 0 before calling ext4_truncate(). We need
273          * special handling of symlinks here because i_size is used to
274          * determine whether ext4_inode_info->i_data contains symlink data or
275          * block mappings. Setting i_size to 0 will remove its fast symlink
276          * status. Erase i_data so that it becomes a valid empty block map.
277          */
278         if (ext4_inode_is_fast_symlink(inode))
279                 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
280         inode->i_size = 0;
281         err = ext4_mark_inode_dirty(handle, inode);
282         if (err) {
283                 ext4_warning(inode->i_sb,
284                              "couldn't mark inode dirty (err %d)", err);
285                 goto stop_handle;
286         }
287         if (inode->i_blocks) {
288                 err = ext4_truncate(inode);
289                 if (err) {
290                         ext4_error_err(inode->i_sb, -err,
291                                        "couldn't truncate inode %lu (err %d)",
292                                        inode->i_ino, err);
293                         goto stop_handle;
294                 }
295         }
296
297         /* Remove xattr references. */
298         err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
299                                       extra_credits);
300         if (err) {
301                 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
302 stop_handle:
303                 ext4_journal_stop(handle);
304                 ext4_orphan_del(NULL, inode);
305                 if (freeze_protected)
306                         sb_end_intwrite(inode->i_sb);
307                 ext4_xattr_inode_array_free(ea_inode_array);
308                 goto no_delete;
309         }
310
311         /*
312          * Kill off the orphan record which ext4_truncate created.
313          * AKPM: I think this can be inside the above `if'.
314          * Note that ext4_orphan_del() has to be able to cope with the
315          * deletion of a non-existent orphan - this is because we don't
316          * know if ext4_truncate() actually created an orphan record.
317          * (Well, we could do this if we need to, but heck - it works)
318          */
319         ext4_orphan_del(handle, inode);
320         EXT4_I(inode)->i_dtime  = (__u32)ktime_get_real_seconds();
321
322         /*
323          * One subtle ordering requirement: if anything has gone wrong
324          * (transaction abort, IO errors, whatever), then we can still
325          * do these next steps (the fs will already have been marked as
326          * having errors), but we can't free the inode if the mark_dirty
327          * fails.
328          */
329         if (ext4_mark_inode_dirty(handle, inode))
330                 /* If that failed, just do the required in-core inode clear. */
331                 ext4_clear_inode(inode);
332         else
333                 ext4_free_inode(handle, inode);
334         ext4_journal_stop(handle);
335         if (freeze_protected)
336                 sb_end_intwrite(inode->i_sb);
337         ext4_xattr_inode_array_free(ea_inode_array);
338         return;
339 no_delete:
340         if (!list_empty(&EXT4_I(inode)->i_fc_list))
341                 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM, NULL);
342         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
343 }
344
345 #ifdef CONFIG_QUOTA
346 qsize_t *ext4_get_reserved_space(struct inode *inode)
347 {
348         return &EXT4_I(inode)->i_reserved_quota;
349 }
350 #endif
351
352 /*
353  * Called with i_data_sem down, which is important since we can call
354  * ext4_discard_preallocations() from here.
355  */
356 void ext4_da_update_reserve_space(struct inode *inode,
357                                         int used, int quota_claim)
358 {
359         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
360         struct ext4_inode_info *ei = EXT4_I(inode);
361
362         spin_lock(&ei->i_block_reservation_lock);
363         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
364         if (unlikely(used > ei->i_reserved_data_blocks)) {
365                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
366                          "with only %d reserved data blocks",
367                          __func__, inode->i_ino, used,
368                          ei->i_reserved_data_blocks);
369                 WARN_ON(1);
370                 used = ei->i_reserved_data_blocks;
371         }
372
373         /* Update per-inode reservations */
374         ei->i_reserved_data_blocks -= used;
375         percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
376
377         spin_unlock(&ei->i_block_reservation_lock);
378
379         /* Update quota subsystem for data blocks */
380         if (quota_claim)
381                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
382         else {
383                 /*
384                  * We did fallocate with an offset that is already delayed
385                  * allocated. So on delayed allocated writeback we should
386                  * not re-claim the quota for fallocated blocks.
387                  */
388                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
389         }
390
391         /*
392          * If we have done all the pending block allocations and if
393          * there aren't any writers on the inode, we can discard the
394          * inode's preallocations.
395          */
396         if ((ei->i_reserved_data_blocks == 0) &&
397             !inode_is_open_for_write(inode))
398                 ext4_discard_preallocations(inode, 0);
399 }
400
401 static int __check_block_validity(struct inode *inode, const char *func,
402                                 unsigned int line,
403                                 struct ext4_map_blocks *map)
404 {
405         if (ext4_has_feature_journal(inode->i_sb) &&
406             (inode->i_ino ==
407              le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
408                 return 0;
409         if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
410                 ext4_error_inode(inode, func, line, map->m_pblk,
411                                  "lblock %lu mapped to illegal pblock %llu "
412                                  "(length %d)", (unsigned long) map->m_lblk,
413                                  map->m_pblk, map->m_len);
414                 return -EFSCORRUPTED;
415         }
416         return 0;
417 }
418
419 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
420                        ext4_lblk_t len)
421 {
422         int ret;
423
424         if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
425                 return fscrypt_zeroout_range(inode, lblk, pblk, len);
426
427         ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
428         if (ret > 0)
429                 ret = 0;
430
431         return ret;
432 }
433
434 #define check_block_validity(inode, map)        \
435         __check_block_validity((inode), __func__, __LINE__, (map))
436
437 #ifdef ES_AGGRESSIVE_TEST
438 static void ext4_map_blocks_es_recheck(handle_t *handle,
439                                        struct inode *inode,
440                                        struct ext4_map_blocks *es_map,
441                                        struct ext4_map_blocks *map,
442                                        int flags)
443 {
444         int retval;
445
446         map->m_flags = 0;
447         /*
448          * There is a race window that the result is not the same.
449          * e.g. xfstests #223 when dioread_nolock enables.  The reason
450          * is that we lookup a block mapping in extent status tree with
451          * out taking i_data_sem.  So at the time the unwritten extent
452          * could be converted.
453          */
454         down_read(&EXT4_I(inode)->i_data_sem);
455         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
456                 retval = ext4_ext_map_blocks(handle, inode, map, 0);
457         } else {
458                 retval = ext4_ind_map_blocks(handle, inode, map, 0);
459         }
460         up_read((&EXT4_I(inode)->i_data_sem));
461
462         /*
463          * We don't check m_len because extent will be collpased in status
464          * tree.  So the m_len might not equal.
465          */
466         if (es_map->m_lblk != map->m_lblk ||
467             es_map->m_flags != map->m_flags ||
468             es_map->m_pblk != map->m_pblk) {
469                 printk("ES cache assertion failed for inode: %lu "
470                        "es_cached ex [%d/%d/%llu/%x] != "
471                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
472                        inode->i_ino, es_map->m_lblk, es_map->m_len,
473                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
474                        map->m_len, map->m_pblk, map->m_flags,
475                        retval, flags);
476         }
477 }
478 #endif /* ES_AGGRESSIVE_TEST */
479
480 /*
481  * The ext4_map_blocks() function tries to look up the requested blocks,
482  * and returns if the blocks are already mapped.
483  *
484  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
485  * and store the allocated blocks in the result buffer head and mark it
486  * mapped.
487  *
488  * If file type is extents based, it will call ext4_ext_map_blocks(),
489  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
490  * based files
491  *
492  * On success, it returns the number of blocks being mapped or allocated.  if
493  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
494  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
495  *
496  * It returns 0 if plain look up failed (blocks have not been allocated), in
497  * that case, @map is returned as unmapped but we still do fill map->m_len to
498  * indicate the length of a hole starting at map->m_lblk.
499  *
500  * It returns the error in case of allocation failure.
501  */
502 int ext4_map_blocks(handle_t *handle, struct inode *inode,
503                     struct ext4_map_blocks *map, int flags)
504 {
505         struct extent_status es;
506         int retval;
507         int ret = 0;
508 #ifdef ES_AGGRESSIVE_TEST
509         struct ext4_map_blocks orig_map;
510
511         memcpy(&orig_map, map, sizeof(*map));
512 #endif
513
514         map->m_flags = 0;
515         ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
516                   flags, map->m_len, (unsigned long) map->m_lblk);
517
518         /*
519          * ext4_map_blocks returns an int, and m_len is an unsigned int
520          */
521         if (unlikely(map->m_len > INT_MAX))
522                 map->m_len = INT_MAX;
523
524         /* We can handle the block number less than EXT_MAX_BLOCKS */
525         if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
526                 return -EFSCORRUPTED;
527
528         /* Lookup extent status tree firstly */
529         if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) &&
530             ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
531                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
532                         map->m_pblk = ext4_es_pblock(&es) +
533                                         map->m_lblk - es.es_lblk;
534                         map->m_flags |= ext4_es_is_written(&es) ?
535                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
536                         retval = es.es_len - (map->m_lblk - es.es_lblk);
537                         if (retval > map->m_len)
538                                 retval = map->m_len;
539                         map->m_len = retval;
540                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
541                         map->m_pblk = 0;
542                         retval = es.es_len - (map->m_lblk - es.es_lblk);
543                         if (retval > map->m_len)
544                                 retval = map->m_len;
545                         map->m_len = retval;
546                         retval = 0;
547                 } else {
548                         BUG();
549                 }
550 #ifdef ES_AGGRESSIVE_TEST
551                 ext4_map_blocks_es_recheck(handle, inode, map,
552                                            &orig_map, flags);
553 #endif
554                 goto found;
555         }
556
557         /*
558          * Try to see if we can get the block without requesting a new
559          * file system block.
560          */
561         down_read(&EXT4_I(inode)->i_data_sem);
562         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
563                 retval = ext4_ext_map_blocks(handle, inode, map, 0);
564         } else {
565                 retval = ext4_ind_map_blocks(handle, inode, map, 0);
566         }
567         if (retval > 0) {
568                 unsigned int status;
569
570                 if (unlikely(retval != map->m_len)) {
571                         ext4_warning(inode->i_sb,
572                                      "ES len assertion failed for inode "
573                                      "%lu: retval %d != map->m_len %d",
574                                      inode->i_ino, retval, map->m_len);
575                         WARN_ON(1);
576                 }
577
578                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
579                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
580                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
581                     !(status & EXTENT_STATUS_WRITTEN) &&
582                     ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
583                                        map->m_lblk + map->m_len - 1))
584                         status |= EXTENT_STATUS_DELAYED;
585                 ret = ext4_es_insert_extent(inode, map->m_lblk,
586                                             map->m_len, map->m_pblk, status);
587                 if (ret < 0)
588                         retval = ret;
589         }
590         up_read((&EXT4_I(inode)->i_data_sem));
591
592 found:
593         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
594                 ret = check_block_validity(inode, map);
595                 if (ret != 0)
596                         return ret;
597         }
598
599         /* If it is only a block(s) look up */
600         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
601                 return retval;
602
603         /*
604          * Returns if the blocks have already allocated
605          *
606          * Note that if blocks have been preallocated
607          * ext4_ext_get_block() returns the create = 0
608          * with buffer head unmapped.
609          */
610         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
611                 /*
612                  * If we need to convert extent to unwritten
613                  * we continue and do the actual work in
614                  * ext4_ext_map_blocks()
615                  */
616                 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
617                         return retval;
618
619         /*
620          * Here we clear m_flags because after allocating an new extent,
621          * it will be set again.
622          */
623         map->m_flags &= ~EXT4_MAP_FLAGS;
624
625         /*
626          * New blocks allocate and/or writing to unwritten extent
627          * will possibly result in updating i_data, so we take
628          * the write lock of i_data_sem, and call get_block()
629          * with create == 1 flag.
630          */
631         down_write(&EXT4_I(inode)->i_data_sem);
632
633         /*
634          * We need to check for EXT4 here because migrate
635          * could have changed the inode type in between
636          */
637         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
638                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
639         } else {
640                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
641
642                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
643                         /*
644                          * We allocated new blocks which will result in
645                          * i_data's format changing.  Force the migrate
646                          * to fail by clearing migrate flags
647                          */
648                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
649                 }
650
651                 /*
652                  * Update reserved blocks/metadata blocks after successful
653                  * block allocation which had been deferred till now. We don't
654                  * support fallocate for non extent files. So we can update
655                  * reserve space here.
656                  */
657                 if ((retval > 0) &&
658                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
659                         ext4_da_update_reserve_space(inode, retval, 1);
660         }
661
662         if (retval > 0) {
663                 unsigned int status;
664
665                 if (unlikely(retval != map->m_len)) {
666                         ext4_warning(inode->i_sb,
667                                      "ES len assertion failed for inode "
668                                      "%lu: retval %d != map->m_len %d",
669                                      inode->i_ino, retval, map->m_len);
670                         WARN_ON(1);
671                 }
672
673                 /*
674                  * We have to zeroout blocks before inserting them into extent
675                  * status tree. Otherwise someone could look them up there and
676                  * use them before they are really zeroed. We also have to
677                  * unmap metadata before zeroing as otherwise writeback can
678                  * overwrite zeros with stale data from block device.
679                  */
680                 if (flags & EXT4_GET_BLOCKS_ZERO &&
681                     map->m_flags & EXT4_MAP_MAPPED &&
682                     map->m_flags & EXT4_MAP_NEW) {
683                         ret = ext4_issue_zeroout(inode, map->m_lblk,
684                                                  map->m_pblk, map->m_len);
685                         if (ret) {
686                                 retval = ret;
687                                 goto out_sem;
688                         }
689                 }
690
691                 /*
692                  * If the extent has been zeroed out, we don't need to update
693                  * extent status tree.
694                  */
695                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
696                     ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
697                         if (ext4_es_is_written(&es))
698                                 goto out_sem;
699                 }
700                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
701                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
702                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
703                     !(status & EXTENT_STATUS_WRITTEN) &&
704                     ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
705                                        map->m_lblk + map->m_len - 1))
706                         status |= EXTENT_STATUS_DELAYED;
707                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
708                                             map->m_pblk, status);
709                 if (ret < 0) {
710                         retval = ret;
711                         goto out_sem;
712                 }
713         }
714
715 out_sem:
716         up_write((&EXT4_I(inode)->i_data_sem));
717         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
718                 ret = check_block_validity(inode, map);
719                 if (ret != 0)
720                         return ret;
721
722                 /*
723                  * Inodes with freshly allocated blocks where contents will be
724                  * visible after transaction commit must be on transaction's
725                  * ordered data list.
726                  */
727                 if (map->m_flags & EXT4_MAP_NEW &&
728                     !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
729                     !(flags & EXT4_GET_BLOCKS_ZERO) &&
730                     !ext4_is_quota_file(inode) &&
731                     ext4_should_order_data(inode)) {
732                         loff_t start_byte =
733                                 (loff_t)map->m_lblk << inode->i_blkbits;
734                         loff_t length = (loff_t)map->m_len << inode->i_blkbits;
735
736                         if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
737                                 ret = ext4_jbd2_inode_add_wait(handle, inode,
738                                                 start_byte, length);
739                         else
740                                 ret = ext4_jbd2_inode_add_write(handle, inode,
741                                                 start_byte, length);
742                         if (ret)
743                                 return ret;
744                 }
745         }
746         if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN ||
747                                 map->m_flags & EXT4_MAP_MAPPED))
748                 ext4_fc_track_range(handle, inode, map->m_lblk,
749                                         map->m_lblk + map->m_len - 1);
750         if (retval < 0)
751                 ext_debug(inode, "failed with err %d\n", retval);
752         return retval;
753 }
754
755 /*
756  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
757  * we have to be careful as someone else may be manipulating b_state as well.
758  */
759 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
760 {
761         unsigned long old_state;
762         unsigned long new_state;
763
764         flags &= EXT4_MAP_FLAGS;
765
766         /* Dummy buffer_head? Set non-atomically. */
767         if (!bh->b_page) {
768                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
769                 return;
770         }
771         /*
772          * Someone else may be modifying b_state. Be careful! This is ugly but
773          * once we get rid of using bh as a container for mapping information
774          * to pass to / from get_block functions, this can go away.
775          */
776         do {
777                 old_state = READ_ONCE(bh->b_state);
778                 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
779         } while (unlikely(
780                  cmpxchg(&bh->b_state, old_state, new_state) != old_state));
781 }
782
783 static int _ext4_get_block(struct inode *inode, sector_t iblock,
784                            struct buffer_head *bh, int flags)
785 {
786         struct ext4_map_blocks map;
787         int ret = 0;
788
789         if (ext4_has_inline_data(inode))
790                 return -ERANGE;
791
792         map.m_lblk = iblock;
793         map.m_len = bh->b_size >> inode->i_blkbits;
794
795         ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
796                               flags);
797         if (ret > 0) {
798                 map_bh(bh, inode->i_sb, map.m_pblk);
799                 ext4_update_bh_state(bh, map.m_flags);
800                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
801                 ret = 0;
802         } else if (ret == 0) {
803                 /* hole case, need to fill in bh->b_size */
804                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
805         }
806         return ret;
807 }
808
809 int ext4_get_block(struct inode *inode, sector_t iblock,
810                    struct buffer_head *bh, int create)
811 {
812         return _ext4_get_block(inode, iblock, bh,
813                                create ? EXT4_GET_BLOCKS_CREATE : 0);
814 }
815
816 /*
817  * Get block function used when preparing for buffered write if we require
818  * creating an unwritten extent if blocks haven't been allocated.  The extent
819  * will be converted to written after the IO is complete.
820  */
821 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
822                              struct buffer_head *bh_result, int create)
823 {
824         ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
825                    inode->i_ino, create);
826         return _ext4_get_block(inode, iblock, bh_result,
827                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
828 }
829
830 /* Maximum number of blocks we map for direct IO at once. */
831 #define DIO_MAX_BLOCKS 4096
832
833 /*
834  * `handle' can be NULL if create is zero
835  */
836 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
837                                 ext4_lblk_t block, int map_flags)
838 {
839         struct ext4_map_blocks map;
840         struct buffer_head *bh;
841         int create = map_flags & EXT4_GET_BLOCKS_CREATE;
842         int err;
843
844         ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
845                     || handle != NULL || create == 0);
846
847         map.m_lblk = block;
848         map.m_len = 1;
849         err = ext4_map_blocks(handle, inode, &map, map_flags);
850
851         if (err == 0)
852                 return create ? ERR_PTR(-ENOSPC) : NULL;
853         if (err < 0)
854                 return ERR_PTR(err);
855
856         bh = sb_getblk(inode->i_sb, map.m_pblk);
857         if (unlikely(!bh))
858                 return ERR_PTR(-ENOMEM);
859         if (map.m_flags & EXT4_MAP_NEW) {
860                 ASSERT(create != 0);
861                 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
862                             || (handle != NULL));
863
864                 /*
865                  * Now that we do not always journal data, we should
866                  * keep in mind whether this should always journal the
867                  * new buffer as metadata.  For now, regular file
868                  * writes use ext4_get_block instead, so it's not a
869                  * problem.
870                  */
871                 lock_buffer(bh);
872                 BUFFER_TRACE(bh, "call get_create_access");
873                 err = ext4_journal_get_create_access(handle, inode->i_sb, bh,
874                                                      EXT4_JTR_NONE);
875                 if (unlikely(err)) {
876                         unlock_buffer(bh);
877                         goto errout;
878                 }
879                 if (!buffer_uptodate(bh)) {
880                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
881                         set_buffer_uptodate(bh);
882                 }
883                 unlock_buffer(bh);
884                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
885                 err = ext4_handle_dirty_metadata(handle, inode, bh);
886                 if (unlikely(err))
887                         goto errout;
888         } else
889                 BUFFER_TRACE(bh, "not a new buffer");
890         return bh;
891 errout:
892         brelse(bh);
893         return ERR_PTR(err);
894 }
895
896 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
897                                ext4_lblk_t block, int map_flags)
898 {
899         struct buffer_head *bh;
900         int ret;
901
902         bh = ext4_getblk(handle, inode, block, map_flags);
903         if (IS_ERR(bh))
904                 return bh;
905         if (!bh || ext4_buffer_uptodate(bh))
906                 return bh;
907
908         ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true);
909         if (ret) {
910                 put_bh(bh);
911                 return ERR_PTR(ret);
912         }
913         return bh;
914 }
915
916 /* Read a contiguous batch of blocks. */
917 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
918                      bool wait, struct buffer_head **bhs)
919 {
920         int i, err;
921
922         for (i = 0; i < bh_count; i++) {
923                 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
924                 if (IS_ERR(bhs[i])) {
925                         err = PTR_ERR(bhs[i]);
926                         bh_count = i;
927                         goto out_brelse;
928                 }
929         }
930
931         for (i = 0; i < bh_count; i++)
932                 /* Note that NULL bhs[i] is valid because of holes. */
933                 if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
934                         ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false);
935
936         if (!wait)
937                 return 0;
938
939         for (i = 0; i < bh_count; i++)
940                 if (bhs[i])
941                         wait_on_buffer(bhs[i]);
942
943         for (i = 0; i < bh_count; i++) {
944                 if (bhs[i] && !buffer_uptodate(bhs[i])) {
945                         err = -EIO;
946                         goto out_brelse;
947                 }
948         }
949         return 0;
950
951 out_brelse:
952         for (i = 0; i < bh_count; i++) {
953                 brelse(bhs[i]);
954                 bhs[i] = NULL;
955         }
956         return err;
957 }
958
959 int ext4_walk_page_buffers(handle_t *handle, struct inode *inode,
960                            struct buffer_head *head,
961                            unsigned from,
962                            unsigned to,
963                            int *partial,
964                            int (*fn)(handle_t *handle, struct inode *inode,
965                                      struct buffer_head *bh))
966 {
967         struct buffer_head *bh;
968         unsigned block_start, block_end;
969         unsigned blocksize = head->b_size;
970         int err, ret = 0;
971         struct buffer_head *next;
972
973         for (bh = head, block_start = 0;
974              ret == 0 && (bh != head || !block_start);
975              block_start = block_end, bh = next) {
976                 next = bh->b_this_page;
977                 block_end = block_start + blocksize;
978                 if (block_end <= from || block_start >= to) {
979                         if (partial && !buffer_uptodate(bh))
980                                 *partial = 1;
981                         continue;
982                 }
983                 err = (*fn)(handle, inode, bh);
984                 if (!ret)
985                         ret = err;
986         }
987         return ret;
988 }
989
990 /*
991  * To preserve ordering, it is essential that the hole instantiation and
992  * the data write be encapsulated in a single transaction.  We cannot
993  * close off a transaction and start a new one between the ext4_get_block()
994  * and the commit_write().  So doing the jbd2_journal_start at the start of
995  * prepare_write() is the right place.
996  *
997  * Also, this function can nest inside ext4_writepage().  In that case, we
998  * *know* that ext4_writepage() has generated enough buffer credits to do the
999  * whole page.  So we won't block on the journal in that case, which is good,
1000  * because the caller may be PF_MEMALLOC.
1001  *
1002  * By accident, ext4 can be reentered when a transaction is open via
1003  * quota file writes.  If we were to commit the transaction while thus
1004  * reentered, there can be a deadlock - we would be holding a quota
1005  * lock, and the commit would never complete if another thread had a
1006  * transaction open and was blocking on the quota lock - a ranking
1007  * violation.
1008  *
1009  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1010  * will _not_ run commit under these circumstances because handle->h_ref
1011  * is elevated.  We'll still have enough credits for the tiny quotafile
1012  * write.
1013  */
1014 int do_journal_get_write_access(handle_t *handle, struct inode *inode,
1015                                 struct buffer_head *bh)
1016 {
1017         int dirty = buffer_dirty(bh);
1018         int ret;
1019
1020         if (!buffer_mapped(bh) || buffer_freed(bh))
1021                 return 0;
1022         /*
1023          * __block_write_begin() could have dirtied some buffers. Clean
1024          * the dirty bit as jbd2_journal_get_write_access() could complain
1025          * otherwise about fs integrity issues. Setting of the dirty bit
1026          * by __block_write_begin() isn't a real problem here as we clear
1027          * the bit before releasing a page lock and thus writeback cannot
1028          * ever write the buffer.
