Merge tag 'm68k-for-v5.13-tag1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / fs / ext4 / inode.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  64-bit file support on 64-bit platforms by Jakub Jelinek
17  *      (jj@sunsite.ms.mff.cuni.cz)
18  *
19  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20  */
21
22 #include <linux/fs.h>
23 #include <linux/mount.h>
24 #include <linux/time.h>
25 #include <linux/highuid.h>
26 #include <linux/pagemap.h>
27 #include <linux/dax.h>
28 #include <linux/quotaops.h>
29 #include <linux/string.h>
30 #include <linux/buffer_head.h>
31 #include <linux/writeback.h>
32 #include <linux/pagevec.h>
33 #include <linux/mpage.h>
34 #include <linux/namei.h>
35 #include <linux/uio.h>
36 #include <linux/bio.h>
37 #include <linux/workqueue.h>
38 #include <linux/kernel.h>
39 #include <linux/printk.h>
40 #include <linux/slab.h>
41 #include <linux/bitops.h>
42 #include <linux/iomap.h>
43 #include <linux/iversion.h>
44
45 #include "ext4_jbd2.h"
46 #include "xattr.h"
47 #include "acl.h"
48 #include "truncate.h"
49
50 #include <trace/events/ext4.h>
51
52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53                               struct ext4_inode_info *ei)
54 {
55         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
56         __u32 csum;
57         __u16 dummy_csum = 0;
58         int offset = offsetof(struct ext4_inode, i_checksum_lo);
59         unsigned int csum_size = sizeof(dummy_csum);
60
61         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
62         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
63         offset += csum_size;
64         csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
65                            EXT4_GOOD_OLD_INODE_SIZE - offset);
66
67         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
68                 offset = offsetof(struct ext4_inode, i_checksum_hi);
69                 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
70                                    EXT4_GOOD_OLD_INODE_SIZE,
71                                    offset - EXT4_GOOD_OLD_INODE_SIZE);
72                 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
73                         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
74                                            csum_size);
75                         offset += csum_size;
76                 }
77                 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
78                                    EXT4_INODE_SIZE(inode->i_sb) - offset);
79         }
80
81         return csum;
82 }
83
84 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
85                                   struct ext4_inode_info *ei)
86 {
87         __u32 provided, calculated;
88
89         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
90             cpu_to_le32(EXT4_OS_LINUX) ||
91             !ext4_has_metadata_csum(inode->i_sb))
92                 return 1;
93
94         provided = le16_to_cpu(raw->i_checksum_lo);
95         calculated = ext4_inode_csum(inode, raw, ei);
96         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
97             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
98                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
99         else
100                 calculated &= 0xFFFF;
101
102         return provided == calculated;
103 }
104
105 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
106                          struct ext4_inode_info *ei)
107 {
108         __u32 csum;
109
110         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
111             cpu_to_le32(EXT4_OS_LINUX) ||
112             !ext4_has_metadata_csum(inode->i_sb))
113                 return;
114
115         csum = ext4_inode_csum(inode, raw, ei);
116         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
117         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
118             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
119                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
120 }
121
122 static inline int ext4_begin_ordered_truncate(struct inode *inode,
123                                               loff_t new_size)
124 {
125         trace_ext4_begin_ordered_truncate(inode, new_size);
126         /*
127          * If jinode is zero, then we never opened the file for
128          * writing, so there's no need to call
129          * jbd2_journal_begin_ordered_truncate() since there's no
130          * outstanding writes we need to flush.
131          */
132         if (!EXT4_I(inode)->jinode)
133                 return 0;
134         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
135                                                    EXT4_I(inode)->jinode,
136                                                    new_size);
137 }
138
139 static void ext4_invalidatepage(struct page *page, unsigned int offset,
140                                 unsigned int length);
141 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
142 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
143 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
144                                   int pextents);
145
146 /*
147  * Test whether an inode is a fast symlink.
148  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
149  */
150 int ext4_inode_is_fast_symlink(struct inode *inode)
151 {
152         if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
153                 int ea_blocks = EXT4_I(inode)->i_file_acl ?
154                                 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
155
156                 if (ext4_has_inline_data(inode))
157                         return 0;
158
159                 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
160         }
161         return S_ISLNK(inode->i_mode) && inode->i_size &&
162                (inode->i_size < EXT4_N_BLOCKS * 4);
163 }
164
165 /*
166  * Called at the last iput() if i_nlink is zero.
167  */
168 void ext4_evict_inode(struct inode *inode)
169 {
170         handle_t *handle;
171         int err;
172         /*
173          * Credits for final inode cleanup and freeing:
174          * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
175          * (xattr block freeing), bitmap, group descriptor (inode freeing)
176          */
177         int extra_credits = 6;
178         struct ext4_xattr_inode_array *ea_inode_array = NULL;
179         bool freeze_protected = false;
180
181         trace_ext4_evict_inode(inode);
182
183         if (inode->i_nlink) {
184                 /*
185                  * When journalling data dirty buffers are tracked only in the
186                  * journal. So although mm thinks everything is clean and
187                  * ready for reaping the inode might still have some pages to
188                  * write in the running transaction or waiting to be
189                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
190                  * (via truncate_inode_pages()) to discard these buffers can
191                  * cause data loss. Also even if we did not discard these
192                  * buffers, we would have no way to find them after the inode
193                  * is reaped and thus user could see stale data if he tries to
194                  * read them before the transaction is checkpointed. So be
195                  * careful and force everything to disk here... We use
196                  * ei->i_datasync_tid to store the newest transaction
197                  * containing inode's data.
198                  *
199                  * Note that directories do not have this problem because they
200                  * don't use page cache.
201                  */
202                 if (inode->i_ino != EXT4_JOURNAL_INO &&
203                     ext4_should_journal_data(inode) &&
204                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
205                     inode->i_data.nrpages) {
206                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
207                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
208
209                         jbd2_complete_transaction(journal, commit_tid);
210                         filemap_write_and_wait(&inode->i_data);
211                 }
212                 truncate_inode_pages_final(&inode->i_data);
213
214                 goto no_delete;
215         }
216
217         if (is_bad_inode(inode))
218                 goto no_delete;
219         dquot_initialize(inode);
220
221         if (ext4_should_order_data(inode))
222                 ext4_begin_ordered_truncate(inode, 0);
223         truncate_inode_pages_final(&inode->i_data);
224
225         /*
226          * For inodes with journalled data, transaction commit could have
227          * dirtied the inode. Flush worker is ignoring it because of I_FREEING
228          * flag but we still need to remove the inode from the writeback lists.
229          */
230         if (!list_empty_careful(&inode->i_io_list)) {
231                 WARN_ON_ONCE(!ext4_should_journal_data(inode));
232                 inode_io_list_del(inode);
233         }
234
235         /*
236          * Protect us against freezing - iput() caller didn't have to have any
237          * protection against it. When we are in a running transaction though,
238          * we are already protected against freezing and we cannot grab further
239          * protection due to lock ordering constraints.
240          */
241         if (!ext4_journal_current_handle()) {
242                 sb_start_intwrite(inode->i_sb);
243                 freeze_protected = true;
244         }
245
246         if (!IS_NOQUOTA(inode))
247                 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
248
249         /*
250          * Block bitmap, group descriptor, and inode are accounted in both
251          * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
252          */
253         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
254                          ext4_blocks_for_truncate(inode) + extra_credits - 3);
255         if (IS_ERR(handle)) {
256                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
257                 /*
258                  * If we're going to skip the normal cleanup, we still need to
259                  * make sure that the in-core orphan linked list is properly
260                  * cleaned up.
261                  */
262                 ext4_orphan_del(NULL, inode);
263                 if (freeze_protected)
264                         sb_end_intwrite(inode->i_sb);
265                 goto no_delete;
266         }
267
268         if (IS_SYNC(inode))
269                 ext4_handle_sync(handle);
270
271         /*
272          * Set inode->i_size to 0 before calling ext4_truncate(). We need
273          * special handling of symlinks here because i_size is used to
274          * determine whether ext4_inode_info->i_data contains symlink data or
275          * block mappings. Setting i_size to 0 will remove its fast symlink
276          * status. Erase i_data so that it becomes a valid empty block map.
277          */
278         if (ext4_inode_is_fast_symlink(inode))
279                 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
280         inode->i_size = 0;
281         err = ext4_mark_inode_dirty(handle, inode);
282         if (err) {
283                 ext4_warning(inode->i_sb,
284                              "couldn't mark inode dirty (err %d)", err);
285                 goto stop_handle;
286         }
287         if (inode->i_blocks) {
288                 err = ext4_truncate(inode);
289                 if (err) {
290                         ext4_error_err(inode->i_sb, -err,
291                                        "couldn't truncate inode %lu (err %d)",
292                                        inode->i_ino, err);
293                         goto stop_handle;
294                 }
295         }
296
297         /* Remove xattr references. */
298         err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
299                                       extra_credits);
300         if (err) {
301                 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
302 stop_handle:
303                 ext4_journal_stop(handle);
304                 ext4_orphan_del(NULL, inode);
305                 if (freeze_protected)
306                         sb_end_intwrite(inode->i_sb);
307                 ext4_xattr_inode_array_free(ea_inode_array);
308                 goto no_delete;
309         }
310
311         /*
312          * Kill off the orphan record which ext4_truncate created.
313          * AKPM: I think this can be inside the above `if'.
314          * Note that ext4_orphan_del() has to be able to cope with the
315          * deletion of a non-existent orphan - this is because we don't
316          * know if ext4_truncate() actually created an orphan record.
317          * (Well, we could do this if we need to, but heck - it works)
318          */
319         ext4_orphan_del(handle, inode);
320         EXT4_I(inode)->i_dtime  = (__u32)ktime_get_real_seconds();
321
322         /*
323          * One subtle ordering requirement: if anything has gone wrong
324          * (transaction abort, IO errors, whatever), then we can still
325          * do these next steps (the fs will already have been marked as
326          * having errors), but we can't free the inode if the mark_dirty
327          * fails.
328          */
329         if (ext4_mark_inode_dirty(handle, inode))
330                 /* If that failed, just do the required in-core inode clear. */
331                 ext4_clear_inode(inode);
332         else
333                 ext4_free_inode(handle, inode);
334         ext4_journal_stop(handle);
335         if (freeze_protected)
336                 sb_end_intwrite(inode->i_sb);
337         ext4_xattr_inode_array_free(ea_inode_array);
338         return;
339 no_delete:
340         if (!list_empty(&EXT4_I(inode)->i_fc_list))
341                 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM);
342         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
343 }
344
345 #ifdef CONFIG_QUOTA
346 qsize_t *ext4_get_reserved_space(struct inode *inode)
347 {
348         return &EXT4_I(inode)->i_reserved_quota;
349 }
350 #endif
351
352 /*
353  * Called with i_data_sem down, which is important since we can call
354  * ext4_discard_preallocations() from here.
355  */
356 void ext4_da_update_reserve_space(struct inode *inode,
357                                         int used, int quota_claim)
358 {
359         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
360         struct ext4_inode_info *ei = EXT4_I(inode);
361
362         spin_lock(&ei->i_block_reservation_lock);
363         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
364         if (unlikely(used > ei->i_reserved_data_blocks)) {
365                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
366                          "with only %d reserved data blocks",
367                          __func__, inode->i_ino, used,
368                          ei->i_reserved_data_blocks);
369                 WARN_ON(1);
370                 used = ei->i_reserved_data_blocks;
371         }
372
373         /* Update per-inode reservations */
374         ei->i_reserved_data_blocks -= used;
375         percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
376
377         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
378
379         /* Update quota subsystem for data blocks */
380         if (quota_claim)
381                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
382         else {
383                 /*
384                  * We did fallocate with an offset that is already delayed
385                  * allocated. So on delayed allocated writeback we should
386                  * not re-claim the quota for fallocated blocks.
387                  */
388                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
389         }
390
391         /*
392          * If we have done all the pending block allocations and if
393          * there aren't any writers on the inode, we can discard the
394          * inode's preallocations.
395          */
396         if ((ei->i_reserved_data_blocks == 0) &&
397             !inode_is_open_for_write(inode))
398                 ext4_discard_preallocations(inode, 0);
399 }
400
401 static int __check_block_validity(struct inode *inode, const char *func,
402                                 unsigned int line,
403                                 struct ext4_map_blocks *map)
404 {
405         if (ext4_has_feature_journal(inode->i_sb) &&
406             (inode->i_ino ==
407              le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
408                 return 0;
409         if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
410                 ext4_error_inode(inode, func, line, map->m_pblk,
411                                  "lblock %lu mapped to illegal pblock %llu "
412                                  "(length %d)", (unsigned long) map->m_lblk,
413                                  map->m_pblk, map->m_len);
414                 return -EFSCORRUPTED;
415         }
416         return 0;
417 }
418
419 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
420                        ext4_lblk_t len)
421 {
422         int ret;
423
424         if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
425                 return fscrypt_zeroout_range(inode, lblk, pblk, len);
426
427         ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
428         if (ret > 0)
429                 ret = 0;
430
431         return ret;
432 }
433
434 #define check_block_validity(inode, map)        \
435         __check_block_validity((inode), __func__, __LINE__, (map))
436
437 #ifdef ES_AGGRESSIVE_TEST
438 static void ext4_map_blocks_es_recheck(handle_t *handle,
439                                        struct inode *inode,
440                                        struct ext4_map_blocks *es_map,
441                                        struct ext4_map_blocks *map,
442                                        int flags)
443 {
444         int retval;
445
446         map->m_flags = 0;
447         /*
448          * There is a race window that the result is not the same.
449          * e.g. xfstests #223 when dioread_nolock enables.  The reason
450          * is that we lookup a block mapping in extent status tree with
451          * out taking i_data_sem.  So at the time the unwritten extent
452          * could be converted.
453          */
454         down_read(&EXT4_I(inode)->i_data_sem);
455         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
456                 retval = ext4_ext_map_blocks(handle, inode, map, 0);
457         } else {
458                 retval = ext4_ind_map_blocks(handle, inode, map, 0);
459         }
460         up_read((&EXT4_I(inode)->i_data_sem));
461
462         /*
463          * We don't check m_len because extent will be collpased in status
464          * tree.  So the m_len might not equal.
465          */
466         if (es_map->m_lblk != map->m_lblk ||
467             es_map->m_flags != map->m_flags ||
468             es_map->m_pblk != map->m_pblk) {
469                 printk("ES cache assertion failed for inode: %lu "
470                        "es_cached ex [%d/%d/%llu/%x] != "
471                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
472                        inode->i_ino, es_map->m_lblk, es_map->m_len,
473                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
474                        map->m_len, map->m_pblk, map->m_flags,
475                        retval, flags);
476         }
477 }
478 #endif /* ES_AGGRESSIVE_TEST */
479
480 /*
481  * The ext4_map_blocks() function tries to look up the requested blocks,
482  * and returns if the blocks are already mapped.
483  *
484  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
485  * and store the allocated blocks in the result buffer head and mark it
486  * mapped.
487  *
488  * If file type is extents based, it will call ext4_ext_map_blocks(),
489  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
490  * based files
491  *
492  * On success, it returns the number of blocks being mapped or allocated.  if
493  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
494  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
495  *
496  * It returns 0 if plain look up failed (blocks have not been allocated), in
497  * that case, @map is returned as unmapped but we still do fill map->m_len to
498  * indicate the length of a hole starting at map->m_lblk.
499  *
500  * It returns the error in case of allocation failure.
501  */
502 int ext4_map_blocks(handle_t *handle, struct inode *inode,
503                     struct ext4_map_blocks *map, int flags)
504 {
505         struct extent_status es;
506         int retval;
507         int ret = 0;
508 #ifdef ES_AGGRESSIVE_TEST
509         struct ext4_map_blocks orig_map;
510
511         memcpy(&orig_map, map, sizeof(*map));
512 #endif
513
514         map->m_flags = 0;
515         ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
516                   flags, map->m_len, (unsigned long) map->m_lblk);
517
518         /*
519          * ext4_map_blocks returns an int, and m_len is an unsigned int
520          */
521         if (unlikely(map->m_len > INT_MAX))
522                 map->m_len = INT_MAX;
523
524         /* We can handle the block number less than EXT_MAX_BLOCKS */
525         if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
526                 return -EFSCORRUPTED;
527
528         /* Lookup extent status tree firstly */
529         if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) &&
530             ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
531                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
532                         map->m_pblk = ext4_es_pblock(&es) +
533                                         map->m_lblk - es.es_lblk;
534                         map->m_flags |= ext4_es_is_written(&es) ?
535                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
536                         retval = es.es_len - (map->m_lblk - es.es_lblk);
537                         if (retval > map->m_len)
538                                 retval = map->m_len;
539                         map->m_len = retval;
540                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
541                         map->m_pblk = 0;
542                         retval = es.es_len - (map->m_lblk - es.es_lblk);
543                         if (retval > map->m_len)
544                                 retval = map->m_len;
545                         map->m_len = retval;
546                         retval = 0;
547                 } else {
548                         BUG();
549                 }
550 #ifdef ES_AGGRESSIVE_TEST
551                 ext4_map_blocks_es_recheck(handle, inode, map,
552                                            &orig_map, flags);
553 #endif
554                 goto found;
555         }
556
557         /*
558          * Try to see if we can get the block without requesting a new
559          * file system block.
560          */
561         down_read(&EXT4_I(inode)->i_data_sem);
562         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
563                 retval = ext4_ext_map_blocks(handle, inode, map, 0);
564         } else {
565                 retval = ext4_ind_map_blocks(handle, inode, map, 0);
566         }
567         if (retval > 0) {
568                 unsigned int status;
569
570                 if (unlikely(retval != map->m_len)) {
571                         ext4_warning(inode->i_sb,
572                                      "ES len assertion failed for inode "
573                                      "%lu: retval %d != map->m_len %d",
574                                      inode->i_ino, retval, map->m_len);
575                         WARN_ON(1);
576                 }
577
578                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
579                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
580                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
581                     !(status & EXTENT_STATUS_WRITTEN) &&
582                     ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
583                                        map->m_lblk + map->m_len - 1))
584                         status |= EXTENT_STATUS_DELAYED;
585                 ret = ext4_es_insert_extent(inode, map->m_lblk,
586                                             map->m_len, map->m_pblk, status);
587                 if (ret < 0)
588                         retval = ret;
589         }
590         up_read((&EXT4_I(inode)->i_data_sem));
591
592 found:
593         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
594                 ret = check_block_validity(inode, map);
595                 if (ret != 0)
596                         return ret;
597         }
598
599         /* If it is only a block(s) look up */
600         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
601                 return retval;
602
603         /*
604          * Returns if the blocks have already allocated
605          *
606          * Note that if blocks have been preallocated
607          * ext4_ext_get_block() returns the create = 0
608          * with buffer head unmapped.
609          */
610         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
611                 /*
612                  * If we need to convert extent to unwritten
613                  * we continue and do the actual work in
614                  * ext4_ext_map_blocks()
615                  */
616                 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
617                         return retval;
618
619         /*
620          * Here we clear m_flags because after allocating an new extent,
621          * it will be set again.
622          */
623         map->m_flags &= ~EXT4_MAP_FLAGS;
624
625         /*
626          * New blocks allocate and/or writing to unwritten extent
627          * will possibly result in updating i_data, so we take
628          * the write lock of i_data_sem, and call get_block()
629          * with create == 1 flag.
630          */
631         down_write(&EXT4_I(inode)->i_data_sem);
632
633         /*
634          * We need to check for EXT4 here because migrate
635          * could have changed the inode type in between
636          */
637         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
638                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
639         } else {
640                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
641
642                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
643                         /*
644                          * We allocated new blocks which will result in
645                          * i_data's format changing.  Force the migrate
646                          * to fail by clearing migrate flags
647                          */
648                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
649                 }
650
651                 /*
652                  * Update reserved blocks/metadata blocks after successful
653                  * block allocation which had been deferred till now. We don't
654                  * support fallocate for non extent files. So we can update
655                  * reserve space here.
656                  */
657                 if ((retval > 0) &&
658                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
659                         ext4_da_update_reserve_space(inode, retval, 1);
660         }
661
662         if (retval > 0) {
663                 unsigned int status;
664
665                 if (unlikely(retval != map->m_len)) {
666                         ext4_warning(inode->i_sb,
667                                      "ES len assertion failed for inode "
668                                      "%lu: retval %d != map->m_len %d",
669                                      inode->i_ino, retval, map->m_len);
670                         WARN_ON(1);
671                 }
672
673                 /*
674                  * We have to zeroout blocks before inserting them into extent
675                  * status tree. Otherwise someone could look them up there and
676                  * use them before they are really zeroed. We also have to
677                  * unmap metadata before zeroing as otherwise writeback can
678                  * overwrite zeros with stale data from block device.
679                  */
680                 if (flags & EXT4_GET_BLOCKS_ZERO &&
681                     map->m_flags & EXT4_MAP_MAPPED &&
682                     map->m_flags & EXT4_MAP_NEW) {
683                         ret = ext4_issue_zeroout(inode, map->m_lblk,
684                                                  map->m_pblk, map->m_len);
685                         if (ret) {
686                                 retval = ret;
687                                 goto out_sem;
688                         }
689                 }
690
691                 /*
692                  * If the extent has been zeroed out, we don't need to update
693                  * extent status tree.
694                  */
695                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
696                     ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
697                         if (ext4_es_is_written(&es))
698                                 goto out_sem;
699                 }
700                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
701                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
702                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
703                     !(status & EXTENT_STATUS_WRITTEN) &&
704                     ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
705                                        map->m_lblk + map->m_len - 1))
706                         status |= EXTENT_STATUS_DELAYED;
707                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
708                                             map->m_pblk, status);
709                 if (ret < 0) {
710                         retval = ret;
711                         goto out_sem;
712                 }
713         }
714
715 out_sem:
716         up_write((&EXT4_I(inode)->i_data_sem));
717         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
718                 ret = check_block_validity(inode, map);
719                 if (ret != 0)
720                         return ret;
721
722                 /*
723                  * Inodes with freshly allocated blocks where contents will be
724                  * visible after transaction commit must be on transaction's
725                  * ordered data list.
726                  */
727                 if (map->m_flags & EXT4_MAP_NEW &&
728                     !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
729                     !(flags & EXT4_GET_BLOCKS_ZERO) &&
730                     !ext4_is_quota_file(inode) &&
731                     ext4_should_order_data(inode)) {
732                         loff_t start_byte =
733                                 (loff_t)map->m_lblk << inode->i_blkbits;
734                         loff_t length = (loff_t)map->m_len << inode->i_blkbits;
735
736                         if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
737                                 ret = ext4_jbd2_inode_add_wait(handle, inode,
738                                                 start_byte, length);
739                         else
740                                 ret = ext4_jbd2_inode_add_write(handle, inode,
741                                                 start_byte, length);
742                         if (ret)
743                                 return ret;
744                 }
745                 ext4_fc_track_range(handle, inode, map->m_lblk,
746                             map->m_lblk + map->m_len - 1);
747         }
748
749         if (retval < 0)
750                 ext_debug(inode, "failed with err %d\n", retval);
751         return retval;
752 }
753
754 /*
755  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
756  * we have to be careful as someone else may be manipulating b_state as well.
757  */
758 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
759 {
760         unsigned long old_state;
761         unsigned long new_state;
762
763         flags &= EXT4_MAP_FLAGS;
764
765         /* Dummy buffer_head? Set non-atomically. */
766         if (!bh->b_page) {
767                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
768                 return;
769         }
770         /*
771          * Someone else may be modifying b_state. Be careful! This is ugly but
772          * once we get rid of using bh as a container for mapping information
773          * to pass to / from get_block functions, this can go away.
774          */
775         do {
776                 old_state = READ_ONCE(bh->b_state);
777                 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
778         } while (unlikely(
779                  cmpxchg(&bh->b_state, old_state, new_state) != old_state));
780 }
781
782 static int _ext4_get_block(struct inode *inode, sector_t iblock,
783                            struct buffer_head *bh, int flags)
784 {
785         struct ext4_map_blocks map;
786         int ret = 0;
787
788         if (ext4_has_inline_data(inode))
789                 return -ERANGE;
790
791         map.m_lblk = iblock;
792         map.m_len = bh->b_size >> inode->i_blkbits;
793
794         ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
795                               flags);
796         if (ret > 0) {
797                 map_bh(bh, inode->i_sb, map.m_pblk);
798                 ext4_update_bh_state(bh, map.m_flags);
799                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
800                 ret = 0;
801         } else if (ret == 0) {
802                 /* hole case, need to fill in bh->b_size */
803                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
804         }
805         return ret;
806 }
807
808 int ext4_get_block(struct inode *inode, sector_t iblock,
809                    struct buffer_head *bh, int create)
810 {
811         return _ext4_get_block(inode, iblock, bh,
812                                create ? EXT4_GET_BLOCKS_CREATE : 0);
813 }
814
815 /*
816  * Get block function used when preparing for buffered write if we require
817  * creating an unwritten extent if blocks haven't been allocated.  The extent
818  * will be converted to written after the IO is complete.
