ext4: don't update s_rev_level if not required
[linux-2.6-microblaze.git] / fs / ext4 / inode.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  64-bit file support on 64-bit platforms by Jakub Jelinek
17  *      (jj@sunsite.ms.mff.cuni.cz)
18  *
19  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20  */
21
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/dax.h>
27 #include <linux/quotaops.h>
28 #include <linux/string.h>
29 #include <linux/buffer_head.h>
30 #include <linux/writeback.h>
31 #include <linux/pagevec.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/uio.h>
35 #include <linux/bio.h>
36 #include <linux/workqueue.h>
37 #include <linux/kernel.h>
38 #include <linux/printk.h>
39 #include <linux/slab.h>
40 #include <linux/bitops.h>
41 #include <linux/iomap.h>
42 #include <linux/iversion.h>
43
44 #include "ext4_jbd2.h"
45 #include "xattr.h"
46 #include "acl.h"
47 #include "truncate.h"
48
49 #include <trace/events/ext4.h>
50
51 #define MPAGE_DA_EXTENT_TAIL 0x01
52
53 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
54                               struct ext4_inode_info *ei)
55 {
56         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
57         __u32 csum;
58         __u16 dummy_csum = 0;
59         int offset = offsetof(struct ext4_inode, i_checksum_lo);
60         unsigned int csum_size = sizeof(dummy_csum);
61
62         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
63         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
64         offset += csum_size;
65         csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
66                            EXT4_GOOD_OLD_INODE_SIZE - offset);
67
68         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
69                 offset = offsetof(struct ext4_inode, i_checksum_hi);
70                 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
71                                    EXT4_GOOD_OLD_INODE_SIZE,
72                                    offset - EXT4_GOOD_OLD_INODE_SIZE);
73                 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
74                         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
75                                            csum_size);
76                         offset += csum_size;
77                 }
78                 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
79                                    EXT4_INODE_SIZE(inode->i_sb) - offset);
80         }
81
82         return csum;
83 }
84
85 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
86                                   struct ext4_inode_info *ei)
87 {
88         __u32 provided, calculated;
89
90         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
91             cpu_to_le32(EXT4_OS_LINUX) ||
92             !ext4_has_metadata_csum(inode->i_sb))
93                 return 1;
94
95         provided = le16_to_cpu(raw->i_checksum_lo);
96         calculated = ext4_inode_csum(inode, raw, ei);
97         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
98             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
99                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
100         else
101                 calculated &= 0xFFFF;
102
103         return provided == calculated;
104 }
105
106 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
107                                 struct ext4_inode_info *ei)
108 {
109         __u32 csum;
110
111         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
112             cpu_to_le32(EXT4_OS_LINUX) ||
113             !ext4_has_metadata_csum(inode->i_sb))
114                 return;
115
116         csum = ext4_inode_csum(inode, raw, ei);
117         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
118         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
119             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
120                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
121 }
122
123 static inline int ext4_begin_ordered_truncate(struct inode *inode,
124                                               loff_t new_size)
125 {
126         trace_ext4_begin_ordered_truncate(inode, new_size);
127         /*
128          * If jinode is zero, then we never opened the file for
129          * writing, so there's no need to call
130          * jbd2_journal_begin_ordered_truncate() since there's no
131          * outstanding writes we need to flush.
132          */
133         if (!EXT4_I(inode)->jinode)
134                 return 0;
135         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
136                                                    EXT4_I(inode)->jinode,
137                                                    new_size);
138 }
139
140 static void ext4_invalidatepage(struct page *page, unsigned int offset,
141                                 unsigned int length);
142 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
143 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
144 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
145                                   int pextents);
146
147 /*
148  * Test whether an inode is a fast symlink.
149  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
150  */
151 int ext4_inode_is_fast_symlink(struct inode *inode)
152 {
153         if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
154                 int ea_blocks = EXT4_I(inode)->i_file_acl ?
155                                 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
156
157                 if (ext4_has_inline_data(inode))
158                         return 0;
159
160                 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
161         }
162         return S_ISLNK(inode->i_mode) && inode->i_size &&
163                (inode->i_size < EXT4_N_BLOCKS * 4);
164 }
165
166 /*
167  * Restart the transaction associated with *handle.  This does a commit,
168  * so before we call here everything must be consistently dirtied against
169  * this transaction.
170  */
171 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
172                                  int nblocks)
173 {
174         int ret;
175
176         /*
177          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
178          * moment, get_block can be called only for blocks inside i_size since
179          * page cache has been already dropped and writes are blocked by
180          * i_mutex. So we can safely drop the i_data_sem here.
181          */
182         BUG_ON(EXT4_JOURNAL(inode) == NULL);
183         jbd_debug(2, "restarting handle %p\n", handle);
184         up_write(&EXT4_I(inode)->i_data_sem);
185         ret = ext4_journal_restart(handle, nblocks);
186         down_write(&EXT4_I(inode)->i_data_sem);
187         ext4_discard_preallocations(inode);
188
189         return ret;
190 }
191
192 /*
193  * Called at the last iput() if i_nlink is zero.
194  */
195 void ext4_evict_inode(struct inode *inode)
196 {
197         handle_t *handle;
198         int err;
199         int extra_credits = 3;
200         struct ext4_xattr_inode_array *ea_inode_array = NULL;
201
202         trace_ext4_evict_inode(inode);
203
204         if (inode->i_nlink) {
205                 /*
206                  * When journalling data dirty buffers are tracked only in the
207                  * journal. So although mm thinks everything is clean and
208                  * ready for reaping the inode might still have some pages to
209                  * write in the running transaction or waiting to be
210                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
211                  * (via truncate_inode_pages()) to discard these buffers can
212                  * cause data loss. Also even if we did not discard these
213                  * buffers, we would have no way to find them after the inode
214                  * is reaped and thus user could see stale data if he tries to
215                  * read them before the transaction is checkpointed. So be
216                  * careful and force everything to disk here... We use
217                  * ei->i_datasync_tid to store the newest transaction
218                  * containing inode's data.
219                  *
220                  * Note that directories do not have this problem because they
221                  * don't use page cache.
222                  */
223                 if (inode->i_ino != EXT4_JOURNAL_INO &&
224                     ext4_should_journal_data(inode) &&
225                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
226                     inode->i_data.nrpages) {
227                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
228                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
229
230                         jbd2_complete_transaction(journal, commit_tid);
231                         filemap_write_and_wait(&inode->i_data);
232                 }
233                 truncate_inode_pages_final(&inode->i_data);
234
235                 goto no_delete;
236         }
237
238         if (is_bad_inode(inode))
239                 goto no_delete;
240         dquot_initialize(inode);
241
242         if (ext4_should_order_data(inode))
243                 ext4_begin_ordered_truncate(inode, 0);
244         truncate_inode_pages_final(&inode->i_data);
245
246         /*
247          * Protect us against freezing - iput() caller didn't have to have any
248          * protection against it
249          */
250         sb_start_intwrite(inode->i_sb);
251
252         if (!IS_NOQUOTA(inode))
253                 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
254
255         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
256                                  ext4_blocks_for_truncate(inode)+extra_credits);
257         if (IS_ERR(handle)) {
258                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
259                 /*
260                  * If we're going to skip the normal cleanup, we still need to
261                  * make sure that the in-core orphan linked list is properly
262                  * cleaned up.
263                  */
264                 ext4_orphan_del(NULL, inode);
265                 sb_end_intwrite(inode->i_sb);
266                 goto no_delete;
267         }
268
269         if (IS_SYNC(inode))
270                 ext4_handle_sync(handle);
271
272         /*
273          * Set inode->i_size to 0 before calling ext4_truncate(). We need
274          * special handling of symlinks here because i_size is used to
275          * determine whether ext4_inode_info->i_data contains symlink data or
276          * block mappings. Setting i_size to 0 will remove its fast symlink
277          * status. Erase i_data so that it becomes a valid empty block map.
278          */
279         if (ext4_inode_is_fast_symlink(inode))
280                 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
281         inode->i_size = 0;
282         err = ext4_mark_inode_dirty(handle, inode);
283         if (err) {
284                 ext4_warning(inode->i_sb,
285                              "couldn't mark inode dirty (err %d)", err);
286                 goto stop_handle;
287         }
288         if (inode->i_blocks) {
289                 err = ext4_truncate(inode);
290                 if (err) {
291                         ext4_error(inode->i_sb,
292                                    "couldn't truncate inode %lu (err %d)",
293                                    inode->i_ino, err);
294                         goto stop_handle;
295                 }
296         }
297
298         /* Remove xattr references. */
299         err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
300                                       extra_credits);
301         if (err) {
302                 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
303 stop_handle:
304                 ext4_journal_stop(handle);
305                 ext4_orphan_del(NULL, inode);
306                 sb_end_intwrite(inode->i_sb);
307                 ext4_xattr_inode_array_free(ea_inode_array);
308                 goto no_delete;
309         }
310
311         /*
312          * Kill off the orphan record which ext4_truncate created.
313          * AKPM: I think this can be inside the above `if'.
314          * Note that ext4_orphan_del() has to be able to cope with the
315          * deletion of a non-existent orphan - this is because we don't
316          * know if ext4_truncate() actually created an orphan record.
317          * (Well, we could do this if we need to, but heck - it works)
318          */
319         ext4_orphan_del(handle, inode);
320         EXT4_I(inode)->i_dtime  = (__u32)ktime_get_real_seconds();
321
322         /*
323          * One subtle ordering requirement: if anything has gone wrong
324          * (transaction abort, IO errors, whatever), then we can still
325          * do these next steps (the fs will already have been marked as
326          * having errors), but we can't free the inode if the mark_dirty
327          * fails.
328          */
329         if (ext4_mark_inode_dirty(handle, inode))
330                 /* If that failed, just do the required in-core inode clear. */
331                 ext4_clear_inode(inode);
332         else
333                 ext4_free_inode(handle, inode);
334         ext4_journal_stop(handle);
335         sb_end_intwrite(inode->i_sb);
336         ext4_xattr_inode_array_free(ea_inode_array);
337         return;
338 no_delete:
339         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
340 }
341
342 #ifdef CONFIG_QUOTA
343 qsize_t *ext4_get_reserved_space(struct inode *inode)
344 {
345         return &EXT4_I(inode)->i_reserved_quota;
346 }
347 #endif
348
349 /*
350  * Called with i_data_sem down, which is important since we can call
351  * ext4_discard_preallocations() from here.
352  */
353 void ext4_da_update_reserve_space(struct inode *inode,
354                                         int used, int quota_claim)
355 {
356         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
357         struct ext4_inode_info *ei = EXT4_I(inode);
358
359         spin_lock(&ei->i_block_reservation_lock);
360         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
361         if (unlikely(used > ei->i_reserved_data_blocks)) {
362                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
363                          "with only %d reserved data blocks",
364                          __func__, inode->i_ino, used,
365                          ei->i_reserved_data_blocks);
366                 WARN_ON(1);
367                 used = ei->i_reserved_data_blocks;
368         }
369
370         /* Update per-inode reservations */
371         ei->i_reserved_data_blocks -= used;
372         percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
373
374         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
375
376         /* Update quota subsystem for data blocks */
377         if (quota_claim)
378                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
379         else {
380                 /*
381                  * We did fallocate with an offset that is already delayed
382                  * allocated. So on delayed allocated writeback we should
383                  * not re-claim the quota for fallocated blocks.
384                  */
385                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
386         }
387
388         /*
389          * If we have done all the pending block allocations and if
390          * there aren't any writers on the inode, we can discard the
391          * inode's preallocations.
392          */
393         if ((ei->i_reserved_data_blocks == 0) &&
394             !inode_is_open_for_write(inode))
395                 ext4_discard_preallocations(inode);
396 }
397
398 static int __check_block_validity(struct inode *inode, const char *func,
399                                 unsigned int line,
400                                 struct ext4_map_blocks *map)
401 {
402         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
403                                    map->m_len)) {
404                 ext4_error_inode(inode, func, line, map->m_pblk,
405                                  "lblock %lu mapped to illegal pblock %llu "
406                                  "(length %d)", (unsigned long) map->m_lblk,
407                                  map->m_pblk, map->m_len);
408                 return -EFSCORRUPTED;
409         }
410         return 0;
411 }
412
413 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
414                        ext4_lblk_t len)
415 {
416         int ret;
417
418         if (ext4_encrypted_inode(inode))
419                 return fscrypt_zeroout_range(inode, lblk, pblk, len);
420
421         ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
422         if (ret > 0)
423                 ret = 0;
424
425         return ret;
426 }
427
428 #define check_block_validity(inode, map)        \
429         __check_block_validity((inode), __func__, __LINE__, (map))
430
431 #ifdef ES_AGGRESSIVE_TEST
432 static void ext4_map_blocks_es_recheck(handle_t *handle,
433                                        struct inode *inode,
434                                        struct ext4_map_blocks *es_map,
435                                        struct ext4_map_blocks *map,
436                                        int flags)
437 {
438         int retval;
439
440         map->m_flags = 0;
441         /*
442          * There is a race window that the result is not the same.
443          * e.g. xfstests #223 when dioread_nolock enables.  The reason
444          * is that we lookup a block mapping in extent status tree with
445          * out taking i_data_sem.  So at the time the unwritten extent
446          * could be converted.
447          */
448         down_read(&EXT4_I(inode)->i_data_sem);
449         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
450                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
451                                              EXT4_GET_BLOCKS_KEEP_SIZE);
452         } else {
453                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
454                                              EXT4_GET_BLOCKS_KEEP_SIZE);
455         }
456         up_read((&EXT4_I(inode)->i_data_sem));
457
458         /*
459          * We don't check m_len because extent will be collpased in status
460          * tree.  So the m_len might not equal.
461          */
462         if (es_map->m_lblk != map->m_lblk ||
463             es_map->m_flags != map->m_flags ||
464             es_map->m_pblk != map->m_pblk) {
465                 printk("ES cache assertion failed for inode: %lu "
466                        "es_cached ex [%d/%d/%llu/%x] != "
467                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
468                        inode->i_ino, es_map->m_lblk, es_map->m_len,
469                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
470                        map->m_len, map->m_pblk, map->m_flags,
471                        retval, flags);
472         }
473 }
474 #endif /* ES_AGGRESSIVE_TEST */
475
476 /*
477  * The ext4_map_blocks() function tries to look up the requested blocks,
478  * and returns if the blocks are already mapped.
479  *
480  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
481  * and store the allocated blocks in the result buffer head and mark it
482  * mapped.
483  *
484  * If file type is extents based, it will call ext4_ext_map_blocks(),
485  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
486  * based files
487  *
488  * On success, it returns the number of blocks being mapped or allocated.  if
489  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
490  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
491  *
492  * It returns 0 if plain look up failed (blocks have not been allocated), in
493  * that case, @map is returned as unmapped but we still do fill map->m_len to
494  * indicate the length of a hole starting at map->m_lblk.
495  *
496  * It returns the error in case of allocation failure.
497  */
498 int ext4_map_blocks(handle_t *handle, struct inode *inode,
499                     struct ext4_map_blocks *map, int flags)
500 {
501         struct extent_status es;
502         int retval;
503         int ret = 0;
504 #ifdef ES_AGGRESSIVE_TEST
505         struct ext4_map_blocks orig_map;
506
507         memcpy(&orig_map, map, sizeof(*map));
508 #endif
509
510         map->m_flags = 0;
511         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
512                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
513                   (unsigned long) map->m_lblk);
514
515         /*
516          * ext4_map_blocks returns an int, and m_len is an unsigned int
517          */
518         if (unlikely(map->m_len > INT_MAX))
519                 map->m_len = INT_MAX;
520
521         /* We can handle the block number less than EXT_MAX_BLOCKS */
522         if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
523                 return -EFSCORRUPTED;
524
525         /* Lookup extent status tree firstly */
526         if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
527                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
528                         map->m_pblk = ext4_es_pblock(&es) +
529                                         map->m_lblk - es.es_lblk;
530                         map->m_flags |= ext4_es_is_written(&es) ?
531                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
532                         retval = es.es_len - (map->m_lblk - es.es_lblk);
533                         if (retval > map->m_len)
534                                 retval = map->m_len;
535                         map->m_len = retval;
536                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
537                         map->m_pblk = 0;
538                         retval = es.es_len - (map->m_lblk - es.es_lblk);
539                         if (retval > map->m_len)
540                                 retval = map->m_len;
541                         map->m_len = retval;
542                         retval = 0;
543                 } else {
544                         BUG_ON(1);
545                 }
546 #ifdef ES_AGGRESSIVE_TEST
547                 ext4_map_blocks_es_recheck(handle, inode, map,
548                                            &orig_map, flags);
549 #endif
550                 goto found;
551         }
552
553         /*
554          * Try to see if we can get the block without requesting a new
555          * file system block.
556          */
557         down_read(&EXT4_I(inode)->i_data_sem);
558         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
559                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
560                                              EXT4_GET_BLOCKS_KEEP_SIZE);
561         } else {
562                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
563                                              EXT4_GET_BLOCKS_KEEP_SIZE);
564         }
565         if (retval > 0) {
566                 unsigned int status;
567
568                 if (unlikely(retval != map->m_len)) {
569                         ext4_warning(inode->i_sb,
570                                      "ES len assertion failed for inode "
571                                      "%lu: retval %d != map->m_len %d",
572                                      inode->i_ino, retval, map->m_len);
573                         WARN_ON(1);
574                 }
575
576                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
577                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
578                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
579                     !(status & EXTENT_STATUS_WRITTEN) &&
580                     ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
581                                        map->m_lblk + map->m_len - 1))
582                         status |= EXTENT_STATUS_DELAYED;
583                 ret = ext4_es_insert_extent(inode, map->m_lblk,
584                                             map->m_len, map->m_pblk, status);
585                 if (ret < 0)
586                         retval = ret;
587         }
588         up_read((&EXT4_I(inode)->i_data_sem));
589
590 found:
591         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
592                 ret = check_block_validity(inode, map);
593                 if (ret != 0)
594                         return ret;
595         }
596
597         /* If it is only a block(s) look up */
598         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
599                 return retval;
600
601         /*
602          * Returns if the blocks have already allocated
603          *
604          * Note that if blocks have been preallocated
605          * ext4_ext_get_block() returns the create = 0
606          * with buffer head unmapped.
607          */
608         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
609                 /*
610                  * If we need to convert extent to unwritten
611                  * we continue and do the actual work in
612                  * ext4_ext_map_blocks()
613                  */
614                 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
615                         return retval;
616
617         /*
618          * Here we clear m_flags because after allocating an new extent,
619          * it will be set again.
620          */
621         map->m_flags &= ~EXT4_MAP_FLAGS;
622
623         /*
624          * New blocks allocate and/or writing to unwritten extent
625          * will possibly result in updating i_data, so we take
626          * the write lock of i_data_sem, and call get_block()
627          * with create == 1 flag.
628          */
629         down_write(&EXT4_I(inode)->i_data_sem);
630
631         /*
632          * We need to check for EXT4 here because migrate
633          * could have changed the inode type in between
634          */
635         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
636                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
637         } else {
638                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
639
640                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
641                         /*
642                          * We allocated new blocks which will result in
643                          * i_data's format changing.  Force the migrate
644                          * to fail by clearing migrate flags
645                          */
646                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
647                 }
648
649                 /*
650                  * Update reserved blocks/metadata blocks after successful
651                  * block allocation which had been deferred till now. We don't
652                  * support fallocate for non extent files. So we can update
653                  * reserve space here.
654                  */
655                 if ((retval > 0) &&
656                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
657                         ext4_da_update_reserve_space(inode, retval, 1);
658         }
659
660         if (retval > 0) {
661                 unsigned int status;
662
663                 if (unlikely(retval != map->m_len)) {
664                         ext4_warning(inode->i_sb,
665                                      "ES len assertion failed for inode "
666                                      "%lu: retval %d != map->m_len %d",
667                                      inode->i_ino, retval, map->m_len);
668                         WARN_ON(1);
669                 }
670
671                 /*
672                  * We have to zeroout blocks before inserting them into extent
673                  * status tree. Otherwise someone could look them up there and
674                  * use them before they are really zeroed. We also have to
675                  * unmap metadata before zeroing as otherwise writeback can
676                  * overwrite zeros with stale data from block device.
677                  */
678                 if (flags & EXT4_GET_BLOCKS_ZERO &&
679                     map->m_flags & EXT4_MAP_MAPPED &&
680                     map->m_flags & EXT4_MAP_NEW) {
681                         ret = ext4_issue_zeroout(inode, map->m_lblk,
682                                                  map->m_pblk, map->m_len);
683                         if (ret) {
684                                 retval = ret;
685                                 goto out_sem;
686                         }
687                 }
688
689                 /*
690                  * If the extent has been zeroed out, we don't need to update
691                  * extent status tree.
692                  */
693                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
694                     ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
695                         if (ext4_es_is_written(&es))
696                                 goto out_sem;
697                 }
698                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
699                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
700                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
701                     !(status & EXTENT_STATUS_WRITTEN) &&
702                     ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
703                                        map->m_lblk + map->m_len - 1))
704                         status |= EXTENT_STATUS_DELAYED;
705                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
706                                             map->m_pblk, status);
707                 if (ret < 0) {
708                         retval = ret;
709                         goto out_sem;
710                 }
711         }
712
713 out_sem:
714         up_write((&EXT4_I(inode)->i_data_sem));
715         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
716                 ret = check_block_validity(inode, map);
717                 if (ret != 0)
718                         return ret;
719
720                 /*
721                  * Inodes with freshly allocated blocks where contents will be
722                  * visible after transaction commit must be on transaction's
723                  * ordered data list.
724                  */
725                 if (map->m_flags & EXT4_MAP_NEW &&
726                     !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
727                     !(flags & EXT4_GET_BLOCKS_ZERO) &&
728                     !ext4_is_quota_file(inode) &&
729                     ext4_should_order_data(inode)) {
730                         if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
731                                 ret = ext4_jbd2_inode_add_wait(handle, inode);
732                         else
733                                 ret = ext4_jbd2_inode_add_write(handle, inode);
734                         if (ret)
735                                 return ret;
736                 }
737         }
738         return retval;
739 }
740
741 /*
742  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
743  * we have to be careful as someone else may be manipulating b_state as well.
744  */
745 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
746 {
747         unsigned long old_state;
748         unsigned long new_state;
749
750         flags &= EXT4_MAP_FLAGS;
751
752         /* Dummy buffer_head? Set non-atomically. */
753         if (!bh->b_page) {
754                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
755                 return;
756         }
757         /*
758          * Someone else may be modifying b_state. Be careful! This is ugly but
759          * once we get rid of using bh as a container for mapping information
760          * to pass to / from get_block functions, this can go away.
761          */
762         do {
763                 old_state = READ_ONCE(bh->b_state);
764                 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
765         } while (unlikely(
766                  cmpxchg(&bh->b_state, old_state, new_state) != old_state));
767 }
768
769 static int _ext4_get_block(struct inode *inode, sector_t iblock,
770                            struct buffer_head *bh, int flags)
771 {
772         struct ext4_map_blocks map;
773         int ret = 0;
774
775         if (ext4_has_inline_data(inode))
776                 return -ERANGE;
777
778         map.m_lblk = iblock;
779         map.m_len = bh->b_size >> inode->i_blkbits;
780
781         ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
782                               flags);
783         if (ret > 0) {
784                 map_bh(bh, inode->i_sb, map.m_pblk);
785                 ext4_update_bh_state(bh, map.m_flags);
786                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
787                 ret = 0;
788         } else if (ret == 0) {
789                 /* hole case, need to fill in bh->b_size */
790                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
791         }
792         return ret;
793 }
794
795 int ext4_get_block(struct inode *inode, sector_t iblock,
796                    struct buffer_head *bh, int create)
797 {
798         return _ext4_get_block(inode, iblock, bh,
799                                create ? EXT4_GET_BLOCKS_CREATE : 0);
800 }
801
802 /*
803  * Get block function used when preparing for buffered write if we require
804  * creating an unwritten extent if blocks haven't been allocated.  The extent
805  * will be converted to written after the IO is complete.
806  */
807 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
808                              struct buffer_head *bh_result, int create)
809 {
810         ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
811                    inode->i_ino, create);
812         return _ext4_get_block(inode, iblock, bh_result,
813                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
814 }
815
816 /* Maximum number of blocks we map for direct IO at once. */
817 #define DIO_MAX_BLOCKS 4096
818
819 /*
820  * Get blocks function for the cases that need to start a transaction -
821  * generally difference cases of direct IO and DAX IO. It also handles retries
822  * in case of ENOSPC.
823  */
824 static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
825                                 struct buffer_head *bh_result, int flags)
826 {
827         int dio_credits;
828         handle_t *handle;
829         int retries = 0;
830         int ret;
831
832         /* Trim mapping request to maximum we can map at once for DIO */
833         if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
834                 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
835         dio_credits = ext4_chunk_trans_blocks(inode,
836                                       bh_result->b_size >> inode->i_blkbits);
837 retry:
838         handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
839         if (IS_ERR(handle))
840                 return PTR_ERR(handle);
841
842         ret = _ext4_get_block(inode, iblock, bh_result, flags);
843         ext4_journal_stop(handle);
844
845         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
846                 goto retry;
847         return ret;
848 }
849
850 /* Get block function for DIO reads and writes to inodes without extents */
851 int ext4_dio_get_block(struct inode *inode, sector_t iblock,
852                        struct buffer_head *bh, int create)
853 {
854         /* We don't expect handle for direct IO */
855         WARN_ON_ONCE(ext4_journal_current_handle());
856
857         if (!create)
858                 return _ext4_get_block(inode, iblock, bh, 0);
859         return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
860 }
861
862 /*
863  * Get block function for AIO DIO writes when we create unwritten extent if
864  * blocks are not allocated yet. The extent will be converted to written
865  * after IO is complete.
