081b6a86b5db0c8d3b13892df2387cd0645f7fc5
[linux-2.6-microblaze.git] / fs / ext4 / inode.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  64-bit file support on 64-bit platforms by Jakub Jelinek
17  *      (jj@sunsite.ms.mff.cuni.cz)
18  *
19  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20  */
21
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/dax.h>
27 #include <linux/quotaops.h>
28 #include <linux/string.h>
29 #include <linux/buffer_head.h>
30 #include <linux/writeback.h>
31 #include <linux/pagevec.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/uio.h>
35 #include <linux/bio.h>
36 #include <linux/workqueue.h>
37 #include <linux/kernel.h>
38 #include <linux/printk.h>
39 #include <linux/slab.h>
40 #include <linux/bitops.h>
41 #include <linux/iomap.h>
42 #include <linux/iversion.h>
43
44 #include "ext4_jbd2.h"
45 #include "xattr.h"
46 #include "acl.h"
47 #include "truncate.h"
48
49 #include <trace/events/ext4.h>
50
51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52                               struct ext4_inode_info *ei)
53 {
54         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55         __u32 csum;
56         __u16 dummy_csum = 0;
57         int offset = offsetof(struct ext4_inode, i_checksum_lo);
58         unsigned int csum_size = sizeof(dummy_csum);
59
60         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
61         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
62         offset += csum_size;
63         csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
64                            EXT4_GOOD_OLD_INODE_SIZE - offset);
65
66         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
67                 offset = offsetof(struct ext4_inode, i_checksum_hi);
68                 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
69                                    EXT4_GOOD_OLD_INODE_SIZE,
70                                    offset - EXT4_GOOD_OLD_INODE_SIZE);
71                 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
72                         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
73                                            csum_size);
74                         offset += csum_size;
75                 }
76                 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
77                                    EXT4_INODE_SIZE(inode->i_sb) - offset);
78         }
79
80         return csum;
81 }
82
83 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
84                                   struct ext4_inode_info *ei)
85 {
86         __u32 provided, calculated;
87
88         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
89             cpu_to_le32(EXT4_OS_LINUX) ||
90             !ext4_has_metadata_csum(inode->i_sb))
91                 return 1;
92
93         provided = le16_to_cpu(raw->i_checksum_lo);
94         calculated = ext4_inode_csum(inode, raw, ei);
95         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
96             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
97                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
98         else
99                 calculated &= 0xFFFF;
100
101         return provided == calculated;
102 }
103
104 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
105                          struct ext4_inode_info *ei)
106 {
107         __u32 csum;
108
109         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
110             cpu_to_le32(EXT4_OS_LINUX) ||
111             !ext4_has_metadata_csum(inode->i_sb))
112                 return;
113
114         csum = ext4_inode_csum(inode, raw, ei);
115         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
116         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
117             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
118                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
119 }
120
121 static inline int ext4_begin_ordered_truncate(struct inode *inode,
122                                               loff_t new_size)
123 {
124         trace_ext4_begin_ordered_truncate(inode, new_size);
125         /*
126          * If jinode is zero, then we never opened the file for
127          * writing, so there's no need to call
128          * jbd2_journal_begin_ordered_truncate() since there's no
129          * outstanding writes we need to flush.
130          */
131         if (!EXT4_I(inode)->jinode)
132                 return 0;
133         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
134                                                    EXT4_I(inode)->jinode,
135                                                    new_size);
136 }
137
138 static void ext4_invalidatepage(struct page *page, unsigned int offset,
139                                 unsigned int length);
140 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
141 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
142 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
143                                   int pextents);
144
145 /*
146  * Test whether an inode is a fast symlink.
147  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
148  */
149 int ext4_inode_is_fast_symlink(struct inode *inode)
150 {
151         if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
152                 int ea_blocks = EXT4_I(inode)->i_file_acl ?
153                                 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
154
155                 if (ext4_has_inline_data(inode))
156                         return 0;
157
158                 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
159         }
160         return S_ISLNK(inode->i_mode) && inode->i_size &&
161                (inode->i_size < EXT4_N_BLOCKS * 4);
162 }
163
164 /*
165  * Called at the last iput() if i_nlink is zero.
