Merge remote-tracking branch 'regmap/for-5.8' into regmap-next
[linux-2.6-microblaze.git] / fs / ext4 / inode.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  64-bit file support on 64-bit platforms by Jakub Jelinek
17  *      (jj@sunsite.ms.mff.cuni.cz)
18  *
19  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20  */
21
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/dax.h>
27 #include <linux/quotaops.h>
28 #include <linux/string.h>
29 #include <linux/buffer_head.h>
30 #include <linux/writeback.h>
31 #include <linux/pagevec.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/uio.h>
35 #include <linux/bio.h>
36 #include <linux/workqueue.h>
37 #include <linux/kernel.h>
38 #include <linux/printk.h>
39 #include <linux/slab.h>
40 #include <linux/bitops.h>
41 #include <linux/iomap.h>
42 #include <linux/iversion.h>
43
44 #include "ext4_jbd2.h"
45 #include "xattr.h"
46 #include "acl.h"
47 #include "truncate.h"
48
49 #include <trace/events/ext4.h>
50
51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52                               struct ext4_inode_info *ei)
53 {
54         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55         __u32 csum;
56         __u16 dummy_csum = 0;
57         int offset = offsetof(struct ext4_inode, i_checksum_lo);
58         unsigned int csum_size = sizeof(dummy_csum);
59
60         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
61         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
62         offset += csum_size;
63         csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
64                            EXT4_GOOD_OLD_INODE_SIZE - offset);
65
66         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
67                 offset = offsetof(struct ext4_inode, i_checksum_hi);
68                 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
69                                    EXT4_GOOD_OLD_INODE_SIZE,
70                                    offset - EXT4_GOOD_OLD_INODE_SIZE);
71                 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
72                         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
73                                            csum_size);
74                         offset += csum_size;
75                 }
76                 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
77                                    EXT4_INODE_SIZE(inode->i_sb) - offset);
78         }
79
80         return csum;
81 }
82
83 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
84                                   struct ext4_inode_info *ei)
85 {
86         __u32 provided, calculated;
87
88         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
89             cpu_to_le32(EXT4_OS_LINUX) ||
90             !ext4_has_metadata_csum(inode->i_sb))
91                 return 1;
92
93         provided = le16_to_cpu(raw->i_checksum_lo);
94         calculated = ext4_inode_csum(inode, raw, ei);
95         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
96             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
97                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
98         else
99                 calculated &= 0xFFFF;
100
101         return provided == calculated;
102 }
103
104 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
105                                 struct ext4_inode_info *ei)
106 {
107         __u32 csum;
108
109         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
110             cpu_to_le32(EXT4_OS_LINUX) ||
111             !ext4_has_metadata_csum(inode->i_sb))
112                 return;
113
114         csum = ext4_inode_csum(inode, raw, ei);
115         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
116         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
117             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
118                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
119 }
120
121 static inline int ext4_begin_ordered_truncate(struct inode *inode,
122                                               loff_t new_size)
123 {
124         trace_ext4_begin_ordered_truncate(inode, new_size);
125         /*
126          * If jinode is zero, then we never opened the file for
127          * writing, so there's no need to call
128          * jbd2_journal_begin_ordered_truncate() since there's no
129          * outstanding writes we need to flush.
130          */
131         if (!EXT4_I(inode)->jinode)
132                 return 0;
133         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
134                                                    EXT4_I(inode)->jinode,
135                                                    new_size);
136 }
137
138 static void ext4_invalidatepage(struct page *page, unsigned int offset,
139                                 unsigned int length);
140 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
141 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
142 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
143                                   int pextents);
144
145 /*
146  * Test whether an inode is a fast symlink.
147  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
148  */
149 int ext4_inode_is_fast_symlink(struct inode *inode)
150 {
151         if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
152                 int ea_blocks = EXT4_I(inode)->i_file_acl ?
153                                 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
154
155                 if (ext4_has_inline_data(inode))
156                         return 0;
157
158                 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
159         }
160         return S_ISLNK(inode->i_mode) && inode->i_size &&
161                (inode->i_size < EXT4_N_BLOCKS * 4);
162 }
163
164 /*
165  * Called at the last iput() if i_nlink is zero.
166  */
167 void ext4_evict_inode(struct inode *inode)
168 {
169         handle_t *handle;
170         int err;
171         /*
172          * Credits for final inode cleanup and freeing:
173          * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
174          * (xattr block freeing), bitmap, group descriptor (inode freeing)
175          */
176         int extra_credits = 6;
177         struct ext4_xattr_inode_array *ea_inode_array = NULL;
178
179         trace_ext4_evict_inode(inode);
180
181         if (inode->i_nlink) {
182                 /*
183                  * When journalling data dirty buffers are tracked only in the
184                  * journal. So although mm thinks everything is clean and
185                  * ready for reaping the inode might still have some pages to
186                  * write in the running transaction or waiting to be
187                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
188                  * (via truncate_inode_pages()) to discard these buffers can
189                  * cause data loss. Also even if we did not discard these
190                  * buffers, we would have no way to find them after the inode
191                  * is reaped and thus user could see stale data if he tries to
192                  * read them before the transaction is checkpointed. So be
193                  * careful and force everything to disk here... We use
194                  * ei->i_datasync_tid to store the newest transaction
195                  * containing inode's data.
196                  *
197                  * Note that directories do not have this problem because they
198                  * don't use page cache.
199                  */
200                 if (inode->i_ino != EXT4_JOURNAL_INO &&
201                     ext4_should_journal_data(inode) &&
202                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
203                     inode->i_data.nrpages) {
204                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
205                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
206
207                         jbd2_complete_transaction(journal, commit_tid);
208                         filemap_write_and_wait(&inode->i_data);
209                 }
210                 truncate_inode_pages_final(&inode->i_data);
211
212                 goto no_delete;
213         }
214
215         if (is_bad_inode(inode))
216                 goto no_delete;
217         dquot_initialize(inode);
218
219         if (ext4_should_order_data(inode))
220                 ext4_begin_ordered_truncate(inode, 0);
221         truncate_inode_pages_final(&inode->i_data);
222
223         /*
224          * Protect us against freezing - iput() caller didn't have to have any
225          * protection against it
226          */
227         sb_start_intwrite(inode->i_sb);
228
229         if (!IS_NOQUOTA(inode))
230                 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
231
232         /*
233          * Block bitmap, group descriptor, and inode are accounted in both
234          * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
235          */
236         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
237                          ext4_blocks_for_truncate(inode) + extra_credits - 3);
238         if (IS_ERR(handle)) {
239                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
240                 /*
241                  * If we're going to skip the normal cleanup, we still need to
242                  * make sure that the in-core orphan linked list is properly
243                  * cleaned up.
244                  */
245                 ext4_orphan_del(NULL, inode);
246                 sb_end_intwrite(inode->i_sb);
247                 goto no_delete;
248         }
249
250         if (IS_SYNC(inode))
251                 ext4_handle_sync(handle);
252
253         /*
254          * Set inode->i_size to 0 before calling ext4_truncate(). We need
255          * special handling of symlinks here because i_size is used to
256          * determine whether ext4_inode_info->i_data contains symlink data or
257          * block mappings. Setting i_size to 0 will remove its fast symlink
258          * status. Erase i_data so that it becomes a valid empty block map.
259          */
260         if (ext4_inode_is_fast_symlink(inode))
261                 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
262         inode->i_size = 0;
263         err = ext4_mark_inode_dirty(handle, inode);
264         if (err) {
265                 ext4_warning(inode->i_sb,
266                              "couldn't mark inode dirty (err %d)", err);
267                 goto stop_handle;
268         }
269         if (inode->i_blocks) {
270                 err = ext4_truncate(inode);
271                 if (err) {
272                         ext4_error_err(inode->i_sb, -err,
273                                        "couldn't truncate inode %lu (err %d)",
274                                        inode->i_ino, err);
275                         goto stop_handle;
276                 }
277         }
278
279         /* Remove xattr references. */
280         err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
281                                       extra_credits);
282         if (err) {
283                 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
284 stop_handle:
285                 ext4_journal_stop(handle);
286                 ext4_orphan_del(NULL, inode);
287                 sb_end_intwrite(inode->i_sb);
288                 ext4_xattr_inode_array_free(ea_inode_array);
289                 goto no_delete;
290         }
291
292         /*
293          * Kill off the orphan record which ext4_truncate created.
294          * AKPM: I think this can be inside the above `if'.
295          * Note that ext4_orphan_del() has to be able to cope with the
296          * deletion of a non-existent orphan - this is because we don't
297          * know if ext4_truncate() actually created an orphan record.
298          * (Well, we could do this if we need to, but heck - it works)
299          */
300         ext4_orphan_del(handle, inode);
301         EXT4_I(inode)->i_dtime  = (__u32)ktime_get_real_seconds();
302
303         /*
304          * One subtle ordering requirement: if anything has gone wrong
305          * (transaction abort, IO errors, whatever), then we can still
306          * do these next steps (the fs will already have been marked as
307          * having errors), but we can't free the inode if the mark_dirty
308          * fails.
309          */
310         if (ext4_mark_inode_dirty(handle, inode))
311                 /* If that failed, just do the required in-core inode clear. */
312                 ext4_clear_inode(inode);
313         else
314                 ext4_free_inode(handle, inode);
315         ext4_journal_stop(handle);
316         sb_end_intwrite(inode->i_sb);
317         ext4_xattr_inode_array_free(ea_inode_array);
318         return;
319 no_delete:
320         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
321 }
322
323 #ifdef CONFIG_QUOTA
324 qsize_t *ext4_get_reserved_space(struct inode *inode)
325 {
326         return &EXT4_I(inode)->i_reserved_quota;
327 }
328 #endif
329
330 /*
331  * Called with i_data_sem down, which is important since we can call
332  * ext4_discard_preallocations() from here.
333  */
334 void ext4_da_update_reserve_space(struct inode *inode,
335                                         int used, int quota_claim)
336 {
337         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
338         struct ext4_inode_info *ei = EXT4_I(inode);
339
340         spin_lock(&ei->i_block_reservation_lock);
341         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
342         if (unlikely(used > ei->i_reserved_data_blocks)) {
343                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
344                          "with only %d reserved data blocks",
345                          __func__, inode->i_ino, used,
346                          ei->i_reserved_data_blocks);
347                 WARN_ON(1);
348                 used = ei->i_reserved_data_blocks;
349         }
350
351         /* Update per-inode reservations */
352         ei->i_reserved_data_blocks -= used;
353         percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
354
355         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
356
357         /* Update quota subsystem for data blocks */
358         if (quota_claim)
359                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
360         else {
361                 /*
362                  * We did fallocate with an offset that is already delayed
363                  * allocated. So on delayed allocated writeback we should
364                  * not re-claim the quota for fallocated blocks.
365                  */
366                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
367         }
368
369         /*
370          * If we have done all the pending block allocations and if
371          * there aren't any writers on the inode, we can discard the
372          * inode's preallocations.
373          */
374         if ((ei->i_reserved_data_blocks == 0) &&
375             !inode_is_open_for_write(inode))
376                 ext4_discard_preallocations(inode);
377 }
378
379 static int __check_block_validity(struct inode *inode, const char *func,
380                                 unsigned int line,
381                                 struct ext4_map_blocks *map)
382 {
383         if (ext4_has_feature_journal(inode->i_sb) &&
384             (inode->i_ino ==
385              le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
386                 return 0;
387         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
388                                    map->m_len)) {
389                 ext4_error_inode(inode, func, line, map->m_pblk,
390                                  "lblock %lu mapped to illegal pblock %llu "
391                                  "(length %d)", (unsigned long) map->m_lblk,
392                                  map->m_pblk, map->m_len);
393                 return -EFSCORRUPTED;
394         }
395         return 0;
396 }
397
398 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
399                        ext4_lblk_t len)
400 {
401         int ret;
402
403         if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
404                 return fscrypt_zeroout_range(inode, lblk, pblk, len);
405
406         ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
407         if (ret > 0)
408                 ret = 0;
409
410         return ret;
411 }
412
413 #define check_block_validity(inode, map)        \
414         __check_block_validity((inode), __func__, __LINE__, (map))
415
416 #ifdef ES_AGGRESSIVE_TEST
417 static void ext4_map_blocks_es_recheck(handle_t *handle,
418                                        struct inode *inode,
419                                        struct ext4_map_blocks *es_map,
420                                        struct ext4_map_blocks *map,
421                                        int flags)
422 {
423         int retval;
424
425         map->m_flags = 0;
426         /*
427          * There is a race window that the result is not the same.
428          * e.g. xfstests #223 when dioread_nolock enables.  The reason
429          * is that we lookup a block mapping in extent status tree with
430          * out taking i_data_sem.  So at the time the unwritten extent
431          * could be converted.
432          */
433         down_read(&EXT4_I(inode)->i_data_sem);
434         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
435                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
436                                              EXT4_GET_BLOCKS_KEEP_SIZE);
437         } else {
438                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
439                                              EXT4_GET_BLOCKS_KEEP_SIZE);
440         }
441         up_read((&EXT4_I(inode)->i_data_sem));
442
443         /*
444          * We don't check m_len because extent will be collpased in status
445          * tree.  So the m_len might not equal.
446          */
447         if (es_map->m_lblk != map->m_lblk ||
448             es_map->m_flags != map->m_flags ||
449             es_map->m_pblk != map->m_pblk) {
450                 printk("ES cache assertion failed for inode: %lu "
451                        "es_cached ex [%d/%d/%llu/%x] != "
452                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
453                        inode->i_ino, es_map->m_lblk, es_map->m_len,
454                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
455                        map->m_len, map->m_pblk, map->m_flags,
456                        retval, flags);
457         }
458 }
459 #endif /* ES_AGGRESSIVE_TEST */
460
461 /*
462  * The ext4_map_blocks() function tries to look up the requested blocks,
463  * and returns if the blocks are already mapped.
464  *
465  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
466  * and store the allocated blocks in the result buffer head and mark it
467  * mapped.
468  *
469  * If file type is extents based, it will call ext4_ext_map_blocks(),
470  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
471  * based files
472  *
473  * On success, it returns the number of blocks being mapped or allocated.  if
474  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
475  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
476  *
477  * It returns 0 if plain look up failed (blocks have not been allocated), in
478  * that case, @map is returned as unmapped but we still do fill map->m_len to
479  * indicate the length of a hole starting at map->m_lblk.
480  *
481  * It returns the error in case of allocation failure.
482  */
483 int ext4_map_blocks(handle_t *handle, struct inode *inode,
484                     struct ext4_map_blocks *map, int flags)
485 {
486         struct extent_status es;
487         int retval;
488         int ret = 0;
489 #ifdef ES_AGGRESSIVE_TEST
490         struct ext4_map_blocks orig_map;
491
492         memcpy(&orig_map, map, sizeof(*map));
493 #endif
494
495         map->m_flags = 0;
496         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
497                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
498                   (unsigned long) map->m_lblk);
499
500         /*
501          * ext4_map_blocks returns an int, and m_len is an unsigned int
502          */
503         if (unlikely(map->m_len > INT_MAX))
504                 map->m_len = INT_MAX;
505
506         /* We can handle the block number less than EXT_MAX_BLOCKS */
507         if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
508                 return -EFSCORRUPTED;
509
510         /* Lookup extent status tree firstly */
511         if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
512                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
513                         map->m_pblk = ext4_es_pblock(&es) +
514                                         map->m_lblk - es.es_lblk;
515                         map->m_flags |= ext4_es_is_written(&es) ?
516                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
517                         retval = es.es_len - (map->m_lblk - es.es_lblk);
518                         if (retval > map->m_len)
519                                 retval = map->m_len;
520                         map->m_len = retval;
521                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
522                         map->m_pblk = 0;
523                         retval = es.es_len - (map->m_lblk - es.es_lblk);
524                         if (retval > map->m_len)
525                                 retval = map->m_len;
526                         map->m_len = retval;
527                         retval = 0;
528                 } else {
529                         BUG();
530                 }
531 #ifdef ES_AGGRESSIVE_TEST
532                 ext4_map_blocks_es_recheck(handle, inode, map,
533                                            &orig_map, flags);
534 #endif
535                 goto found;
536         }
537
538         /*
539          * Try to see if we can get the block without requesting a new
540          * file system block.
541          */
542         down_read(&EXT4_I(inode)->i_data_sem);
543         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
544                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
545                                              EXT4_GET_BLOCKS_KEEP_SIZE);
546         } else {
547                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
548                                              EXT4_GET_BLOCKS_KEEP_SIZE);
549         }
550         if (retval > 0) {
551                 unsigned int status;
552
553                 if (unlikely(retval != map->m_len)) {
554                         ext4_warning(inode->i_sb,
555                                      "ES len assertion failed for inode "
556                                      "%lu: retval %d != map->m_len %d",
557                                      inode->i_ino, retval, map->m_len);
558                         WARN_ON(1);
559                 }
560
561                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
562                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
563                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
564                     !(status & EXTENT_STATUS_WRITTEN) &&
565                     ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
566                                        map->m_lblk + map->m_len - 1))
567                         status |= EXTENT_STATUS_DELAYED;
568                 ret = ext4_es_insert_extent(inode, map->m_lblk,
569                                             map->m_len, map->m_pblk, status);
570                 if (ret < 0)
571                         retval = ret;
572         }
573         up_read((&EXT4_I(inode)->i_data_sem));
574
575 found:
576         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
577                 ret = check_block_validity(inode, map);
578                 if (ret != 0)
579                         return ret;
580         }
581
582         /* If it is only a block(s) look up */
583         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
584                 return retval;
585
586         /*
587          * Returns if the blocks have already allocated
588          *
589          * Note that if blocks have been preallocated
590          * ext4_ext_get_block() returns the create = 0
591          * with buffer head unmapped.
592          */
593         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
594                 /*
595                  * If we need to convert extent to unwritten
596                  * we continue and do the actual work in
597                  * ext4_ext_map_blocks()
598                  */
599                 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
600                         return retval;
601
602         /*
603          * Here we clear m_flags because after allocating an new extent,
604          * it will be set again.
605          */
606         map->m_flags &= ~EXT4_MAP_FLAGS;
607
608         /*
609          * New blocks allocate and/or writing to unwritten extent
610          * will possibly result in updating i_data, so we take
611          * the write lock of i_data_sem, and call get_block()
612          * with create == 1 flag.
613          */
614         down_write(&EXT4_I(inode)->i_data_sem);
615
616         /*
617          * We need to check for EXT4 here because migrate
618          * could have changed the inode type in between
619          */
620         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
621                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
622         } else {
623                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
624
625                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
626                         /*
627                          * We allocated new blocks which will result in
628                          * i_data's format changing.  Force the migrate
629                          * to fail by clearing migrate flags
630                          */
631                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
632                 }
633
634                 /*
635                  * Update reserved blocks/metadata blocks after successful
636                  * block allocation which had been deferred till now. We don't
637                  * support fallocate for non extent files. So we can update
638                  * reserve space here.
639                  */
640                 if ((retval > 0) &&
641                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
642                         ext4_da_update_reserve_space(inode, retval, 1);
643         }
644
645         if (retval > 0) {
646                 unsigned int status;
647
648                 if (unlikely(retval != map->m_len)) {
649                         ext4_warning(inode->i_sb,
650                                      "ES len assertion failed for inode "
651                                      "%lu: retval %d != map->m_len %d",
652                                      inode->i_ino, retval, map->m_len);
653                         WARN_ON(1);
654                 }
655
656                 /*
657                  * We have to zeroout blocks before inserting them into extent
658                  * status tree. Otherwise someone could look them up there and
659                  * use them before they are really zeroed. We also have to
660                  * unmap metadata before zeroing as otherwise writeback can
661                  * overwrite zeros with stale data from block device.
662                  */
663                 if (flags & EXT4_GET_BLOCKS_ZERO &&
664                     map->m_flags & EXT4_MAP_MAPPED &&
665                     map->m_flags & EXT4_MAP_NEW) {
666                         ret = ext4_issue_zeroout(inode, map->m_lblk,
667                                                  map->m_pblk, map->m_len);
668                         if (ret) {
669                                 retval = ret;
670                                 goto out_sem;
671                         }
672                 }
673
674                 /*
675                  * If the extent has been zeroed out, we don't need to update
676                  * extent status tree.
677                  */
678                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
679                     ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
680                         if (ext4_es_is_written(&es))
681                                 goto out_sem;
682                 }
683                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
684                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
685                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
686                     !(status & EXTENT_STATUS_WRITTEN) &&
687                     ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
688                                        map->m_lblk + map->m_len - 1))
689                         status |= EXTENT_STATUS_DELAYED;
690                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
691                                             map->m_pblk, status);
692                 if (ret < 0) {
693                         retval = ret;
694                         goto out_sem;
695                 }
696         }
697
698 out_sem:
699         up_write((&EXT4_I(inode)->i_data_sem));
700         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
701                 ret = check_block_validity(inode, map);
702                 if (ret != 0)
703                         return ret;
704
705                 /*
706                  * Inodes with freshly allocated blocks where contents will be
707                  * visible after transaction commit must be on transaction's
708                  * ordered data list.
709                  */
710                 if (map->m_flags & EXT4_MAP_NEW &&
711                     !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
712                     !(flags & EXT4_GET_BLOCKS_ZERO) &&
713                     !ext4_is_quota_file(inode) &&
714                     ext4_should_order_data(inode)) {
715                         loff_t start_byte =
716                                 (loff_t)map->m_lblk << inode->i_blkbits;
717                         loff_t length = (loff_t)map->m_len << inode->i_blkbits;
718
719                         if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
720                                 ret = ext4_jbd2_inode_add_wait(handle, inode,
721                                                 start_byte, length);
722                         else
723                                 ret = ext4_jbd2_inode_add_write(handle, inode,
724                                                 start_byte, length);
725                         if (ret)
726                                 return ret;
727                 }
728         }
729         return retval;
730 }
731
732 /*
733  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
734  * we have to be careful as someone else may be manipulating b_state as well.
735  */
736 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
737 {
738         unsigned long old_state;
739         unsigned long new_state;
740
741         flags &= EXT4_MAP_FLAGS;
742
743         /* Dummy buffer_head? Set non-atomically. */
744         if (!bh->b_page) {
745                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
746                 return;
747         }
748         /*
749          * Someone else may be modifying b_state. Be careful! This is ugly but
750          * once we get rid of using bh as a container for mapping information
751          * to pass to / from get_block functions, this can go away.
752          */
753         do {
754                 old_state = READ_ONCE(bh->b_state);
755                 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
756         } while (unlikely(
757                  cmpxchg(&bh->b_state, old_state, new_state) != old_state));
758 }
759
760 static int _ext4_get_block(struct inode *inode, sector_t iblock,
761                            struct buffer_head *bh, int flags)
762 {
763         struct ext4_map_blocks map;
764         int ret = 0;
765
766         if (ext4_has_inline_data(inode))
767                 return -ERANGE;
768
769         map.m_lblk = iblock;
770         map.m_len = bh->b_size >> inode->i_blkbits;
771
772         ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
773                               flags);
774         if (ret > 0) {
775                 map_bh(bh, inode->i_sb, map.m_pblk);
776                 ext4_update_bh_state(bh, map.m_flags);
777                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
778                 ret = 0;
779         } else if (ret == 0) {
780                 /* hole case, need to fill in bh->b_size */
781                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
782         }
783         return ret;
784 }
785
786 int ext4_get_block(struct inode *inode, sector_t iblock,
787                    struct buffer_head *bh, int create)
788 {
789         return _ext4_get_block(inode, iblock, bh,
790                                create ? EXT4_GET_BLOCKS_CREATE : 0);
791 }
792
793 /*
794  * Get block function used when preparing for buffered write if we require
795  * creating an unwritten extent if blocks haven't been allocated.  The extent
796  * will be converted to written after the IO is complete.
797  */
798 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
799                              struct buffer_head *bh_result, int create)
800 {
801         ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
802                    inode->i_ino, create);
803         return _ext4_get_block(inode, iblock, bh_result,
804                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
805 }
806
807 /* Maximum number of blocks we map for direct IO at once. */
808 #define DIO_MAX_BLOCKS 4096
809
810 /*
811  * `handle' can be NULL if create is zero
812  */
813 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
814                                 ext4_lblk_t block, int map_flags)
815 {
816         struct ext4_map_blocks map;
817         struct buffer_head *bh;
818         int create = map_flags & EXT4_GET_BLOCKS_CREATE;
819         int err;
820
821         J_ASSERT(handle != NULL || create == 0);
822
823         map.m_lblk = block;
824         map.m_len = 1;
825         err = ext4_map_blocks(handle, inode, &map, map_flags);
826
827         if (err == 0)
828                 return create ? ERR_PTR(-ENOSPC) : NULL;
829         if (err < 0)
830                 return ERR_PTR(err);
831
832         bh = sb_getblk(inode->i_sb, map.m_pblk);
833         if (unlikely(!bh))
834                 return ERR_PTR(-ENOMEM);
835         if (map.m_flags & EXT4_MAP_NEW) {
836                 J_ASSERT(create != 0);
837                 J_ASSERT(handle != NULL);
838
839                 /*
840                  * Now that we do not always journal data, we should
841                  * keep in mind whether this should always journal the
842                  * new buffer as metadata.  For now, regular file
843                  * writes use ext4_get_block instead, so it's not a
844                  * problem.