866  */
867 static int ext4_dio_get_block_unwritten_async(struct inode *inode,
868                 sector_t iblock, struct buffer_head *bh_result, int create)
869 {
870         int ret;
871
872         /* We don't expect handle for direct IO */
873         WARN_ON_ONCE(ext4_journal_current_handle());
874
875         ret = ext4_get_block_trans(inode, iblock, bh_result,
876                                    EXT4_GET_BLOCKS_IO_CREATE_EXT);
877
878         /*
879          * When doing DIO using unwritten extents, we need io_end to convert
880          * unwritten extents to written on IO completion. We allocate io_end
881          * once we spot unwritten extent and store it in b_private. Generic
882          * DIO code keeps b_private set and furthermore passes the value to
883          * our completion callback in 'private' argument.
884          */
885         if (!ret && buffer_unwritten(bh_result)) {
886                 if (!bh_result->b_private) {
887                         ext4_io_end_t *io_end;
888
889                         io_end = ext4_init_io_end(inode, GFP_KERNEL);
890                         if (!io_end)
891                                 return -ENOMEM;
892                         bh_result->b_private = io_end;
893                         ext4_set_io_unwritten_flag(inode, io_end);
894                 }
895                 set_buffer_defer_completion(bh_result);
896         }
897
898         return ret;
899 }
900
901 /*
902  * Get block function for non-AIO DIO writes when we create unwritten extent if
903  * blocks are not allocated yet. The extent will be converted to written
904  * after IO is complete by ext4_direct_IO_write().
905  */
906 static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
907                 sector_t iblock, struct buffer_head *bh_result, int create)
908 {
909         int ret;
910
911         /* We don't expect handle for direct IO */
912         WARN_ON_ONCE(ext4_journal_current_handle());
913
914         ret = ext4_get_block_trans(inode, iblock, bh_result,
915                                    EXT4_GET_BLOCKS_IO_CREATE_EXT);
916
917         /*
918          * Mark inode as having pending DIO writes to unwritten extents.
919          * ext4_direct_IO_write() checks this flag and converts extents to
920          * written.
921          */
922         if (!ret && buffer_unwritten(bh_result))
923                 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
924
925         return ret;
926 }
927
928 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
929                    struct buffer_head *bh_result, int create)
930 {
931         int ret;
932
933         ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
934                    inode->i_ino, create);
935         /* We don't expect handle for direct IO */
936         WARN_ON_ONCE(ext4_journal_current_handle());
937
938         ret = _ext4_get_block(inode, iblock, bh_result, 0);
939         /*
940          * Blocks should have been preallocated! ext4_file_write_iter() checks
941          * that.
942          */
943         WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
944
945         return ret;
946 }
947
948
949 /*
950  * `handle' can be NULL if create is zero
951  */
952 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
953                                 ext4_lblk_t block, int map_flags)
954 {
955         struct ext4_map_blocks map;
956         struct buffer_head *bh;
957         int create = map_flags & EXT4_GET_BLOCKS_CREATE;
958         int err;
959
960         J_ASSERT(handle != NULL || create == 0);
961
962         map.m_lblk = block;
963         map.m_len = 1;
964         err = ext4_map_blocks(handle, inode, &map, map_flags);
965
966         if (err == 0)
967                 return create ? ERR_PTR(-ENOSPC) : NULL;
968         if (err < 0)
969                 return ERR_PTR(err);
970
971         bh = sb_getblk(inode->i_sb, map.m_pblk);
972         if (unlikely(!bh))
973                 return ERR_PTR(-ENOMEM);
974         if (map.m_flags & EXT4_MAP_NEW) {
975                 J_ASSERT(create != 0);
976                 J_ASSERT(handle != NULL);
977
978                 /*
979                  * Now that we do not always journal data, we should
980                  * keep in mind whether this should always journal the
981                  * new buffer as metadata.  For now, regular file
982                  * writes use ext4_get_block instead, so it's not a
983                  * problem.
984                  */
985                 lock_buffer(bh);
986                 BUFFER_TRACE(bh, "call get_create_access");
987                 err = ext4_journal_get_create_access(handle, bh);
988                 if (unlikely(err)) {
989                         unlock_buffer(bh);
990                         goto errout;
991                 }
992                 if (!buffer_uptodate(bh)) {
993                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
994                         set_buffer_uptodate(bh);
995                 }
996                 unlock_buffer(bh);
997                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
998                 err = ext4_handle_dirty_metadata(handle, inode, bh);
999                 if (unlikely(err))
1000                         goto errout;
1001         } else
1002                 BUFFER_TRACE(bh, "not a new buffer");
1003         return bh;
1004 errout:
1005         brelse(bh);
1006         return ERR_PTR(err);
1007 }
1008
1009 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1010                                ext4_lblk_t block, int map_flags)
1011 {
1012         struct buffer_head *bh;
1013
1014         bh = ext4_getblk(handle, inode, block, map_flags);
1015         if (IS_ERR(bh))
1016                 return bh;
1017         if (!bh || buffer_uptodate(bh))
1018                 return bh;
1019         ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
1020         wait_on_buffer(bh);
1021         if (buffer_uptodate(bh))
1022                 return bh;
1023         put_bh(bh);
1024         return ERR_PTR(-EIO);
1025 }
1026
1027 /* Read a contiguous batch of blocks. */
1028 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
1029                      bool wait, struct buffer_head **bhs)
1030 {
1031         int i, err;
1032
1033         for (i = 0; i < bh_count; i++) {
1034                 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
1035                 if (IS_ERR(bhs[i])) {
1036                         err = PTR_ERR(bhs[i]);
1037                         bh_count = i;
1038                         goto out_brelse;
1039                 }
1040         }
1041
1042         for (i = 0; i < bh_count; i++)
1043                 /* Note that NULL bhs[i] is valid because of holes. */
1044                 if (bhs[i] && !buffer_uptodate(bhs[i]))
1045                         ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1,
1046                                     &bhs[i]);
1047
1048         if (!wait)
1049                 return 0;
1050
1051         for (i = 0; i < bh_count; i++)
1052                 if (bhs[i])
1053                         wait_on_buffer(bhs[i]);
1054
1055         for (i = 0; i < bh_count; i++) {
1056                 if (bhs[i] && !buffer_uptodate(bhs[i])) {
1057                         err = -EIO;
1058                         goto out_brelse;
1059                 }
1060         }
1061         return 0;
1062
1063 out_brelse:
1064         for (i = 0; i < bh_count; i++) {
1065                 brelse(bhs[i]);
1066                 bhs[i] = NULL;
1067         }
1068         return err;
1069 }
1070
1071 int ext4_walk_page_buffers(handle_t *handle,
1072                            struct buffer_head *head,
1073                            unsigned from,
1074                            unsigned to,
1075                            int *partial,
1076                            int (*fn)(handle_t *handle,
1077                                      struct buffer_head *bh))
1078 {
1079         struct buffer_head *bh;
1080         unsigned block_start, block_end;
1081         unsigned blocksize = head->b_size;
1082         int err, ret = 0;
1083         struct buffer_head *next;
1084
1085         for (bh = head, block_start = 0;
1086              ret == 0 && (bh != head || !block_start);
1087              block_start = block_end, bh = next) {
1088                 next = bh->b_this_page;
1089                 block_end = block_start + blocksize;
1090                 if (block_end <= from || block_start >= to) {
1091                         if (partial && !buffer_uptodate(bh))
1092                                 *partial = 1;
1093                         continue;
1094                 }
1095                 err = (*fn)(handle, bh);
1096                 if (!ret)
1097                         ret = err;
1098         }
1099         return ret;
1100 }
1101
1102 /*
1103  * To preserve ordering, it is essential that the hole instantiation and
1104  * the data write be encapsulated in a single transaction.  We cannot
1105  * close off a transaction and start a new one between the ext4_get_block()
1106  * and the commit_write().  So doing the jbd2_journal_start at the start of
1107  * prepare_write() is the right place.
1108  *
1109  * Also, this function can nest inside ext4_writepage().  In that case, we
1110  * *know* that ext4_writepage() has generated enough buffer credits to do the
1111  * whole page.  So we won't block on the journal in that case, which is good,
1112  * because the caller may be PF_MEMALLOC.
1113  *
1114  * By accident, ext4 can be reentered when a transaction is open via
1115  * quota file writes.  If we were to commit the transaction while thus
1116  * reentered, there can be a deadlock - we would be holding a quota
1117  * lock, and the commit would never complete if another thread had a
1118  * transaction open and was blocking on the quota lock - a ranking
1119  * violation.
1120  *
1121  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1122  * will _not_ run commit under these circumstances because handle->h_ref
1123  * is elevated.  We'll still have enough credits for the tiny quotafile
1124  * write.
1125  */
1126 int do_journal_get_write_access(handle_t *handle,
1127                                 struct buffer_head *bh)
1128 {
1129         int dirty = buffer_dirty(bh);
1130         int ret;
1131
1132         if (!buffer_mapped(bh) || buffer_freed(bh))
1133                 return 0;
1134         /*
1135          * __block_write_begin() could have dirtied some buffers. Clean
1136          * the dirty bit as jbd2_journal_get_write_access() could complain
1137          * otherwise about fs integrity issues. Setting of the dirty bit
1138          * by __block_write_begin() isn't a real problem here as we clear
1139          * the bit before releasing a page lock and thus writeback cannot
1140          * ever write the buffer.
1141          */
1142         if (dirty)
1143                 clear_buffer_dirty(bh);
1144         BUFFER_TRACE(bh, "get write access");
1145         ret = ext4_journal_get_write_access(handle, bh);
1146         if (!ret && dirty)
1147                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1148         return ret;
1149 }
1150
1151 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1152 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1153                                   get_block_t *get_block)
1154 {
1155         unsigned from = pos & (PAGE_SIZE - 1);
1156         unsigned to = from + len;
1157         struct inode *inode = page->mapping->host;
1158         unsigned block_start, block_end;
1159         sector_t block;
1160         int err = 0;
1161         unsigned blocksize = inode->i_sb->s_blocksize;
1162         unsigned bbits;
1163         struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1164         bool decrypt = false;
1165
1166         BUG_ON(!PageLocked(page));
1167         BUG_ON(from > PAGE_SIZE);
1168         BUG_ON(to > PAGE_SIZE);
1169         BUG_ON(from > to);
1170
1171         if (!page_has_buffers(page))
1172                 create_empty_buffers(page, blocksize, 0);
1173         head = page_buffers(page);
1174         bbits = ilog2(blocksize);
1175         block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1176
1177         for (bh = head, block_start = 0; bh != head || !block_start;
1178             block++, block_start = block_end, bh = bh->b_this_page) {
1179                 block_end = block_start + blocksize;
1180                 if (block_end <= from || block_start >= to) {
1181                         if (PageUptodate(page)) {
1182                                 if (!buffer_uptodate(bh))
1183                                         set_buffer_uptodate(bh);
1184                         }
1185                         continue;
1186                 }
1187                 if (buffer_new(bh))
1188                         clear_buffer_new(bh);
1189                 if (!buffer_mapped(bh)) {
1190                         WARN_ON(bh->b_size != blocksize);
1191                         err = get_block(inode, block, bh, 1);
1192                         if (err)
1193                                 break;
1194                         if (buffer_new(bh)) {
1195                                 if (PageUptodate(page)) {
1196                                         clear_buffer_new(bh);
1197                                         set_buffer_uptodate(bh);
1198                                         mark_buffer_dirty(bh);
1199                                         continue;
1200                                 }
1201                                 if (block_end > to || block_start < from)
1202                                         zero_user_segments(page, to, block_end,
1203                                                            block_start, from);
1204                                 continue;
1205                         }
1206                 }
1207                 if (PageUptodate(page)) {
1208                         if (!buffer_uptodate(bh))
1209                                 set_buffer_uptodate(bh);
1210                         continue;
1211                 }
1212                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1213                     !buffer_unwritten(bh) &&
1214                     (block_start < from || block_end > to)) {
1215                         ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1216                         *wait_bh++ = bh;
1217                         decrypt = ext4_encrypted_inode(inode) &&
1218                                 S_ISREG(inode->i_mode);
1219                 }
1220         }
1221         /*
1222          * If we issued read requests, let them complete.
1223          */
1224         while (wait_bh > wait) {
1225                 wait_on_buffer(*--wait_bh);
1226                 if (!buffer_uptodate(*wait_bh))
1227                         err = -EIO;
1228         }
1229         if (unlikely(err))
1230                 page_zero_new_buffers(page, from, to);
1231         else if (decrypt)
1232                 err = fscrypt_decrypt_page(page->mapping->host, page,
1233                                 PAGE_SIZE, 0, page->index);
1234         return err;
1235 }
1236 #endif
1237
1238 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1239                             loff_t pos, unsigned len, unsigned flags,
1240                             struct page **pagep, void **fsdata)
1241 {
1242         struct inode *inode = mapping->host;
1243         int ret, needed_blocks;
1244         handle_t *handle;
1245         int retries = 0;
1246         struct page *page;
1247         pgoff_t index;
1248         unsigned from, to;
1249
1250         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1251                 return -EIO;
1252
1253         trace_ext4_write_begin(inode, pos, len, flags);
1254         /*
1255          * Reserve one block more for addition to orphan list in case
1256          * we allocate blocks but write fails for some reason
1257          */
1258         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1259         index = pos >> PAGE_SHIFT;
1260         from = pos & (PAGE_SIZE - 1);
1261         to = from + len;
1262
1263         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1264                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1265                                                     flags, pagep);
1266                 if (ret < 0)
1267                         return ret;
1268                 if (ret == 1)
1269                         return 0;
1270         }
1271
1272         /*
1273          * grab_cache_page_write_begin() can take a long time if the
1274          * system is thrashing due to memory pressure, or if the page
1275          * is being written back.  So grab it first before we start
1276          * the transaction handle.  This also allows us to allocate
1277          * the page (if needed) without using GFP_NOFS.
1278          */
1279 retry_grab:
1280         page = grab_cache_page_write_begin(mapping, index, flags);
1281         if (!page)
1282                 return -ENOMEM;
1283         unlock_page(page);
1284
1285 retry_journal:
1286         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1287         if (IS_ERR(handle)) {
1288                 put_page(page);
1289                 return PTR_ERR(handle);
1290         }
1291
1292         lock_page(page);
1293         if (page->mapping != mapping) {
1294                 /* The page got truncated from under us */
1295                 unlock_page(page);
1296                 put_page(page);
1297                 ext4_journal_stop(handle);
1298                 goto retry_grab;
1299         }
1300         /* In case writeback began while the page was unlocked */
1301         wait_for_stable_page(page);
1302
1303 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1304         if (ext4_should_dioread_nolock(inode))
1305                 ret = ext4_block_write_begin(page, pos, len,
1306                                              ext4_get_block_unwritten);
1307         else
1308                 ret = ext4_block_write_begin(page, pos, len,
1309                                              ext4_get_block);
1310 #else
1311         if (ext4_should_dioread_nolock(inode))
1312                 ret = __block_write_begin(page, pos, len,
1313                                           ext4_get_block_unwritten);
1314         else
1315                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1316 #endif
1317         if (!ret && ext4_should_journal_data(inode)) {
1318                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1319                                              from, to, NULL,
1320                                              do_journal_get_write_access);
1321         }
1322
1323         if (ret) {
1324                 unlock_page(page);
1325                 /*
1326                  * __block_write_begin may have instantiated a few blocks
1327                  * outside i_size.  Trim these off again. Don't need
1328                  * i_size_read because we hold i_mutex.
1329                  *
1330                  * Add inode to orphan list in case we crash before
1331                  * truncate finishes
1332                  */
1333                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1334                         ext4_orphan_add(handle, inode);
1335
1336                 ext4_journal_stop(handle);
1337                 if (pos + len > inode->i_size) {
1338                         ext4_truncate_failed_write(inode);
1339                         /*
1340                          * If truncate failed early the inode might
1341                          * still be on the orphan list; we need to
1342                          * make sure the inode is removed from the
1343                          * orphan list in that case.
1344                          */
1345                         if (inode->i_nlink)
1346                                 ext4_orphan_del(NULL, inode);
1347                 }
1348
1349                 if (ret == -ENOSPC &&
1350                     ext4_should_retry_alloc(inode->i_sb, &retries))
1351                         goto retry_journal;
1352                 put_page(page);
1353                 return ret;
1354         }
1355         *pagep = page;
1356         return ret;
1357 }
1358
1359 /* For write_end() in data=journal mode */
1360 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1361 {
1362         int ret;
1363         if (!buffer_mapped(bh) || buffer_freed(bh))
1364                 return 0;
1365         set_buffer_uptodate(bh);
1366         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1367         clear_buffer_meta(bh);
1368         clear_buffer_prio(bh);
1369         return ret;
1370 }
1371
1372 /*
1373  * We need to pick up the new inode size which generic_commit_write gave us
1374  * `file' can be NULL - eg, when called from page_symlink().
1375  *
1376  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1377  * buffers are managed internally.
1378  */
1379 static int ext4_write_end(struct file *file,
1380                           struct address_space *mapping,
1381                           loff_t pos, unsigned len, unsigned copied,
1382                           struct page *page, void *fsdata)
1383 {
1384         handle_t *handle = ext4_journal_current_handle();
1385         struct inode *inode = mapping->host;
1386         loff_t old_size = inode->i_size;
1387         int ret = 0, ret2;
1388         int i_size_changed = 0;
1389         int inline_data = ext4_has_inline_data(inode);
1390
1391         trace_ext4_write_end(inode, pos, len, copied);
1392         if (inline_data) {
1393                 ret = ext4_write_inline_data_end(inode, pos, len,
1394                                                  copied, page);
1395                 if (ret < 0) {
1396                         unlock_page(page);
1397                         put_page(page);
1398                         goto errout;
1399                 }
1400                 copied = ret;
1401         } else
1402                 copied = block_write_end(file, mapping, pos,
1403                                          len, copied, page, fsdata);
1404         /*
1405          * it's important to update i_size while still holding page lock:
1406          * page writeout could otherwise come in and zero beyond i_size.
1407          */
1408         i_size_changed = ext4_update_inode_size(inode, pos + copied);
1409         unlock_page(page);
1410         put_page(page);
1411
1412         if (old_size < pos)
1413                 pagecache_isize_extended(inode, old_size, pos);
1414         /*
1415          * Don't mark the inode dirty under page lock. First, it unnecessarily
1416          * makes the holding time of page lock longer. Second, it forces lock
1417          * ordering of page lock and transaction start for journaling
1418          * filesystems.
1419          */
1420         if (i_size_changed || inline_data)
1421                 ext4_mark_inode_dirty(handle, inode);
1422
1423         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1424                 /* if we have allocated more blocks and copied
1425                  * less. We will have blocks allocated outside
1426                  * inode->i_size. So truncate them
1427                  */
1428                 ext4_orphan_add(handle, inode);
1429 errout:
1430         ret2 = ext4_journal_stop(handle);
1431         if (!ret)
1432                 ret = ret2;
1433
1434         if (pos + len > inode->i_size) {
1435                 ext4_truncate_failed_write(inode);
1436                 /*
1437                  * If truncate failed early the inode might still be
1438                  * on the orphan list; we need to make sure the inode
1439                  * is removed from the orphan list in that case.
1440                  */
1441                 if (inode->i_nlink)
1442                         ext4_orphan_del(NULL, inode);
1443         }
1444
1445         return ret ? ret : copied;
1446 }
1447
1448 /*
1449  * This is a private version of page_zero_new_buffers() which doesn't
1450  * set the buffer to be dirty, since in data=journalled mode we need
1451  * to call ext4_handle_dirty_metadata() instead.
1452  */
1453 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1454                                             struct page *page,
1455                                             unsigned from, unsigned to)
1456 {
1457         unsigned int block_start = 0, block_end;
1458         struct buffer_head *head, *bh;
1459
1460         bh = head = page_buffers(page);
1461         do {
1462                 block_end = block_start + bh->b_size;
1463                 if (buffer_new(bh)) {
1464                         if (block_end > from && block_start < to) {
1465                                 if (!PageUptodate(page)) {
1466                                         unsigned start, size;
1467
1468                                         start = max(from, block_start);
1469                                         size = min(to, block_end) - start;
1470
1471                                         zero_user(page, start, size);
1472                                         write_end_fn(handle, bh);
1473                                 }
1474                                 clear_buffer_new(bh);
1475                         }
1476                 }
1477                 block_start = block_end;
1478                 bh = bh->b_this_page;
1479         } while (bh != head);
1480 }
1481
1482 static int ext4_journalled_write_end(struct file *file,
1483                                      struct address_space *mapping,
1484                                      loff_t pos, unsigned len, unsigned copied,
1485                                      struct page *page, void *fsdata)
1486 {
1487         handle_t *handle = ext4_journal_current_handle();
1488         struct inode *inode = mapping->host;
1489         loff_t old_size = inode->i_size;
1490         int ret = 0, ret2;
1491         int partial = 0;
1492         unsigned from, to;
1493         int size_changed = 0;
1494         int inline_data = ext4_has_inline_data(inode);
1495
1496         trace_ext4_journalled_write_end(inode, pos, len, copied);
1497         from = pos & (PAGE_SIZE - 1);
1498         to = from + len;
1499
1500         BUG_ON(!ext4_handle_valid(handle));
1501
1502         if (inline_data) {
1503                 ret = ext4_write_inline_data_end(inode, pos, len,
1504                                                  copied, page);
1505                 if (ret < 0) {
1506                         unlock_page(page);
1507                         put_page(page);
1508                         goto errout;
1509                 }
1510                 copied = ret;
1511         } else if (unlikely(copied < len) && !PageUptodate(page)) {
1512                 copied = 0;
1513                 ext4_journalled_zero_new_buffers(handle, page, from, to);
1514         } else {
1515                 if (unlikely(copied < len))
1516                         ext4_journalled_zero_new_buffers(handle, page,
1517                                                          from + copied, to);
1518                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1519                                              from + copied, &partial,
1520                                              write_end_fn);
1521                 if (!partial)
1522                         SetPageUptodate(page);
1523         }
1524         size_changed = ext4_update_inode_size(inode, pos + copied);
1525         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1526         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1527         unlock_page(page);
1528         put_page(page);
1529
1530         if (old_size < pos)
1531                 pagecache_isize_extended(inode, old_size, pos);
1532
1533         if (size_changed || inline_data) {
1534                 ret2 = ext4_mark_inode_dirty(handle, inode);
1535                 if (!ret)
1536                         ret = ret2;
1537         }
1538
1539         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1540                 /* if we have allocated more blocks and copied
1541                  * less. We will have blocks allocated outside
1542                  * inode->i_size. So truncate them
1543                  */
1544                 ext4_orphan_add(handle, inode);
1545
1546 errout:
1547         ret2 = ext4_journal_stop(handle);
1548         if (!ret)
1549                 ret = ret2;
1550         if (pos + len > inode->i_size) {
1551                 ext4_truncate_failed_write(inode);
1552                 /*
1553                  * If truncate failed early the inode might still be
1554                  * on the orphan list; we need to make sure the inode
1555                  * is removed from the orphan list in that case.
1556                  */
1557                 if (inode->i_nlink)
1558                         ext4_orphan_del(NULL, inode);
1559         }
1560
1561         return ret ? ret : copied;
1562 }
1563
1564 /*
1565  * Reserve space for a single cluster
1566  */
1567 static int ext4_da_reserve_space(struct inode *inode)
1568 {
1569         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1570         struct ext4_inode_info *ei = EXT4_I(inode);
1571         int ret;
1572
1573         /*
1574          * We will charge metadata quota at writeout time; this saves
1575          * us from metadata over-estimation, though we may go over by
1576          * a small amount in the end.  Here we just reserve for data.
1577          */
1578         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1579         if (ret)
1580                 return ret;
1581
1582         spin_lock(&ei->i_block_reservation_lock);
1583         if (ext4_claim_free_clusters(sbi, 1, 0)) {
1584                 spin_unlock(&ei->i_block_reservation_lock);
1585                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1586                 return -ENOSPC;
1587         }
1588         ei->i_reserved_data_blocks++;
1589         trace_ext4_da_reserve_space(inode);
1590         spin_unlock(&ei->i_block_reservation_lock);
1591
1592         return 0;       /* success */
1593 }
1594
1595 void ext4_da_release_space(struct inode *inode, int to_free)
1596 {
1597         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1598         struct ext4_inode_info *ei = EXT4_I(inode);
1599
1600         if (!to_free)
1601                 return;         /* Nothing to release, exit */
1602
1603         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1604
1605         trace_ext4_da_release_space(inode, to_free);
1606         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1607                 /*
1608                  * if there aren't enough reserved blocks, then the
1609                  * counter is messed up somewhere.  Since this
1610                  * function is called from invalidate page, it's
1611                  * harmless to return without any action.
1612                  */
1613                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1614                          "ino %lu, to_free %d with only %d reserved "
1615                          "data blocks", inode->i_ino, to_free,
1616                          ei->i_reserved_data_blocks);
1617                 WARN_ON(1);
1618                 to_free = ei->i_reserved_data_blocks;
1619         }
1620         ei->i_reserved_data_blocks -= to_free;
1621
1622         /* update fs dirty data blocks counter */
1623         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1624
1625         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1626
1627         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1628 }
1629
1630 static void ext4_da_page_release_reservation(struct page *page,
1631                                              unsigned int offset,
1632                                              unsigned int length)
1633 {
1634         int contiguous_blks = 0;
1635         struct buffer_head *head, *bh;
1636         unsigned int curr_off = 0;
1637         struct inode *inode = page->mapping->host;
1638         unsigned int stop = offset + length;
1639         ext4_fsblk_t lblk;
1640
1641         BUG_ON(stop > PAGE_SIZE || stop < length);
1642
1643         head = page_buffers(page);
1644         bh = head;
1645         do {
1646                 unsigned int next_off = curr_off + bh->b_size;
1647
1648                 if (next_off > stop)
1649                         break;
1650
1651                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1652                         contiguous_blks++;
1653                         clear_buffer_delay(bh);
1654                 } else if (contiguous_blks) {
1655                         lblk = page->index <<
1656                                (PAGE_SHIFT - inode->i_blkbits);
1657                         lblk += (curr_off >> inode->i_blkbits) -
1658                                 contiguous_blks;
1659                         ext4_es_remove_blks(inode, lblk, contiguous_blks);
1660                         contiguous_blks = 0;
1661                 }
1662                 curr_off = next_off;
1663         } while ((bh = bh->b_this_page) != head);
1664
1665         if (contiguous_blks) {
1666                 lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
1667                 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1668                 ext4_es_remove_blks(inode, lblk, contiguous_blks);
1669         }
1670
1671 }
1672
1673 /*
1674  * Delayed allocation stuff
1675  */
1676
1677 struct mpage_da_data {
1678         struct inode *inode;
1679         struct writeback_control *wbc;
1680
1681         pgoff_t first_page;     /* The first page to write */
1682         pgoff_t next_page;      /* Current page to examine */
1683         pgoff_t last_page;      /* Last page to examine */
1684         /*
1685          * Extent to map - this can be after first_page because that can be
1686          * fully mapped. We somewhat abuse m_flags to store whether the extent
1687          * is delalloc or unwritten.