166  */
167 void ext4_evict_inode(struct inode *inode)
168 {
169         handle_t *handle;
170         int err;
171         /*
172          * Credits for final inode cleanup and freeing:
173          * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
174          * (xattr block freeing), bitmap, group descriptor (inode freeing)
175          */
176         int extra_credits = 6;
177         struct ext4_xattr_inode_array *ea_inode_array = NULL;
178
179         trace_ext4_evict_inode(inode);
180
181         if (inode->i_nlink) {
182                 /*
183                  * When journalling data dirty buffers are tracked only in the
184                  * journal. So although mm thinks everything is clean and
185                  * ready for reaping the inode might still have some pages to
186                  * write in the running transaction or waiting to be
187                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
188                  * (via truncate_inode_pages()) to discard these buffers can
189                  * cause data loss. Also even if we did not discard these
190                  * buffers, we would have no way to find them after the inode
191                  * is reaped and thus user could see stale data if he tries to
192                  * read them before the transaction is checkpointed. So be
193                  * careful and force everything to disk here... We use
194                  * ei->i_datasync_tid to store the newest transaction
195                  * containing inode's data.
196                  *
197                  * Note that directories do not have this problem because they
198                  * don't use page cache.
199                  */
200                 if (inode->i_ino != EXT4_JOURNAL_INO &&
201                     ext4_should_journal_data(inode) &&
202                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
203                     inode->i_data.nrpages) {
204                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
205                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
206
207                         jbd2_complete_transaction(journal, commit_tid);
208                         filemap_write_and_wait(&inode->i_data);
209                 }
210                 truncate_inode_pages_final(&inode->i_data);
211
212                 goto no_delete;
213         }
214
215         if (is_bad_inode(inode))
216                 goto no_delete;
217         dquot_initialize(inode);
218
219         if (ext4_should_order_data(inode))
220                 ext4_begin_ordered_truncate(inode, 0);
221         truncate_inode_pages_final(&inode->i_data);
222
223         /*
224          * For inodes with journalled data, transaction commit could have
225          * dirtied the inode. Flush worker is ignoring it because of I_FREEING
226          * flag but we still need to remove the inode from the writeback lists.
227          */
228         if (!list_empty_careful(&inode->i_io_list)) {
229                 WARN_ON_ONCE(!ext4_should_journal_data(inode));
230                 inode_io_list_del(inode);
231         }
232
233         /*
234          * Protect us against freezing - iput() caller didn't have to have any
235          * protection against it
236          */
237         sb_start_intwrite(inode->i_sb);
238
239         if (!IS_NOQUOTA(inode))
240                 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
241
242         /*
243          * Block bitmap, group descriptor, and inode are accounted in both
244          * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
245          */
246         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
247                          ext4_blocks_for_truncate(inode) + extra_credits - 3);
248         if (IS_ERR(handle)) {
249                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
250                 /*
251                  * If we're going to skip the normal cleanup, we still need to
252                  * make sure that the in-core orphan linked list is properly
253                  * cleaned up.
254                  */
255                 ext4_orphan_del(NULL, inode);
256                 sb_end_intwrite(inode->i_sb);
257                 goto no_delete;
258         }
259
260         if (IS_SYNC(inode))
261                 ext4_handle_sync(handle);
262
263         /*
264          * Set inode->i_size to 0 before calling ext4_truncate(). We need
265          * special handling of symlinks here because i_size is used to
266          * determine whether ext4_inode_info->i_data contains symlink data or
267          * block mappings. Setting i_size to 0 will remove its fast symlink
268          * status. Erase i_data so that it becomes a valid empty block map.