845                  */
846                 lock_buffer(bh);
847                 BUFFER_TRACE(bh, "call get_create_access");
848                 err = ext4_journal_get_create_access(handle, bh);
849                 if (unlikely(err)) {
850                         unlock_buffer(bh);
851                         goto errout;
852                 }
853                 if (!buffer_uptodate(bh)) {
854                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
855                         set_buffer_uptodate(bh);
856                 }
857                 unlock_buffer(bh);
858                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
859                 err = ext4_handle_dirty_metadata(handle, inode, bh);
860                 if (unlikely(err))
861                         goto errout;
862         } else
863                 BUFFER_TRACE(bh, "not a new buffer");
864         return bh;
865 errout:
866         brelse(bh);
867         return ERR_PTR(err);
868 }
869
870 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
871                                ext4_lblk_t block, int map_flags)
872 {
873         struct buffer_head *bh;
874
875         bh = ext4_getblk(handle, inode, block, map_flags);
876         if (IS_ERR(bh))
877                 return bh;
878         if (!bh || ext4_buffer_uptodate(bh))
879                 return bh;
880         ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
881         wait_on_buffer(bh);
882         if (buffer_uptodate(bh))
883                 return bh;
884         put_bh(bh);
885         return ERR_PTR(-EIO);
886 }
887
888 /* Read a contiguous batch of blocks. */
889 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
890                      bool wait, struct buffer_head **bhs)
891 {
892         int i, err;
893
894         for (i = 0; i < bh_count; i++) {
895                 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
896                 if (IS_ERR(bhs[i])) {
897                         err = PTR_ERR(bhs[i]);
898                         bh_count = i;
899                         goto out_brelse;
900                 }
901         }
902
903         for (i = 0; i < bh_count; i++)
904                 /* Note that NULL bhs[i] is valid because of holes. */
905                 if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
906                         ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1,
907                                     &bhs[i]);
908
909         if (!wait)
910                 return 0;
911
912         for (i = 0; i < bh_count; i++)
913                 if (bhs[i])
914                         wait_on_buffer(bhs[i]);
915
916         for (i = 0; i < bh_count; i++) {
917                 if (bhs[i] && !buffer_uptodate(bhs[i])) {
918                         err = -EIO;
919                         goto out_brelse;
920                 }
921         }
922         return 0;
923
924 out_brelse:
925         for (i = 0; i < bh_count; i++) {
926                 brelse(bhs[i]);
927                 bhs[i] = NULL;
928         }
929         return err;
930 }
931
932 int ext4_walk_page_buffers(handle_t *handle,
933                            struct buffer_head *head,
934                            unsigned from,
935                            unsigned to,
936                            int *partial,
937                            int (*fn)(handle_t *handle,
938                                      struct buffer_head *bh))
939 {
940         struct buffer_head *bh;
941         unsigned block_start, block_end;
942         unsigned blocksize = head->b_size;
943         int err, ret = 0;
944         struct buffer_head *next;
945
946         for (bh = head, block_start = 0;
947              ret == 0 && (bh != head || !block_start);
948              block_start = block_end, bh = next) {
949                 next = bh->b_this_page;
950                 block_end = block_start + blocksize;
951                 if (block_end <= from || block_start >= to) {
952                         if (partial && !buffer_uptodate(bh))
953                                 *partial = 1;
954                         continue;
955                 }
956                 err = (*fn)(handle, bh);
957                 if (!ret)
958                         ret = err;
959         }
960         return ret;
961 }
962
963 /*
964  * To preserve ordering, it is essential that the hole instantiation and
965  * the data write be encapsulated in a single transaction.  We cannot
966  * close off a transaction and start a new one between the ext4_get_block()
967  * and the commit_write().  So doing the jbd2_journal_start at the start of
968  * prepare_write() is the right place.
969  *
970  * Also, this function can nest inside ext4_writepage().  In that case, we
971  * *know* that ext4_writepage() has generated enough buffer credits to do the
972  * whole page.  So we won't block on the journal in that case, which is good,
973  * because the caller may be PF_MEMALLOC.
974  *
975  * By accident, ext4 can be reentered when a transaction is open via
976  * quota file writes.  If we were to commit the transaction while thus
977  * reentered, there can be a deadlock - we would be holding a quota
978  * lock, and the commit would never complete if another thread had a
979  * transaction open and was blocking on the quota lock - a ranking
980  * violation.
981  *
982  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
983  * will _not_ run commit under these circumstances because handle->h_ref
984  * is elevated.  We'll still have enough credits for the tiny quotafile
985  * write.
986  */
987 int do_journal_get_write_access(handle_t *handle,
988                                 struct buffer_head *bh)
989 {
990         int dirty = buffer_dirty(bh);
991         int ret;
992
993         if (!buffer_mapped(bh) || buffer_freed(bh))
994                 return 0;
995         /*
996          * __block_write_begin() could have dirtied some buffers. Clean
997          * the dirty bit as jbd2_journal_get_write_access() could complain
998          * otherwise about fs integrity issues. Setting of the dirty bit
999          * by __block_write_begin() isn't a real problem here as we clear
1000          * the bit before releasing a page lock and thus writeback cannot
1001          * ever write the buffer.
1002          */
1003         if (dirty)
1004                 clear_buffer_dirty(bh);
1005         BUFFER_TRACE(bh, "get write access");
1006         ret = ext4_journal_get_write_access(handle, bh);
1007         if (!ret && dirty)
1008                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1009         return ret;
1010 }
1011
1012 #ifdef CONFIG_FS_ENCRYPTION
1013 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1014                                   get_block_t *get_block)
1015 {
1016         unsigned from = pos & (PAGE_SIZE - 1);
1017         unsigned to = from + len;
1018         struct inode *inode = page->mapping->host;
1019         unsigned block_start, block_end;
1020         sector_t block;
1021         int err = 0;
1022         unsigned blocksize = inode->i_sb->s_blocksize;
1023         unsigned bbits;
1024         struct buffer_head *bh, *head, *wait[2];
1025         int nr_wait = 0;
1026         int i;
1027
1028         BUG_ON(!PageLocked(page));
1029         BUG_ON(from > PAGE_SIZE);
1030         BUG_ON(to > PAGE_SIZE);
1031         BUG_ON(from > to);
1032
1033         if (!page_has_buffers(page))
1034                 create_empty_buffers(page, blocksize, 0);
1035         head = page_buffers(page);
1036         bbits = ilog2(blocksize);
1037         block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1038
1039         for (bh = head, block_start = 0; bh != head || !block_start;
1040             block++, block_start = block_end, bh = bh->b_this_page) {
1041                 block_end = block_start + blocksize;
1042                 if (block_end <= from || block_start >= to) {
1043                         if (PageUptodate(page)) {
1044                                 if (!buffer_uptodate(bh))
1045                                         set_buffer_uptodate(bh);
1046                         }
1047                         continue;
1048                 }
1049                 if (buffer_new(bh))
1050                         clear_buffer_new(bh);
1051                 if (!buffer_mapped(bh)) {
1052                         WARN_ON(bh->b_size != blocksize);
1053                         err = get_block(inode, block, bh, 1);
1054                         if (err)
1055                                 break;
1056                         if (buffer_new(bh)) {
1057                                 if (PageUptodate(page)) {
1058                                         clear_buffer_new(bh);
1059                                         set_buffer_uptodate(bh);
1060                                         mark_buffer_dirty(bh);
1061                                         continue;
1062                                 }
1063                                 if (block_end > to || block_start < from)
1064                                         zero_user_segments(page, to, block_end,
1065                                                            block_start, from);
1066                                 continue;
1067                         }
1068                 }
1069                 if (PageUptodate(page)) {
1070                         if (!buffer_uptodate(bh))
1071                                 set_buffer_uptodate(bh);
1072                         continue;
1073                 }
1074                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1075                     !buffer_unwritten(bh) &&
1076                     (block_start < from || block_end > to)) {
1077                         ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1078                         wait[nr_wait++] = bh;
1079                 }
1080         }
1081         /*
1082          * If we issued read requests, let them complete.
1083          */
1084         for (i = 0; i < nr_wait; i++) {
1085                 wait_on_buffer(wait[i]);
1086                 if (!buffer_uptodate(wait[i]))
1087                         err = -EIO;
1088         }
1089         if (unlikely(err)) {
1090                 page_zero_new_buffers(page, from, to);
1091         } else if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode)) {
1092                 for (i = 0; i < nr_wait; i++) {
1093                         int err2;
1094
1095                         err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize,
1096                                                                 bh_offset(wait[i]));
1097                         if (err2) {
1098                                 clear_buffer_uptodate(wait[i]);
1099                                 err = err2;
1100                         }
1101                 }
1102         }
1103
1104         return err;
1105 }
1106 #endif
1107
1108 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1109                             loff_t pos, unsigned len, unsigned flags,
1110                             struct page **pagep, void **fsdata)
1111 {
1112         struct inode *inode = mapping->host;
1113         int ret, needed_blocks;
1114         handle_t *handle;
1115         int retries = 0;
1116         struct page *page;
1117         pgoff_t index;
1118         unsigned from, to;
1119
1120         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1121                 return -EIO;
1122
1123         trace_ext4_write_begin(inode, pos, len, flags);
1124         /*
1125          * Reserve one block more for addition to orphan list in case
1126          * we allocate blocks but write fails for some reason
1127          */
1128         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1129         index = pos >> PAGE_SHIFT;
1130         from = pos & (PAGE_SIZE - 1);
1131         to = from + len;
1132
1133         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1134                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1135                                                     flags, pagep);
1136                 if (ret < 0)
1137                         return ret;
1138                 if (ret == 1)
1139                         return 0;
1140         }
1141
1142         /*
1143          * grab_cache_page_write_begin() can take a long time if the
1144          * system is thrashing due to memory pressure, or if the page
1145          * is being written back.  So grab it first before we start
1146          * the transaction handle.  This also allows us to allocate
1147          * the page (if needed) without using GFP_NOFS.
1148          */
1149 retry_grab:
1150         page = grab_cache_page_write_begin(mapping, index, flags);
1151         if (!page)
1152                 return -ENOMEM;
1153         unlock_page(page);
1154
1155 retry_journal:
1156         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1157         if (IS_ERR(handle)) {
1158                 put_page(page);
1159                 return PTR_ERR(handle);
1160         }
1161
1162         lock_page(page);
1163         if (page->mapping != mapping) {
1164                 /* The page got truncated from under us */
1165                 unlock_page(page);
1166                 put_page(page);
1167                 ext4_journal_stop(handle);
1168                 goto retry_grab;
1169         }
1170         /* In case writeback began while the page was unlocked */
1171         wait_for_stable_page(page);
1172
1173 #ifdef CONFIG_FS_ENCRYPTION
1174         if (ext4_should_dioread_nolock(inode))
1175                 ret = ext4_block_write_begin(page, pos, len,
1176                                              ext4_get_block_unwritten);
1177         else
1178                 ret = ext4_block_write_begin(page, pos, len,
1179                                              ext4_get_block);
1180 #else
1181         if (ext4_should_dioread_nolock(inode))
1182                 ret = __block_write_begin(page, pos, len,
1183                                           ext4_get_block_unwritten);
1184         else
1185                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1186 #endif
1187         if (!ret && ext4_should_journal_data(inode)) {
1188                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1189                                              from, to, NULL,
1190                                              do_journal_get_write_access);
1191         }
1192
1193         if (ret) {
1194                 bool extended = (pos + len > inode->i_size) &&
1195                                 !ext4_verity_in_progress(inode);
1196
1197                 unlock_page(page);
1198                 /*
1199                  * __block_write_begin may have instantiated a few blocks
1200                  * outside i_size.  Trim these off again. Don't need
1201                  * i_size_read because we hold i_mutex.
1202                  *
1203                  * Add inode to orphan list in case we crash before
1204                  * truncate finishes
1205                  */
1206                 if (extended && ext4_can_truncate(inode))
1207                         ext4_orphan_add(handle, inode);
1208
1209                 ext4_journal_stop(handle);
1210                 if (extended) {
1211                         ext4_truncate_failed_write(inode);
1212                         /*
1213                          * If truncate failed early the inode might
1214                          * still be on the orphan list; we need to
1215                          * make sure the inode is removed from the
1216                          * orphan list in that case.
1217                          */
1218                         if (inode->i_nlink)
1219                                 ext4_orphan_del(NULL, inode);
1220                 }
1221
1222                 if (ret == -ENOSPC &&
1223                     ext4_should_retry_alloc(inode->i_sb, &retries))
1224                         goto retry_journal;
1225                 put_page(page);
1226                 return ret;
1227         }
1228         *pagep = page;
1229         return ret;
1230 }
1231
1232 /* For write_end() in data=journal mode */
1233 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1234 {
1235         int ret;
1236         if (!buffer_mapped(bh) || buffer_freed(bh))
1237                 return 0;
1238         set_buffer_uptodate(bh);
1239         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1240         clear_buffer_meta(bh);
1241         clear_buffer_prio(bh);
1242         return ret;
1243 }
1244
1245 /*
1246  * We need to pick up the new inode size which generic_commit_write gave us
1247  * `file' can be NULL - eg, when called from page_symlink().
1248  *
1249  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1250  * buffers are managed internally.
1251  */
1252 static int ext4_write_end(struct file *file,
1253                           struct address_space *mapping,
1254                           loff_t pos, unsigned len, unsigned copied,
1255                           struct page *page, void *fsdata)
1256 {
1257         handle_t *handle = ext4_journal_current_handle();
1258         struct inode *inode = mapping->host;
1259         loff_t old_size = inode->i_size;
1260         int ret = 0, ret2;
1261         int i_size_changed = 0;
1262         int inline_data = ext4_has_inline_data(inode);
1263         bool verity = ext4_verity_in_progress(inode);
1264
1265         trace_ext4_write_end(inode, pos, len, copied);
1266         if (inline_data) {
1267                 ret = ext4_write_inline_data_end(inode, pos, len,
1268                                                  copied, page);
1269                 if (ret < 0) {
1270                         unlock_page(page);
1271                         put_page(page);
1272                         goto errout;
1273                 }
1274                 copied = ret;
1275         } else
1276                 copied = block_write_end(file, mapping, pos,
1277                                          len, copied, page, fsdata);
1278         /*
1279          * it's important to update i_size while still holding page lock:
1280          * page writeout could otherwise come in and zero beyond i_size.
1281          *
1282          * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1283          * blocks are being written past EOF, so skip the i_size update.
1284          */
1285         if (!verity)
1286                 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1287         unlock_page(page);
1288         put_page(page);
1289
1290         if (old_size < pos && !verity)
1291                 pagecache_isize_extended(inode, old_size, pos);
1292         /*
1293          * Don't mark the inode dirty under page lock. First, it unnecessarily
1294          * makes the holding time of page lock longer. Second, it forces lock
1295          * ordering of page lock and transaction start for journaling
1296          * filesystems.
1297          */
1298         if (i_size_changed || inline_data)
1299                 ext4_mark_inode_dirty(handle, inode);
1300
1301         if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1302                 /* if we have allocated more blocks and copied
1303                  * less. We will have blocks allocated outside
1304                  * inode->i_size. So truncate them
1305                  */
1306                 ext4_orphan_add(handle, inode);
1307 errout:
1308         ret2 = ext4_journal_stop(handle);
1309         if (!ret)
1310                 ret = ret2;
1311
1312         if (pos + len > inode->i_size && !verity) {
1313                 ext4_truncate_failed_write(inode);
1314                 /*
1315                  * If truncate failed early the inode might still be
1316                  * on the orphan list; we need to make sure the inode
1317                  * is removed from the orphan list in that case.
1318                  */
1319                 if (inode->i_nlink)
1320                         ext4_orphan_del(NULL, inode);
1321         }
1322
1323         return ret ? ret : copied;
1324 }
1325
1326 /*
1327  * This is a private version of page_zero_new_buffers() which doesn't
1328  * set the buffer to be dirty, since in data=journalled mode we need
1329  * to call ext4_handle_dirty_metadata() instead.
1330  */
1331 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1332                                             struct page *page,
1333                                             unsigned from, unsigned to)
1334 {
1335         unsigned int block_start = 0, block_end;
1336         struct buffer_head *head, *bh;
1337
1338         bh = head = page_buffers(page);
1339         do {
1340                 block_end = block_start + bh->b_size;
1341                 if (buffer_new(bh)) {
1342                         if (block_end > from && block_start < to) {
1343                                 if (!PageUptodate(page)) {
1344                                         unsigned start, size;
1345
1346                                         start = max(from, block_start);
1347                                         size = min(to, block_end) - start;
1348
1349                                         zero_user(page, start, size);
1350                                         write_end_fn(handle, bh);
1351                                 }
1352                                 clear_buffer_new(bh);
1353                         }
1354                 }
1355                 block_start = block_end;
1356                 bh = bh->b_this_page;
1357         } while (bh != head);
1358 }
1359
1360 static int ext4_journalled_write_end(struct file *file,
1361                                      struct address_space *mapping,
1362                                      loff_t pos, unsigned len, unsigned copied,
1363                                      struct page *page, void *fsdata)
1364 {
1365         handle_t *handle = ext4_journal_current_handle();
1366         struct inode *inode = mapping->host;
1367         loff_t old_size = inode->i_size;
1368         int ret = 0, ret2;
1369         int partial = 0;
1370         unsigned from, to;
1371         int size_changed = 0;
1372         int inline_data = ext4_has_inline_data(inode);
1373         bool verity = ext4_verity_in_progress(inode);
1374
1375         trace_ext4_journalled_write_end(inode, pos, len, copied);
1376         from = pos & (PAGE_SIZE - 1);
1377         to = from + len;
1378
1379         BUG_ON(!ext4_handle_valid(handle));
1380
1381         if (inline_data) {
1382                 ret = ext4_write_inline_data_end(inode, pos, len,
1383                                                  copied, page);
1384                 if (ret < 0) {
1385                         unlock_page(page);
1386                         put_page(page);
1387                         goto errout;
1388                 }
1389                 copied = ret;
1390         } else if (unlikely(copied < len) && !PageUptodate(page)) {
1391                 copied = 0;
1392                 ext4_journalled_zero_new_buffers(handle, page, from, to);
1393         } else {
1394                 if (unlikely(copied < len))
1395                         ext4_journalled_zero_new_buffers(handle, page,
1396                                                          from + copied, to);
1397                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1398                                              from + copied, &partial,
1399                                              write_end_fn);
1400                 if (!partial)
1401                         SetPageUptodate(page);
1402         }
1403         if (!verity)
1404                 size_changed = ext4_update_inode_size(inode, pos + copied);
1405         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1406         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1407         unlock_page(page);
1408         put_page(page);
1409
1410         if (old_size < pos && !verity)
1411                 pagecache_isize_extended(inode, old_size, pos);
1412
1413         if (size_changed || inline_data) {
1414                 ret2 = ext4_mark_inode_dirty(handle, inode);
1415                 if (!ret)
1416                         ret = ret2;
1417         }
1418
1419         if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1420                 /* if we have allocated more blocks and copied
1421                  * less. We will have blocks allocated outside
1422                  * inode->i_size. So truncate them
1423                  */
1424                 ext4_orphan_add(handle, inode);
1425
1426 errout:
1427         ret2 = ext4_journal_stop(handle);
1428         if (!ret)
1429                 ret = ret2;
1430         if (pos + len > inode->i_size && !verity) {
1431                 ext4_truncate_failed_write(inode);
1432                 /*
1433                  * If truncate failed early the inode might still be
1434                  * on the orphan list; we need to make sure the inode
1435                  * is removed from the orphan list in that case.
1436                  */
1437                 if (inode->i_nlink)
1438                         ext4_orphan_del(NULL, inode);
1439         }
1440
1441         return ret ? ret : copied;
1442 }
1443
1444 /*
1445  * Reserve space for a single cluster
1446  */
1447 static int ext4_da_reserve_space(struct inode *inode)
1448 {
1449         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1450         struct ext4_inode_info *ei = EXT4_I(inode);
1451         int ret;
1452
1453         /*
1454          * We will charge metadata quota at writeout time; this saves
1455          * us from metadata over-estimation, though we may go over by
1456          * a small amount in the end.  Here we just reserve for data.
1457          */
1458         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1459         if (ret)
1460                 return ret;
1461
1462         spin_lock(&ei->i_block_reservation_lock);
1463         if (ext4_claim_free_clusters(sbi, 1, 0)) {
1464                 spin_unlock(&ei->i_block_reservation_lock);
1465                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1466                 return -ENOSPC;
1467         }
1468         ei->i_reserved_data_blocks++;
1469         trace_ext4_da_reserve_space(inode);
1470         spin_unlock(&ei->i_block_reservation_lock);
1471
1472         return 0;       /* success */
1473 }
1474
1475 void ext4_da_release_space(struct inode *inode, int to_free)
1476 {
1477         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1478         struct ext4_inode_info *ei = EXT4_I(inode);
1479
1480         if (!to_free)
1481                 return;         /* Nothing to release, exit */
1482
1483         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1484
1485         trace_ext4_da_release_space(inode, to_free);
1486         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1487                 /*
1488                  * if there aren't enough reserved blocks, then the
1489                  * counter is messed up somewhere.  Since this
1490                  * function is called from invalidate page, it's
1491                  * harmless to return without any action.
1492                  */
1493                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1494                          "ino %lu, to_free %d with only %d reserved "
1495                          "data blocks", inode->i_ino, to_free,
1496                          ei->i_reserved_data_blocks);
1497                 WARN_ON(1);
1498                 to_free = ei->i_reserved_data_blocks;
1499         }
1500         ei->i_reserved_data_blocks -= to_free;
1501
1502         /* update fs dirty data blocks counter */
1503         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1504
1505         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1506
1507         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1508 }
1509
1510 /*
1511  * Delayed allocation stuff
1512  */
1513
1514 struct mpage_da_data {
1515         struct inode *inode;
1516         struct writeback_control *wbc;
1517
1518         pgoff_t first_page;     /* The first page to write */
1519         pgoff_t next_page;      /* Current page to examine */
1520         pgoff_t last_page;      /* Last page to examine */
1521         /*
1522          * Extent to map - this can be after first_page because that can be
1523          * fully mapped. We somewhat abuse m_flags to store whether the extent
1524          * is delalloc or unwritten.
1525          */
1526         struct ext4_map_blocks map;
1527         struct ext4_io_submit io_submit;        /* IO submission data */
1528         unsigned int do_map:1;
1529 };
1530
1531 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1532                                        bool invalidate)
1533 {
1534         int nr_pages, i;
1535         pgoff_t index, end;
1536         struct pagevec pvec;
1537         struct inode *inode = mpd->inode;
1538         struct address_space *mapping = inode->i_mapping;
1539
1540         /* This is necessary when next_page == 0. */
1541         if (mpd->first_page >= mpd->next_page)
1542                 return;
1543
1544         index = mpd->first_page;
1545         end   = mpd->next_page - 1;
1546         if (invalidate) {
1547                 ext4_lblk_t start, last;
1548                 start = index << (PAGE_SHIFT - inode->i_blkbits);
1549                 last = end << (PAGE_SHIFT - inode->i_blkbits);
1550                 ext4_es_remove_extent(inode, start, last - start + 1);
1551         }
1552
1553         pagevec_init(&pvec);
1554         while (index <= end) {
1555                 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1556                 if (nr_pages == 0)
1557                         break;
1558                 for (i = 0; i < nr_pages; i++) {
1559                         struct page *page = pvec.pages[i];
1560
1561                         BUG_ON(!PageLocked(page));
1562                         BUG_ON(PageWriteback(page));
1563                         if (invalidate) {
1564                                 if (page_mapped(page))
1565                                         clear_page_dirty_for_io(page);
1566                                 block_invalidatepage(page, 0, PAGE_SIZE);
1567                                 ClearPageUptodate(page);
1568                         }
1569                         unlock_page(page);
1570                 }
1571                 pagevec_release(&pvec);
1572         }
1573 }
1574
1575 static void ext4_print_free_blocks(struct inode *inode)
1576 {
1577         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1578         struct super_block *sb = inode->i_sb;
1579         struct ext4_inode_info *ei = EXT4_I(inode);
1580
1581         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1582                EXT4_C2B(EXT4_SB(inode->i_sb),
1583                         ext4_count_free_clusters(sb)));
1584         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1585         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1586                (long long) EXT4_C2B(EXT4_SB(sb),
1587                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1588         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1589                (long long) EXT4_C2B(EXT4_SB(sb),
1590                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1591         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1592         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1593                  ei->i_reserved_data_blocks);
1594         return;
1595 }
1596
1597 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1598 {
1599         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1600 }
1601
1602 /*
1603  * ext4_insert_delayed_block - adds a delayed block to the extents status
1604  *                             tree, incrementing the reserved cluster/block
1605  *                             count or making a pending reservation
1606  *                             where needed
1607  *
1608  * @inode - file containing the newly added block
1609  * @lblk - logical block to be added
1610  *
1611  * Returns 0 on success, negative error code on failure.