1688          */
1689         struct ext4_map_blocks map;
1690         struct ext4_io_submit io_submit;        /* IO submission data */
1691         unsigned int do_map:1;
1692 };
1693
1694 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1695                                        bool invalidate)
1696 {
1697         int nr_pages, i;
1698         pgoff_t index, end;
1699         struct pagevec pvec;
1700         struct inode *inode = mpd->inode;
1701         struct address_space *mapping = inode->i_mapping;
1702
1703         /* This is necessary when next_page == 0. */
1704         if (mpd->first_page >= mpd->next_page)
1705                 return;
1706
1707         index = mpd->first_page;
1708         end   = mpd->next_page - 1;
1709         if (invalidate) {
1710                 ext4_lblk_t start, last;
1711                 start = index << (PAGE_SHIFT - inode->i_blkbits);
1712                 last = end << (PAGE_SHIFT - inode->i_blkbits);
1713                 ext4_es_remove_extent(inode, start, last - start + 1);
1714         }
1715
1716         pagevec_init(&pvec);
1717         while (index <= end) {
1718                 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1719                 if (nr_pages == 0)
1720                         break;
1721                 for (i = 0; i < nr_pages; i++) {
1722                         struct page *page = pvec.pages[i];
1723
1724                         BUG_ON(!PageLocked(page));
1725                         BUG_ON(PageWriteback(page));
1726                         if (invalidate) {
1727                                 if (page_mapped(page))
1728                                         clear_page_dirty_for_io(page);
1729                                 block_invalidatepage(page, 0, PAGE_SIZE);
1730                                 ClearPageUptodate(page);
1731                         }
1732                         unlock_page(page);
1733                 }
1734                 pagevec_release(&pvec);
1735         }
1736 }
1737
1738 static void ext4_print_free_blocks(struct inode *inode)
1739 {
1740         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1741         struct super_block *sb = inode->i_sb;
1742         struct ext4_inode_info *ei = EXT4_I(inode);
1743
1744         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1745                EXT4_C2B(EXT4_SB(inode->i_sb),
1746                         ext4_count_free_clusters(sb)));
1747         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1748         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1749                (long long) EXT4_C2B(EXT4_SB(sb),
1750                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1751         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1752                (long long) EXT4_C2B(EXT4_SB(sb),
1753                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1754         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1755         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1756                  ei->i_reserved_data_blocks);
1757         return;
1758 }
1759
1760 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1761 {
1762         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1763 }
1764
1765 /*
1766  * ext4_insert_delayed_block - adds a delayed block to the extents status
1767  *                             tree, incrementing the reserved cluster/block
1768  *                             count or making a pending reservation
1769  *                             where needed
1770  *
1771  * @inode - file containing the newly added block
1772  * @lblk - logical block to be added
1773  *
1774  * Returns 0 on success, negative error code on failure.
1775  */
1776 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1777 {
1778         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1779         int ret;
1780         bool allocated = false;
1781
1782         /*
1783          * If the cluster containing lblk is shared with a delayed,
1784          * written, or unwritten extent in a bigalloc file system, it's
1785          * already been accounted for and does not need to be reserved.
1786          * A pending reservation must be made for the cluster if it's
1787          * shared with a written or unwritten extent and doesn't already
1788          * have one.  Written and unwritten extents can be purged from the
1789          * extents status tree if the system is under memory pressure, so
1790          * it's necessary to examine the extent tree if a search of the
1791          * extents status tree doesn't get a match.
1792          */
1793         if (sbi->s_cluster_ratio == 1) {
1794                 ret = ext4_da_reserve_space(inode);
1795                 if (ret != 0)   /* ENOSPC */
1796                         goto errout;
1797         } else {   /* bigalloc */
1798                 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1799                         if (!ext4_es_scan_clu(inode,
1800                                               &ext4_es_is_mapped, lblk)) {
1801                                 ret = ext4_clu_mapped(inode,
1802                                                       EXT4_B2C(sbi, lblk));
1803                                 if (ret < 0)
1804                                         goto errout;
1805                                 if (ret == 0) {
1806                                         ret = ext4_da_reserve_space(inode);
1807                                         if (ret != 0)   /* ENOSPC */
1808                                                 goto errout;
1809                                 } else {
1810                                         allocated = true;
1811                                 }
1812                         } else {
1813                                 allocated = true;
1814                         }
1815                 }
1816         }
1817
1818         ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1819
1820 errout:
1821         return ret;
1822 }
1823
1824 /*
1825  * This function is grabs code from the very beginning of
1826  * ext4_map_blocks, but assumes that the caller is from delayed write
1827  * time. This function looks up the requested blocks and sets the
1828  * buffer delay bit under the protection of i_data_sem.
1829  */
1830 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1831                               struct ext4_map_blocks *map,
1832                               struct buffer_head *bh)
1833 {
1834         struct extent_status es;
1835         int retval;
1836         sector_t invalid_block = ~((sector_t) 0xffff);
1837 #ifdef ES_AGGRESSIVE_TEST
1838         struct ext4_map_blocks orig_map;
1839
1840         memcpy(&orig_map, map, sizeof(*map));
1841 #endif
1842
1843         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1844                 invalid_block = ~0;
1845
1846         map->m_flags = 0;
1847         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1848                   "logical block %lu\n", inode->i_ino, map->m_len,
1849                   (unsigned long) map->m_lblk);
1850
1851         /* Lookup extent status tree firstly */
1852         if (ext4_es_lookup_extent(inode, iblock, &es)) {
1853                 if (ext4_es_is_hole(&es)) {
1854                         retval = 0;
1855                         down_read(&EXT4_I(inode)->i_data_sem);
1856                         goto add_delayed;
1857                 }
1858
1859                 /*
1860                  * Delayed extent could be allocated by fallocate.
1861                  * So we need to check it.
1862                  */
1863                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1864                         map_bh(bh, inode->i_sb, invalid_block);
1865                         set_buffer_new(bh);
1866                         set_buffer_delay(bh);
1867                         return 0;
1868                 }
1869
1870                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1871                 retval = es.es_len - (iblock - es.es_lblk);
1872                 if (retval > map->m_len)
1873                         retval = map->m_len;
1874                 map->m_len = retval;
1875                 if (ext4_es_is_written(&es))
1876                         map->m_flags |= EXT4_MAP_MAPPED;
1877                 else if (ext4_es_is_unwritten(&es))
1878                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1879                 else
1880                         BUG_ON(1);
1881
1882 #ifdef ES_AGGRESSIVE_TEST
1883                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1884 #endif
1885                 return retval;
1886         }
1887
1888         /*
1889          * Try to see if we can get the block without requesting a new
1890          * file system block.
1891          */
1892         down_read(&EXT4_I(inode)->i_data_sem);
1893         if (ext4_has_inline_data(inode))
1894                 retval = 0;
1895         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1896                 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1897         else
1898                 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1899
1900 add_delayed:
1901         if (retval == 0) {
1902                 int ret;
1903
1904                 /*
1905                  * XXX: __block_prepare_write() unmaps passed block,
1906                  * is it OK?
1907                  */
1908
1909                 ret = ext4_insert_delayed_block(inode, map->m_lblk);
1910                 if (ret != 0) {
1911                         retval = ret;
1912                         goto out_unlock;
1913                 }
1914
1915                 map_bh(bh, inode->i_sb, invalid_block);
1916                 set_buffer_new(bh);
1917                 set_buffer_delay(bh);
1918         } else if (retval > 0) {
1919                 int ret;
1920                 unsigned int status;
1921
1922                 if (unlikely(retval != map->m_len)) {
1923                         ext4_warning(inode->i_sb,
1924                                      "ES len assertion failed for inode "
1925                                      "%lu: retval %d != map->m_len %d",
1926                                      inode->i_ino, retval, map->m_len);
1927                         WARN_ON(1);
1928                 }
1929
1930                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1931                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1932                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1933                                             map->m_pblk, status);
1934                 if (ret != 0)
1935                         retval = ret;
1936         }
1937
1938 out_unlock:
1939         up_read((&EXT4_I(inode)->i_data_sem));
1940
1941         return retval;
1942 }
1943
1944 /*
1945  * This is a special get_block_t callback which is used by
1946  * ext4_da_write_begin().  It will either return mapped block or
1947  * reserve space for a single block.
1948  *
1949  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1950  * We also have b_blocknr = -1 and b_bdev initialized properly
1951  *
1952  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1953  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1954  * initialized properly.
1955  */
1956 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1957                            struct buffer_head *bh, int create)
1958 {
1959         struct ext4_map_blocks map;
1960         int ret = 0;
1961
1962         BUG_ON(create == 0);
1963         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1964
1965         map.m_lblk = iblock;
1966         map.m_len = 1;
1967
1968         /*
1969          * first, we need to know whether the block is allocated already
1970          * preallocated blocks are unmapped but should treated
1971          * the same as allocated blocks.
1972          */
1973         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1974         if (ret <= 0)
1975                 return ret;
1976
1977         map_bh(bh, inode->i_sb, map.m_pblk);
1978         ext4_update_bh_state(bh, map.m_flags);
1979
1980         if (buffer_unwritten(bh)) {
1981                 /* A delayed write to unwritten bh should be marked
1982                  * new and mapped.  Mapped ensures that we don't do
1983                  * get_block multiple times when we write to the same
1984                  * offset and new ensures that we do proper zero out
1985                  * for partial write.
1986                  */
1987                 set_buffer_new(bh);
1988                 set_buffer_mapped(bh);
1989         }
1990         return 0;
1991 }
1992
1993 static int bget_one(handle_t *handle, struct buffer_head *bh)
1994 {
1995         get_bh(bh);
1996         return 0;
1997 }
1998
1999 static int bput_one(handle_t *handle, struct buffer_head *bh)
2000 {
2001         put_bh(bh);
2002         return 0;
2003 }
2004
2005 static int __ext4_journalled_writepage(struct page *page,
2006                                        unsigned int len)
2007 {
2008         struct address_space *mapping = page->mapping;
2009         struct inode *inode = mapping->host;
2010         struct buffer_head *page_bufs = NULL;
2011         handle_t *handle = NULL;
2012         int ret = 0, err = 0;
2013         int inline_data = ext4_has_inline_data(inode);
2014         struct buffer_head *inode_bh = NULL;
2015
2016         ClearPageChecked(page);
2017
2018         if (inline_data) {
2019                 BUG_ON(page->index != 0);
2020                 BUG_ON(len > ext4_get_max_inline_size(inode));
2021                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
2022                 if (inode_bh == NULL)
2023                         goto out;
2024         } else {
2025                 page_bufs = page_buffers(page);
2026                 if (!page_bufs) {
2027                         BUG();
2028                         goto out;
2029                 }
2030                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2031                                        NULL, bget_one);
2032         }
2033         /*
2034          * We need to release the page lock before we start the
2035          * journal, so grab a reference so the page won't disappear
2036          * out from under us.
2037          */
2038         get_page(page);
2039         unlock_page(page);
2040
2041         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2042                                     ext4_writepage_trans_blocks(inode));
2043         if (IS_ERR(handle)) {
2044                 ret = PTR_ERR(handle);
2045                 put_page(page);
2046                 goto out_no_pagelock;
2047         }
2048         BUG_ON(!ext4_handle_valid(handle));
2049
2050         lock_page(page);
2051         put_page(page);
2052         if (page->mapping != mapping) {
2053                 /* The page got truncated from under us */
2054                 ext4_journal_stop(handle);
2055                 ret = 0;
2056                 goto out;
2057         }
2058
2059         if (inline_data) {
2060                 ret = ext4_mark_inode_dirty(handle, inode);
2061         } else {
2062                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2063                                              do_journal_get_write_access);
2064
2065                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2066                                              write_end_fn);
2067         }
2068         if (ret == 0)
2069                 ret = err;
2070         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2071         err = ext4_journal_stop(handle);
2072         if (!ret)
2073                 ret = err;
2074
2075         if (!ext4_has_inline_data(inode))
2076                 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
2077                                        NULL, bput_one);
2078         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2079 out:
2080         unlock_page(page);
2081 out_no_pagelock:
2082         brelse(inode_bh);
2083         return ret;
2084 }
2085
2086 /*
2087  * Note that we don't need to start a transaction unless we're journaling data
2088  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2089  * need to file the inode to the transaction's list in ordered mode because if
2090  * we are writing back data added by write(), the inode is already there and if
2091  * we are writing back data modified via mmap(), no one guarantees in which
2092  * transaction the data will hit the disk. In case we are journaling data, we
2093  * cannot start transaction directly because transaction start ranks above page
2094  * lock so we have to do some magic.
2095  *
2096  * This function can get called via...
2097  *   - ext4_writepages after taking page lock (have journal handle)
2098  *   - journal_submit_inode_data_buffers (no journal handle)
2099  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2100  *   - grab_page_cache when doing write_begin (have journal handle)
2101  *
2102  * We don't do any block allocation in this function. If we have page with
2103  * multiple blocks we need to write those buffer_heads that are mapped. This
2104  * is important for mmaped based write. So if we do with blocksize 1K
2105  * truncate(f, 1024);
2106  * a = mmap(f, 0, 4096);
2107  * a[0] = 'a';
2108  * truncate(f, 4096);
2109  * we have in the page first buffer_head mapped via page_mkwrite call back
2110  * but other buffer_heads would be unmapped but dirty (dirty done via the
2111  * do_wp_page). So writepage should write the first block. If we modify
2112  * the mmap area beyond 1024 we will again get a page_fault and the
2113  * page_mkwrite callback will do the block allocation and mark the
2114  * buffer_heads mapped.
2115  *
2116  * We redirty the page if we have any buffer_heads that is either delay or
2117  * unwritten in the page.
2118  *
2119  * We can get recursively called as show below.
2120  *
2121  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2122  *              ext4_writepage()
2123  *
2124  * But since we don't do any block allocation we should not deadlock.
2125  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2126  */
2127 static int ext4_writepage(struct page *page,
2128                           struct writeback_control *wbc)
2129 {
2130         int ret = 0;
2131         loff_t size;
2132         unsigned int len;
2133         struct buffer_head *page_bufs = NULL;
2134         struct inode *inode = page->mapping->host;
2135         struct ext4_io_submit io_submit;
2136         bool keep_towrite = false;
2137
2138         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2139                 ext4_invalidatepage(page, 0, PAGE_SIZE);
2140                 unlock_page(page);
2141                 return -EIO;
2142         }
2143
2144         trace_ext4_writepage(page);
2145         size = i_size_read(inode);
2146         if (page->index == size >> PAGE_SHIFT)
2147                 len = size & ~PAGE_MASK;
2148         else
2149                 len = PAGE_SIZE;
2150
2151         page_bufs = page_buffers(page);
2152         /*
2153          * We cannot do block allocation or other extent handling in this
2154          * function. If there are buffers needing that, we have to redirty
2155          * the page. But we may reach here when we do a journal commit via
2156          * journal_submit_inode_data_buffers() and in that case we must write
2157          * allocated buffers to achieve data=ordered mode guarantees.
2158          *
2159          * Also, if there is only one buffer per page (the fs block
2160          * size == the page size), if one buffer needs block
2161          * allocation or needs to modify the extent tree to clear the
2162          * unwritten flag, we know that the page can't be written at
2163          * all, so we might as well refuse the write immediately.
2164          * Unfortunately if the block size != page size, we can't as
2165          * easily detect this case using ext4_walk_page_buffers(), but
2166          * for the extremely common case, this is an optimization that
2167          * skips a useless round trip through ext4_bio_write_page().
2168          */
2169         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2170                                    ext4_bh_delay_or_unwritten)) {
2171                 redirty_page_for_writepage(wbc, page);
2172                 if ((current->flags & PF_MEMALLOC) ||
2173                     (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2174                         /*
2175                          * For memory cleaning there's no point in writing only
2176                          * some buffers. So just bail out. Warn if we came here
2177                          * from direct reclaim.
2178                          */
2179                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2180                                                         == PF_MEMALLOC);
2181                         unlock_page(page);
2182                         return 0;
2183                 }
2184                 keep_towrite = true;
2185         }
2186
2187         if (PageChecked(page) && ext4_should_journal_data(inode))
2188                 /*
2189                  * It's mmapped pagecache.  Add buffers and journal it.  There
2190                  * doesn't seem much point in redirtying the page here.
2191                  */
2192                 return __ext4_journalled_writepage(page, len);
2193
2194         ext4_io_submit_init(&io_submit, wbc);
2195         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2196         if (!io_submit.io_end) {
2197                 redirty_page_for_writepage(wbc, page);
2198                 unlock_page(page);
2199                 return -ENOMEM;
2200         }
2201         ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2202         ext4_io_submit(&io_submit);
2203         /* Drop io_end reference we got from init */
2204         ext4_put_io_end_defer(io_submit.io_end);
2205         return ret;
2206 }
2207
2208 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2209 {
2210         int len;
2211         loff_t size;
2212         int err;
2213
2214         BUG_ON(page->index != mpd->first_page);
2215         clear_page_dirty_for_io(page);
2216         /*
2217          * We have to be very careful here!  Nothing protects writeback path
2218          * against i_size changes and the page can be writeably mapped into
2219          * page tables. So an application can be growing i_size and writing
2220          * data through mmap while writeback runs. clear_page_dirty_for_io()
2221          * write-protects our page in page tables and the page cannot get
2222          * written to again until we release page lock. So only after
2223          * clear_page_dirty_for_io() we are safe to sample i_size for
2224          * ext4_bio_write_page() to zero-out tail of the written page. We rely
2225          * on the barrier provided by TestClearPageDirty in
2226          * clear_page_dirty_for_io() to make sure i_size is really sampled only
2227          * after page tables are updated.
2228          */
2229         size = i_size_read(mpd->inode);
2230         if (page->index == size >> PAGE_SHIFT)
2231                 len = size & ~PAGE_MASK;
2232         else
2233                 len = PAGE_SIZE;
2234         err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2235         if (!err)
2236                 mpd->wbc->nr_to_write--;
2237         mpd->first_page++;
2238
2239         return err;
2240 }
2241
2242 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2243
2244 /*
2245  * mballoc gives us at most this number of blocks...
2246  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2247  * The rest of mballoc seems to handle chunks up to full group size.
2248  */
2249 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2250
2251 /*
2252  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2253  *
2254  * @mpd - extent of blocks
2255  * @lblk - logical number of the block in the file
2256  * @bh - buffer head we want to add to the extent
2257  *
2258  * The function is used to collect contig. blocks in the same state. If the
2259  * buffer doesn't require mapping for writeback and we haven't started the
2260  * extent of buffers to map yet, the function returns 'true' immediately - the
2261  * caller can write the buffer right away. Otherwise the function returns true
2262  * if the block has been added to the extent, false if the block couldn't be
2263  * added.
2264  */
2265 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2266                                    struct buffer_head *bh)
2267 {
2268         struct ext4_map_blocks *map = &mpd->map;
2269
2270         /* Buffer that doesn't need mapping for writeback? */
2271         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2272             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2273                 /* So far no extent to map => we write the buffer right away */
2274                 if (map->m_len == 0)
2275                         return true;
2276                 return false;
2277         }
2278
2279         /* First block in the extent? */
2280         if (map->m_len == 0) {
2281                 /* We cannot map unless handle is started... */
2282                 if (!mpd->do_map)
2283                         return false;
2284                 map->m_lblk = lblk;
2285                 map->m_len = 1;
2286                 map->m_flags = bh->b_state & BH_FLAGS;
2287                 return true;
2288         }
2289
2290         /* Don't go larger than mballoc is willing to allocate */
2291         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2292                 return false;
2293
2294         /* Can we merge the block to our big extent? */
2295         if (lblk == map->m_lblk + map->m_len &&
2296             (bh->b_state & BH_FLAGS) == map->m_flags) {
2297                 map->m_len++;
2298                 return true;
2299         }
2300         return false;
2301 }
2302
2303 /*
2304  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2305  *
2306  * @mpd - extent of blocks for mapping
2307  * @head - the first buffer in the page
2308  * @bh - buffer we should start processing from
2309  * @lblk - logical number of the block in the file corresponding to @bh
2310  *
2311  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2312  * the page for IO if all buffers in this page were mapped and there's no
2313  * accumulated extent of buffers to map or add buffers in the page to the
2314  * extent of buffers to map. The function returns 1 if the caller can continue
2315  * by processing the next page, 0 if it should stop adding buffers to the
2316  * extent to map because we cannot extend it anymore. It can also return value
2317  * < 0 in case of error during IO submission.
2318  */
2319 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2320                                    struct buffer_head *head,
2321                                    struct buffer_head *bh,
2322                                    ext4_lblk_t lblk)
2323 {
2324         struct inode *inode = mpd->inode;
2325         int err;
2326         ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2327                                                         >> inode->i_blkbits;
2328
2329         do {
2330                 BUG_ON(buffer_locked(bh));
2331
2332                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2333                         /* Found extent to map? */
2334                         if (mpd->map.m_len)
2335                                 return 0;
2336                         /* Buffer needs mapping and handle is not started? */
2337                         if (!mpd->do_map)
2338                                 return 0;
2339                         /* Everything mapped so far and we hit EOF */
2340                         break;
2341                 }
2342         } while (lblk++, (bh = bh->b_this_page) != head);
2343         /* So far everything mapped? Submit the page for IO. */
2344         if (mpd->map.m_len == 0) {
2345                 err = mpage_submit_page(mpd, head->b_page);
2346                 if (err < 0)
2347                         return err;
2348         }
2349         return lblk < blocks;
2350 }
2351
2352 /*
2353  * mpage_map_buffers - update buffers corresponding to changed extent and
2354  *                     submit fully mapped pages for IO
2355  *
2356  * @mpd - description of extent to map, on return next extent to map
2357  *
2358  * Scan buffers corresponding to changed extent (we expect corresponding pages
2359  * to be already locked) and update buffer state according to new extent state.
2360  * We map delalloc buffers to their physical location, clear unwritten bits,
2361  * and mark buffers as uninit when we perform writes to unwritten extents
2362  * and do extent conversion after IO is finished. If the last page is not fully
2363  * mapped, we update @map to the next extent in the last page that needs
2364  * mapping. Otherwise we submit the page for IO.
2365  */
2366 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2367 {
2368         struct pagevec pvec;
2369         int nr_pages, i;
2370         struct inode *inode = mpd->inode;
2371         struct buffer_head *head, *bh;
2372         int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2373         pgoff_t start, end;
2374         ext4_lblk_t lblk;
2375         sector_t pblock;
2376         int err;
2377
2378         start = mpd->map.m_lblk >> bpp_bits;
2379         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2380         lblk = start << bpp_bits;
2381         pblock = mpd->map.m_pblk;
2382
2383         pagevec_init(&pvec);
2384         while (start <= end) {
2385                 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2386                                                 &start, end);
2387                 if (nr_pages == 0)
2388                         break;
2389                 for (i = 0; i < nr_pages; i++) {
2390                         struct page *page = pvec.pages[i];
2391
2392                         bh = head = page_buffers(page);
2393                         do {
2394                                 if (lblk < mpd->map.m_lblk)
2395                                         continue;
2396                                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2397                                         /*
2398                                          * Buffer after end of mapped extent.
2399                                          * Find next buffer in the page to map.
2400                                          */
2401                                         mpd->map.m_len = 0;
2402                                         mpd->map.m_flags = 0;
2403                                         /*
2404                                          * FIXME: If dioread_nolock supports
2405                                          * blocksize < pagesize, we need to make
2406                                          * sure we add size mapped so far to
2407                                          * io_end->size as the following call
2408                                          * can submit the page for IO.
2409                                          */
2410                                         err = mpage_process_page_bufs(mpd, head,
2411                                                                       bh, lblk);
2412                                         pagevec_release(&pvec);
2413                                         if (err > 0)
2414                                                 err = 0;
2415                                         return err;
2416                                 }
2417                                 if (buffer_delay(bh)) {
2418                                         clear_buffer_delay(bh);
2419                                         bh->b_blocknr = pblock++;
2420                                 }
2421                                 clear_buffer_unwritten(bh);
2422                         } while (lblk++, (bh = bh->b_this_page) != head);
2423
2424                         /*
2425                          * FIXME: This is going to break if dioread_nolock
2426                          * supports blocksize < pagesize as we will try to
2427                          * convert potentially unmapped parts of inode.
2428                          */
2429                         mpd->io_submit.io_end->size += PAGE_SIZE;
2430                         /* Page fully mapped - let IO run! */
2431                         err = mpage_submit_page(mpd, page);
2432                         if (err < 0) {
2433                                 pagevec_release(&pvec);
2434                                 return err;
2435                         }
2436                 }
2437                 pagevec_release(&pvec);
2438         }
2439         /* Extent fully mapped and matches with page boundary. We are done. */
2440         mpd->map.m_len = 0;
2441         mpd->map.m_flags = 0;
2442         return 0;
2443 }
2444
2445 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2446 {
2447         struct inode *inode = mpd->inode;
2448         struct ext4_map_blocks *map = &mpd->map;
2449         int get_blocks_flags;
2450         int err, dioread_nolock;
2451
2452         trace_ext4_da_write_pages_extent(inode, map);
2453         /*
2454          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2455          * to convert an unwritten extent to be initialized (in the case
2456          * where we have written into one or more preallocated blocks).  It is
2457          * possible that we're going to need more metadata blocks than
2458          * previously reserved. However we must not fail because we're in
2459          * writeback and there is nothing we can do about it so it might result
2460          * in data loss.  So use reserved blocks to allocate metadata if
2461          * possible.