1029          */
1030         if (dirty)
1031                 clear_buffer_dirty(bh);
1032         BUFFER_TRACE(bh, "get write access");
1033         ret = ext4_journal_get_write_access(handle, inode->i_sb, bh,
1034                                             EXT4_JTR_NONE);
1035         if (!ret && dirty)
1036                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1037         return ret;
1038 }
1039
1040 #ifdef CONFIG_FS_ENCRYPTION
1041 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1042                                   get_block_t *get_block)
1043 {
1044         unsigned from = pos & (PAGE_SIZE - 1);
1045         unsigned to = from + len;
1046         struct inode *inode = page->mapping->host;
1047         unsigned block_start, block_end;
1048         sector_t block;
1049         int err = 0;
1050         unsigned blocksize = inode->i_sb->s_blocksize;
1051         unsigned bbits;
1052         struct buffer_head *bh, *head, *wait[2];
1053         int nr_wait = 0;
1054         int i;
1055
1056         BUG_ON(!PageLocked(page));
1057         BUG_ON(from > PAGE_SIZE);
1058         BUG_ON(to > PAGE_SIZE);
1059         BUG_ON(from > to);
1060
1061         if (!page_has_buffers(page))
1062                 create_empty_buffers(page, blocksize, 0);
1063         head = page_buffers(page);
1064         bbits = ilog2(blocksize);
1065         block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1066
1067         for (bh = head, block_start = 0; bh != head || !block_start;
1068             block++, block_start = block_end, bh = bh->b_this_page) {
1069                 block_end = block_start + blocksize;
1070                 if (block_end <= from || block_start >= to) {
1071                         if (PageUptodate(page)) {
1072                                 set_buffer_uptodate(bh);
1073                         }
1074                         continue;
1075                 }
1076                 if (buffer_new(bh))
1077                         clear_buffer_new(bh);
1078                 if (!buffer_mapped(bh)) {
1079                         WARN_ON(bh->b_size != blocksize);
1080                         err = get_block(inode, block, bh, 1);
1081                         if (err)
1082                                 break;
1083                         if (buffer_new(bh)) {
1084                                 if (PageUptodate(page)) {
1085                                         clear_buffer_new(bh);
1086                                         set_buffer_uptodate(bh);
1087                                         mark_buffer_dirty(bh);
1088                                         continue;
1089                                 }
1090                                 if (block_end > to || block_start < from)
1091                                         zero_user_segments(page, to, block_end,
1092                                                            block_start, from);
1093                                 continue;
1094                         }
1095                 }
1096                 if (PageUptodate(page)) {
1097                         set_buffer_uptodate(bh);
1098                         continue;
1099                 }
1100                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1101                     !buffer_unwritten(bh) &&
1102                     (block_start < from || block_end > to)) {
1103                         ext4_read_bh_lock(bh, 0, false);
1104                         wait[nr_wait++] = bh;
1105                 }
1106         }
1107         /*
1108          * If we issued read requests, let them complete.
1109          */
1110         for (i = 0; i < nr_wait; i++) {
1111                 wait_on_buffer(wait[i]);
1112                 if (!buffer_uptodate(wait[i]))
1113                         err = -EIO;
1114         }
1115         if (unlikely(err)) {
1116                 page_zero_new_buffers(page, from, to);
1117         } else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1118                 for (i = 0; i < nr_wait; i++) {
1119                         int err2;
1120
1121                         err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize,
1122                                                                 bh_offset(wait[i]));
1123                         if (err2) {
1124                                 clear_buffer_uptodate(wait[i]);
1125                                 err = err2;
1126                         }
1127                 }
1128         }
1129
1130         return err;
1131 }
1132 #endif
1133
1134 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1135                             loff_t pos, unsigned len, unsigned flags,
1136                             struct page **pagep, void **fsdata)
1137 {
1138         struct inode *inode = mapping->host;
1139         int ret, needed_blocks;
1140         handle_t *handle;
1141         int retries = 0;
1142         struct page *page;
1143         pgoff_t index;
1144         unsigned from, to;
1145
1146         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1147                 return -EIO;
1148
1149         trace_ext4_write_begin(inode, pos, len, flags);
1150         /*
1151          * Reserve one block more for addition to orphan list in case
1152          * we allocate blocks but write fails for some reason
1153          */
1154         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1155         index = pos >> PAGE_SHIFT;
1156         from = pos & (PAGE_SIZE - 1);
1157         to = from + len;
1158
1159         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1160                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1161                                                     flags, pagep);
1162                 if (ret < 0)
1163                         return ret;
1164                 if (ret == 1)
1165                         return 0;
1166         }
1167
1168         /*
1169          * grab_cache_page_write_begin() can take a long time if the
1170          * system is thrashing due to memory pressure, or if the page
1171          * is being written back.  So grab it first before we start
1172          * the transaction handle.  This also allows us to allocate
1173          * the page (if needed) without using GFP_NOFS.
1174          */
1175 retry_grab:
1176         page = grab_cache_page_write_begin(mapping, index, flags);
1177         if (!page)
1178                 return -ENOMEM;
1179         unlock_page(page);
1180
1181 retry_journal:
1182         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1183         if (IS_ERR(handle)) {
1184                 put_page(page);
1185                 return PTR_ERR(handle);
1186         }
1187
1188         lock_page(page);
1189         if (page->mapping != mapping) {
1190                 /* The page got truncated from under us */
1191                 unlock_page(page);
1192                 put_page(page);
1193                 ext4_journal_stop(handle);
1194                 goto retry_grab;
1195         }
1196         /* In case writeback began while the page was unlocked */
1197         wait_for_stable_page(page);
1198
1199 #ifdef CONFIG_FS_ENCRYPTION
1200         if (ext4_should_dioread_nolock(inode))
1201                 ret = ext4_block_write_begin(page, pos, len,
1202                                              ext4_get_block_unwritten);
1203         else
1204                 ret = ext4_block_write_begin(page, pos, len,
1205                                              ext4_get_block);
1206 #else
1207         if (ext4_should_dioread_nolock(inode))
1208                 ret = __block_write_begin(page, pos, len,
1209                                           ext4_get_block_unwritten);
1210         else
1211                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1212 #endif
1213         if (!ret && ext4_should_journal_data(inode)) {
1214                 ret = ext4_walk_page_buffers(handle, inode,
1215                                              page_buffers(page), from, to, NULL,
1216                                              do_journal_get_write_access);
1217         }
1218
1219         if (ret) {
1220                 bool extended = (pos + len > inode->i_size) &&
1221                                 !ext4_verity_in_progress(inode);
1222
1223                 unlock_page(page);
1224                 /*
1225                  * __block_write_begin may have instantiated a few blocks
1226                  * outside i_size.  Trim these off again. Don't need
1227                  * i_size_read because we hold i_rwsem.
1228                  *
1229                  * Add inode to orphan list in case we crash before
1230                  * truncate finishes
1231                  */
1232                 if (extended && ext4_can_truncate(inode))
1233                         ext4_orphan_add(handle, inode);
1234
1235                 ext4_journal_stop(handle);
1236                 if (extended) {
1237                         ext4_truncate_failed_write(inode);
1238                         /*
1239                          * If truncate failed early the inode might
1240                          * still be on the orphan list; we need to
1241                          * make sure the inode is removed from the
1242                          * orphan list in that case.
1243                          */
1244                         if (inode->i_nlink)
1245                                 ext4_orphan_del(NULL, inode);
1246                 }
1247
1248                 if (ret == -ENOSPC &&
1249                     ext4_should_retry_alloc(inode->i_sb, &retries))
1250                         goto retry_journal;
1251                 put_page(page);
1252                 return ret;
1253         }
1254         *pagep = page;
1255         return ret;
1256 }
1257
1258 /* For write_end() in data=journal mode */
1259 static int write_end_fn(handle_t *handle, struct inode *inode,
1260                         struct buffer_head *bh)
1261 {
1262         int ret;
1263         if (!buffer_mapped(bh) || buffer_freed(bh))
1264                 return 0;
1265         set_buffer_uptodate(bh);
1266         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1267         clear_buffer_meta(bh);
1268         clear_buffer_prio(bh);
1269         return ret;
1270 }
1271
1272 /*
1273  * We need to pick up the new inode size which generic_commit_write gave us
1274  * `file' can be NULL - eg, when called from page_symlink().
1275  *
1276  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1277  * buffers are managed internally.
1278  */
1279 static int ext4_write_end(struct file *file,
1280                           struct address_space *mapping,
1281                           loff_t pos, unsigned len, unsigned copied,
1282                           struct page *page, void *fsdata)
1283 {
1284         handle_t *handle = ext4_journal_current_handle();
1285         struct inode *inode = mapping->host;
1286         loff_t old_size = inode->i_size;
1287         int ret = 0, ret2;
1288         int i_size_changed = 0;
1289         bool verity = ext4_verity_in_progress(inode);
1290
1291         trace_ext4_write_end(inode, pos, len, copied);
1292
1293         if (ext4_has_inline_data(inode))
1294                 return ext4_write_inline_data_end(inode, pos, len, copied, page);
1295
1296         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1297         /*
1298          * it's important to update i_size while still holding page lock:
1299          * page writeout could otherwise come in and zero beyond i_size.
1300          *
1301          * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1302          * blocks are being written past EOF, so skip the i_size update.
1303          */
1304         if (!verity)
1305                 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1306         unlock_page(page);
1307         put_page(page);
1308
1309         if (old_size < pos && !verity)
1310                 pagecache_isize_extended(inode, old_size, pos);
1311         /*
1312          * Don't mark the inode dirty under page lock. First, it unnecessarily
1313          * makes the holding time of page lock longer. Second, it forces lock
1314          * ordering of page lock and transaction start for journaling
1315          * filesystems.
1316          */
1317         if (i_size_changed)
1318                 ret = ext4_mark_inode_dirty(handle, inode);
1319
1320         if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1321                 /* if we have allocated more blocks and copied
1322                  * less. We will have blocks allocated outside
1323                  * inode->i_size. So truncate them
1324                  */
1325                 ext4_orphan_add(handle, inode);
1326
1327         ret2 = ext4_journal_stop(handle);
1328         if (!ret)
1329                 ret = ret2;
1330
1331         if (pos + len > inode->i_size && !verity) {
1332                 ext4_truncate_failed_write(inode);
1333                 /*
1334                  * If truncate failed early the inode might still be
1335                  * on the orphan list; we need to make sure the inode
1336                  * is removed from the orphan list in that case.
1337                  */
1338                 if (inode->i_nlink)
1339                         ext4_orphan_del(NULL, inode);
1340         }
1341
1342         return ret ? ret : copied;
1343 }
1344
1345 /*
1346  * This is a private version of page_zero_new_buffers() which doesn't
1347  * set the buffer to be dirty, since in data=journalled mode we need
1348  * to call ext4_handle_dirty_metadata() instead.
1349  */
1350 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1351                                             struct inode *inode,
1352                                             struct page *page,
1353                                             unsigned from, unsigned to)
1354 {
1355         unsigned int block_start = 0, block_end;
1356         struct buffer_head *head, *bh;
1357
1358         bh = head = page_buffers(page);
1359         do {
1360                 block_end = block_start + bh->b_size;
1361                 if (buffer_new(bh)) {
1362                         if (block_end > from && block_start < to) {
1363                                 if (!PageUptodate(page)) {
1364                                         unsigned start, size;
1365
1366                                         start = max(from, block_start);
1367                                         size = min(to, block_end) - start;
1368
1369                                         zero_user(page, start, size);
1370                                         write_end_fn(handle, inode, bh);
1371                                 }
1372                                 clear_buffer_new(bh);
1373                         }
1374                 }
1375                 block_start = block_end;
1376                 bh = bh->b_this_page;
1377         } while (bh != head);
1378 }
1379
1380 static int ext4_journalled_write_end(struct file *file,
1381                                      struct address_space *mapping,
1382                                      loff_t pos, unsigned len, unsigned copied,
1383                                      struct page *page, void *fsdata)
1384 {
1385         handle_t *handle = ext4_journal_current_handle();
1386         struct inode *inode = mapping->host;
1387         loff_t old_size = inode->i_size;
1388         int ret = 0, ret2;
1389         int partial = 0;
1390         unsigned from, to;
1391         int size_changed = 0;
1392         bool verity = ext4_verity_in_progress(inode);
1393
1394         trace_ext4_journalled_write_end(inode, pos, len, copied);
1395         from = pos & (PAGE_SIZE - 1);
1396         to = from + len;
1397
1398         BUG_ON(!ext4_handle_valid(handle));
1399
1400         if (ext4_has_inline_data(inode))
1401                 return ext4_write_inline_data_end(inode, pos, len, copied, page);
1402
1403         if (unlikely(copied < len) && !PageUptodate(page)) {
1404                 copied = 0;
1405                 ext4_journalled_zero_new_buffers(handle, inode, page, from, to);
1406         } else {
1407                 if (unlikely(copied < len))
1408                         ext4_journalled_zero_new_buffers(handle, inode, page,
1409                                                          from + copied, to);
1410                 ret = ext4_walk_page_buffers(handle, inode, page_buffers(page),
1411                                              from, from + copied, &partial,
1412                                              write_end_fn);
1413                 if (!partial)
1414                         SetPageUptodate(page);
1415         }
1416         if (!verity)
1417                 size_changed = ext4_update_inode_size(inode, pos + copied);
1418         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1419         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1420         unlock_page(page);
1421         put_page(page);
1422
1423         if (old_size < pos && !verity)
1424                 pagecache_isize_extended(inode, old_size, pos);
1425
1426         if (size_changed) {
1427                 ret2 = ext4_mark_inode_dirty(handle, inode);
1428                 if (!ret)
1429                         ret = ret2;
1430         }
1431
1432         if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1433                 /* if we have allocated more blocks and copied
1434                  * less. We will have blocks allocated outside
1435                  * inode->i_size. So truncate them
1436                  */
1437                 ext4_orphan_add(handle, inode);
1438
1439         ret2 = ext4_journal_stop(handle);
1440         if (!ret)
1441                 ret = ret2;
1442         if (pos + len > inode->i_size && !verity) {
1443                 ext4_truncate_failed_write(inode);
1444                 /*
1445                  * If truncate failed early the inode might still be
1446                  * on the orphan list; we need to make sure the inode
1447                  * is removed from the orphan list in that case.
1448                  */
1449                 if (inode->i_nlink)
1450                         ext4_orphan_del(NULL, inode);
1451         }
1452
1453         return ret ? ret : copied;
1454 }
1455
1456 /*
1457  * Reserve space for a single cluster
1458  */
1459 static int ext4_da_reserve_space(struct inode *inode)
1460 {
1461         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1462         struct ext4_inode_info *ei = EXT4_I(inode);
1463         int ret;
1464
1465         /*
1466          * We will charge metadata quota at writeout time; this saves
1467          * us from metadata over-estimation, though we may go over by
1468          * a small amount in the end.  Here we just reserve for data.
1469          */
1470         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1471         if (ret)
1472                 return ret;
1473
1474         spin_lock(&ei->i_block_reservation_lock);
1475         if (ext4_claim_free_clusters(sbi, 1, 0)) {
1476                 spin_unlock(&ei->i_block_reservation_lock);
1477                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1478                 return -ENOSPC;
1479         }
1480         ei->i_reserved_data_blocks++;
1481         trace_ext4_da_reserve_space(inode);
1482         spin_unlock(&ei->i_block_reservation_lock);
1483
1484         return 0;       /* success */
1485 }
1486
1487 void ext4_da_release_space(struct inode *inode, int to_free)
1488 {
1489         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1490         struct ext4_inode_info *ei = EXT4_I(inode);
1491
1492         if (!to_free)
1493                 return;         /* Nothing to release, exit */
1494
1495         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1496
1497         trace_ext4_da_release_space(inode, to_free);
1498         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1499                 /*
1500                  * if there aren't enough reserved blocks, then the
1501                  * counter is messed up somewhere.  Since this
1502                  * function is called from invalidate page, it's
1503                  * harmless to return without any action.
1504                  */
1505                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1506                          "ino %lu, to_free %d with only %d reserved "
1507                          "data blocks", inode->i_ino, to_free,
1508                          ei->i_reserved_data_blocks);
1509                 WARN_ON(1);
1510                 to_free = ei->i_reserved_data_blocks;
1511         }
1512         ei->i_reserved_data_blocks -= to_free;
1513
1514         /* update fs dirty data blocks counter */
1515         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1516
1517         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1518
1519         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1520 }
1521
1522 /*
1523  * Delayed allocation stuff
1524  */
1525
1526 struct mpage_da_data {
1527         struct inode *inode;
1528         struct writeback_control *wbc;
1529
1530         pgoff_t first_page;     /* The first page to write */
1531         pgoff_t next_page;      /* Current page to examine */
1532         pgoff_t last_page;      /* Last page to examine */
1533         /*
1534          * Extent to map - this can be after first_page because that can be
1535          * fully mapped. We somewhat abuse m_flags to store whether the extent
1536          * is delalloc or unwritten.
1537          */
1538         struct ext4_map_blocks map;
1539         struct ext4_io_submit io_submit;        /* IO submission data */
1540         unsigned int do_map:1;
1541         unsigned int scanned_until_end:1;
1542 };
1543
1544 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1545                                        bool invalidate)
1546 {
1547         int nr_pages, i;
1548         pgoff_t index, end;
1549         struct pagevec pvec;
1550         struct inode *inode = mpd->inode;
1551         struct address_space *mapping = inode->i_mapping;
1552
1553         /* This is necessary when next_page == 0. */
1554         if (mpd->first_page >= mpd->next_page)
1555                 return;
1556
1557         mpd->scanned_until_end = 0;
1558         index = mpd->first_page;
1559         end   = mpd->next_page - 1;
1560         if (invalidate) {
1561                 ext4_lblk_t start, last;
1562                 start = index << (PAGE_SHIFT - inode->i_blkbits);
1563                 last = end << (PAGE_SHIFT - inode->i_blkbits);
1564                 ext4_es_remove_extent(inode, start, last - start + 1);
1565         }
1566
1567         pagevec_init(&pvec);
1568         while (index <= end) {
1569                 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1570                 if (nr_pages == 0)
1571                         break;
1572                 for (i = 0; i < nr_pages; i++) {
1573                         struct page *page = pvec.pages[i];
1574
1575                         BUG_ON(!PageLocked(page));
1576                         BUG_ON(PageWriteback(page));
1577                         if (invalidate) {
1578                                 if (page_mapped(page))
1579                                         clear_page_dirty_for_io(page);
1580                                 block_invalidatepage(page, 0, PAGE_SIZE);
1581                                 ClearPageUptodate(page);
1582                         }
1583                         unlock_page(page);
1584                 }
1585                 pagevec_release(&pvec);
1586         }
1587 }
1588
1589 static void ext4_print_free_blocks(struct inode *inode)
1590 {
1591         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1592         struct super_block *sb = inode->i_sb;
1593         struct ext4_inode_info *ei = EXT4_I(inode);
1594
1595         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1596                EXT4_C2B(EXT4_SB(inode->i_sb),
1597                         ext4_count_free_clusters(sb)));
1598         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1599         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1600                (long long) EXT4_C2B(EXT4_SB(sb),
1601                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1602         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1603                (long long) EXT4_C2B(EXT4_SB(sb),
1604                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1605         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1606         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1607                  ei->i_reserved_data_blocks);
1608         return;
1609 }
1610
1611 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct inode *inode,
1612                                       struct buffer_head *bh)
1613 {
1614         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1615 }
1616
1617 /*
1618  * ext4_insert_delayed_block - adds a delayed block to the extents status
1619  *                             tree, incrementing the reserved cluster/block
1620  *                             count or making a pending reservation
1621  *                             where needed
1622  *
1623  * @inode - file containing the newly added block
1624  * @lblk - logical block to be added
1625  *
1626  * Returns 0 on success, negative error code on failure.
1627  */
1628 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1629 {
1630         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1631         int ret;
1632         bool allocated = false;
1633         bool reserved = false;
1634
1635         /*
1636          * If the cluster containing lblk is shared with a delayed,
1637          * written, or unwritten extent in a bigalloc file system, it's
1638          * already been accounted for and does not need to be reserved.
1639          * A pending reservation must be made for the cluster if it's
1640          * shared with a written or unwritten extent and doesn't already
1641          * have one.  Written and unwritten extents can be purged from the
1642          * extents status tree if the system is under memory pressure, so
1643          * it's necessary to examine the extent tree if a search of the
1644          * extents status tree doesn't get a match.
1645          */
1646         if (sbi->s_cluster_ratio == 1) {
1647                 ret = ext4_da_reserve_space(inode);
1648                 if (ret != 0)   /* ENOSPC */
1649                         goto errout;
1650                 reserved = true;
1651         } else {   /* bigalloc */
1652                 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1653                         if (!ext4_es_scan_clu(inode,
1654                                               &ext4_es_is_mapped, lblk)) {
1655                                 ret = ext4_clu_mapped(inode,
1656                                                       EXT4_B2C(sbi, lblk));
1657                                 if (ret < 0)
1658                                         goto errout;
1659                                 if (ret == 0) {
1660                                         ret = ext4_da_reserve_space(inode);
1661                                         if (ret != 0)   /* ENOSPC */
1662                                                 goto errout;
1663                                         reserved = true;
1664                                 } else {
1665                                         allocated = true;
1666                                 }
1667                         } else {
1668                                 allocated = true;
1669                         }
1670                 }
1671         }
1672
1673         ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1674         if (ret && reserved)
1675                 ext4_da_release_space(inode, 1);
1676
1677 errout:
1678         return ret;
1679 }
1680
1681 /*
1682  * This function is grabs code from the very beginning of
1683  * ext4_map_blocks, but assumes that the caller is from delayed write
1684  * time. This function looks up the requested blocks and sets the
1685  * buffer delay bit under the protection of i_data_sem.
1686  */
1687 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1688                               struct ext4_map_blocks *map,
1689                               struct buffer_head *bh)
1690 {
1691         struct extent_status es;
1692         int retval;
1693         sector_t invalid_block = ~((sector_t) 0xffff);
1694 #ifdef ES_AGGRESSIVE_TEST
1695         struct ext4_map_blocks orig_map;
1696
1697         memcpy(&orig_map, map, sizeof(*map));
1698 #endif
1699
1700         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1701                 invalid_block = ~0;
1702
1703         map->m_flags = 0;
1704         ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1705                   (unsigned long) map->m_lblk);
1706
1707         /* Lookup extent status tree firstly */
1708         if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1709                 if (ext4_es_is_hole(&es)) {
1710                         retval = 0;
1711                         down_read(&EXT4_I(inode)->i_data_sem);
1712                         goto add_delayed;
1713                 }
1714
1715                 /*
1716                  * Delayed extent could be allocated by fallocate.
1717                  * So we need to check it.
1718                  */
1719                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1720                         map_bh(bh, inode->i_sb, invalid_block);
1721                         set_buffer_new(bh);
1722                         set_buffer_delay(bh);
1723                         return 0;
1724                 }
1725
1726                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1727                 retval = es.es_len - (iblock - es.es_lblk);
1728                 if (retval > map->m_len)
1729                         retval = map->m_len;
1730                 map->m_len = retval;
1731                 if (ext4_es_is_written(&es))
1732                         map->m_flags |= EXT4_MAP_MAPPED;
1733                 else if (ext4_es_is_unwritten(&es))
1734                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1735                 else
1736                         BUG();
1737
1738 #ifdef ES_AGGRESSIVE_TEST
1739                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1740 #endif
1741                 return retval;
1742         }
1743
1744         /*
1745          * Try to see if we can get the block without requesting a new
1746          * file system block.
1747          */
1748         down_read(&EXT4_I(inode)->i_data_sem);
1749         if (ext4_has_inline_data(inode))
1750                 retval = 0;
1751         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1752                 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1753         else
1754                 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1755
1756 add_delayed:
1757         if (retval == 0) {
1758                 int ret;
1759
1760                 /*
1761                  * XXX: __block_prepare_write() unmaps passed block,
1762                  * is it OK?
1763                  */
1764
1765                 ret = ext4_insert_delayed_block(inode, map->m_lblk);
1766                 if (ret != 0) {
1767                         retval = ret;
1768                         goto out_unlock;
1769                 }
1770
1771                 map_bh(bh, inode->i_sb, invalid_block);
1772                 set_buffer_new(bh);
1773                 set_buffer_delay(bh);
1774         } else if (retval > 0) {
1775                 int ret;
1776                 unsigned int status;
1777
1778                 if (unlikely(retval != map->m_len)) {
1779                         ext4_warning(inode->i_sb,
1780                                      "ES len assertion failed for inode "
1781                                      "%lu: retval %d != map->m_len %d",
1782                                      inode->i_ino, retval, map->m_len);
1783                         WARN_ON(1);
1784                 }
1785
1786                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1787                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1788                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1789                                             map->m_pblk, status);
1790                 if (ret != 0)
1791                         retval = ret;
1792         }
1793
1794 out_unlock:
1795         up_read((&EXT4_I(inode)->i_data_sem));
1796
1797         return retval;
1798 }
1799
1800 /*
1801  * This is a special get_block_t callback which is used by
1802  * ext4_da_write_begin().  It will either return mapped block or
1803  * reserve space for a single block.