1612  */
1613 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1614 {
1615         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1616         int ret;
1617         bool allocated = false;
1618
1619         /*
1620          * If the cluster containing lblk is shared with a delayed,
1621          * written, or unwritten extent in a bigalloc file system, it's
1622          * already been accounted for and does not need to be reserved.
1623          * A pending reservation must be made for the cluster if it's
1624          * shared with a written or unwritten extent and doesn't already
1625          * have one.  Written and unwritten extents can be purged from the
1626          * extents status tree if the system is under memory pressure, so
1627          * it's necessary to examine the extent tree if a search of the
1628          * extents status tree doesn't get a match.
1629          */
1630         if (sbi->s_cluster_ratio == 1) {
1631                 ret = ext4_da_reserve_space(inode);
1632                 if (ret != 0)   /* ENOSPC */
1633                         goto errout;
1634         } else {   /* bigalloc */
1635                 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1636                         if (!ext4_es_scan_clu(inode,
1637                                               &ext4_es_is_mapped, lblk)) {
1638                                 ret = ext4_clu_mapped(inode,
1639                                                       EXT4_B2C(sbi, lblk));
1640                                 if (ret < 0)
1641                                         goto errout;
1642                                 if (ret == 0) {
1643                                         ret = ext4_da_reserve_space(inode);
1644                                         if (ret != 0)   /* ENOSPC */
1645                                                 goto errout;
1646                                 } else {
1647                                         allocated = true;
1648                                 }
1649                         } else {
1650                                 allocated = true;
1651                         }
1652                 }
1653         }
1654
1655         ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1656
1657 errout:
1658         return ret;
1659 }
1660
1661 /*
1662  * This function is grabs code from the very beginning of
1663  * ext4_map_blocks, but assumes that the caller is from delayed write
1664  * time. This function looks up the requested blocks and sets the
1665  * buffer delay bit under the protection of i_data_sem.
1666  */
1667 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1668                               struct ext4_map_blocks *map,
1669                               struct buffer_head *bh)
1670 {
1671         struct extent_status es;
1672         int retval;
1673         sector_t invalid_block = ~((sector_t) 0xffff);
1674 #ifdef ES_AGGRESSIVE_TEST
1675         struct ext4_map_blocks orig_map;
1676
1677         memcpy(&orig_map, map, sizeof(*map));
1678 #endif
1679
1680         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1681                 invalid_block = ~0;
1682
1683         map->m_flags = 0;
1684         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1685                   "logical block %lu\n", inode->i_ino, map->m_len,
1686                   (unsigned long) map->m_lblk);
1687
1688         /* Lookup extent status tree firstly */
1689         if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1690                 if (ext4_es_is_hole(&es)) {
1691                         retval = 0;
1692                         down_read(&EXT4_I(inode)->i_data_sem);
1693                         goto add_delayed;
1694                 }
1695
1696                 /*
1697                  * Delayed extent could be allocated by fallocate.
1698                  * So we need to check it.
1699                  */
1700                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1701                         map_bh(bh, inode->i_sb, invalid_block);
1702                         set_buffer_new(bh);
1703                         set_buffer_delay(bh);
1704                         return 0;
1705                 }
1706
1707                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1708                 retval = es.es_len - (iblock - es.es_lblk);
1709                 if (retval > map->m_len)
1710                         retval = map->m_len;
1711                 map->m_len = retval;
1712                 if (ext4_es_is_written(&es))
1713                         map->m_flags |= EXT4_MAP_MAPPED;
1714                 else if (ext4_es_is_unwritten(&es))
1715                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1716                 else
1717                         BUG();
1718
1719 #ifdef ES_AGGRESSIVE_TEST
1720                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1721 #endif
1722                 return retval;
1723         }
1724
1725         /*
1726          * Try to see if we can get the block without requesting a new
1727          * file system block.
1728          */
1729         down_read(&EXT4_I(inode)->i_data_sem);
1730         if (ext4_has_inline_data(inode))
1731                 retval = 0;
1732         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1733                 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1734         else
1735                 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1736
1737 add_delayed:
1738         if (retval == 0) {
1739                 int ret;
1740
1741                 /*
1742                  * XXX: __block_prepare_write() unmaps passed block,
1743                  * is it OK?
1744                  */
1745
1746                 ret = ext4_insert_delayed_block(inode, map->m_lblk);
1747                 if (ret != 0) {
1748                         retval = ret;
1749                         goto out_unlock;
1750                 }
1751
1752                 map_bh(bh, inode->i_sb, invalid_block);
1753                 set_buffer_new(bh);
1754                 set_buffer_delay(bh);
1755         } else if (retval > 0) {
1756                 int ret;
1757                 unsigned int status;
1758
1759                 if (unlikely(retval != map->m_len)) {
1760                         ext4_warning(inode->i_sb,
1761                                      "ES len assertion failed for inode "
1762                                      "%lu: retval %d != map->m_len %d",
1763                                      inode->i_ino, retval, map->m_len);
1764                         WARN_ON(1);
1765                 }
1766
1767                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1768                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1769                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1770                                             map->m_pblk, status);
1771                 if (ret != 0)
1772                         retval = ret;
1773         }
1774
1775 out_unlock:
1776         up_read((&EXT4_I(inode)->i_data_sem));
1777
1778         return retval;
1779 }
1780
1781 /*
1782  * This is a special get_block_t callback which is used by
1783  * ext4_da_write_begin().  It will either return mapped block or
1784  * reserve space for a single block.
1785  *
1786  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1787  * We also have b_blocknr = -1 and b_bdev initialized properly
1788  *
1789  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1790  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1791  * initialized properly.
1792  */
1793 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1794                            struct buffer_head *bh, int create)
1795 {
1796         struct ext4_map_blocks map;
1797         int ret = 0;
1798
1799         BUG_ON(create == 0);
1800         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1801
1802         map.m_lblk = iblock;
1803         map.m_len = 1;
1804
1805         /*
1806          * first, we need to know whether the block is allocated already
1807          * preallocated blocks are unmapped but should treated
1808          * the same as allocated blocks.
1809          */
1810         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1811         if (ret <= 0)
1812                 return ret;
1813
1814         map_bh(bh, inode->i_sb, map.m_pblk);
1815         ext4_update_bh_state(bh, map.m_flags);
1816
1817         if (buffer_unwritten(bh)) {
1818                 /* A delayed write to unwritten bh should be marked
1819                  * new and mapped.  Mapped ensures that we don't do
1820                  * get_block multiple times when we write to the same
1821                  * offset and new ensures that we do proper zero out
1822                  * for partial write.
1823                  */
1824                 set_buffer_new(bh);
1825                 set_buffer_mapped(bh);
1826         }
1827         return 0;
1828 }
1829
1830 static int bget_one(handle_t *handle, struct buffer_head *bh)
1831 {
1832         get_bh(bh);
1833         return 0;
1834 }
1835
1836 static int bput_one(handle_t *handle, struct buffer_head *bh)
1837 {
1838         put_bh(bh);
1839         return 0;
1840 }
1841
1842 static int __ext4_journalled_writepage(struct page *page,
1843                                        unsigned int len)
1844 {
1845         struct address_space *mapping = page->mapping;
1846         struct inode *inode = mapping->host;
1847         struct buffer_head *page_bufs = NULL;
1848         handle_t *handle = NULL;
1849         int ret = 0, err = 0;
1850         int inline_data = ext4_has_inline_data(inode);
1851         struct buffer_head *inode_bh = NULL;
1852
1853         ClearPageChecked(page);
1854
1855         if (inline_data) {
1856                 BUG_ON(page->index != 0);
1857                 BUG_ON(len > ext4_get_max_inline_size(inode));
1858                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1859                 if (inode_bh == NULL)
1860                         goto out;
1861         } else {
1862                 page_bufs = page_buffers(page);
1863                 if (!page_bufs) {
1864                         BUG();
1865                         goto out;
1866                 }
1867                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1868                                        NULL, bget_one);
1869         }
1870         /*
1871          * We need to release the page lock before we start the
1872          * journal, so grab a reference so the page won't disappear
1873          * out from under us.
1874          */
1875         get_page(page);
1876         unlock_page(page);
1877
1878         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1879                                     ext4_writepage_trans_blocks(inode));
1880         if (IS_ERR(handle)) {
1881                 ret = PTR_ERR(handle);
1882                 put_page(page);
1883                 goto out_no_pagelock;
1884         }
1885         BUG_ON(!ext4_handle_valid(handle));
1886
1887         lock_page(page);
1888         put_page(page);
1889         if (page->mapping != mapping) {
1890                 /* The page got truncated from under us */
1891                 ext4_journal_stop(handle);
1892                 ret = 0;
1893                 goto out;
1894         }
1895
1896         if (inline_data) {
1897                 ret = ext4_mark_inode_dirty(handle, inode);
1898         } else {
1899                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1900                                              do_journal_get_write_access);
1901
1902                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1903                                              write_end_fn);
1904         }
1905         if (ret == 0)
1906                 ret = err;
1907         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1908         err = ext4_journal_stop(handle);
1909         if (!ret)
1910                 ret = err;
1911
1912         if (!ext4_has_inline_data(inode))
1913                 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1914                                        NULL, bput_one);
1915         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1916 out:
1917         unlock_page(page);
1918 out_no_pagelock:
1919         brelse(inode_bh);
1920         return ret;
1921 }
1922
1923 /*
1924  * Note that we don't need to start a transaction unless we're journaling data
1925  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1926  * need to file the inode to the transaction's list in ordered mode because if
1927  * we are writing back data added by write(), the inode is already there and if
1928  * we are writing back data modified via mmap(), no one guarantees in which
1929  * transaction the data will hit the disk. In case we are journaling data, we
1930  * cannot start transaction directly because transaction start ranks above page
1931  * lock so we have to do some magic.
1932  *
1933  * This function can get called via...
1934  *   - ext4_writepages after taking page lock (have journal handle)
1935  *   - journal_submit_inode_data_buffers (no journal handle)
1936  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1937  *   - grab_page_cache when doing write_begin (have journal handle)
1938  *
1939  * We don't do any block allocation in this function. If we have page with
1940  * multiple blocks we need to write those buffer_heads that are mapped. This
1941  * is important for mmaped based write. So if we do with blocksize 1K
1942  * truncate(f, 1024);
1943  * a = mmap(f, 0, 4096);
1944  * a[0] = 'a';
1945  * truncate(f, 4096);
1946  * we have in the page first buffer_head mapped via page_mkwrite call back
1947  * but other buffer_heads would be unmapped but dirty (dirty done via the
1948  * do_wp_page). So writepage should write the first block. If we modify
1949  * the mmap area beyond 1024 we will again get a page_fault and the
1950  * page_mkwrite callback will do the block allocation and mark the
1951  * buffer_heads mapped.
1952  *
1953  * We redirty the page if we have any buffer_heads that is either delay or
1954  * unwritten in the page.
1955  *
1956  * We can get recursively called as show below.
1957  *
1958  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1959  *              ext4_writepage()
1960  *
1961  * But since we don't do any block allocation we should not deadlock.
1962  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1963  */
1964 static int ext4_writepage(struct page *page,
1965                           struct writeback_control *wbc)
1966 {
1967         int ret = 0;
1968         loff_t size;
1969         unsigned int len;
1970         struct buffer_head *page_bufs = NULL;
1971         struct inode *inode = page->mapping->host;
1972         struct ext4_io_submit io_submit;
1973         bool keep_towrite = false;
1974
1975         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
1976                 inode->i_mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
1977                 unlock_page(page);
1978                 return -EIO;
1979         }
1980
1981         trace_ext4_writepage(page);
1982         size = i_size_read(inode);
1983         if (page->index == size >> PAGE_SHIFT &&
1984             !ext4_verity_in_progress(inode))
1985                 len = size & ~PAGE_MASK;
1986         else
1987                 len = PAGE_SIZE;
1988
1989         page_bufs = page_buffers(page);
1990         /*
1991          * We cannot do block allocation or other extent handling in this
1992          * function. If there are buffers needing that, we have to redirty
1993          * the page. But we may reach here when we do a journal commit via
1994          * journal_submit_inode_data_buffers() and in that case we must write
1995          * allocated buffers to achieve data=ordered mode guarantees.
1996          *
1997          * Also, if there is only one buffer per page (the fs block
1998          * size == the page size), if one buffer needs block
1999          * allocation or needs to modify the extent tree to clear the
2000          * unwritten flag, we know that the page can't be written at
2001          * all, so we might as well refuse the write immediately.
2002          * Unfortunately if the block size != page size, we can't as
2003          * easily detect this case using ext4_walk_page_buffers(), but
2004          * for the extremely common case, this is an optimization that
2005          * skips a useless round trip through ext4_bio_write_page().
2006          */
2007         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2008                                    ext4_bh_delay_or_unwritten)) {
2009                 redirty_page_for_writepage(wbc, page);
2010                 if ((current->flags & PF_MEMALLOC) ||
2011                     (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2012                         /*
2013                          * For memory cleaning there's no point in writing only
2014                          * some buffers. So just bail out. Warn if we came here
2015                          * from direct reclaim.
2016                          */
2017                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2018                                                         == PF_MEMALLOC);
2019                         unlock_page(page);
2020                         return 0;
2021                 }
2022                 keep_towrite = true;
2023         }
2024
2025         if (PageChecked(page) && ext4_should_journal_data(inode))
2026                 /*
2027                  * It's mmapped pagecache.  Add buffers and journal it.  There
2028                  * doesn't seem much point in redirtying the page here.
2029                  */
2030                 return __ext4_journalled_writepage(page, len);
2031
2032         ext4_io_submit_init(&io_submit, wbc);
2033         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2034         if (!io_submit.io_end) {
2035                 redirty_page_for_writepage(wbc, page);
2036                 unlock_page(page);
2037                 return -ENOMEM;
2038         }
2039         ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2040         ext4_io_submit(&io_submit);
2041         /* Drop io_end reference we got from init */
2042         ext4_put_io_end_defer(io_submit.io_end);
2043         return ret;
2044 }
2045
2046 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2047 {
2048         int len;
2049         loff_t size;
2050         int err;
2051
2052         BUG_ON(page->index != mpd->first_page);
2053         clear_page_dirty_for_io(page);
2054         /*
2055          * We have to be very careful here!  Nothing protects writeback path
2056          * against i_size changes and the page can be writeably mapped into
2057          * page tables. So an application can be growing i_size and writing
2058          * data through mmap while writeback runs. clear_page_dirty_for_io()
2059          * write-protects our page in page tables and the page cannot get
2060          * written to again until we release page lock. So only after
2061          * clear_page_dirty_for_io() we are safe to sample i_size for
2062          * ext4_bio_write_page() to zero-out tail of the written page. We rely
2063          * on the barrier provided by TestClearPageDirty in
2064          * clear_page_dirty_for_io() to make sure i_size is really sampled only
2065          * after page tables are updated.
2066          */
2067         size = i_size_read(mpd->inode);
2068         if (page->index == size >> PAGE_SHIFT &&
2069             !ext4_verity_in_progress(mpd->inode))
2070                 len = size & ~PAGE_MASK;
2071         else
2072                 len = PAGE_SIZE;
2073         err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2074         if (!err)
2075                 mpd->wbc->nr_to_write--;
2076         mpd->first_page++;
2077
2078         return err;
2079 }
2080
2081 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2082
2083 /*
2084  * mballoc gives us at most this number of blocks...
2085  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2086  * The rest of mballoc seems to handle chunks up to full group size.
2087  */
2088 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2089
2090 /*
2091  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2092  *
2093  * @mpd - extent of blocks
2094  * @lblk - logical number of the block in the file
2095  * @bh - buffer head we want to add to the extent
2096  *
2097  * The function is used to collect contig. blocks in the same state. If the
2098  * buffer doesn't require mapping for writeback and we haven't started the
2099  * extent of buffers to map yet, the function returns 'true' immediately - the
2100  * caller can write the buffer right away. Otherwise the function returns true
2101  * if the block has been added to the extent, false if the block couldn't be
2102  * added.
2103  */
2104 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2105                                    struct buffer_head *bh)
2106 {
2107         struct ext4_map_blocks *map = &mpd->map;
2108
2109         /* Buffer that doesn't need mapping for writeback? */
2110         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2111             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2112                 /* So far no extent to map => we write the buffer right away */
2113                 if (map->m_len == 0)
2114                         return true;
2115                 return false;
2116         }
2117
2118         /* First block in the extent? */
2119         if (map->m_len == 0) {
2120                 /* We cannot map unless handle is started... */
2121                 if (!mpd->do_map)
2122                         return false;
2123                 map->m_lblk = lblk;
2124                 map->m_len = 1;
2125                 map->m_flags = bh->b_state & BH_FLAGS;
2126                 return true;
2127         }
2128
2129         /* Don't go larger than mballoc is willing to allocate */
2130         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2131                 return false;
2132
2133         /* Can we merge the block to our big extent? */
2134         if (lblk == map->m_lblk + map->m_len &&
2135             (bh->b_state & BH_FLAGS) == map->m_flags) {
2136                 map->m_len++;
2137                 return true;
2138         }
2139         return false;
2140 }
2141
2142 /*
2143  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2144  *
2145  * @mpd - extent of blocks for mapping
2146  * @head - the first buffer in the page
2147  * @bh - buffer we should start processing from
2148  * @lblk - logical number of the block in the file corresponding to @bh
2149  *
2150  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2151  * the page for IO if all buffers in this page were mapped and there's no
2152  * accumulated extent of buffers to map or add buffers in the page to the
2153  * extent of buffers to map. The function returns 1 if the caller can continue
2154  * by processing the next page, 0 if it should stop adding buffers to the
2155  * extent to map because we cannot extend it anymore. It can also return value
2156  * < 0 in case of error during IO submission.
2157  */
2158 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2159                                    struct buffer_head *head,
2160                                    struct buffer_head *bh,
2161                                    ext4_lblk_t lblk)
2162 {
2163         struct inode *inode = mpd->inode;
2164         int err;
2165         ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2166                                                         >> inode->i_blkbits;
2167
2168         if (ext4_verity_in_progress(inode))
2169                 blocks = EXT_MAX_BLOCKS;
2170
2171         do {
2172                 BUG_ON(buffer_locked(bh));
2173
2174                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2175                         /* Found extent to map? */
2176                         if (mpd->map.m_len)
2177                                 return 0;
2178                         /* Buffer needs mapping and handle is not started? */
2179                         if (!mpd->do_map)
2180                                 return 0;
2181                         /* Everything mapped so far and we hit EOF */
2182                         break;
2183                 }
2184         } while (lblk++, (bh = bh->b_this_page) != head);
2185         /* So far everything mapped? Submit the page for IO. */
2186         if (mpd->map.m_len == 0) {
2187                 err = mpage_submit_page(mpd, head->b_page);
2188                 if (err < 0)
2189                         return err;
2190         }
2191         return lblk < blocks;
2192 }
2193
2194 /*
2195  * mpage_process_page - update page buffers corresponding to changed extent and
2196  *                     may submit fully mapped page for IO
2197  *
2198  * @mpd         - description of extent to map, on return next extent to map
2199  * @m_lblk      - logical block mapping.
2200  * @m_pblk      - corresponding physical mapping.
2201  * @map_bh      - determines on return whether this page requires any further
2202  *                mapping or not.
2203  * Scan given page buffers corresponding to changed extent and update buffer
2204  * state according to new extent state.
2205  * We map delalloc buffers to their physical location, clear unwritten bits.
2206  * If the given page is not fully mapped, we update @map to the next extent in
2207  * the given page that needs mapping & return @map_bh as true.
2208  */
2209 static int mpage_process_page(struct mpage_da_data *mpd, struct page *page,
2210                               ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2211                               bool *map_bh)
2212 {
2213         struct buffer_head *head, *bh;
2214         ext4_io_end_t *io_end = mpd->io_submit.io_end;
2215         ext4_lblk_t lblk = *m_lblk;
2216         ext4_fsblk_t pblock = *m_pblk;
2217         int err = 0;
2218         int blkbits = mpd->inode->i_blkbits;
2219         ssize_t io_end_size = 0;
2220         struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2221
2222         bh = head = page_buffers(page);
2223         do {
2224                 if (lblk < mpd->map.m_lblk)
2225                         continue;
2226                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2227                         /*
2228                          * Buffer after end of mapped extent.
2229                          * Find next buffer in the page to map.
2230                          */
2231                         mpd->map.m_len = 0;
2232                         mpd->map.m_flags = 0;
2233                         io_end_vec->size += io_end_size;
2234                         io_end_size = 0;
2235
2236                         err = mpage_process_page_bufs(mpd, head, bh, lblk);
2237                         if (err > 0)
2238                                 err = 0;
2239                         if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2240                                 io_end_vec = ext4_alloc_io_end_vec(io_end);
2241                                 if (IS_ERR(io_end_vec)) {
2242                                         err = PTR_ERR(io_end_vec);
2243                                         goto out;
2244                                 }
2245                                 io_end_vec->offset = mpd->map.m_lblk << blkbits;
2246                         }
2247                         *map_bh = true;
2248                         goto out;
2249                 }
2250                 if (buffer_delay(bh)) {
2251                         clear_buffer_delay(bh);
2252                         bh->b_blocknr = pblock++;
2253                 }
2254                 clear_buffer_unwritten(bh);
2255                 io_end_size += (1 << blkbits);
2256         } while (lblk++, (bh = bh->b_this_page) != head);
2257
2258         io_end_vec->size += io_end_size;
2259         io_end_size = 0;
2260         *map_bh = false;
2261 out:
2262         *m_lblk = lblk;
2263         *m_pblk = pblock;
2264         return err;
2265 }
2266
2267 /*
2268  * mpage_map_buffers - update buffers corresponding to changed extent and
2269  *                     submit fully mapped pages for IO
2270  *
2271  * @mpd - description of extent to map, on return next extent to map
2272  *
2273  * Scan buffers corresponding to changed extent (we expect corresponding pages
2274  * to be already locked) and update buffer state according to new extent state.
2275  * We map delalloc buffers to their physical location, clear unwritten bits,
2276  * and mark buffers as uninit when we perform writes to unwritten extents
2277  * and do extent conversion after IO is finished. If the last page is not fully
2278  * mapped, we update @map to the next extent in the last page that needs
2279  * mapping. Otherwise we submit the page for IO.
2280  */
2281 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2282 {
2283         struct pagevec pvec;
2284         int nr_pages, i;
2285         struct inode *inode = mpd->inode;
2286         int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2287         pgoff_t start, end;
2288         ext4_lblk_t lblk;
2289         ext4_fsblk_t pblock;
2290         int err;
2291         bool map_bh = false;
2292
2293         start = mpd->map.m_lblk >> bpp_bits;
2294         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2295         lblk = start << bpp_bits;
2296         pblock = mpd->map.m_pblk;
2297
2298         pagevec_init(&pvec);
2299         while (start <= end) {
2300                 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2301                                                 &start, end);
2302                 if (nr_pages == 0)
2303                         break;
2304                 for (i = 0; i < nr_pages; i++) {
2305                         struct page *page = pvec.pages[i];
2306
2307                         err = mpage_process_page(mpd, page, &lblk, &pblock,
2308                                                  &map_bh);
2309                         /*
2310                          * If map_bh is true, means page may require further bh
2311                          * mapping, or maybe the page was submitted for IO.
2312                          * So we return to call further extent mapping.
2313                          */
2314                         if (err < 0 || map_bh == true)
2315                                 goto out;
2316                         /* Page fully mapped - let IO run! */
2317                         err = mpage_submit_page(mpd, page);
2318                         if (err < 0)
2319                                 goto out;
2320                 }
2321                 pagevec_release(&pvec);
2322         }
2323         /* Extent fully mapped and matches with page boundary. We are done. */
2324         mpd->map.m_len = 0;
2325         mpd->map.m_flags = 0;
2326         return 0;
2327 out:
2328         pagevec_release(&pvec);
2329         return err;
2330 }
2331
2332 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2333 {
2334         struct inode *inode = mpd->inode;
2335         struct ext4_map_blocks *map = &mpd->map;
2336         int get_blocks_flags;
2337         int err, dioread_nolock;
2338
2339         trace_ext4_da_write_pages_extent(inode, map);
2340         /*
2341          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2342          * to convert an unwritten extent to be initialized (in the case
2343          * where we have written into one or more preallocated blocks).  It is
2344          * possible that we're going to need more metadata blocks than
2345          * previously reserved. However we must not fail because we're in
2346          * writeback and there is nothing we can do about it so it might result
2347          * in data loss.  So use reserved blocks to allocate metadata if
2348          * possible.