2462          *
2463          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2464          * the blocks in question are delalloc blocks.  This indicates
2465          * that the blocks and quotas has already been checked when
2466          * the data was copied into the page cache.
2467          */
2468         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2469                            EXT4_GET_BLOCKS_METADATA_NOFAIL |
2470                            EXT4_GET_BLOCKS_IO_SUBMIT;
2471         dioread_nolock = ext4_should_dioread_nolock(inode);
2472         if (dioread_nolock)
2473                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2474         if (map->m_flags & (1 << BH_Delay))
2475                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2476
2477         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2478         if (err < 0)
2479                 return err;
2480         if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2481                 if (!mpd->io_submit.io_end->handle &&
2482                     ext4_handle_valid(handle)) {
2483                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2484                         handle->h_rsv_handle = NULL;
2485                 }
2486                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2487         }
2488
2489         BUG_ON(map->m_len == 0);
2490         return 0;
2491 }
2492
2493 /*
2494  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2495  *                               mpd->len and submit pages underlying it for IO
2496  *
2497  * @handle - handle for journal operations
2498  * @mpd - extent to map
2499  * @give_up_on_write - we set this to true iff there is a fatal error and there
2500  *                     is no hope of writing the data. The caller should discard
2501  *                     dirty pages to avoid infinite loops.
2502  *
2503  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2504  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2505  * them to initialized or split the described range from larger unwritten
2506  * extent. Note that we need not map all the described range since allocation
2507  * can return less blocks or the range is covered by more unwritten extents. We
2508  * cannot map more because we are limited by reserved transaction credits. On
2509  * the other hand we always make sure that the last touched page is fully
2510  * mapped so that it can be written out (and thus forward progress is
2511  * guaranteed). After mapping we submit all mapped pages for IO.
2512  */
2513 static int mpage_map_and_submit_extent(handle_t *handle,
2514                                        struct mpage_da_data *mpd,
2515                                        bool *give_up_on_write)
2516 {
2517         struct inode *inode = mpd->inode;
2518         struct ext4_map_blocks *map = &mpd->map;
2519         int err;
2520         loff_t disksize;
2521         int progress = 0;
2522
2523         mpd->io_submit.io_end->offset =
2524                                 ((loff_t)map->m_lblk) << inode->i_blkbits;
2525         do {
2526                 err = mpage_map_one_extent(handle, mpd);
2527                 if (err < 0) {
2528                         struct super_block *sb = inode->i_sb;
2529
2530                         if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2531                             EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2532                                 goto invalidate_dirty_pages;
2533                         /*
2534                          * Let the uper layers retry transient errors.
2535                          * In the case of ENOSPC, if ext4_count_free_blocks()
2536                          * is non-zero, a commit should free up blocks.
2537                          */
2538                         if ((err == -ENOMEM) ||
2539                             (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2540                                 if (progress)
2541                                         goto update_disksize;
2542                                 return err;
2543                         }
2544                         ext4_msg(sb, KERN_CRIT,
2545                                  "Delayed block allocation failed for "
2546                                  "inode %lu at logical offset %llu with"
2547                                  " max blocks %u with error %d",
2548                                  inode->i_ino,
2549                                  (unsigned long long)map->m_lblk,
2550                                  (unsigned)map->m_len, -err);
2551                         ext4_msg(sb, KERN_CRIT,
2552                                  "This should not happen!! Data will "
2553                                  "be lost\n");
2554                         if (err == -ENOSPC)
2555                                 ext4_print_free_blocks(inode);
2556                 invalidate_dirty_pages:
2557                         *give_up_on_write = true;
2558                         return err;
2559                 }
2560                 progress = 1;
2561                 /*
2562                  * Update buffer state, submit mapped pages, and get us new
2563                  * extent to map
2564                  */
2565                 err = mpage_map_and_submit_buffers(mpd);
2566                 if (err < 0)
2567                         goto update_disksize;
2568         } while (map->m_len);
2569
2570 update_disksize:
2571         /*
2572          * Update on-disk size after IO is submitted.  Races with
2573          * truncate are avoided by checking i_size under i_data_sem.
2574          */
2575         disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2576         if (disksize > EXT4_I(inode)->i_disksize) {
2577                 int err2;
2578                 loff_t i_size;
2579
2580                 down_write(&EXT4_I(inode)->i_data_sem);
2581                 i_size = i_size_read(inode);
2582                 if (disksize > i_size)
2583                         disksize = i_size;
2584                 if (disksize > EXT4_I(inode)->i_disksize)
2585                         EXT4_I(inode)->i_disksize = disksize;
2586                 up_write(&EXT4_I(inode)->i_data_sem);
2587                 err2 = ext4_mark_inode_dirty(handle, inode);
2588                 if (err2)
2589                         ext4_error(inode->i_sb,
2590                                    "Failed to mark inode %lu dirty",
2591                                    inode->i_ino);
2592                 if (!err)
2593                         err = err2;
2594         }
2595         return err;
2596 }
2597
2598 /*
2599  * Calculate the total number of credits to reserve for one writepages
2600  * iteration. This is called from ext4_writepages(). We map an extent of
2601  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2602  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2603  * bpp - 1 blocks in bpp different extents.
2604  */
2605 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2606 {
2607         int bpp = ext4_journal_blocks_per_page(inode);
2608
2609         return ext4_meta_trans_blocks(inode,
2610                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2611 }
2612
2613 /*
2614  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2615  *                               and underlying extent to map
2616  *
2617  * @mpd - where to look for pages
2618  *
2619  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2620  * IO immediately. When we find a page which isn't mapped we start accumulating
2621  * extent of buffers underlying these pages that needs mapping (formed by
2622  * either delayed or unwritten buffers). We also lock the pages containing
2623  * these buffers. The extent found is returned in @mpd structure (starting at
2624  * mpd->lblk with length mpd->len blocks).
2625  *
2626  * Note that this function can attach bios to one io_end structure which are
2627  * neither logically nor physically contiguous. Although it may seem as an
2628  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2629  * case as we need to track IO to all buffers underlying a page in one io_end.
2630  */
2631 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2632 {
2633         struct address_space *mapping = mpd->inode->i_mapping;
2634         struct pagevec pvec;
2635         unsigned int nr_pages;
2636         long left = mpd->wbc->nr_to_write;
2637         pgoff_t index = mpd->first_page;
2638         pgoff_t end = mpd->last_page;
2639         xa_mark_t tag;
2640         int i, err = 0;
2641         int blkbits = mpd->inode->i_blkbits;
2642         ext4_lblk_t lblk;
2643         struct buffer_head *head;
2644
2645         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2646                 tag = PAGECACHE_TAG_TOWRITE;
2647         else
2648                 tag = PAGECACHE_TAG_DIRTY;
2649
2650         pagevec_init(&pvec);
2651         mpd->map.m_len = 0;
2652         mpd->next_page = index;
2653         while (index <= end) {
2654                 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2655                                 tag);
2656                 if (nr_pages == 0)
2657                         goto out;
2658
2659                 for (i = 0; i < nr_pages; i++) {
2660                         struct page *page = pvec.pages[i];
2661
2662                         /*
2663                          * Accumulated enough dirty pages? This doesn't apply
2664                          * to WB_SYNC_ALL mode. For integrity sync we have to
2665                          * keep going because someone may be concurrently
2666                          * dirtying pages, and we might have synced a lot of
2667                          * newly appeared dirty pages, but have not synced all
2668                          * of the old dirty pages.
2669                          */
2670                         if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2671                                 goto out;
2672
2673                         /* If we can't merge this page, we are done. */
2674                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2675                                 goto out;
2676
2677                         lock_page(page);
2678                         /*
2679                          * If the page is no longer dirty, or its mapping no
2680                          * longer corresponds to inode we are writing (which
2681                          * means it has been truncated or invalidated), or the
2682                          * page is already under writeback and we are not doing
2683                          * a data integrity writeback, skip the page
2684                          */
2685                         if (!PageDirty(page) ||
2686                             (PageWriteback(page) &&
2687                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2688                             unlikely(page->mapping != mapping)) {
2689                                 unlock_page(page);
2690                                 continue;
2691                         }
2692
2693                         wait_on_page_writeback(page);
2694                         BUG_ON(PageWriteback(page));
2695
2696                         if (mpd->map.m_len == 0)
2697                                 mpd->first_page = page->index;
2698                         mpd->next_page = page->index + 1;
2699                         /* Add all dirty buffers to mpd */
2700                         lblk = ((ext4_lblk_t)page->index) <<
2701                                 (PAGE_SHIFT - blkbits);
2702                         head = page_buffers(page);
2703                         err = mpage_process_page_bufs(mpd, head, head, lblk);
2704                         if (err <= 0)
2705                                 goto out;
2706                         err = 0;
2707                         left--;
2708                 }
2709                 pagevec_release(&pvec);
2710                 cond_resched();
2711         }
2712         return 0;
2713 out:
2714         pagevec_release(&pvec);
2715         return err;
2716 }
2717
2718 static int ext4_writepages(struct address_space *mapping,
2719                            struct writeback_control *wbc)
2720 {
2721         pgoff_t writeback_index = 0;
2722         long nr_to_write = wbc->nr_to_write;
2723         int range_whole = 0;
2724         int cycled = 1;
2725         handle_t *handle = NULL;
2726         struct mpage_da_data mpd;
2727         struct inode *inode = mapping->host;
2728         int needed_blocks, rsv_blocks = 0, ret = 0;
2729         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2730         bool done;
2731         struct blk_plug plug;
2732         bool give_up_on_write = false;
2733
2734         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2735                 return -EIO;
2736
2737         percpu_down_read(&sbi->s_journal_flag_rwsem);
2738         trace_ext4_writepages(inode, wbc);
2739
2740         /*
2741          * No pages to write? This is mainly a kludge to avoid starting
2742          * a transaction for special inodes like journal inode on last iput()
2743          * because that could violate lock ordering on umount
2744          */
2745         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2746                 goto out_writepages;
2747
2748         if (ext4_should_journal_data(inode)) {
2749                 ret = generic_writepages(mapping, wbc);
2750                 goto out_writepages;
2751         }
2752
2753         /*
2754          * If the filesystem has aborted, it is read-only, so return
2755          * right away instead of dumping stack traces later on that
2756          * will obscure the real source of the problem.  We test
2757          * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2758          * the latter could be true if the filesystem is mounted
2759          * read-only, and in that case, ext4_writepages should
2760          * *never* be called, so if that ever happens, we would want
2761          * the stack trace.
2762          */
2763         if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2764                      sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2765                 ret = -EROFS;
2766                 goto out_writepages;
2767         }
2768
2769         if (ext4_should_dioread_nolock(inode)) {
2770                 /*
2771                  * We may need to convert up to one extent per block in
2772                  * the page and we may dirty the inode.
2773                  */
2774                 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2775                                                 PAGE_SIZE >> inode->i_blkbits);
2776         }
2777
2778         /*
2779          * If we have inline data and arrive here, it means that
2780          * we will soon create the block for the 1st page, so
2781          * we'd better clear the inline data here.
2782          */
2783         if (ext4_has_inline_data(inode)) {
2784                 /* Just inode will be modified... */
2785                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2786                 if (IS_ERR(handle)) {
2787                         ret = PTR_ERR(handle);
2788                         goto out_writepages;
2789                 }
2790                 BUG_ON(ext4_test_inode_state(inode,
2791                                 EXT4_STATE_MAY_INLINE_DATA));
2792                 ext4_destroy_inline_data(handle, inode);
2793                 ext4_journal_stop(handle);
2794         }
2795
2796         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2797                 range_whole = 1;
2798
2799         if (wbc->range_cyclic) {
2800                 writeback_index = mapping->writeback_index;
2801                 if (writeback_index)
2802                         cycled = 0;
2803                 mpd.first_page = writeback_index;
2804                 mpd.last_page = -1;
2805         } else {
2806                 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2807                 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2808         }
2809
2810         mpd.inode = inode;
2811         mpd.wbc = wbc;
2812         ext4_io_submit_init(&mpd.io_submit, wbc);
2813 retry:
2814         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2815                 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2816         done = false;
2817         blk_start_plug(&plug);
2818
2819         /*
2820          * First writeback pages that don't need mapping - we can avoid
2821          * starting a transaction unnecessarily and also avoid being blocked
2822          * in the block layer on device congestion while having transaction
2823          * started.
2824          */
2825         mpd.do_map = 0;
2826         mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2827         if (!mpd.io_submit.io_end) {
2828                 ret = -ENOMEM;
2829                 goto unplug;
2830         }
2831         ret = mpage_prepare_extent_to_map(&mpd);
2832         /* Unlock pages we didn't use */
2833         mpage_release_unused_pages(&mpd, false);
2834         /* Submit prepared bio */
2835         ext4_io_submit(&mpd.io_submit);
2836         ext4_put_io_end_defer(mpd.io_submit.io_end);
2837         mpd.io_submit.io_end = NULL;
2838         if (ret < 0)
2839                 goto unplug;
2840
2841         while (!done && mpd.first_page <= mpd.last_page) {
2842                 /* For each extent of pages we use new io_end */
2843                 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2844                 if (!mpd.io_submit.io_end) {
2845                         ret = -ENOMEM;
2846                         break;
2847                 }
2848
2849                 /*
2850                  * We have two constraints: We find one extent to map and we
2851                  * must always write out whole page (makes a difference when
2852                  * blocksize < pagesize) so that we don't block on IO when we
2853                  * try to write out the rest of the page. Journalled mode is
2854                  * not supported by delalloc.
2855                  */
2856                 BUG_ON(ext4_should_journal_data(inode));
2857                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2858
2859                 /* start a new transaction */
2860                 handle = ext4_journal_start_with_reserve(inode,
2861                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2862                 if (IS_ERR(handle)) {
2863                         ret = PTR_ERR(handle);
2864                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2865                                "%ld pages, ino %lu; err %d", __func__,
2866                                 wbc->nr_to_write, inode->i_ino, ret);
2867                         /* Release allocated io_end */
2868                         ext4_put_io_end(mpd.io_submit.io_end);
2869                         mpd.io_submit.io_end = NULL;
2870                         break;
2871                 }
2872                 mpd.do_map = 1;
2873
2874                 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2875                 ret = mpage_prepare_extent_to_map(&mpd);
2876                 if (!ret) {
2877                         if (mpd.map.m_len)
2878                                 ret = mpage_map_and_submit_extent(handle, &mpd,
2879                                         &give_up_on_write);
2880                         else {
2881                                 /*
2882                                  * We scanned the whole range (or exhausted
2883                                  * nr_to_write), submitted what was mapped and
2884                                  * didn't find anything needing mapping. We are
2885                                  * done.
2886                                  */
2887                                 done = true;
2888                         }
2889                 }
2890                 /*
2891                  * Caution: If the handle is synchronous,
2892                  * ext4_journal_stop() can wait for transaction commit
2893                  * to finish which may depend on writeback of pages to
2894                  * complete or on page lock to be released.  In that
2895                  * case, we have to wait until after after we have
2896                  * submitted all the IO, released page locks we hold,
2897                  * and dropped io_end reference (for extent conversion
2898                  * to be able to complete) before stopping the handle.
2899                  */
2900                 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2901                         ext4_journal_stop(handle);
2902                         handle = NULL;
2903                         mpd.do_map = 0;
2904                 }
2905                 /* Unlock pages we didn't use */
2906                 mpage_release_unused_pages(&mpd, give_up_on_write);
2907                 /* Submit prepared bio */
2908                 ext4_io_submit(&mpd.io_submit);
2909
2910                 /*
2911                  * Drop our io_end reference we got from init. We have
2912                  * to be careful and use deferred io_end finishing if
2913                  * we are still holding the transaction as we can
2914                  * release the last reference to io_end which may end
2915                  * up doing unwritten extent conversion.
2916                  */
2917                 if (handle) {
2918                         ext4_put_io_end_defer(mpd.io_submit.io_end);
2919                         ext4_journal_stop(handle);
2920                 } else
2921                         ext4_put_io_end(mpd.io_submit.io_end);
2922                 mpd.io_submit.io_end = NULL;
2923
2924                 if (ret == -ENOSPC && sbi->s_journal) {
2925                         /*
2926                          * Commit the transaction which would
2927                          * free blocks released in the transaction
2928                          * and try again
2929                          */
2930                         jbd2_journal_force_commit_nested(sbi->s_journal);
2931                         ret = 0;
2932                         continue;
2933                 }
2934                 /* Fatal error - ENOMEM, EIO... */
2935                 if (ret)
2936                         break;
2937         }
2938 unplug:
2939         blk_finish_plug(&plug);
2940         if (!ret && !cycled && wbc->nr_to_write > 0) {
2941                 cycled = 1;
2942                 mpd.last_page = writeback_index - 1;
2943                 mpd.first_page = 0;
2944                 goto retry;
2945         }
2946
2947         /* Update index */
2948         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2949                 /*
2950                  * Set the writeback_index so that range_cyclic
2951                  * mode will write it back later
2952                  */
2953                 mapping->writeback_index = mpd.first_page;
2954
2955 out_writepages:
2956         trace_ext4_writepages_result(inode, wbc, ret,
2957                                      nr_to_write - wbc->nr_to_write);
2958         percpu_up_read(&sbi->s_journal_flag_rwsem);
2959         return ret;
2960 }
2961
2962 static int ext4_dax_writepages(struct address_space *mapping,
2963                                struct writeback_control *wbc)
2964 {
2965         int ret;
2966         long nr_to_write = wbc->nr_to_write;
2967         struct inode *inode = mapping->host;
2968         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2969
2970         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2971                 return -EIO;
2972
2973         percpu_down_read(&sbi->s_journal_flag_rwsem);
2974         trace_ext4_writepages(inode, wbc);
2975
2976         ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev, wbc);
2977         trace_ext4_writepages_result(inode, wbc, ret,
2978                                      nr_to_write - wbc->nr_to_write);
2979         percpu_up_read(&sbi->s_journal_flag_rwsem);
2980         return ret;
2981 }
2982
2983 static int ext4_nonda_switch(struct super_block *sb)
2984 {
2985         s64 free_clusters, dirty_clusters;
2986         struct ext4_sb_info *sbi = EXT4_SB(sb);
2987
2988         /*
2989          * switch to non delalloc mode if we are running low
2990          * on free block. The free block accounting via percpu
2991          * counters can get slightly wrong with percpu_counter_batch getting
2992          * accumulated on each CPU without updating global counters
2993          * Delalloc need an accurate free block accounting. So switch
2994          * to non delalloc when we are near to error range.
2995          */
2996         free_clusters =
2997                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2998         dirty_clusters =
2999                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
3000         /*
3001          * Start pushing delalloc when 1/2 of free blocks are dirty.
3002          */
3003         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
3004                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
3005
3006         if (2 * free_clusters < 3 * dirty_clusters ||
3007             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
3008                 /*
3009                  * free block count is less than 150% of dirty blocks
3010                  * or free blocks is less than watermark
3011                  */
3012                 return 1;
3013         }
3014         return 0;
3015 }
3016
3017 /* We always reserve for an inode update; the superblock could be there too */
3018 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
3019 {
3020         if (likely(ext4_has_feature_large_file(inode->i_sb)))
3021                 return 1;
3022
3023         if (pos + len <= 0x7fffffffULL)
3024                 return 1;
3025
3026         /* We might need to update the superblock to set LARGE_FILE */
3027         return 2;
3028 }
3029
3030 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3031                                loff_t pos, unsigned len, unsigned flags,
3032                                struct page **pagep, void **fsdata)
3033 {
3034         int ret, retries = 0;
3035         struct page *page;
3036         pgoff_t index;
3037         struct inode *inode = mapping->host;
3038         handle_t *handle;
3039
3040         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
3041                 return -EIO;
3042
3043         index = pos >> PAGE_SHIFT;
3044
3045         if (ext4_nonda_switch(inode->i_sb) ||
3046             S_ISLNK(inode->i_mode)) {
3047                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3048                 return ext4_write_begin(file, mapping, pos,
3049                                         len, flags, pagep, fsdata);
3050         }
3051         *fsdata = (void *)0;
3052         trace_ext4_da_write_begin(inode, pos, len, flags);
3053
3054         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
3055                 ret = ext4_da_write_inline_data_begin(mapping, inode,
3056                                                       pos, len, flags,
3057                                                       pagep, fsdata);
3058                 if (ret < 0)
3059                         return ret;
3060                 if (ret == 1)
3061                         return 0;
3062         }
3063
3064         /*
3065          * grab_cache_page_write_begin() can take a long time if the
3066          * system is thrashing due to memory pressure, or if the page
3067          * is being written back.  So grab it first before we start
3068          * the transaction handle.  This also allows us to allocate
3069          * the page (if needed) without using GFP_NOFS.
3070          */
3071 retry_grab:
3072         page = grab_cache_page_write_begin(mapping, index, flags);
3073         if (!page)
3074                 return -ENOMEM;
3075         unlock_page(page);
3076
3077         /*
3078          * With delayed allocation, we don't log the i_disksize update
3079          * if there is delayed block allocation. But we still need
3080          * to journalling the i_disksize update if writes to the end
3081          * of file which has an already mapped buffer.
3082          */
3083 retry_journal:
3084         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
3085                                 ext4_da_write_credits(inode, pos, len));
3086         if (IS_ERR(handle)) {
3087                 put_page(page);
3088                 return PTR_ERR(handle);
3089         }
3090
3091         lock_page(page);
3092         if (page->mapping != mapping) {
3093                 /* The page got truncated from under us */
3094                 unlock_page(page);
3095                 put_page(page);
3096                 ext4_journal_stop(handle);
3097                 goto retry_grab;
3098         }
3099         /* In case writeback began while the page was unlocked */
3100         wait_for_stable_page(page);
3101
3102 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3103         ret = ext4_block_write_begin(page, pos, len,
3104                                      ext4_da_get_block_prep);
3105 #else
3106         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3107 #endif
3108         if (ret < 0) {
3109                 unlock_page(page);
3110                 ext4_journal_stop(handle);
3111                 /*
3112                  * block_write_begin may have instantiated a few blocks
3113                  * outside i_size.  Trim these off again. Don't need
3114                  * i_size_read because we hold i_mutex.
3115                  */
3116                 if (pos + len > inode->i_size)
3117                         ext4_truncate_failed_write(inode);
3118
3119                 if (ret == -ENOSPC &&
3120                     ext4_should_retry_alloc(inode->i_sb, &retries))
3121                         goto retry_journal;
3122
3123                 put_page(page);
3124                 return ret;
3125         }
3126
3127         *pagep = page;
3128         return ret;
3129 }
3130
3131 /*
3132  * Check if we should update i_disksize
3133  * when write to the end of file but not require block allocation
3134  */
3135 static int ext4_da_should_update_i_disksize(struct page *page,
3136                                             unsigned long offset)
3137 {
3138         struct buffer_head *bh;
3139         struct inode *inode = page->mapping->host;
3140         unsigned int idx;
3141         int i;
3142
3143         bh = page_buffers(page);
3144         idx = offset >> inode->i_blkbits;
3145
3146         for (i = 0; i < idx; i++)
3147                 bh = bh->b_this_page;
3148
3149         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3150                 return 0;
3151         return 1;
3152 }
3153
3154 static int ext4_da_write_end(struct file *file,
3155                              struct address_space *mapping,
3156                              loff_t pos, unsigned len, unsigned copied,
3157                              struct page *page, void *fsdata)
3158 {
3159         struct inode *inode = mapping->host;
3160         int ret = 0, ret2;
3161         handle_t *handle = ext4_journal_current_handle();
3162         loff_t new_i_size;
3163         unsigned long start, end;
3164         int write_mode = (int)(unsigned long)fsdata;
3165
3166         if (write_mode == FALL_BACK_TO_NONDELALLOC)
3167                 return ext4_write_end(file, mapping, pos,
3168                                       len, copied, page, fsdata);
3169
3170         trace_ext4_da_write_end(inode, pos, len, copied);
3171         start = pos & (PAGE_SIZE - 1);
3172         end = start + copied - 1;
3173
3174         /*
3175          * generic_write_end() will run mark_inode_dirty() if i_size
3176          * changes.  So let's piggyback the i_disksize mark_inode_dirty
3177          * into that.
3178          */
3179         new_i_size = pos + copied;
3180         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3181                 if (ext4_has_inline_data(inode) ||
3182                     ext4_da_should_update_i_disksize(page, end)) {
3183                         ext4_update_i_disksize(inode, new_i_size);
3184                         /* We need to mark inode dirty even if
3185                          * new_i_size is less that inode->i_size
3186                          * bu greater than i_disksize.(hint delalloc)
3187                          */
3188                         ext4_mark_inode_dirty(handle, inode);
3189                 }
3190         }
3191
3192         if (write_mode != CONVERT_INLINE_DATA &&
3193             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3194             ext4_has_inline_data(inode))
3195                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3196                                                      page);
3197         else
3198                 ret2 = generic_write_end(file, mapping, pos, len, copied,
3199                                                         page, fsdata);
3200
3201         copied = ret2;
3202         if (ret2 < 0)
3203                 ret = ret2;
3204         ret2 = ext4_journal_stop(handle);
3205         if (!ret)
3206                 ret = ret2;
3207
3208         return ret ? ret : copied;
3209 }
3210
3211 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3212                                    unsigned int length)
3213 {
3214         /*
3215          * Drop reserved blocks
3216          */
3217         BUG_ON(!PageLocked(page));
3218         if (!page_has_buffers(page))
3219                 goto out;
3220
3221         ext4_da_page_release_reservation(page, offset, length);
3222
3223 out:
3224         ext4_invalidatepage(page, offset, length);
3225
3226         return;
3227 }
3228
3229 /*
3230  * Force all delayed allocation blocks to be allocated for a given inode.