269          */
270         if (ext4_inode_is_fast_symlink(inode))
271                 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
272         inode->i_size = 0;
273         err = ext4_mark_inode_dirty(handle, inode);
274         if (err) {
275                 ext4_warning(inode->i_sb,
276                              "couldn't mark inode dirty (err %d)", err);
277                 goto stop_handle;
278         }
279         if (inode->i_blocks) {
280                 err = ext4_truncate(inode);
281                 if (err) {
282                         ext4_error_err(inode->i_sb, -err,
283                                        "couldn't truncate inode %lu (err %d)",
284                                        inode->i_ino, err);
285                         goto stop_handle;
286                 }
287         }
288
289         /* Remove xattr references. */
290         err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
291                                       extra_credits);
292         if (err) {
293                 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
294 stop_handle:
295                 ext4_journal_stop(handle);
296                 ext4_orphan_del(NULL, inode);
297                 sb_end_intwrite(inode->i_sb);
298                 ext4_xattr_inode_array_free(ea_inode_array);
299                 goto no_delete;
300         }
301
302         /*
303          * Kill off the orphan record which ext4_truncate created.
304          * AKPM: I think this can be inside the above `if'.
305          * Note that ext4_orphan_del() has to be able to cope with the
306          * deletion of a non-existent orphan - this is because we don't
307          * know if ext4_truncate() actually created an orphan record.
308          * (Well, we could do this if we need to, but heck - it works)
309          */
310         ext4_orphan_del(handle, inode);
311         EXT4_I(inode)->i_dtime  = (__u32)ktime_get_real_seconds();
312
313         /*
314          * One subtle ordering requirement: if anything has gone wrong
315          * (transaction abort, IO errors, whatever), then we can still
316          * do these next steps (the fs will already have been marked as
317          * having errors), but we can't free the inode if the mark_dirty
318          * fails.
319          */
320         if (ext4_mark_inode_dirty(handle, inode))
321                 /* If that failed, just do the required in-core inode clear. */
322                 ext4_clear_inode(inode);
323         else
324                 ext4_free_inode(handle, inode);
325         ext4_journal_stop(handle);
326         sb_end_intwrite(inode->i_sb);
327         ext4_xattr_inode_array_free(ea_inode_array);
328         return;
329 no_delete:
330         if (!list_empty(&EXT4_I(inode)->i_fc_list))
331                 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM);
332         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
333 }
334
335 #ifdef CONFIG_QUOTA
336 qsize_t *ext4_get_reserved_space(struct inode *inode)
337 {
338         return &EXT4_I(inode)->i_reserved_quota;
339 }
340 #endif
341
342 /*
343  * Called with i_data_sem down, which is important since we can call
344  * ext4_discard_preallocations() from here.
345  */
346 void ext4_da_update_reserve_space(struct inode *inode,
347                                         int used, int quota_claim)
348 {
349         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
350         struct ext4_inode_info *ei = EXT4_I(inode);
351
352         spin_lock(&ei->i_block_reservation_lock);
353         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
354         if (unlikely(used > ei->i_reserved_data_blocks)) {
355                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
356                          "with only %d reserved data blocks",
357                          __func__, inode->i_ino, used,
358                          ei->i_reserved_data_blocks);
359                 WARN_ON(1);
360                 used = ei->i_reserved_data_blocks;
361         }
362
363         /* Update per-inode reservations */
364         ei->i_reserved_data_blocks -= used;
365         percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
366
367         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
368
369         /* Update quota subsystem for data blocks */
370         if (quota_claim)
371                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
372         else {
373                 /*
374                  * We did fallocate with an offset that is already delayed
375                  * allocated. So on delayed allocated writeback we should
376                  * not re-claim the quota for fallocated blocks.
377                  */
378                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
379         }
380
381         /*
382          * If we have done all the pending block allocations and if
383          * there aren't any writers on the inode, we can discard the
384          * inode's preallocations.