2349          *
2350          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2351          * the blocks in question are delalloc blocks.  This indicates
2352          * that the blocks and quotas has already been checked when
2353          * the data was copied into the page cache.
2354          */
2355         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2356                            EXT4_GET_BLOCKS_METADATA_NOFAIL |
2357                            EXT4_GET_BLOCKS_IO_SUBMIT;
2358         dioread_nolock = ext4_should_dioread_nolock(inode);
2359         if (dioread_nolock)
2360                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2361         if (map->m_flags & (1 << BH_Delay))
2362                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2363
2364         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2365         if (err < 0)
2366                 return err;
2367         if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2368                 if (!mpd->io_submit.io_end->handle &&
2369                     ext4_handle_valid(handle)) {
2370                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2371                         handle->h_rsv_handle = NULL;
2372                 }
2373                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2374         }
2375
2376         BUG_ON(map->m_len == 0);
2377         return 0;
2378 }
2379
2380 /*
2381  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2382  *                               mpd->len and submit pages underlying it for IO
2383  *
2384  * @handle - handle for journal operations
2385  * @mpd - extent to map
2386  * @give_up_on_write - we set this to true iff there is a fatal error and there
2387  *                     is no hope of writing the data. The caller should discard
2388  *                     dirty pages to avoid infinite loops.
2389  *
2390  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2391  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2392  * them to initialized or split the described range from larger unwritten
2393  * extent. Note that we need not map all the described range since allocation
2394  * can return less blocks or the range is covered by more unwritten extents. We
2395  * cannot map more because we are limited by reserved transaction credits. On
2396  * the other hand we always make sure that the last touched page is fully
2397  * mapped so that it can be written out (and thus forward progress is
2398  * guaranteed). After mapping we submit all mapped pages for IO.
2399  */
2400 static int mpage_map_and_submit_extent(handle_t *handle,
2401                                        struct mpage_da_data *mpd,
2402                                        bool *give_up_on_write)
2403 {
2404         struct inode *inode = mpd->inode;
2405         struct ext4_map_blocks *map = &mpd->map;
2406         int err;
2407         loff_t disksize;
2408         int progress = 0;
2409         ext4_io_end_t *io_end = mpd->io_submit.io_end;
2410         struct ext4_io_end_vec *io_end_vec;
2411
2412         io_end_vec = ext4_alloc_io_end_vec(io_end);
2413         if (IS_ERR(io_end_vec))
2414                 return PTR_ERR(io_end_vec);
2415         io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2416         do {
2417                 err = mpage_map_one_extent(handle, mpd);
2418                 if (err < 0) {
2419                         struct super_block *sb = inode->i_sb;
2420
2421                         if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2422                             EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2423                                 goto invalidate_dirty_pages;
2424                         /*
2425                          * Let the uper layers retry transient errors.
2426                          * In the case of ENOSPC, if ext4_count_free_blocks()
2427                          * is non-zero, a commit should free up blocks.
2428                          */
2429                         if ((err == -ENOMEM) ||
2430                             (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2431                                 if (progress)
2432                                         goto update_disksize;
2433                                 return err;
2434                         }
2435                         ext4_msg(sb, KERN_CRIT,
2436                                  "Delayed block allocation failed for "
2437                                  "inode %lu at logical offset %llu with"
2438                                  " max blocks %u with error %d",
2439                                  inode->i_ino,
2440                                  (unsigned long long)map->m_lblk,
2441                                  (unsigned)map->m_len, -err);
2442                         ext4_msg(sb, KERN_CRIT,
2443                                  "This should not happen!! Data will "
2444                                  "be lost\n");
2445                         if (err == -ENOSPC)
2446                                 ext4_print_free_blocks(inode);
2447                 invalidate_dirty_pages:
2448                         *give_up_on_write = true;
2449                         return err;
2450                 }
2451                 progress = 1;
2452                 /*
2453                  * Update buffer state, submit mapped pages, and get us new
2454                  * extent to map
2455                  */
2456                 err = mpage_map_and_submit_buffers(mpd);
2457                 if (err < 0)
2458                         goto update_disksize;
2459         } while (map->m_len);
2460
2461 update_disksize:
2462         /*
2463          * Update on-disk size after IO is submitted.  Races with
2464          * truncate are avoided by checking i_size under i_data_sem.
2465          */
2466         disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2467         if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2468                 int err2;
2469                 loff_t i_size;
2470
2471                 down_write(&EXT4_I(inode)->i_data_sem);
2472                 i_size = i_size_read(inode);
2473                 if (disksize > i_size)
2474                         disksize = i_size;
2475                 if (disksize > EXT4_I(inode)->i_disksize)
2476                         EXT4_I(inode)->i_disksize = disksize;
2477                 up_write(&EXT4_I(inode)->i_data_sem);
2478                 err2 = ext4_mark_inode_dirty(handle, inode);
2479                 if (err2) {
2480                         ext4_error_err(inode->i_sb, -err2,
2481                                        "Failed to mark inode %lu dirty",
2482                                        inode->i_ino);
2483                 }
2484                 if (!err)
2485                         err = err2;
2486         }
2487         return err;
2488 }
2489
2490 /*
2491  * Calculate the total number of credits to reserve for one writepages
2492  * iteration. This is called from ext4_writepages(). We map an extent of
2493  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2494  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2495  * bpp - 1 blocks in bpp different extents.
2496  */
2497 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2498 {
2499         int bpp = ext4_journal_blocks_per_page(inode);
2500
2501         return ext4_meta_trans_blocks(inode,
2502                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2503 }
2504
2505 /*
2506  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2507  *                               and underlying extent to map
2508  *
2509  * @mpd - where to look for pages
2510  *
2511  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2512  * IO immediately. When we find a page which isn't mapped we start accumulating
2513  * extent of buffers underlying these pages that needs mapping (formed by
2514  * either delayed or unwritten buffers). We also lock the pages containing
2515  * these buffers. The extent found is returned in @mpd structure (starting at
2516  * mpd->lblk with length mpd->len blocks).
2517  *
2518  * Note that this function can attach bios to one io_end structure which are
2519  * neither logically nor physically contiguous. Although it may seem as an
2520  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2521  * case as we need to track IO to all buffers underlying a page in one io_end.
2522  */
2523 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2524 {
2525         struct address_space *mapping = mpd->inode->i_mapping;
2526         struct pagevec pvec;
2527         unsigned int nr_pages;
2528         long left = mpd->wbc->nr_to_write;
2529         pgoff_t index = mpd->first_page;
2530         pgoff_t end = mpd->last_page;
2531         xa_mark_t tag;
2532         int i, err = 0;
2533         int blkbits = mpd->inode->i_blkbits;
2534         ext4_lblk_t lblk;
2535         struct buffer_head *head;
2536
2537         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2538                 tag = PAGECACHE_TAG_TOWRITE;
2539         else
2540                 tag = PAGECACHE_TAG_DIRTY;
2541
2542         pagevec_init(&pvec);
2543         mpd->map.m_len = 0;
2544         mpd->next_page = index;
2545         while (index <= end) {
2546                 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2547                                 tag);
2548                 if (nr_pages == 0)
2549                         goto out;
2550
2551                 for (i = 0; i < nr_pages; i++) {
2552                         struct page *page = pvec.pages[i];
2553
2554                         /*
2555                          * Accumulated enough dirty pages? This doesn't apply
2556                          * to WB_SYNC_ALL mode. For integrity sync we have to
2557                          * keep going because someone may be concurrently
2558                          * dirtying pages, and we might have synced a lot of
2559                          * newly appeared dirty pages, but have not synced all
2560                          * of the old dirty pages.
2561                          */
2562                         if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2563                                 goto out;
2564
2565                         /* If we can't merge this page, we are done. */
2566                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2567                                 goto out;
2568
2569                         lock_page(page);
2570                         /*
2571                          * If the page is no longer dirty, or its mapping no
2572                          * longer corresponds to inode we are writing (which
2573                          * means it has been truncated or invalidated), or the
2574                          * page is already under writeback and we are not doing
2575                          * a data integrity writeback, skip the page
2576                          */
2577                         if (!PageDirty(page) ||
2578                             (PageWriteback(page) &&
2579                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2580                             unlikely(page->mapping != mapping)) {
2581                                 unlock_page(page);
2582                                 continue;
2583                         }
2584
2585                         wait_on_page_writeback(page);
2586                         BUG_ON(PageWriteback(page));
2587
2588                         if (mpd->map.m_len == 0)
2589                                 mpd->first_page = page->index;
2590                         mpd->next_page = page->index + 1;
2591                         /* Add all dirty buffers to mpd */
2592                         lblk = ((ext4_lblk_t)page->index) <<
2593                                 (PAGE_SHIFT - blkbits);
2594                         head = page_buffers(page);
2595                         err = mpage_process_page_bufs(mpd, head, head, lblk);
2596                         if (err <= 0)
2597                                 goto out;
2598                         err = 0;
2599                         left--;
2600                 }
2601                 pagevec_release(&pvec);
2602                 cond_resched();
2603         }
2604         return 0;
2605 out:
2606         pagevec_release(&pvec);
2607         return err;
2608 }
2609
2610 static int ext4_writepages(struct address_space *mapping,
2611                            struct writeback_control *wbc)
2612 {
2613         pgoff_t writeback_index = 0;
2614         long nr_to_write = wbc->nr_to_write;
2615         int range_whole = 0;
2616         int cycled = 1;
2617         handle_t *handle = NULL;
2618         struct mpage_da_data mpd;
2619         struct inode *inode = mapping->host;
2620         int needed_blocks, rsv_blocks = 0, ret = 0;
2621         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2622         bool done;
2623         struct blk_plug plug;
2624         bool give_up_on_write = false;
2625
2626         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2627                 return -EIO;
2628
2629         percpu_down_read(&sbi->s_writepages_rwsem);
2630         trace_ext4_writepages(inode, wbc);
2631
2632         /*
2633          * No pages to write? This is mainly a kludge to avoid starting
2634          * a transaction for special inodes like journal inode on last iput()
2635          * because that could violate lock ordering on umount
2636          */
2637         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2638                 goto out_writepages;
2639
2640         if (ext4_should_journal_data(inode)) {
2641                 ret = generic_writepages(mapping, wbc);
2642                 goto out_writepages;
2643         }
2644
2645         /*
2646          * If the filesystem has aborted, it is read-only, so return
2647          * right away instead of dumping stack traces later on that
2648          * will obscure the real source of the problem.  We test
2649          * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2650          * the latter could be true if the filesystem is mounted
2651          * read-only, and in that case, ext4_writepages should
2652          * *never* be called, so if that ever happens, we would want
2653          * the stack trace.
2654          */
2655         if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2656                      sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2657                 ret = -EROFS;
2658                 goto out_writepages;
2659         }
2660
2661         /*
2662          * If we have inline data and arrive here, it means that
2663          * we will soon create the block for the 1st page, so
2664          * we'd better clear the inline data here.
2665          */
2666         if (ext4_has_inline_data(inode)) {
2667                 /* Just inode will be modified... */
2668                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2669                 if (IS_ERR(handle)) {
2670                         ret = PTR_ERR(handle);
2671                         goto out_writepages;
2672                 }
2673                 BUG_ON(ext4_test_inode_state(inode,
2674                                 EXT4_STATE_MAY_INLINE_DATA));
2675                 ext4_destroy_inline_data(handle, inode);
2676                 ext4_journal_stop(handle);
2677         }
2678
2679         if (ext4_should_dioread_nolock(inode)) {
2680                 /*
2681                  * We may need to convert up to one extent per block in
2682                  * the page and we may dirty the inode.
2683                  */
2684                 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2685                                                 PAGE_SIZE >> inode->i_blkbits);
2686         }
2687
2688         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2689                 range_whole = 1;
2690
2691         if (wbc->range_cyclic) {
2692                 writeback_index = mapping->writeback_index;
2693                 if (writeback_index)
2694                         cycled = 0;
2695                 mpd.first_page = writeback_index;
2696                 mpd.last_page = -1;
2697         } else {
2698                 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2699                 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2700         }
2701
2702         mpd.inode = inode;
2703         mpd.wbc = wbc;
2704         ext4_io_submit_init(&mpd.io_submit, wbc);
2705 retry:
2706         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2707                 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2708         done = false;
2709         blk_start_plug(&plug);
2710
2711         /*
2712          * First writeback pages that don't need mapping - we can avoid
2713          * starting a transaction unnecessarily and also avoid being blocked
2714          * in the block layer on device congestion while having transaction
2715          * started.
2716          */
2717         mpd.do_map = 0;
2718         mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2719         if (!mpd.io_submit.io_end) {
2720                 ret = -ENOMEM;
2721                 goto unplug;
2722         }
2723         ret = mpage_prepare_extent_to_map(&mpd);
2724         /* Unlock pages we didn't use */
2725         mpage_release_unused_pages(&mpd, false);
2726         /* Submit prepared bio */
2727         ext4_io_submit(&mpd.io_submit);
2728         ext4_put_io_end_defer(mpd.io_submit.io_end);
2729         mpd.io_submit.io_end = NULL;
2730         if (ret < 0)
2731                 goto unplug;
2732
2733         while (!done && mpd.first_page <= mpd.last_page) {
2734                 /* For each extent of pages we use new io_end */
2735                 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2736                 if (!mpd.io_submit.io_end) {
2737                         ret = -ENOMEM;
2738                         break;
2739                 }
2740
2741                 /*
2742                  * We have two constraints: We find one extent to map and we
2743                  * must always write out whole page (makes a difference when
2744                  * blocksize < pagesize) so that we don't block on IO when we
2745                  * try to write out the rest of the page. Journalled mode is
2746                  * not supported by delalloc.
2747                  */
2748                 BUG_ON(ext4_should_journal_data(inode));
2749                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2750
2751                 /* start a new transaction */
2752                 handle = ext4_journal_start_with_reserve(inode,
2753                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2754                 if (IS_ERR(handle)) {
2755                         ret = PTR_ERR(handle);
2756                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2757                                "%ld pages, ino %lu; err %d", __func__,
2758                                 wbc->nr_to_write, inode->i_ino, ret);
2759                         /* Release allocated io_end */
2760                         ext4_put_io_end(mpd.io_submit.io_end);
2761                         mpd.io_submit.io_end = NULL;
2762                         break;
2763                 }
2764                 mpd.do_map = 1;
2765
2766                 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2767                 ret = mpage_prepare_extent_to_map(&mpd);
2768                 if (!ret) {
2769                         if (mpd.map.m_len)
2770                                 ret = mpage_map_and_submit_extent(handle, &mpd,
2771                                         &give_up_on_write);
2772                         else {
2773                                 /*
2774                                  * We scanned the whole range (or exhausted
2775                                  * nr_to_write), submitted what was mapped and
2776                                  * didn't find anything needing mapping. We are
2777                                  * done.
2778                                  */
2779                                 done = true;
2780                         }
2781                 }
2782                 /*
2783                  * Caution: If the handle is synchronous,
2784                  * ext4_journal_stop() can wait for transaction commit
2785                  * to finish which may depend on writeback of pages to
2786                  * complete or on page lock to be released.  In that
2787                  * case, we have to wait until after after we have
2788                  * submitted all the IO, released page locks we hold,
2789                  * and dropped io_end reference (for extent conversion
2790                  * to be able to complete) before stopping the handle.
2791                  */
2792                 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2793                         ext4_journal_stop(handle);
2794                         handle = NULL;
2795                         mpd.do_map = 0;
2796                 }
2797                 /* Unlock pages we didn't use */
2798                 mpage_release_unused_pages(&mpd, give_up_on_write);
2799                 /* Submit prepared bio */
2800                 ext4_io_submit(&mpd.io_submit);
2801
2802                 /*
2803                  * Drop our io_end reference we got from init. We have
2804                  * to be careful and use deferred io_end finishing if
2805                  * we are still holding the transaction as we can
2806                  * release the last reference to io_end which may end
2807                  * up doing unwritten extent conversion.
2808                  */
2809                 if (handle) {
2810                         ext4_put_io_end_defer(mpd.io_submit.io_end);
2811                         ext4_journal_stop(handle);
2812                 } else
2813                         ext4_put_io_end(mpd.io_submit.io_end);
2814                 mpd.io_submit.io_end = NULL;
2815
2816                 if (ret == -ENOSPC && sbi->s_journal) {
2817                         /*
2818                          * Commit the transaction which would
2819                          * free blocks released in the transaction
2820                          * and try again
2821                          */
2822                         jbd2_journal_force_commit_nested(sbi->s_journal);
2823                         ret = 0;
2824                         continue;
2825                 }
2826                 /* Fatal error - ENOMEM, EIO... */
2827                 if (ret)
2828                         break;
2829         }
2830 unplug:
2831         blk_finish_plug(&plug);
2832         if (!ret && !cycled && wbc->nr_to_write > 0) {
2833                 cycled = 1;
2834                 mpd.last_page = writeback_index - 1;
2835                 mpd.first_page = 0;
2836                 goto retry;
2837         }
2838
2839         /* Update index */
2840         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2841                 /*
2842                  * Set the writeback_index so that range_cyclic
2843                  * mode will write it back later
2844                  */
2845                 mapping->writeback_index = mpd.first_page;
2846
2847 out_writepages:
2848         trace_ext4_writepages_result(inode, wbc, ret,
2849                                      nr_to_write - wbc->nr_to_write);
2850         percpu_up_read(&sbi->s_writepages_rwsem);
2851         return ret;
2852 }
2853
2854 static int ext4_dax_writepages(struct address_space *mapping,
2855                                struct writeback_control *wbc)
2856 {
2857         int ret;
2858         long nr_to_write = wbc->nr_to_write;
2859         struct inode *inode = mapping->host;
2860         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2861
2862         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2863                 return -EIO;
2864
2865         percpu_down_read(&sbi->s_writepages_rwsem);
2866         trace_ext4_writepages(inode, wbc);
2867
2868         ret = dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc);
2869         trace_ext4_writepages_result(inode, wbc, ret,
2870                                      nr_to_write - wbc->nr_to_write);
2871         percpu_up_read(&sbi->s_writepages_rwsem);
2872         return ret;
2873 }
2874
2875 static int ext4_nonda_switch(struct super_block *sb)
2876 {
2877         s64 free_clusters, dirty_clusters;
2878         struct ext4_sb_info *sbi = EXT4_SB(sb);
2879
2880         /*
2881          * switch to non delalloc mode if we are running low
2882          * on free block. The free block accounting via percpu
2883          * counters can get slightly wrong with percpu_counter_batch getting
2884          * accumulated on each CPU without updating global counters
2885          * Delalloc need an accurate free block accounting. So switch
2886          * to non delalloc when we are near to error range.
2887          */
2888         free_clusters =
2889                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2890         dirty_clusters =
2891                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2892         /*
2893          * Start pushing delalloc when 1/2 of free blocks are dirty.
2894          */
2895         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2896                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2897
2898         if (2 * free_clusters < 3 * dirty_clusters ||
2899             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2900                 /*
2901                  * free block count is less than 150% of dirty blocks
2902                  * or free blocks is less than watermark
2903                  */
2904                 return 1;
2905         }
2906         return 0;
2907 }
2908
2909 /* We always reserve for an inode update; the superblock could be there too */
2910 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2911 {
2912         if (likely(ext4_has_feature_large_file(inode->i_sb)))
2913                 return 1;
2914
2915         if (pos + len <= 0x7fffffffULL)
2916                 return 1;
2917
2918         /* We might need to update the superblock to set LARGE_FILE */
2919         return 2;
2920 }
2921
2922 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2923                                loff_t pos, unsigned len, unsigned flags,
2924                                struct page **pagep, void **fsdata)
2925 {
2926         int ret, retries = 0;
2927         struct page *page;
2928         pgoff_t index;
2929         struct inode *inode = mapping->host;
2930         handle_t *handle;
2931
2932         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2933                 return -EIO;
2934
2935         index = pos >> PAGE_SHIFT;
2936
2937         if (ext4_nonda_switch(inode->i_sb) || S_ISLNK(inode->i_mode) ||
2938             ext4_verity_in_progress(inode)) {
2939                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2940                 return ext4_write_begin(file, mapping, pos,
2941                                         len, flags, pagep, fsdata);
2942         }
2943         *fsdata = (void *)0;
2944         trace_ext4_da_write_begin(inode, pos, len, flags);
2945
2946         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2947                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2948                                                       pos, len, flags,
2949                                                       pagep, fsdata);
2950                 if (ret < 0)
2951                         return ret;
2952                 if (ret == 1)
2953                         return 0;
2954         }
2955
2956         /*
2957          * grab_cache_page_write_begin() can take a long time if the
2958          * system is thrashing due to memory pressure, or if the page
2959          * is being written back.  So grab it first before we start
2960          * the transaction handle.  This also allows us to allocate
2961          * the page (if needed) without using GFP_NOFS.
2962          */
2963 retry_grab:
2964         page = grab_cache_page_write_begin(mapping, index, flags);
2965         if (!page)
2966                 return -ENOMEM;
2967         unlock_page(page);
2968
2969         /*
2970          * With delayed allocation, we don't log the i_disksize update
2971          * if there is delayed block allocation. But we still need
2972          * to journalling the i_disksize update if writes to the end
2973          * of file which has an already mapped buffer.
2974          */
2975 retry_journal:
2976         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2977                                 ext4_da_write_credits(inode, pos, len));
2978         if (IS_ERR(handle)) {
2979                 put_page(page);
2980                 return PTR_ERR(handle);
2981         }
2982
2983         lock_page(page);
2984         if (page->mapping != mapping) {
2985                 /* The page got truncated from under us */
2986                 unlock_page(page);
2987                 put_page(page);
2988                 ext4_journal_stop(handle);
2989                 goto retry_grab;
2990         }
2991         /* In case writeback began while the page was unlocked */
2992         wait_for_stable_page(page);
2993
2994 #ifdef CONFIG_FS_ENCRYPTION
2995         ret = ext4_block_write_begin(page, pos, len,
2996                                      ext4_da_get_block_prep);
2997 #else
2998         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2999 #endif
3000         if (ret < 0) {
3001                 unlock_page(page);
3002                 ext4_journal_stop(handle);
3003                 /*
3004                  * block_write_begin may have instantiated a few blocks
3005                  * outside i_size.  Trim these off again. Don't need
3006                  * i_size_read because we hold i_mutex.
3007                  */
3008                 if (pos + len > inode->i_size)
3009                         ext4_truncate_failed_write(inode);
3010
3011                 if (ret == -ENOSPC &&
3012                     ext4_should_retry_alloc(inode->i_sb, &retries))
3013                         goto retry_journal;
3014
3015                 put_page(page);
3016                 return ret;
3017         }
3018
3019         *pagep = page;
3020         return ret;
3021 }
3022
3023 /*
3024  * Check if we should update i_disksize
3025  * when write to the end of file but not require block allocation
3026  */
3027 static int ext4_da_should_update_i_disksize(struct page *page,
3028                                             unsigned long offset)
3029 {
3030         struct buffer_head *bh;
3031         struct inode *inode = page->mapping->host;
3032         unsigned int idx;
3033         int i;
3034
3035         bh = page_buffers(page);
3036         idx = offset >> inode->i_blkbits;
3037
3038         for (i = 0; i < idx; i++)
3039                 bh = bh->b_this_page;
3040
3041         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3042                 return 0;
3043         return 1;
3044 }
3045
3046 static int ext4_da_write_end(struct file *file,
3047                              struct address_space *mapping,
3048                              loff_t pos, unsigned len, unsigned copied,
3049                              struct page *page, void *fsdata)
3050 {
3051         struct inode *inode = mapping->host;
3052         int ret = 0, ret2;
3053         handle_t *handle = ext4_journal_current_handle();
3054         loff_t new_i_size;
3055         unsigned long start, end;
3056         int write_mode = (int)(unsigned long)fsdata;
3057
3058         if (write_mode == FALL_BACK_TO_NONDELALLOC)
3059                 return ext4_write_end(file, mapping, pos,
3060                                       len, copied, page, fsdata);
3061
3062         trace_ext4_da_write_end(inode, pos, len, copied);
3063         start = pos & (PAGE_SIZE - 1);
3064         end = start + copied - 1;
3065
3066         /*
3067          * generic_write_end() will run mark_inode_dirty() if i_size
3068          * changes.  So let's piggyback the i_disksize mark_inode_dirty
3069          * into that.