3231  */
3232 int ext4_alloc_da_blocks(struct inode *inode)
3233 {
3234         trace_ext4_alloc_da_blocks(inode);
3235
3236         if (!EXT4_I(inode)->i_reserved_data_blocks)
3237                 return 0;
3238
3239         /*
3240          * We do something simple for now.  The filemap_flush() will
3241          * also start triggering a write of the data blocks, which is
3242          * not strictly speaking necessary (and for users of
3243          * laptop_mode, not even desirable).  However, to do otherwise
3244          * would require replicating code paths in:
3245          *
3246          * ext4_writepages() ->
3247          *    write_cache_pages() ---> (via passed in callback function)
3248          *        __mpage_da_writepage() -->
3249          *           mpage_add_bh_to_extent()
3250          *           mpage_da_map_blocks()
3251          *
3252          * The problem is that write_cache_pages(), located in
3253          * mm/page-writeback.c, marks pages clean in preparation for
3254          * doing I/O, which is not desirable if we're not planning on
3255          * doing I/O at all.
3256          *
3257          * We could call write_cache_pages(), and then redirty all of
3258          * the pages by calling redirty_page_for_writepage() but that
3259          * would be ugly in the extreme.  So instead we would need to
3260          * replicate parts of the code in the above functions,
3261          * simplifying them because we wouldn't actually intend to
3262          * write out the pages, but rather only collect contiguous
3263          * logical block extents, call the multi-block allocator, and
3264          * then update the buffer heads with the block allocations.
3265          *
3266          * For now, though, we'll cheat by calling filemap_flush(),
3267          * which will map the blocks, and start the I/O, but not
3268          * actually wait for the I/O to complete.
3269          */
3270         return filemap_flush(inode->i_mapping);
3271 }
3272
3273 /*
3274  * bmap() is special.  It gets used by applications such as lilo and by
3275  * the swapper to find the on-disk block of a specific piece of data.
3276  *
3277  * Naturally, this is dangerous if the block concerned is still in the
3278  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3279  * filesystem and enables swap, then they may get a nasty shock when the
3280  * data getting swapped to that swapfile suddenly gets overwritten by
3281  * the original zero's written out previously to the journal and
3282  * awaiting writeback in the kernel's buffer cache.
3283  *
3284  * So, if we see any bmap calls here on a modified, data-journaled file,
3285  * take extra steps to flush any blocks which might be in the cache.
3286  */
3287 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3288 {
3289         struct inode *inode = mapping->host;
3290         journal_t *journal;
3291         int err;
3292
3293         /*
3294          * We can get here for an inline file via the FIBMAP ioctl
3295          */
3296         if (ext4_has_inline_data(inode))
3297                 return 0;
3298
3299         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3300                         test_opt(inode->i_sb, DELALLOC)) {
3301                 /*
3302                  * With delalloc we want to sync the file
3303                  * so that we can make sure we allocate
3304                  * blocks for file
3305                  */
3306                 filemap_write_and_wait(mapping);
3307         }
3308
3309         if (EXT4_JOURNAL(inode) &&
3310             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3311                 /*
3312                  * This is a REALLY heavyweight approach, but the use of
3313                  * bmap on dirty files is expected to be extremely rare:
3314                  * only if we run lilo or swapon on a freshly made file
3315                  * do we expect this to happen.
3316                  *
3317                  * (bmap requires CAP_SYS_RAWIO so this does not
3318                  * represent an unprivileged user DOS attack --- we'd be
3319                  * in trouble if mortal users could trigger this path at
3320                  * will.)
3321                  *
3322                  * NB. EXT4_STATE_JDATA is not set on files other than
3323                  * regular files.  If somebody wants to bmap a directory
3324                  * or symlink and gets confused because the buffer
3325                  * hasn't yet been flushed to disk, they deserve
3326                  * everything they get.
3327                  */
3328
3329                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3330                 journal = EXT4_JOURNAL(inode);
3331                 jbd2_journal_lock_updates(journal);
3332                 err = jbd2_journal_flush(journal);
3333                 jbd2_journal_unlock_updates(journal);
3334
3335                 if (err)
3336                         return 0;
3337         }
3338
3339         return generic_block_bmap(mapping, block, ext4_get_block);
3340 }
3341
3342 static int ext4_readpage(struct file *file, struct page *page)
3343 {
3344         int ret = -EAGAIN;
3345         struct inode *inode = page->mapping->host;
3346
3347         trace_ext4_readpage(page);
3348
3349         if (ext4_has_inline_data(inode))
3350                 ret = ext4_readpage_inline(inode, page);
3351
3352         if (ret == -EAGAIN)
3353                 return ext4_mpage_readpages(page->mapping, NULL, page, 1,
3354                                                 false);
3355
3356         return ret;
3357 }
3358
3359 static int
3360 ext4_readpages(struct file *file, struct address_space *mapping,
3361                 struct list_head *pages, unsigned nr_pages)
3362 {
3363         struct inode *inode = mapping->host;
3364
3365         /* If the file has inline data, no need to do readpages. */
3366         if (ext4_has_inline_data(inode))
3367                 return 0;
3368
3369         return ext4_mpage_readpages(mapping, pages, NULL, nr_pages, true);
3370 }
3371
3372 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3373                                 unsigned int length)
3374 {
3375         trace_ext4_invalidatepage(page, offset, length);
3376
3377         /* No journalling happens on data buffers when this function is used */
3378         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3379
3380         block_invalidatepage(page, offset, length);
3381 }
3382
3383 static int __ext4_journalled_invalidatepage(struct page *page,
3384                                             unsigned int offset,
3385                                             unsigned int length)
3386 {
3387         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3388
3389         trace_ext4_journalled_invalidatepage(page, offset, length);
3390
3391         /*
3392          * If it's a full truncate we just forget about the pending dirtying
3393          */
3394         if (offset == 0 && length == PAGE_SIZE)
3395                 ClearPageChecked(page);
3396
3397         return jbd2_journal_invalidatepage(journal, page, offset, length);
3398 }
3399
3400 /* Wrapper for aops... */
3401 static void ext4_journalled_invalidatepage(struct page *page,
3402                                            unsigned int offset,
3403                                            unsigned int length)
3404 {
3405         WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3406 }
3407
3408 static int ext4_releasepage(struct page *page, gfp_t wait)
3409 {
3410         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3411
3412         trace_ext4_releasepage(page);
3413
3414         /* Page has dirty journalled data -> cannot release */
3415         if (PageChecked(page))
3416                 return 0;
3417         if (journal)
3418                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3419         else
3420                 return try_to_free_buffers(page);
3421 }
3422
3423 static bool ext4_inode_datasync_dirty(struct inode *inode)
3424 {
3425         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3426
3427         if (journal)
3428                 return !jbd2_transaction_committed(journal,
3429                                         EXT4_I(inode)->i_datasync_tid);
3430         /* Any metadata buffers to write? */
3431         if (!list_empty(&inode->i_mapping->private_list))
3432                 return true;
3433         return inode->i_state & I_DIRTY_DATASYNC;
3434 }
3435
3436 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3437                             unsigned flags, struct iomap *iomap)
3438 {
3439         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3440         unsigned int blkbits = inode->i_blkbits;
3441         unsigned long first_block, last_block;
3442         struct ext4_map_blocks map;
3443         bool delalloc = false;
3444         int ret;
3445
3446         if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3447                 return -EINVAL;
3448         first_block = offset >> blkbits;
3449         last_block = min_t(loff_t, (offset + length - 1) >> blkbits,
3450                            EXT4_MAX_LOGICAL_BLOCK);
3451
3452         if (flags & IOMAP_REPORT) {
3453                 if (ext4_has_inline_data(inode)) {
3454                         ret = ext4_inline_data_iomap(inode, iomap);
3455                         if (ret != -EAGAIN) {
3456                                 if (ret == 0 && offset >= iomap->length)
3457                                         ret = -ENOENT;
3458                                 return ret;
3459                         }
3460                 }
3461         } else {
3462                 if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3463                         return -ERANGE;
3464         }
3465
3466         map.m_lblk = first_block;
3467         map.m_len = last_block - first_block + 1;
3468
3469         if (flags & IOMAP_REPORT) {
3470                 ret = ext4_map_blocks(NULL, inode, &map, 0);
3471                 if (ret < 0)
3472                         return ret;
3473
3474                 if (ret == 0) {
3475                         ext4_lblk_t end = map.m_lblk + map.m_len - 1;
3476                         struct extent_status es;
3477
3478                         ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3479                                                   map.m_lblk, end, &es);
3480
3481                         if (!es.es_len || es.es_lblk > end) {
3482                                 /* entire range is a hole */
3483                         } else if (es.es_lblk > map.m_lblk) {
3484                                 /* range starts with a hole */
3485                                 map.m_len = es.es_lblk - map.m_lblk;
3486                         } else {
3487                                 ext4_lblk_t offs = 0;
3488
3489                                 if (es.es_lblk < map.m_lblk)
3490                                         offs = map.m_lblk - es.es_lblk;
3491                                 map.m_lblk = es.es_lblk + offs;
3492                                 map.m_len = es.es_len - offs;
3493                                 delalloc = true;
3494                         }
3495                 }
3496         } else if (flags & IOMAP_WRITE) {
3497                 int dio_credits;
3498                 handle_t *handle;
3499                 int retries = 0;
3500
3501                 /* Trim mapping request to maximum we can map at once for DIO */
3502                 if (map.m_len > DIO_MAX_BLOCKS)
3503                         map.m_len = DIO_MAX_BLOCKS;
3504                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
3505 retry:
3506                 /*
3507                  * Either we allocate blocks and then we don't get unwritten
3508                  * extent so we have reserved enough credits, or the blocks
3509                  * are already allocated and unwritten and in that case
3510                  * extent conversion fits in the credits as well.
3511                  */
3512                 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
3513                                             dio_credits);
3514                 if (IS_ERR(handle))
3515                         return PTR_ERR(handle);
3516
3517                 ret = ext4_map_blocks(handle, inode, &map,
3518                                       EXT4_GET_BLOCKS_CREATE_ZERO);
3519                 if (ret < 0) {
3520                         ext4_journal_stop(handle);
3521                         if (ret == -ENOSPC &&
3522                             ext4_should_retry_alloc(inode->i_sb, &retries))
3523                                 goto retry;
3524                         return ret;
3525                 }
3526
3527                 /*
3528                  * If we added blocks beyond i_size, we need to make sure they
3529                  * will get truncated if we crash before updating i_size in
3530                  * ext4_iomap_end(). For faults we don't need to do that (and
3531                  * even cannot because for orphan list operations inode_lock is
3532                  * required) - if we happen to instantiate block beyond i_size,
3533                  * it is because we race with truncate which has already added
3534                  * the inode to the orphan list.
3535                  */
3536                 if (!(flags & IOMAP_FAULT) && first_block + map.m_len >
3537                     (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) {
3538                         int err;
3539
3540                         err = ext4_orphan_add(handle, inode);
3541                         if (err < 0) {
3542                                 ext4_journal_stop(handle);
3543                                 return err;
3544                         }
3545                 }
3546                 ext4_journal_stop(handle);
3547         } else {
3548                 ret = ext4_map_blocks(NULL, inode, &map, 0);
3549                 if (ret < 0)
3550                         return ret;
3551         }
3552
3553         iomap->flags = 0;
3554         if (ext4_inode_datasync_dirty(inode))
3555                 iomap->flags |= IOMAP_F_DIRTY;
3556         iomap->bdev = inode->i_sb->s_bdev;
3557         iomap->dax_dev = sbi->s_daxdev;
3558         iomap->offset = (u64)first_block << blkbits;
3559         iomap->length = (u64)map.m_len << blkbits;
3560
3561         if (ret == 0) {
3562                 iomap->type = delalloc ? IOMAP_DELALLOC : IOMAP_HOLE;
3563                 iomap->addr = IOMAP_NULL_ADDR;
3564         } else {
3565                 if (map.m_flags & EXT4_MAP_MAPPED) {
3566                         iomap->type = IOMAP_MAPPED;
3567                 } else if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3568                         iomap->type = IOMAP_UNWRITTEN;
3569                 } else {
3570                         WARN_ON_ONCE(1);
3571                         return -EIO;
3572                 }
3573                 iomap->addr = (u64)map.m_pblk << blkbits;
3574         }
3575
3576         if (map.m_flags & EXT4_MAP_NEW)
3577                 iomap->flags |= IOMAP_F_NEW;
3578
3579         return 0;
3580 }
3581
3582 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3583                           ssize_t written, unsigned flags, struct iomap *iomap)
3584 {
3585         int ret = 0;
3586         handle_t *handle;
3587         int blkbits = inode->i_blkbits;
3588         bool truncate = false;
3589
3590         if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT))
3591                 return 0;
3592
3593         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3594         if (IS_ERR(handle)) {
3595                 ret = PTR_ERR(handle);
3596                 goto orphan_del;
3597         }
3598         if (ext4_update_inode_size(inode, offset + written))
3599                 ext4_mark_inode_dirty(handle, inode);
3600         /*
3601          * We may need to truncate allocated but not written blocks beyond EOF.
3602          */
3603         if (iomap->offset + iomap->length > 
3604             ALIGN(inode->i_size, 1 << blkbits)) {
3605                 ext4_lblk_t written_blk, end_blk;
3606
3607                 written_blk = (offset + written) >> blkbits;
3608                 end_blk = (offset + length) >> blkbits;
3609                 if (written_blk < end_blk && ext4_can_truncate(inode))
3610                         truncate = true;
3611         }
3612         /*
3613          * Remove inode from orphan list if we were extending a inode and
3614          * everything went fine.
3615          */
3616         if (!truncate && inode->i_nlink &&
3617             !list_empty(&EXT4_I(inode)->i_orphan))
3618                 ext4_orphan_del(handle, inode);
3619         ext4_journal_stop(handle);
3620         if (truncate) {
3621                 ext4_truncate_failed_write(inode);
3622 orphan_del:
3623                 /*
3624                  * If truncate failed early the inode might still be on the
3625                  * orphan list; we need to make sure the inode is removed from
3626                  * the orphan list in that case.
3627                  */
3628                 if (inode->i_nlink)
3629                         ext4_orphan_del(NULL, inode);
3630         }
3631         return ret;
3632 }
3633
3634 const struct iomap_ops ext4_iomap_ops = {
3635         .iomap_begin            = ext4_iomap_begin,
3636         .iomap_end              = ext4_iomap_end,
3637 };
3638
3639 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3640                             ssize_t size, void *private)
3641 {
3642         ext4_io_end_t *io_end = private;
3643
3644         /* if not async direct IO just return */
3645         if (!io_end)
3646                 return 0;
3647
3648         ext_debug("ext4_end_io_dio(): io_end 0x%p "
3649                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3650                   io_end, io_end->inode->i_ino, iocb, offset, size);
3651
3652         /*
3653          * Error during AIO DIO. We cannot convert unwritten extents as the
3654          * data was not written. Just clear the unwritten flag and drop io_end.
3655          */
3656         if (size <= 0) {
3657                 ext4_clear_io_unwritten_flag(io_end);
3658                 size = 0;
3659         }
3660         io_end->offset = offset;
3661         io_end->size = size;
3662         ext4_put_io_end(io_end);
3663
3664         return 0;
3665 }
3666
3667 /*
3668  * Handling of direct IO writes.
3669  *
3670  * For ext4 extent files, ext4 will do direct-io write even to holes,
3671  * preallocated extents, and those write extend the file, no need to
3672  * fall back to buffered IO.
3673  *
3674  * For holes, we fallocate those blocks, mark them as unwritten
3675  * If those blocks were preallocated, we mark sure they are split, but
3676  * still keep the range to write as unwritten.
3677  *
3678  * The unwritten extents will be converted to written when DIO is completed.
3679  * For async direct IO, since the IO may still pending when return, we
3680  * set up an end_io call back function, which will do the conversion
3681  * when async direct IO completed.
3682  *
3683  * If the O_DIRECT write will extend the file then add this inode to the
3684  * orphan list.  So recovery will truncate it back to the original size
3685  * if the machine crashes during the write.
3686  *
3687  */
3688 static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
3689 {
3690         struct file *file = iocb->ki_filp;
3691         struct inode *inode = file->f_mapping->host;
3692         struct ext4_inode_info *ei = EXT4_I(inode);
3693         ssize_t ret;
3694         loff_t offset = iocb->ki_pos;
3695         size_t count = iov_iter_count(iter);
3696         int overwrite = 0;
3697         get_block_t *get_block_func = NULL;
3698         int dio_flags = 0;
3699         loff_t final_size = offset + count;
3700         int orphan = 0;
3701         handle_t *handle;
3702
3703         if (final_size > inode->i_size || final_size > ei->i_disksize) {
3704                 /* Credits for sb + inode write */
3705                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3706                 if (IS_ERR(handle)) {
3707                         ret = PTR_ERR(handle);
3708                         goto out;
3709                 }
3710                 ret = ext4_orphan_add(handle, inode);
3711                 if (ret) {
3712                         ext4_journal_stop(handle);
3713                         goto out;
3714                 }
3715                 orphan = 1;
3716                 ext4_update_i_disksize(inode, inode->i_size);
3717                 ext4_journal_stop(handle);
3718         }
3719
3720         BUG_ON(iocb->private == NULL);
3721
3722         /*
3723          * Make all waiters for direct IO properly wait also for extent
3724          * conversion. This also disallows race between truncate() and
3725          * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3726          */
3727         inode_dio_begin(inode);
3728
3729         /* If we do a overwrite dio, i_mutex locking can be released */
3730         overwrite = *((int *)iocb->private);
3731
3732         if (overwrite)
3733                 inode_unlock(inode);
3734
3735         /*
3736          * For extent mapped files we could direct write to holes and fallocate.
3737          *
3738          * Allocated blocks to fill the hole are marked as unwritten to prevent
3739          * parallel buffered read to expose the stale data before DIO complete
3740          * the data IO.
3741          *
3742          * As to previously fallocated extents, ext4 get_block will just simply
3743          * mark the buffer mapped but still keep the extents unwritten.
3744          *
3745          * For non AIO case, we will convert those unwritten extents to written
3746          * after return back from blockdev_direct_IO. That way we save us from
3747          * allocating io_end structure and also the overhead of offloading
3748          * the extent convertion to a workqueue.
3749          *
3750          * For async DIO, the conversion needs to be deferred when the
3751          * IO is completed. The ext4 end_io callback function will be
3752          * called to take care of the conversion work.  Here for async
3753          * case, we allocate an io_end structure to hook to the iocb.
3754          */
3755         iocb->private = NULL;
3756         if (overwrite)
3757                 get_block_func = ext4_dio_get_block_overwrite;
3758         else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
3759                    round_down(offset, i_blocksize(inode)) >= inode->i_size) {
3760                 get_block_func = ext4_dio_get_block;
3761                 dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3762         } else if (is_sync_kiocb(iocb)) {
3763                 get_block_func = ext4_dio_get_block_unwritten_sync;
3764                 dio_flags = DIO_LOCKING;
3765         } else {
3766                 get_block_func = ext4_dio_get_block_unwritten_async;
3767                 dio_flags = DIO_LOCKING;
3768         }
3769         ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
3770                                    get_block_func, ext4_end_io_dio, NULL,
3771                                    dio_flags);
3772
3773         if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3774                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3775                 int err;
3776                 /*
3777                  * for non AIO case, since the IO is already
3778                  * completed, we could do the conversion right here
3779                  */
3780                 err = ext4_convert_unwritten_extents(NULL, inode,
3781                                                      offset, ret);
3782                 if (err < 0)
3783                         ret = err;
3784                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3785         }
3786
3787         inode_dio_end(inode);
3788         /* take i_mutex locking again if we do a ovewrite dio */
3789         if (overwrite)
3790                 inode_lock(inode);
3791
3792         if (ret < 0 && final_size > inode->i_size)
3793                 ext4_truncate_failed_write(inode);
3794
3795         /* Handle extending of i_size after direct IO write */
3796         if (orphan) {
3797                 int err;
3798
3799                 /* Credits for sb + inode write */
3800                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3801                 if (IS_ERR(handle)) {
3802                         /*
3803                          * We wrote the data but cannot extend
3804                          * i_size. Bail out. In async io case, we do
3805                          * not return error here because we have
3806                          * already submmitted the corresponding
3807                          * bio. Returning error here makes the caller
3808                          * think that this IO is done and failed
3809                          * resulting in race with bio's completion
3810                          * handler.
3811                          */
3812                         if (!ret)
3813                                 ret = PTR_ERR(handle);
3814                         if (inode->i_nlink)
3815                                 ext4_orphan_del(NULL, inode);
3816
3817                         goto out;
3818                 }
3819                 if (inode->i_nlink)
3820                         ext4_orphan_del(handle, inode);
3821                 if (ret > 0) {
3822                         loff_t end = offset + ret;
3823                         if (end > inode->i_size || end > ei->i_disksize) {
3824                                 ext4_update_i_disksize(inode, end);
3825                                 if (end > inode->i_size)
3826                                         i_size_write(inode, end);
3827                                 /*
3828                                  * We're going to return a positive `ret'
3829                                  * here due to non-zero-length I/O, so there's
3830                                  * no way of reporting error returns from
3831                                  * ext4_mark_inode_dirty() to userspace.  So
3832                                  * ignore it.
3833                                  */
3834                                 ext4_mark_inode_dirty(handle, inode);
3835                         }
3836                 }
3837                 err = ext4_journal_stop(handle);
3838                 if (ret == 0)
3839                         ret = err;
3840         }
3841 out:
3842         return ret;
3843 }
3844
3845 static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
3846 {
3847         struct address_space *mapping = iocb->ki_filp->f_mapping;
3848         struct inode *inode = mapping->host;
3849         size_t count = iov_iter_count(iter);
3850         ssize_t ret;
3851
3852         /*
3853          * Shared inode_lock is enough for us - it protects against concurrent
3854          * writes & truncates and since we take care of writing back page cache,
3855          * we are protected against page writeback as well.
3856          */
3857         inode_lock_shared(inode);
3858         ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
3859                                            iocb->ki_pos + count - 1);
3860         if (ret)
3861                 goto out_unlock;
3862         ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3863                                    iter, ext4_dio_get_block, NULL, NULL, 0);
3864 out_unlock:
3865         inode_unlock_shared(inode);
3866         return ret;
3867 }
3868
3869 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3870 {
3871         struct file *file = iocb->ki_filp;
3872         struct inode *inode = file->f_mapping->host;
3873         size_t count = iov_iter_count(iter);
3874         loff_t offset = iocb->ki_pos;
3875         ssize_t ret;
3876
3877 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3878         if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3879                 return 0;
3880 #endif
3881
3882         /*
3883          * If we are doing data journalling we don't support O_DIRECT
3884          */
3885         if (ext4_should_journal_data(inode))
3886                 return 0;
3887
3888         /* Let buffer I/O handle the inline data case. */
3889         if (ext4_has_inline_data(inode))
3890                 return 0;
3891
3892         trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3893         if (iov_iter_rw(iter) == READ)
3894                 ret = ext4_direct_IO_read(iocb, iter);
3895         else
3896                 ret = ext4_direct_IO_write(iocb, iter);
3897         trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3898         return ret;
3899 }
3900
3901 /*
3902  * Pages can be marked dirty completely asynchronously from ext4's journalling
3903  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3904  * much here because ->set_page_dirty is called under VFS locks.  The page is
3905  * not necessarily locked.
3906  *
3907  * We cannot just dirty the page and leave attached buffers clean, because the
3908  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3909  * or jbddirty because all the journalling code will explode.
3910  *
3911  * So what we do is to mark the page "pending dirty" and next time writepage
3912  * is called, propagate that into the buffers appropriately.