819  */
820 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
821                              struct buffer_head *bh_result, int create)
822 {
823         ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
824                    inode->i_ino, create);
825         return _ext4_get_block(inode, iblock, bh_result,
826                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
827 }
828
829 /* Maximum number of blocks we map for direct IO at once. */
830 #define DIO_MAX_BLOCKS 4096
831
832 /*
833  * `handle' can be NULL if create is zero
834  */
835 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
836                                 ext4_lblk_t block, int map_flags)
837 {
838         struct ext4_map_blocks map;
839         struct buffer_head *bh;
840         int create = map_flags & EXT4_GET_BLOCKS_CREATE;
841         int err;
842
843         ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
844                     || handle != NULL || create == 0);
845
846         map.m_lblk = block;
847         map.m_len = 1;
848         err = ext4_map_blocks(handle, inode, &map, map_flags);
849
850         if (err == 0)
851                 return create ? ERR_PTR(-ENOSPC) : NULL;
852         if (err < 0)
853                 return ERR_PTR(err);
854
855         bh = sb_getblk(inode->i_sb, map.m_pblk);
856         if (unlikely(!bh))
857                 return ERR_PTR(-ENOMEM);
858         if (map.m_flags & EXT4_MAP_NEW) {
859                 ASSERT(create != 0);
860                 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
861                             || (handle != NULL));
862
863                 /*
864                  * Now that we do not always journal data, we should
865                  * keep in mind whether this should always journal the
866                  * new buffer as metadata.  For now, regular file
867                  * writes use ext4_get_block instead, so it's not a
868                  * problem.
869                  */
870                 lock_buffer(bh);
871                 BUFFER_TRACE(bh, "call get_create_access");
872                 err = ext4_journal_get_create_access(handle, bh);
873                 if (unlikely(err)) {
874                         unlock_buffer(bh);
875                         goto errout;
876                 }
877                 if (!buffer_uptodate(bh)) {
878                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
879                         set_buffer_uptodate(bh);
880                 }
881                 unlock_buffer(bh);
882                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
883                 err = ext4_handle_dirty_metadata(handle, inode, bh);
884                 if (unlikely(err))
885                         goto errout;
886         } else
887                 BUFFER_TRACE(bh, "not a new buffer");
888         return bh;
889 errout:
890         brelse(bh);
891         return ERR_PTR(err);
892 }
893
894 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
895                                ext4_lblk_t block, int map_flags)
896 {
897         struct buffer_head *bh;
898         int ret;
899
900         bh = ext4_getblk(handle, inode, block, map_flags);
901         if (IS_ERR(bh))
902                 return bh;
903         if (!bh || ext4_buffer_uptodate(bh))
904                 return bh;
905
906         ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true);
907         if (ret) {
908                 put_bh(bh);
909                 return ERR_PTR(ret);
910         }
911         return bh;
912 }
913
914 /* Read a contiguous batch of blocks. */
915 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
916                      bool wait, struct buffer_head **bhs)
917 {
918         int i, err;
919
920         for (i = 0; i < bh_count; i++) {
921                 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
922                 if (IS_ERR(bhs[i])) {
923                         err = PTR_ERR(bhs[i]);
924                         bh_count = i;
925                         goto out_brelse;
926                 }
927         }
928
929         for (i = 0; i < bh_count; i++)
930                 /* Note that NULL bhs[i] is valid because of holes. */
931                 if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
932                         ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false);
933
934         if (!wait)
935                 return 0;
936
937         for (i = 0; i < bh_count; i++)
938                 if (bhs[i])
939                         wait_on_buffer(bhs[i]);
940
941         for (i = 0; i < bh_count; i++) {
942                 if (bhs[i] && !buffer_uptodate(bhs[i])) {
943                         err = -EIO;
944                         goto out_brelse;
945                 }
946         }
947         return 0;
948
949 out_brelse:
950         for (i = 0; i < bh_count; i++) {
951                 brelse(bhs[i]);
952                 bhs[i] = NULL;
953         }
954         return err;
955 }
956
957 int ext4_walk_page_buffers(handle_t *handle,
958                            struct buffer_head *head,
959                            unsigned from,
960                            unsigned to,
961                            int *partial,
962                            int (*fn)(handle_t *handle,
963                                      struct buffer_head *bh))
964 {
965         struct buffer_head *bh;
966         unsigned block_start, block_end;
967         unsigned blocksize = head->b_size;
968         int err, ret = 0;
969         struct buffer_head *next;
970
971         for (bh = head, block_start = 0;
972              ret == 0 && (bh != head || !block_start);
973              block_start = block_end, bh = next) {
974                 next = bh->b_this_page;
975                 block_end = block_start + blocksize;
976                 if (block_end <= from || block_start >= to) {
977                         if (partial && !buffer_uptodate(bh))
978                                 *partial = 1;
979                         continue;
980                 }
981                 err = (*fn)(handle, bh);
982                 if (!ret)
983                         ret = err;
984         }
985         return ret;
986 }
987
988 /*
989  * To preserve ordering, it is essential that the hole instantiation and
990  * the data write be encapsulated in a single transaction.  We cannot
991  * close off a transaction and start a new one between the ext4_get_block()
992  * and the commit_write().  So doing the jbd2_journal_start at the start of
993  * prepare_write() is the right place.
994  *
995  * Also, this function can nest inside ext4_writepage().  In that case, we
996  * *know* that ext4_writepage() has generated enough buffer credits to do the
997  * whole page.  So we won't block on the journal in that case, which is good,
998  * because the caller may be PF_MEMALLOC.
999  *
1000  * By accident, ext4 can be reentered when a transaction is open via
1001  * quota file writes.  If we were to commit the transaction while thus
1002  * reentered, there can be a deadlock - we would be holding a quota
1003  * lock, and the commit would never complete if another thread had a
1004  * transaction open and was blocking on the quota lock - a ranking
1005  * violation.
1006  *
1007  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1008  * will _not_ run commit under these circumstances because handle->h_ref
1009  * is elevated.  We'll still have enough credits for the tiny quotafile
1010  * write.
1011  */
1012 int do_journal_get_write_access(handle_t *handle,
1013                                 struct buffer_head *bh)
1014 {
1015         int dirty = buffer_dirty(bh);
1016         int ret;
1017
1018         if (!buffer_mapped(bh) || buffer_freed(bh))
1019                 return 0;
1020         /*
1021          * __block_write_begin() could have dirtied some buffers. Clean
1022          * the dirty bit as jbd2_journal_get_write_access() could complain
1023          * otherwise about fs integrity issues. Setting of the dirty bit
1024          * by __block_write_begin() isn't a real problem here as we clear
1025          * the bit before releasing a page lock and thus writeback cannot
1026          * ever write the buffer.
1027          */
1028         if (dirty)
1029                 clear_buffer_dirty(bh);
1030         BUFFER_TRACE(bh, "get write access");
1031         ret = ext4_journal_get_write_access(handle, bh);
1032         if (!ret && dirty)
1033                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1034         return ret;
1035 }
1036
1037 #ifdef CONFIG_FS_ENCRYPTION
1038 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1039                                   get_block_t *get_block)
1040 {
1041         unsigned from = pos & (PAGE_SIZE - 1);
1042         unsigned to = from + len;
1043         struct inode *inode = page->mapping->host;
1044         unsigned block_start, block_end;
1045         sector_t block;
1046         int err = 0;
1047         unsigned blocksize = inode->i_sb->s_blocksize;
1048         unsigned bbits;
1049         struct buffer_head *bh, *head, *wait[2];
1050         int nr_wait = 0;
1051         int i;
1052
1053         BUG_ON(!PageLocked(page));
1054         BUG_ON(from > PAGE_SIZE);
1055         BUG_ON(to > PAGE_SIZE);
1056         BUG_ON(from > to);
1057
1058         if (!page_has_buffers(page))
1059                 create_empty_buffers(page, blocksize, 0);
1060         head = page_buffers(page);
1061         bbits = ilog2(blocksize);
1062         block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1063
1064         for (bh = head, block_start = 0; bh != head || !block_start;
1065             block++, block_start = block_end, bh = bh->b_this_page) {
1066                 block_end = block_start + blocksize;
1067                 if (block_end <= from || block_start >= to) {
1068                         if (PageUptodate(page)) {
1069                                 if (!buffer_uptodate(bh))
1070                                         set_buffer_uptodate(bh);
1071                         }
1072                         continue;
1073                 }
1074                 if (buffer_new(bh))
1075                         clear_buffer_new(bh);
1076                 if (!buffer_mapped(bh)) {
1077                         WARN_ON(bh->b_size != blocksize);
1078                         err = get_block(inode, block, bh, 1);
1079                         if (err)
1080                                 break;
1081                         if (buffer_new(bh)) {
1082                                 if (PageUptodate(page)) {
1083                                         clear_buffer_new(bh);
1084                                         set_buffer_uptodate(bh);
1085                                         mark_buffer_dirty(bh);
1086                                         continue;
1087                                 }
1088                                 if (block_end > to || block_start < from)
1089                                         zero_user_segments(page, to, block_end,
1090                                                            block_start, from);
1091                                 continue;
1092                         }
1093                 }
1094                 if (PageUptodate(page)) {
1095                         if (!buffer_uptodate(bh))
1096                                 set_buffer_uptodate(bh);
1097                         continue;
1098                 }
1099                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1100                     !buffer_unwritten(bh) &&
1101                     (block_start < from || block_end > to)) {
1102                         ext4_read_bh_lock(bh, 0, false);
1103                         wait[nr_wait++] = bh;
1104                 }
1105         }
1106         /*
1107          * If we issued read requests, let them complete.
1108          */
1109         for (i = 0; i < nr_wait; i++) {
1110                 wait_on_buffer(wait[i]);
1111                 if (!buffer_uptodate(wait[i]))
1112                         err = -EIO;
1113         }
1114         if (unlikely(err)) {
1115                 page_zero_new_buffers(page, from, to);
1116         } else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1117                 for (i = 0; i < nr_wait; i++) {
1118                         int err2;
1119
1120                         err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize,
1121                                                                 bh_offset(wait[i]));
1122                         if (err2) {
1123                                 clear_buffer_uptodate(wait[i]);
1124                                 err = err2;
1125                         }
1126                 }
1127         }
1128
1129         return err;
1130 }
1131 #endif
1132
1133 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1134                             loff_t pos, unsigned len, unsigned flags,
1135                             struct page **pagep, void **fsdata)
1136 {
1137         struct inode *inode = mapping->host;
1138         int ret, needed_blocks;
1139         handle_t *handle;
1140         int retries = 0;
1141         struct page *page;
1142         pgoff_t index;
1143         unsigned from, to;
1144
1145         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1146                 return -EIO;
1147
1148         trace_ext4_write_begin(inode, pos, len, flags);
1149         /*
1150          * Reserve one block more for addition to orphan list in case
1151          * we allocate blocks but write fails for some reason
1152          */
1153         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1154         index = pos >> PAGE_SHIFT;
1155         from = pos & (PAGE_SIZE - 1);
1156         to = from + len;
1157
1158         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1159                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1160                                                     flags, pagep);
1161                 if (ret < 0)
1162                         return ret;
1163                 if (ret == 1)
1164                         return 0;
1165         }
1166
1167         /*
1168          * grab_cache_page_write_begin() can take a long time if the
1169          * system is thrashing due to memory pressure, or if the page
1170          * is being written back.  So grab it first before we start
1171          * the transaction handle.  This also allows us to allocate
1172          * the page (if needed) without using GFP_NOFS.
1173          */
1174 retry_grab:
1175         page = grab_cache_page_write_begin(mapping, index, flags);
1176         if (!page)
1177                 return -ENOMEM;
1178         unlock_page(page);
1179
1180 retry_journal:
1181         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1182         if (IS_ERR(handle)) {
1183                 put_page(page);
1184                 return PTR_ERR(handle);
1185         }
1186
1187         lock_page(page);
1188         if (page->mapping != mapping) {
1189                 /* The page got truncated from under us */
1190                 unlock_page(page);
1191                 put_page(page);
1192                 ext4_journal_stop(handle);
1193                 goto retry_grab;
1194         }
1195         /* In case writeback began while the page was unlocked */
1196         wait_for_stable_page(page);
1197
1198 #ifdef CONFIG_FS_ENCRYPTION
1199         if (ext4_should_dioread_nolock(inode))
1200                 ret = ext4_block_write_begin(page, pos, len,
1201                                              ext4_get_block_unwritten);
1202         else
1203                 ret = ext4_block_write_begin(page, pos, len,
1204                                              ext4_get_block);
1205 #else
1206         if (ext4_should_dioread_nolock(inode))
1207                 ret = __block_write_begin(page, pos, len,
1208                                           ext4_get_block_unwritten);
1209         else
1210                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1211 #endif
1212         if (!ret && ext4_should_journal_data(inode)) {
1213                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1214                                              from, to, NULL,
1215                                              do_journal_get_write_access);
1216         }
1217
1218         if (ret) {
1219                 bool extended = (pos + len > inode->i_size) &&
1220                                 !ext4_verity_in_progress(inode);
1221
1222                 unlock_page(page);
1223                 /*
1224                  * __block_write_begin may have instantiated a few blocks
1225                  * outside i_size.  Trim these off again. Don't need
1226                  * i_size_read because we hold i_mutex.
1227                  *
1228                  * Add inode to orphan list in case we crash before
1229                  * truncate finishes
1230                  */
1231                 if (extended && ext4_can_truncate(inode))
1232                         ext4_orphan_add(handle, inode);
1233
1234                 ext4_journal_stop(handle);
1235                 if (extended) {
1236                         ext4_truncate_failed_write(inode);
1237                         /*
1238                          * If truncate failed early the inode might
1239                          * still be on the orphan list; we need to
1240                          * make sure the inode is removed from the
1241                          * orphan list in that case.
1242                          */
1243                         if (inode->i_nlink)
1244                                 ext4_orphan_del(NULL, inode);
1245                 }
1246
1247                 if (ret == -ENOSPC &&
1248                     ext4_should_retry_alloc(inode->i_sb, &retries))
1249                         goto retry_journal;
1250                 put_page(page);
1251                 return ret;
1252         }
1253         *pagep = page;
1254         return ret;
1255 }
1256
1257 /* For write_end() in data=journal mode */
1258 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1259 {
1260         int ret;
1261         if (!buffer_mapped(bh) || buffer_freed(bh))
1262                 return 0;
1263         set_buffer_uptodate(bh);
1264         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1265         clear_buffer_meta(bh);
1266         clear_buffer_prio(bh);
1267         return ret;
1268 }
1269
1270 /*
1271  * We need to pick up the new inode size which generic_commit_write gave us
1272  * `file' can be NULL - eg, when called from page_symlink().
1273  *
1274  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1275  * buffers are managed internally.
1276  */
1277 static int ext4_write_end(struct file *file,
1278                           struct address_space *mapping,
1279                           loff_t pos, unsigned len, unsigned copied,
1280                           struct page *page, void *fsdata)
1281 {
1282         handle_t *handle = ext4_journal_current_handle();
1283         struct inode *inode = mapping->host;
1284         loff_t old_size = inode->i_size;
1285         int ret = 0, ret2;
1286         int i_size_changed = 0;
1287         int inline_data = ext4_has_inline_data(inode);
1288         bool verity = ext4_verity_in_progress(inode);
1289
1290         trace_ext4_write_end(inode, pos, len, copied);
1291         if (inline_data) {
1292                 ret = ext4_write_inline_data_end(inode, pos, len,
1293                                                  copied, page);
1294                 if (ret < 0) {
1295                         unlock_page(page);
1296                         put_page(page);
1297                         goto errout;
1298                 }
1299                 copied = ret;
1300         } else
1301                 copied = block_write_end(file, mapping, pos,
1302                                          len, copied, page, fsdata);
1303         /*
1304          * it's important to update i_size while still holding page lock:
1305          * page writeout could otherwise come in and zero beyond i_size.
1306          *
1307          * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1308          * blocks are being written past EOF, so skip the i_size update.
1309          */
1310         if (!verity)
1311                 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1312         unlock_page(page);
1313         put_page(page);
1314
1315         if (old_size < pos && !verity)
1316                 pagecache_isize_extended(inode, old_size, pos);
1317         /*
1318          * Don't mark the inode dirty under page lock. First, it unnecessarily
1319          * makes the holding time of page lock longer. Second, it forces lock
1320          * ordering of page lock and transaction start for journaling
1321          * filesystems.
1322          */
1323         if (i_size_changed || inline_data)
1324                 ret = ext4_mark_inode_dirty(handle, inode);
1325
1326         if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1327                 /* if we have allocated more blocks and copied
1328                  * less. We will have blocks allocated outside
1329                  * inode->i_size. So truncate them
1330                  */
1331                 ext4_orphan_add(handle, inode);
1332 errout:
1333         ret2 = ext4_journal_stop(handle);
1334         if (!ret)
1335                 ret = ret2;
1336
1337         if (pos + len > inode->i_size && !verity) {
1338                 ext4_truncate_failed_write(inode);
1339                 /*
1340                  * If truncate failed early the inode might still be
1341                  * on the orphan list; we need to make sure the inode
1342                  * is removed from the orphan list in that case.
1343                  */
1344                 if (inode->i_nlink)
1345                         ext4_orphan_del(NULL, inode);
1346         }
1347
1348         return ret ? ret : copied;
1349 }
1350
1351 /*
1352  * This is a private version of page_zero_new_buffers() which doesn't
1353  * set the buffer to be dirty, since in data=journalled mode we need
1354  * to call ext4_handle_dirty_metadata() instead.
1355  */
1356 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1357                                             struct page *page,
1358                                             unsigned from, unsigned to)
1359 {
1360         unsigned int block_start = 0, block_end;
1361         struct buffer_head *head, *bh;
1362
1363         bh = head = page_buffers(page);
1364         do {
1365                 block_end = block_start + bh->b_size;
1366                 if (buffer_new(bh)) {
1367                         if (block_end > from && block_start < to) {
1368                                 if (!PageUptodate(page)) {
1369                                         unsigned start, size;
1370
1371                                         start = max(from, block_start);
1372                                         size = min(to, block_end) - start;
1373
1374                                         zero_user(page, start, size);
1375                                         write_end_fn(handle, bh);
1376                                 }
1377                                 clear_buffer_new(bh);
1378                         }
1379                 }
1380                 block_start = block_end;
1381                 bh = bh->b_this_page;
1382         } while (bh != head);
1383 }
1384
1385 static int ext4_journalled_write_end(struct file *file,
1386                                      struct address_space *mapping,
1387                                      loff_t pos, unsigned len, unsigned copied,
1388                                      struct page *page, void *fsdata)
1389 {
1390         handle_t *handle = ext4_journal_current_handle();
1391         struct inode *inode = mapping->host;
1392         loff_t old_size = inode->i_size;
1393         int ret = 0, ret2;
1394         int partial = 0;
1395         unsigned from, to;
1396         int size_changed = 0;
1397         int inline_data = ext4_has_inline_data(inode);
1398         bool verity = ext4_verity_in_progress(inode);
1399
1400         trace_ext4_journalled_write_end(inode, pos, len, copied);
1401         from = pos & (PAGE_SIZE - 1);
1402         to = from + len;
1403
1404         BUG_ON(!ext4_handle_valid(handle));
1405
1406         if (inline_data) {
1407                 ret = ext4_write_inline_data_end(inode, pos, len,
1408                                                  copied, page);
1409                 if (ret < 0) {
1410                         unlock_page(page);
1411                         put_page(page);
1412                         goto errout;
1413                 }
1414                 copied = ret;
1415         } else if (unlikely(copied < len) && !PageUptodate(page)) {
1416                 copied = 0;
1417                 ext4_journalled_zero_new_buffers(handle, page, from, to);
1418         } else {
1419                 if (unlikely(copied < len))
1420                         ext4_journalled_zero_new_buffers(handle, page,
1421                                                          from + copied, to);
1422                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1423                                              from + copied, &partial,
1424                                              write_end_fn);
1425                 if (!partial)
1426                         SetPageUptodate(page);
1427         }
1428         if (!verity)
1429                 size_changed = ext4_update_inode_size(inode, pos + copied);
1430         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1431         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1432         unlock_page(page);
1433         put_page(page);
1434
1435         if (old_size < pos && !verity)
1436                 pagecache_isize_extended(inode, old_size, pos);
1437
1438         if (size_changed || inline_data) {
1439                 ret2 = ext4_mark_inode_dirty(handle, inode);
1440                 if (!ret)
1441                         ret = ret2;
1442         }
1443
1444         if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1445                 /* if we have allocated more blocks and copied
1446                  * less. We will have blocks allocated outside
1447                  * inode->i_size. So truncate them
1448                  */
1449                 ext4_orphan_add(handle, inode);
1450
1451 errout:
1452         ret2 = ext4_journal_stop(handle);
1453         if (!ret)
1454                 ret = ret2;
1455         if (pos + len > inode->i_size && !verity) {
1456                 ext4_truncate_failed_write(inode);
1457                 /*
1458                  * If truncate failed early the inode might still be
1459                  * on the orphan list; we need to make sure the inode
1460                  * is removed from the orphan list in that case.
1461                  */
1462                 if (inode->i_nlink)
1463                         ext4_orphan_del(NULL, inode);
1464         }
1465
1466         return ret ? ret : copied;
1467 }
1468
1469 /*
1470  * Reserve space for a single cluster
1471  */
1472 static int ext4_da_reserve_space(struct inode *inode)
1473 {
1474         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1475         struct ext4_inode_info *ei = EXT4_I(inode);
1476         int ret;
1477
1478         /*
1479          * We will charge metadata quota at writeout time; this saves
1480          * us from metadata over-estimation, though we may go over by
1481          * a small amount in the end.  Here we just reserve for data.
1482          */
1483         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1484         if (ret)
1485                 return ret;
1486
1487         spin_lock(&ei->i_block_reservation_lock);
1488         if (ext4_claim_free_clusters(sbi, 1, 0)) {
1489                 spin_unlock(&ei->i_block_reservation_lock);
1490                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1491                 return -ENOSPC;
1492         }
1493         ei->i_reserved_data_blocks++;
1494         trace_ext4_da_reserve_space(inode);
1495         spin_unlock(&ei->i_block_reservation_lock);
1496
1497         return 0;       /* success */
1498 }
1499
1500 void ext4_da_release_space(struct inode *inode, int to_free)
1501 {
1502         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1503         struct ext4_inode_info *ei = EXT4_I(inode);
1504
1505         if (!to_free)
1506                 return;         /* Nothing to release, exit */
1507
1508         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1509
1510         trace_ext4_da_release_space(inode, to_free);
1511         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1512                 /*
1513                  * if there aren't enough reserved blocks, then the
1514                  * counter is messed up somewhere.  Since this
1515                  * function is called from invalidate page, it's
1516                  * harmless to return without any action.
1517                  */
1518                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1519                          "ino %lu, to_free %d with only %d reserved "
1520                          "data blocks", inode->i_ino, to_free,
1521                          ei->i_reserved_data_blocks);
1522                 WARN_ON(1);
1523                 to_free = ei->i_reserved_data_blocks;
1524         }
1525         ei->i_reserved_data_blocks -= to_free;
1526
1527         /* update fs dirty data blocks counter */
1528         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1529
1530         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1531
1532         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1533 }
1534
1535 /*
1536  * Delayed allocation stuff
1537  */
1538
1539 struct mpage_da_data {
1540         struct inode *inode;
1541         struct writeback_control *wbc;
1542
1543         pgoff_t first_page;     /* The first page to write */
1544         pgoff_t next_page;      /* Current page to examine */
1545         pgoff_t last_page;      /* Last page to examine */
1546         /*
1547          * Extent to map - this can be after first_page because that can be
1548          * fully mapped. We somewhat abuse m_flags to store whether the extent
1549          * is delalloc or unwritten.
1550          */
1551         struct ext4_map_blocks map;
1552         struct ext4_io_submit io_submit;        /* IO submission data */
1553         unsigned int do_map:1;
1554         unsigned int scanned_until_end:1;
1555 };
1556
1557 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1558                                        bool invalidate)
1559 {
1560         int nr_pages, i;
1561         pgoff_t index, end;
1562         struct pagevec pvec;
1563         struct inode *inode = mpd->inode;
1564         struct address_space *mapping = inode->i_mapping;
1565
1566         /* This is necessary when next_page == 0. */
1567         if (mpd->first_page >= mpd->next_page)
1568                 return;
1569
1570         mpd->scanned_until_end = 0;
1571         index = mpd->first_page;
1572         end   = mpd->next_page - 1;
1573         if (invalidate) {
1574                 ext4_lblk_t start, last;
1575                 start = index << (PAGE_SHIFT - inode->i_blkbits);
1576                 last = end << (PAGE_SHIFT - inode->i_blkbits);
1577                 ext4_es_remove_extent(inode, start, last - start + 1);
1578         }
1579
1580         pagevec_init(&pvec);
1581         while (index <= end) {
1582                 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1583                 if (nr_pages == 0)
1584                         break;
1585                 for (i = 0; i < nr_pages; i++) {
1586                         struct page *page = pvec.pages[i];
1587
1588                         BUG_ON(!PageLocked(page));
1589                         BUG_ON(PageWriteback(page));
1590                         if (invalidate) {
1591                                 if (page_mapped(page))
1592                                         clear_page_dirty_for_io(page);
1593                                 block_invalidatepage(page, 0, PAGE_SIZE);
1594                                 ClearPageUptodate(page);
1595                         }
1596                         unlock_page(page);
1597                 }
1598                 pagevec_release(&pvec);
1599         }
1600 }
1601
1602 static void ext4_print_free_blocks(struct inode *inode)
1603 {
1604         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1605         struct super_block *sb = inode->i_sb;
1606         struct ext4_inode_info *ei = EXT4_I(inode);
1607
1608         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1609                EXT4_C2B(EXT4_SB(inode->i_sb),
1610                         ext4_count_free_clusters(sb)));
1611         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1612         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1613                (long long) EXT4_C2B(EXT4_SB(sb),
1614                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1615         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1616                (long long) EXT4_C2B(EXT4_SB(sb),
1617                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1618         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1619         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1620                  ei->i_reserved_data_blocks);
1621         return;
1622 }
1623
1624 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1625 {
1626         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1627 }
1628
1629 /*
1630  * ext4_insert_delayed_block - adds a delayed block to the extents status
1631  *                             tree, incrementing the reserved cluster/block
1632  *                             count or making a pending reservation
1633  *                             where needed
1634  *
1635  * @inode - file containing the newly added block
1636  * @lblk - logical block to be added
1637  *
1638  * Returns 0 on success, negative error code on failure.