1804  *
1805  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1806  * We also have b_blocknr = -1 and b_bdev initialized properly
1807  *
1808  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1809  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1810  * initialized properly.
1811  */
1812 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1813                            struct buffer_head *bh, int create)
1814 {
1815         struct ext4_map_blocks map;
1816         int ret = 0;
1817
1818         BUG_ON(create == 0);
1819         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1820
1821         map.m_lblk = iblock;
1822         map.m_len = 1;
1823
1824         /*
1825          * first, we need to know whether the block is allocated already
1826          * preallocated blocks are unmapped but should treated
1827          * the same as allocated blocks.
1828          */
1829         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1830         if (ret <= 0)
1831                 return ret;
1832
1833         map_bh(bh, inode->i_sb, map.m_pblk);
1834         ext4_update_bh_state(bh, map.m_flags);
1835
1836         if (buffer_unwritten(bh)) {
1837                 /* A delayed write to unwritten bh should be marked
1838                  * new and mapped.  Mapped ensures that we don't do
1839                  * get_block multiple times when we write to the same
1840                  * offset and new ensures that we do proper zero out
1841                  * for partial write.
1842                  */
1843                 set_buffer_new(bh);
1844                 set_buffer_mapped(bh);
1845         }
1846         return 0;
1847 }
1848
1849 static int __ext4_journalled_writepage(struct page *page,
1850                                        unsigned int len)
1851 {
1852         struct address_space *mapping = page->mapping;
1853         struct inode *inode = mapping->host;
1854         handle_t *handle = NULL;
1855         int ret = 0, err = 0;
1856         int inline_data = ext4_has_inline_data(inode);
1857         struct buffer_head *inode_bh = NULL;
1858         loff_t size;
1859
1860         ClearPageChecked(page);
1861
1862         if (inline_data) {
1863                 BUG_ON(page->index != 0);
1864                 BUG_ON(len > ext4_get_max_inline_size(inode));
1865                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1866                 if (inode_bh == NULL)
1867                         goto out;
1868         }
1869         /*
1870          * We need to release the page lock before we start the
1871          * journal, so grab a reference so the page won't disappear
1872          * out from under us.
1873          */
1874         get_page(page);
1875         unlock_page(page);
1876
1877         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1878                                     ext4_writepage_trans_blocks(inode));
1879         if (IS_ERR(handle)) {
1880                 ret = PTR_ERR(handle);
1881                 put_page(page);
1882                 goto out_no_pagelock;
1883         }
1884         BUG_ON(!ext4_handle_valid(handle));
1885
1886         lock_page(page);
1887         put_page(page);
1888         size = i_size_read(inode);
1889         if (page->mapping != mapping || page_offset(page) > size) {
1890                 /* The page got truncated from under us */
1891                 ext4_journal_stop(handle);
1892                 ret = 0;
1893                 goto out;
1894         }
1895
1896         if (inline_data) {
1897                 ret = ext4_mark_inode_dirty(handle, inode);
1898         } else {
1899                 struct buffer_head *page_bufs = page_buffers(page);
1900
1901                 if (page->index == size >> PAGE_SHIFT)
1902                         len = size & ~PAGE_MASK;
1903                 else
1904                         len = PAGE_SIZE;
1905
1906                 ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
1907                                              NULL, do_journal_get_write_access);
1908
1909                 err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
1910                                              NULL, write_end_fn);
1911         }
1912         if (ret == 0)
1913                 ret = err;
1914         err = ext4_jbd2_inode_add_write(handle, inode, page_offset(page), len);
1915         if (ret == 0)
1916                 ret = err;
1917         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1918         err = ext4_journal_stop(handle);
1919         if (!ret)
1920                 ret = err;
1921
1922         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1923 out:
1924         unlock_page(page);
1925 out_no_pagelock:
1926         brelse(inode_bh);
1927         return ret;
1928 }
1929
1930 /*
1931  * Note that we don't need to start a transaction unless we're journaling data
1932  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1933  * need to file the inode to the transaction's list in ordered mode because if
1934  * we are writing back data added by write(), the inode is already there and if
1935  * we are writing back data modified via mmap(), no one guarantees in which
1936  * transaction the data will hit the disk. In case we are journaling data, we
1937  * cannot start transaction directly because transaction start ranks above page
1938  * lock so we have to do some magic.
1939  *
1940  * This function can get called via...
1941  *   - ext4_writepages after taking page lock (have journal handle)
1942  *   - journal_submit_inode_data_buffers (no journal handle)
1943  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1944  *   - grab_page_cache when doing write_begin (have journal handle)
1945  *
1946  * We don't do any block allocation in this function. If we have page with
1947  * multiple blocks we need to write those buffer_heads that are mapped. This
1948  * is important for mmaped based write. So if we do with blocksize 1K
1949  * truncate(f, 1024);
1950  * a = mmap(f, 0, 4096);
1951  * a[0] = 'a';
1952  * truncate(f, 4096);
1953  * we have in the page first buffer_head mapped via page_mkwrite call back
1954  * but other buffer_heads would be unmapped but dirty (dirty done via the
1955  * do_wp_page). So writepage should write the first block. If we modify
1956  * the mmap area beyond 1024 we will again get a page_fault and the
1957  * page_mkwrite callback will do the block allocation and mark the
1958  * buffer_heads mapped.
1959  *
1960  * We redirty the page if we have any buffer_heads that is either delay or
1961  * unwritten in the page.
1962  *
1963  * We can get recursively called as show below.
1964  *
1965  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1966  *              ext4_writepage()
1967  *
1968  * But since we don't do any block allocation we should not deadlock.
1969  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1970  */
1971 static int ext4_writepage(struct page *page,
1972                           struct writeback_control *wbc)
1973 {
1974         int ret = 0;
1975         loff_t size;
1976         unsigned int len;
1977         struct buffer_head *page_bufs = NULL;
1978         struct inode *inode = page->mapping->host;
1979         struct ext4_io_submit io_submit;
1980         bool keep_towrite = false;
1981
1982         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
1983                 inode->i_mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
1984                 unlock_page(page);
1985                 return -EIO;
1986         }
1987
1988         trace_ext4_writepage(page);
1989         size = i_size_read(inode);
1990         if (page->index == size >> PAGE_SHIFT &&
1991             !ext4_verity_in_progress(inode))
1992                 len = size & ~PAGE_MASK;
1993         else
1994                 len = PAGE_SIZE;
1995
1996         page_bufs = page_buffers(page);
1997         /*
1998          * We cannot do block allocation or other extent handling in this
1999          * function. If there are buffers needing that, we have to redirty
2000          * the page. But we may reach here when we do a journal commit via
2001          * journal_submit_inode_data_buffers() and in that case we must write
2002          * allocated buffers to achieve data=ordered mode guarantees.
2003          *
2004          * Also, if there is only one buffer per page (the fs block
2005          * size == the page size), if one buffer needs block
2006          * allocation or needs to modify the extent tree to clear the
2007          * unwritten flag, we know that the page can't be written at
2008          * all, so we might as well refuse the write immediately.
2009          * Unfortunately if the block size != page size, we can't as
2010          * easily detect this case using ext4_walk_page_buffers(), but
2011          * for the extremely common case, this is an optimization that
2012          * skips a useless round trip through ext4_bio_write_page().
2013          */
2014         if (ext4_walk_page_buffers(NULL, inode, page_bufs, 0, len, NULL,
2015                                    ext4_bh_delay_or_unwritten)) {
2016                 redirty_page_for_writepage(wbc, page);
2017                 if ((current->flags & PF_MEMALLOC) ||
2018                     (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2019                         /*
2020                          * For memory cleaning there's no point in writing only
2021                          * some buffers. So just bail out. Warn if we came here
2022                          * from direct reclaim.
2023                          */
2024                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2025                                                         == PF_MEMALLOC);
2026                         unlock_page(page);
2027                         return 0;
2028                 }
2029                 keep_towrite = true;
2030         }
2031
2032         if (PageChecked(page) && ext4_should_journal_data(inode))
2033                 /*
2034                  * It's mmapped pagecache.  Add buffers and journal it.  There
2035                  * doesn't seem much point in redirtying the page here.
2036                  */
2037                 return __ext4_journalled_writepage(page, len);
2038
2039         ext4_io_submit_init(&io_submit, wbc);
2040         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2041         if (!io_submit.io_end) {
2042                 redirty_page_for_writepage(wbc, page);
2043                 unlock_page(page);
2044                 return -ENOMEM;
2045         }
2046         ret = ext4_bio_write_page(&io_submit, page, len, keep_towrite);
2047         ext4_io_submit(&io_submit);
2048         /* Drop io_end reference we got from init */
2049         ext4_put_io_end_defer(io_submit.io_end);
2050         return ret;
2051 }
2052
2053 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2054 {
2055         int len;
2056         loff_t size;
2057         int err;
2058
2059         BUG_ON(page->index != mpd->first_page);
2060         clear_page_dirty_for_io(page);
2061         /*
2062          * We have to be very careful here!  Nothing protects writeback path
2063          * against i_size changes and the page can be writeably mapped into
2064          * page tables. So an application can be growing i_size and writing
2065          * data through mmap while writeback runs. clear_page_dirty_for_io()
2066          * write-protects our page in page tables and the page cannot get
2067          * written to again until we release page lock. So only after
2068          * clear_page_dirty_for_io() we are safe to sample i_size for
2069          * ext4_bio_write_page() to zero-out tail of the written page. We rely
2070          * on the barrier provided by TestClearPageDirty in
2071          * clear_page_dirty_for_io() to make sure i_size is really sampled only
2072          * after page tables are updated.
2073          */
2074         size = i_size_read(mpd->inode);
2075         if (page->index == size >> PAGE_SHIFT &&
2076             !ext4_verity_in_progress(mpd->inode))
2077                 len = size & ~PAGE_MASK;
2078         else
2079                 len = PAGE_SIZE;
2080         err = ext4_bio_write_page(&mpd->io_submit, page, len, false);
2081         if (!err)
2082                 mpd->wbc->nr_to_write--;
2083         mpd->first_page++;
2084
2085         return err;
2086 }
2087
2088 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
2089
2090 /*
2091  * mballoc gives us at most this number of blocks...
2092  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2093  * The rest of mballoc seems to handle chunks up to full group size.
2094  */
2095 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2096
2097 /*
2098  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2099  *
2100  * @mpd - extent of blocks
2101  * @lblk - logical number of the block in the file
2102  * @bh - buffer head we want to add to the extent
2103  *
2104  * The function is used to collect contig. blocks in the same state. If the
2105  * buffer doesn't require mapping for writeback and we haven't started the
2106  * extent of buffers to map yet, the function returns 'true' immediately - the
2107  * caller can write the buffer right away. Otherwise the function returns true
2108  * if the block has been added to the extent, false if the block couldn't be
2109  * added.
2110  */
2111 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2112                                    struct buffer_head *bh)
2113 {
2114         struct ext4_map_blocks *map = &mpd->map;
2115
2116         /* Buffer that doesn't need mapping for writeback? */
2117         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2118             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2119                 /* So far no extent to map => we write the buffer right away */
2120                 if (map->m_len == 0)
2121                         return true;
2122                 return false;
2123         }
2124
2125         /* First block in the extent? */
2126         if (map->m_len == 0) {
2127                 /* We cannot map unless handle is started... */
2128                 if (!mpd->do_map)
2129                         return false;
2130                 map->m_lblk = lblk;
2131                 map->m_len = 1;
2132                 map->m_flags = bh->b_state & BH_FLAGS;
2133                 return true;
2134         }
2135
2136         /* Don't go larger than mballoc is willing to allocate */
2137         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2138                 return false;
2139
2140         /* Can we merge the block to our big extent? */
2141         if (lblk == map->m_lblk + map->m_len &&
2142             (bh->b_state & BH_FLAGS) == map->m_flags) {
2143                 map->m_len++;
2144                 return true;
2145         }
2146         return false;
2147 }
2148
2149 /*
2150  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2151  *
2152  * @mpd - extent of blocks for mapping
2153  * @head - the first buffer in the page
2154  * @bh - buffer we should start processing from
2155  * @lblk - logical number of the block in the file corresponding to @bh
2156  *
2157  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2158  * the page for IO if all buffers in this page were mapped and there's no
2159  * accumulated extent of buffers to map or add buffers in the page to the
2160  * extent of buffers to map. The function returns 1 if the caller can continue
2161  * by processing the next page, 0 if it should stop adding buffers to the
2162  * extent to map because we cannot extend it anymore. It can also return value
2163  * < 0 in case of error during IO submission.
2164  */
2165 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2166                                    struct buffer_head *head,
2167                                    struct buffer_head *bh,
2168                                    ext4_lblk_t lblk)
2169 {
2170         struct inode *inode = mpd->inode;
2171         int err;
2172         ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2173                                                         >> inode->i_blkbits;
2174
2175         if (ext4_verity_in_progress(inode))
2176                 blocks = EXT_MAX_BLOCKS;
2177
2178         do {
2179                 BUG_ON(buffer_locked(bh));
2180
2181                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2182                         /* Found extent to map? */
2183                         if (mpd->map.m_len)
2184                                 return 0;
2185                         /* Buffer needs mapping and handle is not started? */
2186                         if (!mpd->do_map)
2187                                 return 0;
2188                         /* Everything mapped so far and we hit EOF */
2189                         break;
2190                 }
2191         } while (lblk++, (bh = bh->b_this_page) != head);
2192         /* So far everything mapped? Submit the page for IO. */
2193         if (mpd->map.m_len == 0) {
2194                 err = mpage_submit_page(mpd, head->b_page);
2195                 if (err < 0)
2196                         return err;
2197         }
2198         if (lblk >= blocks) {
2199                 mpd->scanned_until_end = 1;
2200                 return 0;
2201         }
2202         return 1;
2203 }
2204
2205 /*
2206  * mpage_process_page - update page buffers corresponding to changed extent and
2207  *                     may submit fully mapped page for IO
2208  *
2209  * @mpd         - description of extent to map, on return next extent to map
2210  * @m_lblk      - logical block mapping.
2211  * @m_pblk      - corresponding physical mapping.
2212  * @map_bh      - determines on return whether this page requires any further
2213  *                mapping or not.
2214  * Scan given page buffers corresponding to changed extent and update buffer
2215  * state according to new extent state.
2216  * We map delalloc buffers to their physical location, clear unwritten bits.
2217  * If the given page is not fully mapped, we update @map to the next extent in
2218  * the given page that needs mapping & return @map_bh as true.
2219  */
2220 static int mpage_process_page(struct mpage_da_data *mpd, struct page *page,
2221                               ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2222                               bool *map_bh)
2223 {
2224         struct buffer_head *head, *bh;
2225         ext4_io_end_t *io_end = mpd->io_submit.io_end;
2226         ext4_lblk_t lblk = *m_lblk;
2227         ext4_fsblk_t pblock = *m_pblk;
2228         int err = 0;
2229         int blkbits = mpd->inode->i_blkbits;
2230         ssize_t io_end_size = 0;
2231         struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2232
2233         bh = head = page_buffers(page);
2234         do {
2235                 if (lblk < mpd->map.m_lblk)
2236                         continue;
2237                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2238                         /*
2239                          * Buffer after end of mapped extent.
2240                          * Find next buffer in the page to map.
2241                          */
2242                         mpd->map.m_len = 0;
2243                         mpd->map.m_flags = 0;
2244                         io_end_vec->size += io_end_size;
2245
2246                         err = mpage_process_page_bufs(mpd, head, bh, lblk);
2247                         if (err > 0)
2248                                 err = 0;
2249                         if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2250                                 io_end_vec = ext4_alloc_io_end_vec(io_end);
2251                                 if (IS_ERR(io_end_vec)) {
2252                                         err = PTR_ERR(io_end_vec);
2253                                         goto out;
2254                                 }
2255                                 io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits;
2256                         }
2257                         *map_bh = true;
2258                         goto out;
2259                 }
2260                 if (buffer_delay(bh)) {
2261                         clear_buffer_delay(bh);
2262                         bh->b_blocknr = pblock++;
2263                 }
2264                 clear_buffer_unwritten(bh);
2265                 io_end_size += (1 << blkbits);
2266         } while (lblk++, (bh = bh->b_this_page) != head);
2267
2268         io_end_vec->size += io_end_size;
2269         *map_bh = false;
2270 out:
2271         *m_lblk = lblk;
2272         *m_pblk = pblock;
2273         return err;
2274 }
2275
2276 /*
2277  * mpage_map_buffers - update buffers corresponding to changed extent and
2278  *                     submit fully mapped pages for IO
2279  *
2280  * @mpd - description of extent to map, on return next extent to map
2281  *
2282  * Scan buffers corresponding to changed extent (we expect corresponding pages
2283  * to be already locked) and update buffer state according to new extent state.
2284  * We map delalloc buffers to their physical location, clear unwritten bits,
2285  * and mark buffers as uninit when we perform writes to unwritten extents
2286  * and do extent conversion after IO is finished. If the last page is not fully
2287  * mapped, we update @map to the next extent in the last page that needs
2288  * mapping. Otherwise we submit the page for IO.
2289  */
2290 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2291 {
2292         struct pagevec pvec;
2293         int nr_pages, i;
2294         struct inode *inode = mpd->inode;
2295         int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2296         pgoff_t start, end;
2297         ext4_lblk_t lblk;
2298         ext4_fsblk_t pblock;
2299         int err;
2300         bool map_bh = false;
2301
2302         start = mpd->map.m_lblk >> bpp_bits;
2303         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2304         lblk = start << bpp_bits;
2305         pblock = mpd->map.m_pblk;
2306
2307         pagevec_init(&pvec);
2308         while (start <= end) {
2309                 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2310                                                 &start, end);
2311                 if (nr_pages == 0)
2312                         break;
2313                 for (i = 0; i < nr_pages; i++) {
2314                         struct page *page = pvec.pages[i];
2315
2316                         err = mpage_process_page(mpd, page, &lblk, &pblock,
2317                                                  &map_bh);
2318                         /*
2319                          * If map_bh is true, means page may require further bh
2320                          * mapping, or maybe the page was submitted for IO.
2321                          * So we return to call further extent mapping.
2322                          */
2323                         if (err < 0 || map_bh)
2324                                 goto out;
2325                         /* Page fully mapped - let IO run! */
2326                         err = mpage_submit_page(mpd, page);
2327                         if (err < 0)
2328                                 goto out;
2329                 }
2330                 pagevec_release(&pvec);
2331         }
2332         /* Extent fully mapped and matches with page boundary. We are done. */
2333         mpd->map.m_len = 0;
2334         mpd->map.m_flags = 0;
2335         return 0;
2336 out:
2337         pagevec_release(&pvec);
2338         return err;
2339 }
2340
2341 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2342 {
2343         struct inode *inode = mpd->inode;
2344         struct ext4_map_blocks *map = &mpd->map;
2345         int get_blocks_flags;
2346         int err, dioread_nolock;
2347
2348         trace_ext4_da_write_pages_extent(inode, map);
2349         /*
2350          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2351          * to convert an unwritten extent to be initialized (in the case
2352          * where we have written into one or more preallocated blocks).  It is
2353          * possible that we're going to need more metadata blocks than
2354          * previously reserved. However we must not fail because we're in
2355          * writeback and there is nothing we can do about it so it might result
2356          * in data loss.  So use reserved blocks to allocate metadata if
2357          * possible.
2358          *
2359          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2360          * the blocks in question are delalloc blocks.  This indicates
2361          * that the blocks and quotas has already been checked when
2362          * the data was copied into the page cache.
2363          */
2364         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2365                            EXT4_GET_BLOCKS_METADATA_NOFAIL |
2366                            EXT4_GET_BLOCKS_IO_SUBMIT;
2367         dioread_nolock = ext4_should_dioread_nolock(inode);
2368         if (dioread_nolock)
2369                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2370         if (map->m_flags & BIT(BH_Delay))
2371                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2372
2373         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2374         if (err < 0)
2375                 return err;
2376         if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2377                 if (!mpd->io_submit.io_end->handle &&
2378                     ext4_handle_valid(handle)) {
2379                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2380                         handle->h_rsv_handle = NULL;
2381                 }
2382                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2383         }
2384
2385         BUG_ON(map->m_len == 0);
2386         return 0;
2387 }
2388
2389 /*
2390  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2391  *                               mpd->len and submit pages underlying it for IO
2392  *
2393  * @handle - handle for journal operations
2394  * @mpd - extent to map
2395  * @give_up_on_write - we set this to true iff there is a fatal error and there
2396  *                     is no hope of writing the data. The caller should discard
2397  *                     dirty pages to avoid infinite loops.
2398  *
2399  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2400  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2401  * them to initialized or split the described range from larger unwritten
2402  * extent. Note that we need not map all the described range since allocation
2403  * can return less blocks or the range is covered by more unwritten extents. We
2404  * cannot map more because we are limited by reserved transaction credits. On
2405  * the other hand we always make sure that the last touched page is fully
2406  * mapped so that it can be written out (and thus forward progress is
2407  * guaranteed). After mapping we submit all mapped pages for IO.
2408  */
2409 static int mpage_map_and_submit_extent(handle_t *handle,
2410                                        struct mpage_da_data *mpd,
2411                                        bool *give_up_on_write)
2412 {
2413         struct inode *inode = mpd->inode;
2414         struct ext4_map_blocks *map = &mpd->map;
2415         int err;
2416         loff_t disksize;
2417         int progress = 0;
2418         ext4_io_end_t *io_end = mpd->io_submit.io_end;
2419         struct ext4_io_end_vec *io_end_vec;
2420
2421         io_end_vec = ext4_alloc_io_end_vec(io_end);
2422         if (IS_ERR(io_end_vec))
2423                 return PTR_ERR(io_end_vec);
2424         io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2425         do {
2426                 err = mpage_map_one_extent(handle, mpd);
2427                 if (err < 0) {
2428                         struct super_block *sb = inode->i_sb;
2429
2430                         if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2431                             ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
2432                                 goto invalidate_dirty_pages;
2433                         /*
2434                          * Let the uper layers retry transient errors.
2435                          * In the case of ENOSPC, if ext4_count_free_blocks()
2436                          * is non-zero, a commit should free up blocks.
2437                          */
2438                         if ((err == -ENOMEM) ||
2439                             (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2440                                 if (progress)
2441                                         goto update_disksize;
2442                                 return err;
2443                         }
2444                         ext4_msg(sb, KERN_CRIT,
2445                                  "Delayed block allocation failed for "
2446                                  "inode %lu at logical offset %llu with"
2447                                  " max blocks %u with error %d",
2448                                  inode->i_ino,
2449                                  (unsigned long long)map->m_lblk,
2450                                  (unsigned)map->m_len, -err);
2451                         ext4_msg(sb, KERN_CRIT,
2452                                  "This should not happen!! Data will "
2453                                  "be lost\n");
2454                         if (err == -ENOSPC)
2455                                 ext4_print_free_blocks(inode);
2456                 invalidate_dirty_pages:
2457                         *give_up_on_write = true;
2458                         return err;
2459                 }
2460                 progress = 1;
2461                 /*
2462                  * Update buffer state, submit mapped pages, and get us new
2463                  * extent to map
2464                  */
2465                 err = mpage_map_and_submit_buffers(mpd);
2466                 if (err < 0)
2467                         goto update_disksize;
2468         } while (map->m_len);
2469
2470 update_disksize:
2471         /*
2472          * Update on-disk size after IO is submitted.  Races with
2473          * truncate are avoided by checking i_size under i_data_sem.
2474          */
2475         disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2476         if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2477                 int err2;
2478                 loff_t i_size;
2479
2480                 down_write(&EXT4_I(inode)->i_data_sem);
2481                 i_size = i_size_read(inode);
2482                 if (disksize > i_size)
2483                         disksize = i_size;
2484                 if (disksize > EXT4_I(inode)->i_disksize)
2485                         EXT4_I(inode)->i_disksize = disksize;
2486                 up_write(&EXT4_I(inode)->i_data_sem);
2487                 err2 = ext4_mark_inode_dirty(handle, inode);
2488                 if (err2) {
2489                         ext4_error_err(inode->i_sb, -err2,
2490                                        "Failed to mark inode %lu dirty",
2491                                        inode->i_ino);
2492                 }
2493                 if (!err)
2494                         err = err2;
2495         }
2496         return err;
2497 }
2498
2499 /*
2500  * Calculate the total number of credits to reserve for one writepages
2501  * iteration. This is called from ext4_writepages(). We map an extent of
2502  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2503  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2504  * bpp - 1 blocks in bpp different extents.