385          */
386         if ((ei->i_reserved_data_blocks == 0) &&
387             !inode_is_open_for_write(inode))
388                 ext4_discard_preallocations(inode, 0);
389 }
390
391 static int __check_block_validity(struct inode *inode, const char *func,
392                                 unsigned int line,
393                                 struct ext4_map_blocks *map)
394 {
395         if (ext4_has_feature_journal(inode->i_sb) &&
396             (inode->i_ino ==
397              le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
398                 return 0;
399         if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
400                 ext4_error_inode(inode, func, line, map->m_pblk,
401                                  "lblock %lu mapped to illegal pblock %llu "
402                                  "(length %d)", (unsigned long) map->m_lblk,
403                                  map->m_pblk, map->m_len);
404                 return -EFSCORRUPTED;
405         }
406         return 0;
407 }
408
409 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
410                        ext4_lblk_t len)
411 {
412         int ret;
413
414         if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
415                 return fscrypt_zeroout_range(inode, lblk, pblk, len);
416
417         ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
418         if (ret > 0)
419                 ret = 0;
420
421         return ret;
422 }
423
424 #define check_block_validity(inode, map)        \
425         __check_block_validity((inode), __func__, __LINE__, (map))
426
427 #ifdef ES_AGGRESSIVE_TEST
428 static void ext4_map_blocks_es_recheck(handle_t *handle,
429                                        struct inode *inode,
430                                        struct ext4_map_blocks *es_map,
431                                        struct ext4_map_blocks *map,
432                                        int flags)
433 {
434         int retval;
435
436         map->m_flags = 0;
437         /*
438          * There is a race window that the result is not the same.
439          * e.g. xfstests #223 when dioread_nolock enables.  The reason
440          * is that we lookup a block mapping in extent status tree with
441          * out taking i_data_sem.  So at the time the unwritten extent
442          * could be converted.
443          */
444         down_read(&EXT4_I(inode)->i_data_sem);
445         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
446                 retval = ext4_ext_map_blocks(handle, inode, map, 0);
447         } else {
448                 retval = ext4_ind_map_blocks(handle, inode, map, 0);
449         }
450         up_read((&EXT4_I(inode)->i_data_sem));
451
452         /*
453          * We don't check m_len because extent will be collpased in status
454          * tree.  So the m_len might not equal.
455          */
456         if (es_map->m_lblk != map->m_lblk ||
457             es_map->m_flags != map->m_flags ||
458             es_map->m_pblk != map->m_pblk) {
459                 printk("ES cache assertion failed for inode: %lu "
460                        "es_cached ex [%d/%d/%llu/%x] != "
461                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
462                        inode->i_ino, es_map->m_lblk, es_map->m_len,
463                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
464                        map->m_len, map->m_pblk, map->m_flags,
465                        retval, flags);
466         }
467 }
468 #endif /* ES_AGGRESSIVE_TEST */
469
470 /*
471  * The ext4_map_blocks() function tries to look up the requested blocks,
472  * and returns if the blocks are already mapped.
473  *
474  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
475  * and store the allocated blocks in the result buffer head and mark it
476  * mapped.
477  *
478  * If file type is extents based, it will call ext4_ext_map_blocks(),
479  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
480  * based files
481  *
482  * On success, it returns the number of blocks being mapped or allocated.  if
483  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
484  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
485  *
486  * It returns 0 if plain look up failed (blocks have not been allocated), in
487  * that case, @map is returned as unmapped but we still do fill map->m_len to
488  * indicate the length of a hole starting at map->m_lblk.
489  *
490  * It returns the error in case of allocation failure.
491  */
492 int ext4_map_blocks(handle_t *handle, struct inode *inode,
493                     struct ext4_map_blocks *map, int flags)
494 {
495         struct extent_status es;
496         int retval;
497         int ret = 0;
498 #ifdef ES_AGGRESSIVE_TEST
499         struct ext4_map_blocks orig_map;
500
501         memcpy(&orig_map, map, sizeof(*map));
502 #endif
503
504         map->m_flags = 0;
505         ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
506                   flags, map->m_len, (unsigned long) map->m_lblk);
507
508         /*
509          * ext4_map_blocks returns an int, and m_len is an unsigned int
510          */
511         if (unlikely(map->m_len > INT_MAX))
512                 map->m_len = INT_MAX;
513
514         /* We can handle the block number less than EXT_MAX_BLOCKS */
515         if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
516                 return -EFSCORRUPTED;
517
518         /* Lookup extent status tree firstly */
519         if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) &&
520             ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
521                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
522                         map->m_pblk = ext4_es_pblock(&es) +
523                                         map->m_lblk - es.es_lblk;
524                         map->m_flags |= ext4_es_is_written(&es) ?