1639  */
1640 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1641 {
1642         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1643         int ret;
1644         bool allocated = false;
1645
1646         /*
1647          * If the cluster containing lblk is shared with a delayed,
1648          * written, or unwritten extent in a bigalloc file system, it's
1649          * already been accounted for and does not need to be reserved.
1650          * A pending reservation must be made for the cluster if it's
1651          * shared with a written or unwritten extent and doesn't already
1652          * have one.  Written and unwritten extents can be purged from the
1653          * extents status tree if the system is under memory pressure, so
1654          * it's necessary to examine the extent tree if a search of the
1655          * extents status tree doesn't get a match.
1656          */
1657         if (sbi->s_cluster_ratio == 1) {
1658                 ret = ext4_da_reserve_space(inode);
1659                 if (ret != 0)   /* ENOSPC */
1660                         goto errout;
1661         } else {   /* bigalloc */
1662                 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1663                         if (!ext4_es_scan_clu(inode,
1664                                               &ext4_es_is_mapped, lblk)) {
1665                                 ret = ext4_clu_mapped(inode,
1666                                                       EXT4_B2C(sbi, lblk));
1667                                 if (ret < 0)
1668                                         goto errout;
1669                                 if (ret == 0) {
1670                                         ret = ext4_da_reserve_space(inode);
1671                                         if (ret != 0)   /* ENOSPC */
1672                                                 goto errout;
1673                                 } else {
1674                                         allocated = true;
1675                                 }
1676                         } else {
1677                                 allocated = true;
1678                         }
1679                 }
1680         }
1681
1682         ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1683
1684 errout:
1685         return ret;
1686 }
1687
1688 /*
1689  * This function is grabs code from the very beginning of
1690  * ext4_map_blocks, but assumes that the caller is from delayed write
1691  * time. This function looks up the requested blocks and sets the
1692  * buffer delay bit under the protection of i_data_sem.
1693  */
1694 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1695                               struct ext4_map_blocks *map,
1696                               struct buffer_head *bh)
1697 {
1698         struct extent_status es;
1699         int retval;
1700         sector_t invalid_block = ~((sector_t) 0xffff);
1701 #ifdef ES_AGGRESSIVE_TEST
1702         struct ext4_map_blocks orig_map;
1703
1704         memcpy(&orig_map, map, sizeof(*map));
1705 #endif
1706
1707         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1708                 invalid_block = ~0;
1709
1710         map->m_flags = 0;
1711         ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1712                   (unsigned long) map->m_lblk);
1713
1714         /* Lookup extent status tree firstly */
1715         if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1716                 if (ext4_es_is_hole(&es)) {
1717                         retval = 0;
1718                         down_read(&EXT4_I(inode)->i_data_sem);
1719                         goto add_delayed;
1720                 }
1721
1722                 /*
1723                  * Delayed extent could be allocated by fallocate.
1724                  * So we need to check it.
1725                  */
1726                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1727                         map_bh(bh, inode->i_sb, invalid_block);
1728                         set_buffer_new(bh);
1729                         set_buffer_delay(bh);
1730                         return 0;
1731                 }
1732
1733                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1734                 retval = es.es_len - (iblock - es.es_lblk);
1735                 if (retval > map->m_len)
1736                         retval = map->m_len;
1737                 map->m_len = retval;
1738                 if (ext4_es_is_written(&es))
1739                         map->m_flags |= EXT4_MAP_MAPPED;
1740                 else if (ext4_es_is_unwritten(&es))
1741                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1742                 else
1743                         BUG();
1744
1745 #ifdef ES_AGGRESSIVE_TEST
1746                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1747 #endif
1748                 return retval;
1749         }
1750
1751         /*
1752          * Try to see if we can get the block without requesting a new
1753          * file system block.
1754          */
1755         down_read(&EXT4_I(inode)->i_data_sem);
1756         if (ext4_has_inline_data(inode))
1757                 retval = 0;
1758         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1759                 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1760         else
1761                 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1762
1763 add_delayed:
1764         if (retval == 0) {
1765                 int ret;
1766
1767                 /*
1768                  * XXX: __block_prepare_write() unmaps passed block,
1769                  * is it OK?
1770                  */
1771
1772                 ret = ext4_insert_delayed_block(inode, map->m_lblk);
1773                 if (ret != 0) {
1774                         retval = ret;
1775                         goto out_unlock;
1776                 }
1777
1778                 map_bh(bh, inode->i_sb, invalid_block);
1779                 set_buffer_new(bh);
1780                 set_buffer_delay(bh);
1781         } else if (retval > 0) {
1782                 int ret;
1783                 unsigned int status;
1784
1785                 if (unlikely(retval != map->m_len)) {
1786                         ext4_warning(inode->i_sb,
1787                                      "ES len assertion failed for inode "
1788                                      "%lu: retval %d != map->m_len %d",
1789                                      inode->i_ino, retval, map->m_len);
1790                         WARN_ON(1);
1791                 }
1792
1793                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1794                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1795                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1796                                             map->m_pblk, status);
1797                 if (ret != 0)
1798                         retval = ret;
1799         }
1800
1801 out_unlock:
1802         up_read((&EXT4_I(inode)->i_data_sem));
1803
1804         return retval;
1805 }
1806
1807 /*
1808  * This is a special get_block_t callback which is used by
1809  * ext4_da_write_begin().  It will either return mapped block or
1810  * reserve space for a single block.
1811  *
1812  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1813  * We also have b_blocknr = -1 and b_bdev initialized properly
1814  *
1815  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1816  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1817  * initialized properly.
1818  */
1819 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1820                            struct buffer_head *bh, int create)
1821 {
1822         struct ext4_map_blocks map;
1823         int ret = 0;
1824
1825         BUG_ON(create == 0);
1826         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1827
1828         map.m_lblk = iblock;
1829         map.m_len = 1;
1830
1831         /*
1832          * first, we need to know whether the block is allocated already
1833          * preallocated blocks are unmapped but should treated
1834          * the same as allocated blocks.
1835          */
1836         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1837         if (ret <= 0)
1838                 return ret;
1839
1840         map_bh(bh, inode->i_sb, map.m_pblk);
1841         ext4_update_bh_state(bh, map.m_flags);
1842
1843         if (buffer_unwritten(bh)) {
1844                 /* A delayed write to unwritten bh should be marked
1845                  * new and mapped.  Mapped ensures that we don't do
1846                  * get_block multiple times when we write to the same
1847                  * offset and new ensures that we do proper zero out
1848                  * for partial write.
1849                  */
1850                 set_buffer_new(bh);
1851                 set_buffer_mapped(bh);
1852         }
1853         return 0;
1854 }
1855
1856 static int bget_one(handle_t *handle, struct buffer_head *bh)
1857 {
1858         get_bh(bh);
1859         return 0;
1860 }
1861
1862 static int bput_one(handle_t *handle, struct buffer_head *bh)
1863 {
1864         put_bh(bh);
1865         return 0;
1866 }
1867
1868 static int __ext4_journalled_writepage(struct page *page,
1869                                        unsigned int len)
1870 {
1871         struct address_space *mapping = page->mapping;
1872         struct inode *inode = mapping->host;
1873         struct buffer_head *page_bufs = NULL;
1874         handle_t *handle = NULL;
1875         int ret = 0, err = 0;
1876         int inline_data = ext4_has_inline_data(inode);
1877         struct buffer_head *inode_bh = NULL;
1878
1879         ClearPageChecked(page);
1880
1881         if (inline_data) {
1882                 BUG_ON(page->index != 0);
1883                 BUG_ON(len > ext4_get_max_inline_size(inode));
1884                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1885                 if (inode_bh == NULL)
1886                         goto out;
1887         } else {
1888                 page_bufs = page_buffers(page);
1889                 if (!page_bufs) {
1890                         BUG();
1891                         goto out;
1892                 }
1893                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1894                                        NULL, bget_one);
1895         }
1896         /*
1897          * We need to release the page lock before we start the
1898          * journal, so grab a reference so the page won't disappear
1899          * out from under us.
1900          */
1901         get_page(page);
1902         unlock_page(page);
1903
1904         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1905                                     ext4_writepage_trans_blocks(inode));
1906         if (IS_ERR(handle)) {
1907                 ret = PTR_ERR(handle);
1908                 put_page(page);
1909                 goto out_no_pagelock;
1910         }
1911         BUG_ON(!ext4_handle_valid(handle));
1912
1913         lock_page(page);
1914         put_page(page);
1915         if (page->mapping != mapping) {
1916                 /* The page got truncated from under us */
1917                 ext4_journal_stop(handle);
1918                 ret = 0;
1919                 goto out;
1920         }
1921
1922         if (inline_data) {
1923                 ret = ext4_mark_inode_dirty(handle, inode);
1924         } else {
1925                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1926                                              do_journal_get_write_access);
1927
1928                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1929                                              write_end_fn);
1930         }
1931         if (ret == 0)
1932                 ret = err;
1933         err = ext4_jbd2_inode_add_write(handle, inode, page_offset(page), len);
1934         if (ret == 0)
1935                 ret = err;
1936         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1937         err = ext4_journal_stop(handle);
1938         if (!ret)
1939                 ret = err;
1940
1941         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1942 out:
1943         unlock_page(page);
1944 out_no_pagelock:
1945         if (!inline_data && page_bufs)
1946                 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1947                                        NULL, bput_one);
1948         brelse(inode_bh);
1949         return ret;
1950 }
1951
1952 /*
1953  * Note that we don't need to start a transaction unless we're journaling data
1954  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1955  * need to file the inode to the transaction's list in ordered mode because if
1956  * we are writing back data added by write(), the inode is already there and if
1957  * we are writing back data modified via mmap(), no one guarantees in which
1958  * transaction the data will hit the disk. In case we are journaling data, we
1959  * cannot start transaction directly because transaction start ranks above page
1960  * lock so we have to do some magic.
1961  *
1962  * This function can get called via...
1963  *   - ext4_writepages after taking page lock (have journal handle)
1964  *   - journal_submit_inode_data_buffers (no journal handle)
1965  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1966  *   - grab_page_cache when doing write_begin (have journal handle)
1967  *
1968  * We don't do any block allocation in this function. If we have page with
1969  * multiple blocks we need to write those buffer_heads that are mapped. This
1970  * is important for mmaped based write. So if we do with blocksize 1K
1971  * truncate(f, 1024);
1972  * a = mmap(f, 0, 4096);
1973  * a[0] = 'a';
1974  * truncate(f, 4096);
1975  * we have in the page first buffer_head mapped via page_mkwrite call back
1976  * but other buffer_heads would be unmapped but dirty (dirty done via the
1977  * do_wp_page). So writepage should write the first block. If we modify
1978  * the mmap area beyond 1024 we will again get a page_fault and the
1979  * page_mkwrite callback will do the block allocation and mark the
1980  * buffer_heads mapped.
1981  *
1982  * We redirty the page if we have any buffer_heads that is either delay or
1983  * unwritten in the page.
1984  *
1985  * We can get recursively called as show below.
1986  *
1987  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1988  *              ext4_writepage()
1989  *
1990  * But since we don't do any block allocation we should not deadlock.
1991  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1992  */
1993 static int ext4_writepage(struct page *page,
1994                           struct writeback_control *wbc)
1995 {
1996         int ret = 0;
1997         loff_t size;
1998         unsigned int len;
1999         struct buffer_head *page_bufs = NULL;
2000         struct inode *inode = page->mapping->host;
2001         struct ext4_io_submit io_submit;
2002         bool keep_towrite = false;
2003
2004         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2005                 inode->i_mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
2006                 unlock_page(page);
2007                 return -EIO;
2008         }
2009
2010         trace_ext4_writepage(page);
2011         size = i_size_read(inode);
2012         if (page->index == size >> PAGE_SHIFT &&
2013             !ext4_verity_in_progress(inode))
2014                 len = size & ~PAGE_MASK;
2015         else
2016                 len = PAGE_SIZE;
2017
2018         page_bufs = page_buffers(page);
2019         /*
2020          * We cannot do block allocation or other extent handling in this
2021          * function. If there are buffers needing that, we have to redirty
2022          * the page. But we may reach here when we do a journal commit via
2023          * journal_submit_inode_data_buffers() and in that case we must write
2024          * allocated buffers to achieve data=ordered mode guarantees.
2025          *
2026          * Also, if there is only one buffer per page (the fs block
2027          * size == the page size), if one buffer needs block
2028          * allocation or needs to modify the extent tree to clear the
2029          * unwritten flag, we know that the page can't be written at
2030          * all, so we might as well refuse the write immediately.
2031          * Unfortunately if the block size != page size, we can't as
2032          * easily detect this case using ext4_walk_page_buffers(), but
2033          * for the extremely common case, this is an optimization that
2034          * skips a useless round trip through ext4_bio_write_page().
2035          */
2036         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2037                                    ext4_bh_delay_or_unwritten)) {
2038                 redirty_page_for_writepage(wbc, page);
2039                 if ((current->flags & PF_MEMALLOC) ||
2040                     (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2041                         /*
2042                          * For memory cleaning there's no point in writing only
2043                          * some buffers. So just bail out. Warn if we came here
2044                          * from direct reclaim.
2045                          */
2046                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2047                                                         == PF_MEMALLOC);
2048                         unlock_page(page);
2049                         return 0;
2050                 }
2051                 keep_towrite = true;
2052         }
2053
2054         if (PageChecked(page) && ext4_should_journal_data(inode))
2055                 /*
2056                  * It's mmapped pagecache.  Add buffers and journal it.  There
2057                  * doesn't seem much point in redirtying the page here.
2058                  */
2059                 return __ext4_journalled_writepage(page, len);
2060
2061         ext4_io_submit_init(&io_submit, wbc);
2062         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2063         if (!io_submit.io_end) {
2064                 redirty_page_for_writepage(wbc, page);
2065                 unlock_page(page);
2066                 return -ENOMEM;
2067         }
2068         ret = ext4_bio_write_page(&io_submit, page, len, keep_towrite);
2069         ext4_io_submit(&io_submit);
2070         /* Drop io_end reference we got from init */
2071         ext4_put_io_end_defer(io_submit.io_end);
2072         return ret;
2073 }
2074
2075 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2076 {
2077         int len;
2078         loff_t size;
2079         int err;
2080
2081         BUG_ON(page->index != mpd->first_page);
2082         clear_page_dirty_for_io(page);
2083         /*
2084          * We have to be very careful here!  Nothing protects writeback path
2085          * against i_size changes and the page can be writeably mapped into
2086          * page tables. So an application can be growing i_size and writing
2087          * data through mmap while writeback runs. clear_page_dirty_for_io()
2088          * write-protects our page in page tables and the page cannot get
2089          * written to again until we release page lock. So only after
2090          * clear_page_dirty_for_io() we are safe to sample i_size for
2091          * ext4_bio_write_page() to zero-out tail of the written page. We rely
2092          * on the barrier provided by TestClearPageDirty in
2093          * clear_page_dirty_for_io() to make sure i_size is really sampled only
2094          * after page tables are updated.
2095          */
2096         size = i_size_read(mpd->inode);
2097         if (page->index == size >> PAGE_SHIFT &&
2098             !ext4_verity_in_progress(mpd->inode))
2099                 len = size & ~PAGE_MASK;
2100         else
2101                 len = PAGE_SIZE;
2102         err = ext4_bio_write_page(&mpd->io_submit, page, len, false);
2103         if (!err)
2104                 mpd->wbc->nr_to_write--;
2105         mpd->first_page++;
2106
2107         return err;
2108 }
2109
2110 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
2111
2112 /*
2113  * mballoc gives us at most this number of blocks...
2114  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2115  * The rest of mballoc seems to handle chunks up to full group size.
2116  */
2117 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2118
2119 /*
2120  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2121  *
2122  * @mpd - extent of blocks
2123  * @lblk - logical number of the block in the file
2124  * @bh - buffer head we want to add to the extent
2125  *
2126  * The function is used to collect contig. blocks in the same state. If the
2127  * buffer doesn't require mapping for writeback and we haven't started the
2128  * extent of buffers to map yet, the function returns 'true' immediately - the
2129  * caller can write the buffer right away. Otherwise the function returns true
2130  * if the block has been added to the extent, false if the block couldn't be
2131  * added.
2132  */
2133 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2134                                    struct buffer_head *bh)
2135 {
2136         struct ext4_map_blocks *map = &mpd->map;
2137
2138         /* Buffer that doesn't need mapping for writeback? */
2139         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2140             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2141                 /* So far no extent to map => we write the buffer right away */
2142                 if (map->m_len == 0)
2143                         return true;
2144                 return false;
2145         }
2146
2147         /* First block in the extent? */
2148         if (map->m_len == 0) {
2149                 /* We cannot map unless handle is started... */
2150                 if (!mpd->do_map)
2151                         return false;
2152                 map->m_lblk = lblk;
2153                 map->m_len = 1;
2154                 map->m_flags = bh->b_state & BH_FLAGS;
2155                 return true;
2156         }
2157
2158         /* Don't go larger than mballoc is willing to allocate */
2159         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2160                 return false;
2161
2162         /* Can we merge the block to our big extent? */
2163         if (lblk == map->m_lblk + map->m_len &&
2164             (bh->b_state & BH_FLAGS) == map->m_flags) {
2165                 map->m_len++;
2166                 return true;
2167         }
2168         return false;
2169 }
2170
2171 /*
2172  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2173  *
2174  * @mpd - extent of blocks for mapping
2175  * @head - the first buffer in the page
2176  * @bh - buffer we should start processing from
2177  * @lblk - logical number of the block in the file corresponding to @bh
2178  *
2179  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2180  * the page for IO if all buffers in this page were mapped and there's no
2181  * accumulated extent of buffers to map or add buffers in the page to the
2182  * extent of buffers to map. The function returns 1 if the caller can continue
2183  * by processing the next page, 0 if it should stop adding buffers to the
2184  * extent to map because we cannot extend it anymore. It can also return value
2185  * < 0 in case of error during IO submission.
2186  */
2187 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2188                                    struct buffer_head *head,
2189                                    struct buffer_head *bh,
2190                                    ext4_lblk_t lblk)
2191 {
2192         struct inode *inode = mpd->inode;
2193         int err;
2194         ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2195                                                         >> inode->i_blkbits;
2196
2197         if (ext4_verity_in_progress(inode))
2198                 blocks = EXT_MAX_BLOCKS;
2199
2200         do {
2201                 BUG_ON(buffer_locked(bh));
2202
2203                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2204                         /* Found extent to map? */
2205                         if (mpd->map.m_len)
2206                                 return 0;
2207                         /* Buffer needs mapping and handle is not started? */
2208                         if (!mpd->do_map)
2209                                 return 0;
2210                         /* Everything mapped so far and we hit EOF */
2211                         break;
2212                 }
2213         } while (lblk++, (bh = bh->b_this_page) != head);
2214         /* So far everything mapped? Submit the page for IO. */
2215         if (mpd->map.m_len == 0) {
2216                 err = mpage_submit_page(mpd, head->b_page);
2217                 if (err < 0)
2218                         return err;
2219         }
2220         if (lblk >= blocks) {
2221                 mpd->scanned_until_end = 1;
2222                 return 0;
2223         }
2224         return 1;
2225 }
2226
2227 /*
2228  * mpage_process_page - update page buffers corresponding to changed extent and
2229  *                     may submit fully mapped page for IO
2230  *
2231  * @mpd         - description of extent to map, on return next extent to map
2232  * @m_lblk      - logical block mapping.
2233  * @m_pblk      - corresponding physical mapping.
2234  * @map_bh      - determines on return whether this page requires any further
2235  *                mapping or not.
2236  * Scan given page buffers corresponding to changed extent and update buffer
2237  * state according to new extent state.
2238  * We map delalloc buffers to their physical location, clear unwritten bits.
2239  * If the given page is not fully mapped, we update @map to the next extent in
2240  * the given page that needs mapping & return @map_bh as true.
2241  */
2242 static int mpage_process_page(struct mpage_da_data *mpd, struct page *page,
2243                               ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2244                               bool *map_bh)
2245 {
2246         struct buffer_head *head, *bh;
2247         ext4_io_end_t *io_end = mpd->io_submit.io_end;
2248         ext4_lblk_t lblk = *m_lblk;
2249         ext4_fsblk_t pblock = *m_pblk;
2250         int err = 0;
2251         int blkbits = mpd->inode->i_blkbits;
2252         ssize_t io_end_size = 0;
2253         struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2254
2255         bh = head = page_buffers(page);
2256         do {
2257                 if (lblk < mpd->map.m_lblk)
2258                         continue;
2259                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2260                         /*
2261                          * Buffer after end of mapped extent.
2262                          * Find next buffer in the page to map.
2263                          */
2264                         mpd->map.m_len = 0;
2265                         mpd->map.m_flags = 0;
2266                         io_end_vec->size += io_end_size;
2267                         io_end_size = 0;
2268
2269                         err = mpage_process_page_bufs(mpd, head, bh, lblk);
2270                         if (err > 0)
2271                                 err = 0;
2272                         if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2273                                 io_end_vec = ext4_alloc_io_end_vec(io_end);
2274                                 if (IS_ERR(io_end_vec)) {
2275                                         err = PTR_ERR(io_end_vec);
2276                                         goto out;
2277                                 }
2278                                 io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits;
2279                         }
2280                         *map_bh = true;
2281                         goto out;
2282                 }
2283                 if (buffer_delay(bh)) {
2284                         clear_buffer_delay(bh);
2285                         bh->b_blocknr = pblock++;
2286                 }
2287                 clear_buffer_unwritten(bh);
2288                 io_end_size += (1 << blkbits);
2289         } while (lblk++, (bh = bh->b_this_page) != head);
2290
2291         io_end_vec->size += io_end_size;
2292         io_end_size = 0;
2293         *map_bh = false;
2294 out:
2295         *m_lblk = lblk;
2296         *m_pblk = pblock;
2297         return err;
2298 }
2299
2300 /*
2301  * mpage_map_buffers - update buffers corresponding to changed extent and
2302  *                     submit fully mapped pages for IO
2303  *
2304  * @mpd - description of extent to map, on return next extent to map
2305  *
2306  * Scan buffers corresponding to changed extent (we expect corresponding pages
2307  * to be already locked) and update buffer state according to new extent state.
2308  * We map delalloc buffers to their physical location, clear unwritten bits,
2309  * and mark buffers as uninit when we perform writes to unwritten extents
2310  * and do extent conversion after IO is finished. If the last page is not fully
2311  * mapped, we update @map to the next extent in the last page that needs
2312  * mapping. Otherwise we submit the page for IO.
2313  */
2314 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2315 {
2316         struct pagevec pvec;
2317         int nr_pages, i;
2318         struct inode *inode = mpd->inode;
2319         int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2320         pgoff_t start, end;
2321         ext4_lblk_t lblk;
2322         ext4_fsblk_t pblock;
2323         int err;
2324         bool map_bh = false;
2325
2326         start = mpd->map.m_lblk >> bpp_bits;
2327         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2328         lblk = start << bpp_bits;
2329         pblock = mpd->map.m_pblk;
2330
2331         pagevec_init(&pvec);
2332         while (start <= end) {
2333                 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2334                                                 &start, end);
2335                 if (nr_pages == 0)
2336                         break;
2337                 for (i = 0; i < nr_pages; i++) {
2338                         struct page *page = pvec.pages[i];
2339
2340                         err = mpage_process_page(mpd, page, &lblk, &pblock,
2341                                                  &map_bh);
2342                         /*
2343                          * If map_bh is true, means page may require further bh
2344                          * mapping, or maybe the page was submitted for IO.
2345                          * So we return to call further extent mapping.
2346                          */
2347                         if (err < 0 || map_bh)
2348                                 goto out;
2349                         /* Page fully mapped - let IO run! */
2350                         err = mpage_submit_page(mpd, page);
2351                         if (err < 0)
2352                                 goto out;
2353                 }
2354                 pagevec_release(&pvec);
2355         }
2356         /* Extent fully mapped and matches with page boundary. We are done. */
2357         mpd->map.m_len = 0;
2358         mpd->map.m_flags = 0;
2359         return 0;
2360 out:
2361         pagevec_release(&pvec);
2362         return err;
2363 }
2364
2365 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2366 {
2367         struct inode *inode = mpd->inode;
2368         struct ext4_map_blocks *map = &mpd->map;
2369         int get_blocks_flags;
2370         int err, dioread_nolock;
2371
2372         trace_ext4_da_write_pages_extent(inode, map);
2373         /*
2374          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2375          * to convert an unwritten extent to be initialized (in the case
2376          * where we have written into one or more preallocated blocks).  It is
2377          * possible that we're going to need more metadata blocks than
2378          * previously reserved. However we must not fail because we're in
2379          * writeback and there is nothing we can do about it so it might result
2380          * in data loss.  So use reserved blocks to allocate metadata if
2381          * possible.
2382          *
2383          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2384          * the blocks in question are delalloc blocks.  This indicates
2385          * that the blocks and quotas has already been checked when
2386          * the data was copied into the page cache.
2387          */
2388         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2389                            EXT4_GET_BLOCKS_METADATA_NOFAIL |
2390                            EXT4_GET_BLOCKS_IO_SUBMIT;
2391         dioread_nolock = ext4_should_dioread_nolock(inode);
2392         if (dioread_nolock)
2393                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2394         if (map->m_flags & BIT(BH_Delay))
2395                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2396
2397         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2398         if (err < 0)
2399                 return err;
2400         if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2401                 if (!mpd->io_submit.io_end->handle &&
2402                     ext4_handle_valid(handle)) {
2403                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2404                         handle->h_rsv_handle = NULL;
2405                 }
2406                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2407         }
2408
2409         BUG_ON(map->m_len == 0);
2410         return 0;
2411 }
2412
2413 /*
2414  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2415  *                               mpd->len and submit pages underlying it for IO
2416  *
2417  * @handle - handle for journal operations
2418  * @mpd - extent to map
2419  * @give_up_on_write - we set this to true iff there is a fatal error and there
2420  *                     is no hope of writing the data. The caller should discard
2421  *                     dirty pages to avoid infinite loops.