2505  */
2506 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2507 {
2508         int bpp = ext4_journal_blocks_per_page(inode);
2509
2510         return ext4_meta_trans_blocks(inode,
2511                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2512 }
2513
2514 /*
2515  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2516  *                               and underlying extent to map
2517  *
2518  * @mpd - where to look for pages
2519  *
2520  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2521  * IO immediately. When we find a page which isn't mapped we start accumulating
2522  * extent of buffers underlying these pages that needs mapping (formed by
2523  * either delayed or unwritten buffers). We also lock the pages containing
2524  * these buffers. The extent found is returned in @mpd structure (starting at
2525  * mpd->lblk with length mpd->len blocks).
2526  *
2527  * Note that this function can attach bios to one io_end structure which are
2528  * neither logically nor physically contiguous. Although it may seem as an
2529  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2530  * case as we need to track IO to all buffers underlying a page in one io_end.
2531  */
2532 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2533 {
2534         struct address_space *mapping = mpd->inode->i_mapping;
2535         struct pagevec pvec;
2536         unsigned int nr_pages;
2537         long left = mpd->wbc->nr_to_write;
2538         pgoff_t index = mpd->first_page;
2539         pgoff_t end = mpd->last_page;
2540         xa_mark_t tag;
2541         int i, err = 0;
2542         int blkbits = mpd->inode->i_blkbits;
2543         ext4_lblk_t lblk;
2544         struct buffer_head *head;
2545
2546         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2547                 tag = PAGECACHE_TAG_TOWRITE;
2548         else
2549                 tag = PAGECACHE_TAG_DIRTY;
2550
2551         pagevec_init(&pvec);
2552         mpd->map.m_len = 0;
2553         mpd->next_page = index;
2554         while (index <= end) {
2555                 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2556                                 tag);
2557                 if (nr_pages == 0)
2558                         break;
2559
2560                 for (i = 0; i < nr_pages; i++) {
2561                         struct page *page = pvec.pages[i];
2562
2563                         /*
2564                          * Accumulated enough dirty pages? This doesn't apply
2565                          * to WB_SYNC_ALL mode. For integrity sync we have to
2566                          * keep going because someone may be concurrently
2567                          * dirtying pages, and we might have synced a lot of
2568                          * newly appeared dirty pages, but have not synced all
2569                          * of the old dirty pages.
2570                          */
2571                         if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2572                                 goto out;
2573
2574                         /* If we can't merge this page, we are done. */
2575                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2576                                 goto out;
2577
2578                         lock_page(page);
2579                         /*
2580                          * If the page is no longer dirty, or its mapping no
2581                          * longer corresponds to inode we are writing (which
2582                          * means it has been truncated or invalidated), or the
2583                          * page is already under writeback and we are not doing
2584                          * a data integrity writeback, skip the page
2585                          */
2586                         if (!PageDirty(page) ||
2587                             (PageWriteback(page) &&
2588                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2589                             unlikely(page->mapping != mapping)) {
2590                                 unlock_page(page);
2591                                 continue;
2592                         }
2593
2594                         wait_on_page_writeback(page);
2595                         BUG_ON(PageWriteback(page));
2596
2597                         if (mpd->map.m_len == 0)
2598                                 mpd->first_page = page->index;
2599                         mpd->next_page = page->index + 1;
2600                         /* Add all dirty buffers to mpd */
2601                         lblk = ((ext4_lblk_t)page->index) <<
2602                                 (PAGE_SHIFT - blkbits);
2603                         head = page_buffers(page);
2604                         err = mpage_process_page_bufs(mpd, head, head, lblk);
2605                         if (err <= 0)
2606                                 goto out;
2607                         err = 0;
2608                         left--;
2609                 }
2610                 pagevec_release(&pvec);
2611                 cond_resched();
2612         }
2613         mpd->scanned_until_end = 1;
2614         return 0;
2615 out:
2616         pagevec_release(&pvec);
2617         return err;
2618 }
2619
2620 static int ext4_writepages(struct address_space *mapping,
2621                            struct writeback_control *wbc)
2622 {
2623         pgoff_t writeback_index = 0;
2624         long nr_to_write = wbc->nr_to_write;
2625         int range_whole = 0;
2626         int cycled = 1;
2627         handle_t *handle = NULL;
2628         struct mpage_da_data mpd;
2629         struct inode *inode = mapping->host;
2630         int needed_blocks, rsv_blocks = 0, ret = 0;
2631         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2632         struct blk_plug plug;
2633         bool give_up_on_write = false;
2634
2635         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2636                 return -EIO;
2637
2638         percpu_down_read(&sbi->s_writepages_rwsem);
2639         trace_ext4_writepages(inode, wbc);
2640
2641         /*
2642          * No pages to write? This is mainly a kludge to avoid starting
2643          * a transaction for special inodes like journal inode on last iput()
2644          * because that could violate lock ordering on umount
2645          */
2646         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2647                 goto out_writepages;
2648
2649         if (ext4_should_journal_data(inode)) {
2650                 ret = generic_writepages(mapping, wbc);
2651                 goto out_writepages;
2652         }
2653
2654         /*
2655          * If the filesystem has aborted, it is read-only, so return
2656          * right away instead of dumping stack traces later on that
2657          * will obscure the real source of the problem.  We test
2658          * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2659          * the latter could be true if the filesystem is mounted
2660          * read-only, and in that case, ext4_writepages should
2661          * *never* be called, so if that ever happens, we would want
2662          * the stack trace.
2663          */
2664         if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2665                      ext4_test_mount_flag(inode->i_sb, EXT4_MF_FS_ABORTED))) {
2666                 ret = -EROFS;
2667                 goto out_writepages;
2668         }
2669
2670         /*
2671          * If we have inline data and arrive here, it means that
2672          * we will soon create the block for the 1st page, so
2673          * we'd better clear the inline data here.
2674          */
2675         if (ext4_has_inline_data(inode)) {
2676                 /* Just inode will be modified... */
2677                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2678                 if (IS_ERR(handle)) {
2679                         ret = PTR_ERR(handle);
2680                         goto out_writepages;
2681                 }
2682                 BUG_ON(ext4_test_inode_state(inode,
2683                                 EXT4_STATE_MAY_INLINE_DATA));
2684                 ext4_destroy_inline_data(handle, inode);
2685                 ext4_journal_stop(handle);
2686         }
2687
2688         if (ext4_should_dioread_nolock(inode)) {
2689                 /*
2690                  * We may need to convert up to one extent per block in
2691                  * the page and we may dirty the inode.
2692                  */
2693                 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2694                                                 PAGE_SIZE >> inode->i_blkbits);
2695         }
2696
2697         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2698                 range_whole = 1;
2699
2700         if (wbc->range_cyclic) {
2701                 writeback_index = mapping->writeback_index;
2702                 if (writeback_index)
2703                         cycled = 0;
2704                 mpd.first_page = writeback_index;
2705                 mpd.last_page = -1;
2706         } else {
2707                 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2708                 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2709         }
2710
2711         mpd.inode = inode;
2712         mpd.wbc = wbc;
2713         ext4_io_submit_init(&mpd.io_submit, wbc);
2714 retry:
2715         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2716                 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2717         blk_start_plug(&plug);
2718
2719         /*
2720          * First writeback pages that don't need mapping - we can avoid
2721          * starting a transaction unnecessarily and also avoid being blocked
2722          * in the block layer on device congestion while having transaction
2723          * started.
2724          */
2725         mpd.do_map = 0;
2726         mpd.scanned_until_end = 0;
2727         mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2728         if (!mpd.io_submit.io_end) {
2729                 ret = -ENOMEM;
2730                 goto unplug;
2731         }
2732         ret = mpage_prepare_extent_to_map(&mpd);
2733         /* Unlock pages we didn't use */
2734         mpage_release_unused_pages(&mpd, false);
2735         /* Submit prepared bio */
2736         ext4_io_submit(&mpd.io_submit);
2737         ext4_put_io_end_defer(mpd.io_submit.io_end);
2738         mpd.io_submit.io_end = NULL;
2739         if (ret < 0)
2740                 goto unplug;
2741
2742         while (!mpd.scanned_until_end && wbc->nr_to_write > 0) {
2743                 /* For each extent of pages we use new io_end */
2744                 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2745                 if (!mpd.io_submit.io_end) {
2746                         ret = -ENOMEM;
2747                         break;
2748                 }
2749
2750                 /*
2751                  * We have two constraints: We find one extent to map and we
2752                  * must always write out whole page (makes a difference when
2753                  * blocksize < pagesize) so that we don't block on IO when we
2754                  * try to write out the rest of the page. Journalled mode is
2755                  * not supported by delalloc.
2756                  */
2757                 BUG_ON(ext4_should_journal_data(inode));
2758                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2759
2760                 /* start a new transaction */
2761                 handle = ext4_journal_start_with_reserve(inode,
2762                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2763                 if (IS_ERR(handle)) {
2764                         ret = PTR_ERR(handle);
2765                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2766                                "%ld pages, ino %lu; err %d", __func__,
2767                                 wbc->nr_to_write, inode->i_ino, ret);
2768                         /* Release allocated io_end */
2769                         ext4_put_io_end(mpd.io_submit.io_end);
2770                         mpd.io_submit.io_end = NULL;
2771                         break;
2772                 }
2773                 mpd.do_map = 1;
2774
2775                 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2776                 ret = mpage_prepare_extent_to_map(&mpd);
2777                 if (!ret && mpd.map.m_len)
2778                         ret = mpage_map_and_submit_extent(handle, &mpd,
2779                                         &give_up_on_write);
2780                 /*
2781                  * Caution: If the handle is synchronous,
2782                  * ext4_journal_stop() can wait for transaction commit
2783                  * to finish which may depend on writeback of pages to
2784                  * complete or on page lock to be released.  In that
2785                  * case, we have to wait until after we have
2786                  * submitted all the IO, released page locks we hold,
2787                  * and dropped io_end reference (for extent conversion
2788                  * to be able to complete) before stopping the handle.
2789                  */
2790                 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2791                         ext4_journal_stop(handle);
2792                         handle = NULL;
2793                         mpd.do_map = 0;
2794                 }
2795                 /* Unlock pages we didn't use */
2796                 mpage_release_unused_pages(&mpd, give_up_on_write);
2797                 /* Submit prepared bio */
2798                 ext4_io_submit(&mpd.io_submit);
2799
2800                 /*
2801                  * Drop our io_end reference we got from init. We have
2802                  * to be careful and use deferred io_end finishing if
2803                  * we are still holding the transaction as we can
2804                  * release the last reference to io_end which may end
2805                  * up doing unwritten extent conversion.
2806                  */
2807                 if (handle) {
2808                         ext4_put_io_end_defer(mpd.io_submit.io_end);
2809                         ext4_journal_stop(handle);
2810                 } else
2811                         ext4_put_io_end(mpd.io_submit.io_end);
2812                 mpd.io_submit.io_end = NULL;
2813
2814                 if (ret == -ENOSPC && sbi->s_journal) {
2815                         /*
2816                          * Commit the transaction which would
2817                          * free blocks released in the transaction
2818                          * and try again
2819                          */
2820                         jbd2_journal_force_commit_nested(sbi->s_journal);
2821                         ret = 0;
2822                         continue;
2823                 }
2824                 /* Fatal error - ENOMEM, EIO... */
2825                 if (ret)
2826                         break;
2827         }
2828 unplug:
2829         blk_finish_plug(&plug);
2830         if (!ret && !cycled && wbc->nr_to_write > 0) {
2831                 cycled = 1;
2832                 mpd.last_page = writeback_index - 1;
2833                 mpd.first_page = 0;
2834                 goto retry;
2835         }
2836
2837         /* Update index */
2838         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2839                 /*
2840                  * Set the writeback_index so that range_cyclic
2841                  * mode will write it back later
2842                  */
2843                 mapping->writeback_index = mpd.first_page;
2844
2845 out_writepages:
2846         trace_ext4_writepages_result(inode, wbc, ret,
2847                                      nr_to_write - wbc->nr_to_write);
2848         percpu_up_read(&sbi->s_writepages_rwsem);
2849         return ret;
2850 }
2851
2852 static int ext4_dax_writepages(struct address_space *mapping,
2853                                struct writeback_control *wbc)
2854 {
2855         int ret;
2856         long nr_to_write = wbc->nr_to_write;
2857         struct inode *inode = mapping->host;
2858         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2859
2860         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2861                 return -EIO;
2862
2863         percpu_down_read(&sbi->s_writepages_rwsem);
2864         trace_ext4_writepages(inode, wbc);
2865
2866         ret = dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc);
2867         trace_ext4_writepages_result(inode, wbc, ret,
2868                                      nr_to_write - wbc->nr_to_write);
2869         percpu_up_read(&sbi->s_writepages_rwsem);
2870         return ret;
2871 }
2872
2873 static int ext4_nonda_switch(struct super_block *sb)
2874 {
2875         s64 free_clusters, dirty_clusters;
2876         struct ext4_sb_info *sbi = EXT4_SB(sb);
2877
2878         /*
2879          * switch to non delalloc mode if we are running low
2880          * on free block. The free block accounting via percpu
2881          * counters can get slightly wrong with percpu_counter_batch getting
2882          * accumulated on each CPU without updating global counters
2883          * Delalloc need an accurate free block accounting. So switch
2884          * to non delalloc when we are near to error range.
2885          */
2886         free_clusters =
2887                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2888         dirty_clusters =
2889                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2890         /*
2891          * Start pushing delalloc when 1/2 of free blocks are dirty.
2892          */
2893         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2894                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2895
2896         if (2 * free_clusters < 3 * dirty_clusters ||
2897             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2898                 /*
2899                  * free block count is less than 150% of dirty blocks
2900                  * or free blocks is less than watermark
2901                  */
2902                 return 1;
2903         }
2904         return 0;
2905 }
2906
2907 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2908                                loff_t pos, unsigned len, unsigned flags,
2909                                struct page **pagep, void **fsdata)
2910 {
2911         int ret, retries = 0;
2912         struct page *page;
2913         pgoff_t index;
2914         struct inode *inode = mapping->host;
2915
2916         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2917                 return -EIO;
2918
2919         index = pos >> PAGE_SHIFT;
2920
2921         if (ext4_nonda_switch(inode->i_sb) || S_ISLNK(inode->i_mode) ||
2922             ext4_verity_in_progress(inode)) {
2923                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2924                 return ext4_write_begin(file, mapping, pos,
2925                                         len, flags, pagep, fsdata);
2926         }
2927         *fsdata = (void *)0;
2928         trace_ext4_da_write_begin(inode, pos, len, flags);
2929
2930         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2931                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2932                                                       pos, len, flags,
2933                                                       pagep, fsdata);
2934                 if (ret < 0)
2935                         return ret;
2936                 if (ret == 1)
2937                         return 0;
2938         }
2939
2940 retry:
2941         page = grab_cache_page_write_begin(mapping, index, flags);
2942         if (!page)
2943                 return -ENOMEM;
2944
2945         /* In case writeback began while the page was unlocked */
2946         wait_for_stable_page(page);
2947
2948 #ifdef CONFIG_FS_ENCRYPTION
2949         ret = ext4_block_write_begin(page, pos, len,
2950                                      ext4_da_get_block_prep);
2951 #else
2952         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2953 #endif
2954         if (ret < 0) {
2955                 unlock_page(page);
2956                 put_page(page);
2957                 /*
2958                  * block_write_begin may have instantiated a few blocks
2959                  * outside i_size.  Trim these off again. Don't need
2960                  * i_size_read because we hold inode lock.
2961                  */
2962                 if (pos + len > inode->i_size)
2963                         ext4_truncate_failed_write(inode);
2964
2965                 if (ret == -ENOSPC &&
2966                     ext4_should_retry_alloc(inode->i_sb, &retries))
2967                         goto retry;
2968                 return ret;
2969         }
2970
2971         *pagep = page;
2972         return ret;
2973 }
2974
2975 /*
2976  * Check if we should update i_disksize
2977  * when write to the end of file but not require block allocation
2978  */
2979 static int ext4_da_should_update_i_disksize(struct page *page,
2980                                             unsigned long offset)
2981 {
2982         struct buffer_head *bh;
2983         struct inode *inode = page->mapping->host;
2984         unsigned int idx;
2985         int i;
2986
2987         bh = page_buffers(page);
2988         idx = offset >> inode->i_blkbits;
2989
2990         for (i = 0; i < idx; i++)
2991                 bh = bh->b_this_page;
2992
2993         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2994                 return 0;
2995         return 1;
2996 }
2997
2998 static int ext4_da_write_end(struct file *file,
2999                              struct address_space *mapping,
3000                              loff_t pos, unsigned len, unsigned copied,
3001                              struct page *page, void *fsdata)
3002 {
3003         struct inode *inode = mapping->host;
3004         loff_t new_i_size;
3005         unsigned long start, end;
3006         int write_mode = (int)(unsigned long)fsdata;
3007
3008         if (write_mode == FALL_BACK_TO_NONDELALLOC)
3009                 return ext4_write_end(file, mapping, pos,
3010                                       len, copied, page, fsdata);
3011
3012         trace_ext4_da_write_end(inode, pos, len, copied);
3013
3014         if (write_mode != CONVERT_INLINE_DATA &&
3015             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3016             ext4_has_inline_data(inode))
3017                 return ext4_write_inline_data_end(inode, pos, len, copied, page);
3018
3019         start = pos & (PAGE_SIZE - 1);
3020         end = start + copied - 1;
3021
3022         /*
3023          * Since we are holding inode lock, we are sure i_disksize <=
3024          * i_size. We also know that if i_disksize < i_size, there are
3025          * delalloc writes pending in the range upto i_size. If the end of
3026          * the current write is <= i_size, there's no need to touch
3027          * i_disksize since writeback will push i_disksize upto i_size
3028          * eventually. If the end of the current write is > i_size and
3029          * inside an allocated block (ext4_da_should_update_i_disksize()
3030          * check), we need to update i_disksize here as neither
3031          * ext4_writepage() nor certain ext4_writepages() paths not
3032          * allocating blocks update i_disksize.
3033          *
3034          * Note that we defer inode dirtying to generic_write_end() /
3035          * ext4_da_write_inline_data_end().
3036          */
3037         new_i_size = pos + copied;
3038         if (copied && new_i_size > inode->i_size &&
3039             ext4_da_should_update_i_disksize(page, end))
3040                 ext4_update_i_disksize(inode, new_i_size);
3041
3042         return generic_write_end(file, mapping, pos, len, copied, page, fsdata);
3043 }
3044
3045 /*
3046  * Force all delayed allocation blocks to be allocated for a given inode.
3047  */
3048 int ext4_alloc_da_blocks(struct inode *inode)
3049 {
3050         trace_ext4_alloc_da_blocks(inode);
3051
3052         if (!EXT4_I(inode)->i_reserved_data_blocks)
3053                 return 0;
3054
3055         /*
3056          * We do something simple for now.  The filemap_flush() will
3057          * also start triggering a write of the data blocks, which is
3058          * not strictly speaking necessary (and for users of
3059          * laptop_mode, not even desirable).  However, to do otherwise
3060          * would require replicating code paths in:
3061          *
3062          * ext4_writepages() ->
3063          *    write_cache_pages() ---> (via passed in callback function)
3064          *        __mpage_da_writepage() -->
3065          *           mpage_add_bh_to_extent()
3066          *           mpage_da_map_blocks()
3067          *
3068          * The problem is that write_cache_pages(), located in
3069          * mm/page-writeback.c, marks pages clean in preparation for
3070          * doing I/O, which is not desirable if we're not planning on
3071          * doing I/O at all.
3072          *
3073          * We could call write_cache_pages(), and then redirty all of
3074          * the pages by calling redirty_page_for_writepage() but that
3075          * would be ugly in the extreme.  So instead we would need to
3076          * replicate parts of the code in the above functions,
3077          * simplifying them because we wouldn't actually intend to
3078          * write out the pages, but rather only collect contiguous
3079          * logical block extents, call the multi-block allocator, and
3080          * then update the buffer heads with the block allocations.
3081          *
3082          * For now, though, we'll cheat by calling filemap_flush(),
3083          * which will map the blocks, and start the I/O, but not
3084          * actually wait for the I/O to complete.
3085          */
3086         return filemap_flush(inode->i_mapping);
3087 }
3088
3089 /*
3090  * bmap() is special.  It gets used by applications such as lilo and by
3091  * the swapper to find the on-disk block of a specific piece of data.
3092  *
3093  * Naturally, this is dangerous if the block concerned is still in the
3094  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3095  * filesystem and enables swap, then they may get a nasty shock when the
3096  * data getting swapped to that swapfile suddenly gets overwritten by
3097  * the original zero's written out previously to the journal and
3098  * awaiting writeback in the kernel's buffer cache.
3099  *
3100  * So, if we see any bmap calls here on a modified, data-journaled file,
3101  * take extra steps to flush any blocks which might be in the cache.
3102  */
3103 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3104 {
3105         struct inode *inode = mapping->host;
3106         journal_t *journal;
3107         int err;
3108
3109         /*
3110          * We can get here for an inline file via the FIBMAP ioctl
3111          */
3112         if (ext4_has_inline_data(inode))
3113                 return 0;
3114
3115         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3116                         test_opt(inode->i_sb, DELALLOC)) {
3117                 /*
3118                  * With delalloc we want to sync the file
3119                  * so that we can make sure we allocate
3120                  * blocks for file
3121                  */
3122                 filemap_write_and_wait(mapping);
3123         }
3124
3125         if (EXT4_JOURNAL(inode) &&
3126             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3127                 /*
3128                  * This is a REALLY heavyweight approach, but the use of
3129                  * bmap on dirty files is expected to be extremely rare:
3130                  * only if we run lilo or swapon on a freshly made file
3131                  * do we expect this to happen.
3132                  *
3133                  * (bmap requires CAP_SYS_RAWIO so this does not
3134                  * represent an unprivileged user DOS attack --- we'd be
3135                  * in trouble if mortal users could trigger this path at
3136                  * will.)
3137                  *
3138                  * NB. EXT4_STATE_JDATA is not set on files other than
3139                  * regular files.  If somebody wants to bmap a directory
3140                  * or symlink and gets confused because the buffer
3141                  * hasn't yet been flushed to disk, they deserve
3142                  * everything they get.
3143                  */
3144
3145                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3146                 journal = EXT4_JOURNAL(inode);
3147                 jbd2_journal_lock_updates(journal);
3148                 err = jbd2_journal_flush(journal, 0);
3149                 jbd2_journal_unlock_updates(journal);
3150
3151                 if (err)
3152                         return 0;
3153         }
3154
3155         return iomap_bmap(mapping, block, &ext4_iomap_ops);
3156 }
3157
3158 static int ext4_readpage(struct file *file, struct page *page)
3159 {
3160         int ret = -EAGAIN;
3161         struct inode *inode = page->mapping->host;
3162
3163         trace_ext4_readpage(page);
3164
3165         if (ext4_has_inline_data(inode))
3166                 ret = ext4_readpage_inline(inode, page);
3167
3168         if (ret == -EAGAIN)
3169                 return ext4_mpage_readpages(inode, NULL, page);
3170
3171         return ret;
3172 }
3173
3174 static void ext4_readahead(struct readahead_control *rac)
3175 {
3176         struct inode *inode = rac->mapping->host;
3177
3178         /* If the file has inline data, no need to do readahead. */
3179         if (ext4_has_inline_data(inode))
3180                 return;
3181
3182         ext4_mpage_readpages(inode, rac, NULL);
3183 }
3184
3185 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3186                                 unsigned int length)
3187 {
3188         trace_ext4_invalidatepage(page, offset, length);
3189
3190         /* No journalling happens on data buffers when this function is used */
3191         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3192
3193         block_invalidatepage(page, offset, length);
3194 }
3195
3196 static int __ext4_journalled_invalidatepage(struct page *page,
3197                                             unsigned int offset,
3198                                             unsigned int length)
3199 {
3200         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3201
3202         trace_ext4_journalled_invalidatepage(page, offset, length);
3203
3204         /*
3205          * If it's a full truncate we just forget about the pending dirtying
3206          */
3207         if (offset == 0 && length == PAGE_SIZE)
3208                 ClearPageChecked(page);
3209
3210         return jbd2_journal_invalidatepage(journal, page, offset, length);
3211 }
3212
3213 /* Wrapper for aops... */
3214 static void ext4_journalled_invalidatepage(struct page *page,
3215                                            unsigned int offset,
3216                                            unsigned int length)
3217 {
3218         WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3219 }
3220
3221 static int ext4_releasepage(struct page *page, gfp_t wait)
3222 {
3223         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3224
3225         trace_ext4_releasepage(page);
3226
3227         /* Page has dirty journalled data -> cannot release */
3228         if (PageChecked(page))
3229                 return 0;
3230         if (journal)
3231                 return jbd2_journal_try_to_free_buffers(journal, page);
3232         else
3233                 return try_to_free_buffers(page);
3234 }
3235
3236 static bool ext4_inode_datasync_dirty(struct inode *inode)
3237 {
3238         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3239
3240         if (journal) {
3241                 if (jbd2_transaction_committed(journal,
3242                         EXT4_I(inode)->i_datasync_tid))
3243                         return false;
3244                 if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
3245                         return !list_empty(&EXT4_I(inode)->i_fc_list);
3246                 return true;
3247         }
3248
3249         /* Any metadata buffers to write? */
3250         if (!list_empty(&inode->i_mapping->private_list))
3251                 return true;
3252         return inode->i_state & I_DIRTY_DATASYNC;
3253 }
3254
3255 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3256                            struct ext4_map_blocks *map, loff_t offset,
3257                            loff_t length, unsigned int flags)
3258 {
3259         u8 blkbits = inode->i_blkbits;
3260
3261         /*
3262          * Writes that span EOF might trigger an I/O size update on completion,
3263          * so consider them to be dirty for the purpose of O_DSYNC, even if
3264          * there is no other metadata changes being made or are pending.