3913  */
3914 static int ext4_journalled_set_page_dirty(struct page *page)
3915 {
3916         SetPageChecked(page);
3917         return __set_page_dirty_nobuffers(page);
3918 }
3919
3920 static int ext4_set_page_dirty(struct page *page)
3921 {
3922         WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3923         WARN_ON_ONCE(!page_has_buffers(page));
3924         return __set_page_dirty_buffers(page);
3925 }
3926
3927 static const struct address_space_operations ext4_aops = {
3928         .readpage               = ext4_readpage,
3929         .readpages              = ext4_readpages,
3930         .writepage              = ext4_writepage,
3931         .writepages             = ext4_writepages,
3932         .write_begin            = ext4_write_begin,
3933         .write_end              = ext4_write_end,
3934         .set_page_dirty         = ext4_set_page_dirty,
3935         .bmap                   = ext4_bmap,
3936         .invalidatepage         = ext4_invalidatepage,
3937         .releasepage            = ext4_releasepage,
3938         .direct_IO              = ext4_direct_IO,
3939         .migratepage            = buffer_migrate_page,
3940         .is_partially_uptodate  = block_is_partially_uptodate,
3941         .error_remove_page      = generic_error_remove_page,
3942 };
3943
3944 static const struct address_space_operations ext4_journalled_aops = {
3945         .readpage               = ext4_readpage,
3946         .readpages              = ext4_readpages,
3947         .writepage              = ext4_writepage,
3948         .writepages             = ext4_writepages,
3949         .write_begin            = ext4_write_begin,
3950         .write_end              = ext4_journalled_write_end,
3951         .set_page_dirty         = ext4_journalled_set_page_dirty,
3952         .bmap                   = ext4_bmap,
3953         .invalidatepage         = ext4_journalled_invalidatepage,
3954         .releasepage            = ext4_releasepage,
3955         .direct_IO              = ext4_direct_IO,
3956         .is_partially_uptodate  = block_is_partially_uptodate,
3957         .error_remove_page      = generic_error_remove_page,
3958 };
3959
3960 static const struct address_space_operations ext4_da_aops = {
3961         .readpage               = ext4_readpage,
3962         .readpages              = ext4_readpages,
3963         .writepage              = ext4_writepage,
3964         .writepages             = ext4_writepages,
3965         .write_begin            = ext4_da_write_begin,
3966         .write_end              = ext4_da_write_end,
3967         .set_page_dirty         = ext4_set_page_dirty,
3968         .bmap                   = ext4_bmap,
3969         .invalidatepage         = ext4_da_invalidatepage,
3970         .releasepage            = ext4_releasepage,
3971         .direct_IO              = ext4_direct_IO,
3972         .migratepage            = buffer_migrate_page,
3973         .is_partially_uptodate  = block_is_partially_uptodate,
3974         .error_remove_page      = generic_error_remove_page,
3975 };
3976
3977 static const struct address_space_operations ext4_dax_aops = {
3978         .writepages             = ext4_dax_writepages,
3979         .direct_IO              = noop_direct_IO,
3980         .set_page_dirty         = noop_set_page_dirty,
3981         .bmap                   = ext4_bmap,
3982         .invalidatepage         = noop_invalidatepage,
3983 };
3984
3985 void ext4_set_aops(struct inode *inode)
3986 {
3987         switch (ext4_inode_journal_mode(inode)) {
3988         case EXT4_INODE_ORDERED_DATA_MODE:
3989         case EXT4_INODE_WRITEBACK_DATA_MODE:
3990                 break;
3991         case EXT4_INODE_JOURNAL_DATA_MODE:
3992                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3993                 return;
3994         default:
3995                 BUG();
3996         }
3997         if (IS_DAX(inode))
3998                 inode->i_mapping->a_ops = &ext4_dax_aops;
3999         else if (test_opt(inode->i_sb, DELALLOC))
4000                 inode->i_mapping->a_ops = &ext4_da_aops;
4001         else
4002                 inode->i_mapping->a_ops = &ext4_aops;
4003 }
4004
4005 static int __ext4_block_zero_page_range(handle_t *handle,
4006                 struct address_space *mapping, loff_t from, loff_t length)
4007 {
4008         ext4_fsblk_t index = from >> PAGE_SHIFT;
4009         unsigned offset = from & (PAGE_SIZE-1);
4010         unsigned blocksize, pos;
4011         ext4_lblk_t iblock;
4012         struct inode *inode = mapping->host;
4013         struct buffer_head *bh;
4014         struct page *page;
4015         int err = 0;
4016
4017         page = find_or_create_page(mapping, from >> PAGE_SHIFT,
4018                                    mapping_gfp_constraint(mapping, ~__GFP_FS));
4019         if (!page)
4020                 return -ENOMEM;
4021
4022         blocksize = inode->i_sb->s_blocksize;
4023
4024         iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
4025
4026         if (!page_has_buffers(page))
4027                 create_empty_buffers(page, blocksize, 0);
4028
4029         /* Find the buffer that contains "offset" */
4030         bh = page_buffers(page);
4031         pos = blocksize;
4032         while (offset >= pos) {
4033                 bh = bh->b_this_page;
4034                 iblock++;
4035                 pos += blocksize;
4036         }
4037         if (buffer_freed(bh)) {
4038                 BUFFER_TRACE(bh, "freed: skip");
4039                 goto unlock;
4040         }
4041         if (!buffer_mapped(bh)) {
4042                 BUFFER_TRACE(bh, "unmapped");
4043                 ext4_get_block(inode, iblock, bh, 0);
4044                 /* unmapped? It's a hole - nothing to do */
4045                 if (!buffer_mapped(bh)) {
4046                         BUFFER_TRACE(bh, "still unmapped");
4047                         goto unlock;
4048                 }
4049         }
4050
4051         /* Ok, it's mapped. Make sure it's up-to-date */
4052         if (PageUptodate(page))
4053                 set_buffer_uptodate(bh);
4054
4055         if (!buffer_uptodate(bh)) {
4056                 err = -EIO;
4057                 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
4058                 wait_on_buffer(bh);
4059                 /* Uhhuh. Read error. Complain and punt. */
4060                 if (!buffer_uptodate(bh))
4061                         goto unlock;
4062                 if (S_ISREG(inode->i_mode) &&
4063                     ext4_encrypted_inode(inode)) {
4064                         /* We expect the key to be set. */
4065                         BUG_ON(!fscrypt_has_encryption_key(inode));
4066                         BUG_ON(blocksize != PAGE_SIZE);
4067                         WARN_ON_ONCE(fscrypt_decrypt_page(page->mapping->host,
4068                                                 page, PAGE_SIZE, 0, page->index));
4069                 }
4070         }
4071         if (ext4_should_journal_data(inode)) {
4072                 BUFFER_TRACE(bh, "get write access");
4073                 err = ext4_journal_get_write_access(handle, bh);
4074                 if (err)
4075                         goto unlock;
4076         }
4077         zero_user(page, offset, length);
4078         BUFFER_TRACE(bh, "zeroed end of block");
4079
4080         if (ext4_should_journal_data(inode)) {
4081                 err = ext4_handle_dirty_metadata(handle, inode, bh);
4082         } else {
4083                 err = 0;
4084                 mark_buffer_dirty(bh);
4085                 if (ext4_should_order_data(inode))
4086                         err = ext4_jbd2_inode_add_write(handle, inode);
4087         }
4088
4089 unlock:
4090         unlock_page(page);
4091         put_page(page);
4092         return err;
4093 }
4094
4095 /*
4096  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
4097  * starting from file offset 'from'.  The range to be zero'd must
4098  * be contained with in one block.  If the specified range exceeds
4099  * the end of the block it will be shortened to end of the block
4100  * that cooresponds to 'from'
4101  */
4102 static int ext4_block_zero_page_range(handle_t *handle,
4103                 struct address_space *mapping, loff_t from, loff_t length)
4104 {
4105         struct inode *inode = mapping->host;
4106         unsigned offset = from & (PAGE_SIZE-1);
4107         unsigned blocksize = inode->i_sb->s_blocksize;
4108         unsigned max = blocksize - (offset & (blocksize - 1));
4109
4110         /*
4111          * correct length if it does not fall between
4112          * 'from' and the end of the block
4113          */
4114         if (length > max || length < 0)
4115                 length = max;
4116
4117         if (IS_DAX(inode)) {
4118                 return iomap_zero_range(inode, from, length, NULL,
4119                                         &ext4_iomap_ops);
4120         }
4121         return __ext4_block_zero_page_range(handle, mapping, from, length);
4122 }
4123
4124 /*
4125  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
4126  * up to the end of the block which corresponds to `from'.
4127  * This required during truncate. We need to physically zero the tail end
4128  * of that block so it doesn't yield old data if the file is later grown.
4129  */
4130 static int ext4_block_truncate_page(handle_t *handle,
4131                 struct address_space *mapping, loff_t from)
4132 {
4133         unsigned offset = from & (PAGE_SIZE-1);
4134         unsigned length;
4135         unsigned blocksize;
4136         struct inode *inode = mapping->host;
4137
4138         /* If we are processing an encrypted inode during orphan list handling */
4139         if (ext4_encrypted_inode(inode) && !fscrypt_has_encryption_key(inode))
4140                 return 0;
4141
4142         blocksize = inode->i_sb->s_blocksize;
4143         length = blocksize - (offset & (blocksize - 1));
4144
4145         return ext4_block_zero_page_range(handle, mapping, from, length);
4146 }
4147
4148 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
4149                              loff_t lstart, loff_t length)
4150 {
4151         struct super_block *sb = inode->i_sb;
4152         struct address_space *mapping = inode->i_mapping;
4153         unsigned partial_start, partial_end;
4154         ext4_fsblk_t start, end;
4155         loff_t byte_end = (lstart + length - 1);
4156         int err = 0;
4157
4158         partial_start = lstart & (sb->s_blocksize - 1);
4159         partial_end = byte_end & (sb->s_blocksize - 1);
4160
4161         start = lstart >> sb->s_blocksize_bits;
4162         end = byte_end >> sb->s_blocksize_bits;
4163
4164         /* Handle partial zero within the single block */
4165         if (start == end &&
4166             (partial_start || (partial_end != sb->s_blocksize - 1))) {
4167                 err = ext4_block_zero_page_range(handle, mapping,
4168                                                  lstart, length);
4169                 return err;
4170         }
4171         /* Handle partial zero out on the start of the range */
4172         if (partial_start) {
4173                 err = ext4_block_zero_page_range(handle, mapping,
4174                                                  lstart, sb->s_blocksize);
4175                 if (err)
4176                         return err;
4177         }
4178         /* Handle partial zero out on the end of the range */
4179         if (partial_end != sb->s_blocksize - 1)
4180                 err = ext4_block_zero_page_range(handle, mapping,
4181                                                  byte_end - partial_end,
4182                                                  partial_end + 1);
4183         return err;
4184 }
4185
4186 int ext4_can_truncate(struct inode *inode)
4187 {
4188         if (S_ISREG(inode->i_mode))
4189                 return 1;
4190         if (S_ISDIR(inode->i_mode))
4191                 return 1;
4192         if (S_ISLNK(inode->i_mode))
4193                 return !ext4_inode_is_fast_symlink(inode);
4194         return 0;
4195 }
4196
4197 /*
4198  * We have to make sure i_disksize gets properly updated before we truncate
4199  * page cache due to hole punching or zero range. Otherwise i_disksize update
4200  * can get lost as it may have been postponed to submission of writeback but
4201  * that will never happen after we truncate page cache.
4202  */
4203 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
4204                                       loff_t len)
4205 {
4206         handle_t *handle;
4207         loff_t size = i_size_read(inode);
4208
4209         WARN_ON(!inode_is_locked(inode));
4210         if (offset > size || offset + len < size)
4211                 return 0;
4212
4213         if (EXT4_I(inode)->i_disksize >= size)
4214                 return 0;
4215
4216         handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
4217         if (IS_ERR(handle))
4218                 return PTR_ERR(handle);
4219         ext4_update_i_disksize(inode, size);
4220         ext4_mark_inode_dirty(handle, inode);
4221         ext4_journal_stop(handle);
4222
4223         return 0;
4224 }
4225
4226 static void ext4_wait_dax_page(struct ext4_inode_info *ei)
4227 {
4228         up_write(&ei->i_mmap_sem);
4229         schedule();
4230         down_write(&ei->i_mmap_sem);
4231 }
4232
4233 int ext4_break_layouts(struct inode *inode)
4234 {
4235         struct ext4_inode_info *ei = EXT4_I(inode);
4236         struct page *page;
4237         int error;
4238
4239         if (WARN_ON_ONCE(!rwsem_is_locked(&ei->i_mmap_sem)))
4240                 return -EINVAL;
4241
4242         do {
4243                 page = dax_layout_busy_page(inode->i_mapping);
4244                 if (!page)
4245                         return 0;
4246
4247                 error = ___wait_var_event(&page->_refcount,
4248                                 atomic_read(&page->_refcount) == 1,
4249                                 TASK_INTERRUPTIBLE, 0, 0,
4250                                 ext4_wait_dax_page(ei));
4251         } while (error == 0);
4252
4253         return error;
4254 }
4255
4256 /*
4257  * ext4_punch_hole: punches a hole in a file by releasing the blocks
4258  * associated with the given offset and length
4259  *
4260  * @inode:  File inode
4261  * @offset: The offset where the hole will begin
4262  * @len:    The length of the hole
4263  *
4264  * Returns: 0 on success or negative on failure
4265  */
4266
4267 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
4268 {
4269         struct super_block *sb = inode->i_sb;
4270         ext4_lblk_t first_block, stop_block;
4271         struct address_space *mapping = inode->i_mapping;
4272         loff_t first_block_offset, last_block_offset;
4273         handle_t *handle;
4274         unsigned int credits;
4275         int ret = 0;
4276
4277         if (!S_ISREG(inode->i_mode))
4278                 return -EOPNOTSUPP;
4279
4280         trace_ext4_punch_hole(inode, offset, length, 0);
4281
4282         /*
4283          * Write out all dirty pages to avoid race conditions
4284          * Then release them.
4285          */
4286         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4287                 ret = filemap_write_and_wait_range(mapping, offset,
4288                                                    offset + length - 1);
4289                 if (ret)
4290                         return ret;
4291         }
4292
4293         inode_lock(inode);
4294
4295         /* No need to punch hole beyond i_size */
4296         if (offset >= inode->i_size)
4297                 goto out_mutex;
4298
4299         /*
4300          * If the hole extends beyond i_size, set the hole
4301          * to end after the page that contains i_size
4302          */
4303         if (offset + length > inode->i_size) {
4304                 length = inode->i_size +
4305                    PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4306                    offset;
4307         }
4308
4309         if (offset & (sb->s_blocksize - 1) ||
4310             (offset + length) & (sb->s_blocksize - 1)) {
4311                 /*
4312                  * Attach jinode to inode for jbd2 if we do any zeroing of
4313                  * partial block
4314                  */
4315                 ret = ext4_inode_attach_jinode(inode);
4316                 if (ret < 0)
4317                         goto out_mutex;
4318
4319         }
4320
4321         /* Wait all existing dio workers, newcomers will block on i_mutex */
4322         inode_dio_wait(inode);
4323
4324         /*
4325          * Prevent page faults from reinstantiating pages we have released from
4326          * page cache.
4327          */
4328         down_write(&EXT4_I(inode)->i_mmap_sem);
4329
4330         ret = ext4_break_layouts(inode);
4331         if (ret)
4332                 goto out_dio;
4333
4334         first_block_offset = round_up(offset, sb->s_blocksize);
4335         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4336
4337         /* Now release the pages and zero block aligned part of pages*/
4338         if (last_block_offset > first_block_offset) {
4339                 ret = ext4_update_disksize_before_punch(inode, offset, length);
4340                 if (ret)
4341                         goto out_dio;
4342                 truncate_pagecache_range(inode, first_block_offset,
4343                                          last_block_offset);
4344         }
4345
4346         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4347                 credits = ext4_writepage_trans_blocks(inode);
4348         else
4349                 credits = ext4_blocks_for_truncate(inode);
4350         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4351         if (IS_ERR(handle)) {
4352                 ret = PTR_ERR(handle);
4353                 ext4_std_error(sb, ret);
4354                 goto out_dio;
4355         }
4356
4357         ret = ext4_zero_partial_blocks(handle, inode, offset,
4358                                        length);
4359         if (ret)
4360                 goto out_stop;
4361
4362         first_block = (offset + sb->s_blocksize - 1) >>
4363                 EXT4_BLOCK_SIZE_BITS(sb);
4364         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4365
4366         /* If there are blocks to remove, do it */
4367         if (stop_block > first_block) {
4368
4369                 down_write(&EXT4_I(inode)->i_data_sem);
4370                 ext4_discard_preallocations(inode);
4371
4372                 ret = ext4_es_remove_extent(inode, first_block,
4373                                             stop_block - first_block);
4374                 if (ret) {
4375                         up_write(&EXT4_I(inode)->i_data_sem);
4376                         goto out_stop;
4377                 }
4378
4379                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4380                         ret = ext4_ext_remove_space(inode, first_block,
4381                                                     stop_block - 1);
4382                 else
4383                         ret = ext4_ind_remove_space(handle, inode, first_block,
4384                                                     stop_block);
4385
4386                 up_write(&EXT4_I(inode)->i_data_sem);
4387         }
4388         if (IS_SYNC(inode))
4389                 ext4_handle_sync(handle);
4390
4391         inode->i_mtime = inode->i_ctime = current_time(inode);
4392         ext4_mark_inode_dirty(handle, inode);
4393         if (ret >= 0)
4394                 ext4_update_inode_fsync_trans(handle, inode, 1);
4395 out_stop:
4396         ext4_journal_stop(handle);
4397 out_dio:
4398         up_write(&EXT4_I(inode)->i_mmap_sem);
4399 out_mutex:
4400         inode_unlock(inode);
4401         return ret;
4402 }
4403
4404 int ext4_inode_attach_jinode(struct inode *inode)
4405 {
4406         struct ext4_inode_info *ei = EXT4_I(inode);
4407         struct jbd2_inode *jinode;
4408
4409         if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4410                 return 0;
4411
4412         jinode = jbd2_alloc_inode(GFP_KERNEL);
4413         spin_lock(&inode->i_lock);
4414         if (!ei->jinode) {
4415                 if (!jinode) {
4416                         spin_unlock(&inode->i_lock);
4417                         return -ENOMEM;
4418                 }
4419                 ei->jinode = jinode;
4420                 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4421                 jinode = NULL;
4422         }
4423         spin_unlock(&inode->i_lock);
4424         if (unlikely(jinode != NULL))
4425                 jbd2_free_inode(jinode);
4426         return 0;
4427 }
4428
4429 /*
4430  * ext4_truncate()
4431  *
4432  * We block out ext4_get_block() block instantiations across the entire
4433  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4434  * simultaneously on behalf of the same inode.
4435  *
4436  * As we work through the truncate and commit bits of it to the journal there
4437  * is one core, guiding principle: the file's tree must always be consistent on
4438  * disk.  We must be able to restart the truncate after a crash.
4439  *
4440  * The file's tree may be transiently inconsistent in memory (although it
4441  * probably isn't), but whenever we close off and commit a journal transaction,
4442  * the contents of (the filesystem + the journal) must be consistent and
4443  * restartable.  It's pretty simple, really: bottom up, right to left (although
4444  * left-to-right works OK too).
4445  *
4446  * Note that at recovery time, journal replay occurs *before* the restart of
4447  * truncate against the orphan inode list.
4448  *
4449  * The committed inode has the new, desired i_size (which is the same as
4450  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4451  * that this inode's truncate did not complete and it will again call
4452  * ext4_truncate() to have another go.  So there will be instantiated blocks
4453  * to the right of the truncation point in a crashed ext4 filesystem.  But
4454  * that's fine - as long as they are linked from the inode, the post-crash
4455  * ext4_truncate() run will find them and release them.
4456  */
4457 int ext4_truncate(struct inode *inode)
4458 {
4459         struct ext4_inode_info *ei = EXT4_I(inode);
4460         unsigned int credits;
4461         int err = 0;
4462         handle_t *handle;
4463         struct address_space *mapping = inode->i_mapping;
4464
4465         /*
4466          * There is a possibility that we're either freeing the inode
4467          * or it's a completely new inode. In those cases we might not
4468          * have i_mutex locked because it's not necessary.
4469          */
4470         if (!(inode->i_state & (I_NEW|I_FREEING)))
4471                 WARN_ON(!inode_is_locked(inode));
4472         trace_ext4_truncate_enter(inode);
4473
4474         if (!ext4_can_truncate(inode))
4475                 return 0;
4476
4477         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4478
4479         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4480                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4481
4482         if (ext4_has_inline_data(inode)) {
4483                 int has_inline = 1;
4484
4485                 err = ext4_inline_data_truncate(inode, &has_inline);
4486                 if (err)
4487                         return err;
4488                 if (has_inline)
4489                         return 0;
4490         }
4491
4492         /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4493         if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4494                 if (ext4_inode_attach_jinode(inode) < 0)
4495                         return 0;
4496         }
4497
4498         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4499                 credits = ext4_writepage_trans_blocks(inode);
4500         else
4501                 credits = ext4_blocks_for_truncate(inode);
4502
4503         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4504         if (IS_ERR(handle))
4505                 return PTR_ERR(handle);
4506
4507         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4508                 ext4_block_truncate_page(handle, mapping, inode->i_size);
4509
4510         /*
4511          * We add the inode to the orphan list, so that if this
4512          * truncate spans multiple transactions, and we crash, we will
4513          * resume the truncate when the filesystem recovers.  It also
4514          * marks the inode dirty, to catch the new size.
4515          *
4516          * Implication: the file must always be in a sane, consistent
4517          * truncatable state while each transaction commits.
4518          */
4519         err = ext4_orphan_add(handle, inode);
4520         if (err)
4521                 goto out_stop;
4522
4523         down_write(&EXT4_I(inode)->i_data_sem);
4524
4525         ext4_discard_preallocations(inode);
4526
4527         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4528                 err = ext4_ext_truncate(handle, inode);
4529         else
4530                 ext4_ind_truncate(handle, inode);
4531
4532         up_write(&ei->i_data_sem);
4533         if (err)
4534                 goto out_stop;
4535
4536         if (IS_SYNC(inode))
4537                 ext4_handle_sync(handle);
4538
4539 out_stop:
4540         /*
4541          * If this was a simple ftruncate() and the file will remain alive,
4542          * then we need to clear up the orphan record which we created above.
4543          * However, if this was a real unlink then we were called by
4544          * ext4_evict_inode(), and we allow that function to clean up the
4545          * orphan info for us.
4546          */
4547         if (inode->i_nlink)
4548                 ext4_orphan_del(handle, inode);
4549
4550         inode->i_mtime = inode->i_ctime = current_time(inode);
4551         ext4_mark_inode_dirty(handle, inode);
4552         ext4_journal_stop(handle);
4553
4554         trace_ext4_truncate_exit(inode);
4555         return err;
4556 }
4557
4558 /*
4559  * ext4_get_inode_loc returns with an extra refcount against the inode's
4560  * underlying buffer_head on success. If 'in_mem' is true, we have all
4561  * data in memory that is needed to recreate the on-disk version of this
4562  * inode.
4563  */
4564 static int __ext4_get_inode_loc(struct inode *inode,
4565                                 struct ext4_iloc *iloc, int in_mem)
4566 {
4567         struct ext4_group_desc  *gdp;
4568         struct buffer_head      *bh;
4569         struct super_block      *sb = inode->i_sb;
4570         ext4_fsblk_t            block;
4571         int                     inodes_per_block, inode_offset;
4572
4573         iloc->bh = NULL;
4574         if (inode->i_ino < EXT4_ROOT_INO ||
4575             inode->i_ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4576                 return -EFSCORRUPTED;
4577
4578         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4579         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4580         if (!gdp)
4581                 return -EIO;
4582
4583         /*
4584          * Figure out the offset within the block group inode table
4585          */
4586         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4587         inode_offset = ((inode->i_ino - 1) %
4588                         EXT4_INODES_PER_GROUP(sb));
4589         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4590         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4591
4592         bh = sb_getblk(sb, block);
4593         if (unlikely(!bh))
4594                 return -ENOMEM;
4595         if (!buffer_uptodate(bh)) {
4596                 lock_buffer(bh);
4597
4598                 /*
4599                  * If the buffer has the write error flag, we have failed
4600                  * to write out another inode in the same block.  In this
4601                  * case, we don't have to read the block because we may
4602                  * read the old inode data successfully.
4603                  */
4604                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4605                         set_buffer_uptodate(bh);
4606
4607                 if (buffer_uptodate(bh)) {
4608                         /* someone brought it uptodate while we waited */
4609                         unlock_buffer(bh);
4610                         goto has_buffer;
4611                 }
4612
4613                 /*
4614                  * If we have all information of the inode in memory and this
4615                  * is the only valid inode in the block, we need not read the
4616                  * block.
4617                  */
4618                 if (in_mem) {
4619                         struct buffer_head *bitmap_bh;
4620                         int i, start;
4621
4622                         start = inode_offset & ~(inodes_per_block - 1);
4623
4624                         /* Is the inode bitmap in cache? */
4625                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4626                         if (unlikely(!bitmap_bh))
4627                                 goto make_io;
4628
4629                         /*
4630                          * If the inode bitmap isn't in cache then the
4631                          * optimisation may end up performing two reads instead
4632                          * of one, so skip it.
4633                          */
4634                         if (!buffer_uptodate(bitmap_bh)) {
4635                                 brelse(bitmap_bh);
4636                                 goto make_io;
4637                         }
4638                         for (i = start; i < start + inodes_per_block; i++) {
4639                                 if (i == inode_offset)
4640                                         continue;
4641                                 if (ext4_test_bit(i, bitmap_bh->b_data))
4642                                         break;
4643                         }
4644                         brelse(bitmap_bh);
4645                         if (i == start + inodes_per_block) {
4646                                 /* all other inodes are free, so skip I/O */
4647                                 memset(bh->b_data, 0, bh->b_size);
4648                                 set_buffer_uptodate(bh);
4649                                 unlock_buffer(bh);
4650                                 goto has_buffer;
4651                         }
4652                 }
4653
4654 make_io:
4655                 /*
4656                  * If we need to do any I/O, try to pre-readahead extra
4657                  * blocks from the inode table.
4658                  */
4659                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4660                         ext4_fsblk_t b, end, table;
4661                         unsigned num;
4662                         __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4663
4664                         table = ext4_inode_table(sb, gdp);
4665                         /* s_inode_readahead_blks is always a power of 2 */
4666                         b = block & ~((ext4_fsblk_t) ra_blks - 1);
4667                         if (table > b)
4668                                 b = table;
4669                         end = b + ra_blks;
4670                         num = EXT4_INODES_PER_GROUP(sb);
4671                         if (ext4_has_group_desc_csum(sb))
4672                                 num -= ext4_itable_unused_count(sb, gdp);
4673                         table += num / inodes_per_block;
4674                         if (end > table)
4675                                 end = table;
4676                         while (b <= end)
4677                                 sb_breadahead(sb, b++);
4678                 }
4679
4680                 /*
4681                  * There are other valid inodes in the buffer, this inode
4682                  * has in-inode xattrs, or we don't have this inode in memory.
4683                  * Read the block from disk.