2422  *
2423  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2424  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2425  * them to initialized or split the described range from larger unwritten
2426  * extent. Note that we need not map all the described range since allocation
2427  * can return less blocks or the range is covered by more unwritten extents. We
2428  * cannot map more because we are limited by reserved transaction credits. On
2429  * the other hand we always make sure that the last touched page is fully
2430  * mapped so that it can be written out (and thus forward progress is
2431  * guaranteed). After mapping we submit all mapped pages for IO.
2432  */
2433 static int mpage_map_and_submit_extent(handle_t *handle,
2434                                        struct mpage_da_data *mpd,
2435                                        bool *give_up_on_write)
2436 {
2437         struct inode *inode = mpd->inode;
2438         struct ext4_map_blocks *map = &mpd->map;
2439         int err;
2440         loff_t disksize;
2441         int progress = 0;
2442         ext4_io_end_t *io_end = mpd->io_submit.io_end;
2443         struct ext4_io_end_vec *io_end_vec;
2444
2445         io_end_vec = ext4_alloc_io_end_vec(io_end);
2446         if (IS_ERR(io_end_vec))
2447                 return PTR_ERR(io_end_vec);
2448         io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2449         do {
2450                 err = mpage_map_one_extent(handle, mpd);
2451                 if (err < 0) {
2452                         struct super_block *sb = inode->i_sb;
2453
2454                         if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2455                             ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
2456                                 goto invalidate_dirty_pages;
2457                         /*
2458                          * Let the uper layers retry transient errors.
2459                          * In the case of ENOSPC, if ext4_count_free_blocks()
2460                          * is non-zero, a commit should free up blocks.
2461                          */
2462                         if ((err == -ENOMEM) ||
2463                             (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2464                                 if (progress)
2465                                         goto update_disksize;
2466                                 return err;
2467                         }
2468                         ext4_msg(sb, KERN_CRIT,
2469                                  "Delayed block allocation failed for "
2470                                  "inode %lu at logical offset %llu with"
2471                                  " max blocks %u with error %d",
2472                                  inode->i_ino,
2473                                  (unsigned long long)map->m_lblk,
2474                                  (unsigned)map->m_len, -err);
2475                         ext4_msg(sb, KERN_CRIT,
2476                                  "This should not happen!! Data will "
2477                                  "be lost\n");
2478                         if (err == -ENOSPC)
2479                                 ext4_print_free_blocks(inode);
2480                 invalidate_dirty_pages:
2481                         *give_up_on_write = true;
2482                         return err;
2483                 }
2484                 progress = 1;
2485                 /*
2486                  * Update buffer state, submit mapped pages, and get us new
2487                  * extent to map
2488                  */
2489                 err = mpage_map_and_submit_buffers(mpd);
2490                 if (err < 0)
2491                         goto update_disksize;
2492         } while (map->m_len);
2493
2494 update_disksize:
2495         /*
2496          * Update on-disk size after IO is submitted.  Races with
2497          * truncate are avoided by checking i_size under i_data_sem.
2498          */
2499         disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2500         if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2501                 int err2;
2502                 loff_t i_size;
2503
2504                 down_write(&EXT4_I(inode)->i_data_sem);
2505                 i_size = i_size_read(inode);
2506                 if (disksize > i_size)
2507                         disksize = i_size;
2508                 if (disksize > EXT4_I(inode)->i_disksize)
2509                         EXT4_I(inode)->i_disksize = disksize;
2510                 up_write(&EXT4_I(inode)->i_data_sem);
2511                 err2 = ext4_mark_inode_dirty(handle, inode);
2512                 if (err2) {
2513                         ext4_error_err(inode->i_sb, -err2,
2514                                        "Failed to mark inode %lu dirty",
2515                                        inode->i_ino);
2516                 }
2517                 if (!err)
2518                         err = err2;
2519         }
2520         return err;
2521 }
2522
2523 /*
2524  * Calculate the total number of credits to reserve for one writepages
2525  * iteration. This is called from ext4_writepages(). We map an extent of
2526  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2527  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2528  * bpp - 1 blocks in bpp different extents.
2529  */
2530 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2531 {
2532         int bpp = ext4_journal_blocks_per_page(inode);
2533
2534         return ext4_meta_trans_blocks(inode,
2535                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2536 }
2537
2538 /*
2539  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2540  *                               and underlying extent to map
2541  *
2542  * @mpd - where to look for pages
2543  *
2544  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2545  * IO immediately. When we find a page which isn't mapped we start accumulating
2546  * extent of buffers underlying these pages that needs mapping (formed by
2547  * either delayed or unwritten buffers). We also lock the pages containing
2548  * these buffers. The extent found is returned in @mpd structure (starting at
2549  * mpd->lblk with length mpd->len blocks).
2550  *
2551  * Note that this function can attach bios to one io_end structure which are
2552  * neither logically nor physically contiguous. Although it may seem as an
2553  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2554  * case as we need to track IO to all buffers underlying a page in one io_end.
2555  */
2556 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2557 {
2558         struct address_space *mapping = mpd->inode->i_mapping;
2559         struct pagevec pvec;
2560         unsigned int nr_pages;
2561         long left = mpd->wbc->nr_to_write;
2562         pgoff_t index = mpd->first_page;
2563         pgoff_t end = mpd->last_page;
2564         xa_mark_t tag;
2565         int i, err = 0;
2566         int blkbits = mpd->inode->i_blkbits;
2567         ext4_lblk_t lblk;
2568         struct buffer_head *head;
2569
2570         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2571                 tag = PAGECACHE_TAG_TOWRITE;
2572         else
2573                 tag = PAGECACHE_TAG_DIRTY;
2574
2575         pagevec_init(&pvec);
2576         mpd->map.m_len = 0;
2577         mpd->next_page = index;
2578         while (index <= end) {
2579                 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2580                                 tag);
2581                 if (nr_pages == 0)
2582                         break;
2583
2584                 for (i = 0; i < nr_pages; i++) {
2585                         struct page *page = pvec.pages[i];
2586
2587                         /*
2588                          * Accumulated enough dirty pages? This doesn't apply
2589                          * to WB_SYNC_ALL mode. For integrity sync we have to
2590                          * keep going because someone may be concurrently
2591                          * dirtying pages, and we might have synced a lot of
2592                          * newly appeared dirty pages, but have not synced all
2593                          * of the old dirty pages.
2594                          */
2595                         if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2596                                 goto out;
2597
2598                         /* If we can't merge this page, we are done. */
2599                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2600                                 goto out;
2601
2602                         lock_page(page);
2603                         /*
2604                          * If the page is no longer dirty, or its mapping no
2605                          * longer corresponds to inode we are writing (which
2606                          * means it has been truncated or invalidated), or the
2607                          * page is already under writeback and we are not doing
2608                          * a data integrity writeback, skip the page
2609                          */
2610                         if (!PageDirty(page) ||
2611                             (PageWriteback(page) &&
2612                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2613                             unlikely(page->mapping != mapping)) {
2614                                 unlock_page(page);
2615                                 continue;
2616                         }
2617
2618                         wait_on_page_writeback(page);
2619                         BUG_ON(PageWriteback(page));
2620
2621                         if (mpd->map.m_len == 0)
2622                                 mpd->first_page = page->index;
2623                         mpd->next_page = page->index + 1;
2624                         /* Add all dirty buffers to mpd */
2625                         lblk = ((ext4_lblk_t)page->index) <<
2626                                 (PAGE_SHIFT - blkbits);
2627                         head = page_buffers(page);
2628                         err = mpage_process_page_bufs(mpd, head, head, lblk);
2629                         if (err <= 0)
2630                                 goto out;
2631                         err = 0;
2632                         left--;
2633                 }
2634                 pagevec_release(&pvec);
2635                 cond_resched();
2636         }
2637         mpd->scanned_until_end = 1;
2638         return 0;
2639 out:
2640         pagevec_release(&pvec);
2641         return err;
2642 }
2643
2644 static int ext4_writepages(struct address_space *mapping,
2645                            struct writeback_control *wbc)
2646 {
2647         pgoff_t writeback_index = 0;
2648         long nr_to_write = wbc->nr_to_write;
2649         int range_whole = 0;
2650         int cycled = 1;
2651         handle_t *handle = NULL;
2652         struct mpage_da_data mpd;
2653         struct inode *inode = mapping->host;
2654         int needed_blocks, rsv_blocks = 0, ret = 0;
2655         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2656         struct blk_plug plug;
2657         bool give_up_on_write = false;
2658
2659         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2660                 return -EIO;
2661
2662         percpu_down_read(&sbi->s_writepages_rwsem);
2663         trace_ext4_writepages(inode, wbc);
2664
2665         /*
2666          * No pages to write? This is mainly a kludge to avoid starting
2667          * a transaction for special inodes like journal inode on last iput()
2668          * because that could violate lock ordering on umount
2669          */
2670         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2671                 goto out_writepages;
2672
2673         if (ext4_should_journal_data(inode)) {
2674                 ret = generic_writepages(mapping, wbc);
2675                 goto out_writepages;
2676         }
2677
2678         /*
2679          * If the filesystem has aborted, it is read-only, so return
2680          * right away instead of dumping stack traces later on that
2681          * will obscure the real source of the problem.  We test
2682          * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2683          * the latter could be true if the filesystem is mounted
2684          * read-only, and in that case, ext4_writepages should
2685          * *never* be called, so if that ever happens, we would want
2686          * the stack trace.
2687          */
2688         if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2689                      ext4_test_mount_flag(inode->i_sb, EXT4_MF_FS_ABORTED))) {
2690                 ret = -EROFS;
2691                 goto out_writepages;
2692         }
2693
2694         /*
2695          * If we have inline data and arrive here, it means that
2696          * we will soon create the block for the 1st page, so
2697          * we'd better clear the inline data here.
2698          */
2699         if (ext4_has_inline_data(inode)) {
2700                 /* Just inode will be modified... */
2701                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2702                 if (IS_ERR(handle)) {
2703                         ret = PTR_ERR(handle);
2704                         goto out_writepages;
2705                 }
2706                 BUG_ON(ext4_test_inode_state(inode,
2707                                 EXT4_STATE_MAY_INLINE_DATA));
2708                 ext4_destroy_inline_data(handle, inode);
2709                 ext4_journal_stop(handle);
2710         }
2711
2712         if (ext4_should_dioread_nolock(inode)) {
2713                 /*
2714                  * We may need to convert up to one extent per block in
2715                  * the page and we may dirty the inode.
2716                  */
2717                 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2718                                                 PAGE_SIZE >> inode->i_blkbits);
2719         }
2720
2721         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2722                 range_whole = 1;
2723
2724         if (wbc->range_cyclic) {
2725                 writeback_index = mapping->writeback_index;
2726                 if (writeback_index)
2727                         cycled = 0;
2728                 mpd.first_page = writeback_index;
2729                 mpd.last_page = -1;
2730         } else {
2731                 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2732                 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2733         }
2734
2735         mpd.inode = inode;
2736         mpd.wbc = wbc;
2737         ext4_io_submit_init(&mpd.io_submit, wbc);
2738 retry:
2739         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2740                 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2741         blk_start_plug(&plug);
2742
2743         /*
2744          * First writeback pages that don't need mapping - we can avoid
2745          * starting a transaction unnecessarily and also avoid being blocked
2746          * in the block layer on device congestion while having transaction
2747          * started.
2748          */
2749         mpd.do_map = 0;
2750         mpd.scanned_until_end = 0;
2751         mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2752         if (!mpd.io_submit.io_end) {
2753                 ret = -ENOMEM;
2754                 goto unplug;
2755         }
2756         ret = mpage_prepare_extent_to_map(&mpd);
2757         /* Unlock pages we didn't use */
2758         mpage_release_unused_pages(&mpd, false);
2759         /* Submit prepared bio */
2760         ext4_io_submit(&mpd.io_submit);
2761         ext4_put_io_end_defer(mpd.io_submit.io_end);
2762         mpd.io_submit.io_end = NULL;
2763         if (ret < 0)
2764                 goto unplug;
2765
2766         while (!mpd.scanned_until_end && wbc->nr_to_write > 0) {
2767                 /* For each extent of pages we use new io_end */
2768                 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2769                 if (!mpd.io_submit.io_end) {
2770                         ret = -ENOMEM;
2771                         break;
2772                 }
2773
2774                 /*
2775                  * We have two constraints: We find one extent to map and we
2776                  * must always write out whole page (makes a difference when
2777                  * blocksize < pagesize) so that we don't block on IO when we
2778                  * try to write out the rest of the page. Journalled mode is
2779                  * not supported by delalloc.
2780                  */
2781                 BUG_ON(ext4_should_journal_data(inode));
2782                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2783
2784                 /* start a new transaction */
2785                 handle = ext4_journal_start_with_reserve(inode,
2786                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2787                 if (IS_ERR(handle)) {
2788                         ret = PTR_ERR(handle);
2789                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2790                                "%ld pages, ino %lu; err %d", __func__,
2791                                 wbc->nr_to_write, inode->i_ino, ret);
2792                         /* Release allocated io_end */
2793                         ext4_put_io_end(mpd.io_submit.io_end);
2794                         mpd.io_submit.io_end = NULL;
2795                         break;
2796                 }
2797                 mpd.do_map = 1;
2798
2799                 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2800                 ret = mpage_prepare_extent_to_map(&mpd);
2801                 if (!ret && mpd.map.m_len)
2802                         ret = mpage_map_and_submit_extent(handle, &mpd,
2803                                         &give_up_on_write);
2804                 /*
2805                  * Caution: If the handle is synchronous,
2806                  * ext4_journal_stop() can wait for transaction commit
2807                  * to finish which may depend on writeback of pages to
2808                  * complete or on page lock to be released.  In that
2809                  * case, we have to wait until after we have
2810                  * submitted all the IO, released page locks we hold,
2811                  * and dropped io_end reference (for extent conversion
2812                  * to be able to complete) before stopping the handle.
2813                  */
2814                 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2815                         ext4_journal_stop(handle);
2816                         handle = NULL;
2817                         mpd.do_map = 0;
2818                 }
2819                 /* Unlock pages we didn't use */
2820                 mpage_release_unused_pages(&mpd, give_up_on_write);
2821                 /* Submit prepared bio */
2822                 ext4_io_submit(&mpd.io_submit);
2823
2824                 /*
2825                  * Drop our io_end reference we got from init. We have
2826                  * to be careful and use deferred io_end finishing if
2827                  * we are still holding the transaction as we can
2828                  * release the last reference to io_end which may end
2829                  * up doing unwritten extent conversion.
2830                  */
2831                 if (handle) {
2832                         ext4_put_io_end_defer(mpd.io_submit.io_end);
2833                         ext4_journal_stop(handle);
2834                 } else
2835                         ext4_put_io_end(mpd.io_submit.io_end);
2836                 mpd.io_submit.io_end = NULL;
2837
2838                 if (ret == -ENOSPC && sbi->s_journal) {
2839                         /*
2840                          * Commit the transaction which would
2841                          * free blocks released in the transaction
2842                          * and try again
2843                          */
2844                         jbd2_journal_force_commit_nested(sbi->s_journal);
2845                         ret = 0;
2846                         continue;
2847                 }
2848                 /* Fatal error - ENOMEM, EIO... */
2849                 if (ret)
2850                         break;
2851         }
2852 unplug:
2853         blk_finish_plug(&plug);
2854         if (!ret && !cycled && wbc->nr_to_write > 0) {
2855                 cycled = 1;
2856                 mpd.last_page = writeback_index - 1;
2857                 mpd.first_page = 0;
2858                 goto retry;
2859         }
2860
2861         /* Update index */
2862         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2863                 /*
2864                  * Set the writeback_index so that range_cyclic
2865                  * mode will write it back later
2866                  */
2867                 mapping->writeback_index = mpd.first_page;
2868
2869 out_writepages:
2870         trace_ext4_writepages_result(inode, wbc, ret,
2871                                      nr_to_write - wbc->nr_to_write);
2872         percpu_up_read(&sbi->s_writepages_rwsem);
2873         return ret;
2874 }
2875
2876 static int ext4_dax_writepages(struct address_space *mapping,
2877                                struct writeback_control *wbc)
2878 {
2879         int ret;
2880         long nr_to_write = wbc->nr_to_write;
2881         struct inode *inode = mapping->host;
2882         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2883
2884         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2885                 return -EIO;
2886
2887         percpu_down_read(&sbi->s_writepages_rwsem);
2888         trace_ext4_writepages(inode, wbc);
2889
2890         ret = dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc);
2891         trace_ext4_writepages_result(inode, wbc, ret,
2892                                      nr_to_write - wbc->nr_to_write);
2893         percpu_up_read(&sbi->s_writepages_rwsem);
2894         return ret;
2895 }
2896
2897 static int ext4_nonda_switch(struct super_block *sb)
2898 {
2899         s64 free_clusters, dirty_clusters;
2900         struct ext4_sb_info *sbi = EXT4_SB(sb);
2901
2902         /*
2903          * switch to non delalloc mode if we are running low
2904          * on free block. The free block accounting via percpu
2905          * counters can get slightly wrong with percpu_counter_batch getting
2906          * accumulated on each CPU without updating global counters
2907          * Delalloc need an accurate free block accounting. So switch
2908          * to non delalloc when we are near to error range.
2909          */
2910         free_clusters =
2911                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2912         dirty_clusters =
2913                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2914         /*
2915          * Start pushing delalloc when 1/2 of free blocks are dirty.
2916          */
2917         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2918                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2919
2920         if (2 * free_clusters < 3 * dirty_clusters ||
2921             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2922                 /*
2923                  * free block count is less than 150% of dirty blocks
2924                  * or free blocks is less than watermark
2925                  */
2926                 return 1;
2927         }
2928         return 0;
2929 }
2930
2931 /* We always reserve for an inode update; the superblock could be there too */
2932 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2933 {
2934         if (likely(ext4_has_feature_large_file(inode->i_sb)))
2935                 return 1;
2936
2937         if (pos + len <= 0x7fffffffULL)
2938                 return 1;
2939
2940         /* We might need to update the superblock to set LARGE_FILE */
2941         return 2;
2942 }
2943
2944 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2945                                loff_t pos, unsigned len, unsigned flags,
2946                                struct page **pagep, void **fsdata)
2947 {
2948         int ret, retries = 0;
2949         struct page *page;
2950         pgoff_t index;
2951         struct inode *inode = mapping->host;
2952         handle_t *handle;
2953
2954         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2955                 return -EIO;
2956
2957         index = pos >> PAGE_SHIFT;
2958
2959         if (ext4_nonda_switch(inode->i_sb) || S_ISLNK(inode->i_mode) ||
2960             ext4_verity_in_progress(inode)) {
2961                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2962                 return ext4_write_begin(file, mapping, pos,
2963                                         len, flags, pagep, fsdata);
2964         }
2965         *fsdata = (void *)0;
2966         trace_ext4_da_write_begin(inode, pos, len, flags);
2967
2968         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2969                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2970                                                       pos, len, flags,
2971                                                       pagep, fsdata);
2972                 if (ret < 0)
2973                         return ret;
2974                 if (ret == 1)
2975                         return 0;
2976         }
2977
2978         /*
2979          * grab_cache_page_write_begin() can take a long time if the
2980          * system is thrashing due to memory pressure, or if the page
2981          * is being written back.  So grab it first before we start
2982          * the transaction handle.  This also allows us to allocate
2983          * the page (if needed) without using GFP_NOFS.
2984          */
2985 retry_grab:
2986         page = grab_cache_page_write_begin(mapping, index, flags);
2987         if (!page)
2988                 return -ENOMEM;
2989         unlock_page(page);
2990
2991         /*
2992          * With delayed allocation, we don't log the i_disksize update
2993          * if there is delayed block allocation. But we still need
2994          * to journalling the i_disksize update if writes to the end
2995          * of file which has an already mapped buffer.
2996          */
2997 retry_journal:
2998         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2999                                 ext4_da_write_credits(inode, pos, len));
3000         if (IS_ERR(handle)) {
3001                 put_page(page);
3002                 return PTR_ERR(handle);
3003         }
3004
3005         lock_page(page);
3006         if (page->mapping != mapping) {
3007                 /* The page got truncated from under us */
3008                 unlock_page(page);
3009                 put_page(page);
3010                 ext4_journal_stop(handle);
3011                 goto retry_grab;
3012         }
3013         /* In case writeback began while the page was unlocked */
3014         wait_for_stable_page(page);
3015
3016 #ifdef CONFIG_FS_ENCRYPTION
3017         ret = ext4_block_write_begin(page, pos, len,
3018                                      ext4_da_get_block_prep);
3019 #else
3020         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3021 #endif
3022         if (ret < 0) {
3023                 unlock_page(page);
3024                 ext4_journal_stop(handle);
3025                 /*
3026                  * block_write_begin may have instantiated a few blocks
3027                  * outside i_size.  Trim these off again. Don't need
3028                  * i_size_read because we hold i_mutex.
3029                  */
3030                 if (pos + len > inode->i_size)
3031                         ext4_truncate_failed_write(inode);
3032
3033                 if (ret == -ENOSPC &&
3034                     ext4_should_retry_alloc(inode->i_sb, &retries))
3035                         goto retry_journal;
3036
3037                 put_page(page);
3038                 return ret;
3039         }
3040
3041         *pagep = page;
3042         return ret;
3043 }
3044
3045 /*
3046  * Check if we should update i_disksize
3047  * when write to the end of file but not require block allocation
3048  */
3049 static int ext4_da_should_update_i_disksize(struct page *page,
3050                                             unsigned long offset)
3051 {
3052         struct buffer_head *bh;
3053         struct inode *inode = page->mapping->host;
3054         unsigned int idx;
3055         int i;
3056
3057         bh = page_buffers(page);
3058         idx = offset >> inode->i_blkbits;
3059
3060         for (i = 0; i < idx; i++)
3061                 bh = bh->b_this_page;
3062
3063         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3064                 return 0;
3065         return 1;
3066 }
3067
3068 static int ext4_da_write_end(struct file *file,
3069                              struct address_space *mapping,
3070                              loff_t pos, unsigned len, unsigned copied,
3071                              struct page *page, void *fsdata)
3072 {
3073         struct inode *inode = mapping->host;
3074         int ret = 0, ret2;
3075         handle_t *handle = ext4_journal_current_handle();
3076         loff_t new_i_size;
3077         unsigned long start, end;
3078         int write_mode = (int)(unsigned long)fsdata;
3079
3080         if (write_mode == FALL_BACK_TO_NONDELALLOC)
3081                 return ext4_write_end(file, mapping, pos,
3082                                       len, copied, page, fsdata);
3083
3084         trace_ext4_da_write_end(inode, pos, len, copied);
3085         start = pos & (PAGE_SIZE - 1);
3086         end = start + copied - 1;
3087
3088         /*
3089          * generic_write_end() will run mark_inode_dirty() if i_size
3090          * changes.  So let's piggyback the i_disksize mark_inode_dirty
3091          * into that.
3092          */
3093         new_i_size = pos + copied;
3094         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3095                 if (ext4_has_inline_data(inode) ||
3096                     ext4_da_should_update_i_disksize(page, end)) {
3097                         ext4_update_i_disksize(inode, new_i_size);
3098                         /* We need to mark inode dirty even if
3099                          * new_i_size is less that inode->i_size
3100                          * bu greater than i_disksize.(hint delalloc)
3101                          */
3102                         ret = ext4_mark_inode_dirty(handle, inode);
3103                 }
3104         }
3105
3106         if (write_mode != CONVERT_INLINE_DATA &&
3107             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3108             ext4_has_inline_data(inode))
3109                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3110                                                      page);
3111         else
3112                 ret2 = generic_write_end(file, mapping, pos, len, copied,
3113                                                         page, fsdata);
3114
3115         copied = ret2;
3116         if (ret2 < 0)
3117                 ret = ret2;
3118         ret2 = ext4_journal_stop(handle);
3119         if (unlikely(ret2 && !ret))
3120                 ret = ret2;
3121
3122         return ret ? ret : copied;
3123 }
3124
3125 /*
3126  * Force all delayed allocation blocks to be allocated for a given inode.
3127  */
3128 int ext4_alloc_da_blocks(struct inode *inode)
3129 {
3130         trace_ext4_alloc_da_blocks(inode);
3131
3132         if (!EXT4_I(inode)->i_reserved_data_blocks)
3133                 return 0;
3134
3135         /*
3136          * We do something simple for now.  The filemap_flush() will
3137          * also start triggering a write of the data blocks, which is
3138          * not strictly speaking necessary (and for users of
3139          * laptop_mode, not even desirable).  However, to do otherwise
3140          * would require replicating code paths in:
3141          *
3142          * ext4_writepages() ->
3143          *    write_cache_pages() ---> (via passed in callback function)
3144          *        __mpage_da_writepage() -->
3145          *           mpage_add_bh_to_extent()
3146          *           mpage_da_map_blocks()
3147          *
3148          * The problem is that write_cache_pages(), located in
3149          * mm/page-writeback.c, marks pages clean in preparation for
3150          * doing I/O, which is not desirable if we're not planning on
3151          * doing I/O at all.