3265          */
3266         iomap->flags = 0;
3267         if (ext4_inode_datasync_dirty(inode) ||
3268             offset + length > i_size_read(inode))
3269                 iomap->flags |= IOMAP_F_DIRTY;
3270
3271         if (map->m_flags & EXT4_MAP_NEW)
3272                 iomap->flags |= IOMAP_F_NEW;
3273
3274         if (flags & IOMAP_DAX)
3275                 iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3276         else
3277                 iomap->bdev = inode->i_sb->s_bdev;
3278         iomap->offset = (u64) map->m_lblk << blkbits;
3279         iomap->length = (u64) map->m_len << blkbits;
3280
3281         if ((map->m_flags & EXT4_MAP_MAPPED) &&
3282             !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3283                 iomap->flags |= IOMAP_F_MERGED;
3284
3285         /*
3286          * Flags passed to ext4_map_blocks() for direct I/O writes can result
3287          * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3288          * set. In order for any allocated unwritten extents to be converted
3289          * into written extents correctly within the ->end_io() handler, we
3290          * need to ensure that the iomap->type is set appropriately. Hence, the
3291          * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3292          * been set first.
3293          */
3294         if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3295                 iomap->type = IOMAP_UNWRITTEN;
3296                 iomap->addr = (u64) map->m_pblk << blkbits;
3297                 if (flags & IOMAP_DAX)
3298                         iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3299         } else if (map->m_flags & EXT4_MAP_MAPPED) {
3300                 iomap->type = IOMAP_MAPPED;
3301                 iomap->addr = (u64) map->m_pblk << blkbits;
3302                 if (flags & IOMAP_DAX)
3303                         iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3304         } else {
3305                 iomap->type = IOMAP_HOLE;
3306                 iomap->addr = IOMAP_NULL_ADDR;
3307         }
3308 }
3309
3310 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3311                             unsigned int flags)
3312 {
3313         handle_t *handle;
3314         u8 blkbits = inode->i_blkbits;
3315         int ret, dio_credits, m_flags = 0, retries = 0;
3316
3317         /*
3318          * Trim the mapping request to the maximum value that we can map at
3319          * once for direct I/O.
3320          */
3321         if (map->m_len > DIO_MAX_BLOCKS)
3322                 map->m_len = DIO_MAX_BLOCKS;
3323         dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3324
3325 retry:
3326         /*
3327          * Either we allocate blocks and then don't get an unwritten extent, so
3328          * in that case we have reserved enough credits. Or, the blocks are
3329          * already allocated and unwritten. In that case, the extent conversion
3330          * fits into the credits as well.
3331          */
3332         handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3333         if (IS_ERR(handle))
3334                 return PTR_ERR(handle);
3335
3336         /*
3337          * DAX and direct I/O are the only two operations that are currently
3338          * supported with IOMAP_WRITE.
3339          */
3340         WARN_ON(!(flags & (IOMAP_DAX | IOMAP_DIRECT)));
3341         if (flags & IOMAP_DAX)
3342                 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3343         /*
3344          * We use i_size instead of i_disksize here because delalloc writeback
3345          * can complete at any point during the I/O and subsequently push the
3346          * i_disksize out to i_size. This could be beyond where direct I/O is
3347          * happening and thus expose allocated blocks to direct I/O reads.
3348          */
3349         else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode))
3350                 m_flags = EXT4_GET_BLOCKS_CREATE;
3351         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3352                 m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3353
3354         ret = ext4_map_blocks(handle, inode, map, m_flags);
3355
3356         /*
3357          * We cannot fill holes in indirect tree based inodes as that could
3358          * expose stale data in the case of a crash. Use the magic error code
3359          * to fallback to buffered I/O.
3360          */
3361         if (!m_flags && !ret)
3362                 ret = -ENOTBLK;
3363
3364         ext4_journal_stop(handle);
3365         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3366                 goto retry;
3367
3368         return ret;
3369 }
3370
3371
3372 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3373                 unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3374 {
3375         int ret;
3376         struct ext4_map_blocks map;
3377         u8 blkbits = inode->i_blkbits;
3378
3379         if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3380                 return -EINVAL;
3381
3382         if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3383                 return -ERANGE;
3384
3385         /*
3386          * Calculate the first and last logical blocks respectively.
3387          */
3388         map.m_lblk = offset >> blkbits;
3389         map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3390                           EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3391
3392         if (flags & IOMAP_WRITE) {
3393                 /*
3394                  * We check here if the blocks are already allocated, then we
3395                  * don't need to start a journal txn and we can directly return
3396                  * the mapping information. This could boost performance
3397                  * especially in multi-threaded overwrite requests.
3398                  */
3399                 if (offset + length <= i_size_read(inode)) {
3400                         ret = ext4_map_blocks(NULL, inode, &map, 0);
3401                         if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED))
3402                                 goto out;
3403                 }
3404                 ret = ext4_iomap_alloc(inode, &map, flags);
3405         } else {
3406                 ret = ext4_map_blocks(NULL, inode, &map, 0);
3407         }
3408
3409         if (ret < 0)
3410                 return ret;
3411 out:
3412         /*
3413          * When inline encryption is enabled, sometimes I/O to an encrypted file
3414          * has to be broken up to guarantee DUN contiguity.  Handle this by
3415          * limiting the length of the mapping returned.
3416          */
3417         map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
3418
3419         ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3420
3421         return 0;
3422 }
3423
3424 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3425                 loff_t length, unsigned flags, struct iomap *iomap,
3426                 struct iomap *srcmap)
3427 {
3428         int ret;
3429
3430         /*
3431          * Even for writes we don't need to allocate blocks, so just pretend
3432          * we are reading to save overhead of starting a transaction.
3433          */
3434         flags &= ~IOMAP_WRITE;
3435         ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3436         WARN_ON_ONCE(iomap->type != IOMAP_MAPPED);
3437         return ret;
3438 }
3439
3440 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3441                           ssize_t written, unsigned flags, struct iomap *iomap)
3442 {
3443         /*
3444          * Check to see whether an error occurred while writing out the data to
3445          * the allocated blocks. If so, return the magic error code so that we
3446          * fallback to buffered I/O and attempt to complete the remainder of
3447          * the I/O. Any blocks that may have been allocated in preparation for
3448          * the direct I/O will be reused during buffered I/O.
3449          */
3450         if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3451                 return -ENOTBLK;
3452
3453         return 0;
3454 }
3455
3456 const struct iomap_ops ext4_iomap_ops = {
3457         .iomap_begin            = ext4_iomap_begin,
3458         .iomap_end              = ext4_iomap_end,
3459 };
3460
3461 const struct iomap_ops ext4_iomap_overwrite_ops = {
3462         .iomap_begin            = ext4_iomap_overwrite_begin,
3463         .iomap_end              = ext4_iomap_end,
3464 };
3465
3466 static bool ext4_iomap_is_delalloc(struct inode *inode,
3467                                    struct ext4_map_blocks *map)
3468 {
3469         struct extent_status es;
3470         ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1;
3471
3472         ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3473                                   map->m_lblk, end, &es);
3474
3475         if (!es.es_len || es.es_lblk > end)
3476                 return false;
3477
3478         if (es.es_lblk > map->m_lblk) {
3479                 map->m_len = es.es_lblk - map->m_lblk;
3480                 return false;
3481         }
3482
3483         offset = map->m_lblk - es.es_lblk;
3484         map->m_len = es.es_len - offset;
3485
3486         return true;
3487 }
3488
3489 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3490                                    loff_t length, unsigned int flags,
3491                                    struct iomap *iomap, struct iomap *srcmap)
3492 {
3493         int ret;
3494         bool delalloc = false;
3495         struct ext4_map_blocks map;
3496         u8 blkbits = inode->i_blkbits;
3497
3498         if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3499                 return -EINVAL;
3500
3501         if (ext4_has_inline_data(inode)) {
3502                 ret = ext4_inline_data_iomap(inode, iomap);
3503                 if (ret != -EAGAIN) {
3504                         if (ret == 0 && offset >= iomap->length)
3505                                 ret = -ENOENT;
3506                         return ret;
3507                 }
3508         }
3509
3510         /*
3511          * Calculate the first and last logical block respectively.
3512          */
3513         map.m_lblk = offset >> blkbits;
3514         map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3515                           EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3516
3517         /*
3518          * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3519          * So handle it here itself instead of querying ext4_map_blocks().
3520          * Since ext4_map_blocks() will warn about it and will return
3521          * -EIO error.
3522          */
3523         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3524                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3525
3526                 if (offset >= sbi->s_bitmap_maxbytes) {
3527                         map.m_flags = 0;
3528                         goto set_iomap;
3529                 }
3530         }
3531
3532         ret = ext4_map_blocks(NULL, inode, &map, 0);
3533         if (ret < 0)
3534                 return ret;
3535         if (ret == 0)
3536                 delalloc = ext4_iomap_is_delalloc(inode, &map);
3537
3538 set_iomap:
3539         ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3540         if (delalloc && iomap->type == IOMAP_HOLE)
3541                 iomap->type = IOMAP_DELALLOC;
3542
3543         return 0;
3544 }
3545
3546 const struct iomap_ops ext4_iomap_report_ops = {
3547         .iomap_begin = ext4_iomap_begin_report,
3548 };
3549
3550 /*
3551  * Pages can be marked dirty completely asynchronously from ext4's journalling
3552  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3553  * much here because ->set_page_dirty is called under VFS locks.  The page is
3554  * not necessarily locked.
3555  *
3556  * We cannot just dirty the page and leave attached buffers clean, because the
3557  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3558  * or jbddirty because all the journalling code will explode.
3559  *
3560  * So what we do is to mark the page "pending dirty" and next time writepage
3561  * is called, propagate that into the buffers appropriately.
3562  */
3563 static int ext4_journalled_set_page_dirty(struct page *page)
3564 {
3565         SetPageChecked(page);
3566         return __set_page_dirty_nobuffers(page);
3567 }
3568
3569 static int ext4_set_page_dirty(struct page *page)
3570 {
3571         WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3572         WARN_ON_ONCE(!page_has_buffers(page));
3573         return __set_page_dirty_buffers(page);
3574 }
3575
3576 static int ext4_iomap_swap_activate(struct swap_info_struct *sis,
3577                                     struct file *file, sector_t *span)
3578 {
3579         return iomap_swapfile_activate(sis, file, span,
3580                                        &ext4_iomap_report_ops);
3581 }
3582
3583 static const struct address_space_operations ext4_aops = {
3584         .readpage               = ext4_readpage,
3585         .readahead              = ext4_readahead,
3586         .writepage              = ext4_writepage,
3587         .writepages             = ext4_writepages,
3588         .write_begin            = ext4_write_begin,
3589         .write_end              = ext4_write_end,
3590         .set_page_dirty         = ext4_set_page_dirty,
3591         .bmap                   = ext4_bmap,
3592         .invalidatepage         = ext4_invalidatepage,
3593         .releasepage            = ext4_releasepage,
3594         .direct_IO              = noop_direct_IO,
3595         .migratepage            = buffer_migrate_page,
3596         .is_partially_uptodate  = block_is_partially_uptodate,
3597         .error_remove_page      = generic_error_remove_page,
3598         .swap_activate          = ext4_iomap_swap_activate,
3599 };
3600
3601 static const struct address_space_operations ext4_journalled_aops = {
3602         .readpage               = ext4_readpage,
3603         .readahead              = ext4_readahead,
3604         .writepage              = ext4_writepage,
3605         .writepages             = ext4_writepages,
3606         .write_begin            = ext4_write_begin,
3607         .write_end              = ext4_journalled_write_end,
3608         .set_page_dirty         = ext4_journalled_set_page_dirty,
3609         .bmap                   = ext4_bmap,
3610         .invalidatepage         = ext4_journalled_invalidatepage,
3611         .releasepage            = ext4_releasepage,
3612         .direct_IO              = noop_direct_IO,
3613         .is_partially_uptodate  = block_is_partially_uptodate,
3614         .error_remove_page      = generic_error_remove_page,
3615         .swap_activate          = ext4_iomap_swap_activate,
3616 };
3617
3618 static const struct address_space_operations ext4_da_aops = {
3619         .readpage               = ext4_readpage,
3620         .readahead              = ext4_readahead,
3621         .writepage              = ext4_writepage,
3622         .writepages             = ext4_writepages,
3623         .write_begin            = ext4_da_write_begin,
3624         .write_end              = ext4_da_write_end,
3625         .set_page_dirty         = ext4_set_page_dirty,
3626         .bmap                   = ext4_bmap,
3627         .invalidatepage         = ext4_invalidatepage,
3628         .releasepage            = ext4_releasepage,
3629         .direct_IO              = noop_direct_IO,
3630         .migratepage            = buffer_migrate_page,
3631         .is_partially_uptodate  = block_is_partially_uptodate,
3632         .error_remove_page      = generic_error_remove_page,
3633         .swap_activate          = ext4_iomap_swap_activate,
3634 };
3635
3636 static const struct address_space_operations ext4_dax_aops = {
3637         .writepages             = ext4_dax_writepages,
3638         .direct_IO              = noop_direct_IO,
3639         .set_page_dirty         = __set_page_dirty_no_writeback,
3640         .bmap                   = ext4_bmap,
3641         .invalidatepage         = noop_invalidatepage,
3642         .swap_activate          = ext4_iomap_swap_activate,
3643 };
3644
3645 void ext4_set_aops(struct inode *inode)
3646 {
3647         switch (ext4_inode_journal_mode(inode)) {
3648         case EXT4_INODE_ORDERED_DATA_MODE:
3649         case EXT4_INODE_WRITEBACK_DATA_MODE:
3650                 break;
3651         case EXT4_INODE_JOURNAL_DATA_MODE:
3652                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3653                 return;
3654         default:
3655                 BUG();
3656         }
3657         if (IS_DAX(inode))
3658                 inode->i_mapping->a_ops = &ext4_dax_aops;
3659         else if (test_opt(inode->i_sb, DELALLOC))
3660                 inode->i_mapping->a_ops = &ext4_da_aops;
3661         else
3662                 inode->i_mapping->a_ops = &ext4_aops;
3663 }
3664
3665 static int __ext4_block_zero_page_range(handle_t *handle,
3666                 struct address_space *mapping, loff_t from, loff_t length)
3667 {
3668         ext4_fsblk_t index = from >> PAGE_SHIFT;
3669         unsigned offset = from & (PAGE_SIZE-1);
3670         unsigned blocksize, pos;
3671         ext4_lblk_t iblock;
3672         struct inode *inode = mapping->host;
3673         struct buffer_head *bh;
3674         struct page *page;
3675         int err = 0;
3676
3677         page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3678                                    mapping_gfp_constraint(mapping, ~__GFP_FS));
3679         if (!page)
3680                 return -ENOMEM;
3681
3682         blocksize = inode->i_sb->s_blocksize;
3683
3684         iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3685
3686         if (!page_has_buffers(page))
3687                 create_empty_buffers(page, blocksize, 0);
3688
3689         /* Find the buffer that contains "offset" */
3690         bh = page_buffers(page);
3691         pos = blocksize;
3692         while (offset >= pos) {
3693                 bh = bh->b_this_page;
3694                 iblock++;
3695                 pos += blocksize;
3696         }
3697         if (buffer_freed(bh)) {
3698                 BUFFER_TRACE(bh, "freed: skip");
3699                 goto unlock;
3700         }
3701         if (!buffer_mapped(bh)) {
3702                 BUFFER_TRACE(bh, "unmapped");
3703                 ext4_get_block(inode, iblock, bh, 0);
3704                 /* unmapped? It's a hole - nothing to do */
3705                 if (!buffer_mapped(bh)) {
3706                         BUFFER_TRACE(bh, "still unmapped");
3707                         goto unlock;
3708                 }
3709         }
3710
3711         /* Ok, it's mapped. Make sure it's up-to-date */
3712         if (PageUptodate(page))
3713                 set_buffer_uptodate(bh);
3714
3715         if (!buffer_uptodate(bh)) {
3716                 err = ext4_read_bh_lock(bh, 0, true);
3717                 if (err)
3718                         goto unlock;
3719                 if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
3720                         /* We expect the key to be set. */
3721                         BUG_ON(!fscrypt_has_encryption_key(inode));
3722                         err = fscrypt_decrypt_pagecache_blocks(page, blocksize,
3723                                                                bh_offset(bh));
3724                         if (err) {
3725                                 clear_buffer_uptodate(bh);
3726                                 goto unlock;
3727                         }
3728                 }
3729         }
3730         if (ext4_should_journal_data(inode)) {
3731                 BUFFER_TRACE(bh, "get write access");
3732                 err = ext4_journal_get_write_access(handle, inode->i_sb, bh,
3733                                                     EXT4_JTR_NONE);
3734                 if (err)
3735                         goto unlock;
3736         }
3737         zero_user(page, offset, length);
3738         BUFFER_TRACE(bh, "zeroed end of block");
3739
3740         if (ext4_should_journal_data(inode)) {
3741                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3742         } else {
3743                 err = 0;
3744                 mark_buffer_dirty(bh);
3745                 if (ext4_should_order_data(inode))
3746                         err = ext4_jbd2_inode_add_write(handle, inode, from,
3747                                         length);
3748         }
3749
3750 unlock:
3751         unlock_page(page);
3752         put_page(page);
3753         return err;
3754 }
3755
3756 /*
3757  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3758  * starting from file offset 'from'.  The range to be zero'd must
3759  * be contained with in one block.  If the specified range exceeds
3760  * the end of the block it will be shortened to end of the block
3761  * that corresponds to 'from'
3762  */
3763 static int ext4_block_zero_page_range(handle_t *handle,
3764                 struct address_space *mapping, loff_t from, loff_t length)
3765 {
3766         struct inode *inode = mapping->host;
3767         unsigned offset = from & (PAGE_SIZE-1);
3768         unsigned blocksize = inode->i_sb->s_blocksize;
3769         unsigned max = blocksize - (offset & (blocksize - 1));
3770
3771         /*
3772          * correct length if it does not fall between
3773          * 'from' and the end of the block
3774          */
3775         if (length > max || length < 0)
3776                 length = max;
3777
3778         if (IS_DAX(inode)) {
3779                 return dax_zero_range(inode, from, length, NULL,
3780                                       &ext4_iomap_ops);
3781         }
3782         return __ext4_block_zero_page_range(handle, mapping, from, length);
3783 }
3784
3785 /*
3786  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3787  * up to the end of the block which corresponds to `from'.
3788  * This required during truncate. We need to physically zero the tail end
3789  * of that block so it doesn't yield old data if the file is later grown.
3790  */
3791 static int ext4_block_truncate_page(handle_t *handle,
3792                 struct address_space *mapping, loff_t from)
3793 {
3794         unsigned offset = from & (PAGE_SIZE-1);
3795         unsigned length;
3796         unsigned blocksize;
3797         struct inode *inode = mapping->host;
3798
3799         /* If we are processing an encrypted inode during orphan list handling */
3800         if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3801                 return 0;
3802
3803         blocksize = inode->i_sb->s_blocksize;
3804         length = blocksize - (offset & (blocksize - 1));
3805
3806         return ext4_block_zero_page_range(handle, mapping, from, length);
3807 }
3808
3809 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3810                              loff_t lstart, loff_t length)
3811 {
3812         struct super_block *sb = inode->i_sb;
3813         struct address_space *mapping = inode->i_mapping;
3814         unsigned partial_start, partial_end;
3815         ext4_fsblk_t start, end;
3816         loff_t byte_end = (lstart + length - 1);
3817         int err = 0;
3818
3819         partial_start = lstart & (sb->s_blocksize - 1);
3820         partial_end = byte_end & (sb->s_blocksize - 1);
3821
3822         start = lstart >> sb->s_blocksize_bits;
3823         end = byte_end >> sb->s_blocksize_bits;
3824
3825         /* Handle partial zero within the single block */
3826         if (start == end &&
3827             (partial_start || (partial_end != sb->s_blocksize - 1))) {
3828                 err = ext4_block_zero_page_range(handle, mapping,
3829                                                  lstart, length);
3830                 return err;
3831         }
3832         /* Handle partial zero out on the start of the range */
3833         if (partial_start) {
3834                 err = ext4_block_zero_page_range(handle, mapping,
3835                                                  lstart, sb->s_blocksize);
3836                 if (err)
3837                         return err;
3838         }
3839         /* Handle partial zero out on the end of the range */
3840         if (partial_end != sb->s_blocksize - 1)
3841                 err = ext4_block_zero_page_range(handle, mapping,
3842                                                  byte_end - partial_end,
3843                                                  partial_end + 1);
3844         return err;
3845 }
3846
3847 int ext4_can_truncate(struct inode *inode)
3848 {
3849         if (S_ISREG(inode->i_mode))
3850                 return 1;
3851         if (S_ISDIR(inode->i_mode))
3852                 return 1;
3853         if (S_ISLNK(inode->i_mode))
3854                 return !ext4_inode_is_fast_symlink(inode);
3855         return 0;
3856 }
3857
3858 /*
3859  * We have to make sure i_disksize gets properly updated before we truncate
3860  * page cache due to hole punching or zero range. Otherwise i_disksize update
3861  * can get lost as it may have been postponed to submission of writeback but
3862  * that will never happen after we truncate page cache.
3863  */
3864 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3865                                       loff_t len)
3866 {
3867         handle_t *handle;
3868         int ret;
3869
3870         loff_t size = i_size_read(inode);
3871
3872         WARN_ON(!inode_is_locked(inode));
3873         if (offset > size || offset + len < size)
3874                 return 0;
3875
3876         if (EXT4_I(inode)->i_disksize >= size)
3877                 return 0;
3878
3879         handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3880         if (IS_ERR(handle))
3881                 return PTR_ERR(handle);
3882         ext4_update_i_disksize(inode, size);
3883         ret = ext4_mark_inode_dirty(handle, inode);
3884         ext4_journal_stop(handle);
3885
3886         return ret;
3887 }
3888
3889 static void ext4_wait_dax_page(struct inode *inode)
3890 {
3891         filemap_invalidate_unlock(inode->i_mapping);
3892         schedule();
3893         filemap_invalidate_lock(inode->i_mapping);
3894 }
3895
3896 int ext4_break_layouts(struct inode *inode)
3897 {
3898         struct page *page;
3899         int error;
3900
3901         if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock)))
3902                 return -EINVAL;
3903
3904         do {
3905                 page = dax_layout_busy_page(inode->i_mapping);
3906                 if (!page)
3907                         return 0;
3908
3909                 error = ___wait_var_event(&page->_refcount,
3910                                 atomic_read(&page->_refcount) == 1,
3911                                 TASK_INTERRUPTIBLE, 0, 0,
3912                                 ext4_wait_dax_page(inode));
3913         } while (error == 0);
3914
3915         return error;
3916 }
3917
3918 /*
3919  * ext4_punch_hole: punches a hole in a file by releasing the blocks
3920  * associated with the given offset and length
3921  *
3922  * @inode:  File inode
3923  * @offset: The offset where the hole will begin
3924  * @len:    The length of the hole
3925  *
3926  * Returns: 0 on success or negative on failure
3927  */
3928
3929 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3930 {
3931         struct super_block *sb = inode->i_sb;
3932         ext4_lblk_t first_block, stop_block;
3933         struct address_space *mapping = inode->i_mapping;
3934         loff_t first_block_offset, last_block_offset;
3935         handle_t *handle;
3936         unsigned int credits;
3937         int ret = 0, ret2 = 0;
3938
3939         trace_ext4_punch_hole(inode, offset, length, 0);
3940
3941         ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
3942         if (ext4_has_inline_data(inode)) {
3943                 filemap_invalidate_lock(mapping);
3944                 ret = ext4_convert_inline_data(inode);
3945                 filemap_invalidate_unlock(mapping);
3946                 if (ret)
3947                         return ret;
3948         }
3949
3950         /*
3951          * Write out all dirty pages to avoid race conditions
3952          * Then release them.