525                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
526                         retval = es.es_len - (map->m_lblk - es.es_lblk);
527                         if (retval > map->m_len)
528                                 retval = map->m_len;
529                         map->m_len = retval;
530                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
531                         map->m_pblk = 0;
532                         retval = es.es_len - (map->m_lblk - es.es_lblk);
533                         if (retval > map->m_len)
534                                 retval = map->m_len;
535                         map->m_len = retval;
536                         retval = 0;
537                 } else {
538                         BUG();
539                 }
540 #ifdef ES_AGGRESSIVE_TEST
541                 ext4_map_blocks_es_recheck(handle, inode, map,
542                                            &orig_map, flags);
543 #endif
544                 goto found;
545         }
546
547         /*
548          * Try to see if we can get the block without requesting a new
549          * file system block.
550          */
551         down_read(&EXT4_I(inode)->i_data_sem);
552         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
553                 retval = ext4_ext_map_blocks(handle, inode, map, 0);
554         } else {
555                 retval = ext4_ind_map_blocks(handle, inode, map, 0);
556         }
557         if (retval > 0) {
558                 unsigned int status;
559
560                 if (unlikely(retval != map->m_len)) {
561                         ext4_warning(inode->i_sb,
562                                      "ES len assertion failed for inode "
563                                      "%lu: retval %d != map->m_len %d",
564                                      inode->i_ino, retval, map->m_len);
565                         WARN_ON(1);
566                 }
567
568                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
569                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
570                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
571                     !(status & EXTENT_STATUS_WRITTEN) &&
572                     ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
573                                        map->m_lblk + map->m_len - 1))
574                         status |= EXTENT_STATUS_DELAYED;
575                 ret = ext4_es_insert_extent(inode, map->m_lblk,
576                                             map->m_len, map->m_pblk, status);
577                 if (ret < 0)
578                         retval = ret;
579         }
580         up_read((&EXT4_I(inode)->i_data_sem));
581
582 found:
583         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
584                 ret = check_block_validity(inode, map);
585                 if (ret != 0)
586                         return ret;
587         }
588
589         /* If it is only a block(s) look up */
590         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
591                 return retval;
592
593         /*
594          * Returns if the blocks have already allocated
595          *
596          * Note that if blocks have been preallocated
597          * ext4_ext_get_block() returns the create = 0
598          * with buffer head unmapped.
599          */
600         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
601                 /*
602                  * If we need to convert extent to unwritten
603                  * we continue and do the actual work in
604                  * ext4_ext_map_blocks()
605                  */
606                 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
607                         return retval;
608
609         /*
610          * Here we clear m_flags because after allocating an new extent,
611          * it will be set again.
612          */
613         map->m_flags &= ~EXT4_MAP_FLAGS;
614
615         /*
616          * New blocks allocate and/or writing to unwritten extent
617          * will possibly result in updating i_data, so we take
618          * the write lock of i_data_sem, and call get_block()
619          * with create == 1 flag.
620          */
621         down_write(&EXT4_I(inode)->i_data_sem);
622
623         /*
624          * We need to check for EXT4 here because migrate
625          * could have changed the inode type in between
626          */
627         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
628                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
629         } else {
630                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
631
632                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
633                         /*
634                          * We allocated new blocks which will result in
635                          * i_data's format changing.  Force the migrate
636                          * to fail by clearing migrate flags
637                          */
638                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
639                 }
640
641                 /*
642                  * Update reserved blocks/metadata blocks after successful
643                  * block allocation which had been deferred till now. We don't
644                  * support fallocate for non extent files. So we can update
645                  * reserve space here.
646                  */
647                 if ((retval > 0) &&
648                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
649                         ext4_da_update_reserve_space(inode, retval, 1);
650         }
651
652         if (retval > 0) {
653                 unsigned int status;
654
655                 if (unlikely(retval != map->m_len)) {
656                         ext4_warning(inode->i_sb,
657                                      "ES len assertion failed for inode "
658                                      "%lu: retval %d != map->m_len %d",
659                                      inode->i_ino, retval, map->m_len);
660                         WARN_ON(1);
661                 }
662
663                 /*
664                  * We have to zeroout blocks before inserting them into extent
665                  * status tree. Otherwise someone could look them up there and
666                  * use them before they are really zeroed. We also have to
667                  * unmap metadata before zeroing as otherwise writeback can
668                  * overwrite zeros with stale data from block device.