3070          */
3071         new_i_size = pos + copied;
3072         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3073                 if (ext4_has_inline_data(inode) ||
3074                     ext4_da_should_update_i_disksize(page, end)) {
3075                         ext4_update_i_disksize(inode, new_i_size);
3076                         /* We need to mark inode dirty even if
3077                          * new_i_size is less that inode->i_size
3078                          * bu greater than i_disksize.(hint delalloc)
3079                          */
3080                         ext4_mark_inode_dirty(handle, inode);
3081                 }
3082         }
3083
3084         if (write_mode != CONVERT_INLINE_DATA &&
3085             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3086             ext4_has_inline_data(inode))
3087                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3088                                                      page);
3089         else
3090                 ret2 = generic_write_end(file, mapping, pos, len, copied,
3091                                                         page, fsdata);
3092
3093         copied = ret2;
3094         if (ret2 < 0)
3095                 ret = ret2;
3096         ret2 = ext4_journal_stop(handle);
3097         if (!ret)
3098                 ret = ret2;
3099
3100         return ret ? ret : copied;
3101 }
3102
3103 /*
3104  * Force all delayed allocation blocks to be allocated for a given inode.
3105  */
3106 int ext4_alloc_da_blocks(struct inode *inode)
3107 {
3108         trace_ext4_alloc_da_blocks(inode);
3109
3110         if (!EXT4_I(inode)->i_reserved_data_blocks)
3111                 return 0;
3112
3113         /*
3114          * We do something simple for now.  The filemap_flush() will
3115          * also start triggering a write of the data blocks, which is
3116          * not strictly speaking necessary (and for users of
3117          * laptop_mode, not even desirable).  However, to do otherwise
3118          * would require replicating code paths in:
3119          *
3120          * ext4_writepages() ->
3121          *    write_cache_pages() ---> (via passed in callback function)
3122          *        __mpage_da_writepage() -->
3123          *           mpage_add_bh_to_extent()
3124          *           mpage_da_map_blocks()
3125          *
3126          * The problem is that write_cache_pages(), located in
3127          * mm/page-writeback.c, marks pages clean in preparation for
3128          * doing I/O, which is not desirable if we're not planning on
3129          * doing I/O at all.
3130          *
3131          * We could call write_cache_pages(), and then redirty all of
3132          * the pages by calling redirty_page_for_writepage() but that
3133          * would be ugly in the extreme.  So instead we would need to
3134          * replicate parts of the code in the above functions,
3135          * simplifying them because we wouldn't actually intend to
3136          * write out the pages, but rather only collect contiguous
3137          * logical block extents, call the multi-block allocator, and
3138          * then update the buffer heads with the block allocations.
3139          *
3140          * For now, though, we'll cheat by calling filemap_flush(),
3141          * which will map the blocks, and start the I/O, but not
3142          * actually wait for the I/O to complete.
3143          */
3144         return filemap_flush(inode->i_mapping);
3145 }
3146
3147 /*
3148  * bmap() is special.  It gets used by applications such as lilo and by
3149  * the swapper to find the on-disk block of a specific piece of data.
3150  *
3151  * Naturally, this is dangerous if the block concerned is still in the
3152  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3153  * filesystem and enables swap, then they may get a nasty shock when the
3154  * data getting swapped to that swapfile suddenly gets overwritten by
3155  * the original zero's written out previously to the journal and
3156  * awaiting writeback in the kernel's buffer cache.
3157  *
3158  * So, if we see any bmap calls here on a modified, data-journaled file,
3159  * take extra steps to flush any blocks which might be in the cache.
3160  */
3161 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3162 {
3163         struct inode *inode = mapping->host;
3164         journal_t *journal;
3165         int err;
3166
3167         /*
3168          * We can get here for an inline file via the FIBMAP ioctl
3169          */
3170         if (ext4_has_inline_data(inode))
3171                 return 0;
3172
3173         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3174                         test_opt(inode->i_sb, DELALLOC)) {
3175                 /*
3176                  * With delalloc we want to sync the file
3177                  * so that we can make sure we allocate
3178                  * blocks for file
3179                  */
3180                 filemap_write_and_wait(mapping);
3181         }
3182
3183         if (EXT4_JOURNAL(inode) &&
3184             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3185                 /*
3186                  * This is a REALLY heavyweight approach, but the use of
3187                  * bmap on dirty files is expected to be extremely rare:
3188                  * only if we run lilo or swapon on a freshly made file
3189                  * do we expect this to happen.
3190                  *
3191                  * (bmap requires CAP_SYS_RAWIO so this does not
3192                  * represent an unprivileged user DOS attack --- we'd be
3193                  * in trouble if mortal users could trigger this path at
3194                  * will.)
3195                  *
3196                  * NB. EXT4_STATE_JDATA is not set on files other than
3197                  * regular files.  If somebody wants to bmap a directory
3198                  * or symlink and gets confused because the buffer
3199                  * hasn't yet been flushed to disk, they deserve
3200                  * everything they get.
3201                  */
3202
3203                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3204                 journal = EXT4_JOURNAL(inode);
3205                 jbd2_journal_lock_updates(journal);
3206                 err = jbd2_journal_flush(journal);
3207                 jbd2_journal_unlock_updates(journal);
3208
3209                 if (err)
3210                         return 0;
3211         }
3212
3213         return iomap_bmap(mapping, block, &ext4_iomap_ops);
3214 }
3215
3216 static int ext4_readpage(struct file *file, struct page *page)
3217 {
3218         int ret = -EAGAIN;
3219         struct inode *inode = page->mapping->host;
3220
3221         trace_ext4_readpage(page);
3222
3223         if (ext4_has_inline_data(inode))
3224                 ret = ext4_readpage_inline(inode, page);
3225
3226         if (ret == -EAGAIN)
3227                 return ext4_mpage_readpages(page->mapping, NULL, page, 1,
3228                                                 false);
3229
3230         return ret;
3231 }
3232
3233 static int
3234 ext4_readpages(struct file *file, struct address_space *mapping,
3235                 struct list_head *pages, unsigned nr_pages)
3236 {
3237         struct inode *inode = mapping->host;
3238
3239         /* If the file has inline data, no need to do readpages. */
3240         if (ext4_has_inline_data(inode))
3241                 return 0;
3242
3243         return ext4_mpage_readpages(mapping, pages, NULL, nr_pages, true);
3244 }
3245
3246 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3247                                 unsigned int length)
3248 {
3249         trace_ext4_invalidatepage(page, offset, length);
3250
3251         /* No journalling happens on data buffers when this function is used */
3252         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3253
3254         block_invalidatepage(page, offset, length);
3255 }
3256
3257 static int __ext4_journalled_invalidatepage(struct page *page,
3258                                             unsigned int offset,
3259                                             unsigned int length)
3260 {
3261         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3262
3263         trace_ext4_journalled_invalidatepage(page, offset, length);
3264
3265         /*
3266          * If it's a full truncate we just forget about the pending dirtying
3267          */
3268         if (offset == 0 && length == PAGE_SIZE)
3269                 ClearPageChecked(page);
3270
3271         return jbd2_journal_invalidatepage(journal, page, offset, length);
3272 }
3273
3274 /* Wrapper for aops... */
3275 static void ext4_journalled_invalidatepage(struct page *page,
3276                                            unsigned int offset,
3277                                            unsigned int length)
3278 {
3279         WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3280 }
3281
3282 static int ext4_releasepage(struct page *page, gfp_t wait)
3283 {
3284         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3285
3286         trace_ext4_releasepage(page);
3287
3288         /* Page has dirty journalled data -> cannot release */
3289         if (PageChecked(page))
3290                 return 0;
3291         if (journal)
3292                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3293         else
3294                 return try_to_free_buffers(page);
3295 }
3296
3297 static bool ext4_inode_datasync_dirty(struct inode *inode)
3298 {
3299         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3300
3301         if (journal)
3302                 return !jbd2_transaction_committed(journal,
3303                                         EXT4_I(inode)->i_datasync_tid);
3304         /* Any metadata buffers to write? */
3305         if (!list_empty(&inode->i_mapping->private_list))
3306                 return true;
3307         return inode->i_state & I_DIRTY_DATASYNC;
3308 }
3309
3310 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3311                            struct ext4_map_blocks *map, loff_t offset,
3312                            loff_t length)
3313 {
3314         u8 blkbits = inode->i_blkbits;
3315
3316         /*
3317          * Writes that span EOF might trigger an I/O size update on completion,
3318          * so consider them to be dirty for the purpose of O_DSYNC, even if
3319          * there is no other metadata changes being made or are pending.
3320          */
3321         iomap->flags = 0;
3322         if (ext4_inode_datasync_dirty(inode) ||
3323             offset + length > i_size_read(inode))
3324                 iomap->flags |= IOMAP_F_DIRTY;
3325
3326         if (map->m_flags & EXT4_MAP_NEW)
3327                 iomap->flags |= IOMAP_F_NEW;
3328
3329         iomap->bdev = inode->i_sb->s_bdev;
3330         iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3331         iomap->offset = (u64) map->m_lblk << blkbits;
3332         iomap->length = (u64) map->m_len << blkbits;
3333
3334         if ((map->m_flags & EXT4_MAP_MAPPED) &&
3335             !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3336                 iomap->flags |= IOMAP_F_MERGED;
3337
3338         /*
3339          * Flags passed to ext4_map_blocks() for direct I/O writes can result
3340          * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3341          * set. In order for any allocated unwritten extents to be converted
3342          * into written extents correctly within the ->end_io() handler, we
3343          * need to ensure that the iomap->type is set appropriately. Hence, the
3344          * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3345          * been set first.
3346          */
3347         if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3348                 iomap->type = IOMAP_UNWRITTEN;
3349                 iomap->addr = (u64) map->m_pblk << blkbits;
3350         } else if (map->m_flags & EXT4_MAP_MAPPED) {
3351                 iomap->type = IOMAP_MAPPED;
3352                 iomap->addr = (u64) map->m_pblk << blkbits;
3353         } else {
3354                 iomap->type = IOMAP_HOLE;
3355                 iomap->addr = IOMAP_NULL_ADDR;
3356         }
3357 }
3358
3359 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3360                             unsigned int flags)
3361 {
3362         handle_t *handle;
3363         u8 blkbits = inode->i_blkbits;
3364         int ret, dio_credits, m_flags = 0, retries = 0;
3365
3366         /*
3367          * Trim the mapping request to the maximum value that we can map at
3368          * once for direct I/O.
3369          */
3370         if (map->m_len > DIO_MAX_BLOCKS)
3371                 map->m_len = DIO_MAX_BLOCKS;
3372         dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3373
3374 retry:
3375         /*
3376          * Either we allocate blocks and then don't get an unwritten extent, so
3377          * in that case we have reserved enough credits. Or, the blocks are
3378          * already allocated and unwritten. In that case, the extent conversion
3379          * fits into the credits as well.
3380          */
3381         handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3382         if (IS_ERR(handle))
3383                 return PTR_ERR(handle);
3384
3385         /*
3386          * DAX and direct I/O are the only two operations that are currently
3387          * supported with IOMAP_WRITE.
3388          */
3389         WARN_ON(!IS_DAX(inode) && !(flags & IOMAP_DIRECT));
3390         if (IS_DAX(inode))
3391                 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3392         /*
3393          * We use i_size instead of i_disksize here because delalloc writeback
3394          * can complete at any point during the I/O and subsequently push the
3395          * i_disksize out to i_size. This could be beyond where direct I/O is
3396          * happening and thus expose allocated blocks to direct I/O reads.
3397          */
3398         else if ((map->m_lblk * (1 << blkbits)) >= i_size_read(inode))
3399                 m_flags = EXT4_GET_BLOCKS_CREATE;
3400         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3401                 m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3402
3403         ret = ext4_map_blocks(handle, inode, map, m_flags);
3404
3405         /*
3406          * We cannot fill holes in indirect tree based inodes as that could
3407          * expose stale data in the case of a crash. Use the magic error code
3408          * to fallback to buffered I/O.
3409          */
3410         if (!m_flags && !ret)
3411                 ret = -ENOTBLK;
3412
3413         ext4_journal_stop(handle);
3414         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3415                 goto retry;
3416
3417         return ret;
3418 }
3419
3420
3421 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3422                 unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3423 {
3424         int ret;
3425         struct ext4_map_blocks map;
3426         u8 blkbits = inode->i_blkbits;
3427
3428         if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3429                 return -EINVAL;
3430
3431         if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3432                 return -ERANGE;
3433
3434         /*
3435          * Calculate the first and last logical blocks respectively.
3436          */
3437         map.m_lblk = offset >> blkbits;
3438         map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3439                           EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3440
3441         if (flags & IOMAP_WRITE)
3442                 ret = ext4_iomap_alloc(inode, &map, flags);
3443         else
3444                 ret = ext4_map_blocks(NULL, inode, &map, 0);
3445
3446         if (ret < 0)
3447                 return ret;
3448
3449         ext4_set_iomap(inode, iomap, &map, offset, length);
3450
3451         return 0;
3452 }
3453
3454 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3455                 loff_t length, unsigned flags, struct iomap *iomap,
3456                 struct iomap *srcmap)
3457 {
3458         int ret;
3459
3460         /*
3461          * Even for writes we don't need to allocate blocks, so just pretend
3462          * we are reading to save overhead of starting a transaction.
3463          */
3464         flags &= ~IOMAP_WRITE;
3465         ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3466         WARN_ON_ONCE(iomap->type != IOMAP_MAPPED);
3467         return ret;
3468 }
3469
3470 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3471                           ssize_t written, unsigned flags, struct iomap *iomap)
3472 {
3473         /*
3474          * Check to see whether an error occurred while writing out the data to
3475          * the allocated blocks. If so, return the magic error code so that we
3476          * fallback to buffered I/O and attempt to complete the remainder of
3477          * the I/O. Any blocks that may have been allocated in preparation for
3478          * the direct I/O will be reused during buffered I/O.
3479          */
3480         if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3481                 return -ENOTBLK;
3482
3483         return 0;
3484 }
3485
3486 const struct iomap_ops ext4_iomap_ops = {
3487         .iomap_begin            = ext4_iomap_begin,
3488         .iomap_end              = ext4_iomap_end,
3489 };
3490
3491 const struct iomap_ops ext4_iomap_overwrite_ops = {
3492         .iomap_begin            = ext4_iomap_overwrite_begin,
3493         .iomap_end              = ext4_iomap_end,
3494 };
3495
3496 static bool ext4_iomap_is_delalloc(struct inode *inode,
3497                                    struct ext4_map_blocks *map)
3498 {
3499         struct extent_status es;
3500         ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1;
3501
3502         ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3503                                   map->m_lblk, end, &es);
3504
3505         if (!es.es_len || es.es_lblk > end)
3506                 return false;
3507
3508         if (es.es_lblk > map->m_lblk) {
3509                 map->m_len = es.es_lblk - map->m_lblk;
3510                 return false;
3511         }
3512
3513         offset = map->m_lblk - es.es_lblk;
3514         map->m_len = es.es_len - offset;
3515
3516         return true;
3517 }
3518
3519 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3520                                    loff_t length, unsigned int flags,
3521                                    struct iomap *iomap, struct iomap *srcmap)
3522 {
3523         int ret;
3524         bool delalloc = false;
3525         struct ext4_map_blocks map;
3526         u8 blkbits = inode->i_blkbits;
3527
3528         if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3529                 return -EINVAL;
3530
3531         if (ext4_has_inline_data(inode)) {
3532                 ret = ext4_inline_data_iomap(inode, iomap);
3533                 if (ret != -EAGAIN) {
3534                         if (ret == 0 && offset >= iomap->length)
3535                                 ret = -ENOENT;
3536                         return ret;
3537                 }
3538         }
3539
3540         /*
3541          * Calculate the first and last logical block respectively.
3542          */
3543         map.m_lblk = offset >> blkbits;
3544         map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3545                           EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3546
3547         /*
3548          * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3549          * So handle it here itself instead of querying ext4_map_blocks().
3550          * Since ext4_map_blocks() will warn about it and will return
3551          * -EIO error.
3552          */
3553         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3554                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3555
3556                 if (offset >= sbi->s_bitmap_maxbytes) {
3557                         map.m_flags = 0;
3558                         goto set_iomap;
3559                 }
3560         }
3561
3562         ret = ext4_map_blocks(NULL, inode, &map, 0);
3563         if (ret < 0)
3564                 return ret;
3565         if (ret == 0)
3566                 delalloc = ext4_iomap_is_delalloc(inode, &map);
3567
3568 set_iomap:
3569         ext4_set_iomap(inode, iomap, &map, offset, length);
3570         if (delalloc && iomap->type == IOMAP_HOLE)
3571                 iomap->type = IOMAP_DELALLOC;
3572
3573         return 0;
3574 }
3575
3576 const struct iomap_ops ext4_iomap_report_ops = {
3577         .iomap_begin = ext4_iomap_begin_report,
3578 };
3579
3580 /*
3581  * Pages can be marked dirty completely asynchronously from ext4's journalling
3582  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3583  * much here because ->set_page_dirty is called under VFS locks.  The page is
3584  * not necessarily locked.
3585  *
3586  * We cannot just dirty the page and leave attached buffers clean, because the
3587  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3588  * or jbddirty because all the journalling code will explode.
3589  *
3590  * So what we do is to mark the page "pending dirty" and next time writepage
3591  * is called, propagate that into the buffers appropriately.
3592  */
3593 static int ext4_journalled_set_page_dirty(struct page *page)
3594 {
3595         SetPageChecked(page);
3596         return __set_page_dirty_nobuffers(page);
3597 }
3598
3599 static int ext4_set_page_dirty(struct page *page)
3600 {
3601         WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3602         WARN_ON_ONCE(!page_has_buffers(page));
3603         return __set_page_dirty_buffers(page);
3604 }
3605
3606 static const struct address_space_operations ext4_aops = {
3607         .readpage               = ext4_readpage,
3608         .readpages              = ext4_readpages,
3609         .writepage              = ext4_writepage,
3610         .writepages             = ext4_writepages,
3611         .write_begin            = ext4_write_begin,
3612         .write_end              = ext4_write_end,
3613         .set_page_dirty         = ext4_set_page_dirty,
3614         .bmap                   = ext4_bmap,
3615         .invalidatepage         = ext4_invalidatepage,
3616         .releasepage            = ext4_releasepage,
3617         .direct_IO              = noop_direct_IO,
3618         .migratepage            = buffer_migrate_page,
3619         .is_partially_uptodate  = block_is_partially_uptodate,
3620         .error_remove_page      = generic_error_remove_page,
3621 };
3622
3623 static const struct address_space_operations ext4_journalled_aops = {
3624         .readpage               = ext4_readpage,
3625         .readpages              = ext4_readpages,
3626         .writepage              = ext4_writepage,
3627         .writepages             = ext4_writepages,
3628         .write_begin            = ext4_write_begin,
3629         .write_end              = ext4_journalled_write_end,
3630         .set_page_dirty         = ext4_journalled_set_page_dirty,
3631         .bmap                   = ext4_bmap,
3632         .invalidatepage         = ext4_journalled_invalidatepage,
3633         .releasepage            = ext4_releasepage,
3634         .direct_IO              = noop_direct_IO,
3635         .is_partially_uptodate  = block_is_partially_uptodate,
3636         .error_remove_page      = generic_error_remove_page,
3637 };
3638
3639 static const struct address_space_operations ext4_da_aops = {
3640         .readpage               = ext4_readpage,
3641         .readpages              = ext4_readpages,
3642         .writepage              = ext4_writepage,
3643         .writepages             = ext4_writepages,
3644         .write_begin            = ext4_da_write_begin,
3645         .write_end              = ext4_da_write_end,
3646         .set_page_dirty         = ext4_set_page_dirty,
3647         .bmap                   = ext4_bmap,
3648         .invalidatepage         = ext4_invalidatepage,
3649         .releasepage            = ext4_releasepage,
3650         .direct_IO              = noop_direct_IO,
3651         .migratepage            = buffer_migrate_page,
3652         .is_partially_uptodate  = block_is_partially_uptodate,
3653         .error_remove_page      = generic_error_remove_page,
3654 };
3655
3656 static const struct address_space_operations ext4_dax_aops = {
3657         .writepages             = ext4_dax_writepages,
3658         .direct_IO              = noop_direct_IO,
3659         .set_page_dirty         = noop_set_page_dirty,
3660         .bmap                   = ext4_bmap,
3661         .invalidatepage         = noop_invalidatepage,
3662 };
3663
3664 void ext4_set_aops(struct inode *inode)
3665 {
3666         switch (ext4_inode_journal_mode(inode)) {
3667         case EXT4_INODE_ORDERED_DATA_MODE:
3668         case EXT4_INODE_WRITEBACK_DATA_MODE:
3669                 break;
3670         case EXT4_INODE_JOURNAL_DATA_MODE:
3671                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3672                 return;
3673         default:
3674                 BUG();
3675         }
3676         if (IS_DAX(inode))
3677                 inode->i_mapping->a_ops = &ext4_dax_aops;
3678         else if (test_opt(inode->i_sb, DELALLOC))
3679                 inode->i_mapping->a_ops = &ext4_da_aops;
3680         else
3681                 inode->i_mapping->a_ops = &ext4_aops;
3682 }
3683
3684 static int __ext4_block_zero_page_range(handle_t *handle,
3685                 struct address_space *mapping, loff_t from, loff_t length)
3686 {
3687         ext4_fsblk_t index = from >> PAGE_SHIFT;
3688         unsigned offset = from & (PAGE_SIZE-1);
3689         unsigned blocksize, pos;
3690         ext4_lblk_t iblock;
3691         struct inode *inode = mapping->host;
3692         struct buffer_head *bh;
3693         struct page *page;
3694         int err = 0;
3695
3696         page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3697                                    mapping_gfp_constraint(mapping, ~__GFP_FS));
3698         if (!page)
3699                 return -ENOMEM;
3700
3701         blocksize = inode->i_sb->s_blocksize;
3702
3703         iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3704
3705         if (!page_has_buffers(page))
3706                 create_empty_buffers(page, blocksize, 0);
3707
3708         /* Find the buffer that contains "offset" */
3709         bh = page_buffers(page);
3710         pos = blocksize;
3711         while (offset >= pos) {
3712                 bh = bh->b_this_page;
3713                 iblock++;
3714                 pos += blocksize;
3715         }
3716         if (buffer_freed(bh)) {
3717                 BUFFER_TRACE(bh, "freed: skip");
3718                 goto unlock;
3719         }
3720         if (!buffer_mapped(bh)) {
3721                 BUFFER_TRACE(bh, "unmapped");
3722                 ext4_get_block(inode, iblock, bh, 0);
3723                 /* unmapped? It's a hole - nothing to do */
3724                 if (!buffer_mapped(bh)) {
3725                         BUFFER_TRACE(bh, "still unmapped");
3726                         goto unlock;
3727                 }
3728         }
3729
3730         /* Ok, it's mapped. Make sure it's up-to-date */
3731         if (PageUptodate(page))
3732                 set_buffer_uptodate(bh);
3733
3734         if (!buffer_uptodate(bh)) {
3735                 err = -EIO;
3736                 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
3737                 wait_on_buffer(bh);
3738                 /* Uhhuh. Read error. Complain and punt. */
3739                 if (!buffer_uptodate(bh))
3740                         goto unlock;
3741                 if (S_ISREG(inode->i_mode) && IS_ENCRYPTED(inode)) {
3742                         /* We expect the key to be set. */
3743                         BUG_ON(!fscrypt_has_encryption_key(inode));
3744                         err = fscrypt_decrypt_pagecache_blocks(page, blocksize,
3745                                                                bh_offset(bh));
3746                         if (err) {
3747                                 clear_buffer_uptodate(bh);
3748                                 goto unlock;
3749                         }
3750                 }
3751         }
3752         if (ext4_should_journal_data(inode)) {
3753                 BUFFER_TRACE(bh, "get write access");
3754                 err = ext4_journal_get_write_access(handle, bh);
3755                 if (err)
3756                         goto unlock;
3757         }
3758         zero_user(page, offset, length);
3759         BUFFER_TRACE(bh, "zeroed end of block");
3760
3761         if (ext4_should_journal_data(inode)) {
3762                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3763         } else {
3764                 err = 0;
3765                 mark_buffer_dirty(bh);
3766                 if (ext4_should_order_data(inode))
3767                         err = ext4_jbd2_inode_add_write(handle, inode, from,
3768                                         length);
3769         }
3770
3771 unlock:
3772         unlock_page(page);
3773         put_page(page);
3774         return err;
3775 }
3776
3777 /*
3778  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3779  * starting from file offset 'from'.  The range to be zero'd must
3780  * be contained with in one block.  If the specified range exceeds
3781  * the end of the block it will be shortened to end of the block
3782  * that cooresponds to 'from'
3783  */
3784 static int ext4_block_zero_page_range(handle_t *handle,
3785                 struct address_space *mapping, loff_t from, loff_t length)
3786 {
3787         struct inode *inode = mapping->host;
3788         unsigned offset = from & (PAGE_SIZE-1);
3789         unsigned blocksize = inode->i_sb->s_blocksize;
3790         unsigned max = blocksize - (offset & (blocksize - 1));
3791
3792         /*
3793          * correct length if it does not fall between
3794          * 'from' and the end of the block
3795          */
3796         if (length > max || length < 0)
3797                 length = max;
3798
3799         if (IS_DAX(inode)) {
3800                 return iomap_zero_range(inode, from, length, NULL,
3801                                         &ext4_iomap_ops);
3802         }
3803         return __ext4_block_zero_page_range(handle, mapping, from, length);
3804 }
3805
3806 /*
3807  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3808  * up to the end of the block which corresponds to `from'.