3953          */
3954         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3955                 ret = filemap_write_and_wait_range(mapping, offset,
3956                                                    offset + length - 1);
3957                 if (ret)
3958                         return ret;
3959         }
3960
3961         inode_lock(inode);
3962
3963         /* No need to punch hole beyond i_size */
3964         if (offset >= inode->i_size)
3965                 goto out_mutex;
3966
3967         /*
3968          * If the hole extends beyond i_size, set the hole
3969          * to end after the page that contains i_size
3970          */
3971         if (offset + length > inode->i_size) {
3972                 length = inode->i_size +
3973                    PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
3974                    offset;
3975         }
3976
3977         if (offset & (sb->s_blocksize - 1) ||
3978             (offset + length) & (sb->s_blocksize - 1)) {
3979                 /*
3980                  * Attach jinode to inode for jbd2 if we do any zeroing of
3981                  * partial block
3982                  */
3983                 ret = ext4_inode_attach_jinode(inode);
3984                 if (ret < 0)
3985                         goto out_mutex;
3986
3987         }
3988
3989         /* Wait all existing dio workers, newcomers will block on i_rwsem */
3990         inode_dio_wait(inode);
3991
3992         /*
3993          * Prevent page faults from reinstantiating pages we have released from
3994          * page cache.
3995          */
3996         filemap_invalidate_lock(mapping);
3997
3998         ret = ext4_break_layouts(inode);
3999         if (ret)
4000                 goto out_dio;
4001
4002         first_block_offset = round_up(offset, sb->s_blocksize);
4003         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4004
4005         /* Now release the pages and zero block aligned part of pages*/
4006         if (last_block_offset > first_block_offset) {
4007                 ret = ext4_update_disksize_before_punch(inode, offset, length);
4008                 if (ret)
4009                         goto out_dio;
4010                 truncate_pagecache_range(inode, first_block_offset,
4011                                          last_block_offset);
4012         }
4013
4014         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4015                 credits = ext4_writepage_trans_blocks(inode);
4016         else
4017                 credits = ext4_blocks_for_truncate(inode);
4018         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4019         if (IS_ERR(handle)) {
4020                 ret = PTR_ERR(handle);
4021                 ext4_std_error(sb, ret);
4022                 goto out_dio;
4023         }
4024
4025         ret = ext4_zero_partial_blocks(handle, inode, offset,
4026                                        length);
4027         if (ret)
4028                 goto out_stop;
4029
4030         first_block = (offset + sb->s_blocksize - 1) >>
4031                 EXT4_BLOCK_SIZE_BITS(sb);
4032         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4033
4034         /* If there are blocks to remove, do it */
4035         if (stop_block > first_block) {
4036
4037                 down_write(&EXT4_I(inode)->i_data_sem);
4038                 ext4_discard_preallocations(inode, 0);
4039
4040                 ret = ext4_es_remove_extent(inode, first_block,
4041                                             stop_block - first_block);
4042                 if (ret) {
4043                         up_write(&EXT4_I(inode)->i_data_sem);
4044                         goto out_stop;
4045                 }
4046
4047                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4048                         ret = ext4_ext_remove_space(inode, first_block,
4049                                                     stop_block - 1);
4050                 else
4051                         ret = ext4_ind_remove_space(handle, inode, first_block,
4052                                                     stop_block);
4053
4054                 up_write(&EXT4_I(inode)->i_data_sem);
4055         }
4056         ext4_fc_track_range(handle, inode, first_block, stop_block);
4057         if (IS_SYNC(inode))
4058                 ext4_handle_sync(handle);
4059
4060         inode->i_mtime = inode->i_ctime = current_time(inode);
4061         ret2 = ext4_mark_inode_dirty(handle, inode);
4062         if (unlikely(ret2))
4063                 ret = ret2;
4064         if (ret >= 0)
4065                 ext4_update_inode_fsync_trans(handle, inode, 1);
4066 out_stop:
4067         ext4_journal_stop(handle);
4068 out_dio:
4069         filemap_invalidate_unlock(mapping);
4070 out_mutex:
4071         inode_unlock(inode);
4072         return ret;
4073 }
4074
4075 int ext4_inode_attach_jinode(struct inode *inode)
4076 {
4077         struct ext4_inode_info *ei = EXT4_I(inode);
4078         struct jbd2_inode *jinode;
4079
4080         if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4081                 return 0;
4082
4083         jinode = jbd2_alloc_inode(GFP_KERNEL);
4084         spin_lock(&inode->i_lock);
4085         if (!ei->jinode) {
4086                 if (!jinode) {
4087                         spin_unlock(&inode->i_lock);
4088                         return -ENOMEM;
4089                 }
4090                 ei->jinode = jinode;
4091                 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4092                 jinode = NULL;
4093         }
4094         spin_unlock(&inode->i_lock);
4095         if (unlikely(jinode != NULL))
4096                 jbd2_free_inode(jinode);
4097         return 0;
4098 }
4099
4100 /*
4101  * ext4_truncate()
4102  *
4103  * We block out ext4_get_block() block instantiations across the entire
4104  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4105  * simultaneously on behalf of the same inode.
4106  *
4107  * As we work through the truncate and commit bits of it to the journal there
4108  * is one core, guiding principle: the file's tree must always be consistent on
4109  * disk.  We must be able to restart the truncate after a crash.
4110  *
4111  * The file's tree may be transiently inconsistent in memory (although it
4112  * probably isn't), but whenever we close off and commit a journal transaction,
4113  * the contents of (the filesystem + the journal) must be consistent and
4114  * restartable.  It's pretty simple, really: bottom up, right to left (although
4115  * left-to-right works OK too).
4116  *
4117  * Note that at recovery time, journal replay occurs *before* the restart of
4118  * truncate against the orphan inode list.
4119  *
4120  * The committed inode has the new, desired i_size (which is the same as
4121  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4122  * that this inode's truncate did not complete and it will again call
4123  * ext4_truncate() to have another go.  So there will be instantiated blocks
4124  * to the right of the truncation point in a crashed ext4 filesystem.  But
4125  * that's fine - as long as they are linked from the inode, the post-crash
4126  * ext4_truncate() run will find them and release them.
4127  */
4128 int ext4_truncate(struct inode *inode)
4129 {
4130         struct ext4_inode_info *ei = EXT4_I(inode);
4131         unsigned int credits;
4132         int err = 0, err2;
4133         handle_t *handle;
4134         struct address_space *mapping = inode->i_mapping;
4135
4136         /*
4137          * There is a possibility that we're either freeing the inode
4138          * or it's a completely new inode. In those cases we might not
4139          * have i_rwsem locked because it's not necessary.
4140          */
4141         if (!(inode->i_state & (I_NEW|I_FREEING)))
4142                 WARN_ON(!inode_is_locked(inode));
4143         trace_ext4_truncate_enter(inode);
4144
4145         if (!ext4_can_truncate(inode))
4146                 goto out_trace;
4147
4148         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4149                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4150
4151         if (ext4_has_inline_data(inode)) {
4152                 int has_inline = 1;
4153
4154                 err = ext4_inline_data_truncate(inode, &has_inline);
4155                 if (err || has_inline)
4156                         goto out_trace;
4157         }
4158
4159         /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4160         if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4161                 if (ext4_inode_attach_jinode(inode) < 0)
4162                         goto out_trace;
4163         }
4164
4165         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4166                 credits = ext4_writepage_trans_blocks(inode);
4167         else
4168                 credits = ext4_blocks_for_truncate(inode);
4169
4170         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4171         if (IS_ERR(handle)) {
4172                 err = PTR_ERR(handle);
4173                 goto out_trace;
4174         }
4175
4176         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4177                 ext4_block_truncate_page(handle, mapping, inode->i_size);
4178
4179         /*
4180          * We add the inode to the orphan list, so that if this
4181          * truncate spans multiple transactions, and we crash, we will
4182          * resume the truncate when the filesystem recovers.  It also
4183          * marks the inode dirty, to catch the new size.
4184          *
4185          * Implication: the file must always be in a sane, consistent
4186          * truncatable state while each transaction commits.
4187          */
4188         err = ext4_orphan_add(handle, inode);
4189         if (err)
4190                 goto out_stop;
4191
4192         down_write(&EXT4_I(inode)->i_data_sem);
4193
4194         ext4_discard_preallocations(inode, 0);
4195
4196         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4197                 err = ext4_ext_truncate(handle, inode);
4198         else
4199                 ext4_ind_truncate(handle, inode);
4200
4201         up_write(&ei->i_data_sem);
4202         if (err)
4203                 goto out_stop;
4204
4205         if (IS_SYNC(inode))
4206                 ext4_handle_sync(handle);
4207
4208 out_stop:
4209         /*
4210          * If this was a simple ftruncate() and the file will remain alive,
4211          * then we need to clear up the orphan record which we created above.
4212          * However, if this was a real unlink then we were called by
4213          * ext4_evict_inode(), and we allow that function to clean up the
4214          * orphan info for us.
4215          */
4216         if (inode->i_nlink)
4217                 ext4_orphan_del(handle, inode);
4218
4219         inode->i_mtime = inode->i_ctime = current_time(inode);
4220         err2 = ext4_mark_inode_dirty(handle, inode);
4221         if (unlikely(err2 && !err))
4222                 err = err2;
4223         ext4_journal_stop(handle);
4224
4225 out_trace:
4226         trace_ext4_truncate_exit(inode);
4227         return err;
4228 }
4229
4230 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4231 {
4232         if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4233                 return inode_peek_iversion_raw(inode);
4234         else
4235                 return inode_peek_iversion(inode);
4236 }
4237
4238 static int ext4_inode_blocks_set(struct ext4_inode *raw_inode,
4239                                  struct ext4_inode_info *ei)
4240 {
4241         struct inode *inode = &(ei->vfs_inode);
4242         u64 i_blocks = READ_ONCE(inode->i_blocks);
4243         struct super_block *sb = inode->i_sb;
4244
4245         if (i_blocks <= ~0U) {
4246                 /*
4247                  * i_blocks can be represented in a 32 bit variable
4248                  * as multiple of 512 bytes
4249                  */
4250                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4251                 raw_inode->i_blocks_high = 0;
4252                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4253                 return 0;
4254         }
4255
4256         /*
4257          * This should never happen since sb->s_maxbytes should not have
4258          * allowed this, sb->s_maxbytes was set according to the huge_file
4259          * feature in ext4_fill_super().
4260          */
4261         if (!ext4_has_feature_huge_file(sb))
4262                 return -EFSCORRUPTED;
4263
4264         if (i_blocks <= 0xffffffffffffULL) {
4265                 /*
4266                  * i_blocks can be represented in a 48 bit variable
4267                  * as multiple of 512 bytes
4268                  */
4269                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4270                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4271                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4272         } else {
4273                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4274                 /* i_block is stored in file system block size */
4275                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4276                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4277                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4278         }
4279         return 0;
4280 }
4281
4282 static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode)
4283 {
4284         struct ext4_inode_info *ei = EXT4_I(inode);
4285         uid_t i_uid;
4286         gid_t i_gid;
4287         projid_t i_projid;
4288         int block;
4289         int err;
4290
4291         err = ext4_inode_blocks_set(raw_inode, ei);
4292
4293         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4294         i_uid = i_uid_read(inode);
4295         i_gid = i_gid_read(inode);
4296         i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4297         if (!(test_opt(inode->i_sb, NO_UID32))) {
4298                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4299                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4300                 /*
4301                  * Fix up interoperability with old kernels. Otherwise,
4302                  * old inodes get re-used with the upper 16 bits of the
4303                  * uid/gid intact.
4304                  */
4305                 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4306                         raw_inode->i_uid_high = 0;
4307                         raw_inode->i_gid_high = 0;
4308                 } else {
4309                         raw_inode->i_uid_high =
4310                                 cpu_to_le16(high_16_bits(i_uid));
4311                         raw_inode->i_gid_high =
4312                                 cpu_to_le16(high_16_bits(i_gid));
4313                 }
4314         } else {
4315                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4316                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4317                 raw_inode->i_uid_high = 0;
4318                 raw_inode->i_gid_high = 0;
4319         }
4320         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4321
4322         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4323         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4324         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4325         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4326
4327         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4328         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4329         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4330                 raw_inode->i_file_acl_high =
4331                         cpu_to_le16(ei->i_file_acl >> 32);
4332         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4333         ext4_isize_set(raw_inode, ei->i_disksize);
4334
4335         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4336         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4337                 if (old_valid_dev(inode->i_rdev)) {
4338                         raw_inode->i_block[0] =
4339                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4340                         raw_inode->i_block[1] = 0;
4341                 } else {
4342                         raw_inode->i_block[0] = 0;
4343                         raw_inode->i_block[1] =
4344                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4345                         raw_inode->i_block[2] = 0;
4346                 }
4347         } else if (!ext4_has_inline_data(inode)) {
4348                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4349                         raw_inode->i_block[block] = ei->i_data[block];
4350         }
4351
4352         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4353                 u64 ivers = ext4_inode_peek_iversion(inode);
4354
4355                 raw_inode->i_disk_version = cpu_to_le32(ivers);
4356                 if (ei->i_extra_isize) {
4357                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4358                                 raw_inode->i_version_hi =
4359                                         cpu_to_le32(ivers >> 32);
4360                         raw_inode->i_extra_isize =
4361                                 cpu_to_le16(ei->i_extra_isize);
4362                 }
4363         }
4364
4365         if (i_projid != EXT4_DEF_PROJID &&
4366             !ext4_has_feature_project(inode->i_sb))
4367                 err = err ?: -EFSCORRUPTED;
4368
4369         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4370             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4371                 raw_inode->i_projid = cpu_to_le32(i_projid);
4372
4373         ext4_inode_csum_set(inode, raw_inode, ei);
4374         return err;
4375 }
4376
4377 /*
4378  * ext4_get_inode_loc returns with an extra refcount against the inode's
4379  * underlying buffer_head on success. If we pass 'inode' and it does not
4380  * have in-inode xattr, we have all inode data in memory that is needed
4381  * to recreate the on-disk version of this inode.
4382  */
4383 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino,
4384                                 struct inode *inode, struct ext4_iloc *iloc,
4385                                 ext4_fsblk_t *ret_block)
4386 {
4387         struct ext4_group_desc  *gdp;
4388         struct buffer_head      *bh;
4389         ext4_fsblk_t            block;
4390         struct blk_plug         plug;
4391         int                     inodes_per_block, inode_offset;
4392
4393         iloc->bh = NULL;
4394         if (ino < EXT4_ROOT_INO ||
4395             ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4396                 return -EFSCORRUPTED;
4397
4398         iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
4399         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4400         if (!gdp)
4401                 return -EIO;
4402
4403         /*
4404          * Figure out the offset within the block group inode table
4405          */
4406         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4407         inode_offset = ((ino - 1) %
4408                         EXT4_INODES_PER_GROUP(sb));
4409         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4410         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4411
4412         bh = sb_getblk(sb, block);
4413         if (unlikely(!bh))
4414                 return -ENOMEM;
4415         if (ext4_buffer_uptodate(bh))
4416                 goto has_buffer;
4417
4418         lock_buffer(bh);
4419         if (ext4_buffer_uptodate(bh)) {
4420                 /* Someone brought it uptodate while we waited */
4421                 unlock_buffer(bh);
4422                 goto has_buffer;
4423         }
4424
4425         /*
4426          * If we have all information of the inode in memory and this
4427          * is the only valid inode in the block, we need not read the
4428          * block.
4429          */
4430         if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4431                 struct buffer_head *bitmap_bh;
4432                 int i, start;
4433
4434                 start = inode_offset & ~(inodes_per_block - 1);
4435
4436                 /* Is the inode bitmap in cache? */
4437                 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4438                 if (unlikely(!bitmap_bh))
4439                         goto make_io;
4440
4441                 /*
4442                  * If the inode bitmap isn't in cache then the
4443                  * optimisation may end up performing two reads instead
4444                  * of one, so skip it.
4445                  */
4446                 if (!buffer_uptodate(bitmap_bh)) {
4447                         brelse(bitmap_bh);
4448                         goto make_io;
4449                 }
4450                 for (i = start; i < start + inodes_per_block; i++) {
4451                         if (i == inode_offset)
4452                                 continue;
4453                         if (ext4_test_bit(i, bitmap_bh->b_data))
4454                                 break;
4455                 }
4456                 brelse(bitmap_bh);
4457                 if (i == start + inodes_per_block) {
4458                         struct ext4_inode *raw_inode =
4459                                 (struct ext4_inode *) (bh->b_data + iloc->offset);
4460
4461                         /* all other inodes are free, so skip I/O */
4462                         memset(bh->b_data, 0, bh->b_size);
4463                         if (!ext4_test_inode_state(inode, EXT4_STATE_NEW))
4464                                 ext4_fill_raw_inode(inode, raw_inode);
4465                         set_buffer_uptodate(bh);
4466                         unlock_buffer(bh);
4467                         goto has_buffer;
4468                 }
4469         }
4470
4471 make_io:
4472         /*
4473          * If we need to do any I/O, try to pre-readahead extra
4474          * blocks from the inode table.
4475          */
4476         blk_start_plug(&plug);
4477         if (EXT4_SB(sb)->s_inode_readahead_blks) {
4478                 ext4_fsblk_t b, end, table;
4479                 unsigned num;
4480                 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4481
4482                 table = ext4_inode_table(sb, gdp);
4483                 /* s_inode_readahead_blks is always a power of 2 */
4484                 b = block & ~((ext4_fsblk_t) ra_blks - 1);
4485                 if (table > b)
4486                         b = table;
4487                 end = b + ra_blks;
4488                 num = EXT4_INODES_PER_GROUP(sb);
4489                 if (ext4_has_group_desc_csum(sb))
4490                         num -= ext4_itable_unused_count(sb, gdp);
4491                 table += num / inodes_per_block;
4492                 if (end > table)
4493                         end = table;
4494                 while (b <= end)
4495                         ext4_sb_breadahead_unmovable(sb, b++);
4496         }
4497
4498         /*
4499          * There are other valid inodes in the buffer, this inode
4500          * has in-inode xattrs, or we don't have this inode in memory.
4501          * Read the block from disk.
4502          */
4503         trace_ext4_load_inode(sb, ino);
4504         ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL);
4505         blk_finish_plug(&plug);
4506         wait_on_buffer(bh);
4507         ext4_simulate_fail_bh(sb, bh, EXT4_SIM_INODE_EIO);
4508         if (!buffer_uptodate(bh)) {
4509                 if (ret_block)
4510                         *ret_block = block;
4511                 brelse(bh);
4512                 return -EIO;
4513         }
4514 has_buffer:
4515         iloc->bh = bh;
4516         return 0;
4517 }
4518
4519 static int __ext4_get_inode_loc_noinmem(struct inode *inode,
4520                                         struct ext4_iloc *iloc)
4521 {
4522         ext4_fsblk_t err_blk = 0;
4523         int ret;
4524
4525         ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc,
4526                                         &err_blk);
4527
4528         if (ret == -EIO)
4529                 ext4_error_inode_block(inode, err_blk, EIO,
4530                                         "unable to read itable block");
4531
4532         return ret;
4533 }
4534
4535 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4536 {
4537         ext4_fsblk_t err_blk = 0;
4538         int ret;
4539
4540         ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc,
4541                                         &err_blk);
4542
4543         if (ret == -EIO)
4544                 ext4_error_inode_block(inode, err_blk, EIO,
4545                                         "unable to read itable block");
4546
4547         return ret;
4548 }
4549
4550
4551 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino,
4552                           struct ext4_iloc *iloc)
4553 {
4554         return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL);
4555 }
4556
4557 static bool ext4_should_enable_dax(struct inode *inode)
4558 {
4559         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4560
4561         if (test_opt2(inode->i_sb, DAX_NEVER))
4562                 return false;
4563         if (!S_ISREG(inode->i_mode))
4564                 return false;
4565         if (ext4_should_journal_data(inode))
4566                 return false;
4567         if (ext4_has_inline_data(inode))
4568                 return false;
4569         if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4570                 return false;
4571         if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4572                 return false;
4573         if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4574                 return false;
4575         if (test_opt(inode->i_sb, DAX_ALWAYS))
4576                 return true;
4577
4578         return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
4579 }
4580
4581 void ext4_set_inode_flags(struct inode *inode, bool init)
4582 {
4583         unsigned int flags = EXT4_I(inode)->i_flags;
4584         unsigned int new_fl = 0;
4585
4586         WARN_ON_ONCE(IS_DAX(inode) && init);
4587
4588         if (flags & EXT4_SYNC_FL)
4589                 new_fl |= S_SYNC;
4590         if (flags & EXT4_APPEND_FL)
4591                 new_fl |= S_APPEND;
4592         if (flags & EXT4_IMMUTABLE_FL)
4593                 new_fl |= S_IMMUTABLE;
4594         if (flags & EXT4_NOATIME_FL)
4595                 new_fl |= S_NOATIME;
4596         if (flags & EXT4_DIRSYNC_FL)
4597                 new_fl |= S_DIRSYNC;
4598
4599         /* Because of the way inode_set_flags() works we must preserve S_DAX
4600          * here if already set. */
4601         new_fl |= (inode->i_flags & S_DAX);
4602         if (init && ext4_should_enable_dax(inode))
4603                 new_fl |= S_DAX;
4604
4605         if (flags & EXT4_ENCRYPT_FL)
4606                 new_fl |= S_ENCRYPTED;
4607         if (flags & EXT4_CASEFOLD_FL)
4608                 new_fl |= S_CASEFOLD;
4609         if (flags & EXT4_VERITY_FL)
4610                 new_fl |= S_VERITY;
4611         inode_set_flags(inode, new_fl,
4612                         S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4613                         S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4614 }
4615
4616 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4617                                   struct ext4_inode_info *ei)
4618 {
4619         blkcnt_t i_blocks ;
4620         struct inode *inode = &(ei->vfs_inode);
4621         struct super_block *sb = inode->i_sb;
4622
4623         if (ext4_has_feature_huge_file(sb)) {
4624                 /* we are using combined 48 bit field */
4625                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4626                                         le32_to_cpu(raw_inode->i_blocks_lo);
4627                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4628                         /* i_blocks represent file system block size */
4629                         return i_blocks  << (inode->i_blkbits - 9);
4630                 } else {
4631                         return i_blocks;
4632                 }
4633         } else {
4634                 return le32_to_cpu(raw_inode->i_blocks_lo);
4635         }
4636 }
4637
4638 static inline int ext4_iget_extra_inode(struct inode *inode,
4639                                          struct ext4_inode *raw_inode,
4640                                          struct ext4_inode_info *ei)
4641 {
4642         __le32 *magic = (void *)raw_inode +
4643                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4644
4645         if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4646             EXT4_INODE_SIZE(inode->i_sb) &&
4647             *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4648                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4649                 return ext4_find_inline_data_nolock(inode);
4650         } else
4651                 EXT4_I(inode)->i_inline_off = 0;
4652         return 0;
4653 }
4654
4655 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4656 {
4657         if (!ext4_has_feature_project(inode->i_sb))
4658                 return -EOPNOTSUPP;
4659         *projid = EXT4_I(inode)->i_projid;
4660         return 0;
4661 }
4662
4663 /*
4664  * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4665  * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4666  * set.