669                  */
670                 if (flags & EXT4_GET_BLOCKS_ZERO &&
671                     map->m_flags & EXT4_MAP_MAPPED &&
672                     map->m_flags & EXT4_MAP_NEW) {
673                         ret = ext4_issue_zeroout(inode, map->m_lblk,
674                                                  map->m_pblk, map->m_len);
675                         if (ret) {
676                                 retval = ret;
677                                 goto out_sem;
678                         }
679                 }
680
681                 /*
682                  * If the extent has been zeroed out, we don't need to update
683                  * extent status tree.
684                  */
685                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
686                     ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
687                         if (ext4_es_is_written(&es))
688                                 goto out_sem;
689                 }
690                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
691                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
692                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
693                     !(status & EXTENT_STATUS_WRITTEN) &&
694                     ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
695                                        map->m_lblk + map->m_len - 1))
696                         status |= EXTENT_STATUS_DELAYED;
697                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
698                                             map->m_pblk, status);
699                 if (ret < 0) {
700                         retval = ret;
701                         goto out_sem;
702                 }
703         }
704
705 out_sem:
706         up_write((&EXT4_I(inode)->i_data_sem));
707         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
708                 ret = check_block_validity(inode, map);
709                 if (ret != 0)
710                         return ret;
711
712                 /*
713                  * Inodes with freshly allocated blocks where contents will be
714                  * visible after transaction commit must be on transaction's
715                  * ordered data list.
716                  */
717                 if (map->m_flags & EXT4_MAP_NEW &&
718                     !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
719                     !(flags & EXT4_GET_BLOCKS_ZERO) &&
720                     !ext4_is_quota_file(inode) &&
721                     ext4_should_order_data(inode)) {
722                         loff_t start_byte =
723                                 (loff_t)map->m_lblk << inode->i_blkbits;
724                         loff_t length = (loff_t)map->m_len << inode->i_blkbits;
725
726                         if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
727                                 ret = ext4_jbd2_inode_add_wait(handle, inode,
728                                                 start_byte, length);
729                         else
730                                 ret = ext4_jbd2_inode_add_write(handle, inode,
731                                                 start_byte, length);
732                         if (ret)
733                                 return ret;
734                 }
735                 ext4_fc_track_range(inode, map->m_lblk,
736                             map->m_lblk + map->m_len - 1);
737         }
738
739         if (retval < 0)
740                 ext_debug(inode, "failed with err %d\n", retval);
741         return retval;
742 }
743
744 /*
745  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
746  * we have to be careful as someone else may be manipulating b_state as well.
747  */
748 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
749 {
750         unsigned long old_state;
751         unsigned long new_state;
752
753         flags &= EXT4_MAP_FLAGS;
754
755         /* Dummy buffer_head? Set non-atomically. */
756         if (!bh->b_page) {
757                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
758                 return;
759         }
760         /*
761          * Someone else may be modifying b_state. Be careful! This is ugly but
762          * once we get rid of using bh as a container for mapping information
763          * to pass to / from get_block functions, this can go away.