3152          *
3153          * We could call write_cache_pages(), and then redirty all of
3154          * the pages by calling redirty_page_for_writepage() but that
3155          * would be ugly in the extreme.  So instead we would need to
3156          * replicate parts of the code in the above functions,
3157          * simplifying them because we wouldn't actually intend to
3158          * write out the pages, but rather only collect contiguous
3159          * logical block extents, call the multi-block allocator, and
3160          * then update the buffer heads with the block allocations.
3161          *
3162          * For now, though, we'll cheat by calling filemap_flush(),
3163          * which will map the blocks, and start the I/O, but not
3164          * actually wait for the I/O to complete.
3165          */
3166         return filemap_flush(inode->i_mapping);
3167 }
3168
3169 /*
3170  * bmap() is special.  It gets used by applications such as lilo and by
3171  * the swapper to find the on-disk block of a specific piece of data.
3172  *
3173  * Naturally, this is dangerous if the block concerned is still in the
3174  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3175  * filesystem and enables swap, then they may get a nasty shock when the
3176  * data getting swapped to that swapfile suddenly gets overwritten by
3177  * the original zero's written out previously to the journal and
3178  * awaiting writeback in the kernel's buffer cache.
3179  *
3180  * So, if we see any bmap calls here on a modified, data-journaled file,
3181  * take extra steps to flush any blocks which might be in the cache.
3182  */
3183 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3184 {
3185         struct inode *inode = mapping->host;
3186         journal_t *journal;
3187         int err;
3188
3189         /*
3190          * We can get here for an inline file via the FIBMAP ioctl
3191          */
3192         if (ext4_has_inline_data(inode))
3193                 return 0;
3194
3195         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3196                         test_opt(inode->i_sb, DELALLOC)) {
3197                 /*
3198                  * With delalloc we want to sync the file
3199                  * so that we can make sure we allocate
3200                  * blocks for file
3201                  */
3202                 filemap_write_and_wait(mapping);
3203         }
3204
3205         if (EXT4_JOURNAL(inode) &&
3206             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3207                 /*
3208                  * This is a REALLY heavyweight approach, but the use of
3209                  * bmap on dirty files is expected to be extremely rare:
3210                  * only if we run lilo or swapon on a freshly made file
3211                  * do we expect this to happen.
3212                  *
3213                  * (bmap requires CAP_SYS_RAWIO so this does not
3214                  * represent an unprivileged user DOS attack --- we'd be
3215                  * in trouble if mortal users could trigger this path at
3216                  * will.)
3217                  *
3218                  * NB. EXT4_STATE_JDATA is not set on files other than
3219                  * regular files.  If somebody wants to bmap a directory
3220                  * or symlink and gets confused because the buffer
3221                  * hasn't yet been flushed to disk, they deserve
3222                  * everything they get.
3223                  */
3224
3225                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3226                 journal = EXT4_JOURNAL(inode);
3227                 jbd2_journal_lock_updates(journal);
3228                 err = jbd2_journal_flush(journal);
3229                 jbd2_journal_unlock_updates(journal);
3230
3231                 if (err)
3232                         return 0;
3233         }
3234
3235         return iomap_bmap(mapping, block, &ext4_iomap_ops);
3236 }
3237
3238 static int ext4_readpage(struct file *file, struct page *page)
3239 {
3240         int ret = -EAGAIN;
3241         struct inode *inode = page->mapping->host;
3242
3243         trace_ext4_readpage(page);
3244
3245         if (ext4_has_inline_data(inode))
3246                 ret = ext4_readpage_inline(inode, page);
3247
3248         if (ret == -EAGAIN)
3249                 return ext4_mpage_readpages(inode, NULL, page);
3250
3251         return ret;
3252 }
3253
3254 static void ext4_readahead(struct readahead_control *rac)
3255 {
3256         struct inode *inode = rac->mapping->host;
3257
3258         /* If the file has inline data, no need to do readahead. */
3259         if (ext4_has_inline_data(inode))
3260                 return;
3261
3262         ext4_mpage_readpages(inode, rac, NULL);
3263 }
3264
3265 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3266                                 unsigned int length)
3267 {
3268         trace_ext4_invalidatepage(page, offset, length);
3269
3270         /* No journalling happens on data buffers when this function is used */
3271         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3272
3273         block_invalidatepage(page, offset, length);
3274 }
3275
3276 static int __ext4_journalled_invalidatepage(struct page *page,
3277                                             unsigned int offset,
3278                                             unsigned int length)
3279 {
3280         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3281
3282         trace_ext4_journalled_invalidatepage(page, offset, length);
3283
3284         /*
3285          * If it's a full truncate we just forget about the pending dirtying
3286          */
3287         if (offset == 0 && length == PAGE_SIZE)
3288                 ClearPageChecked(page);
3289
3290         return jbd2_journal_invalidatepage(journal, page, offset, length);
3291 }
3292
3293 /* Wrapper for aops... */
3294 static void ext4_journalled_invalidatepage(struct page *page,
3295                                            unsigned int offset,
3296                                            unsigned int length)
3297 {
3298         WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3299 }
3300
3301 static int ext4_releasepage(struct page *page, gfp_t wait)
3302 {
3303         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3304
3305         trace_ext4_releasepage(page);
3306
3307         /* Page has dirty journalled data -> cannot release */
3308         if (PageChecked(page))
3309                 return 0;
3310         if (journal)
3311                 return jbd2_journal_try_to_free_buffers(journal, page);
3312         else
3313                 return try_to_free_buffers(page);
3314 }
3315
3316 static bool ext4_inode_datasync_dirty(struct inode *inode)
3317 {
3318         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3319
3320         if (journal) {
3321                 if (jbd2_transaction_committed(journal,
3322                         EXT4_I(inode)->i_datasync_tid))
3323                         return false;
3324                 if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
3325                         return !list_empty(&EXT4_I(inode)->i_fc_list);
3326                 return true;
3327         }
3328
3329         /* Any metadata buffers to write? */
3330         if (!list_empty(&inode->i_mapping->private_list))
3331                 return true;
3332         return inode->i_state & I_DIRTY_DATASYNC;
3333 }
3334
3335 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3336                            struct ext4_map_blocks *map, loff_t offset,
3337                            loff_t length)
3338 {
3339         u8 blkbits = inode->i_blkbits;
3340
3341         /*
3342          * Writes that span EOF might trigger an I/O size update on completion,
3343          * so consider them to be dirty for the purpose of O_DSYNC, even if
3344          * there is no other metadata changes being made or are pending.
3345          */
3346         iomap->flags = 0;
3347         if (ext4_inode_datasync_dirty(inode) ||
3348             offset + length > i_size_read(inode))
3349                 iomap->flags |= IOMAP_F_DIRTY;
3350
3351         if (map->m_flags & EXT4_MAP_NEW)
3352                 iomap->flags |= IOMAP_F_NEW;
3353
3354         iomap->bdev = inode->i_sb->s_bdev;
3355         iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3356         iomap->offset = (u64) map->m_lblk << blkbits;
3357         iomap->length = (u64) map->m_len << blkbits;
3358
3359         if ((map->m_flags & EXT4_MAP_MAPPED) &&
3360             !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3361                 iomap->flags |= IOMAP_F_MERGED;
3362
3363         /*
3364          * Flags passed to ext4_map_blocks() for direct I/O writes can result
3365          * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3366          * set. In order for any allocated unwritten extents to be converted
3367          * into written extents correctly within the ->end_io() handler, we
3368          * need to ensure that the iomap->type is set appropriately. Hence, the
3369          * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3370          * been set first.
3371          */
3372         if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3373                 iomap->type = IOMAP_UNWRITTEN;
3374                 iomap->addr = (u64) map->m_pblk << blkbits;
3375         } else if (map->m_flags & EXT4_MAP_MAPPED) {
3376                 iomap->type = IOMAP_MAPPED;
3377                 iomap->addr = (u64) map->m_pblk << blkbits;
3378         } else {
3379                 iomap->type = IOMAP_HOLE;
3380                 iomap->addr = IOMAP_NULL_ADDR;
3381         }
3382 }
3383
3384 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3385                             unsigned int flags)
3386 {
3387         handle_t *handle;
3388         u8 blkbits = inode->i_blkbits;
3389         int ret, dio_credits, m_flags = 0, retries = 0;
3390
3391         /*
3392          * Trim the mapping request to the maximum value that we can map at
3393          * once for direct I/O.
3394          */
3395         if (map->m_len > DIO_MAX_BLOCKS)
3396                 map->m_len = DIO_MAX_BLOCKS;
3397         dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3398
3399 retry:
3400         /*
3401          * Either we allocate blocks and then don't get an unwritten extent, so
3402          * in that case we have reserved enough credits. Or, the blocks are
3403          * already allocated and unwritten. In that case, the extent conversion
3404          * fits into the credits as well.
3405          */
3406         handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3407         if (IS_ERR(handle))
3408                 return PTR_ERR(handle);
3409
3410         /*
3411          * DAX and direct I/O are the only two operations that are currently
3412          * supported with IOMAP_WRITE.
3413          */
3414         WARN_ON(!IS_DAX(inode) && !(flags & IOMAP_DIRECT));
3415         if (IS_DAX(inode))
3416                 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3417         /*
3418          * We use i_size instead of i_disksize here because delalloc writeback
3419          * can complete at any point during the I/O and subsequently push the
3420          * i_disksize out to i_size. This could be beyond where direct I/O is
3421          * happening and thus expose allocated blocks to direct I/O reads.
3422          */
3423         else if ((map->m_lblk * (1 << blkbits)) >= i_size_read(inode))
3424                 m_flags = EXT4_GET_BLOCKS_CREATE;
3425         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3426                 m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3427
3428         ret = ext4_map_blocks(handle, inode, map, m_flags);
3429
3430         /*
3431          * We cannot fill holes in indirect tree based inodes as that could
3432          * expose stale data in the case of a crash. Use the magic error code
3433          * to fallback to buffered I/O.
3434          */
3435         if (!m_flags && !ret)
3436                 ret = -ENOTBLK;
3437
3438         ext4_journal_stop(handle);
3439         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3440                 goto retry;
3441
3442         return ret;
3443 }
3444
3445
3446 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3447                 unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3448 {
3449         int ret;
3450         struct ext4_map_blocks map;
3451         u8 blkbits = inode->i_blkbits;
3452
3453         if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3454                 return -EINVAL;
3455
3456         if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3457                 return -ERANGE;
3458
3459         /*
3460          * Calculate the first and last logical blocks respectively.
3461          */
3462         map.m_lblk = offset >> blkbits;
3463         map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3464                           EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3465
3466         if (flags & IOMAP_WRITE) {
3467                 /*
3468                  * We check here if the blocks are already allocated, then we
3469                  * don't need to start a journal txn and we can directly return
3470                  * the mapping information. This could boost performance
3471                  * especially in multi-threaded overwrite requests.
3472                  */
3473                 if (offset + length <= i_size_read(inode)) {
3474                         ret = ext4_map_blocks(NULL, inode, &map, 0);
3475                         if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED))
3476                                 goto out;
3477                 }
3478                 ret = ext4_iomap_alloc(inode, &map, flags);
3479         } else {
3480                 ret = ext4_map_blocks(NULL, inode, &map, 0);
3481         }
3482
3483         if (ret < 0)
3484                 return ret;
3485 out:
3486         ext4_set_iomap(inode, iomap, &map, offset, length);
3487
3488         return 0;
3489 }
3490
3491 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3492                 loff_t length, unsigned flags, struct iomap *iomap,
3493                 struct iomap *srcmap)
3494 {
3495         int ret;
3496
3497         /*
3498          * Even for writes we don't need to allocate blocks, so just pretend
3499          * we are reading to save overhead of starting a transaction.
3500          */
3501         flags &= ~IOMAP_WRITE;
3502         ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3503         WARN_ON_ONCE(iomap->type != IOMAP_MAPPED);
3504         return ret;
3505 }
3506
3507 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3508                           ssize_t written, unsigned flags, struct iomap *iomap)
3509 {
3510         /*
3511          * Check to see whether an error occurred while writing out the data to
3512          * the allocated blocks. If so, return the magic error code so that we
3513          * fallback to buffered I/O and attempt to complete the remainder of
3514          * the I/O. Any blocks that may have been allocated in preparation for
3515          * the direct I/O will be reused during buffered I/O.
3516          */
3517         if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3518                 return -ENOTBLK;
3519
3520         return 0;
3521 }
3522
3523 const struct iomap_ops ext4_iomap_ops = {
3524         .iomap_begin            = ext4_iomap_begin,
3525         .iomap_end              = ext4_iomap_end,
3526 };
3527
3528 const struct iomap_ops ext4_iomap_overwrite_ops = {
3529         .iomap_begin            = ext4_iomap_overwrite_begin,
3530         .iomap_end              = ext4_iomap_end,
3531 };
3532
3533 static bool ext4_iomap_is_delalloc(struct inode *inode,
3534                                    struct ext4_map_blocks *map)
3535 {
3536         struct extent_status es;
3537         ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1;
3538
3539         ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3540                                   map->m_lblk, end, &es);
3541
3542         if (!es.es_len || es.es_lblk > end)
3543                 return false;
3544
3545         if (es.es_lblk > map->m_lblk) {
3546                 map->m_len = es.es_lblk - map->m_lblk;
3547                 return false;
3548         }
3549
3550         offset = map->m_lblk - es.es_lblk;
3551         map->m_len = es.es_len - offset;
3552
3553         return true;
3554 }
3555
3556 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3557                                    loff_t length, unsigned int flags,
3558                                    struct iomap *iomap, struct iomap *srcmap)
3559 {
3560         int ret;
3561         bool delalloc = false;
3562         struct ext4_map_blocks map;
3563         u8 blkbits = inode->i_blkbits;
3564
3565         if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3566                 return -EINVAL;
3567
3568         if (ext4_has_inline_data(inode)) {
3569                 ret = ext4_inline_data_iomap(inode, iomap);
3570                 if (ret != -EAGAIN) {
3571                         if (ret == 0 && offset >= iomap->length)
3572                                 ret = -ENOENT;
3573                         return ret;
3574                 }
3575         }
3576
3577         /*
3578          * Calculate the first and last logical block respectively.
3579          */
3580         map.m_lblk = offset >> blkbits;
3581         map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3582                           EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3583
3584         /*
3585          * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3586          * So handle it here itself instead of querying ext4_map_blocks().
3587          * Since ext4_map_blocks() will warn about it and will return
3588          * -EIO error.
3589          */
3590         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3591                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3592
3593                 if (offset >= sbi->s_bitmap_maxbytes) {
3594                         map.m_flags = 0;
3595                         goto set_iomap;
3596                 }
3597         }
3598
3599         ret = ext4_map_blocks(NULL, inode, &map, 0);
3600         if (ret < 0)
3601                 return ret;
3602         if (ret == 0)
3603                 delalloc = ext4_iomap_is_delalloc(inode, &map);
3604
3605 set_iomap:
3606         ext4_set_iomap(inode, iomap, &map, offset, length);
3607         if (delalloc && iomap->type == IOMAP_HOLE)
3608                 iomap->type = IOMAP_DELALLOC;
3609
3610         return 0;
3611 }
3612
3613 const struct iomap_ops ext4_iomap_report_ops = {
3614         .iomap_begin = ext4_iomap_begin_report,
3615 };
3616
3617 /*
3618  * Pages can be marked dirty completely asynchronously from ext4's journalling
3619  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3620  * much here because ->set_page_dirty is called under VFS locks.  The page is
3621  * not necessarily locked.
3622  *
3623  * We cannot just dirty the page and leave attached buffers clean, because the
3624  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3625  * or jbddirty because all the journalling code will explode.
3626  *
3627  * So what we do is to mark the page "pending dirty" and next time writepage
3628  * is called, propagate that into the buffers appropriately.
3629  */
3630 static int ext4_journalled_set_page_dirty(struct page *page)
3631 {
3632         SetPageChecked(page);
3633         return __set_page_dirty_nobuffers(page);
3634 }
3635
3636 static int ext4_set_page_dirty(struct page *page)
3637 {
3638         WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3639         WARN_ON_ONCE(!page_has_buffers(page));
3640         return __set_page_dirty_buffers(page);
3641 }
3642
3643 static int ext4_iomap_swap_activate(struct swap_info_struct *sis,
3644                                     struct file *file, sector_t *span)
3645 {
3646         return iomap_swapfile_activate(sis, file, span,
3647                                        &ext4_iomap_report_ops);
3648 }
3649
3650 static const struct address_space_operations ext4_aops = {
3651         .readpage               = ext4_readpage,
3652         .readahead              = ext4_readahead,
3653         .writepage              = ext4_writepage,
3654         .writepages             = ext4_writepages,
3655         .write_begin            = ext4_write_begin,
3656         .write_end              = ext4_write_end,
3657         .set_page_dirty         = ext4_set_page_dirty,
3658         .bmap                   = ext4_bmap,
3659         .invalidatepage         = ext4_invalidatepage,
3660         .releasepage            = ext4_releasepage,
3661         .direct_IO              = noop_direct_IO,
3662         .migratepage            = buffer_migrate_page,
3663         .is_partially_uptodate  = block_is_partially_uptodate,
3664         .error_remove_page      = generic_error_remove_page,
3665         .swap_activate          = ext4_iomap_swap_activate,
3666 };
3667
3668 static const struct address_space_operations ext4_journalled_aops = {
3669         .readpage               = ext4_readpage,
3670         .readahead              = ext4_readahead,
3671         .writepage              = ext4_writepage,
3672         .writepages             = ext4_writepages,
3673         .write_begin            = ext4_write_begin,
3674         .write_end              = ext4_journalled_write_end,
3675         .set_page_dirty         = ext4_journalled_set_page_dirty,
3676         .bmap                   = ext4_bmap,
3677         .invalidatepage         = ext4_journalled_invalidatepage,
3678         .releasepage            = ext4_releasepage,
3679         .direct_IO              = noop_direct_IO,
3680         .is_partially_uptodate  = block_is_partially_uptodate,
3681         .error_remove_page      = generic_error_remove_page,
3682         .swap_activate          = ext4_iomap_swap_activate,
3683 };
3684
3685 static const struct address_space_operations ext4_da_aops = {
3686         .readpage               = ext4_readpage,
3687         .readahead              = ext4_readahead,
3688         .writepage              = ext4_writepage,
3689         .writepages             = ext4_writepages,
3690         .write_begin            = ext4_da_write_begin,
3691         .write_end              = ext4_da_write_end,
3692         .set_page_dirty         = ext4_set_page_dirty,
3693         .bmap                   = ext4_bmap,
3694         .invalidatepage         = ext4_invalidatepage,
3695         .releasepage            = ext4_releasepage,
3696         .direct_IO              = noop_direct_IO,
3697         .migratepage            = buffer_migrate_page,
3698         .is_partially_uptodate  = block_is_partially_uptodate,
3699         .error_remove_page      = generic_error_remove_page,
3700         .swap_activate          = ext4_iomap_swap_activate,
3701 };
3702
3703 static const struct address_space_operations ext4_dax_aops = {
3704         .writepages             = ext4_dax_writepages,
3705         .direct_IO              = noop_direct_IO,
3706         .set_page_dirty         = noop_set_page_dirty,
3707         .bmap                   = ext4_bmap,
3708         .invalidatepage         = noop_invalidatepage,
3709         .swap_activate          = ext4_iomap_swap_activate,
3710 };
3711
3712 void ext4_set_aops(struct inode *inode)
3713 {
3714         switch (ext4_inode_journal_mode(inode)) {
3715         case EXT4_INODE_ORDERED_DATA_MODE:
3716         case EXT4_INODE_WRITEBACK_DATA_MODE:
3717                 break;
3718         case EXT4_INODE_JOURNAL_DATA_MODE:
3719                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3720                 return;
3721         default:
3722                 BUG();
3723         }
3724         if (IS_DAX(inode))
3725                 inode->i_mapping->a_ops = &ext4_dax_aops;
3726         else if (test_opt(inode->i_sb, DELALLOC))
3727                 inode->i_mapping->a_ops = &ext4_da_aops;
3728         else
3729                 inode->i_mapping->a_ops = &ext4_aops;
3730 }
3731
3732 static int __ext4_block_zero_page_range(handle_t *handle,
3733                 struct address_space *mapping, loff_t from, loff_t length)
3734 {
3735         ext4_fsblk_t index = from >> PAGE_SHIFT;
3736         unsigned offset = from & (PAGE_SIZE-1);
3737         unsigned blocksize, pos;
3738         ext4_lblk_t iblock;
3739         struct inode *inode = mapping->host;
3740         struct buffer_head *bh;
3741         struct page *page;
3742         int err = 0;
3743
3744         page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3745                                    mapping_gfp_constraint(mapping, ~__GFP_FS));
3746         if (!page)
3747                 return -ENOMEM;
3748
3749         blocksize = inode->i_sb->s_blocksize;
3750
3751         iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3752
3753         if (!page_has_buffers(page))
3754                 create_empty_buffers(page, blocksize, 0);
3755
3756         /* Find the buffer that contains "offset" */
3757         bh = page_buffers(page);
3758         pos = blocksize;
3759         while (offset >= pos) {
3760                 bh = bh->b_this_page;
3761                 iblock++;
3762                 pos += blocksize;
3763         }
3764         if (buffer_freed(bh)) {
3765                 BUFFER_TRACE(bh, "freed: skip");
3766                 goto unlock;
3767         }
3768         if (!buffer_mapped(bh)) {
3769                 BUFFER_TRACE(bh, "unmapped");
3770                 ext4_get_block(inode, iblock, bh, 0);
3771                 /* unmapped? It's a hole - nothing to do */
3772                 if (!buffer_mapped(bh)) {
3773                         BUFFER_TRACE(bh, "still unmapped");
3774                         goto unlock;
3775                 }
3776         }
3777
3778         /* Ok, it's mapped. Make sure it's up-to-date */
3779         if (PageUptodate(page))
3780                 set_buffer_uptodate(bh);
3781
3782         if (!buffer_uptodate(bh)) {
3783                 err = ext4_read_bh_lock(bh, 0, true);
3784                 if (err)
3785                         goto unlock;
3786                 if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
3787                         /* We expect the key to be set. */
3788                         BUG_ON(!fscrypt_has_encryption_key(inode));
3789                         err = fscrypt_decrypt_pagecache_blocks(page, blocksize,
3790                                                                bh_offset(bh));
3791                         if (err) {
3792                                 clear_buffer_uptodate(bh);
3793                                 goto unlock;
3794                         }
3795                 }
3796         }
3797         if (ext4_should_journal_data(inode)) {
3798                 BUFFER_TRACE(bh, "get write access");
3799                 err = ext4_journal_get_write_access(handle, bh);
3800                 if (err)
3801                         goto unlock;
3802         }
3803         zero_user(page, offset, length);
3804         BUFFER_TRACE(bh, "zeroed end of block");
3805
3806         if (ext4_should_journal_data(inode)) {
3807                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3808         } else {
3809                 err = 0;
3810                 mark_buffer_dirty(bh);
3811                 if (ext4_should_order_data(inode))
3812                         err = ext4_jbd2_inode_add_write(handle, inode, from,
3813                                         length);
3814         }
3815
3816 unlock:
3817         unlock_page(page);
3818         put_page(page);
3819         return err;
3820 }
3821
3822 /*
3823  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3824  * starting from file offset 'from'.  The range to be zero'd must
3825  * be contained with in one block.  If the specified range exceeds
3826  * the end of the block it will be shortened to end of the block
3827  * that cooresponds to 'from'
3828  */
3829 static int ext4_block_zero_page_range(handle_t *handle,
3830                 struct address_space *mapping, loff_t from, loff_t length)
3831 {
3832         struct inode *inode = mapping->host;
3833         unsigned offset = from & (PAGE_SIZE-1);
3834         unsigned blocksize = inode->i_sb->s_blocksize;
3835         unsigned max = blocksize - (offset & (blocksize - 1));
3836
3837         /*
3838          * correct length if it does not fall between
3839          * 'from' and the end of the block
3840          */
3841         if (length > max || length < 0)
3842                 length = max;
3843
3844         if (IS_DAX(inode)) {
3845                 return iomap_zero_range(inode, from, length, NULL,
3846                                         &ext4_iomap_ops);
3847         }
3848         return __ext4_block_zero_page_range(handle, mapping, from, length);
3849 }
3850
3851 /*
3852  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3853  * up to the end of the block which corresponds to `from'.
3854  * This required during truncate. We need to physically zero the tail end
3855  * of that block so it doesn't yield old data if the file is later grown.