4684                  */
4685                 trace_ext4_load_inode(inode);
4686                 get_bh(bh);
4687                 bh->b_end_io = end_buffer_read_sync;
4688                 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4689                 wait_on_buffer(bh);
4690                 if (!buffer_uptodate(bh)) {
4691                         EXT4_ERROR_INODE_BLOCK(inode, block,
4692                                                "unable to read itable block");
4693                         brelse(bh);
4694                         return -EIO;
4695                 }
4696         }
4697 has_buffer:
4698         iloc->bh = bh;
4699         return 0;
4700 }
4701
4702 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4703 {
4704         /* We have all inode data except xattrs in memory here. */
4705         return __ext4_get_inode_loc(inode, iloc,
4706                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4707 }
4708
4709 static bool ext4_should_use_dax(struct inode *inode)
4710 {
4711         if (!test_opt(inode->i_sb, DAX))
4712                 return false;
4713         if (!S_ISREG(inode->i_mode))
4714                 return false;
4715         if (ext4_should_journal_data(inode))
4716                 return false;
4717         if (ext4_has_inline_data(inode))
4718                 return false;
4719         if (ext4_encrypted_inode(inode))
4720                 return false;
4721         return true;
4722 }
4723
4724 void ext4_set_inode_flags(struct inode *inode)
4725 {
4726         unsigned int flags = EXT4_I(inode)->i_flags;
4727         unsigned int new_fl = 0;
4728
4729         if (flags & EXT4_SYNC_FL)
4730                 new_fl |= S_SYNC;
4731         if (flags & EXT4_APPEND_FL)
4732                 new_fl |= S_APPEND;
4733         if (flags & EXT4_IMMUTABLE_FL)
4734                 new_fl |= S_IMMUTABLE;
4735         if (flags & EXT4_NOATIME_FL)
4736                 new_fl |= S_NOATIME;
4737         if (flags & EXT4_DIRSYNC_FL)
4738                 new_fl |= S_DIRSYNC;
4739         if (ext4_should_use_dax(inode))
4740                 new_fl |= S_DAX;
4741         if (flags & EXT4_ENCRYPT_FL)
4742                 new_fl |= S_ENCRYPTED;
4743         inode_set_flags(inode, new_fl,
4744                         S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4745                         S_ENCRYPTED);
4746 }
4747
4748 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4749                                   struct ext4_inode_info *ei)
4750 {
4751         blkcnt_t i_blocks ;
4752         struct inode *inode = &(ei->vfs_inode);
4753         struct super_block *sb = inode->i_sb;
4754
4755         if (ext4_has_feature_huge_file(sb)) {
4756                 /* we are using combined 48 bit field */
4757                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4758                                         le32_to_cpu(raw_inode->i_blocks_lo);
4759                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4760                         /* i_blocks represent file system block size */
4761                         return i_blocks  << (inode->i_blkbits - 9);
4762                 } else {
4763                         return i_blocks;
4764                 }
4765         } else {
4766                 return le32_to_cpu(raw_inode->i_blocks_lo);
4767         }
4768 }
4769
4770 static inline int ext4_iget_extra_inode(struct inode *inode,
4771                                          struct ext4_inode *raw_inode,
4772                                          struct ext4_inode_info *ei)
4773 {
4774         __le32 *magic = (void *)raw_inode +
4775                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4776
4777         if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4778             EXT4_INODE_SIZE(inode->i_sb) &&
4779             *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4780                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4781                 return ext4_find_inline_data_nolock(inode);
4782         } else
4783                 EXT4_I(inode)->i_inline_off = 0;
4784         return 0;
4785 }
4786
4787 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4788 {
4789         if (!ext4_has_feature_project(inode->i_sb))
4790                 return -EOPNOTSUPP;
4791         *projid = EXT4_I(inode)->i_projid;
4792         return 0;
4793 }
4794
4795 /*
4796  * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4797  * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4798  * set.
4799  */
4800 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4801 {
4802         if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4803                 inode_set_iversion_raw(inode, val);
4804         else
4805                 inode_set_iversion_queried(inode, val);
4806 }
4807 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4808 {
4809         if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4810                 return inode_peek_iversion_raw(inode);
4811         else
4812                 return inode_peek_iversion(inode);
4813 }
4814
4815 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4816                           ext4_iget_flags flags, const char *function,
4817                           unsigned int line)
4818 {
4819         struct ext4_iloc iloc;
4820         struct ext4_inode *raw_inode;
4821         struct ext4_inode_info *ei;
4822         struct inode *inode;
4823         journal_t *journal = EXT4_SB(sb)->s_journal;
4824         long ret;
4825         loff_t size;
4826         int block;
4827         uid_t i_uid;
4828         gid_t i_gid;
4829         projid_t i_projid;
4830
4831         if ((!(flags & EXT4_IGET_SPECIAL) &&
4832              (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)) ||
4833             (ino < EXT4_ROOT_INO) ||
4834             (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))) {
4835                 if (flags & EXT4_IGET_HANDLE)
4836                         return ERR_PTR(-ESTALE);
4837                 __ext4_error(sb, function, line,
4838                              "inode #%lu: comm %s: iget: illegal inode #",
4839                              ino, current->comm);
4840                 return ERR_PTR(-EFSCORRUPTED);
4841         }
4842
4843         inode = iget_locked(sb, ino);
4844         if (!inode)
4845                 return ERR_PTR(-ENOMEM);
4846         if (!(inode->i_state & I_NEW))
4847                 return inode;
4848
4849         ei = EXT4_I(inode);
4850         iloc.bh = NULL;
4851
4852         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4853         if (ret < 0)
4854                 goto bad_inode;
4855         raw_inode = ext4_raw_inode(&iloc);
4856
4857         if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4858                 ext4_error_inode(inode, function, line, 0,
4859                                  "iget: root inode unallocated");
4860                 ret = -EFSCORRUPTED;
4861                 goto bad_inode;
4862         }
4863
4864         if ((flags & EXT4_IGET_HANDLE) &&
4865             (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4866                 ret = -ESTALE;
4867                 goto bad_inode;
4868         }
4869
4870         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4871                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4872                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4873                         EXT4_INODE_SIZE(inode->i_sb) ||
4874                     (ei->i_extra_isize & 3)) {
4875                         ext4_error_inode(inode, function, line, 0,
4876                                          "iget: bad extra_isize %u "
4877                                          "(inode size %u)",
4878                                          ei->i_extra_isize,
4879                                          EXT4_INODE_SIZE(inode->i_sb));
4880                         ret = -EFSCORRUPTED;
4881                         goto bad_inode;
4882                 }
4883         } else
4884                 ei->i_extra_isize = 0;
4885
4886         /* Precompute checksum seed for inode metadata */
4887         if (ext4_has_metadata_csum(sb)) {
4888                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4889                 __u32 csum;
4890                 __le32 inum = cpu_to_le32(inode->i_ino);
4891                 __le32 gen = raw_inode->i_generation;
4892                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4893                                    sizeof(inum));
4894                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4895                                               sizeof(gen));
4896         }
4897
4898         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4899                 ext4_error_inode(inode, function, line, 0,
4900                                  "iget: checksum invalid");
4901                 ret = -EFSBADCRC;
4902                 goto bad_inode;
4903         }
4904
4905         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4906         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4907         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4908         if (ext4_has_feature_project(sb) &&
4909             EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4910             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4911                 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4912         else
4913                 i_projid = EXT4_DEF_PROJID;
4914
4915         if (!(test_opt(inode->i_sb, NO_UID32))) {
4916                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4917                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4918         }
4919         i_uid_write(inode, i_uid);
4920         i_gid_write(inode, i_gid);
4921         ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4922         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4923
4924         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4925         ei->i_inline_off = 0;
4926         ei->i_dir_start_lookup = 0;
4927         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4928         /* We now have enough fields to check if the inode was active or not.
4929          * This is needed because nfsd might try to access dead inodes
4930          * the test is that same one that e2fsck uses
4931          * NeilBrown 1999oct15
4932          */
4933         if (inode->i_nlink == 0) {
4934                 if ((inode->i_mode == 0 ||
4935                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4936                     ino != EXT4_BOOT_LOADER_INO) {
4937                         /* this inode is deleted */
4938                         ret = -ESTALE;
4939                         goto bad_inode;
4940                 }
4941                 /* The only unlinked inodes we let through here have
4942                  * valid i_mode and are being read by the orphan
4943                  * recovery code: that's fine, we're about to complete
4944                  * the process of deleting those.
4945                  * OR it is the EXT4_BOOT_LOADER_INO which is
4946                  * not initialized on a new filesystem. */
4947         }
4948         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4949         ext4_set_inode_flags(inode);
4950         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4951         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4952         if (ext4_has_feature_64bit(sb))
4953                 ei->i_file_acl |=
4954                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4955         inode->i_size = ext4_isize(sb, raw_inode);
4956         if ((size = i_size_read(inode)) < 0) {
4957                 ext4_error_inode(inode, function, line, 0,
4958                                  "iget: bad i_size value: %lld", size);
4959                 ret = -EFSCORRUPTED;
4960                 goto bad_inode;
4961         }
4962         ei->i_disksize = inode->i_size;
4963 #ifdef CONFIG_QUOTA
4964         ei->i_reserved_quota = 0;
4965 #endif
4966         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4967         ei->i_block_group = iloc.block_group;
4968         ei->i_last_alloc_group = ~0;
4969         /*
4970          * NOTE! The in-memory inode i_data array is in little-endian order
4971          * even on big-endian machines: we do NOT byteswap the block numbers!
4972          */
4973         for (block = 0; block < EXT4_N_BLOCKS; block++)
4974                 ei->i_data[block] = raw_inode->i_block[block];
4975         INIT_LIST_HEAD(&ei->i_orphan);
4976
4977         /*
4978          * Set transaction id's of transactions that have to be committed
4979          * to finish f[data]sync. We set them to currently running transaction
4980          * as we cannot be sure that the inode or some of its metadata isn't
4981          * part of the transaction - the inode could have been reclaimed and
4982          * now it is reread from disk.
4983          */
4984         if (journal) {
4985                 transaction_t *transaction;
4986                 tid_t tid;
4987
4988                 read_lock(&journal->j_state_lock);
4989                 if (journal->j_running_transaction)
4990                         transaction = journal->j_running_transaction;
4991                 else
4992                         transaction = journal->j_committing_transaction;
4993                 if (transaction)
4994                         tid = transaction->t_tid;
4995                 else
4996                         tid = journal->j_commit_sequence;
4997                 read_unlock(&journal->j_state_lock);
4998                 ei->i_sync_tid = tid;
4999                 ei->i_datasync_tid = tid;
5000         }
5001
5002         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5003                 if (ei->i_extra_isize == 0) {
5004                         /* The extra space is currently unused. Use it. */
5005                         BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
5006                         ei->i_extra_isize = sizeof(struct ext4_inode) -
5007                                             EXT4_GOOD_OLD_INODE_SIZE;
5008                 } else {
5009                         ret = ext4_iget_extra_inode(inode, raw_inode, ei);
5010                         if (ret)
5011                                 goto bad_inode;
5012                 }
5013         }
5014
5015         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
5016         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
5017         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
5018         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
5019
5020         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5021                 u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
5022
5023                 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5024                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5025                                 ivers |=
5026                     (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
5027                 }
5028                 ext4_inode_set_iversion_queried(inode, ivers);
5029         }
5030
5031         ret = 0;
5032         if (ei->i_file_acl &&
5033             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
5034                 ext4_error_inode(inode, function, line, 0,
5035                                  "iget: bad extended attribute block %llu",
5036                                  ei->i_file_acl);
5037                 ret = -EFSCORRUPTED;
5038                 goto bad_inode;
5039         } else if (!ext4_has_inline_data(inode)) {
5040                 /* validate the block references in the inode */
5041                 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5042                    (S_ISLNK(inode->i_mode) &&
5043                     !ext4_inode_is_fast_symlink(inode))) {
5044                         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
5045                                 ret = ext4_ext_check_inode(inode);
5046                         else
5047                                 ret = ext4_ind_check_inode(inode);
5048                 }
5049         }
5050         if (ret)
5051                 goto bad_inode;
5052
5053         if (S_ISREG(inode->i_mode)) {
5054                 inode->i_op = &ext4_file_inode_operations;
5055                 inode->i_fop = &ext4_file_operations;
5056                 ext4_set_aops(inode);
5057         } else if (S_ISDIR(inode->i_mode)) {
5058                 inode->i_op = &ext4_dir_inode_operations;
5059                 inode->i_fop = &ext4_dir_operations;
5060         } else if (S_ISLNK(inode->i_mode)) {
5061                 /* VFS does not allow setting these so must be corruption */
5062                 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
5063                         ext4_error_inode(inode, function, line, 0,
5064                                          "iget: immutable or append flags "
5065                                          "not allowed on symlinks");
5066                         ret = -EFSCORRUPTED;
5067                         goto bad_inode;
5068                 }
5069                 if (ext4_encrypted_inode(inode)) {
5070                         inode->i_op = &ext4_encrypted_symlink_inode_operations;
5071                         ext4_set_aops(inode);
5072                 } else if (ext4_inode_is_fast_symlink(inode)) {
5073                         inode->i_link = (char *)ei->i_data;
5074                         inode->i_op = &ext4_fast_symlink_inode_operations;
5075                         nd_terminate_link(ei->i_data, inode->i_size,
5076                                 sizeof(ei->i_data) - 1);
5077                 } else {
5078                         inode->i_op = &ext4_symlink_inode_operations;
5079                         ext4_set_aops(inode);
5080                 }
5081                 inode_nohighmem(inode);
5082         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5083               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5084                 inode->i_op = &ext4_special_inode_operations;
5085                 if (raw_inode->i_block[0])
5086                         init_special_inode(inode, inode->i_mode,
5087                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5088                 else
5089                         init_special_inode(inode, inode->i_mode,
5090                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5091         } else if (ino == EXT4_BOOT_LOADER_INO) {
5092                 make_bad_inode(inode);
5093         } else {
5094                 ret = -EFSCORRUPTED;
5095                 ext4_error_inode(inode, function, line, 0,
5096                                  "iget: bogus i_mode (%o)", inode->i_mode);
5097                 goto bad_inode;
5098         }
5099         brelse(iloc.bh);
5100
5101         unlock_new_inode(inode);
5102         return inode;
5103
5104 bad_inode:
5105         brelse(iloc.bh);
5106         iget_failed(inode);
5107         return ERR_PTR(ret);
5108 }
5109
5110 static int ext4_inode_blocks_set(handle_t *handle,
5111                                 struct ext4_inode *raw_inode,
5112                                 struct ext4_inode_info *ei)
5113 {
5114         struct inode *inode = &(ei->vfs_inode);
5115         u64 i_blocks = inode->i_blocks;
5116         struct super_block *sb = inode->i_sb;
5117
5118         if (i_blocks <= ~0U) {
5119                 /*
5120                  * i_blocks can be represented in a 32 bit variable
5121                  * as multiple of 512 bytes
5122                  */
5123                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5124                 raw_inode->i_blocks_high = 0;
5125                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5126                 return 0;
5127         }
5128         if (!ext4_has_feature_huge_file(sb))
5129                 return -EFBIG;
5130
5131         if (i_blocks <= 0xffffffffffffULL) {
5132                 /*
5133                  * i_blocks can be represented in a 48 bit variable
5134                  * as multiple of 512 bytes
5135                  */
5136                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5137                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5138                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5139         } else {
5140                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5141                 /* i_block is stored in file system block size */
5142                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
5143                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5144                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5145         }
5146         return 0;
5147 }
5148
5149 struct other_inode {
5150         unsigned long           orig_ino;
5151         struct ext4_inode       *raw_inode;
5152 };
5153
5154 static int other_inode_match(struct inode * inode, unsigned long ino,
5155                              void *data)
5156 {
5157         struct other_inode *oi = (struct other_inode *) data;
5158
5159         if ((inode->i_ino != ino) ||
5160             (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5161                                I_DIRTY_INODE)) ||
5162             ((inode->i_state & I_DIRTY_TIME) == 0))
5163                 return 0;
5164         spin_lock(&inode->i_lock);
5165         if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5166                                 I_DIRTY_INODE)) == 0) &&
5167             (inode->i_state & I_DIRTY_TIME)) {
5168                 struct ext4_inode_info  *ei = EXT4_I(inode);
5169
5170                 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
5171                 spin_unlock(&inode->i_lock);
5172
5173                 spin_lock(&ei->i_raw_lock);
5174                 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
5175                 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
5176                 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
5177                 ext4_inode_csum_set(inode, oi->raw_inode, ei);
5178                 spin_unlock(&ei->i_raw_lock);
5179                 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
5180                 return -1;
5181         }
5182         spin_unlock(&inode->i_lock);
5183         return -1;
5184 }
5185
5186 /*
5187  * Opportunistically update the other time fields for other inodes in
5188  * the same inode table block.
5189  */
5190 static void ext4_update_other_inodes_time(struct super_block *sb,
5191                                           unsigned long orig_ino, char *buf)
5192 {
5193         struct other_inode oi;
5194         unsigned long ino;
5195         int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5196         int inode_size = EXT4_INODE_SIZE(sb);
5197
5198         oi.orig_ino = orig_ino;
5199         /*
5200          * Calculate the first inode in the inode table block.  Inode
5201          * numbers are one-based.  That is, the first inode in a block
5202          * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5203          */
5204         ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5205         for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5206                 if (ino == orig_ino)
5207                         continue;
5208                 oi.raw_inode = (struct ext4_inode *) buf;
5209                 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
5210         }
5211 }
5212
5213 /*
5214  * Post the struct inode info into an on-disk inode location in the
5215  * buffer-cache.  This gobbles the caller's reference to the
5216  * buffer_head in the inode location struct.
5217  *
5218  * The caller must have write access to iloc->bh.
5219  */
5220 static int ext4_do_update_inode(handle_t *handle,
5221                                 struct inode *inode,
5222                                 struct ext4_iloc *iloc)
5223 {
5224         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5225         struct ext4_inode_info *ei = EXT4_I(inode);
5226         struct buffer_head *bh = iloc->bh;
5227         struct super_block *sb = inode->i_sb;
5228         int err = 0, rc, block;
5229         int need_datasync = 0, set_large_file = 0;
5230         uid_t i_uid;
5231         gid_t i_gid;
5232         projid_t i_projid;
5233
5234         spin_lock(&ei->i_raw_lock);
5235
5236         /* For fields not tracked in the in-memory inode,
5237          * initialise them to zero for new inodes. */
5238         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5239                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5240
5241         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5242         i_uid = i_uid_read(inode);
5243         i_gid = i_gid_read(inode);
5244         i_projid = from_kprojid(&init_user_ns, ei->i_projid);
5245         if (!(test_opt(inode->i_sb, NO_UID32))) {
5246                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
5247                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
5248 /*
5249  * Fix up interoperability with old kernels. Otherwise, old inodes get
5250  * re-used with the upper 16 bits of the uid/gid intact
5251  */
5252                 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
5253                         raw_inode->i_uid_high = 0;
5254                         raw_inode->i_gid_high = 0;
5255                 } else {
5256                         raw_inode->i_uid_high =
5257                                 cpu_to_le16(high_16_bits(i_uid));
5258                         raw_inode->i_gid_high =
5259                                 cpu_to_le16(high_16_bits(i_gid));
5260                 }
5261         } else {
5262                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
5263                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
5264                 raw_inode->i_uid_high = 0;
5265                 raw_inode->i_gid_high = 0;
5266         }
5267         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5268
5269         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5270         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5271         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5272         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5273
5274         err = ext4_inode_blocks_set(handle, raw_inode, ei);
5275         if (err) {
5276                 spin_unlock(&ei->i_raw_lock);
5277                 goto out_brelse;
5278         }
5279         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5280         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5281         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
5282                 raw_inode->i_file_acl_high =
5283                         cpu_to_le16(ei->i_file_acl >> 32);
5284         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5285         if (ei->i_disksize != ext4_isize(inode->i_sb, raw_inode)) {
5286                 ext4_isize_set(raw_inode, ei->i_disksize);
5287                 need_datasync = 1;
5288         }
5289         if (ei->i_disksize > 0x7fffffffULL) {
5290                 if (!ext4_has_feature_large_file(sb) ||
5291                                 EXT4_SB(sb)->s_es->s_rev_level ==
5292                     cpu_to_le32(EXT4_GOOD_OLD_REV))
5293                         set_large_file = 1;
5294         }
5295         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5296         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5297                 if (old_valid_dev(inode->i_rdev)) {
5298                         raw_inode->i_block[0] =
5299                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
5300                         raw_inode->i_block[1] = 0;
5301                 } else {
5302                         raw_inode->i_block[0] = 0;
5303                         raw_inode->i_block[1] =
5304                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
5305                         raw_inode->i_block[2] = 0;
5306                 }
5307         } else if (!ext4_has_inline_data(inode)) {
5308                 for (block = 0; block < EXT4_N_BLOCKS; block++)
5309                         raw_inode->i_block[block] = ei->i_data[block];
5310         }
5311
5312         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5313                 u64 ivers = ext4_inode_peek_iversion(inode);
5314
5315                 raw_inode->i_disk_version = cpu_to_le32(ivers);
5316                 if (ei->i_extra_isize) {
5317                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5318                                 raw_inode->i_version_hi =
5319                                         cpu_to_le32(ivers >> 32);
5320                         raw_inode->i_extra_isize =
5321                                 cpu_to_le16(ei->i_extra_isize);
5322                 }
5323         }
5324
5325         BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5326                i_projid != EXT4_DEF_PROJID);
5327
5328         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5329             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5330                 raw_inode->i_projid = cpu_to_le32(i_projid);
5331
5332         ext4_inode_csum_set(inode, raw_inode, ei);
5333         spin_unlock(&ei->i_raw_lock);
5334         if (inode->i_sb->s_flags & SB_LAZYTIME)
5335                 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5336                                               bh->b_data);
5337
5338         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5339         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5340         if (!err)
5341                 err = rc;
5342         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5343         if (set_large_file) {
5344                 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5345                 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5346                 if (err)
5347                         goto out_brelse;
5348                 ext4_set_feature_large_file(sb);
5349                 ext4_handle_sync(handle);
5350                 err = ext4_handle_dirty_super(handle, sb);
5351         }
5352         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5353 out_brelse:
5354         brelse(bh);
5355         ext4_std_error(inode->i_sb, err);
5356         return err;
5357 }
5358
5359 /*
5360  * ext4_write_inode()
5361  *
5362  * We are called from a few places:
5363  *
5364  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5365  *   Here, there will be no transaction running. We wait for any running
5366  *   transaction to commit.
5367  *
5368  * - Within flush work (sys_sync(), kupdate and such).
5369  *   We wait on commit, if told to.
5370  *
5371  * - Within iput_final() -> write_inode_now()
5372  *   We wait on commit, if told to.
5373  *
5374  * In all cases it is actually safe for us to return without doing anything,
5375  * because the inode has been copied into a raw inode buffer in
5376  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5377  * writeback.
5378  *
5379  * Note that we are absolutely dependent upon all inode dirtiers doing the
5380  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5381  * which we are interested.
5382  *
5383  * It would be a bug for them to not do this.  The code:
5384  *
5385  *      mark_inode_dirty(inode)
5386  *      stuff();
5387  *      inode->i_size = expr;
5388  *
5389  * is in error because write_inode() could occur while `stuff()' is running,
5390  * and the new i_size will be lost.  Plus the inode will no longer be on the
5391  * superblock's dirty inode list.
5392  */
5393 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5394 {
5395         int err;
5396
5397         if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5398             sb_rdonly(inode->i_sb))
5399                 return 0;
5400
5401         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5402                 return -EIO;
5403
5404         if (EXT4_SB(inode->i_sb)->s_journal) {
5405                 if (ext4_journal_current_handle()) {
5406                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5407                         dump_stack();
5408                         return -EIO;
5409                 }
5410
5411                 /*
5412                  * No need to force transaction in WB_SYNC_NONE mode. Also
5413                  * ext4_sync_fs() will force the commit after everything is
5414                  * written.
5415                  */
5416                 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5417                         return 0;
5418
5419                 err = jbd2_complete_transaction(EXT4_SB(inode->i_sb)->s_journal,
5420                                                 EXT4_I(inode)->i_sync_tid);
5421         } else {
5422                 struct ext4_iloc iloc;
5423
5424                 err = __ext4_get_inode_loc(inode, &iloc, 0);
5425                 if (err)
5426                         return err;
5427                 /*
5428                  * sync(2) will flush the whole buffer cache. No need to do
5429                  * it here separately for each inode.
5430                  */
5431                 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5432                         sync_dirty_buffer(iloc.bh);
5433                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5434                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5435                                          "IO error syncing inode");
5436                         err = -EIO;
5437                 }
5438                 brelse(iloc.bh);
5439         }
5440         return err;
5441 }
5442
5443 /*
5444  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5445  * buffers that are attached to a page stradding i_size and are undergoing
5446  * commit. In that case we have to wait for commit to finish and try again.
5447  */
5448 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5449 {
5450         struct page *page;
5451         unsigned offset;
5452         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5453         tid_t commit_tid = 0;
5454         int ret;
5455
5456         offset = inode->i_size & (PAGE_SIZE - 1);
5457         /*
5458          * All buffers in the last page remain valid? Then there's nothing to
5459          * do. We do the check mainly to optimize the common PAGE_SIZE ==
5460          * blocksize case
5461          */
5462         if (offset > PAGE_SIZE - i_blocksize(inode))
5463                 return;
5464         while (1) {
5465                 page = find_lock_page(inode->i_mapping,
5466                                       inode->i_size >> PAGE_SHIFT);
5467                 if (!page)
5468                         return;
5469                 ret = __ext4_journalled_invalidatepage(page, offset,
5470                                                 PAGE_SIZE - offset);
5471                 unlock_page(page);
5472                 put_page(page);
5473                 if (ret != -EBUSY)
5474                         return;
5475                 commit_tid = 0;
5476                 read_lock(&journal->j_state_lock);
5477                 if (journal->j_committing_transaction)
5478                         commit_tid = journal->j_committing_transaction->t_tid;
5479                 read_unlock(&journal->j_state_lock);
5480                 if (commit_tid)
5481                         jbd2_log_wait_commit(journal, commit_tid);
5482         }
5483 }
5484
5485 /*
5486  * ext4_setattr()
5487  *
5488  * Called from notify_change.
5489  *
5490  * We want to trap VFS attempts to truncate the file as soon as
5491  * possible.  In particular, we want to make sure that when the VFS
5492  * shrinks i_size, we put the inode on the orphan list and modify
5493  * i_disksize immediately, so that during the subsequent flushing of
5494  * dirty pages and freeing of disk blocks, we can guarantee that any
5495  * commit will leave the blocks being flushed in an unused state on
5496  * disk.  (On recovery, the inode will get truncated and the blocks will
5497  * be freed, so we have a strong guarantee that no future commit will
5498  * leave these blocks visible to the user.)
5499  *
5500  * Another thing we have to assure is that if we are in ordered mode
5501  * and inode is still attached to the committing transaction, we must
5502  * we start writeout of all the dirty pages which are being truncated.
5503  * This way we are sure that all the data written in the previous
5504  * transaction are already on disk (truncate waits for pages under
5505  * writeback).
5506  *
5507  * Called with inode->i_mutex down.