3809  * This required during truncate. We need to physically zero the tail end
3810  * of that block so it doesn't yield old data if the file is later grown.
3811  */
3812 static int ext4_block_truncate_page(handle_t *handle,
3813                 struct address_space *mapping, loff_t from)
3814 {
3815         unsigned offset = from & (PAGE_SIZE-1);
3816         unsigned length;
3817         unsigned blocksize;
3818         struct inode *inode = mapping->host;
3819
3820         /* If we are processing an encrypted inode during orphan list handling */
3821         if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3822                 return 0;
3823
3824         blocksize = inode->i_sb->s_blocksize;
3825         length = blocksize - (offset & (blocksize - 1));
3826
3827         return ext4_block_zero_page_range(handle, mapping, from, length);
3828 }
3829
3830 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3831                              loff_t lstart, loff_t length)
3832 {
3833         struct super_block *sb = inode->i_sb;
3834         struct address_space *mapping = inode->i_mapping;
3835         unsigned partial_start, partial_end;
3836         ext4_fsblk_t start, end;
3837         loff_t byte_end = (lstart + length - 1);
3838         int err = 0;
3839
3840         partial_start = lstart & (sb->s_blocksize - 1);
3841         partial_end = byte_end & (sb->s_blocksize - 1);
3842
3843         start = lstart >> sb->s_blocksize_bits;
3844         end = byte_end >> sb->s_blocksize_bits;
3845
3846         /* Handle partial zero within the single block */
3847         if (start == end &&
3848             (partial_start || (partial_end != sb->s_blocksize - 1))) {
3849                 err = ext4_block_zero_page_range(handle, mapping,
3850                                                  lstart, length);
3851                 return err;
3852         }
3853         /* Handle partial zero out on the start of the range */
3854         if (partial_start) {
3855                 err = ext4_block_zero_page_range(handle, mapping,
3856                                                  lstart, sb->s_blocksize);
3857                 if (err)
3858                         return err;
3859         }
3860         /* Handle partial zero out on the end of the range */
3861         if (partial_end != sb->s_blocksize - 1)
3862                 err = ext4_block_zero_page_range(handle, mapping,
3863                                                  byte_end - partial_end,
3864                                                  partial_end + 1);
3865         return err;
3866 }
3867
3868 int ext4_can_truncate(struct inode *inode)
3869 {
3870         if (S_ISREG(inode->i_mode))
3871                 return 1;
3872         if (S_ISDIR(inode->i_mode))
3873                 return 1;
3874         if (S_ISLNK(inode->i_mode))
3875                 return !ext4_inode_is_fast_symlink(inode);
3876         return 0;
3877 }
3878
3879 /*
3880  * We have to make sure i_disksize gets properly updated before we truncate
3881  * page cache due to hole punching or zero range. Otherwise i_disksize update
3882  * can get lost as it may have been postponed to submission of writeback but
3883  * that will never happen after we truncate page cache.
3884  */
3885 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3886                                       loff_t len)
3887 {
3888         handle_t *handle;
3889         loff_t size = i_size_read(inode);
3890
3891         WARN_ON(!inode_is_locked(inode));
3892         if (offset > size || offset + len < size)
3893                 return 0;
3894
3895         if (EXT4_I(inode)->i_disksize >= size)
3896                 return 0;
3897
3898         handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3899         if (IS_ERR(handle))
3900                 return PTR_ERR(handle);
3901         ext4_update_i_disksize(inode, size);
3902         ext4_mark_inode_dirty(handle, inode);
3903         ext4_journal_stop(handle);
3904
3905         return 0;
3906 }
3907
3908 static void ext4_wait_dax_page(struct ext4_inode_info *ei)
3909 {
3910         up_write(&ei->i_mmap_sem);
3911         schedule();
3912         down_write(&ei->i_mmap_sem);
3913 }
3914
3915 int ext4_break_layouts(struct inode *inode)
3916 {
3917         struct ext4_inode_info *ei = EXT4_I(inode);
3918         struct page *page;
3919         int error;
3920
3921         if (WARN_ON_ONCE(!rwsem_is_locked(&ei->i_mmap_sem)))
3922                 return -EINVAL;
3923
3924         do {
3925                 page = dax_layout_busy_page(inode->i_mapping);
3926                 if (!page)
3927                         return 0;
3928
3929                 error = ___wait_var_event(&page->_refcount,
3930                                 atomic_read(&page->_refcount) == 1,
3931                                 TASK_INTERRUPTIBLE, 0, 0,
3932                                 ext4_wait_dax_page(ei));
3933         } while (error == 0);
3934
3935         return error;
3936 }
3937
3938 /*
3939  * ext4_punch_hole: punches a hole in a file by releasing the blocks
3940  * associated with the given offset and length
3941  *
3942  * @inode:  File inode
3943  * @offset: The offset where the hole will begin
3944  * @len:    The length of the hole
3945  *
3946  * Returns: 0 on success or negative on failure
3947  */
3948
3949 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3950 {
3951         struct super_block *sb = inode->i_sb;
3952         ext4_lblk_t first_block, stop_block;
3953         struct address_space *mapping = inode->i_mapping;
3954         loff_t first_block_offset, last_block_offset;
3955         handle_t *handle;
3956         unsigned int credits;
3957         int ret = 0;
3958
3959         trace_ext4_punch_hole(inode, offset, length, 0);
3960
3961         ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
3962         if (ext4_has_inline_data(inode)) {
3963                 down_write(&EXT4_I(inode)->i_mmap_sem);
3964                 ret = ext4_convert_inline_data(inode);
3965                 up_write(&EXT4_I(inode)->i_mmap_sem);
3966                 if (ret)
3967                         return ret;
3968         }
3969
3970         /*
3971          * Write out all dirty pages to avoid race conditions
3972          * Then release them.
3973          */
3974         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3975                 ret = filemap_write_and_wait_range(mapping, offset,
3976                                                    offset + length - 1);
3977                 if (ret)
3978                         return ret;
3979         }
3980
3981         inode_lock(inode);
3982
3983         /* No need to punch hole beyond i_size */
3984         if (offset >= inode->i_size)
3985                 goto out_mutex;
3986
3987         /*
3988          * If the hole extends beyond i_size, set the hole
3989          * to end after the page that contains i_size
3990          */
3991         if (offset + length > inode->i_size) {
3992                 length = inode->i_size +
3993                    PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
3994                    offset;
3995         }
3996
3997         if (offset & (sb->s_blocksize - 1) ||
3998             (offset + length) & (sb->s_blocksize - 1)) {
3999                 /*
4000                  * Attach jinode to inode for jbd2 if we do any zeroing of
4001                  * partial block
4002                  */
4003                 ret = ext4_inode_attach_jinode(inode);
4004                 if (ret < 0)
4005                         goto out_mutex;
4006
4007         }
4008
4009         /* Wait all existing dio workers, newcomers will block on i_mutex */
4010         inode_dio_wait(inode);
4011
4012         /*
4013          * Prevent page faults from reinstantiating pages we have released from
4014          * page cache.
4015          */
4016         down_write(&EXT4_I(inode)->i_mmap_sem);
4017
4018         ret = ext4_break_layouts(inode);
4019         if (ret)
4020                 goto out_dio;
4021
4022         first_block_offset = round_up(offset, sb->s_blocksize);
4023         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4024
4025         /* Now release the pages and zero block aligned part of pages*/
4026         if (last_block_offset > first_block_offset) {
4027                 ret = ext4_update_disksize_before_punch(inode, offset, length);
4028                 if (ret)
4029                         goto out_dio;
4030                 truncate_pagecache_range(inode, first_block_offset,
4031                                          last_block_offset);
4032         }
4033
4034         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4035                 credits = ext4_writepage_trans_blocks(inode);
4036         else
4037                 credits = ext4_blocks_for_truncate(inode);
4038         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4039         if (IS_ERR(handle)) {
4040                 ret = PTR_ERR(handle);
4041                 ext4_std_error(sb, ret);
4042                 goto out_dio;
4043         }
4044
4045         ret = ext4_zero_partial_blocks(handle, inode, offset,
4046                                        length);
4047         if (ret)
4048                 goto out_stop;
4049
4050         first_block = (offset + sb->s_blocksize - 1) >>
4051                 EXT4_BLOCK_SIZE_BITS(sb);
4052         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4053
4054         /* If there are blocks to remove, do it */
4055         if (stop_block > first_block) {
4056
4057                 down_write(&EXT4_I(inode)->i_data_sem);
4058                 ext4_discard_preallocations(inode);
4059
4060                 ret = ext4_es_remove_extent(inode, first_block,
4061                                             stop_block - first_block);
4062                 if (ret) {
4063                         up_write(&EXT4_I(inode)->i_data_sem);
4064                         goto out_stop;
4065                 }
4066
4067                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4068                         ret = ext4_ext_remove_space(inode, first_block,
4069                                                     stop_block - 1);
4070                 else
4071                         ret = ext4_ind_remove_space(handle, inode, first_block,
4072                                                     stop_block);
4073
4074                 up_write(&EXT4_I(inode)->i_data_sem);
4075         }
4076         if (IS_SYNC(inode))
4077                 ext4_handle_sync(handle);
4078
4079         inode->i_mtime = inode->i_ctime = current_time(inode);
4080         ext4_mark_inode_dirty(handle, inode);
4081         if (ret >= 0)
4082                 ext4_update_inode_fsync_trans(handle, inode, 1);
4083 out_stop:
4084         ext4_journal_stop(handle);
4085 out_dio:
4086         up_write(&EXT4_I(inode)->i_mmap_sem);
4087 out_mutex:
4088         inode_unlock(inode);
4089         return ret;
4090 }
4091
4092 int ext4_inode_attach_jinode(struct inode *inode)
4093 {
4094         struct ext4_inode_info *ei = EXT4_I(inode);
4095         struct jbd2_inode *jinode;
4096
4097         if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4098                 return 0;
4099
4100         jinode = jbd2_alloc_inode(GFP_KERNEL);
4101         spin_lock(&inode->i_lock);
4102         if (!ei->jinode) {
4103                 if (!jinode) {
4104                         spin_unlock(&inode->i_lock);
4105                         return -ENOMEM;
4106                 }
4107                 ei->jinode = jinode;
4108                 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4109                 jinode = NULL;
4110         }
4111         spin_unlock(&inode->i_lock);
4112         if (unlikely(jinode != NULL))
4113                 jbd2_free_inode(jinode);
4114         return 0;
4115 }
4116
4117 /*
4118  * ext4_truncate()
4119  *
4120  * We block out ext4_get_block() block instantiations across the entire
4121  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4122  * simultaneously on behalf of the same inode.
4123  *
4124  * As we work through the truncate and commit bits of it to the journal there
4125  * is one core, guiding principle: the file's tree must always be consistent on
4126  * disk.  We must be able to restart the truncate after a crash.
4127  *
4128  * The file's tree may be transiently inconsistent in memory (although it
4129  * probably isn't), but whenever we close off and commit a journal transaction,
4130  * the contents of (the filesystem + the journal) must be consistent and
4131  * restartable.  It's pretty simple, really: bottom up, right to left (although
4132  * left-to-right works OK too).
4133  *
4134  * Note that at recovery time, journal replay occurs *before* the restart of
4135  * truncate against the orphan inode list.
4136  *
4137  * The committed inode has the new, desired i_size (which is the same as
4138  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4139  * that this inode's truncate did not complete and it will again call
4140  * ext4_truncate() to have another go.  So there will be instantiated blocks
4141  * to the right of the truncation point in a crashed ext4 filesystem.  But
4142  * that's fine - as long as they are linked from the inode, the post-crash
4143  * ext4_truncate() run will find them and release them.
4144  */
4145 int ext4_truncate(struct inode *inode)
4146 {
4147         struct ext4_inode_info *ei = EXT4_I(inode);
4148         unsigned int credits;
4149         int err = 0;
4150         handle_t *handle;
4151         struct address_space *mapping = inode->i_mapping;
4152
4153         /*
4154          * There is a possibility that we're either freeing the inode
4155          * or it's a completely new inode. In those cases we might not
4156          * have i_mutex locked because it's not necessary.
4157          */
4158         if (!(inode->i_state & (I_NEW|I_FREEING)))
4159                 WARN_ON(!inode_is_locked(inode));
4160         trace_ext4_truncate_enter(inode);
4161
4162         if (!ext4_can_truncate(inode))
4163                 return 0;
4164
4165         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4166                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4167
4168         if (ext4_has_inline_data(inode)) {
4169                 int has_inline = 1;
4170
4171                 err = ext4_inline_data_truncate(inode, &has_inline);
4172                 if (err)
4173                         return err;
4174                 if (has_inline)
4175                         return 0;
4176         }
4177
4178         /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4179         if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4180                 if (ext4_inode_attach_jinode(inode) < 0)
4181                         return 0;
4182         }
4183
4184         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4185                 credits = ext4_writepage_trans_blocks(inode);
4186         else
4187                 credits = ext4_blocks_for_truncate(inode);
4188
4189         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4190         if (IS_ERR(handle))
4191                 return PTR_ERR(handle);
4192
4193         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4194                 ext4_block_truncate_page(handle, mapping, inode->i_size);
4195
4196         /*
4197          * We add the inode to the orphan list, so that if this
4198          * truncate spans multiple transactions, and we crash, we will
4199          * resume the truncate when the filesystem recovers.  It also
4200          * marks the inode dirty, to catch the new size.
4201          *
4202          * Implication: the file must always be in a sane, consistent
4203          * truncatable state while each transaction commits.
4204          */
4205         err = ext4_orphan_add(handle, inode);
4206         if (err)
4207                 goto out_stop;
4208
4209         down_write(&EXT4_I(inode)->i_data_sem);
4210
4211         ext4_discard_preallocations(inode);
4212
4213         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4214                 err = ext4_ext_truncate(handle, inode);
4215         else
4216                 ext4_ind_truncate(handle, inode);
4217
4218         up_write(&ei->i_data_sem);
4219         if (err)
4220                 goto out_stop;
4221
4222         if (IS_SYNC(inode))
4223                 ext4_handle_sync(handle);
4224
4225 out_stop:
4226         /*
4227          * If this was a simple ftruncate() and the file will remain alive,
4228          * then we need to clear up the orphan record which we created above.
4229          * However, if this was a real unlink then we were called by
4230          * ext4_evict_inode(), and we allow that function to clean up the
4231          * orphan info for us.
4232          */
4233         if (inode->i_nlink)
4234                 ext4_orphan_del(handle, inode);
4235
4236         inode->i_mtime = inode->i_ctime = current_time(inode);
4237         ext4_mark_inode_dirty(handle, inode);
4238         ext4_journal_stop(handle);
4239
4240         trace_ext4_truncate_exit(inode);
4241         return err;
4242 }
4243
4244 /*
4245  * ext4_get_inode_loc returns with an extra refcount against the inode's
4246  * underlying buffer_head on success. If 'in_mem' is true, we have all
4247  * data in memory that is needed to recreate the on-disk version of this
4248  * inode.
4249  */
4250 static int __ext4_get_inode_loc(struct inode *inode,
4251                                 struct ext4_iloc *iloc, int in_mem)
4252 {
4253         struct ext4_group_desc  *gdp;
4254         struct buffer_head      *bh;
4255         struct super_block      *sb = inode->i_sb;
4256         ext4_fsblk_t            block;
4257         struct blk_plug         plug;
4258         int                     inodes_per_block, inode_offset;
4259
4260         iloc->bh = NULL;
4261         if (inode->i_ino < EXT4_ROOT_INO ||
4262             inode->i_ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4263                 return -EFSCORRUPTED;
4264
4265         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4266         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4267         if (!gdp)
4268                 return -EIO;
4269
4270         /*
4271          * Figure out the offset within the block group inode table
4272          */
4273         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4274         inode_offset = ((inode->i_ino - 1) %
4275                         EXT4_INODES_PER_GROUP(sb));
4276         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4277         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4278
4279         bh = sb_getblk(sb, block);
4280         if (unlikely(!bh))
4281                 return -ENOMEM;
4282         if (ext4_simulate_fail(sb, EXT4_SIM_INODE_EIO))
4283                 goto simulate_eio;
4284         if (!buffer_uptodate(bh)) {
4285                 lock_buffer(bh);
4286
4287                 /*
4288                  * If the buffer has the write error flag, we have failed
4289                  * to write out another inode in the same block.  In this
4290                  * case, we don't have to read the block because we may
4291                  * read the old inode data successfully.
4292                  */
4293                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4294                         set_buffer_uptodate(bh);
4295
4296                 if (buffer_uptodate(bh)) {
4297                         /* someone brought it uptodate while we waited */
4298                         unlock_buffer(bh);
4299                         goto has_buffer;
4300                 }
4301
4302                 /*
4303                  * If we have all information of the inode in memory and this
4304                  * is the only valid inode in the block, we need not read the
4305                  * block.
4306                  */
4307                 if (in_mem) {
4308                         struct buffer_head *bitmap_bh;
4309                         int i, start;
4310
4311                         start = inode_offset & ~(inodes_per_block - 1);
4312
4313                         /* Is the inode bitmap in cache? */
4314                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4315                         if (unlikely(!bitmap_bh))
4316                                 goto make_io;
4317
4318                         /*
4319                          * If the inode bitmap isn't in cache then the
4320                          * optimisation may end up performing two reads instead
4321                          * of one, so skip it.
4322                          */
4323                         if (!buffer_uptodate(bitmap_bh)) {
4324                                 brelse(bitmap_bh);
4325                                 goto make_io;
4326                         }
4327                         for (i = start; i < start + inodes_per_block; i++) {
4328                                 if (i == inode_offset)
4329                                         continue;
4330                                 if (ext4_test_bit(i, bitmap_bh->b_data))
4331                                         break;
4332                         }
4333                         brelse(bitmap_bh);
4334                         if (i == start + inodes_per_block) {
4335                                 /* all other inodes are free, so skip I/O */
4336                                 memset(bh->b_data, 0, bh->b_size);
4337                                 set_buffer_uptodate(bh);
4338                                 unlock_buffer(bh);
4339                                 goto has_buffer;
4340                         }
4341                 }
4342
4343 make_io:
4344                 /*
4345                  * If we need to do any I/O, try to pre-readahead extra
4346                  * blocks from the inode table.
4347                  */
4348                 blk_start_plug(&plug);
4349                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4350                         ext4_fsblk_t b, end, table;
4351                         unsigned num;
4352                         __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4353
4354                         table = ext4_inode_table(sb, gdp);
4355                         /* s_inode_readahead_blks is always a power of 2 */
4356                         b = block & ~((ext4_fsblk_t) ra_blks - 1);
4357                         if (table > b)
4358                                 b = table;
4359                         end = b + ra_blks;
4360                         num = EXT4_INODES_PER_GROUP(sb);
4361                         if (ext4_has_group_desc_csum(sb))
4362                                 num -= ext4_itable_unused_count(sb, gdp);
4363                         table += num / inodes_per_block;
4364                         if (end > table)
4365                                 end = table;
4366                         while (b <= end)
4367                                 sb_breadahead_unmovable(sb, b++);
4368                 }
4369
4370                 /*
4371                  * There are other valid inodes in the buffer, this inode
4372                  * has in-inode xattrs, or we don't have this inode in memory.
4373                  * Read the block from disk.
4374                  */
4375                 trace_ext4_load_inode(inode);
4376                 get_bh(bh);
4377                 bh->b_end_io = end_buffer_read_sync;
4378                 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4379                 blk_finish_plug(&plug);
4380                 wait_on_buffer(bh);
4381                 if (!buffer_uptodate(bh)) {
4382                 simulate_eio:
4383                         ext4_error_inode_block(inode, block, EIO,
4384                                                "unable to read itable block");
4385                         brelse(bh);
4386                         return -EIO;
4387                 }
4388         }
4389 has_buffer:
4390         iloc->bh = bh;
4391         return 0;
4392 }
4393
4394 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4395 {
4396         /* We have all inode data except xattrs in memory here. */
4397         return __ext4_get_inode_loc(inode, iloc,
4398                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4399 }
4400
4401 static bool ext4_should_use_dax(struct inode *inode)
4402 {
4403         if (!test_opt(inode->i_sb, DAX))
4404                 return false;
4405         if (!S_ISREG(inode->i_mode))
4406                 return false;
4407         if (ext4_should_journal_data(inode))
4408                 return false;
4409         if (ext4_has_inline_data(inode))
4410                 return false;
4411         if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4412                 return false;
4413         if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4414                 return false;
4415         return true;
4416 }
4417
4418 void ext4_set_inode_flags(struct inode *inode)
4419 {
4420         unsigned int flags = EXT4_I(inode)->i_flags;
4421         unsigned int new_fl = 0;
4422
4423         if (flags & EXT4_SYNC_FL)
4424                 new_fl |= S_SYNC;
4425         if (flags & EXT4_APPEND_FL)
4426                 new_fl |= S_APPEND;
4427         if (flags & EXT4_IMMUTABLE_FL)
4428                 new_fl |= S_IMMUTABLE;
4429         if (flags & EXT4_NOATIME_FL)
4430                 new_fl |= S_NOATIME;
4431         if (flags & EXT4_DIRSYNC_FL)
4432                 new_fl |= S_DIRSYNC;
4433         if (ext4_should_use_dax(inode))
4434                 new_fl |= S_DAX;
4435         if (flags & EXT4_ENCRYPT_FL)
4436                 new_fl |= S_ENCRYPTED;
4437         if (flags & EXT4_CASEFOLD_FL)
4438                 new_fl |= S_CASEFOLD;
4439         if (flags & EXT4_VERITY_FL)
4440                 new_fl |= S_VERITY;
4441         inode_set_flags(inode, new_fl,
4442                         S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4443                         S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4444 }
4445
4446 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4447                                   struct ext4_inode_info *ei)
4448 {
4449         blkcnt_t i_blocks ;
4450         struct inode *inode = &(ei->vfs_inode);
4451         struct super_block *sb = inode->i_sb;
4452
4453         if (ext4_has_feature_huge_file(sb)) {
4454                 /* we are using combined 48 bit field */
4455                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4456                                         le32_to_cpu(raw_inode->i_blocks_lo);
4457                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4458                         /* i_blocks represent file system block size */
4459                         return i_blocks  << (inode->i_blkbits - 9);
4460                 } else {
4461                         return i_blocks;
4462                 }
4463         } else {
4464                 return le32_to_cpu(raw_inode->i_blocks_lo);
4465         }
4466 }
4467
4468 static inline int ext4_iget_extra_inode(struct inode *inode,
4469                                          struct ext4_inode *raw_inode,
4470                                          struct ext4_inode_info *ei)
4471 {
4472         __le32 *magic = (void *)raw_inode +
4473                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4474
4475         if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4476             EXT4_INODE_SIZE(inode->i_sb) &&
4477             *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4478                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4479                 return ext4_find_inline_data_nolock(inode);
4480         } else
4481                 EXT4_I(inode)->i_inline_off = 0;
4482         return 0;
4483 }
4484
4485 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4486 {
4487         if (!ext4_has_feature_project(inode->i_sb))
4488                 return -EOPNOTSUPP;
4489         *projid = EXT4_I(inode)->i_projid;
4490         return 0;
4491 }
4492
4493 /*
4494  * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4495  * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4496  * set.