4667  */
4668 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4669 {
4670         if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4671                 inode_set_iversion_raw(inode, val);
4672         else
4673                 inode_set_iversion_queried(inode, val);
4674 }
4675
4676 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4677                           ext4_iget_flags flags, const char *function,
4678                           unsigned int line)
4679 {
4680         struct ext4_iloc iloc;
4681         struct ext4_inode *raw_inode;
4682         struct ext4_inode_info *ei;
4683         struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4684         struct inode *inode;
4685         journal_t *journal = EXT4_SB(sb)->s_journal;
4686         long ret;
4687         loff_t size;
4688         int block;
4689         uid_t i_uid;
4690         gid_t i_gid;
4691         projid_t i_projid;
4692
4693         if ((!(flags & EXT4_IGET_SPECIAL) &&
4694              ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) ||
4695               ino == le32_to_cpu(es->s_usr_quota_inum) ||
4696               ino == le32_to_cpu(es->s_grp_quota_inum) ||
4697               ino == le32_to_cpu(es->s_prj_quota_inum) ||
4698               ino == le32_to_cpu(es->s_orphan_file_inum))) ||
4699             (ino < EXT4_ROOT_INO) ||
4700             (ino > le32_to_cpu(es->s_inodes_count))) {
4701                 if (flags & EXT4_IGET_HANDLE)
4702                         return ERR_PTR(-ESTALE);
4703                 __ext4_error(sb, function, line, false, EFSCORRUPTED, 0,
4704                              "inode #%lu: comm %s: iget: illegal inode #",
4705                              ino, current->comm);
4706                 return ERR_PTR(-EFSCORRUPTED);
4707         }
4708
4709         inode = iget_locked(sb, ino);
4710         if (!inode)
4711                 return ERR_PTR(-ENOMEM);
4712         if (!(inode->i_state & I_NEW))
4713                 return inode;
4714
4715         ei = EXT4_I(inode);
4716         iloc.bh = NULL;
4717
4718         ret = __ext4_get_inode_loc_noinmem(inode, &iloc);
4719         if (ret < 0)
4720                 goto bad_inode;
4721         raw_inode = ext4_raw_inode(&iloc);
4722
4723         if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4724                 ext4_error_inode(inode, function, line, 0,
4725                                  "iget: root inode unallocated");
4726                 ret = -EFSCORRUPTED;
4727                 goto bad_inode;
4728         }
4729
4730         if ((flags & EXT4_IGET_HANDLE) &&
4731             (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4732                 ret = -ESTALE;
4733                 goto bad_inode;
4734         }
4735
4736         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4737                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4738                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4739                         EXT4_INODE_SIZE(inode->i_sb) ||
4740                     (ei->i_extra_isize & 3)) {
4741                         ext4_error_inode(inode, function, line, 0,
4742                                          "iget: bad extra_isize %u "
4743                                          "(inode size %u)",
4744                                          ei->i_extra_isize,
4745                                          EXT4_INODE_SIZE(inode->i_sb));
4746                         ret = -EFSCORRUPTED;
4747                         goto bad_inode;
4748                 }
4749         } else
4750                 ei->i_extra_isize = 0;
4751
4752         /* Precompute checksum seed for inode metadata */
4753         if (ext4_has_metadata_csum(sb)) {
4754                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4755                 __u32 csum;
4756                 __le32 inum = cpu_to_le32(inode->i_ino);
4757                 __le32 gen = raw_inode->i_generation;
4758                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4759                                    sizeof(inum));
4760                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4761                                               sizeof(gen));
4762         }
4763
4764         if ((!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4765             ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) &&
4766              (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) {
4767                 ext4_error_inode_err(inode, function, line, 0,
4768                                 EFSBADCRC, "iget: checksum invalid");
4769                 ret = -EFSBADCRC;
4770                 goto bad_inode;
4771         }
4772
4773         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4774         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4775         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4776         if (ext4_has_feature_project(sb) &&
4777             EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4778             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4779                 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4780         else
4781                 i_projid = EXT4_DEF_PROJID;
4782
4783         if (!(test_opt(inode->i_sb, NO_UID32))) {
4784                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4785                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4786         }
4787         i_uid_write(inode, i_uid);
4788         i_gid_write(inode, i_gid);
4789         ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4790         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4791
4792         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4793         ei->i_inline_off = 0;
4794         ei->i_dir_start_lookup = 0;
4795         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4796         /* We now have enough fields to check if the inode was active or not.
4797          * This is needed because nfsd might try to access dead inodes
4798          * the test is that same one that e2fsck uses
4799          * NeilBrown 1999oct15
4800          */
4801         if (inode->i_nlink == 0) {
4802                 if ((inode->i_mode == 0 ||
4803                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4804                     ino != EXT4_BOOT_LOADER_INO) {
4805                         /* this inode is deleted */
4806                         ret = -ESTALE;
4807                         goto bad_inode;
4808                 }
4809                 /* The only unlinked inodes we let through here have
4810                  * valid i_mode and are being read by the orphan
4811                  * recovery code: that's fine, we're about to complete
4812                  * the process of deleting those.
4813                  * OR it is the EXT4_BOOT_LOADER_INO which is
4814                  * not initialized on a new filesystem. */
4815         }
4816         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4817         ext4_set_inode_flags(inode, true);
4818         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4819         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4820         if (ext4_has_feature_64bit(sb))
4821                 ei->i_file_acl |=
4822                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4823         inode->i_size = ext4_isize(sb, raw_inode);
4824         if ((size = i_size_read(inode)) < 0) {
4825                 ext4_error_inode(inode, function, line, 0,
4826                                  "iget: bad i_size value: %lld", size);
4827                 ret = -EFSCORRUPTED;
4828                 goto bad_inode;
4829         }
4830         /*
4831          * If dir_index is not enabled but there's dir with INDEX flag set,
4832          * we'd normally treat htree data as empty space. But with metadata
4833          * checksumming that corrupts checksums so forbid that.
4834          */
4835         if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4836             ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4837                 ext4_error_inode(inode, function, line, 0,
4838                          "iget: Dir with htree data on filesystem without dir_index feature.");
4839                 ret = -EFSCORRUPTED;
4840                 goto bad_inode;
4841         }
4842         ei->i_disksize = inode->i_size;
4843 #ifdef CONFIG_QUOTA
4844         ei->i_reserved_quota = 0;
4845 #endif
4846         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4847         ei->i_block_group = iloc.block_group;
4848         ei->i_last_alloc_group = ~0;
4849         /*
4850          * NOTE! The in-memory inode i_data array is in little-endian order
4851          * even on big-endian machines: we do NOT byteswap the block numbers!
4852          */
4853         for (block = 0; block < EXT4_N_BLOCKS; block++)
4854                 ei->i_data[block] = raw_inode->i_block[block];
4855         INIT_LIST_HEAD(&ei->i_orphan);
4856         ext4_fc_init_inode(&ei->vfs_inode);
4857
4858         /*
4859          * Set transaction id's of transactions that have to be committed
4860          * to finish f[data]sync. We set them to currently running transaction
4861          * as we cannot be sure that the inode or some of its metadata isn't
4862          * part of the transaction - the inode could have been reclaimed and
4863          * now it is reread from disk.
4864          */
4865         if (journal) {
4866                 transaction_t *transaction;
4867                 tid_t tid;
4868
4869                 read_lock(&journal->j_state_lock);
4870                 if (journal->j_running_transaction)
4871                         transaction = journal->j_running_transaction;
4872                 else
4873                         transaction = journal->j_committing_transaction;
4874                 if (transaction)
4875                         tid = transaction->t_tid;
4876                 else
4877                         tid = journal->j_commit_sequence;
4878                 read_unlock(&journal->j_state_lock);
4879                 ei->i_sync_tid = tid;
4880                 ei->i_datasync_tid = tid;
4881         }
4882
4883         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4884                 if (ei->i_extra_isize == 0) {
4885                         /* The extra space is currently unused. Use it. */
4886                         BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4887                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4888                                             EXT4_GOOD_OLD_INODE_SIZE;
4889                 } else {
4890                         ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4891                         if (ret)
4892                                 goto bad_inode;
4893                 }
4894         }
4895
4896         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4897         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4898         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4899         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4900
4901         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4902                 u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4903
4904                 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4905                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4906                                 ivers |=
4907                     (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4908                 }
4909                 ext4_inode_set_iversion_queried(inode, ivers);
4910         }
4911
4912         ret = 0;
4913         if (ei->i_file_acl &&
4914             !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
4915                 ext4_error_inode(inode, function, line, 0,
4916                                  "iget: bad extended attribute block %llu",
4917                                  ei->i_file_acl);
4918                 ret = -EFSCORRUPTED;
4919                 goto bad_inode;
4920         } else if (!ext4_has_inline_data(inode)) {
4921                 /* validate the block references in the inode */
4922                 if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) &&
4923                         (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4924                         (S_ISLNK(inode->i_mode) &&
4925                         !ext4_inode_is_fast_symlink(inode)))) {
4926                         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4927                                 ret = ext4_ext_check_inode(inode);
4928                         else
4929                                 ret = ext4_ind_check_inode(inode);
4930                 }
4931         }
4932         if (ret)
4933                 goto bad_inode;
4934
4935         if (S_ISREG(inode->i_mode)) {
4936                 inode->i_op = &ext4_file_inode_operations;
4937                 inode->i_fop = &ext4_file_operations;
4938                 ext4_set_aops(inode);
4939         } else if (S_ISDIR(inode->i_mode)) {
4940                 inode->i_op = &ext4_dir_inode_operations;
4941                 inode->i_fop = &ext4_dir_operations;
4942         } else if (S_ISLNK(inode->i_mode)) {
4943                 /* VFS does not allow setting these so must be corruption */
4944                 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
4945                         ext4_error_inode(inode, function, line, 0,
4946                                          "iget: immutable or append flags "
4947                                          "not allowed on symlinks");
4948                         ret = -EFSCORRUPTED;
4949                         goto bad_inode;
4950                 }
4951                 if (IS_ENCRYPTED(inode)) {
4952                         inode->i_op = &ext4_encrypted_symlink_inode_operations;
4953                         ext4_set_aops(inode);
4954                 } else if (ext4_inode_is_fast_symlink(inode)) {
4955                         inode->i_link = (char *)ei->i_data;
4956                         inode->i_op = &ext4_fast_symlink_inode_operations;
4957                         nd_terminate_link(ei->i_data, inode->i_size,
4958                                 sizeof(ei->i_data) - 1);
4959                 } else {
4960                         inode->i_op = &ext4_symlink_inode_operations;
4961                         ext4_set_aops(inode);
4962                 }
4963                 inode_nohighmem(inode);
4964         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4965               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4966                 inode->i_op = &ext4_special_inode_operations;
4967                 if (raw_inode->i_block[0])
4968                         init_special_inode(inode, inode->i_mode,
4969                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4970                 else
4971                         init_special_inode(inode, inode->i_mode,
4972                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4973         } else if (ino == EXT4_BOOT_LOADER_INO) {
4974                 make_bad_inode(inode);
4975         } else {
4976                 ret = -EFSCORRUPTED;
4977                 ext4_error_inode(inode, function, line, 0,
4978                                  "iget: bogus i_mode (%o)", inode->i_mode);
4979                 goto bad_inode;
4980         }
4981         if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb))
4982                 ext4_error_inode(inode, function, line, 0,
4983                                  "casefold flag without casefold feature");
4984         brelse(iloc.bh);
4985
4986         unlock_new_inode(inode);
4987         return inode;
4988
4989 bad_inode:
4990         brelse(iloc.bh);
4991         iget_failed(inode);
4992         return ERR_PTR(ret);
4993 }
4994
4995 static void __ext4_update_other_inode_time(struct super_block *sb,
4996                                            unsigned long orig_ino,
4997                                            unsigned long ino,
4998                                            struct ext4_inode *raw_inode)
4999 {
5000         struct inode *inode;
5001
5002         inode = find_inode_by_ino_rcu(sb, ino);
5003         if (!inode)
5004                 return;
5005
5006         if (!inode_is_dirtytime_only(inode))
5007                 return;
5008
5009         spin_lock(&inode->i_lock);
5010         if (inode_is_dirtytime_only(inode)) {
5011                 struct ext4_inode_info  *ei = EXT4_I(inode);
5012
5013                 inode->i_state &= ~I_DIRTY_TIME;
5014                 spin_unlock(&inode->i_lock);
5015
5016                 spin_lock(&ei->i_raw_lock);
5017                 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5018                 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5019                 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5020                 ext4_inode_csum_set(inode, raw_inode, ei);
5021                 spin_unlock(&ei->i_raw_lock);
5022                 trace_ext4_other_inode_update_time(inode, orig_ino);
5023                 return;
5024         }
5025         spin_unlock(&inode->i_lock);
5026 }
5027
5028 /*
5029  * Opportunistically update the other time fields for other inodes in
5030  * the same inode table block.
5031  */
5032 static void ext4_update_other_inodes_time(struct super_block *sb,
5033                                           unsigned long orig_ino, char *buf)
5034 {
5035         unsigned long ino;
5036         int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5037         int inode_size = EXT4_INODE_SIZE(sb);
5038
5039         /*
5040          * Calculate the first inode in the inode table block.  Inode
5041          * numbers are one-based.  That is, the first inode in a block
5042          * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5043          */
5044         ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5045         rcu_read_lock();
5046         for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5047                 if (ino == orig_ino)
5048                         continue;
5049                 __ext4_update_other_inode_time(sb, orig_ino, ino,
5050                                                (struct ext4_inode *)buf);
5051         }
5052         rcu_read_unlock();
5053 }
5054
5055 /*
5056  * Post the struct inode info into an on-disk inode location in the
5057  * buffer-cache.  This gobbles the caller's reference to the
5058  * buffer_head in the inode location struct.
5059  *
5060  * The caller must have write access to iloc->bh.
5061  */
5062 static int ext4_do_update_inode(handle_t *handle,
5063                                 struct inode *inode,
5064                                 struct ext4_iloc *iloc)
5065 {
5066         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5067         struct ext4_inode_info *ei = EXT4_I(inode);
5068         struct buffer_head *bh = iloc->bh;
5069         struct super_block *sb = inode->i_sb;
5070         int err;
5071         int need_datasync = 0, set_large_file = 0;
5072
5073         spin_lock(&ei->i_raw_lock);
5074
5075         /*
5076          * For fields not tracked in the in-memory inode, initialise them
5077          * to zero for new inodes.
5078          */
5079         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5080                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5081
5082         if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode))
5083                 need_datasync = 1;
5084         if (ei->i_disksize > 0x7fffffffULL) {
5085                 if (!ext4_has_feature_large_file(sb) ||
5086                     EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV))
5087                         set_large_file = 1;
5088         }
5089
5090         err = ext4_fill_raw_inode(inode, raw_inode);
5091         spin_unlock(&ei->i_raw_lock);
5092         if (err) {
5093                 EXT4_ERROR_INODE(inode, "corrupted inode contents");
5094                 goto out_brelse;
5095         }
5096
5097         if (inode->i_sb->s_flags & SB_LAZYTIME)
5098                 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5099                                               bh->b_data);
5100
5101         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5102         err = ext4_handle_dirty_metadata(handle, NULL, bh);
5103         if (err)
5104                 goto out_error;
5105         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5106         if (set_large_file) {
5107                 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5108                 err = ext4_journal_get_write_access(handle, sb,
5109                                                     EXT4_SB(sb)->s_sbh,
5110                                                     EXT4_JTR_NONE);
5111                 if (err)
5112                         goto out_error;
5113                 lock_buffer(EXT4_SB(sb)->s_sbh);
5114                 ext4_set_feature_large_file(sb);
5115                 ext4_superblock_csum_set(sb);
5116                 unlock_buffer(EXT4_SB(sb)->s_sbh);
5117                 ext4_handle_sync(handle);
5118                 err = ext4_handle_dirty_metadata(handle, NULL,
5119                                                  EXT4_SB(sb)->s_sbh);
5120         }
5121         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5122 out_error:
5123         ext4_std_error(inode->i_sb, err);
5124 out_brelse:
5125         brelse(bh);
5126         return err;
5127 }
5128
5129 /*
5130  * ext4_write_inode()
5131  *
5132  * We are called from a few places:
5133  *
5134  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5135  *   Here, there will be no transaction running. We wait for any running
5136  *   transaction to commit.
5137  *
5138  * - Within flush work (sys_sync(), kupdate and such).
5139  *   We wait on commit, if told to.
5140  *
5141  * - Within iput_final() -> write_inode_now()
5142  *   We wait on commit, if told to.
5143  *
5144  * In all cases it is actually safe for us to return without doing anything,
5145  * because the inode has been copied into a raw inode buffer in
5146  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5147  * writeback.
5148  *
5149  * Note that we are absolutely dependent upon all inode dirtiers doing the
5150  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5151  * which we are interested.
5152  *
5153  * It would be a bug for them to not do this.  The code:
5154  *
5155  *      mark_inode_dirty(inode)
5156  *      stuff();
5157  *      inode->i_size = expr;
5158  *
5159  * is in error because write_inode() could occur while `stuff()' is running,
5160  * and the new i_size will be lost.  Plus the inode will no longer be on the
5161  * superblock's dirty inode list.
5162  */
5163 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5164 {
5165         int err;
5166
5167         if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5168             sb_rdonly(inode->i_sb))
5169                 return 0;
5170
5171         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5172                 return -EIO;
5173
5174         if (EXT4_SB(inode->i_sb)->s_journal) {
5175                 if (ext4_journal_current_handle()) {
5176                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5177                         dump_stack();
5178                         return -EIO;
5179                 }
5180
5181                 /*
5182                  * No need to force transaction in WB_SYNC_NONE mode. Also
5183                  * ext4_sync_fs() will force the commit after everything is
5184                  * written.
5185                  */
5186                 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5187                         return 0;
5188
5189                 err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal,
5190                                                 EXT4_I(inode)->i_sync_tid);
5191         } else {
5192                 struct ext4_iloc iloc;
5193
5194                 err = __ext4_get_inode_loc_noinmem(inode, &iloc);
5195                 if (err)
5196                         return err;
5197                 /*
5198                  * sync(2) will flush the whole buffer cache. No need to do
5199                  * it here separately for each inode.
5200                  */
5201                 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5202                         sync_dirty_buffer(iloc.bh);
5203                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5204                         ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5205                                                "IO error syncing inode");
5206                         err = -EIO;
5207                 }
5208                 brelse(iloc.bh);
5209         }
5210         return err;
5211 }
5212
5213 /*
5214  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5215  * buffers that are attached to a page stradding i_size and are undergoing
5216  * commit. In that case we have to wait for commit to finish and try again.
5217  */
5218 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5219 {
5220         struct page *page;
5221         unsigned offset;
5222         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5223         tid_t commit_tid = 0;
5224         int ret;
5225
5226         offset = inode->i_size & (PAGE_SIZE - 1);
5227         /*
5228          * If the page is fully truncated, we don't need to wait for any commit
5229          * (and we even should not as __ext4_journalled_invalidatepage() may
5230          * strip all buffers from the page but keep the page dirty which can then
5231          * confuse e.g. concurrent ext4_writepage() seeing dirty page without
5232          * buffers). Also we don't need to wait for any commit if all buffers in
5233          * the page remain valid. This is most beneficial for the common case of
5234          * blocksize == PAGESIZE.
5235          */
5236         if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5237                 return;
5238         while (1) {
5239                 page = find_lock_page(inode->i_mapping,
5240                                       inode->i_size >> PAGE_SHIFT);
5241                 if (!page)
5242                         return;
5243                 ret = __ext4_journalled_invalidatepage(page, offset,
5244                                                 PAGE_SIZE - offset);
5245                 unlock_page(page);
5246                 put_page(page);
5247                 if (ret != -EBUSY)
5248                         return;
5249                 commit_tid = 0;
5250                 read_lock(&journal->j_state_lock);
5251                 if (journal->j_committing_transaction)
5252                         commit_tid = journal->j_committing_transaction->t_tid;
5253                 read_unlock(&journal->j_state_lock);
5254                 if (commit_tid)
5255                         jbd2_log_wait_commit(journal, commit_tid);
5256         }
5257 }
5258
5259 /*
5260  * ext4_setattr()
5261  *
5262  * Called from notify_change.
5263  *
5264  * We want to trap VFS attempts to truncate the file as soon as
5265  * possible.  In particular, we want to make sure that when the VFS
5266  * shrinks i_size, we put the inode on the orphan list and modify
5267  * i_disksize immediately, so that during the subsequent flushing of
5268  * dirty pages and freeing of disk blocks, we can guarantee that any
5269  * commit will leave the blocks being flushed in an unused state on
5270  * disk.  (On recovery, the inode will get truncated and the blocks will
5271  * be freed, so we have a strong guarantee that no future commit will
5272  * leave these blocks visible to the user.)
5273  *
5274  * Another thing we have to assure is that if we are in ordered mode
5275  * and inode is still attached to the committing transaction, we must
5276  * we start writeout of all the dirty pages which are being truncated.
5277  * This way we are sure that all the data written in the previous
5278  * transaction are already on disk (truncate waits for pages under
5279  * writeback).
5280  *
5281  * Called with inode->i_rwsem down.
5282  */
5283 int ext4_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
5284                  struct iattr *attr)
5285 {
5286         struct inode *inode = d_inode(dentry);
5287         int error, rc = 0;
5288         int orphan = 0;
5289         const unsigned int ia_valid = attr->ia_valid;
5290
5291         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5292                 return -EIO;
5293
5294         if (unlikely(IS_IMMUTABLE(inode)))
5295                 return -EPERM;
5296
5297         if (unlikely(IS_APPEND(inode) &&
5298                      (ia_valid & (ATTR_MODE | ATTR_UID |
5299                                   ATTR_GID | ATTR_TIMES_SET))))
5300                 return -EPERM;
5301
5302         error = setattr_prepare(mnt_userns, dentry, attr);
5303         if (error)
5304                 return error;
5305
5306         error = fscrypt_prepare_setattr(dentry, attr);
5307         if (error)
5308                 return error;
5309
5310         error = fsverity_prepare_setattr(dentry, attr);
5311         if (error)
5312                 return error;
5313
5314         if (is_quota_modification(inode, attr)) {
5315                 error = dquot_initialize(inode);
5316                 if (error)
5317                         return error;
5318         }
5319
5320         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5321             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5322                 handle_t *handle;
5323
5324                 /* (user+group)*(old+new) structure, inode write (sb,
5325                  * inode block, ? - but truncate inode update has it) */
5326                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5327                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5328                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5329                 if (IS_ERR(handle)) {
5330                         error = PTR_ERR(handle);
5331                         goto err_out;
5332                 }
5333
5334                 /* dquot_transfer() calls back ext4_get_inode_usage() which
5335                  * counts xattr inode references.
5336                  */
5337                 down_read(&EXT4_I(inode)->xattr_sem);
5338                 error = dquot_transfer(inode, attr);
5339                 up_read(&EXT4_I(inode)->xattr_sem);
5340
5341                 if (error) {
5342                         ext4_journal_stop(handle);
5343                         return error;
5344                 }
5345                 /* Update corresponding info in inode so that everything is in
5346                  * one transaction */
5347                 if (attr->ia_valid & ATTR_UID)
5348                         inode->i_uid = attr->ia_uid;
5349                 if (attr->ia_valid & ATTR_GID)
5350                         inode->i_gid = attr->ia_gid;
5351                 error = ext4_mark_inode_dirty(handle, inode);
5352                 ext4_journal_stop(handle);
5353                 if (unlikely(error)) {
5354                         return error;
5355                 }
5356         }
5357
5358         if (attr->ia_valid & ATTR_SIZE) {
5359                 handle_t *handle;
5360                 loff_t oldsize = inode->i_size;
5361                 int shrink = (attr->ia_size < inode->i_size);
5362
5363                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5364                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5365
5366                         if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5367                                 return -EFBIG;
5368                         }
5369                 }
5370                 if (!S_ISREG(inode->i_mode)) {
5371                         return -EINVAL;
5372                 }
5373
5374                 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5375                         inode_inc_iversion(inode);
5376
5377                 if (shrink) {
5378                         if (ext4_should_order_data(inode)) {
5379                                 error = ext4_begin_ordered_truncate(inode,
5380                                                             attr->ia_size);
5381                                 if (error)
5382                                         goto err_out;
5383                         }
5384                         /*
5385                          * Blocks are going to be removed from the inode. Wait
5386                          * for dio in flight.
5387                          */
5388                         inode_dio_wait(inode);
5389                 }
5390
5391                 filemap_invalidate_lock(inode->i_mapping);
5392
5393                 rc = ext4_break_layouts(inode);
5394                 if (rc) {
5395                         filemap_invalidate_unlock(inode->i_mapping);
5396                         goto err_out;
5397                 }
5398
5399                 if (attr->ia_size != inode->i_size) {
5400                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5401                         if (IS_ERR(handle)) {
5402                                 error = PTR_ERR(handle);
5403                                 goto out_mmap_sem;
5404                         }
5405                         if (ext4_handle_valid(handle) && shrink) {
5406                                 error = ext4_orphan_add(handle, inode);
5407                                 orphan = 1;
5408                         }
5409                         /*
5410                          * Update c/mtime on truncate up, ext4_truncate() will
5411                          * update c/mtime in shrink case below
5412                          */
5413                         if (!shrink) {
5414                                 inode->i_mtime = current_time(inode);
5415                                 inode->i_ctime = inode->i_mtime;
5416                         }
5417
5418                         if (shrink)
5419                                 ext4_fc_track_range(handle, inode,
5420                                         (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5421                                         inode->i_sb->s_blocksize_bits,
5422                                         EXT_MAX_BLOCKS - 1);
5423                         else
5424                                 ext4_fc_track_range(
5425                                         handle, inode,
5426                                         (oldsize > 0 ? oldsize - 1 : oldsize) >>
5427                                         inode->i_sb->s_blocksize_bits,
5428                                         (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5429                                         inode->i_sb->s_blocksize_bits);
5430
5431                         down_write(&EXT4_I(inode)->i_data_sem);
5432                         EXT4_I(inode)->i_disksize = attr->ia_size;
5433                         rc = ext4_mark_inode_dirty(handle, inode);
5434                         if (!error)
5435                                 error = rc;
5436                         /*
5437                          * We have to update i_size under i_data_sem together
5438                          * with i_disksize to avoid races with writeback code
5439                          * running ext4_wb_update_i_disksize().