5508  */
5509 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5510 {
5511         struct inode *inode = d_inode(dentry);
5512         int error, rc = 0;
5513         int orphan = 0;
5514         const unsigned int ia_valid = attr->ia_valid;
5515
5516         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5517                 return -EIO;
5518
5519         error = setattr_prepare(dentry, attr);
5520         if (error)
5521                 return error;
5522
5523         error = fscrypt_prepare_setattr(dentry, attr);
5524         if (error)
5525                 return error;
5526
5527         if (is_quota_modification(inode, attr)) {
5528                 error = dquot_initialize(inode);
5529                 if (error)
5530                         return error;
5531         }
5532         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5533             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5534                 handle_t *handle;
5535
5536                 /* (user+group)*(old+new) structure, inode write (sb,
5537                  * inode block, ? - but truncate inode update has it) */
5538                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5539                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5540                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5541                 if (IS_ERR(handle)) {
5542                         error = PTR_ERR(handle);
5543                         goto err_out;
5544                 }
5545
5546                 /* dquot_transfer() calls back ext4_get_inode_usage() which
5547                  * counts xattr inode references.
5548                  */
5549                 down_read(&EXT4_I(inode)->xattr_sem);
5550                 error = dquot_transfer(inode, attr);
5551                 up_read(&EXT4_I(inode)->xattr_sem);
5552
5553                 if (error) {
5554                         ext4_journal_stop(handle);
5555                         return error;
5556                 }
5557                 /* Update corresponding info in inode so that everything is in
5558                  * one transaction */
5559                 if (attr->ia_valid & ATTR_UID)
5560                         inode->i_uid = attr->ia_uid;
5561                 if (attr->ia_valid & ATTR_GID)
5562                         inode->i_gid = attr->ia_gid;
5563                 error = ext4_mark_inode_dirty(handle, inode);
5564                 ext4_journal_stop(handle);
5565         }
5566
5567         if (attr->ia_valid & ATTR_SIZE) {
5568                 handle_t *handle;
5569                 loff_t oldsize = inode->i_size;
5570                 int shrink = (attr->ia_size <= inode->i_size);
5571
5572                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5573                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5574
5575                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
5576                                 return -EFBIG;
5577                 }
5578                 if (!S_ISREG(inode->i_mode))
5579                         return -EINVAL;
5580
5581                 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5582                         inode_inc_iversion(inode);
5583
5584                 if (ext4_should_order_data(inode) &&
5585                     (attr->ia_size < inode->i_size)) {
5586                         error = ext4_begin_ordered_truncate(inode,
5587                                                             attr->ia_size);
5588                         if (error)
5589                                 goto err_out;
5590                 }
5591                 if (attr->ia_size != inode->i_size) {
5592                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5593                         if (IS_ERR(handle)) {
5594                                 error = PTR_ERR(handle);
5595                                 goto err_out;
5596                         }
5597                         if (ext4_handle_valid(handle) && shrink) {
5598                                 error = ext4_orphan_add(handle, inode);
5599                                 orphan = 1;
5600                         }
5601                         /*
5602                          * Update c/mtime on truncate up, ext4_truncate() will
5603                          * update c/mtime in shrink case below
5604                          */
5605                         if (!shrink) {
5606                                 inode->i_mtime = current_time(inode);
5607                                 inode->i_ctime = inode->i_mtime;
5608                         }
5609                         down_write(&EXT4_I(inode)->i_data_sem);
5610                         EXT4_I(inode)->i_disksize = attr->ia_size;
5611                         rc = ext4_mark_inode_dirty(handle, inode);
5612                         if (!error)
5613                                 error = rc;
5614                         /*
5615                          * We have to update i_size under i_data_sem together
5616                          * with i_disksize to avoid races with writeback code
5617                          * running ext4_wb_update_i_disksize().
5618                          */
5619                         if (!error)
5620                                 i_size_write(inode, attr->ia_size);
5621                         up_write(&EXT4_I(inode)->i_data_sem);
5622                         ext4_journal_stop(handle);
5623                         if (error) {
5624                                 if (orphan)
5625                                         ext4_orphan_del(NULL, inode);
5626                                 goto err_out;
5627                         }
5628                 }
5629                 if (!shrink)
5630                         pagecache_isize_extended(inode, oldsize, inode->i_size);
5631
5632                 /*
5633                  * Blocks are going to be removed from the inode. Wait
5634                  * for dio in flight.  Temporarily disable
5635                  * dioread_nolock to prevent livelock.
5636                  */
5637                 if (orphan) {
5638                         if (!ext4_should_journal_data(inode)) {
5639                                 inode_dio_wait(inode);
5640                         } else
5641                                 ext4_wait_for_tail_page_commit(inode);
5642                 }
5643                 down_write(&EXT4_I(inode)->i_mmap_sem);
5644
5645                 rc = ext4_break_layouts(inode);
5646                 if (rc) {
5647                         up_write(&EXT4_I(inode)->i_mmap_sem);
5648                         error = rc;
5649                         goto err_out;
5650                 }
5651
5652                 /*
5653                  * Truncate pagecache after we've waited for commit
5654                  * in data=journal mode to make pages freeable.
5655                  */
5656                 truncate_pagecache(inode, inode->i_size);
5657                 if (shrink) {
5658                         rc = ext4_truncate(inode);
5659                         if (rc)
5660                                 error = rc;
5661                 }
5662                 up_write(&EXT4_I(inode)->i_mmap_sem);
5663         }
5664
5665         if (!error) {
5666                 setattr_copy(inode, attr);
5667                 mark_inode_dirty(inode);
5668         }
5669
5670         /*
5671          * If the call to ext4_truncate failed to get a transaction handle at
5672          * all, we need to clean up the in-core orphan list manually.
5673          */
5674         if (orphan && inode->i_nlink)
5675                 ext4_orphan_del(NULL, inode);
5676
5677         if (!error && (ia_valid & ATTR_MODE))
5678                 rc = posix_acl_chmod(inode, inode->i_mode);
5679
5680 err_out:
5681         ext4_std_error(inode->i_sb, error);
5682         if (!error)
5683                 error = rc;
5684         return error;
5685 }
5686
5687 int ext4_getattr(const struct path *path, struct kstat *stat,
5688                  u32 request_mask, unsigned int query_flags)
5689 {
5690         struct inode *inode = d_inode(path->dentry);
5691         struct ext4_inode *raw_inode;
5692         struct ext4_inode_info *ei = EXT4_I(inode);
5693         unsigned int flags;
5694
5695         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5696                 stat->result_mask |= STATX_BTIME;
5697                 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5698                 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5699         }
5700
5701         flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5702         if (flags & EXT4_APPEND_FL)
5703                 stat->attributes |= STATX_ATTR_APPEND;
5704         if (flags & EXT4_COMPR_FL)
5705                 stat->attributes |= STATX_ATTR_COMPRESSED;
5706         if (flags & EXT4_ENCRYPT_FL)
5707                 stat->attributes |= STATX_ATTR_ENCRYPTED;
5708         if (flags & EXT4_IMMUTABLE_FL)
5709                 stat->attributes |= STATX_ATTR_IMMUTABLE;
5710         if (flags & EXT4_NODUMP_FL)
5711                 stat->attributes |= STATX_ATTR_NODUMP;
5712
5713         stat->attributes_mask |= (STATX_ATTR_APPEND |
5714                                   STATX_ATTR_COMPRESSED |
5715                                   STATX_ATTR_ENCRYPTED |
5716                                   STATX_ATTR_IMMUTABLE |
5717                                   STATX_ATTR_NODUMP);
5718
5719         generic_fillattr(inode, stat);
5720         return 0;
5721 }
5722
5723 int ext4_file_getattr(const struct path *path, struct kstat *stat,
5724                       u32 request_mask, unsigned int query_flags)
5725 {
5726         struct inode *inode = d_inode(path->dentry);
5727         u64 delalloc_blocks;
5728
5729         ext4_getattr(path, stat, request_mask, query_flags);
5730
5731         /*
5732          * If there is inline data in the inode, the inode will normally not
5733          * have data blocks allocated (it may have an external xattr block).
5734          * Report at least one sector for such files, so tools like tar, rsync,
5735          * others don't incorrectly think the file is completely sparse.
5736          */
5737         if (unlikely(ext4_has_inline_data(inode)))
5738                 stat->blocks += (stat->size + 511) >> 9;
5739
5740         /*
5741          * We can't update i_blocks if the block allocation is delayed
5742          * otherwise in the case of system crash before the real block
5743          * allocation is done, we will have i_blocks inconsistent with
5744          * on-disk file blocks.
5745          * We always keep i_blocks updated together with real
5746          * allocation. But to not confuse with user, stat
5747          * will return the blocks that include the delayed allocation
5748          * blocks for this file.
5749          */
5750         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5751                                    EXT4_I(inode)->i_reserved_data_blocks);
5752         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5753         return 0;
5754 }
5755
5756 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5757                                    int pextents)
5758 {
5759         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5760                 return ext4_ind_trans_blocks(inode, lblocks);
5761         return ext4_ext_index_trans_blocks(inode, pextents);
5762 }
5763
5764 /*
5765  * Account for index blocks, block groups bitmaps and block group
5766  * descriptor blocks if modify datablocks and index blocks
5767  * worse case, the indexs blocks spread over different block groups
5768  *
5769  * If datablocks are discontiguous, they are possible to spread over
5770  * different block groups too. If they are contiguous, with flexbg,
5771  * they could still across block group boundary.
5772  *
5773  * Also account for superblock, inode, quota and xattr blocks
5774  */
5775 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5776                                   int pextents)
5777 {
5778         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5779         int gdpblocks;
5780         int idxblocks;
5781         int ret = 0;
5782
5783         /*
5784          * How many index blocks need to touch to map @lblocks logical blocks
5785          * to @pextents physical extents?
5786          */
5787         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5788
5789         ret = idxblocks;
5790
5791         /*
5792          * Now let's see how many group bitmaps and group descriptors need
5793          * to account
5794          */
5795         groups = idxblocks + pextents;
5796         gdpblocks = groups;
5797         if (groups > ngroups)
5798                 groups = ngroups;
5799         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5800                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5801
5802         /* bitmaps and block group descriptor blocks */
5803         ret += groups + gdpblocks;
5804
5805         /* Blocks for super block, inode, quota and xattr blocks */
5806         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5807
5808         return ret;
5809 }
5810
5811 /*
5812  * Calculate the total number of credits to reserve to fit
5813  * the modification of a single pages into a single transaction,
5814  * which may include multiple chunks of block allocations.
5815  *
5816  * This could be called via ext4_write_begin()
5817  *
5818  * We need to consider the worse case, when
5819  * one new block per extent.
5820  */
5821 int ext4_writepage_trans_blocks(struct inode *inode)
5822 {
5823         int bpp = ext4_journal_blocks_per_page(inode);
5824         int ret;
5825
5826         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5827
5828         /* Account for data blocks for journalled mode */
5829         if (ext4_should_journal_data(inode))
5830                 ret += bpp;
5831         return ret;
5832 }
5833
5834 /*
5835  * Calculate the journal credits for a chunk of data modification.
5836  *
5837  * This is called from DIO, fallocate or whoever calling
5838  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5839  *
5840  * journal buffers for data blocks are not included here, as DIO
5841  * and fallocate do no need to journal data buffers.
5842  */
5843 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5844 {
5845         return ext4_meta_trans_blocks(inode, nrblocks, 1);
5846 }
5847
5848 /*
5849  * The caller must have previously called ext4_reserve_inode_write().
5850  * Give this, we know that the caller already has write access to iloc->bh.
5851  */
5852 int ext4_mark_iloc_dirty(handle_t *handle,
5853                          struct inode *inode, struct ext4_iloc *iloc)
5854 {
5855         int err = 0;
5856
5857         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5858                 put_bh(iloc->bh);
5859                 return -EIO;
5860         }
5861         if (IS_I_VERSION(inode))
5862                 inode_inc_iversion(inode);
5863
5864         /* the do_update_inode consumes one bh->b_count */
5865         get_bh(iloc->bh);
5866
5867         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5868         err = ext4_do_update_inode(handle, inode, iloc);
5869         put_bh(iloc->bh);
5870         return err;
5871 }
5872
5873 /*
5874  * On success, We end up with an outstanding reference count against
5875  * iloc->bh.  This _must_ be cleaned up later.
5876  */
5877
5878 int
5879 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5880                          struct ext4_iloc *iloc)
5881 {
5882         int err;
5883
5884         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5885                 return -EIO;
5886
5887         err = ext4_get_inode_loc(inode, iloc);
5888         if (!err) {
5889                 BUFFER_TRACE(iloc->bh, "get_write_access");
5890                 err = ext4_journal_get_write_access(handle, iloc->bh);
5891                 if (err) {
5892                         brelse(iloc->bh);
5893                         iloc->bh = NULL;
5894                 }
5895         }
5896         ext4_std_error(inode->i_sb, err);
5897         return err;
5898 }
5899
5900 static int __ext4_expand_extra_isize(struct inode *inode,
5901                                      unsigned int new_extra_isize,
5902                                      struct ext4_iloc *iloc,
5903                                      handle_t *handle, int *no_expand)
5904 {
5905         struct ext4_inode *raw_inode;
5906         struct ext4_xattr_ibody_header *header;
5907         int error;
5908
5909         raw_inode = ext4_raw_inode(iloc);
5910
5911         header = IHDR(inode, raw_inode);
5912
5913         /* No extended attributes present */
5914         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5915             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5916                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5917                        EXT4_I(inode)->i_extra_isize, 0,
5918                        new_extra_isize - EXT4_I(inode)->i_extra_isize);
5919                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5920                 return 0;
5921         }
5922
5923         /* try to expand with EAs present */
5924         error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5925                                            raw_inode, handle);
5926         if (error) {
5927                 /*
5928                  * Inode size expansion failed; don't try again
5929                  */
5930                 *no_expand = 1;
5931         }
5932
5933         return error;
5934 }
5935
5936 /*
5937  * Expand an inode by new_extra_isize bytes.
5938  * Returns 0 on success or negative error number on failure.
5939  */
5940 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5941                                           unsigned int new_extra_isize,
5942                                           struct ext4_iloc iloc,
5943                                           handle_t *handle)
5944 {
5945         int no_expand;
5946         int error;
5947
5948         if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5949                 return -EOVERFLOW;
5950
5951         /*
5952          * In nojournal mode, we can immediately attempt to expand
5953          * the inode.  When journaled, we first need to obtain extra
5954          * buffer credits since we may write into the EA block
5955          * with this same handle. If journal_extend fails, then it will
5956          * only result in a minor loss of functionality for that inode.
5957          * If this is felt to be critical, then e2fsck should be run to
5958          * force a large enough s_min_extra_isize.
5959          */
5960         if (ext4_handle_valid(handle) &&
5961             jbd2_journal_extend(handle,
5962                                 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) != 0)
5963                 return -ENOSPC;
5964
5965         if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5966                 return -EBUSY;
5967
5968         error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5969                                           handle, &no_expand);
5970         ext4_write_unlock_xattr(inode, &no_expand);
5971
5972         return error;
5973 }
5974
5975 int ext4_expand_extra_isize(struct inode *inode,
5976                             unsigned int new_extra_isize,
5977                             struct ext4_iloc *iloc)
5978 {
5979         handle_t *handle;
5980         int no_expand;
5981         int error, rc;
5982
5983         if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5984                 brelse(iloc->bh);
5985                 return -EOVERFLOW;
5986         }
5987
5988         handle = ext4_journal_start(inode, EXT4_HT_INODE,
5989                                     EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5990         if (IS_ERR(handle)) {
5991                 error = PTR_ERR(handle);
5992                 brelse(iloc->bh);
5993                 return error;
5994         }
5995
5996         ext4_write_lock_xattr(inode, &no_expand);
5997
5998         BUFFER_TRACE(iloc.bh, "get_write_access");
5999         error = ext4_journal_get_write_access(handle, iloc->bh);
6000         if (error) {
6001                 brelse(iloc->bh);
6002                 goto out_stop;
6003         }
6004
6005         error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
6006                                           handle, &no_expand);
6007
6008         rc = ext4_mark_iloc_dirty(handle, inode, iloc);
6009         if (!error)
6010                 error = rc;
6011
6012         ext4_write_unlock_xattr(inode, &no_expand);
6013 out_stop:
6014         ext4_journal_stop(handle);
6015         return error;
6016 }
6017
6018 /*
6019  * What we do here is to mark the in-core inode as clean with respect to inode
6020  * dirtiness (it may still be data-dirty).
6021  * This means that the in-core inode may be reaped by prune_icache
6022  * without having to perform any I/O.  This is a very good thing,
6023  * because *any* task may call prune_icache - even ones which
6024  * have a transaction open against a different journal.
6025  *
6026  * Is this cheating?  Not really.  Sure, we haven't written the
6027  * inode out, but prune_icache isn't a user-visible syncing function.
6028  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
6029  * we start and wait on commits.
6030  */
6031 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
6032 {
6033         struct ext4_iloc iloc;
6034         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6035         int err;
6036
6037         might_sleep();
6038         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
6039         err = ext4_reserve_inode_write(handle, inode, &iloc);
6040         if (err)
6041                 return err;
6042
6043         if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
6044                 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
6045                                                iloc, handle);
6046
6047         return ext4_mark_iloc_dirty(handle, inode, &iloc);
6048 }
6049
6050 /*
6051  * ext4_dirty_inode() is called from __mark_inode_dirty()
6052  *
6053  * We're really interested in the case where a file is being extended.
6054  * i_size has been changed by generic_commit_write() and we thus need
6055  * to include the updated inode in the current transaction.
6056  *
6057  * Also, dquot_alloc_block() will always dirty the inode when blocks
6058  * are allocated to the file.
6059  *
6060  * If the inode is marked synchronous, we don't honour that here - doing
6061  * so would cause a commit on atime updates, which we don't bother doing.
6062  * We handle synchronous inodes at the highest possible level.
6063  *
6064  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
6065  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
6066  * to copy into the on-disk inode structure are the timestamp files.
6067  */
6068 void ext4_dirty_inode(struct inode *inode, int flags)
6069 {
6070         handle_t *handle;
6071
6072         if (flags == I_DIRTY_TIME)
6073                 return;
6074         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
6075         if (IS_ERR(handle))
6076                 goto out;
6077
6078         ext4_mark_inode_dirty(handle, inode);
6079
6080         ext4_journal_stop(handle);
6081 out:
6082         return;
6083 }
6084
6085 #if 0
6086 /*
6087  * Bind an inode's backing buffer_head into this transaction, to prevent
6088  * it from being flushed to disk early.  Unlike
6089  * ext4_reserve_inode_write, this leaves behind no bh reference and
6090  * returns no iloc structure, so the caller needs to repeat the iloc
6091  * lookup to mark the inode dirty later.
6092  */
6093 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
6094 {
6095         struct ext4_iloc iloc;
6096
6097         int err = 0;
6098         if (handle) {
6099                 err = ext4_get_inode_loc(inode, &iloc);
6100                 if (!err) {
6101                         BUFFER_TRACE(iloc.bh, "get_write_access");
6102                         err = jbd2_journal_get_write_access(handle, iloc.bh);
6103                         if (!err)
6104                                 err = ext4_handle_dirty_metadata(handle,
6105                                                                  NULL,
6106                                                                  iloc.bh);
6107                         brelse(iloc.bh);
6108                 }
6109         }
6110         ext4_std_error(inode->i_sb, err);
6111         return err;
6112 }
6113 #endif
6114
6115 int ext4_change_inode_journal_flag(struct inode *inode, int val)
6116 {
6117         journal_t *journal;
6118         handle_t *handle;
6119         int err;
6120         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6121
6122         /*
6123          * We have to be very careful here: changing a data block's
6124          * journaling status dynamically is dangerous.  If we write a
6125          * data block to the journal, change the status and then delete
6126          * that block, we risk forgetting to revoke the old log record
6127          * from the journal and so a subsequent replay can corrupt data.
6128          * So, first we make sure that the journal is empty and that
6129          * nobody is changing anything.
6130          */
6131
6132         journal = EXT4_JOURNAL(inode);
6133         if (!journal)
6134                 return 0;
6135         if (is_journal_aborted(journal))
6136                 return -EROFS;
6137
6138         /* Wait for all existing dio workers */
6139         inode_dio_wait(inode);
6140
6141         /*
6142          * Before flushing the journal and switching inode's aops, we have
6143          * to flush all dirty data the inode has. There can be outstanding
6144          * delayed allocations, there can be unwritten extents created by
6145          * fallocate or buffered writes in dioread_nolock mode covered by
6146          * dirty data which can be converted only after flushing the dirty
6147          * data (and journalled aops don't know how to handle these cases).
6148          */
6149         if (val) {
6150                 down_write(&EXT4_I(inode)->i_mmap_sem);
6151                 err = filemap_write_and_wait(inode->i_mapping);
6152                 if (err < 0) {
6153                         up_write(&EXT4_I(inode)->i_mmap_sem);
6154                         return err;
6155                 }
6156         }
6157
6158         percpu_down_write(&sbi->s_journal_flag_rwsem);
6159         jbd2_journal_lock_updates(journal);
6160
6161         /*
6162          * OK, there are no updates running now, and all cached data is
6163          * synced to disk.  We are now in a completely consistent state
6164          * which doesn't have anything in the journal, and we know that
6165          * no filesystem updates are running, so it is safe to modify
6166          * the inode's in-core data-journaling state flag now.
6167          */
6168
6169         if (val)
6170                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6171         else {
6172                 err = jbd2_journal_flush(journal);
6173                 if (err < 0) {
6174                         jbd2_journal_unlock_updates(journal);
6175                         percpu_up_write(&sbi->s_journal_flag_rwsem);
6176                         return err;
6177                 }
6178                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6179         }
6180         ext4_set_aops(inode);
6181
6182         jbd2_journal_unlock_updates(journal);
6183         percpu_up_write(&sbi->s_journal_flag_rwsem);
6184
6185         if (val)
6186                 up_write(&EXT4_I(inode)->i_mmap_sem);
6187
6188         /* Finally we can mark the inode as dirty. */
6189
6190         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6191         if (IS_ERR(handle))
6192                 return PTR_ERR(handle);
6193
6194         err = ext4_mark_inode_dirty(handle, inode);
6195         ext4_handle_sync(handle);
6196         ext4_journal_stop(handle);
6197         ext4_std_error(inode->i_sb, err);
6198
6199         return err;
6200 }
6201
6202 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
6203 {
6204         return !buffer_mapped(bh);
6205 }
6206
6207 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6208 {
6209         struct vm_area_struct *vma = vmf->vma;
6210         struct page *page = vmf->page;
6211         loff_t size;
6212         unsigned long len;
6213         int err;
6214         vm_fault_t ret;
6215         struct file *file = vma->vm_file;
6216         struct inode *inode = file_inode(file);
6217         struct address_space *mapping = inode->i_mapping;
6218         handle_t *handle;
6219         get_block_t *get_block;
6220         int retries = 0;
6221
6222         sb_start_pagefault(inode->i_sb);
6223         file_update_time(vma->vm_file);
6224
6225         down_read(&EXT4_I(inode)->i_mmap_sem);
6226
6227         err = ext4_convert_inline_data(inode);
6228         if (err)
6229                 goto out_ret;
6230
6231         /* Delalloc case is easy... */
6232         if (test_opt(inode->i_sb, DELALLOC) &&
6233             !ext4_should_journal_data(inode) &&
6234             !ext4_nonda_switch(inode->i_sb)) {
6235                 do {
6236                         err = block_page_mkwrite(vma, vmf,
6237                                                    ext4_da_get_block_prep);
6238                 } while (err == -ENOSPC &&
6239                        ext4_should_retry_alloc(inode->i_sb, &retries));
6240                 goto out_ret;
6241         }
6242
6243         lock_page(page);
6244         size = i_size_read(inode);
6245         /* Page got truncated from under us? */
6246         if (page->mapping != mapping || page_offset(page) > size) {
6247                 unlock_page(page);
6248                 ret = VM_FAULT_NOPAGE;
6249                 goto out;
6250         }
6251
6252         if (page->index == size >> PAGE_SHIFT)
6253                 len = size & ~PAGE_MASK;
6254         else
6255                 len = PAGE_SIZE;
6256         /*
6257          * Return if we have all the buffers mapped. This avoids the need to do
6258          * journal_start/journal_stop which can block and take a long time
6259          */
6260         if (page_has_buffers(page)) {
6261                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
6262                                             0, len, NULL,
6263                                             ext4_bh_unmapped)) {
6264                         /* Wait so that we don't change page under IO */
6265                         wait_for_stable_page(page);
6266                         ret = VM_FAULT_LOCKED;
6267                         goto out;
6268                 }
6269         }
6270         unlock_page(page);
6271         /* OK, we need to fill the hole... */
6272         if (ext4_should_dioread_nolock(inode))
6273                 get_block = ext4_get_block_unwritten;
6274         else
6275                 get_block = ext4_get_block;
6276 retry_alloc:
6277         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6278                                     ext4_writepage_trans_blocks(inode));
6279         if (IS_ERR(handle)) {
6280                 ret = VM_FAULT_SIGBUS;
6281                 goto out;
6282         }
6283         err = block_page_mkwrite(vma, vmf, get_block);
6284         if (!err && ext4_should_journal_data(inode)) {
6285                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
6286                           PAGE_SIZE, NULL, do_journal_get_write_access)) {
6287                         unlock_page(page);
6288                         ret = VM_FAULT_SIGBUS;
6289                         ext4_journal_stop(handle);
6290                         goto out;
6291                 }
6292                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6293         }
6294         ext4_journal_stop(handle);
6295         if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6296                 goto retry_alloc;
6297 out_ret:
6298         ret = block_page_mkwrite_return(err);
6299 out:
6300         up_read(&EXT4_I(inode)->i_mmap_sem);
6301         sb_end_pagefault(inode->i_sb);
6302         return ret;
6303 }
6304
6305 vm_fault_t ext4_filemap_fault(struct vm_fault *vmf)
6306 {
6307         struct inode *inode = file_inode(vmf->vma->vm_file);
6308         vm_fault_t ret;
6309
6310         down_read(&EXT4_I(inode)->i_mmap_sem);
6311         ret = filemap_fault(vmf);
6312         up_read(&EXT4_I(inode)->i_mmap_sem);
6313
6314         return ret;
6315 }