4497  */
4498 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4499 {
4500         if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4501                 inode_set_iversion_raw(inode, val);
4502         else
4503                 inode_set_iversion_queried(inode, val);
4504 }
4505 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4506 {
4507         if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4508                 return inode_peek_iversion_raw(inode);
4509         else
4510                 return inode_peek_iversion(inode);
4511 }
4512
4513 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4514                           ext4_iget_flags flags, const char *function,
4515                           unsigned int line)
4516 {
4517         struct ext4_iloc iloc;
4518         struct ext4_inode *raw_inode;
4519         struct ext4_inode_info *ei;
4520         struct inode *inode;
4521         journal_t *journal = EXT4_SB(sb)->s_journal;
4522         long ret;
4523         loff_t size;
4524         int block;
4525         uid_t i_uid;
4526         gid_t i_gid;
4527         projid_t i_projid;
4528
4529         if ((!(flags & EXT4_IGET_SPECIAL) &&
4530              (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)) ||
4531             (ino < EXT4_ROOT_INO) ||
4532             (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))) {
4533                 if (flags & EXT4_IGET_HANDLE)
4534                         return ERR_PTR(-ESTALE);
4535                 __ext4_error(sb, function, line, EFSCORRUPTED, 0,
4536                              "inode #%lu: comm %s: iget: illegal inode #",
4537                              ino, current->comm);
4538                 return ERR_PTR(-EFSCORRUPTED);
4539         }
4540
4541         inode = iget_locked(sb, ino);
4542         if (!inode)
4543                 return ERR_PTR(-ENOMEM);
4544         if (!(inode->i_state & I_NEW))
4545                 return inode;
4546
4547         ei = EXT4_I(inode);
4548         iloc.bh = NULL;
4549
4550         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4551         if (ret < 0)
4552                 goto bad_inode;
4553         raw_inode = ext4_raw_inode(&iloc);
4554
4555         if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4556                 ext4_error_inode(inode, function, line, 0,
4557                                  "iget: root inode unallocated");
4558                 ret = -EFSCORRUPTED;
4559                 goto bad_inode;
4560         }
4561
4562         if ((flags & EXT4_IGET_HANDLE) &&
4563             (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4564                 ret = -ESTALE;
4565                 goto bad_inode;
4566         }
4567
4568         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4569                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4570                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4571                         EXT4_INODE_SIZE(inode->i_sb) ||
4572                     (ei->i_extra_isize & 3)) {
4573                         ext4_error_inode(inode, function, line, 0,
4574                                          "iget: bad extra_isize %u "
4575                                          "(inode size %u)",
4576                                          ei->i_extra_isize,
4577                                          EXT4_INODE_SIZE(inode->i_sb));
4578                         ret = -EFSCORRUPTED;
4579                         goto bad_inode;
4580                 }
4581         } else
4582                 ei->i_extra_isize = 0;
4583
4584         /* Precompute checksum seed for inode metadata */
4585         if (ext4_has_metadata_csum(sb)) {
4586                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4587                 __u32 csum;
4588                 __le32 inum = cpu_to_le32(inode->i_ino);
4589                 __le32 gen = raw_inode->i_generation;
4590                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4591                                    sizeof(inum));
4592                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4593                                               sizeof(gen));
4594         }
4595
4596         if (!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4597             ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) {
4598                 ext4_error_inode_err(inode, function, line, 0, EFSBADCRC,
4599                                      "iget: checksum invalid");
4600                 ret = -EFSBADCRC;
4601                 goto bad_inode;
4602         }
4603
4604         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4605         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4606         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4607         if (ext4_has_feature_project(sb) &&
4608             EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4609             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4610                 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4611         else
4612                 i_projid = EXT4_DEF_PROJID;
4613
4614         if (!(test_opt(inode->i_sb, NO_UID32))) {
4615                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4616                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4617         }
4618         i_uid_write(inode, i_uid);
4619         i_gid_write(inode, i_gid);
4620         ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4621         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4622
4623         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4624         ei->i_inline_off = 0;
4625         ei->i_dir_start_lookup = 0;
4626         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4627         /* We now have enough fields to check if the inode was active or not.
4628          * This is needed because nfsd might try to access dead inodes
4629          * the test is that same one that e2fsck uses
4630          * NeilBrown 1999oct15
4631          */
4632         if (inode->i_nlink == 0) {
4633                 if ((inode->i_mode == 0 ||
4634                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4635                     ino != EXT4_BOOT_LOADER_INO) {
4636                         /* this inode is deleted */
4637                         ret = -ESTALE;
4638                         goto bad_inode;
4639                 }
4640                 /* The only unlinked inodes we let through here have
4641                  * valid i_mode and are being read by the orphan
4642                  * recovery code: that's fine, we're about to complete
4643                  * the process of deleting those.
4644                  * OR it is the EXT4_BOOT_LOADER_INO which is
4645                  * not initialized on a new filesystem. */
4646         }
4647         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4648         ext4_set_inode_flags(inode);
4649         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4650         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4651         if (ext4_has_feature_64bit(sb))
4652                 ei->i_file_acl |=
4653                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4654         inode->i_size = ext4_isize(sb, raw_inode);
4655         if ((size = i_size_read(inode)) < 0) {
4656                 ext4_error_inode(inode, function, line, 0,
4657                                  "iget: bad i_size value: %lld", size);
4658                 ret = -EFSCORRUPTED;
4659                 goto bad_inode;
4660         }
4661         /*
4662          * If dir_index is not enabled but there's dir with INDEX flag set,
4663          * we'd normally treat htree data as empty space. But with metadata
4664          * checksumming that corrupts checksums so forbid that.
4665          */
4666         if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4667             ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4668                 ext4_error_inode(inode, function, line, 0,
4669                          "iget: Dir with htree data on filesystem without dir_index feature.");
4670                 ret = -EFSCORRUPTED;
4671                 goto bad_inode;
4672         }
4673         ei->i_disksize = inode->i_size;
4674 #ifdef CONFIG_QUOTA
4675         ei->i_reserved_quota = 0;
4676 #endif
4677         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4678         ei->i_block_group = iloc.block_group;
4679         ei->i_last_alloc_group = ~0;
4680         /*
4681          * NOTE! The in-memory inode i_data array is in little-endian order
4682          * even on big-endian machines: we do NOT byteswap the block numbers!
4683          */
4684         for (block = 0; block < EXT4_N_BLOCKS; block++)
4685                 ei->i_data[block] = raw_inode->i_block[block];
4686         INIT_LIST_HEAD(&ei->i_orphan);
4687
4688         /*
4689          * Set transaction id's of transactions that have to be committed
4690          * to finish f[data]sync. We set them to currently running transaction
4691          * as we cannot be sure that the inode or some of its metadata isn't
4692          * part of the transaction - the inode could have been reclaimed and
4693          * now it is reread from disk.
4694          */
4695         if (journal) {
4696                 transaction_t *transaction;
4697                 tid_t tid;
4698
4699                 read_lock(&journal->j_state_lock);
4700                 if (journal->j_running_transaction)
4701                         transaction = journal->j_running_transaction;
4702                 else
4703                         transaction = journal->j_committing_transaction;
4704                 if (transaction)
4705                         tid = transaction->t_tid;
4706                 else
4707                         tid = journal->j_commit_sequence;
4708                 read_unlock(&journal->j_state_lock);
4709                 ei->i_sync_tid = tid;
4710                 ei->i_datasync_tid = tid;
4711         }
4712
4713         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4714                 if (ei->i_extra_isize == 0) {
4715                         /* The extra space is currently unused. Use it. */
4716                         BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4717                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4718                                             EXT4_GOOD_OLD_INODE_SIZE;
4719                 } else {
4720                         ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4721                         if (ret)
4722                                 goto bad_inode;
4723                 }
4724         }
4725
4726         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4727         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4728         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4729         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4730
4731         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4732                 u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4733
4734                 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4735                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4736                                 ivers |=
4737                     (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4738                 }
4739                 ext4_inode_set_iversion_queried(inode, ivers);
4740         }
4741
4742         ret = 0;
4743         if (ei->i_file_acl &&
4744             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4745                 ext4_error_inode(inode, function, line, 0,
4746                                  "iget: bad extended attribute block %llu",
4747                                  ei->i_file_acl);
4748                 ret = -EFSCORRUPTED;
4749                 goto bad_inode;
4750         } else if (!ext4_has_inline_data(inode)) {
4751                 /* validate the block references in the inode */
4752                 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4753                    (S_ISLNK(inode->i_mode) &&
4754                     !ext4_inode_is_fast_symlink(inode))) {
4755                         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4756                                 ret = ext4_ext_check_inode(inode);
4757                         else
4758                                 ret = ext4_ind_check_inode(inode);
4759                 }
4760         }
4761         if (ret)
4762                 goto bad_inode;
4763
4764         if (S_ISREG(inode->i_mode)) {
4765                 inode->i_op = &ext4_file_inode_operations;
4766                 inode->i_fop = &ext4_file_operations;
4767                 ext4_set_aops(inode);
4768         } else if (S_ISDIR(inode->i_mode)) {
4769                 inode->i_op = &ext4_dir_inode_operations;
4770                 inode->i_fop = &ext4_dir_operations;
4771         } else if (S_ISLNK(inode->i_mode)) {
4772                 /* VFS does not allow setting these so must be corruption */
4773                 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
4774                         ext4_error_inode(inode, function, line, 0,
4775                                          "iget: immutable or append flags "
4776                                          "not allowed on symlinks");
4777                         ret = -EFSCORRUPTED;
4778                         goto bad_inode;
4779                 }
4780                 if (IS_ENCRYPTED(inode)) {
4781                         inode->i_op = &ext4_encrypted_symlink_inode_operations;
4782                         ext4_set_aops(inode);
4783                 } else if (ext4_inode_is_fast_symlink(inode)) {
4784                         inode->i_link = (char *)ei->i_data;
4785                         inode->i_op = &ext4_fast_symlink_inode_operations;
4786                         nd_terminate_link(ei->i_data, inode->i_size,
4787                                 sizeof(ei->i_data) - 1);
4788                 } else {
4789                         inode->i_op = &ext4_symlink_inode_operations;
4790                         ext4_set_aops(inode);
4791                 }
4792                 inode_nohighmem(inode);
4793         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4794               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4795                 inode->i_op = &ext4_special_inode_operations;
4796                 if (raw_inode->i_block[0])
4797                         init_special_inode(inode, inode->i_mode,
4798                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4799                 else
4800                         init_special_inode(inode, inode->i_mode,
4801                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4802         } else if (ino == EXT4_BOOT_LOADER_INO) {
4803                 make_bad_inode(inode);
4804         } else {
4805                 ret = -EFSCORRUPTED;
4806                 ext4_error_inode(inode, function, line, 0,
4807                                  "iget: bogus i_mode (%o)", inode->i_mode);
4808                 goto bad_inode;
4809         }
4810         if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb))
4811                 ext4_error_inode(inode, function, line, 0,
4812                                  "casefold flag without casefold feature");
4813         brelse(iloc.bh);
4814
4815         unlock_new_inode(inode);
4816         return inode;
4817
4818 bad_inode:
4819         brelse(iloc.bh);
4820         iget_failed(inode);
4821         return ERR_PTR(ret);
4822 }
4823
4824 static int ext4_inode_blocks_set(handle_t *handle,
4825                                 struct ext4_inode *raw_inode,
4826                                 struct ext4_inode_info *ei)
4827 {
4828         struct inode *inode = &(ei->vfs_inode);
4829         u64 i_blocks = READ_ONCE(inode->i_blocks);
4830         struct super_block *sb = inode->i_sb;
4831
4832         if (i_blocks <= ~0U) {
4833                 /*
4834                  * i_blocks can be represented in a 32 bit variable
4835                  * as multiple of 512 bytes
4836                  */
4837                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4838                 raw_inode->i_blocks_high = 0;
4839                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4840                 return 0;
4841         }
4842         if (!ext4_has_feature_huge_file(sb))
4843                 return -EFBIG;
4844
4845         if (i_blocks <= 0xffffffffffffULL) {
4846                 /*
4847                  * i_blocks can be represented in a 48 bit variable
4848                  * as multiple of 512 bytes
4849                  */
4850                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4851                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4852                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4853         } else {
4854                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4855                 /* i_block is stored in file system block size */
4856                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4857                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4858                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4859         }
4860         return 0;
4861 }
4862
4863 struct other_inode {
4864         unsigned long           orig_ino;
4865         struct ext4_inode       *raw_inode;
4866 };
4867
4868 static int other_inode_match(struct inode * inode, unsigned long ino,
4869                              void *data)
4870 {
4871         struct other_inode *oi = (struct other_inode *) data;
4872
4873         if ((inode->i_ino != ino) ||
4874             (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4875                                I_DIRTY_INODE)) ||
4876             ((inode->i_state & I_DIRTY_TIME) == 0))
4877                 return 0;
4878         spin_lock(&inode->i_lock);
4879         if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4880                                 I_DIRTY_INODE)) == 0) &&
4881             (inode->i_state & I_DIRTY_TIME)) {
4882                 struct ext4_inode_info  *ei = EXT4_I(inode);
4883
4884                 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4885                 spin_unlock(&inode->i_lock);
4886
4887                 spin_lock(&ei->i_raw_lock);
4888                 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4889                 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4890                 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4891                 ext4_inode_csum_set(inode, oi->raw_inode, ei);
4892                 spin_unlock(&ei->i_raw_lock);
4893                 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4894                 return -1;
4895         }
4896         spin_unlock(&inode->i_lock);
4897         return -1;
4898 }
4899
4900 /*
4901  * Opportunistically update the other time fields for other inodes in
4902  * the same inode table block.
4903  */
4904 static void ext4_update_other_inodes_time(struct super_block *sb,
4905                                           unsigned long orig_ino, char *buf)
4906 {
4907         struct other_inode oi;
4908         unsigned long ino;
4909         int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4910         int inode_size = EXT4_INODE_SIZE(sb);
4911
4912         oi.orig_ino = orig_ino;
4913         /*
4914          * Calculate the first inode in the inode table block.  Inode
4915          * numbers are one-based.  That is, the first inode in a block
4916          * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4917          */
4918         ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4919         for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4920                 if (ino == orig_ino)
4921                         continue;
4922                 oi.raw_inode = (struct ext4_inode *) buf;
4923                 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4924         }
4925 }
4926
4927 /*
4928  * Post the struct inode info into an on-disk inode location in the
4929  * buffer-cache.  This gobbles the caller's reference to the
4930  * buffer_head in the inode location struct.
4931  *
4932  * The caller must have write access to iloc->bh.
4933  */
4934 static int ext4_do_update_inode(handle_t *handle,
4935                                 struct inode *inode,
4936                                 struct ext4_iloc *iloc)
4937 {
4938         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4939         struct ext4_inode_info *ei = EXT4_I(inode);
4940         struct buffer_head *bh = iloc->bh;
4941         struct super_block *sb = inode->i_sb;
4942         int err = 0, rc, block;
4943         int need_datasync = 0, set_large_file = 0;
4944         uid_t i_uid;
4945         gid_t i_gid;
4946         projid_t i_projid;
4947
4948         spin_lock(&ei->i_raw_lock);
4949
4950         /* For fields not tracked in the in-memory inode,
4951          * initialise them to zero for new inodes. */
4952         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4953                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4954
4955         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4956         i_uid = i_uid_read(inode);
4957         i_gid = i_gid_read(inode);
4958         i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4959         if (!(test_opt(inode->i_sb, NO_UID32))) {
4960                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4961                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4962 /*
4963  * Fix up interoperability with old kernels. Otherwise, old inodes get
4964  * re-used with the upper 16 bits of the uid/gid intact
4965  */
4966                 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4967                         raw_inode->i_uid_high = 0;
4968                         raw_inode->i_gid_high = 0;
4969                 } else {
4970                         raw_inode->i_uid_high =
4971                                 cpu_to_le16(high_16_bits(i_uid));
4972                         raw_inode->i_gid_high =
4973                                 cpu_to_le16(high_16_bits(i_gid));
4974                 }
4975         } else {
4976                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4977                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4978                 raw_inode->i_uid_high = 0;
4979                 raw_inode->i_gid_high = 0;
4980         }
4981         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4982
4983         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4984         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4985         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4986         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4987
4988         err = ext4_inode_blocks_set(handle, raw_inode, ei);
4989         if (err) {
4990                 spin_unlock(&ei->i_raw_lock);
4991                 goto out_brelse;
4992         }
4993         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4994         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4995         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4996                 raw_inode->i_file_acl_high =
4997                         cpu_to_le16(ei->i_file_acl >> 32);
4998         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4999         if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode)) {
5000                 ext4_isize_set(raw_inode, ei->i_disksize);
5001                 need_datasync = 1;
5002         }
5003         if (ei->i_disksize > 0x7fffffffULL) {
5004                 if (!ext4_has_feature_large_file(sb) ||
5005                                 EXT4_SB(sb)->s_es->s_rev_level ==
5006                     cpu_to_le32(EXT4_GOOD_OLD_REV))
5007                         set_large_file = 1;
5008         }
5009         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5010         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5011                 if (old_valid_dev(inode->i_rdev)) {
5012                         raw_inode->i_block[0] =
5013                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
5014                         raw_inode->i_block[1] = 0;
5015                 } else {
5016                         raw_inode->i_block[0] = 0;
5017                         raw_inode->i_block[1] =
5018                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
5019                         raw_inode->i_block[2] = 0;
5020                 }
5021         } else if (!ext4_has_inline_data(inode)) {
5022                 for (block = 0; block < EXT4_N_BLOCKS; block++)
5023                         raw_inode->i_block[block] = ei->i_data[block];
5024         }
5025
5026         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5027                 u64 ivers = ext4_inode_peek_iversion(inode);
5028
5029                 raw_inode->i_disk_version = cpu_to_le32(ivers);
5030                 if (ei->i_extra_isize) {
5031                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5032                                 raw_inode->i_version_hi =
5033                                         cpu_to_le32(ivers >> 32);
5034                         raw_inode->i_extra_isize =
5035                                 cpu_to_le16(ei->i_extra_isize);
5036                 }
5037         }
5038
5039         BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5040                i_projid != EXT4_DEF_PROJID);
5041
5042         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5043             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5044                 raw_inode->i_projid = cpu_to_le32(i_projid);
5045
5046         ext4_inode_csum_set(inode, raw_inode, ei);
5047         spin_unlock(&ei->i_raw_lock);
5048         if (inode->i_sb->s_flags & SB_LAZYTIME)
5049                 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5050                                               bh->b_data);
5051
5052         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5053         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5054         if (!err)
5055                 err = rc;
5056         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5057         if (set_large_file) {
5058                 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5059                 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5060                 if (err)
5061                         goto out_brelse;
5062                 ext4_set_feature_large_file(sb);
5063                 ext4_handle_sync(handle);
5064                 err = ext4_handle_dirty_super(handle, sb);
5065         }
5066         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5067 out_brelse:
5068         brelse(bh);
5069         ext4_std_error(inode->i_sb, err);
5070         return err;
5071 }
5072
5073 /*
5074  * ext4_write_inode()
5075  *
5076  * We are called from a few places:
5077  *
5078  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5079  *   Here, there will be no transaction running. We wait for any running
5080  *   transaction to commit.
5081  *
5082  * - Within flush work (sys_sync(), kupdate and such).
5083  *   We wait on commit, if told to.
5084  *
5085  * - Within iput_final() -> write_inode_now()
5086  *   We wait on commit, if told to.
5087  *
5088  * In all cases it is actually safe for us to return without doing anything,
5089  * because the inode has been copied into a raw inode buffer in
5090  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5091  * writeback.
5092  *
5093  * Note that we are absolutely dependent upon all inode dirtiers doing the
5094  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5095  * which we are interested.
5096  *
5097  * It would be a bug for them to not do this.  The code:
5098  *
5099  *      mark_inode_dirty(inode)
5100  *      stuff();
5101  *      inode->i_size = expr;
5102  *
5103  * is in error because write_inode() could occur while `stuff()' is running,
5104  * and the new i_size will be lost.  Plus the inode will no longer be on the
5105  * superblock's dirty inode list.
5106  */
5107 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5108 {
5109         int err;
5110
5111         if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5112             sb_rdonly(inode->i_sb))
5113                 return 0;
5114
5115         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5116                 return -EIO;
5117
5118         if (EXT4_SB(inode->i_sb)->s_journal) {
5119                 if (ext4_journal_current_handle()) {
5120                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5121                         dump_stack();
5122                         return -EIO;
5123                 }
5124
5125                 /*
5126                  * No need to force transaction in WB_SYNC_NONE mode. Also
5127                  * ext4_sync_fs() will force the commit after everything is
5128                  * written.
5129                  */
5130                 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5131                         return 0;
5132
5133                 err = jbd2_complete_transaction(EXT4_SB(inode->i_sb)->s_journal,
5134                                                 EXT4_I(inode)->i_sync_tid);
5135         } else {
5136                 struct ext4_iloc iloc;
5137
5138                 err = __ext4_get_inode_loc(inode, &iloc, 0);
5139                 if (err)
5140                         return err;
5141                 /*
5142                  * sync(2) will flush the whole buffer cache. No need to do
5143                  * it here separately for each inode.
5144                  */
5145                 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5146                         sync_dirty_buffer(iloc.bh);
5147                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5148                         ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5149                                                "IO error syncing inode");
5150                         err = -EIO;
5151                 }
5152                 brelse(iloc.bh);
5153         }
5154         return err;
5155 }
5156
5157 /*
5158  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5159  * buffers that are attached to a page stradding i_size and are undergoing
5160  * commit. In that case we have to wait for commit to finish and try again.
5161  */
5162 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5163 {
5164         struct page *page;
5165         unsigned offset;
5166         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5167         tid_t commit_tid = 0;
5168         int ret;
5169
5170         offset = inode->i_size & (PAGE_SIZE - 1);
5171         /*
5172          * If the page is fully truncated, we don't need to wait for any commit
5173          * (and we even should not as __ext4_journalled_invalidatepage() may
5174          * strip all buffers from the page but keep the page dirty which can then
5175          * confuse e.g. concurrent ext4_writepage() seeing dirty page without
5176          * buffers). Also we don't need to wait for any commit if all buffers in
5177          * the page remain valid. This is most beneficial for the common case of
5178          * blocksize == PAGESIZE.
5179          */
5180         if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5181                 return;
5182         while (1) {
5183                 page = find_lock_page(inode->i_mapping,
5184                                       inode->i_size >> PAGE_SHIFT);
5185                 if (!page)
5186                         return;
5187                 ret = __ext4_journalled_invalidatepage(page, offset,
5188                                                 PAGE_SIZE - offset);
5189                 unlock_page(page);
5190                 put_page(page);
5191                 if (ret != -EBUSY)
5192                         return;
5193                 commit_tid = 0;
5194                 read_lock(&journal->j_state_lock);
5195                 if (journal->j_committing_transaction)
5196                         commit_tid = journal->j_committing_transaction->t_tid;
5197                 read_unlock(&journal->j_state_lock);
5198                 if (commit_tid)
5199                         jbd2_log_wait_commit(journal, commit_tid);
5200         }
5201 }
5202
5203 /*
5204  * ext4_setattr()
5205  *
5206  * Called from notify_change.
5207  *
5208  * We want to trap VFS attempts to truncate the file as soon as
5209  * possible.  In particular, we want to make sure that when the VFS
5210  * shrinks i_size, we put the inode on the orphan list and modify
5211  * i_disksize immediately, so that during the subsequent flushing of
5212  * dirty pages and freeing of disk blocks, we can guarantee that any
5213  * commit will leave the blocks being flushed in an unused state on
5214  * disk.  (On recovery, the inode will get truncated and the blocks will
5215  * be freed, so we have a strong guarantee that no future commit will
5216  * leave these blocks visible to the user.)
5217  *
5218  * Another thing we have to assure is that if we are in ordered mode
5219  * and inode is still attached to the committing transaction, we must
5220  * we start writeout of all the dirty pages which are being truncated.
5221  * This way we are sure that all the data written in the previous
5222  * transaction are already on disk (truncate waits for pages under
5223  * writeback).
5224  *
5225  * Called with inode->i_mutex down.
5226  */
5227 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5228 {
5229         struct inode *inode = d_inode(dentry);
5230         int error, rc = 0;
5231         int orphan = 0;
5232         const unsigned int ia_valid = attr->ia_valid;
5233
5234         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5235                 return -EIO;
5236
5237         if (unlikely(IS_IMMUTABLE(inode)))
5238                 return -EPERM;
5239
5240         if (unlikely(IS_APPEND(inode) &&
5241                      (ia_valid & (ATTR_MODE | ATTR_UID |
5242                                   ATTR_GID | ATTR_TIMES_SET))))
5243                 return -EPERM;
5244
5245         error = setattr_prepare(dentry, attr);
5246         if (error)
5247                 return error;
5248
5249         error = fscrypt_prepare_setattr(dentry, attr);
5250         if (error)
5251                 return error;
5252
5253         error = fsverity_prepare_setattr(dentry, attr);
5254         if (error)
5255                 return error;
5256
5257         if (is_quota_modification(inode, attr)) {
5258                 error = dquot_initialize(inode);
5259                 if (error)
5260                         return error;
5261         }
5262         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5263             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5264                 handle_t *handle;
5265
5266                 /* (user+group)*(old+new) structure, inode write (sb,
5267                  * inode block, ? - but truncate inode update has it) */
5268                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5269                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5270                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5271                 if (IS_ERR(handle)) {
5272                         error = PTR_ERR(handle);
5273                         goto err_out;
5274                 }
5275
5276                 /* dquot_transfer() calls back ext4_get_inode_usage() which
5277                  * counts xattr inode references.