3856  */
3857 static int ext4_block_truncate_page(handle_t *handle,
3858                 struct address_space *mapping, loff_t from)
3859 {
3860         unsigned offset = from & (PAGE_SIZE-1);
3861         unsigned length;
3862         unsigned blocksize;
3863         struct inode *inode = mapping->host;
3864
3865         /* If we are processing an encrypted inode during orphan list handling */
3866         if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3867                 return 0;
3868
3869         blocksize = inode->i_sb->s_blocksize;
3870         length = blocksize - (offset & (blocksize - 1));
3871
3872         return ext4_block_zero_page_range(handle, mapping, from, length);
3873 }
3874
3875 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3876                              loff_t lstart, loff_t length)
3877 {
3878         struct super_block *sb = inode->i_sb;
3879         struct address_space *mapping = inode->i_mapping;
3880         unsigned partial_start, partial_end;
3881         ext4_fsblk_t start, end;
3882         loff_t byte_end = (lstart + length - 1);
3883         int err = 0;
3884
3885         partial_start = lstart & (sb->s_blocksize - 1);
3886         partial_end = byte_end & (sb->s_blocksize - 1);
3887
3888         start = lstart >> sb->s_blocksize_bits;
3889         end = byte_end >> sb->s_blocksize_bits;
3890
3891         /* Handle partial zero within the single block */
3892         if (start == end &&
3893             (partial_start || (partial_end != sb->s_blocksize - 1))) {
3894                 err = ext4_block_zero_page_range(handle, mapping,
3895                                                  lstart, length);
3896                 return err;
3897         }
3898         /* Handle partial zero out on the start of the range */
3899         if (partial_start) {
3900                 err = ext4_block_zero_page_range(handle, mapping,
3901                                                  lstart, sb->s_blocksize);
3902                 if (err)
3903                         return err;
3904         }
3905         /* Handle partial zero out on the end of the range */
3906         if (partial_end != sb->s_blocksize - 1)
3907                 err = ext4_block_zero_page_range(handle, mapping,
3908                                                  byte_end - partial_end,
3909                                                  partial_end + 1);
3910         return err;
3911 }
3912
3913 int ext4_can_truncate(struct inode *inode)
3914 {
3915         if (S_ISREG(inode->i_mode))
3916                 return 1;
3917         if (S_ISDIR(inode->i_mode))
3918                 return 1;
3919         if (S_ISLNK(inode->i_mode))
3920                 return !ext4_inode_is_fast_symlink(inode);
3921         return 0;
3922 }
3923
3924 /*
3925  * We have to make sure i_disksize gets properly updated before we truncate
3926  * page cache due to hole punching or zero range. Otherwise i_disksize update
3927  * can get lost as it may have been postponed to submission of writeback but
3928  * that will never happen after we truncate page cache.
3929  */
3930 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3931                                       loff_t len)
3932 {
3933         handle_t *handle;
3934         int ret;
3935
3936         loff_t size = i_size_read(inode);
3937
3938         WARN_ON(!inode_is_locked(inode));
3939         if (offset > size || offset + len < size)
3940                 return 0;
3941
3942         if (EXT4_I(inode)->i_disksize >= size)
3943                 return 0;
3944
3945         handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3946         if (IS_ERR(handle))
3947                 return PTR_ERR(handle);
3948         ext4_update_i_disksize(inode, size);
3949         ret = ext4_mark_inode_dirty(handle, inode);
3950         ext4_journal_stop(handle);
3951
3952         return ret;
3953 }
3954
3955 static void ext4_wait_dax_page(struct ext4_inode_info *ei)
3956 {
3957         up_write(&ei->i_mmap_sem);
3958         schedule();
3959         down_write(&ei->i_mmap_sem);
3960 }
3961
3962 int ext4_break_layouts(struct inode *inode)
3963 {
3964         struct ext4_inode_info *ei = EXT4_I(inode);
3965         struct page *page;
3966         int error;
3967
3968         if (WARN_ON_ONCE(!rwsem_is_locked(&ei->i_mmap_sem)))
3969                 return -EINVAL;
3970
3971         do {
3972                 page = dax_layout_busy_page(inode->i_mapping);
3973                 if (!page)
3974                         return 0;
3975
3976                 error = ___wait_var_event(&page->_refcount,
3977                                 atomic_read(&page->_refcount) == 1,
3978                                 TASK_INTERRUPTIBLE, 0, 0,
3979                                 ext4_wait_dax_page(ei));
3980         } while (error == 0);
3981
3982         return error;
3983 }
3984
3985 /*
3986  * ext4_punch_hole: punches a hole in a file by releasing the blocks
3987  * associated with the given offset and length
3988  *
3989  * @inode:  File inode
3990  * @offset: The offset where the hole will begin
3991  * @len:    The length of the hole
3992  *
3993  * Returns: 0 on success or negative on failure
3994  */
3995
3996 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3997 {
3998         struct super_block *sb = inode->i_sb;
3999         ext4_lblk_t first_block, stop_block;
4000         struct address_space *mapping = inode->i_mapping;
4001         loff_t first_block_offset, last_block_offset;
4002         handle_t *handle;
4003         unsigned int credits;
4004         int ret = 0, ret2 = 0;
4005
4006         trace_ext4_punch_hole(inode, offset, length, 0);
4007
4008         ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
4009         if (ext4_has_inline_data(inode)) {
4010                 down_write(&EXT4_I(inode)->i_mmap_sem);
4011                 ret = ext4_convert_inline_data(inode);
4012                 up_write(&EXT4_I(inode)->i_mmap_sem);
4013                 if (ret)
4014                         return ret;
4015         }
4016
4017         /*
4018          * Write out all dirty pages to avoid race conditions
4019          * Then release them.
4020          */
4021         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4022                 ret = filemap_write_and_wait_range(mapping, offset,
4023                                                    offset + length - 1);
4024                 if (ret)
4025                         return ret;
4026         }
4027
4028         inode_lock(inode);
4029
4030         /* No need to punch hole beyond i_size */
4031         if (offset >= inode->i_size)
4032                 goto out_mutex;
4033
4034         /*
4035          * If the hole extends beyond i_size, set the hole
4036          * to end after the page that contains i_size
4037          */
4038         if (offset + length > inode->i_size) {
4039                 length = inode->i_size +
4040                    PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4041                    offset;
4042         }
4043
4044         if (offset & (sb->s_blocksize - 1) ||
4045             (offset + length) & (sb->s_blocksize - 1)) {
4046                 /*
4047                  * Attach jinode to inode for jbd2 if we do any zeroing of
4048                  * partial block
4049                  */
4050                 ret = ext4_inode_attach_jinode(inode);
4051                 if (ret < 0)
4052                         goto out_mutex;
4053
4054         }
4055
4056         /* Wait all existing dio workers, newcomers will block on i_mutex */
4057         inode_dio_wait(inode);
4058
4059         /*
4060          * Prevent page faults from reinstantiating pages we have released from
4061          * page cache.
4062          */
4063         down_write(&EXT4_I(inode)->i_mmap_sem);
4064
4065         ret = ext4_break_layouts(inode);
4066         if (ret)
4067                 goto out_dio;
4068
4069         first_block_offset = round_up(offset, sb->s_blocksize);
4070         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4071
4072         /* Now release the pages and zero block aligned part of pages*/
4073         if (last_block_offset > first_block_offset) {
4074                 ret = ext4_update_disksize_before_punch(inode, offset, length);
4075                 if (ret)
4076                         goto out_dio;
4077                 truncate_pagecache_range(inode, first_block_offset,
4078                                          last_block_offset);
4079         }
4080
4081         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4082                 credits = ext4_writepage_trans_blocks(inode);
4083         else
4084                 credits = ext4_blocks_for_truncate(inode);
4085         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4086         if (IS_ERR(handle)) {
4087                 ret = PTR_ERR(handle);
4088                 ext4_std_error(sb, ret);
4089                 goto out_dio;
4090         }
4091
4092         ret = ext4_zero_partial_blocks(handle, inode, offset,
4093                                        length);
4094         if (ret)
4095                 goto out_stop;
4096
4097         first_block = (offset + sb->s_blocksize - 1) >>
4098                 EXT4_BLOCK_SIZE_BITS(sb);
4099         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4100
4101         /* If there are blocks to remove, do it */
4102         if (stop_block > first_block) {
4103
4104                 down_write(&EXT4_I(inode)->i_data_sem);
4105                 ext4_discard_preallocations(inode, 0);
4106
4107                 ret = ext4_es_remove_extent(inode, first_block,
4108                                             stop_block - first_block);
4109                 if (ret) {
4110                         up_write(&EXT4_I(inode)->i_data_sem);
4111                         goto out_stop;
4112                 }
4113
4114                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4115                         ret = ext4_ext_remove_space(inode, first_block,
4116                                                     stop_block - 1);
4117                 else
4118                         ret = ext4_ind_remove_space(handle, inode, first_block,
4119                                                     stop_block);
4120
4121                 up_write(&EXT4_I(inode)->i_data_sem);
4122         }
4123         ext4_fc_track_range(handle, inode, first_block, stop_block);
4124         if (IS_SYNC(inode))
4125                 ext4_handle_sync(handle);
4126
4127         inode->i_mtime = inode->i_ctime = current_time(inode);
4128         ret2 = ext4_mark_inode_dirty(handle, inode);
4129         if (unlikely(ret2))
4130                 ret = ret2;
4131         if (ret >= 0)
4132                 ext4_update_inode_fsync_trans(handle, inode, 1);
4133 out_stop:
4134         ext4_journal_stop(handle);
4135 out_dio:
4136         up_write(&EXT4_I(inode)->i_mmap_sem);
4137 out_mutex:
4138         inode_unlock(inode);
4139         return ret;
4140 }
4141
4142 int ext4_inode_attach_jinode(struct inode *inode)
4143 {
4144         struct ext4_inode_info *ei = EXT4_I(inode);
4145         struct jbd2_inode *jinode;
4146
4147         if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4148                 return 0;
4149
4150         jinode = jbd2_alloc_inode(GFP_KERNEL);
4151         spin_lock(&inode->i_lock);
4152         if (!ei->jinode) {
4153                 if (!jinode) {
4154                         spin_unlock(&inode->i_lock);
4155                         return -ENOMEM;
4156                 }
4157                 ei->jinode = jinode;
4158                 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4159                 jinode = NULL;
4160         }
4161         spin_unlock(&inode->i_lock);
4162         if (unlikely(jinode != NULL))
4163                 jbd2_free_inode(jinode);
4164         return 0;
4165 }
4166
4167 /*
4168  * ext4_truncate()
4169  *
4170  * We block out ext4_get_block() block instantiations across the entire
4171  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4172  * simultaneously on behalf of the same inode.
4173  *
4174  * As we work through the truncate and commit bits of it to the journal there
4175  * is one core, guiding principle: the file's tree must always be consistent on
4176  * disk.  We must be able to restart the truncate after a crash.
4177  *
4178  * The file's tree may be transiently inconsistent in memory (although it
4179  * probably isn't), but whenever we close off and commit a journal transaction,
4180  * the contents of (the filesystem + the journal) must be consistent and
4181  * restartable.  It's pretty simple, really: bottom up, right to left (although
4182  * left-to-right works OK too).
4183  *
4184  * Note that at recovery time, journal replay occurs *before* the restart of
4185  * truncate against the orphan inode list.
4186  *
4187  * The committed inode has the new, desired i_size (which is the same as
4188  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4189  * that this inode's truncate did not complete and it will again call
4190  * ext4_truncate() to have another go.  So there will be instantiated blocks
4191  * to the right of the truncation point in a crashed ext4 filesystem.  But
4192  * that's fine - as long as they are linked from the inode, the post-crash
4193  * ext4_truncate() run will find them and release them.
4194  */
4195 int ext4_truncate(struct inode *inode)
4196 {
4197         struct ext4_inode_info *ei = EXT4_I(inode);
4198         unsigned int credits;
4199         int err = 0, err2;
4200         handle_t *handle;
4201         struct address_space *mapping = inode->i_mapping;
4202
4203         /*
4204          * There is a possibility that we're either freeing the inode
4205          * or it's a completely new inode. In those cases we might not
4206          * have i_mutex locked because it's not necessary.
4207          */
4208         if (!(inode->i_state & (I_NEW|I_FREEING)))
4209                 WARN_ON(!inode_is_locked(inode));
4210         trace_ext4_truncate_enter(inode);
4211
4212         if (!ext4_can_truncate(inode))
4213                 goto out_trace;
4214
4215         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4216                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4217
4218         if (ext4_has_inline_data(inode)) {
4219                 int has_inline = 1;
4220
4221                 err = ext4_inline_data_truncate(inode, &has_inline);
4222                 if (err || has_inline)
4223                         goto out_trace;
4224         }
4225
4226         /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4227         if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4228                 if (ext4_inode_attach_jinode(inode) < 0)
4229                         goto out_trace;
4230         }
4231
4232         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4233                 credits = ext4_writepage_trans_blocks(inode);
4234         else
4235                 credits = ext4_blocks_for_truncate(inode);
4236
4237         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4238         if (IS_ERR(handle)) {
4239                 err = PTR_ERR(handle);
4240                 goto out_trace;
4241         }
4242
4243         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4244                 ext4_block_truncate_page(handle, mapping, inode->i_size);
4245
4246         /*
4247          * We add the inode to the orphan list, so that if this
4248          * truncate spans multiple transactions, and we crash, we will
4249          * resume the truncate when the filesystem recovers.  It also
4250          * marks the inode dirty, to catch the new size.
4251          *
4252          * Implication: the file must always be in a sane, consistent
4253          * truncatable state while each transaction commits.
4254          */
4255         err = ext4_orphan_add(handle, inode);
4256         if (err)
4257                 goto out_stop;
4258
4259         down_write(&EXT4_I(inode)->i_data_sem);
4260
4261         ext4_discard_preallocations(inode, 0);
4262
4263         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4264                 err = ext4_ext_truncate(handle, inode);
4265         else
4266                 ext4_ind_truncate(handle, inode);
4267
4268         up_write(&ei->i_data_sem);
4269         if (err)
4270                 goto out_stop;
4271
4272         if (IS_SYNC(inode))
4273                 ext4_handle_sync(handle);
4274
4275 out_stop:
4276         /*
4277          * If this was a simple ftruncate() and the file will remain alive,
4278          * then we need to clear up the orphan record which we created above.
4279          * However, if this was a real unlink then we were called by
4280          * ext4_evict_inode(), and we allow that function to clean up the
4281          * orphan info for us.
4282          */
4283         if (inode->i_nlink)
4284                 ext4_orphan_del(handle, inode);
4285
4286         inode->i_mtime = inode->i_ctime = current_time(inode);
4287         err2 = ext4_mark_inode_dirty(handle, inode);
4288         if (unlikely(err2 && !err))
4289                 err = err2;
4290         ext4_journal_stop(handle);
4291
4292 out_trace:
4293         trace_ext4_truncate_exit(inode);
4294         return err;
4295 }
4296
4297 /*
4298  * ext4_get_inode_loc returns with an extra refcount against the inode's
4299  * underlying buffer_head on success. If 'in_mem' is true, we have all
4300  * data in memory that is needed to recreate the on-disk version of this
4301  * inode.
4302  */
4303 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino,
4304                                 struct ext4_iloc *iloc, int in_mem,
4305                                 ext4_fsblk_t *ret_block)
4306 {
4307         struct ext4_group_desc  *gdp;
4308         struct buffer_head      *bh;
4309         ext4_fsblk_t            block;
4310         struct blk_plug         plug;
4311         int                     inodes_per_block, inode_offset;
4312
4313         iloc->bh = NULL;
4314         if (ino < EXT4_ROOT_INO ||
4315             ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4316                 return -EFSCORRUPTED;
4317
4318         iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
4319         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4320         if (!gdp)
4321                 return -EIO;
4322
4323         /*
4324          * Figure out the offset within the block group inode table
4325          */
4326         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4327         inode_offset = ((ino - 1) %
4328                         EXT4_INODES_PER_GROUP(sb));
4329         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4330         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4331
4332         bh = sb_getblk(sb, block);
4333         if (unlikely(!bh))
4334                 return -ENOMEM;
4335         if (ext4_simulate_fail(sb, EXT4_SIM_INODE_EIO))
4336                 goto simulate_eio;
4337         if (!buffer_uptodate(bh)) {
4338                 lock_buffer(bh);
4339
4340                 if (ext4_buffer_uptodate(bh)) {
4341                         /* someone brought it uptodate while we waited */
4342                         unlock_buffer(bh);
4343                         goto has_buffer;
4344                 }
4345
4346                 /*
4347                  * If we have all information of the inode in memory and this
4348                  * is the only valid inode in the block, we need not read the
4349                  * block.
4350                  */
4351                 if (in_mem) {
4352                         struct buffer_head *bitmap_bh;
4353                         int i, start;
4354
4355                         start = inode_offset & ~(inodes_per_block - 1);
4356
4357                         /* Is the inode bitmap in cache? */
4358                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4359                         if (unlikely(!bitmap_bh))
4360                                 goto make_io;
4361
4362                         /*
4363                          * If the inode bitmap isn't in cache then the
4364                          * optimisation may end up performing two reads instead
4365                          * of one, so skip it.
4366                          */
4367                         if (!buffer_uptodate(bitmap_bh)) {
4368                                 brelse(bitmap_bh);
4369                                 goto make_io;
4370                         }
4371                         for (i = start; i < start + inodes_per_block; i++) {
4372                                 if (i == inode_offset)
4373                                         continue;
4374                                 if (ext4_test_bit(i, bitmap_bh->b_data))
4375                                         break;
4376                         }
4377                         brelse(bitmap_bh);
4378                         if (i == start + inodes_per_block) {
4379                                 /* all other inodes are free, so skip I/O */
4380                                 memset(bh->b_data, 0, bh->b_size);
4381                                 set_buffer_uptodate(bh);
4382                                 unlock_buffer(bh);
4383                                 goto has_buffer;
4384                         }
4385                 }
4386
4387 make_io:
4388                 /*
4389                  * If we need to do any I/O, try to pre-readahead extra
4390                  * blocks from the inode table.
4391                  */
4392                 blk_start_plug(&plug);
4393                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4394                         ext4_fsblk_t b, end, table;
4395                         unsigned num;
4396                         __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4397
4398                         table = ext4_inode_table(sb, gdp);
4399                         /* s_inode_readahead_blks is always a power of 2 */
4400                         b = block & ~((ext4_fsblk_t) ra_blks - 1);
4401                         if (table > b)
4402                                 b = table;
4403                         end = b + ra_blks;
4404                         num = EXT4_INODES_PER_GROUP(sb);
4405                         if (ext4_has_group_desc_csum(sb))
4406                                 num -= ext4_itable_unused_count(sb, gdp);
4407                         table += num / inodes_per_block;
4408                         if (end > table)
4409                                 end = table;
4410                         while (b <= end)
4411                                 ext4_sb_breadahead_unmovable(sb, b++);
4412                 }
4413
4414                 /*
4415                  * There are other valid inodes in the buffer, this inode
4416                  * has in-inode xattrs, or we don't have this inode in memory.
4417                  * Read the block from disk.
4418                  */
4419                 trace_ext4_load_inode(sb, ino);
4420                 ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL);
4421                 blk_finish_plug(&plug);
4422                 wait_on_buffer(bh);
4423                 if (!buffer_uptodate(bh)) {
4424                 simulate_eio:
4425                         if (ret_block)
4426                                 *ret_block = block;
4427                         brelse(bh);
4428                         return -EIO;
4429                 }
4430         }
4431 has_buffer:
4432         iloc->bh = bh;
4433         return 0;
4434 }
4435
4436 static int __ext4_get_inode_loc_noinmem(struct inode *inode,
4437                                         struct ext4_iloc *iloc)
4438 {
4439         ext4_fsblk_t err_blk;
4440         int ret;
4441
4442         ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, iloc, 0,
4443                                         &err_blk);
4444
4445         if (ret == -EIO)
4446                 ext4_error_inode_block(inode, err_blk, EIO,
4447                                         "unable to read itable block");
4448
4449         return ret;
4450 }
4451
4452 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4453 {
4454         ext4_fsblk_t err_blk;
4455         int ret;
4456
4457         /* We have all inode data except xattrs in memory here. */
4458         ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, iloc,
4459                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR), &err_blk);
4460
4461         if (ret == -EIO)
4462                 ext4_error_inode_block(inode, err_blk, EIO,
4463                                         "unable to read itable block");
4464
4465         return ret;
4466 }
4467
4468
4469 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino,
4470                           struct ext4_iloc *iloc)
4471 {
4472         return __ext4_get_inode_loc(sb, ino, iloc, 0, NULL);
4473 }
4474
4475 static bool ext4_should_enable_dax(struct inode *inode)
4476 {
4477         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4478
4479         if (test_opt2(inode->i_sb, DAX_NEVER))
4480                 return false;
4481         if (!S_ISREG(inode->i_mode))
4482                 return false;
4483         if (ext4_should_journal_data(inode))
4484                 return false;
4485         if (ext4_has_inline_data(inode))
4486                 return false;
4487         if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4488                 return false;
4489         if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4490                 return false;
4491         if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4492                 return false;
4493         if (test_opt(inode->i_sb, DAX_ALWAYS))
4494                 return true;
4495
4496         return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
4497 }
4498
4499 void ext4_set_inode_flags(struct inode *inode, bool init)
4500 {
4501         unsigned int flags = EXT4_I(inode)->i_flags;
4502         unsigned int new_fl = 0;
4503
4504         WARN_ON_ONCE(IS_DAX(inode) && init);
4505
4506         if (flags & EXT4_SYNC_FL)
4507                 new_fl |= S_SYNC;
4508         if (flags & EXT4_APPEND_FL)
4509                 new_fl |= S_APPEND;
4510         if (flags & EXT4_IMMUTABLE_FL)
4511                 new_fl |= S_IMMUTABLE;
4512         if (flags & EXT4_NOATIME_FL)
4513                 new_fl |= S_NOATIME;
4514         if (flags & EXT4_DIRSYNC_FL)
4515                 new_fl |= S_DIRSYNC;
4516
4517         /* Because of the way inode_set_flags() works we must preserve S_DAX
4518          * here if already set. */
4519         new_fl |= (inode->i_flags & S_DAX);
4520         if (init && ext4_should_enable_dax(inode))
4521                 new_fl |= S_DAX;
4522
4523         if (flags & EXT4_ENCRYPT_FL)
4524                 new_fl |= S_ENCRYPTED;
4525         if (flags & EXT4_CASEFOLD_FL)
4526                 new_fl |= S_CASEFOLD;
4527         if (flags & EXT4_VERITY_FL)
4528                 new_fl |= S_VERITY;
4529         inode_set_flags(inode, new_fl,
4530                         S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4531                         S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4532 }
4533
4534 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4535                                   struct ext4_inode_info *ei)
4536 {
4537         blkcnt_t i_blocks ;
4538         struct inode *inode = &(ei->vfs_inode);
4539         struct super_block *sb = inode->i_sb;
4540
4541         if (ext4_has_feature_huge_file(sb)) {
4542                 /* we are using combined 48 bit field */
4543                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4544                                         le32_to_cpu(raw_inode->i_blocks_lo);
4545                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4546                         /* i_blocks represent file system block size */
4547                         return i_blocks  << (inode->i_blkbits - 9);
4548                 } else {
4549                         return i_blocks;
4550                 }
4551         } else {
4552                 return le32_to_cpu(raw_inode->i_blocks_lo);
4553         }
4554 }
4555
4556 static inline int ext4_iget_extra_inode(struct inode *inode,
4557                                          struct ext4_inode *raw_inode,
4558                                          struct ext4_inode_info *ei)
4559 {
4560         __le32 *magic = (void *)raw_inode +
4561                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4562
4563         if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4564             EXT4_INODE_SIZE(inode->i_sb) &&
4565             *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4566                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4567                 return ext4_find_inline_data_nolock(inode);
4568         } else
4569                 EXT4_I(inode)->i_inline_off = 0;
4570         return 0;
4571 }
4572
4573 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4574 {
4575         if (!ext4_has_feature_project(inode->i_sb))
4576                 return -EOPNOTSUPP;
4577         *projid = EXT4_I(inode)->i_projid;
4578         return 0;
4579 }
4580
4581 /*
4582  * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4583  * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4584  * set.
4585  */
4586 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4587 {
4588         if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4589                 inode_set_iversion_raw(inode, val);
4590         else
4591                 inode_set_iversion_queried(inode, val);
4592 }
4593 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4594 {
4595         if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4596                 return inode_peek_iversion_raw(inode);
4597         else
4598                 return inode_peek_iversion(inode);
4599 }
4600
4601 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4602                           ext4_iget_flags flags, const char *function,
4603                           unsigned int line)
4604 {
4605         struct ext4_iloc iloc;
4606         struct ext4_inode *raw_inode;
4607         struct ext4_inode_info *ei;
4608         struct inode *inode;
4609         journal_t *journal = EXT4_SB(sb)->s_journal;
4610         long ret;
4611         loff_t size;
4612         int block;
4613         uid_t i_uid;
4614         gid_t i_gid;
4615         projid_t i_projid;
4616
4617         if ((!(flags & EXT4_IGET_SPECIAL) &&
4618              (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)) ||
4619             (ino < EXT4_ROOT_INO) ||
4620             (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))) {
4621                 if (flags & EXT4_IGET_HANDLE)
4622                         return ERR_PTR(-ESTALE);
4623                 __ext4_error(sb, function, line, false, EFSCORRUPTED, 0,
4624                              "inode #%lu: comm %s: iget: illegal inode #",
4625                              ino, current->comm);
4626                 return ERR_PTR(-EFSCORRUPTED);
4627         }
4628
4629         inode = iget_locked(sb, ino);
4630         if (!inode)
4631                 return ERR_PTR(-ENOMEM);
4632         if (!(inode->i_state & I_NEW))
4633                 return inode;
4634
4635         ei = EXT4_I(inode);
4636         iloc.bh = NULL;
4637
4638         ret = __ext4_get_inode_loc_noinmem(inode, &iloc);
4639         if (ret < 0)
4640                 goto bad_inode;
4641         raw_inode = ext4_raw_inode(&iloc);
4642
4643         if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4644                 ext4_error_inode(inode, function, line, 0,
4645                                  "iget: root inode unallocated");
4646                 ret = -EFSCORRUPTED;
4647                 goto bad_inode;
4648         }
4649
4650         if ((flags & EXT4_IGET_HANDLE) &&
4651             (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4652                 ret = -ESTALE;
4653                 goto bad_inode;
4654         }
4655
4656         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4657                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4658                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4659                         EXT4_INODE_SIZE(inode->i_sb) ||
4660                     (ei->i_extra_isize & 3)) {
4661                         ext4_error_inode(inode, function, line, 0,
4662                                          "iget: bad extra_isize %u "
4663                                          "(inode size %u)",
4664                                          ei->i_extra_isize,
4665                                          EXT4_INODE_SIZE(inode->i_sb));
4666                         ret = -EFSCORRUPTED;
4667                         goto bad_inode;
4668                 }
4669         } else
4670                 ei->i_extra_isize = 0;
4671
4672         /* Precompute checksum seed for inode metadata */
4673         if (ext4_has_metadata_csum(sb)) {
4674                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4675                 __u32 csum;
4676                 __le32 inum = cpu_to_le32(inode->i_ino);
4677                 __le32 gen = raw_inode->i_generation;
4678                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4679                                    sizeof(inum));
4680                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4681                                               sizeof(gen));
4682         }
4683
4684         if ((!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4685             ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) &&
4686              (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) {
4687                 ext4_error_inode_err(inode, function, line, 0,
4688                                 EFSBADCRC, "iget: checksum invalid");
4689                 ret = -EFSBADCRC;
4690                 goto bad_inode;
4691         }
4692
4693         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4694         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4695         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4696         if (ext4_has_feature_project(sb) &&
4697             EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4698             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4699                 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4700         else
4701                 i_projid = EXT4_DEF_PROJID;
4702
4703         if (!(test_opt(inode->i_sb, NO_UID32))) {
4704                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4705                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4706         }
4707         i_uid_write(inode, i_uid);
4708         i_gid_write(inode, i_gid);
4709         ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4710         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4711
4712         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4713         ei->i_inline_off = 0;
4714         ei->i_dir_start_lookup = 0;
4715         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4716         /* We now have enough fields to check if the inode was active or not.