5440                          */
5441                         if (!error)
5442                                 i_size_write(inode, attr->ia_size);
5443                         up_write(&EXT4_I(inode)->i_data_sem);
5444                         ext4_journal_stop(handle);
5445                         if (error)
5446                                 goto out_mmap_sem;
5447                         if (!shrink) {
5448                                 pagecache_isize_extended(inode, oldsize,
5449                                                          inode->i_size);
5450                         } else if (ext4_should_journal_data(inode)) {
5451                                 ext4_wait_for_tail_page_commit(inode);
5452                         }
5453                 }
5454
5455                 /*
5456                  * Truncate pagecache after we've waited for commit
5457                  * in data=journal mode to make pages freeable.
5458                  */
5459                 truncate_pagecache(inode, inode->i_size);
5460                 /*
5461                  * Call ext4_truncate() even if i_size didn't change to
5462                  * truncate possible preallocated blocks.
5463                  */
5464                 if (attr->ia_size <= oldsize) {
5465                         rc = ext4_truncate(inode);
5466                         if (rc)
5467                                 error = rc;
5468                 }
5469 out_mmap_sem:
5470                 filemap_invalidate_unlock(inode->i_mapping);
5471         }
5472
5473         if (!error) {
5474                 setattr_copy(mnt_userns, inode, attr);
5475                 mark_inode_dirty(inode);
5476         }
5477
5478         /*
5479          * If the call to ext4_truncate failed to get a transaction handle at
5480          * all, we need to clean up the in-core orphan list manually.
5481          */
5482         if (orphan && inode->i_nlink)
5483                 ext4_orphan_del(NULL, inode);
5484
5485         if (!error && (ia_valid & ATTR_MODE))
5486                 rc = posix_acl_chmod(mnt_userns, inode, inode->i_mode);
5487
5488 err_out:
5489         if  (error)
5490                 ext4_std_error(inode->i_sb, error);
5491         if (!error)
5492                 error = rc;
5493         return error;
5494 }
5495
5496 int ext4_getattr(struct user_namespace *mnt_userns, const struct path *path,
5497                  struct kstat *stat, u32 request_mask, unsigned int query_flags)
5498 {
5499         struct inode *inode = d_inode(path->dentry);
5500         struct ext4_inode *raw_inode;
5501         struct ext4_inode_info *ei = EXT4_I(inode);
5502         unsigned int flags;
5503
5504         if ((request_mask & STATX_BTIME) &&
5505             EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5506                 stat->result_mask |= STATX_BTIME;
5507                 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5508                 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5509         }
5510
5511         flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5512         if (flags & EXT4_APPEND_FL)
5513                 stat->attributes |= STATX_ATTR_APPEND;
5514         if (flags & EXT4_COMPR_FL)
5515                 stat->attributes |= STATX_ATTR_COMPRESSED;
5516         if (flags & EXT4_ENCRYPT_FL)
5517                 stat->attributes |= STATX_ATTR_ENCRYPTED;
5518         if (flags & EXT4_IMMUTABLE_FL)
5519                 stat->attributes |= STATX_ATTR_IMMUTABLE;
5520         if (flags & EXT4_NODUMP_FL)
5521                 stat->attributes |= STATX_ATTR_NODUMP;
5522         if (flags & EXT4_VERITY_FL)
5523                 stat->attributes |= STATX_ATTR_VERITY;
5524
5525         stat->attributes_mask |= (STATX_ATTR_APPEND |
5526                                   STATX_ATTR_COMPRESSED |
5527                                   STATX_ATTR_ENCRYPTED |
5528                                   STATX_ATTR_IMMUTABLE |
5529                                   STATX_ATTR_NODUMP |
5530                                   STATX_ATTR_VERITY);
5531
5532         generic_fillattr(mnt_userns, inode, stat);
5533         return 0;
5534 }
5535
5536 int ext4_file_getattr(struct user_namespace *mnt_userns,
5537                       const struct path *path, struct kstat *stat,
5538                       u32 request_mask, unsigned int query_flags)
5539 {
5540         struct inode *inode = d_inode(path->dentry);
5541         u64 delalloc_blocks;
5542
5543         ext4_getattr(mnt_userns, path, stat, request_mask, query_flags);
5544
5545         /*
5546          * If there is inline data in the inode, the inode will normally not
5547          * have data blocks allocated (it may have an external xattr block).
5548          * Report at least one sector for such files, so tools like tar, rsync,
5549          * others don't incorrectly think the file is completely sparse.
5550          */
5551         if (unlikely(ext4_has_inline_data(inode)))
5552                 stat->blocks += (stat->size + 511) >> 9;
5553
5554         /*
5555          * We can't update i_blocks if the block allocation is delayed
5556          * otherwise in the case of system crash before the real block
5557          * allocation is done, we will have i_blocks inconsistent with
5558          * on-disk file blocks.
5559          * We always keep i_blocks updated together with real
5560          * allocation. But to not confuse with user, stat
5561          * will return the blocks that include the delayed allocation
5562          * blocks for this file.
5563          */
5564         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5565                                    EXT4_I(inode)->i_reserved_data_blocks);
5566         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5567         return 0;
5568 }
5569
5570 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5571                                    int pextents)
5572 {
5573         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5574                 return ext4_ind_trans_blocks(inode, lblocks);
5575         return ext4_ext_index_trans_blocks(inode, pextents);
5576 }
5577
5578 /*
5579  * Account for index blocks, block groups bitmaps and block group
5580  * descriptor blocks if modify datablocks and index blocks
5581  * worse case, the indexs blocks spread over different block groups
5582  *
5583  * If datablocks are discontiguous, they are possible to spread over
5584  * different block groups too. If they are contiguous, with flexbg,
5585  * they could still across block group boundary.
5586  *
5587  * Also account for superblock, inode, quota and xattr blocks
5588  */
5589 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5590                                   int pextents)
5591 {
5592         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5593         int gdpblocks;
5594         int idxblocks;
5595         int ret = 0;
5596
5597         /*
5598          * How many index blocks need to touch to map @lblocks logical blocks
5599          * to @pextents physical extents?
5600          */
5601         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5602
5603         ret = idxblocks;
5604
5605         /*
5606          * Now let's see how many group bitmaps and group descriptors need
5607          * to account
5608          */
5609         groups = idxblocks + pextents;
5610         gdpblocks = groups;
5611         if (groups > ngroups)
5612                 groups = ngroups;
5613         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5614                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5615
5616         /* bitmaps and block group descriptor blocks */
5617         ret += groups + gdpblocks;
5618
5619         /* Blocks for super block, inode, quota and xattr blocks */
5620         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5621
5622         return ret;
5623 }
5624
5625 /*
5626  * Calculate the total number of credits to reserve to fit
5627  * the modification of a single pages into a single transaction,
5628  * which may include multiple chunks of block allocations.
5629  *
5630  * This could be called via ext4_write_begin()
5631  *
5632  * We need to consider the worse case, when
5633  * one new block per extent.
5634  */
5635 int ext4_writepage_trans_blocks(struct inode *inode)
5636 {
5637         int bpp = ext4_journal_blocks_per_page(inode);
5638         int ret;
5639
5640         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5641
5642         /* Account for data blocks for journalled mode */
5643         if (ext4_should_journal_data(inode))
5644                 ret += bpp;
5645         return ret;
5646 }
5647
5648 /*
5649  * Calculate the journal credits for a chunk of data modification.
5650  *
5651  * This is called from DIO, fallocate or whoever calling
5652  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5653  *
5654  * journal buffers for data blocks are not included here, as DIO
5655  * and fallocate do no need to journal data buffers.
5656  */
5657 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5658 {
5659         return ext4_meta_trans_blocks(inode, nrblocks, 1);
5660 }
5661
5662 /*
5663  * The caller must have previously called ext4_reserve_inode_write().
5664  * Give this, we know that the caller already has write access to iloc->bh.
5665  */
5666 int ext4_mark_iloc_dirty(handle_t *handle,
5667                          struct inode *inode, struct ext4_iloc *iloc)
5668 {
5669         int err = 0;
5670
5671         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5672                 put_bh(iloc->bh);
5673                 return -EIO;
5674         }
5675         ext4_fc_track_inode(handle, inode);
5676
5677         if (IS_I_VERSION(inode))
5678                 inode_inc_iversion(inode);
5679
5680         /* the do_update_inode consumes one bh->b_count */
5681         get_bh(iloc->bh);
5682
5683         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5684         err = ext4_do_update_inode(handle, inode, iloc);
5685         put_bh(iloc->bh);
5686         return err;
5687 }
5688
5689 /*
5690  * On success, We end up with an outstanding reference count against
5691  * iloc->bh.  This _must_ be cleaned up later.
5692  */
5693
5694 int
5695 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5696                          struct ext4_iloc *iloc)
5697 {
5698         int err;
5699
5700         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5701                 return -EIO;
5702
5703         err = ext4_get_inode_loc(inode, iloc);
5704         if (!err) {
5705                 BUFFER_TRACE(iloc->bh, "get_write_access");
5706                 err = ext4_journal_get_write_access(handle, inode->i_sb,
5707                                                     iloc->bh, EXT4_JTR_NONE);
5708                 if (err) {
5709                         brelse(iloc->bh);
5710                         iloc->bh = NULL;
5711                 }
5712         }
5713         ext4_std_error(inode->i_sb, err);
5714         return err;
5715 }
5716
5717 static int __ext4_expand_extra_isize(struct inode *inode,
5718                                      unsigned int new_extra_isize,
5719                                      struct ext4_iloc *iloc,
5720                                      handle_t *handle, int *no_expand)
5721 {
5722         struct ext4_inode *raw_inode;
5723         struct ext4_xattr_ibody_header *header;
5724         unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5725         struct ext4_inode_info *ei = EXT4_I(inode);
5726         int error;
5727
5728         /* this was checked at iget time, but double check for good measure */
5729         if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5730             (ei->i_extra_isize & 3)) {
5731                 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5732                                  ei->i_extra_isize,
5733                                  EXT4_INODE_SIZE(inode->i_sb));
5734                 return -EFSCORRUPTED;
5735         }
5736         if ((new_extra_isize < ei->i_extra_isize) ||
5737             (new_extra_isize < 4) ||
5738             (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5739                 return -EINVAL; /* Should never happen */
5740
5741         raw_inode = ext4_raw_inode(iloc);
5742
5743         header = IHDR(inode, raw_inode);
5744
5745         /* No extended attributes present */
5746         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5747             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5748                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5749                        EXT4_I(inode)->i_extra_isize, 0,
5750                        new_extra_isize - EXT4_I(inode)->i_extra_isize);
5751                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5752                 return 0;
5753         }
5754
5755         /* try to expand with EAs present */
5756         error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5757                                            raw_inode, handle);
5758         if (error) {
5759                 /*
5760                  * Inode size expansion failed; don't try again
5761                  */
5762                 *no_expand = 1;
5763         }
5764
5765         return error;
5766 }
5767
5768 /*
5769  * Expand an inode by new_extra_isize bytes.
5770  * Returns 0 on success or negative error number on failure.
5771  */
5772 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5773                                           unsigned int new_extra_isize,
5774                                           struct ext4_iloc iloc,
5775                                           handle_t *handle)
5776 {
5777         int no_expand;
5778         int error;
5779
5780         if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5781                 return -EOVERFLOW;
5782
5783         /*
5784          * In nojournal mode, we can immediately attempt to expand
5785          * the inode.  When journaled, we first need to obtain extra
5786          * buffer credits since we may write into the EA block
5787          * with this same handle. If journal_extend fails, then it will
5788          * only result in a minor loss of functionality for that inode.
5789          * If this is felt to be critical, then e2fsck should be run to
5790          * force a large enough s_min_extra_isize.
5791          */
5792         if (ext4_journal_extend(handle,
5793                                 EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5794                 return -ENOSPC;
5795
5796         if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5797                 return -EBUSY;
5798
5799         error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5800                                           handle, &no_expand);
5801         ext4_write_unlock_xattr(inode, &no_expand);
5802
5803         return error;
5804 }
5805
5806 int ext4_expand_extra_isize(struct inode *inode,
5807                             unsigned int new_extra_isize,
5808                             struct ext4_iloc *iloc)
5809 {
5810         handle_t *handle;
5811         int no_expand;
5812         int error, rc;
5813
5814         if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5815                 brelse(iloc->bh);
5816                 return -EOVERFLOW;
5817         }
5818
5819         handle = ext4_journal_start(inode, EXT4_HT_INODE,
5820                                     EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5821         if (IS_ERR(handle)) {
5822                 error = PTR_ERR(handle);
5823                 brelse(iloc->bh);
5824                 return error;
5825         }
5826
5827         ext4_write_lock_xattr(inode, &no_expand);
5828
5829         BUFFER_TRACE(iloc->bh, "get_write_access");
5830         error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh,
5831                                               EXT4_JTR_NONE);
5832         if (error) {
5833                 brelse(iloc->bh);
5834                 goto out_unlock;
5835         }
5836
5837         error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5838                                           handle, &no_expand);
5839
5840         rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5841         if (!error)
5842                 error = rc;
5843
5844 out_unlock:
5845         ext4_write_unlock_xattr(inode, &no_expand);
5846         ext4_journal_stop(handle);
5847         return error;
5848 }
5849
5850 /*
5851  * What we do here is to mark the in-core inode as clean with respect to inode
5852  * dirtiness (it may still be data-dirty).
5853  * This means that the in-core inode may be reaped by prune_icache
5854  * without having to perform any I/O.  This is a very good thing,
5855  * because *any* task may call prune_icache - even ones which
5856  * have a transaction open against a different journal.
5857  *
5858  * Is this cheating?  Not really.  Sure, we haven't written the
5859  * inode out, but prune_icache isn't a user-visible syncing function.
5860  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5861  * we start and wait on commits.
5862  */
5863 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
5864                                 const char *func, unsigned int line)
5865 {
5866         struct ext4_iloc iloc;
5867         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5868         int err;
5869
5870         might_sleep();
5871         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5872         err = ext4_reserve_inode_write(handle, inode, &iloc);
5873         if (err)
5874                 goto out;
5875
5876         if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5877                 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5878                                                iloc, handle);
5879
5880         err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5881 out:
5882         if (unlikely(err))
5883                 ext4_error_inode_err(inode, func, line, 0, err,
5884                                         "mark_inode_dirty error");
5885         return err;
5886 }
5887
5888 /*
5889  * ext4_dirty_inode() is called from __mark_inode_dirty()
5890  *
5891  * We're really interested in the case where a file is being extended.
5892  * i_size has been changed by generic_commit_write() and we thus need
5893  * to include the updated inode in the current transaction.
5894  *
5895  * Also, dquot_alloc_block() will always dirty the inode when blocks
5896  * are allocated to the file.
5897  *
5898  * If the inode is marked synchronous, we don't honour that here - doing
5899  * so would cause a commit on atime updates, which we don't bother doing.
5900  * We handle synchronous inodes at the highest possible level.
5901  */
5902 void ext4_dirty_inode(struct inode *inode, int flags)
5903 {
5904         handle_t *handle;
5905
5906         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5907         if (IS_ERR(handle))
5908                 return;
5909         ext4_mark_inode_dirty(handle, inode);
5910         ext4_journal_stop(handle);
5911 }
5912
5913 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5914 {
5915         journal_t *journal;
5916         handle_t *handle;
5917         int err;
5918         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5919
5920         /*
5921          * We have to be very careful here: changing a data block's
5922          * journaling status dynamically is dangerous.  If we write a
5923          * data block to the journal, change the status and then delete
5924          * that block, we risk forgetting to revoke the old log record
5925          * from the journal and so a subsequent replay can corrupt data.
5926          * So, first we make sure that the journal is empty and that
5927          * nobody is changing anything.
5928          */
5929
5930         journal = EXT4_JOURNAL(inode);
5931         if (!journal)
5932                 return 0;
5933         if (is_journal_aborted(journal))
5934                 return -EROFS;
5935
5936         /* Wait for all existing dio workers */
5937         inode_dio_wait(inode);
5938
5939         /*
5940          * Before flushing the journal and switching inode's aops, we have
5941          * to flush all dirty data the inode has. There can be outstanding
5942          * delayed allocations, there can be unwritten extents created by
5943          * fallocate or buffered writes in dioread_nolock mode covered by
5944          * dirty data which can be converted only after flushing the dirty
5945          * data (and journalled aops don't know how to handle these cases).
5946          */
5947         if (val) {
5948                 filemap_invalidate_lock(inode->i_mapping);
5949                 err = filemap_write_and_wait(inode->i_mapping);
5950                 if (err < 0) {
5951                         filemap_invalidate_unlock(inode->i_mapping);
5952                         return err;
5953                 }
5954         }
5955
5956         percpu_down_write(&sbi->s_writepages_rwsem);
5957         jbd2_journal_lock_updates(journal);
5958
5959         /*
5960          * OK, there are no updates running now, and all cached data is
5961          * synced to disk.  We are now in a completely consistent state
5962          * which doesn't have anything in the journal, and we know that
5963          * no filesystem updates are running, so it is safe to modify
5964          * the inode's in-core data-journaling state flag now.
5965          */
5966
5967         if (val)
5968                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5969         else {
5970                 err = jbd2_journal_flush(journal, 0);
5971                 if (err < 0) {
5972                         jbd2_journal_unlock_updates(journal);
5973                         percpu_up_write(&sbi->s_writepages_rwsem);
5974                         return err;
5975                 }
5976                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5977         }
5978         ext4_set_aops(inode);
5979
5980         jbd2_journal_unlock_updates(journal);
5981         percpu_up_write(&sbi->s_writepages_rwsem);
5982
5983         if (val)
5984                 filemap_invalidate_unlock(inode->i_mapping);
5985
5986         /* Finally we can mark the inode as dirty. */
5987
5988         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5989         if (IS_ERR(handle))
5990                 return PTR_ERR(handle);
5991
5992         ext4_fc_mark_ineligible(inode->i_sb,
5993                 EXT4_FC_REASON_JOURNAL_FLAG_CHANGE, handle);
5994         err = ext4_mark_inode_dirty(handle, inode);
5995         ext4_handle_sync(handle);
5996         ext4_journal_stop(handle);
5997         ext4_std_error(inode->i_sb, err);
5998
5999         return err;
6000 }
6001
6002 static int ext4_bh_unmapped(handle_t *handle, struct inode *inode,
6003                             struct buffer_head *bh)
6004 {
6005         return !buffer_mapped(bh);
6006 }
6007
6008 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6009 {
6010         struct vm_area_struct *vma = vmf->vma;
6011         struct page *page = vmf->page;
6012         loff_t size;
6013         unsigned long len;
6014         int err;
6015         vm_fault_t ret;
6016         struct file *file = vma->vm_file;
6017         struct inode *inode = file_inode(file);
6018         struct address_space *mapping = inode->i_mapping;
6019         handle_t *handle;
6020         get_block_t *get_block;
6021         int retries = 0;
6022
6023         if (unlikely(IS_IMMUTABLE(inode)))
6024                 return VM_FAULT_SIGBUS;
6025
6026         sb_start_pagefault(inode->i_sb);
6027         file_update_time(vma->vm_file);
6028
6029         filemap_invalidate_lock_shared(mapping);
6030
6031         err = ext4_convert_inline_data(inode);
6032         if (err)
6033                 goto out_ret;
6034
6035         /*
6036          * On data journalling we skip straight to the transaction handle:
6037          * there's no delalloc; page truncated will be checked later; the
6038          * early return w/ all buffers mapped (calculates size/len) can't
6039          * be used; and there's no dioread_nolock, so only ext4_get_block.
6040          */
6041         if (ext4_should_journal_data(inode))
6042                 goto retry_alloc;
6043
6044         /* Delalloc case is easy... */
6045         if (test_opt(inode->i_sb, DELALLOC) &&
6046             !ext4_nonda_switch(inode->i_sb)) {
6047                 do {
6048                         err = block_page_mkwrite(vma, vmf,
6049                                                    ext4_da_get_block_prep);
6050                 } while (err == -ENOSPC &&
6051                        ext4_should_retry_alloc(inode->i_sb, &retries));
6052                 goto out_ret;
6053         }
6054
6055         lock_page(page);
6056         size = i_size_read(inode);
6057         /* Page got truncated from under us? */
6058         if (page->mapping != mapping || page_offset(page) > size) {
6059                 unlock_page(page);
6060                 ret = VM_FAULT_NOPAGE;
6061                 goto out;
6062         }
6063
6064         if (page->index == size >> PAGE_SHIFT)
6065                 len = size & ~PAGE_MASK;
6066         else
6067                 len = PAGE_SIZE;
6068         /*
6069          * Return if we have all the buffers mapped. This avoids the need to do
6070          * journal_start/journal_stop which can block and take a long time
6071          *
6072          * This cannot be done for data journalling, as we have to add the
6073          * inode to the transaction's list to writeprotect pages on commit.
6074          */
6075         if (page_has_buffers(page)) {
6076                 if (!ext4_walk_page_buffers(NULL, inode, page_buffers(page),
6077                                             0, len, NULL,
6078                                             ext4_bh_unmapped)) {
6079                         /* Wait so that we don't change page under IO */
6080                         wait_for_stable_page(page);
6081                         ret = VM_FAULT_LOCKED;
6082                         goto out;
6083                 }
6084         }
6085         unlock_page(page);
6086         /* OK, we need to fill the hole... */
6087         if (ext4_should_dioread_nolock(inode))
6088                 get_block = ext4_get_block_unwritten;
6089         else
6090                 get_block = ext4_get_block;
6091 retry_alloc:
6092         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6093                                     ext4_writepage_trans_blocks(inode));
6094         if (IS_ERR(handle)) {
6095                 ret = VM_FAULT_SIGBUS;
6096                 goto out;
6097         }
6098         /*
6099          * Data journalling can't use block_page_mkwrite() because it
6100          * will set_buffer_dirty() before do_journal_get_write_access()
6101          * thus might hit warning messages for dirty metadata buffers.
6102          */
6103         if (!ext4_should_journal_data(inode)) {
6104                 err = block_page_mkwrite(vma, vmf, get_block);
6105         } else {
6106                 lock_page(page);
6107                 size = i_size_read(inode);
6108                 /* Page got truncated from under us? */
6109                 if (page->mapping != mapping || page_offset(page) > size) {
6110                         ret = VM_FAULT_NOPAGE;
6111                         goto out_error;
6112                 }
6113
6114                 if (page->index == size >> PAGE_SHIFT)
6115                         len = size & ~PAGE_MASK;
6116                 else
6117                         len = PAGE_SIZE;
6118
6119                 err = __block_write_begin(page, 0, len, ext4_get_block);
6120                 if (!err) {
6121                         ret = VM_FAULT_SIGBUS;
6122                         if (ext4_walk_page_buffers(handle, inode,
6123                                         page_buffers(page), 0, len, NULL,
6124                                         do_journal_get_write_access))
6125                                 goto out_error;
6126                         if (ext4_walk_page_buffers(handle, inode,
6127                                         page_buffers(page), 0, len, NULL,
6128                                         write_end_fn))
6129                                 goto out_error;
6130                         if (ext4_jbd2_inode_add_write(handle, inode,
6131                                                       page_offset(page), len))
6132                                 goto out_error;
6133                         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6134                 } else {
6135                         unlock_page(page);
6136                 }
6137         }
6138         ext4_journal_stop(handle);
6139         if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6140                 goto retry_alloc;
6141 out_ret:
6142         ret = block_page_mkwrite_return(err);
6143 out:
6144         filemap_invalidate_unlock_shared(mapping);
6145         sb_end_pagefault(inode->i_sb);
6146         return ret;
6147 out_error:
6148         unlock_page(page);
6149         ext4_journal_stop(handle);
6150         goto out;
6151 }