5278                  */
5279                 down_read(&EXT4_I(inode)->xattr_sem);
5280                 error = dquot_transfer(inode, attr);
5281                 up_read(&EXT4_I(inode)->xattr_sem);
5282
5283                 if (error) {
5284                         ext4_journal_stop(handle);
5285                         return error;
5286                 }
5287                 /* Update corresponding info in inode so that everything is in
5288                  * one transaction */
5289                 if (attr->ia_valid & ATTR_UID)
5290                         inode->i_uid = attr->ia_uid;
5291                 if (attr->ia_valid & ATTR_GID)
5292                         inode->i_gid = attr->ia_gid;
5293                 error = ext4_mark_inode_dirty(handle, inode);
5294                 ext4_journal_stop(handle);
5295         }
5296
5297         if (attr->ia_valid & ATTR_SIZE) {
5298                 handle_t *handle;
5299                 loff_t oldsize = inode->i_size;
5300                 int shrink = (attr->ia_size < inode->i_size);
5301
5302                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5303                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5304
5305                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
5306                                 return -EFBIG;
5307                 }
5308                 if (!S_ISREG(inode->i_mode))
5309                         return -EINVAL;
5310
5311                 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5312                         inode_inc_iversion(inode);
5313
5314                 if (shrink) {
5315                         if (ext4_should_order_data(inode)) {
5316                                 error = ext4_begin_ordered_truncate(inode,
5317                                                             attr->ia_size);
5318                                 if (error)
5319                                         goto err_out;
5320                         }
5321                         /*
5322                          * Blocks are going to be removed from the inode. Wait
5323                          * for dio in flight.
5324                          */
5325                         inode_dio_wait(inode);
5326                 }
5327
5328                 down_write(&EXT4_I(inode)->i_mmap_sem);
5329
5330                 rc = ext4_break_layouts(inode);
5331                 if (rc) {
5332                         up_write(&EXT4_I(inode)->i_mmap_sem);
5333                         return rc;
5334                 }
5335
5336                 if (attr->ia_size != inode->i_size) {
5337                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5338                         if (IS_ERR(handle)) {
5339                                 error = PTR_ERR(handle);
5340                                 goto out_mmap_sem;
5341                         }
5342                         if (ext4_handle_valid(handle) && shrink) {
5343                                 error = ext4_orphan_add(handle, inode);
5344                                 orphan = 1;
5345                         }
5346                         /*
5347                          * Update c/mtime on truncate up, ext4_truncate() will
5348                          * update c/mtime in shrink case below
5349                          */
5350                         if (!shrink) {
5351                                 inode->i_mtime = current_time(inode);
5352                                 inode->i_ctime = inode->i_mtime;
5353                         }
5354                         down_write(&EXT4_I(inode)->i_data_sem);
5355                         EXT4_I(inode)->i_disksize = attr->ia_size;
5356                         rc = ext4_mark_inode_dirty(handle, inode);
5357                         if (!error)
5358                                 error = rc;
5359                         /*
5360                          * We have to update i_size under i_data_sem together
5361                          * with i_disksize to avoid races with writeback code
5362                          * running ext4_wb_update_i_disksize().
5363                          */
5364                         if (!error)
5365                                 i_size_write(inode, attr->ia_size);
5366                         up_write(&EXT4_I(inode)->i_data_sem);
5367                         ext4_journal_stop(handle);
5368                         if (error)
5369                                 goto out_mmap_sem;
5370                         if (!shrink) {
5371                                 pagecache_isize_extended(inode, oldsize,
5372                                                          inode->i_size);
5373                         } else if (ext4_should_journal_data(inode)) {
5374                                 ext4_wait_for_tail_page_commit(inode);
5375                         }
5376                 }
5377
5378                 /*
5379                  * Truncate pagecache after we've waited for commit
5380                  * in data=journal mode to make pages freeable.
5381                  */
5382                 truncate_pagecache(inode, inode->i_size);
5383                 /*
5384                  * Call ext4_truncate() even if i_size didn't change to
5385                  * truncate possible preallocated blocks.
5386                  */
5387                 if (attr->ia_size <= oldsize) {
5388                         rc = ext4_truncate(inode);
5389                         if (rc)
5390                                 error = rc;
5391                 }
5392 out_mmap_sem:
5393                 up_write(&EXT4_I(inode)->i_mmap_sem);
5394         }
5395
5396         if (!error) {
5397                 setattr_copy(inode, attr);
5398                 mark_inode_dirty(inode);
5399         }
5400
5401         /*
5402          * If the call to ext4_truncate failed to get a transaction handle at
5403          * all, we need to clean up the in-core orphan list manually.
5404          */
5405         if (orphan && inode->i_nlink)
5406                 ext4_orphan_del(NULL, inode);
5407
5408         if (!error && (ia_valid & ATTR_MODE))
5409                 rc = posix_acl_chmod(inode, inode->i_mode);
5410
5411 err_out:
5412         ext4_std_error(inode->i_sb, error);
5413         if (!error)
5414                 error = rc;
5415         return error;
5416 }
5417
5418 int ext4_getattr(const struct path *path, struct kstat *stat,
5419                  u32 request_mask, unsigned int query_flags)
5420 {
5421         struct inode *inode = d_inode(path->dentry);
5422         struct ext4_inode *raw_inode;
5423         struct ext4_inode_info *ei = EXT4_I(inode);
5424         unsigned int flags;
5425
5426         if ((request_mask & STATX_BTIME) &&
5427             EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5428                 stat->result_mask |= STATX_BTIME;
5429                 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5430                 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5431         }
5432
5433         flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5434         if (flags & EXT4_APPEND_FL)
5435                 stat->attributes |= STATX_ATTR_APPEND;
5436         if (flags & EXT4_COMPR_FL)
5437                 stat->attributes |= STATX_ATTR_COMPRESSED;
5438         if (flags & EXT4_ENCRYPT_FL)
5439                 stat->attributes |= STATX_ATTR_ENCRYPTED;
5440         if (flags & EXT4_IMMUTABLE_FL)
5441                 stat->attributes |= STATX_ATTR_IMMUTABLE;
5442         if (flags & EXT4_NODUMP_FL)
5443                 stat->attributes |= STATX_ATTR_NODUMP;
5444         if (flags & EXT4_VERITY_FL)
5445                 stat->attributes |= STATX_ATTR_VERITY;
5446
5447         stat->attributes_mask |= (STATX_ATTR_APPEND |
5448                                   STATX_ATTR_COMPRESSED |
5449                                   STATX_ATTR_ENCRYPTED |
5450                                   STATX_ATTR_IMMUTABLE |
5451                                   STATX_ATTR_NODUMP |
5452                                   STATX_ATTR_VERITY);
5453
5454         generic_fillattr(inode, stat);
5455         return 0;
5456 }
5457
5458 int ext4_file_getattr(const struct path *path, struct kstat *stat,
5459                       u32 request_mask, unsigned int query_flags)
5460 {
5461         struct inode *inode = d_inode(path->dentry);
5462         u64 delalloc_blocks;
5463
5464         ext4_getattr(path, stat, request_mask, query_flags);
5465
5466         /*
5467          * If there is inline data in the inode, the inode will normally not
5468          * have data blocks allocated (it may have an external xattr block).
5469          * Report at least one sector for such files, so tools like tar, rsync,
5470          * others don't incorrectly think the file is completely sparse.
5471          */
5472         if (unlikely(ext4_has_inline_data(inode)))
5473                 stat->blocks += (stat->size + 511) >> 9;
5474
5475         /*
5476          * We can't update i_blocks if the block allocation is delayed
5477          * otherwise in the case of system crash before the real block
5478          * allocation is done, we will have i_blocks inconsistent with
5479          * on-disk file blocks.
5480          * We always keep i_blocks updated together with real
5481          * allocation. But to not confuse with user, stat
5482          * will return the blocks that include the delayed allocation
5483          * blocks for this file.
5484          */
5485         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5486                                    EXT4_I(inode)->i_reserved_data_blocks);
5487         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5488         return 0;
5489 }
5490
5491 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5492                                    int pextents)
5493 {
5494         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5495                 return ext4_ind_trans_blocks(inode, lblocks);
5496         return ext4_ext_index_trans_blocks(inode, pextents);
5497 }
5498
5499 /*
5500  * Account for index blocks, block groups bitmaps and block group
5501  * descriptor blocks if modify datablocks and index blocks
5502  * worse case, the indexs blocks spread over different block groups
5503  *
5504  * If datablocks are discontiguous, they are possible to spread over
5505  * different block groups too. If they are contiguous, with flexbg,
5506  * they could still across block group boundary.
5507  *
5508  * Also account for superblock, inode, quota and xattr blocks
5509  */
5510 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5511                                   int pextents)
5512 {
5513         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5514         int gdpblocks;
5515         int idxblocks;
5516         int ret = 0;
5517
5518         /*
5519          * How many index blocks need to touch to map @lblocks logical blocks
5520          * to @pextents physical extents?
5521          */
5522         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5523
5524         ret = idxblocks;
5525
5526         /*
5527          * Now let's see how many group bitmaps and group descriptors need
5528          * to account
5529          */
5530         groups = idxblocks + pextents;
5531         gdpblocks = groups;
5532         if (groups > ngroups)
5533                 groups = ngroups;
5534         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5535                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5536
5537         /* bitmaps and block group descriptor blocks */
5538         ret += groups + gdpblocks;
5539
5540         /* Blocks for super block, inode, quota and xattr blocks */
5541         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5542
5543         return ret;
5544 }
5545
5546 /*
5547  * Calculate the total number of credits to reserve to fit
5548  * the modification of a single pages into a single transaction,
5549  * which may include multiple chunks of block allocations.
5550  *
5551  * This could be called via ext4_write_begin()
5552  *
5553  * We need to consider the worse case, when
5554  * one new block per extent.
5555  */
5556 int ext4_writepage_trans_blocks(struct inode *inode)
5557 {
5558         int bpp = ext4_journal_blocks_per_page(inode);
5559         int ret;
5560
5561         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5562
5563         /* Account for data blocks for journalled mode */
5564         if (ext4_should_journal_data(inode))
5565                 ret += bpp;
5566         return ret;
5567 }
5568
5569 /*
5570  * Calculate the journal credits for a chunk of data modification.
5571  *
5572  * This is called from DIO, fallocate or whoever calling
5573  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5574  *
5575  * journal buffers for data blocks are not included here, as DIO
5576  * and fallocate do no need to journal data buffers.
5577  */
5578 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5579 {
5580         return ext4_meta_trans_blocks(inode, nrblocks, 1);
5581 }
5582
5583 /*
5584  * The caller must have previously called ext4_reserve_inode_write().
5585  * Give this, we know that the caller already has write access to iloc->bh.
5586  */
5587 int ext4_mark_iloc_dirty(handle_t *handle,
5588                          struct inode *inode, struct ext4_iloc *iloc)
5589 {
5590         int err = 0;
5591
5592         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5593                 put_bh(iloc->bh);
5594                 return -EIO;
5595         }
5596         if (IS_I_VERSION(inode))
5597                 inode_inc_iversion(inode);
5598
5599         /* the do_update_inode consumes one bh->b_count */
5600         get_bh(iloc->bh);
5601
5602         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5603         err = ext4_do_update_inode(handle, inode, iloc);
5604         put_bh(iloc->bh);
5605         return err;
5606 }
5607
5608 /*
5609  * On success, We end up with an outstanding reference count against
5610  * iloc->bh.  This _must_ be cleaned up later.
5611  */
5612
5613 int
5614 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5615                          struct ext4_iloc *iloc)
5616 {
5617         int err;
5618
5619         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5620                 return -EIO;
5621
5622         err = ext4_get_inode_loc(inode, iloc);
5623         if (!err) {
5624                 BUFFER_TRACE(iloc->bh, "get_write_access");
5625                 err = ext4_journal_get_write_access(handle, iloc->bh);
5626                 if (err) {
5627                         brelse(iloc->bh);
5628                         iloc->bh = NULL;
5629                 }
5630         }
5631         ext4_std_error(inode->i_sb, err);
5632         return err;
5633 }
5634
5635 static int __ext4_expand_extra_isize(struct inode *inode,
5636                                      unsigned int new_extra_isize,
5637                                      struct ext4_iloc *iloc,
5638                                      handle_t *handle, int *no_expand)
5639 {
5640         struct ext4_inode *raw_inode;
5641         struct ext4_xattr_ibody_header *header;
5642         unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5643         struct ext4_inode_info *ei = EXT4_I(inode);
5644         int error;
5645
5646         /* this was checked at iget time, but double check for good measure */
5647         if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5648             (ei->i_extra_isize & 3)) {
5649                 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5650                                  ei->i_extra_isize,
5651                                  EXT4_INODE_SIZE(inode->i_sb));
5652                 return -EFSCORRUPTED;
5653         }
5654         if ((new_extra_isize < ei->i_extra_isize) ||
5655             (new_extra_isize < 4) ||
5656             (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5657                 return -EINVAL; /* Should never happen */
5658
5659         raw_inode = ext4_raw_inode(iloc);
5660
5661         header = IHDR(inode, raw_inode);
5662
5663         /* No extended attributes present */
5664         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5665             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5666                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5667                        EXT4_I(inode)->i_extra_isize, 0,
5668                        new_extra_isize - EXT4_I(inode)->i_extra_isize);
5669                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5670                 return 0;
5671         }
5672
5673         /* try to expand with EAs present */
5674         error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5675                                            raw_inode, handle);
5676         if (error) {
5677                 /*
5678                  * Inode size expansion failed; don't try again
5679                  */
5680                 *no_expand = 1;
5681         }
5682
5683         return error;
5684 }
5685
5686 /*
5687  * Expand an inode by new_extra_isize bytes.
5688  * Returns 0 on success or negative error number on failure.
5689  */
5690 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5691                                           unsigned int new_extra_isize,
5692                                           struct ext4_iloc iloc,
5693                                           handle_t *handle)
5694 {
5695         int no_expand;
5696         int error;
5697
5698         if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5699                 return -EOVERFLOW;
5700
5701         /*
5702          * In nojournal mode, we can immediately attempt to expand
5703          * the inode.  When journaled, we first need to obtain extra
5704          * buffer credits since we may write into the EA block
5705          * with this same handle. If journal_extend fails, then it will
5706          * only result in a minor loss of functionality for that inode.
5707          * If this is felt to be critical, then e2fsck should be run to
5708          * force a large enough s_min_extra_isize.
5709          */
5710         if (ext4_journal_extend(handle,
5711                                 EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5712                 return -ENOSPC;
5713
5714         if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5715                 return -EBUSY;
5716
5717         error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5718                                           handle, &no_expand);
5719         ext4_write_unlock_xattr(inode, &no_expand);
5720
5721         return error;
5722 }
5723
5724 int ext4_expand_extra_isize(struct inode *inode,
5725                             unsigned int new_extra_isize,
5726                             struct ext4_iloc *iloc)
5727 {
5728         handle_t *handle;
5729         int no_expand;
5730         int error, rc;
5731
5732         if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5733                 brelse(iloc->bh);
5734                 return -EOVERFLOW;
5735         }
5736
5737         handle = ext4_journal_start(inode, EXT4_HT_INODE,
5738                                     EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5739         if (IS_ERR(handle)) {
5740                 error = PTR_ERR(handle);
5741                 brelse(iloc->bh);
5742                 return error;
5743         }
5744
5745         ext4_write_lock_xattr(inode, &no_expand);
5746
5747         BUFFER_TRACE(iloc->bh, "get_write_access");
5748         error = ext4_journal_get_write_access(handle, iloc->bh);
5749         if (error) {
5750                 brelse(iloc->bh);
5751                 goto out_unlock;
5752         }
5753
5754         error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5755                                           handle, &no_expand);
5756
5757         rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5758         if (!error)
5759                 error = rc;
5760
5761 out_unlock:
5762         ext4_write_unlock_xattr(inode, &no_expand);
5763         ext4_journal_stop(handle);
5764         return error;
5765 }
5766
5767 /*
5768  * What we do here is to mark the in-core inode as clean with respect to inode
5769  * dirtiness (it may still be data-dirty).
5770  * This means that the in-core inode may be reaped by prune_icache
5771  * without having to perform any I/O.  This is a very good thing,
5772  * because *any* task may call prune_icache - even ones which
5773  * have a transaction open against a different journal.
5774  *
5775  * Is this cheating?  Not really.  Sure, we haven't written the
5776  * inode out, but prune_icache isn't a user-visible syncing function.
5777  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5778  * we start and wait on commits.
5779  */
5780 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5781 {
5782         struct ext4_iloc iloc;
5783         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5784         int err;
5785
5786         might_sleep();
5787         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5788         err = ext4_reserve_inode_write(handle, inode, &iloc);
5789         if (err)
5790                 return err;
5791
5792         if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5793                 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5794                                                iloc, handle);
5795
5796         return ext4_mark_iloc_dirty(handle, inode, &iloc);
5797 }
5798
5799 /*
5800  * ext4_dirty_inode() is called from __mark_inode_dirty()
5801  *
5802  * We're really interested in the case where a file is being extended.
5803  * i_size has been changed by generic_commit_write() and we thus need
5804  * to include the updated inode in the current transaction.
5805  *
5806  * Also, dquot_alloc_block() will always dirty the inode when blocks
5807  * are allocated to the file.
5808  *
5809  * If the inode is marked synchronous, we don't honour that here - doing
5810  * so would cause a commit on atime updates, which we don't bother doing.
5811  * We handle synchronous inodes at the highest possible level.
5812  *
5813  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
5814  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5815  * to copy into the on-disk inode structure are the timestamp files.
5816  */
5817 void ext4_dirty_inode(struct inode *inode, int flags)
5818 {
5819         handle_t *handle;
5820
5821         if (flags == I_DIRTY_TIME)
5822                 return;
5823         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5824         if (IS_ERR(handle))
5825                 goto out;
5826
5827         ext4_mark_inode_dirty(handle, inode);
5828
5829         ext4_journal_stop(handle);
5830 out:
5831         return;
5832 }
5833
5834 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5835 {
5836         journal_t *journal;
5837         handle_t *handle;
5838         int err;
5839         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5840
5841         /*
5842          * We have to be very careful here: changing a data block's
5843          * journaling status dynamically is dangerous.  If we write a
5844          * data block to the journal, change the status and then delete
5845          * that block, we risk forgetting to revoke the old log record
5846          * from the journal and so a subsequent replay can corrupt data.
5847          * So, first we make sure that the journal is empty and that
5848          * nobody is changing anything.
5849          */
5850
5851         journal = EXT4_JOURNAL(inode);
5852         if (!journal)
5853                 return 0;
5854         if (is_journal_aborted(journal))
5855                 return -EROFS;
5856
5857         /* Wait for all existing dio workers */
5858         inode_dio_wait(inode);
5859
5860         /*
5861          * Before flushing the journal and switching inode's aops, we have
5862          * to flush all dirty data the inode has. There can be outstanding
5863          * delayed allocations, there can be unwritten extents created by
5864          * fallocate or buffered writes in dioread_nolock mode covered by
5865          * dirty data which can be converted only after flushing the dirty
5866          * data (and journalled aops don't know how to handle these cases).
5867          */
5868         if (val) {
5869                 down_write(&EXT4_I(inode)->i_mmap_sem);
5870                 err = filemap_write_and_wait(inode->i_mapping);
5871                 if (err < 0) {
5872                         up_write(&EXT4_I(inode)->i_mmap_sem);
5873                         return err;
5874                 }
5875         }
5876
5877         percpu_down_write(&sbi->s_writepages_rwsem);
5878         jbd2_journal_lock_updates(journal);
5879
5880         /*
5881          * OK, there are no updates running now, and all cached data is
5882          * synced to disk.  We are now in a completely consistent state
5883          * which doesn't have anything in the journal, and we know that
5884          * no filesystem updates are running, so it is safe to modify
5885          * the inode's in-core data-journaling state flag now.
5886          */
5887
5888         if (val)
5889                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5890         else {
5891                 err = jbd2_journal_flush(journal);
5892                 if (err < 0) {
5893                         jbd2_journal_unlock_updates(journal);
5894                         percpu_up_write(&sbi->s_writepages_rwsem);
5895                         return err;
5896                 }
5897                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5898         }
5899         ext4_set_aops(inode);
5900
5901         jbd2_journal_unlock_updates(journal);
5902         percpu_up_write(&sbi->s_writepages_rwsem);
5903
5904         if (val)
5905                 up_write(&EXT4_I(inode)->i_mmap_sem);
5906
5907         /* Finally we can mark the inode as dirty. */
5908
5909         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5910         if (IS_ERR(handle))
5911                 return PTR_ERR(handle);
5912
5913         err = ext4_mark_inode_dirty(handle, inode);
5914         ext4_handle_sync(handle);
5915         ext4_journal_stop(handle);
5916         ext4_std_error(inode->i_sb, err);
5917
5918         return err;
5919 }
5920
5921 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5922 {
5923         return !buffer_mapped(bh);
5924 }
5925
5926 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
5927 {
5928         struct vm_area_struct *vma = vmf->vma;
5929         struct page *page = vmf->page;
5930         loff_t size;
5931         unsigned long len;
5932         int err;
5933         vm_fault_t ret;
5934         struct file *file = vma->vm_file;
5935         struct inode *inode = file_inode(file);
5936         struct address_space *mapping = inode->i_mapping;
5937         handle_t *handle;
5938         get_block_t *get_block;
5939         int retries = 0;
5940
5941         if (unlikely(IS_IMMUTABLE(inode)))
5942                 return VM_FAULT_SIGBUS;
5943
5944         sb_start_pagefault(inode->i_sb);
5945         file_update_time(vma->vm_file);
5946
5947         down_read(&EXT4_I(inode)->i_mmap_sem);
5948
5949         err = ext4_convert_inline_data(inode);
5950         if (err)
5951                 goto out_ret;
5952
5953         /* Delalloc case is easy... */
5954         if (test_opt(inode->i_sb, DELALLOC) &&
5955             !ext4_should_journal_data(inode) &&
5956             !ext4_nonda_switch(inode->i_sb)) {
5957                 do {
5958                         err = block_page_mkwrite(vma, vmf,
5959                                                    ext4_da_get_block_prep);
5960                 } while (err == -ENOSPC &&
5961                        ext4_should_retry_alloc(inode->i_sb, &retries));
5962                 goto out_ret;
5963         }
5964
5965         lock_page(page);
5966         size = i_size_read(inode);
5967         /* Page got truncated from under us? */
5968         if (page->mapping != mapping || page_offset(page) > size) {
5969                 unlock_page(page);
5970                 ret = VM_FAULT_NOPAGE;
5971                 goto out;
5972         }
5973
5974         if (page->index == size >> PAGE_SHIFT)
5975                 len = size & ~PAGE_MASK;
5976         else
5977                 len = PAGE_SIZE;
5978         /*
5979          * Return if we have all the buffers mapped. This avoids the need to do
5980          * journal_start/journal_stop which can block and take a long time
5981          */
5982         if (page_has_buffers(page)) {
5983                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5984                                             0, len, NULL,
5985                                             ext4_bh_unmapped)) {
5986                         /* Wait so that we don't change page under IO */
5987                         wait_for_stable_page(page);
5988                         ret = VM_FAULT_LOCKED;
5989                         goto out;
5990                 }
5991         }
5992         unlock_page(page);
5993         /* OK, we need to fill the hole... */
5994         if (ext4_should_dioread_nolock(inode))
5995                 get_block = ext4_get_block_unwritten;
5996         else
5997                 get_block = ext4_get_block;
5998 retry_alloc:
5999         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6000                                     ext4_writepage_trans_blocks(inode));
6001         if (IS_ERR(handle)) {
6002                 ret = VM_FAULT_SIGBUS;
6003                 goto out;
6004         }
6005         err = block_page_mkwrite(vma, vmf, get_block);
6006         if (!err && ext4_should_journal_data(inode)) {
6007                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
6008                           PAGE_SIZE, NULL, do_journal_get_write_access)) {
6009                         unlock_page(page);
6010                         ret = VM_FAULT_SIGBUS;
6011                         ext4_journal_stop(handle);
6012                         goto out;
6013                 }
6014                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6015         }
6016         ext4_journal_stop(handle);
6017         if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6018                 goto retry_alloc;
6019 out_ret:
6020         ret = block_page_mkwrite_return(err);
6021 out:
6022         up_read(&EXT4_I(inode)->i_mmap_sem);
6023         sb_end_pagefault(inode->i_sb);
6024         return ret;
6025 }
6026
6027 vm_fault_t ext4_filemap_fault(struct vm_fault *vmf)
6028 {
6029         struct inode *inode = file_inode(vmf->vma->vm_file);
6030         vm_fault_t ret;
6031
6032         down_read(&EXT4_I(inode)->i_mmap_sem);
6033         ret = filemap_fault(vmf);
6034         up_read(&EXT4_I(inode)->i_mmap_sem);
6035
6036         return ret;
6037 }