4717          * This is needed because nfsd might try to access dead inodes
4718          * the test is that same one that e2fsck uses
4719          * NeilBrown 1999oct15
4720          */
4721         if (inode->i_nlink == 0) {
4722                 if ((inode->i_mode == 0 ||
4723                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4724                     ino != EXT4_BOOT_LOADER_INO) {
4725                         /* this inode is deleted */
4726                         ret = -ESTALE;
4727                         goto bad_inode;
4728                 }
4729                 /* The only unlinked inodes we let through here have
4730                  * valid i_mode and are being read by the orphan
4731                  * recovery code: that's fine, we're about to complete
4732                  * the process of deleting those.
4733                  * OR it is the EXT4_BOOT_LOADER_INO which is
4734                  * not initialized on a new filesystem. */
4735         }
4736         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4737         ext4_set_inode_flags(inode, true);
4738         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4739         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4740         if (ext4_has_feature_64bit(sb))
4741                 ei->i_file_acl |=
4742                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4743         inode->i_size = ext4_isize(sb, raw_inode);
4744         if ((size = i_size_read(inode)) < 0) {
4745                 ext4_error_inode(inode, function, line, 0,
4746                                  "iget: bad i_size value: %lld", size);
4747                 ret = -EFSCORRUPTED;
4748                 goto bad_inode;
4749         }
4750         /*
4751          * If dir_index is not enabled but there's dir with INDEX flag set,
4752          * we'd normally treat htree data as empty space. But with metadata
4753          * checksumming that corrupts checksums so forbid that.
4754          */
4755         if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4756             ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4757                 ext4_error_inode(inode, function, line, 0,
4758                          "iget: Dir with htree data on filesystem without dir_index feature.");
4759                 ret = -EFSCORRUPTED;
4760                 goto bad_inode;
4761         }
4762         ei->i_disksize = inode->i_size;
4763 #ifdef CONFIG_QUOTA
4764         ei->i_reserved_quota = 0;
4765 #endif
4766         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4767         ei->i_block_group = iloc.block_group;
4768         ei->i_last_alloc_group = ~0;
4769         /*
4770          * NOTE! The in-memory inode i_data array is in little-endian order
4771          * even on big-endian machines: we do NOT byteswap the block numbers!
4772          */
4773         for (block = 0; block < EXT4_N_BLOCKS; block++)
4774                 ei->i_data[block] = raw_inode->i_block[block];
4775         INIT_LIST_HEAD(&ei->i_orphan);
4776         ext4_fc_init_inode(&ei->vfs_inode);
4777
4778         /*
4779          * Set transaction id's of transactions that have to be committed
4780          * to finish f[data]sync. We set them to currently running transaction
4781          * as we cannot be sure that the inode or some of its metadata isn't
4782          * part of the transaction - the inode could have been reclaimed and
4783          * now it is reread from disk.
4784          */
4785         if (journal) {
4786                 transaction_t *transaction;
4787                 tid_t tid;
4788
4789                 read_lock(&journal->j_state_lock);
4790                 if (journal->j_running_transaction)
4791                         transaction = journal->j_running_transaction;
4792                 else
4793                         transaction = journal->j_committing_transaction;
4794                 if (transaction)
4795                         tid = transaction->t_tid;
4796                 else
4797                         tid = journal->j_commit_sequence;
4798                 read_unlock(&journal->j_state_lock);
4799                 ei->i_sync_tid = tid;
4800                 ei->i_datasync_tid = tid;
4801         }
4802
4803         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4804                 if (ei->i_extra_isize == 0) {
4805                         /* The extra space is currently unused. Use it. */
4806                         BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4807                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4808                                             EXT4_GOOD_OLD_INODE_SIZE;
4809                 } else {
4810                         ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4811                         if (ret)
4812                                 goto bad_inode;
4813                 }
4814         }
4815
4816         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4817         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4818         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4819         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4820
4821         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4822                 u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4823
4824                 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4825                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4826                                 ivers |=
4827                     (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4828                 }
4829                 ext4_inode_set_iversion_queried(inode, ivers);
4830         }
4831
4832         ret = 0;
4833         if (ei->i_file_acl &&
4834             !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
4835                 ext4_error_inode(inode, function, line, 0,
4836                                  "iget: bad extended attribute block %llu",
4837                                  ei->i_file_acl);
4838                 ret = -EFSCORRUPTED;
4839                 goto bad_inode;
4840         } else if (!ext4_has_inline_data(inode)) {
4841                 /* validate the block references in the inode */
4842                 if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) &&
4843                         (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4844                         (S_ISLNK(inode->i_mode) &&
4845                         !ext4_inode_is_fast_symlink(inode)))) {
4846                         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4847                                 ret = ext4_ext_check_inode(inode);
4848                         else
4849                                 ret = ext4_ind_check_inode(inode);
4850                 }
4851         }
4852         if (ret)
4853                 goto bad_inode;
4854
4855         if (S_ISREG(inode->i_mode)) {
4856                 inode->i_op = &ext4_file_inode_operations;
4857                 inode->i_fop = &ext4_file_operations;
4858                 ext4_set_aops(inode);
4859         } else if (S_ISDIR(inode->i_mode)) {
4860                 inode->i_op = &ext4_dir_inode_operations;
4861                 inode->i_fop = &ext4_dir_operations;
4862         } else if (S_ISLNK(inode->i_mode)) {
4863                 /* VFS does not allow setting these so must be corruption */
4864                 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
4865                         ext4_error_inode(inode, function, line, 0,
4866                                          "iget: immutable or append flags "
4867                                          "not allowed on symlinks");
4868                         ret = -EFSCORRUPTED;
4869                         goto bad_inode;
4870                 }
4871                 if (IS_ENCRYPTED(inode)) {
4872                         inode->i_op = &ext4_encrypted_symlink_inode_operations;
4873                         ext4_set_aops(inode);
4874                 } else if (ext4_inode_is_fast_symlink(inode)) {
4875                         inode->i_link = (char *)ei->i_data;
4876                         inode->i_op = &ext4_fast_symlink_inode_operations;
4877                         nd_terminate_link(ei->i_data, inode->i_size,
4878                                 sizeof(ei->i_data) - 1);
4879                 } else {
4880                         inode->i_op = &ext4_symlink_inode_operations;
4881                         ext4_set_aops(inode);
4882                 }
4883                 inode_nohighmem(inode);
4884         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4885               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4886                 inode->i_op = &ext4_special_inode_operations;
4887                 if (raw_inode->i_block[0])
4888                         init_special_inode(inode, inode->i_mode,
4889                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4890                 else
4891                         init_special_inode(inode, inode->i_mode,
4892                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4893         } else if (ino == EXT4_BOOT_LOADER_INO) {
4894                 make_bad_inode(inode);
4895         } else {
4896                 ret = -EFSCORRUPTED;
4897                 ext4_error_inode(inode, function, line, 0,
4898                                  "iget: bogus i_mode (%o)", inode->i_mode);
4899                 goto bad_inode;
4900         }
4901         if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb))
4902                 ext4_error_inode(inode, function, line, 0,
4903                                  "casefold flag without casefold feature");
4904         brelse(iloc.bh);
4905
4906         unlock_new_inode(inode);
4907         return inode;
4908
4909 bad_inode:
4910         brelse(iloc.bh);
4911         iget_failed(inode);
4912         return ERR_PTR(ret);
4913 }
4914
4915 static int ext4_inode_blocks_set(handle_t *handle,
4916                                 struct ext4_inode *raw_inode,
4917                                 struct ext4_inode_info *ei)
4918 {
4919         struct inode *inode = &(ei->vfs_inode);
4920         u64 i_blocks = READ_ONCE(inode->i_blocks);
4921         struct super_block *sb = inode->i_sb;
4922
4923         if (i_blocks <= ~0U) {
4924                 /*
4925                  * i_blocks can be represented in a 32 bit variable
4926                  * as multiple of 512 bytes
4927                  */
4928                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4929                 raw_inode->i_blocks_high = 0;
4930                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4931                 return 0;
4932         }
4933         if (!ext4_has_feature_huge_file(sb))
4934                 return -EFBIG;
4935
4936         if (i_blocks <= 0xffffffffffffULL) {
4937                 /*
4938                  * i_blocks can be represented in a 48 bit variable
4939                  * as multiple of 512 bytes
4940                  */
4941                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4942                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4943                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4944         } else {
4945                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4946                 /* i_block is stored in file system block size */
4947                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4948                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4949                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4950         }
4951         return 0;
4952 }
4953
4954 static void __ext4_update_other_inode_time(struct super_block *sb,
4955                                            unsigned long orig_ino,
4956                                            unsigned long ino,
4957                                            struct ext4_inode *raw_inode)
4958 {
4959         struct inode *inode;
4960
4961         inode = find_inode_by_ino_rcu(sb, ino);
4962         if (!inode)
4963                 return;
4964
4965         if (!inode_is_dirtytime_only(inode))
4966                 return;
4967
4968         spin_lock(&inode->i_lock);
4969         if (inode_is_dirtytime_only(inode)) {
4970                 struct ext4_inode_info  *ei = EXT4_I(inode);
4971
4972                 inode->i_state &= ~I_DIRTY_TIME;
4973                 spin_unlock(&inode->i_lock);
4974
4975                 spin_lock(&ei->i_raw_lock);
4976                 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4977                 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4978                 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4979                 ext4_inode_csum_set(inode, raw_inode, ei);
4980                 spin_unlock(&ei->i_raw_lock);
4981                 trace_ext4_other_inode_update_time(inode, orig_ino);
4982                 return;
4983         }
4984         spin_unlock(&inode->i_lock);
4985 }
4986
4987 /*
4988  * Opportunistically update the other time fields for other inodes in
4989  * the same inode table block.
4990  */
4991 static void ext4_update_other_inodes_time(struct super_block *sb,
4992                                           unsigned long orig_ino, char *buf)
4993 {
4994         unsigned long ino;
4995         int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4996         int inode_size = EXT4_INODE_SIZE(sb);
4997
4998         /*
4999          * Calculate the first inode in the inode table block.  Inode
5000          * numbers are one-based.  That is, the first inode in a block
5001          * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5002          */
5003         ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5004         rcu_read_lock();
5005         for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5006                 if (ino == orig_ino)
5007                         continue;
5008                 __ext4_update_other_inode_time(sb, orig_ino, ino,
5009                                                (struct ext4_inode *)buf);
5010         }
5011         rcu_read_unlock();
5012 }
5013
5014 /*
5015  * Post the struct inode info into an on-disk inode location in the
5016  * buffer-cache.  This gobbles the caller's reference to the
5017  * buffer_head in the inode location struct.
5018  *
5019  * The caller must have write access to iloc->bh.
5020  */
5021 static int ext4_do_update_inode(handle_t *handle,
5022                                 struct inode *inode,
5023                                 struct ext4_iloc *iloc)
5024 {
5025         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5026         struct ext4_inode_info *ei = EXT4_I(inode);
5027         struct buffer_head *bh = iloc->bh;
5028         struct super_block *sb = inode->i_sb;
5029         int err = 0, block;
5030         int need_datasync = 0, set_large_file = 0;
5031         uid_t i_uid;
5032         gid_t i_gid;
5033         projid_t i_projid;
5034
5035         spin_lock(&ei->i_raw_lock);
5036
5037         /* For fields not tracked in the in-memory inode,
5038          * initialise them to zero for new inodes. */
5039         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5040                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5041
5042         err = ext4_inode_blocks_set(handle, raw_inode, ei);
5043         if (err) {
5044                 spin_unlock(&ei->i_raw_lock);
5045                 goto out_brelse;
5046         }
5047
5048         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5049         i_uid = i_uid_read(inode);
5050         i_gid = i_gid_read(inode);
5051         i_projid = from_kprojid(&init_user_ns, ei->i_projid);
5052         if (!(test_opt(inode->i_sb, NO_UID32))) {
5053                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
5054                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
5055 /*
5056  * Fix up interoperability with old kernels. Otherwise, old inodes get
5057  * re-used with the upper 16 bits of the uid/gid intact
5058  */
5059                 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
5060                         raw_inode->i_uid_high = 0;
5061                         raw_inode->i_gid_high = 0;
5062                 } else {
5063                         raw_inode->i_uid_high =
5064                                 cpu_to_le16(high_16_bits(i_uid));
5065                         raw_inode->i_gid_high =
5066                                 cpu_to_le16(high_16_bits(i_gid));
5067                 }
5068         } else {
5069                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
5070                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
5071                 raw_inode->i_uid_high = 0;
5072                 raw_inode->i_gid_high = 0;
5073         }
5074         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5075
5076         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5077         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5078         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5079         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5080
5081         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5082         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5083         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
5084                 raw_inode->i_file_acl_high =
5085                         cpu_to_le16(ei->i_file_acl >> 32);
5086         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5087         if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode)) {
5088                 ext4_isize_set(raw_inode, ei->i_disksize);
5089                 need_datasync = 1;
5090         }
5091         if (ei->i_disksize > 0x7fffffffULL) {
5092                 if (!ext4_has_feature_large_file(sb) ||
5093                                 EXT4_SB(sb)->s_es->s_rev_level ==
5094                     cpu_to_le32(EXT4_GOOD_OLD_REV))
5095                         set_large_file = 1;
5096         }
5097         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5098         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5099                 if (old_valid_dev(inode->i_rdev)) {
5100                         raw_inode->i_block[0] =
5101                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
5102                         raw_inode->i_block[1] = 0;
5103                 } else {
5104                         raw_inode->i_block[0] = 0;
5105                         raw_inode->i_block[1] =
5106                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
5107                         raw_inode->i_block[2] = 0;
5108                 }
5109         } else if (!ext4_has_inline_data(inode)) {
5110                 for (block = 0; block < EXT4_N_BLOCKS; block++)
5111                         raw_inode->i_block[block] = ei->i_data[block];
5112         }
5113
5114         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5115                 u64 ivers = ext4_inode_peek_iversion(inode);
5116
5117                 raw_inode->i_disk_version = cpu_to_le32(ivers);
5118                 if (ei->i_extra_isize) {
5119                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5120                                 raw_inode->i_version_hi =
5121                                         cpu_to_le32(ivers >> 32);
5122                         raw_inode->i_extra_isize =
5123                                 cpu_to_le16(ei->i_extra_isize);
5124                 }
5125         }
5126
5127         BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5128                i_projid != EXT4_DEF_PROJID);
5129
5130         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5131             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5132                 raw_inode->i_projid = cpu_to_le32(i_projid);
5133
5134         ext4_inode_csum_set(inode, raw_inode, ei);
5135         spin_unlock(&ei->i_raw_lock);
5136         if (inode->i_sb->s_flags & SB_LAZYTIME)
5137                 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5138                                               bh->b_data);
5139
5140         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5141         err = ext4_handle_dirty_metadata(handle, NULL, bh);
5142         if (err)
5143                 goto out_brelse;
5144         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5145         if (set_large_file) {
5146                 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5147                 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5148                 if (err)
5149                         goto out_brelse;
5150                 lock_buffer(EXT4_SB(sb)->s_sbh);
5151                 ext4_set_feature_large_file(sb);
5152                 ext4_superblock_csum_set(sb);
5153                 unlock_buffer(EXT4_SB(sb)->s_sbh);
5154                 ext4_handle_sync(handle);
5155                 err = ext4_handle_dirty_metadata(handle, NULL,
5156                                                  EXT4_SB(sb)->s_sbh);
5157         }
5158         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5159 out_brelse:
5160         brelse(bh);
5161         ext4_std_error(inode->i_sb, err);
5162         return err;
5163 }
5164
5165 /*
5166  * ext4_write_inode()
5167  *
5168  * We are called from a few places:
5169  *
5170  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5171  *   Here, there will be no transaction running. We wait for any running
5172  *   transaction to commit.
5173  *
5174  * - Within flush work (sys_sync(), kupdate and such).
5175  *   We wait on commit, if told to.
5176  *
5177  * - Within iput_final() -> write_inode_now()
5178  *   We wait on commit, if told to.
5179  *
5180  * In all cases it is actually safe for us to return without doing anything,
5181  * because the inode has been copied into a raw inode buffer in
5182  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5183  * writeback.
5184  *
5185  * Note that we are absolutely dependent upon all inode dirtiers doing the
5186  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5187  * which we are interested.
5188  *
5189  * It would be a bug for them to not do this.  The code:
5190  *
5191  *      mark_inode_dirty(inode)
5192  *      stuff();
5193  *      inode->i_size = expr;
5194  *
5195  * is in error because write_inode() could occur while `stuff()' is running,
5196  * and the new i_size will be lost.  Plus the inode will no longer be on the
5197  * superblock's dirty inode list.
5198  */
5199 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5200 {
5201         int err;
5202
5203         if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5204             sb_rdonly(inode->i_sb))
5205                 return 0;
5206
5207         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5208                 return -EIO;
5209
5210         if (EXT4_SB(inode->i_sb)->s_journal) {
5211                 if (ext4_journal_current_handle()) {
5212                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5213                         dump_stack();
5214                         return -EIO;
5215                 }
5216
5217                 /*
5218                  * No need to force transaction in WB_SYNC_NONE mode. Also
5219                  * ext4_sync_fs() will force the commit after everything is
5220                  * written.
5221                  */
5222                 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5223                         return 0;
5224
5225                 err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal,
5226                                                 EXT4_I(inode)->i_sync_tid);
5227         } else {
5228                 struct ext4_iloc iloc;
5229
5230                 err = __ext4_get_inode_loc_noinmem(inode, &iloc);
5231                 if (err)
5232                         return err;
5233                 /*
5234                  * sync(2) will flush the whole buffer cache. No need to do
5235                  * it here separately for each inode.
5236                  */
5237                 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5238                         sync_dirty_buffer(iloc.bh);
5239                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5240                         ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5241                                                "IO error syncing inode");
5242                         err = -EIO;
5243                 }
5244                 brelse(iloc.bh);
5245         }
5246         return err;
5247 }
5248
5249 /*
5250  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5251  * buffers that are attached to a page stradding i_size and are undergoing
5252  * commit. In that case we have to wait for commit to finish and try again.
5253  */
5254 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5255 {
5256         struct page *page;
5257         unsigned offset;
5258         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5259         tid_t commit_tid = 0;
5260         int ret;
5261
5262         offset = inode->i_size & (PAGE_SIZE - 1);
5263         /*
5264          * If the page is fully truncated, we don't need to wait for any commit
5265          * (and we even should not as __ext4_journalled_invalidatepage() may
5266          * strip all buffers from the page but keep the page dirty which can then
5267          * confuse e.g. concurrent ext4_writepage() seeing dirty page without
5268          * buffers). Also we don't need to wait for any commit if all buffers in
5269          * the page remain valid. This is most beneficial for the common case of
5270          * blocksize == PAGESIZE.
5271          */
5272         if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5273                 return;
5274         while (1) {
5275                 page = find_lock_page(inode->i_mapping,
5276                                       inode->i_size >> PAGE_SHIFT);
5277                 if (!page)
5278                         return;
5279                 ret = __ext4_journalled_invalidatepage(page, offset,
5280                                                 PAGE_SIZE - offset);
5281                 unlock_page(page);
5282                 put_page(page);
5283                 if (ret != -EBUSY)
5284                         return;
5285                 commit_tid = 0;
5286                 read_lock(&journal->j_state_lock);
5287                 if (journal->j_committing_transaction)
5288                         commit_tid = journal->j_committing_transaction->t_tid;
5289                 read_unlock(&journal->j_state_lock);
5290                 if (commit_tid)
5291                         jbd2_log_wait_commit(journal, commit_tid);
5292         }
5293 }
5294
5295 /*
5296  * ext4_setattr()
5297  *
5298  * Called from notify_change.
5299  *
5300  * We want to trap VFS attempts to truncate the file as soon as
5301  * possible.  In particular, we want to make sure that when the VFS
5302  * shrinks i_size, we put the inode on the orphan list and modify
5303  * i_disksize immediately, so that during the subsequent flushing of
5304  * dirty pages and freeing of disk blocks, we can guarantee that any
5305  * commit will leave the blocks being flushed in an unused state on
5306  * disk.  (On recovery, the inode will get truncated and the blocks will
5307  * be freed, so we have a strong guarantee that no future commit will
5308  * leave these blocks visible to the user.)
5309  *
5310  * Another thing we have to assure is that if we are in ordered mode
5311  * and inode is still attached to the committing transaction, we must
5312  * we start writeout of all the dirty pages which are being truncated.
5313  * This way we are sure that all the data written in the previous
5314  * transaction are already on disk (truncate waits for pages under
5315  * writeback).
5316  *
5317  * Called with inode->i_mutex down.
5318  */
5319 int ext4_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
5320                  struct iattr *attr)
5321 {
5322         struct inode *inode = d_inode(dentry);
5323         int error, rc = 0;
5324         int orphan = 0;
5325         const unsigned int ia_valid = attr->ia_valid;
5326
5327         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5328                 return -EIO;
5329
5330         if (unlikely(IS_IMMUTABLE(inode)))
5331                 return -EPERM;
5332
5333         if (unlikely(IS_APPEND(inode) &&
5334                      (ia_valid & (ATTR_MODE | ATTR_UID |
5335                                   ATTR_GID | ATTR_TIMES_SET))))
5336                 return -EPERM;
5337
5338         error = setattr_prepare(mnt_userns, dentry, attr);
5339         if (error)
5340                 return error;
5341
5342         error = fscrypt_prepare_setattr(dentry, attr);
5343         if (error)
5344                 return error;
5345
5346         error = fsverity_prepare_setattr(dentry, attr);
5347         if (error)
5348                 return error;
5349
5350         if (is_quota_modification(inode, attr)) {
5351                 error = dquot_initialize(inode);
5352                 if (error)
5353                         return error;
5354         }
5355         ext4_fc_start_update(inode);
5356         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5357             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5358                 handle_t *handle;
5359
5360                 /* (user+group)*(old+new) structure, inode write (sb,
5361                  * inode block, ? - but truncate inode update has it) */
5362                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5363                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5364                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5365                 if (IS_ERR(handle)) {
5366                         error = PTR_ERR(handle);
5367                         goto err_out;
5368                 }
5369
5370                 /* dquot_transfer() calls back ext4_get_inode_usage() which
5371                  * counts xattr inode references.
5372                  */
5373                 down_read(&EXT4_I(inode)->xattr_sem);
5374                 error = dquot_transfer(inode, attr);
5375                 up_read(&EXT4_I(inode)->xattr_sem);
5376
5377                 if (error) {
5378                         ext4_journal_stop(handle);
5379                         ext4_fc_stop_update(inode);
5380                         return error;
5381                 }
5382                 /* Update corresponding info in inode so that everything is in
5383                  * one transaction */
5384                 if (attr->ia_valid & ATTR_UID)
5385                         inode->i_uid = attr->ia_uid;
5386                 if (attr->ia_valid & ATTR_GID)
5387                         inode->i_gid = attr->ia_gid;
5388                 error = ext4_mark_inode_dirty(handle, inode);
5389                 ext4_journal_stop(handle);
5390                 if (unlikely(error)) {
5391                         ext4_fc_stop_update(inode);
5392                         return error;
5393                 }
5394         }
5395
5396         if (attr->ia_valid & ATTR_SIZE) {
5397                 handle_t *handle;
5398                 loff_t oldsize = inode->i_size;
5399                 int shrink = (attr->ia_size < inode->i_size);
5400
5401                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5402                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5403
5404                         if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5405                                 ext4_fc_stop_update(inode);
5406                                 return -EFBIG;
5407                         }
5408                 }
5409                 if (!S_ISREG(inode->i_mode)) {
5410                         ext4_fc_stop_update(inode);
5411                         return -EINVAL;
5412                 }
5413
5414                 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5415                         inode_inc_iversion(inode);
5416
5417                 if (shrink) {
5418                         if (ext4_should_order_data(inode)) {
5419                                 error = ext4_begin_ordered_truncate(inode,
5420                                                             attr->ia_size);
5421                                 if (error)
5422                                         goto err_out;
5423                         }
5424                         /*
5425                          * Blocks are going to be removed from the inode. Wait
5426                          * for dio in flight.
5427                          */
5428                         inode_dio_wait(inode);
5429                 }
5430
5431                 down_write(&EXT4_I(inode)->i_mmap_sem);
5432
5433                 rc = ext4_break_layouts(inode);
5434                 if (rc) {
5435                         up_write(&EXT4_I(inode)->i_mmap_sem);
5436                         goto err_out;
5437                 }
5438
5439                 if (attr->ia_size != inode->i_size) {
5440                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5441                         if (IS_ERR(handle)) {
5442                                 error = PTR_ERR(handle);
5443                                 goto out_mmap_sem;
5444                         }
5445                         if (ext4_handle_valid(handle) && shrink) {
5446                                 error = ext4_orphan_add(handle, inode);
5447                                 orphan = 1;
5448                         }
5449                         /*
5450                          * Update c/mtime on truncate up, ext4_truncate() will
5451                          * update c/mtime in shrink case below
5452                          */
5453                         if (!shrink) {
5454                                 inode->i_mtime = current_time(inode);
5455                                 inode->i_ctime = inode->i_mtime;
5456                         }
5457
5458                         if (shrink)
5459                                 ext4_fc_track_range(handle, inode,
5460                                         (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5461                                         inode->i_sb->s_blocksize_bits,
5462                                         (oldsize > 0 ? oldsize - 1 : 0) >>
5463                                         inode->i_sb->s_blocksize_bits);
5464                         else
5465                                 ext4_fc_track_range(
5466                                         handle, inode,
5467                                         (oldsize > 0 ? oldsize - 1 : oldsize) >>
5468                                         inode->i_sb->s_blocksize_bits,
5469                                         (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5470                                         inode->i_sb->s_blocksize_bits);
5471
5472                         down_write(&EXT4_I(inode)->i_data_sem);
5473                         EXT4_I(inode)->i_disksize = attr->ia_size;
5474                         rc = ext4_mark_inode_dirty(handle, inode);
5475                         if (!error)
5476                                 error = rc;
5477                         /*
5478                          * We have to update i_size under i_data_sem together
5479                          * with i_disksize to avoid races with writeback code
5480                          * running ext4_wb_update_i_disksize().
5481                          */
5482                         if (!error)
5483                                 i_size_write(inode, attr->ia_size);
5484                         up_write(&EXT4_I(inode)->i_data_sem);
5485                         ext4_journal_stop(handle);
5486                         if (error)
5487                                 goto out_mmap_sem;
5488                         if (!shrink) {
5489                                 pagecache_isize_extended(inode, oldsize,
5490                                                          inode->i_size);
5491                         } else if (ext4_should_journal_data(inode)) {
5492                                 ext4_wait_for_tail_page_commit(inode);
5493                         }
5494                 }
5495
5496                 /*
5497                  * Truncate pagecache after we've waited for commit
5498                  * in data=journal mode to make pages freeable.
5499                  */
5500                 truncate_pagecache(inode, inode->i_size);
5501                 /*
5502                  * Call ext4_truncate() even if i_size didn't change to
5503                  * truncate possible preallocated blocks.
5504                  */
5505                 if (attr->ia_size <= oldsize) {
5506                         rc = ext4_truncate(inode);
5507                         if (rc)
5508                                 error = rc;
5509                 }
5510 out_mmap_sem:
5511                 up_write(&EXT4_I(inode)->i_mmap_sem);
5512         }
5513
5514         if (!error) {
5515                 setattr_copy(mnt_userns, inode, attr);
5516                 mark_inode_dirty(inode);
5517         }
5518
5519         /*
5520          * If the call to ext4_truncate failed to get a transaction handle at
5521          * all, we need to clean up the in-core orphan list manually.
5522          */
5523         if (orphan && inode->i_nlink)
5524                 ext4_orphan_del(NULL, inode);
5525
5526         if (!error && (ia_valid & ATTR_MODE))
5527                 rc = posix_acl_chmod(mnt_userns, inode, inode->i_mode);
5528
5529 err_out:
5530         if  (error)
5531                 ext4_std_error(inode->i_sb, error);
5532         if (!error)
5533                 error = rc;
5534         ext4_fc_stop_update(inode);
5535         return error;
5536 }
5537
5538 int ext4_getattr(struct user_namespace *mnt_userns, const struct path *path,
5539                  struct kstat *stat, u32 request_mask, unsigned int query_flags)
5540 {
5541         struct inode *inode = d_inode(path->dentry);
5542         struct ext4_inode *raw_inode;
5543         struct ext4_inode_info *ei = EXT4_I(inode);
5544         unsigned int flags;
5545
5546         if ((request_mask & STATX_BTIME) &&
5547             EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5548                 stat->result_mask |= STATX_BTIME;
5549                 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5550                 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5551         }
5552
5553         flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5554         if (flags & EXT4_APPEND_FL)
5555                 stat->attributes |= STATX_ATTR_APPEND;
5556         if (flags & EXT4_COMPR_FL)
5557                 stat->attributes |= STATX_ATTR_COMPRESSED;
5558         if (flags & EXT4_ENCRYPT_FL)
5559                 stat->attributes |= STATX_ATTR_ENCRYPTED;
5560         if (flags & EXT4_IMMUTABLE_FL)
5561                 stat->attributes |= STATX_ATTR_IMMUTABLE;
5562         if (flags & EXT4_NODUMP_FL)
5563                 stat->attributes |= STATX_ATTR_NODUMP;
5564         if (flags & EXT4_VERITY_FL)
5565                 stat->attributes |= STATX_ATTR_VERITY;
5566
5567         stat->attributes_mask |= (STATX_ATTR_APPEND |
5568                                   STATX_ATTR_COMPRESSED |
5569                                   STATX_ATTR_ENCRYPTED |
5570                                   STATX_ATTR_IMMUTABLE |
5571                                   STATX_ATTR_NODUMP |
5572                                   STATX_ATTR_VERITY);
5573
5574         generic_fillattr(mnt_userns, inode, stat);
5575         return 0;
5576 }
5577
5578 int ext4_file_getattr(struct user_namespace *mnt_userns,
5579                       const struct path *path, struct kstat *stat,
5580                       u32 request_mask, unsigned int query_flags)
5581 {
5582         struct inode *inode = d_inode(path->dentry);
5583         u64 delalloc_blocks;
5584
5585         ext4_getattr(mnt_userns, path, stat, request_mask, query_flags);
5586
5587         /*
5588          * If there is inline data in the inode, the inode will normally not
5589          * have data blocks allocated (it may have an external xattr block).
5590          * Report at least one sector for such files, so tools like tar, rsync,
5591          * others don't incorrectly think the file is completely sparse.
5592          */
5593         if (unlikely(ext4_has_inline_data(inode)))
5594                 stat->blocks += (stat->size + 511) >> 9;
5595
5596         /*
5597          * We can't update i_blocks if the block allocation is delayed
5598          * otherwise in the case of system crash before the real block
5599          * allocation is done, we will have i_blocks inconsistent with
5600          * on-disk file blocks.
5601          * We always keep i_blocks updated together with real
5602          * allocation. But to not confuse with user, stat
5603          * will return the blocks that include the delayed allocation
5604          * blocks for this file.
5605          */
5606         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5607                                    EXT4_I(inode)->i_reserved_data_blocks);
5608         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5609         return 0;
5610 }
5611
5612 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5613                                    int pextents)
5614 {
5615         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5616                 return ext4_ind_trans_blocks(inode, lblocks);
5617         return ext4_ext_index_trans_blocks(inode, pextents);
5618 }
5619
5620 /*
5621  * Account for index blocks, block groups bitmaps and block group
5622  * descriptor blocks if modify datablocks and index blocks
5623  * worse case, the indexs blocks spread over different block groups
5624  *
5625  * If datablocks are discontiguous, they are possible to spread over
5626  * different block groups too. If they are contiguous, with flexbg,
5627  * they could still across block group boundary.
5628  *
5629  * Also account for superblock, inode, quota and xattr blocks
5630  */
5631 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5632                                   int pextents)
5633 {
5634         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5635         int gdpblocks;
5636         int idxblocks;
5637         int ret = 0;
5638
5639         /*
5640          * How many index blocks need to touch to map @lblocks logical blocks
5641          * to @pextents physical extents?
5642          */
5643         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5644
5645         ret = idxblocks;
5646
5647         /*
5648          * Now let's see how many group bitmaps and group descriptors need
5649          * to account
5650          */
5651         groups = idxblocks + pextents;
5652         gdpblocks = groups;
5653         if (groups > ngroups)
5654                 groups = ngroups;
5655         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5656                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5657
5658         /* bitmaps and block group descriptor blocks */
5659         ret += groups + gdpblocks;
5660
5661         /* Blocks for super block, inode, quota and xattr blocks */
5662         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5663
5664         return ret;
5665 }
5666
5667 /*
5668  * Calculate the total number of credits to reserve to fit
5669  * the modification of a single pages into a single transaction,
5670  * which may include multiple chunks of block allocations.
5671  *
5672  * This could be called via ext4_write_begin()
5673  *
5674  * We need to consider the worse case, when
5675  * one new block per extent.
5676  */
5677 int ext4_writepage_trans_blocks(struct inode *inode)
5678 {
5679         int bpp = ext4_journal_blocks_per_page(inode);
5680         int ret;
5681
5682         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5683
5684         /* Account for data blocks for journalled mode */
5685         if (ext4_should_journal_data(inode))
5686                 ret += bpp;
5687         return ret;
5688 }
5689
5690 /*
5691  * Calculate the journal credits for a chunk of data modification.
5692  *
5693  * This is called from DIO, fallocate or whoever calling
5694  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5695  *
5696  * journal buffers for data blocks are not included here, as DIO
5697  * and fallocate do no need to journal data buffers.
5698  */
5699 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5700 {
5701         return ext4_meta_trans_blocks(inode, nrblocks, 1);
5702 }
5703
5704 /*
5705  * The caller must have previously called ext4_reserve_inode_write().
5706  * Give this, we know that the caller already has write access to iloc->bh.
5707  */
5708 int ext4_mark_iloc_dirty(handle_t *handle,
5709                          struct inode *inode, struct ext4_iloc *iloc)
5710 {
5711         int err = 0;
5712
5713         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5714                 put_bh(iloc->bh);
5715                 return -EIO;
5716         }
5717         ext4_fc_track_inode(handle, inode);
5718
5719         if (IS_I_VERSION(inode))
5720                 inode_inc_iversion(inode);
5721
5722         /* the do_update_inode consumes one bh->b_count */
5723         get_bh(iloc->bh);
5724
5725         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5726         err = ext4_do_update_inode(handle, inode, iloc);
5727         put_bh(iloc->bh);
5728         return err;
5729 }
5730
5731 /*
5732  * On success, We end up with an outstanding reference count against
5733  * iloc->bh.  This _must_ be cleaned up later.
5734  */
5735
5736 int
5737 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5738                          struct ext4_iloc *iloc)
5739 {
5740         int err;
5741
5742         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5743                 return -EIO;
5744
5745         err = ext4_get_inode_loc(inode, iloc);
5746         if (!err) {
5747                 BUFFER_TRACE(iloc->bh, "get_write_access");
5748                 err = ext4_journal_get_write_access(handle, iloc->bh);
5749                 if (err) {
5750                         brelse(iloc->bh);
5751                         iloc->bh = NULL;
5752                 }
5753         }
5754         ext4_std_error(inode->i_sb, err);
5755         return err;
5756 }
5757
5758 static int __ext4_expand_extra_isize(struct inode *inode,
5759                                      unsigned int new_extra_isize,
5760                                      struct ext4_iloc *iloc,
5761                                      handle_t *handle, int *no_expand)
5762 {
5763         struct ext4_inode *raw_inode;
5764         struct ext4_xattr_ibody_header *header;
5765         unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5766         struct ext4_inode_info *ei = EXT4_I(inode);
5767         int error;
5768
5769         /* this was checked at iget time, but double check for good measure */
5770         if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5771             (ei->i_extra_isize & 3)) {
5772                 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5773                                  ei->i_extra_isize,
5774                                  EXT4_INODE_SIZE(inode->i_sb));
5775                 return -EFSCORRUPTED;
5776         }
5777         if ((new_extra_isize < ei->i_extra_isize) ||
5778             (new_extra_isize < 4) ||
5779             (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5780                 return -EINVAL; /* Should never happen */
5781
5782         raw_inode = ext4_raw_inode(iloc);
5783
5784         header = IHDR(inode, raw_inode);
5785
5786         /* No extended attributes present */
5787         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5788             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5789                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5790                        EXT4_I(inode)->i_extra_isize, 0,
5791                        new_extra_isize - EXT4_I(inode)->i_extra_isize);
5792                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5793                 return 0;
5794         }
5795
5796         /* try to expand with EAs present */
5797         error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5798                                            raw_inode, handle);
5799         if (error) {
5800                 /*
5801                  * Inode size expansion failed; don't try again
5802                  */
5803                 *no_expand = 1;
5804         }
5805
5806         return error;
5807 }
5808
5809 /*
5810  * Expand an inode by new_extra_isize bytes.
5811  * Returns 0 on success or negative error number on failure.
5812  */
5813 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5814                                           unsigned int new_extra_isize,
5815                                           struct ext4_iloc iloc,
5816                                           handle_t *handle)
5817 {
5818         int no_expand;
5819         int error;
5820
5821         if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5822                 return -EOVERFLOW;
5823
5824         /*
5825          * In nojournal mode, we can immediately attempt to expand
5826          * the inode.  When journaled, we first need to obtain extra
5827          * buffer credits since we may write into the EA block
5828          * with this same handle. If journal_extend fails, then it will
5829          * only result in a minor loss of functionality for that inode.
5830          * If this is felt to be critical, then e2fsck should be run to
5831          * force a large enough s_min_extra_isize.
5832          */
5833         if (ext4_journal_extend(handle,
5834                                 EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5835                 return -ENOSPC;
5836
5837         if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5838                 return -EBUSY;
5839
5840         error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5841                                           handle, &no_expand);
5842         ext4_write_unlock_xattr(inode, &no_expand);
5843
5844         return error;
5845 }
5846
5847 int ext4_expand_extra_isize(struct inode *inode,
5848                             unsigned int new_extra_isize,
5849                             struct ext4_iloc *iloc)
5850 {
5851         handle_t *handle;
5852         int no_expand;
5853         int error, rc;
5854
5855         if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5856                 brelse(iloc->bh);
5857                 return -EOVERFLOW;
5858         }
5859
5860         handle = ext4_journal_start(inode, EXT4_HT_INODE,
5861                                     EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5862         if (IS_ERR(handle)) {
5863                 error = PTR_ERR(handle);
5864                 brelse(iloc->bh);
5865                 return error;
5866         }
5867
5868         ext4_write_lock_xattr(inode, &no_expand);
5869
5870         BUFFER_TRACE(iloc->bh, "get_write_access");
5871         error = ext4_journal_get_write_access(handle, iloc->bh);
5872         if (error) {
5873                 brelse(iloc->bh);
5874                 goto out_unlock;
5875         }
5876
5877         error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5878                                           handle, &no_expand);
5879
5880         rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5881         if (!error)
5882                 error = rc;
5883
5884 out_unlock:
5885         ext4_write_unlock_xattr(inode, &no_expand);
5886         ext4_journal_stop(handle);
5887         return error;
5888 }
5889
5890 /*
5891  * What we do here is to mark the in-core inode as clean with respect to inode
5892  * dirtiness (it may still be data-dirty).
5893  * This means that the in-core inode may be reaped by prune_icache
5894  * without having to perform any I/O.  This is a very good thing,
5895  * because *any* task may call prune_icache - even ones which
5896  * have a transaction open against a different journal.
5897  *
5898  * Is this cheating?  Not really.  Sure, we haven't written the
5899  * inode out, but prune_icache isn't a user-visible syncing function.
5900  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5901  * we start and wait on commits.
5902  */
5903 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
5904                                 const char *func, unsigned int line)
5905 {
5906         struct ext4_iloc iloc;
5907         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5908         int err;
5909
5910         might_sleep();
5911         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5912         err = ext4_reserve_inode_write(handle, inode, &iloc);
5913         if (err)
5914                 goto out;
5915
5916         if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5917                 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5918                                                iloc, handle);
5919
5920         err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5921 out:
5922         if (unlikely(err))
5923                 ext4_error_inode_err(inode, func, line, 0, err,
5924                                         "mark_inode_dirty error");
5925         return err;
5926 }
5927
5928 /*
5929  * ext4_dirty_inode() is called from __mark_inode_dirty()
5930  *
5931  * We're really interested in the case where a file is being extended.
5932  * i_size has been changed by generic_commit_write() and we thus need
5933  * to include the updated inode in the current transaction.
5934  *
5935  * Also, dquot_alloc_block() will always dirty the inode when blocks
5936  * are allocated to the file.
5937  *
5938  * If the inode is marked synchronous, we don't honour that here - doing
5939  * so would cause a commit on atime updates, which we don't bother doing.
5940  * We handle synchronous inodes at the highest possible level.
5941  */
5942 void ext4_dirty_inode(struct inode *inode, int flags)
5943 {
5944         handle_t *handle;
5945
5946         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5947         if (IS_ERR(handle))
5948                 return;
5949         ext4_mark_inode_dirty(handle, inode);
5950         ext4_journal_stop(handle);
5951 }
5952
5953 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5954 {
5955         journal_t *journal;
5956         handle_t *handle;
5957         int err;
5958         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5959
5960         /*
5961          * We have to be very careful here: changing a data block's
5962          * journaling status dynamically is dangerous.  If we write a
5963          * data block to the journal, change the status and then delete
5964          * that block, we risk forgetting to revoke the old log record
5965          * from the journal and so a subsequent replay can corrupt data.
5966          * So, first we make sure that the journal is empty and that
5967          * nobody is changing anything.
5968          */
5969
5970         journal = EXT4_JOURNAL(inode);
5971         if (!journal)
5972                 return 0;
5973         if (is_journal_aborted(journal))
5974                 return -EROFS;
5975
5976         /* Wait for all existing dio workers */
5977         inode_dio_wait(inode);
5978
5979         /*
5980          * Before flushing the journal and switching inode's aops, we have
5981          * to flush all dirty data the inode has. There can be outstanding
5982          * delayed allocations, there can be unwritten extents created by
5983          * fallocate or buffered writes in dioread_nolock mode covered by
5984          * dirty data which can be converted only after flushing the dirty
5985          * data (and journalled aops don't know how to handle these cases).
5986          */
5987         if (val) {
5988                 down_write(&EXT4_I(inode)->i_mmap_sem);
5989                 err = filemap_write_and_wait(inode->i_mapping);
5990                 if (err < 0) {
5991                         up_write(&EXT4_I(inode)->i_mmap_sem);
5992                         return err;
5993                 }
5994         }
5995
5996         percpu_down_write(&sbi->s_writepages_rwsem);
5997         jbd2_journal_lock_updates(journal);
5998
5999         /*
6000          * OK, there are no updates running now, and all cached data is
6001          * synced to disk.  We are now in a completely consistent state
6002          * which doesn't have anything in the journal, and we know that
6003          * no filesystem updates are running, so it is safe to modify
6004          * the inode's in-core data-journaling state flag now.
6005          */
6006
6007         if (val)
6008                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6009         else {
6010                 err = jbd2_journal_flush(journal);
6011                 if (err < 0) {
6012                         jbd2_journal_unlock_updates(journal);
6013                         percpu_up_write(&sbi->s_writepages_rwsem);
6014                         return err;
6015                 }
6016                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6017         }
6018         ext4_set_aops(inode);
6019
6020         jbd2_journal_unlock_updates(journal);
6021         percpu_up_write(&sbi->s_writepages_rwsem);
6022
6023         if (val)
6024                 up_write(&EXT4_I(inode)->i_mmap_sem);
6025
6026         /* Finally we can mark the inode as dirty. */
6027
6028         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6029         if (IS_ERR(handle))
6030                 return PTR_ERR(handle);
6031
6032         ext4_fc_mark_ineligible(inode->i_sb,
6033                 EXT4_FC_REASON_JOURNAL_FLAG_CHANGE);
6034         err = ext4_mark_inode_dirty(handle, inode);
6035         ext4_handle_sync(handle);
6036         ext4_journal_stop(handle);
6037         ext4_std_error(inode->i_sb, err);
6038
6039         return err;
6040 }
6041
6042 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
6043 {
6044         return !buffer_mapped(bh);
6045 }
6046
6047 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6048 {
6049         struct vm_area_struct *vma = vmf->vma;
6050         struct page *page = vmf->page;
6051         loff_t size;
6052         unsigned long len;
6053         int err;
6054         vm_fault_t ret;
6055         struct file *file = vma->vm_file;
6056         struct inode *inode = file_inode(file);
6057         struct address_space *mapping = inode->i_mapping;
6058         handle_t *handle;
6059         get_block_t *get_block;
6060         int retries = 0;
6061
6062         if (unlikely(IS_IMMUTABLE(inode)))
6063                 return VM_FAULT_SIGBUS;
6064
6065         sb_start_pagefault(inode->i_sb);
6066         file_update_time(vma->vm_file);
6067
6068         down_read(&EXT4_I(inode)->i_mmap_sem);
6069
6070         err = ext4_convert_inline_data(inode);
6071         if (err)
6072                 goto out_ret;
6073
6074         /*
6075          * On data journalling we skip straight to the transaction handle:
6076          * there's no delalloc; page truncated will be checked later; the
6077          * early return w/ all buffers mapped (calculates size/len) can't
6078          * be used; and there's no dioread_nolock, so only ext4_get_block.
6079          */
6080         if (ext4_should_journal_data(inode))
6081                 goto retry_alloc;
6082
6083         /* Delalloc case is easy... */
6084         if (test_opt(inode->i_sb, DELALLOC) &&
6085             !ext4_nonda_switch(inode->i_sb)) {
6086                 do {
6087                         err = block_page_mkwrite(vma, vmf,
6088                                                    ext4_da_get_block_prep);
6089                 } while (err == -ENOSPC &&
6090                        ext4_should_retry_alloc(inode->i_sb, &retries));
6091                 goto out_ret;
6092         }
6093
6094         lock_page(page);
6095         size = i_size_read(inode);
6096         /* Page got truncated from under us? */
6097         if (page->mapping != mapping || page_offset(page) > size) {
6098                 unlock_page(page);
6099                 ret = VM_FAULT_NOPAGE;
6100                 goto out;
6101         }
6102
6103         if (page->index == size >> PAGE_SHIFT)
6104                 len = size & ~PAGE_MASK;
6105         else
6106                 len = PAGE_SIZE;
6107         /*
6108          * Return if we have all the buffers mapped. This avoids the need to do
6109          * journal_start/journal_stop which can block and take a long time
6110          *
6111          * This cannot be done for data journalling, as we have to add the
6112          * inode to the transaction's list to writeprotect pages on commit.
6113          */
6114         if (page_has_buffers(page)) {
6115                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
6116                                             0, len, NULL,
6117                                             ext4_bh_unmapped)) {
6118                         /* Wait so that we don't change page under IO */
6119                         wait_for_stable_page(page);
6120                         ret = VM_FAULT_LOCKED;
6121                         goto out;
6122                 }
6123         }
6124         unlock_page(page);
6125         /* OK, we need to fill the hole... */
6126         if (ext4_should_dioread_nolock(inode))
6127                 get_block = ext4_get_block_unwritten;
6128         else
6129                 get_block = ext4_get_block;
6130 retry_alloc:
6131         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6132                                     ext4_writepage_trans_blocks(inode));
6133         if (IS_ERR(handle)) {
6134                 ret = VM_FAULT_SIGBUS;
6135                 goto out;
6136         }
6137         /*
6138          * Data journalling can't use block_page_mkwrite() because it
6139          * will set_buffer_dirty() before do_journal_get_write_access()
6140          * thus might hit warning messages for dirty metadata buffers.
6141          */
6142         if (!ext4_should_journal_data(inode)) {
6143                 err = block_page_mkwrite(vma, vmf, get_block);
6144         } else {
6145                 lock_page(page);
6146                 size = i_size_read(inode);
6147                 /* Page got truncated from under us? */
6148                 if (page->mapping != mapping || page_offset(page) > size) {
6149                         ret = VM_FAULT_NOPAGE;
6150                         goto out_error;
6151                 }
6152
6153                 if (page->index == size >> PAGE_SHIFT)
6154                         len = size & ~PAGE_MASK;
6155                 else
6156                         len = PAGE_SIZE;
6157
6158                 err = __block_write_begin(page, 0, len, ext4_get_block);
6159                 if (!err) {
6160                         ret = VM_FAULT_SIGBUS;
6161                         if (ext4_walk_page_buffers(handle, page_buffers(page),
6162                                         0, len, NULL, do_journal_get_write_access))
6163                                 goto out_error;
6164                         if (ext4_walk_page_buffers(handle, page_buffers(page),
6165                                         0, len, NULL, write_end_fn))
6166                                 goto out_error;
6167                         if (ext4_jbd2_inode_add_write(handle, inode,
6168                                                       page_offset(page), len))
6169                                 goto out_error;
6170                         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6171                 } else {
6172                         unlock_page(page);
6173                 }
6174         }
6175         ext4_journal_stop(handle);
6176         if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6177                 goto retry_alloc;
6178 out_ret:
6179         ret = block_page_mkwrite_return(err);
6180 out:
6181         up_read(&EXT4_I(inode)->i_mmap_sem);
6182         sb_end_pagefault(inode->i_sb);
6183         return ret;
6184 out_error:
6185         unlock_page(page);
6186         ext4_journal_stop(handle);
6187         goto out;
6188 }
6189
6190 vm_fault_t ext4_filemap_fault(struct vm_fault *vmf)
6191 {
6192         struct inode *inode = file_inode(vmf->vma->vm_file);
6193         vm_fault_t ret;
6194
6195         down_read(&EXT4_I(inode)->i_mmap_sem);
6196         ret = filemap_fault(vmf);
6197         up_read(&EXT4_I(inode)->i_mmap_sem);
6198
6199         return ret;
6200 }