764          */
765         do {
766                 old_state = READ_ONCE(bh->b_state);
767                 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
768         } while (unlikely(
769                  cmpxchg(&bh->b_state, old_state, new_state) != old_state));
770 }
771
772 static int _ext4_get_block(struct inode *inode, sector_t iblock,
773                            struct buffer_head *bh, int flags)
774 {
775         struct ext4_map_blocks map;
776         int ret = 0;
777
778         if (ext4_has_inline_data(inode))
779                 return -ERANGE;
780
781         map.m_lblk = iblock;
782         map.m_len = bh->b_size >> inode->i_blkbits;
783
784         ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
785                               flags);
786         if (ret > 0) {
787                 map_bh(bh, inode->i_sb, map.m_pblk);
788                 ext4_update_bh_state(bh, map.m_flags);
789                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
790                 ret = 0;
791         } else if (ret == 0) {
792                 /* hole case, need to fill in bh->b_size */
793                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
794         }
795         return ret;
796 }
797
798 int ext4_get_block(struct inode *inode, sector_t iblock,
799                    struct buffer_head *bh, int create)
800 {
801         return _ext4_get_block(inode, iblock, bh,
802                                create ? EXT4_GET_BLOCKS_CREATE : 0);
803 }
804
805 /*
806  * Get block function used when preparing for buffered write if we require
807  * creating an unwritten extent if blocks haven't been allocated.  The extent
808  * will be converted to written after the IO is complete.
809  */
810 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
811                              struct buffer_head *bh_result, int create)
812 {
813         ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
814                    inode->i_ino, create);
815         return _ext4_get_block(inode, iblock, bh_result,
816                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
817 }
818
819 /* Maximum number of blocks we map for direct IO at once. */
820 #define DIO_MAX_BLOCKS 4096
821
822 /*
823  * `handle' can be NULL if create is zero
824  */
825 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
826                                 ext4_lblk_t block, int map_flags)
827 {
828         struct ext4_map_blocks map;
829         struct buffer_head *bh;
830         int create = map_flags & EXT4_GET_BLOCKS_CREATE;
831         int err;
832
833         J_ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
834                  || handle != NULL || create == 0);
835
836         map.m_lblk = block;
837         map.m_len = 1;
838         err = ext4_map_blocks(handle, inode, &map, map_flags);
839
840         if (err == 0)
841                 return create ? ERR_PTR(-ENOSPC) : NULL;
842         if (err < 0)
843                 return ERR_PTR(err);
844
845         bh = sb_getblk(inode->i_sb, map.m_pblk);
846         if (unlikely(!bh))
847                 return ERR_PTR(-ENOMEM);
848         if (map.m_flags & EXT4_MAP_NEW) {
849                 J_ASSERT(create != 0);
850                 J_ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
851                          || (handle != NULL));
852
853                 /*
854                  * Now that we do not always journal data, we should
855                  * keep in mind whether this should always journal the
856                  * new buffer as metadata.  For now, regular file
857                  * writes use ext4_get_block instead, so it's not a
858                  * problem.
859                  */
860                 lock_buffer(bh);
861                 BUFFER_TRACE(bh, "call get_create_access");
862                 err = ext4_journal_get_create_access(handle, bh);
863                 if (unlikely(err)) {
864                         unlock_buffer(bh);
865                         goto errout;
866                 }
867                 if (!buffer_uptodate(bh)) {
868                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
869                         set_buffer_uptodate(bh);
870                 }
871                 unlock_buffer(bh);
872                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
873                 err = ext4_handle_dirty_metadata(handle, inode, bh);
874                 if (unlikely(err))
875                         goto errout;
876         } else
877                 BUFFER_TRACE(bh, "not a new buffer");
878         return bh;
879 errout:
880         brelse(bh);
881         return ERR_PTR(err);
882 }
883
884 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
885                                ext4_lblk_t block, int map_flags)
886 {
887         struct buffer_head *bh;
888         int ret;
889
890         bh = ext4_getblk(handle, inode, block, map_flags);
891         if (IS_ERR(bh))
892                 return bh;
893         if (!bh || ext4_buffer_uptodate(bh))
894                 return bh;
895
896         ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true);
897         if (ret) {
898                 put_bh(bh);
899                 return ERR_PTR(ret);
900         }
901         return bh;
902 }
903
904 /* Read a contiguous batch of blocks. */
905 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
906                      bool wait, struct buffer_head **bhs)
907 {
908         int i, err;
909
910         for (i = 0; i < bh_count; i++) {
911                 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
912                 if (IS_ERR(bhs[i])) {
913                         err = PTR_ERR(bhs[i]);
914                         bh_count = i;
915                         goto out_brelse;
916                 }
917         }
918
919         for (i = 0; i < bh_count; i++)
920                 /* Note that NULL bhs[i] is valid because of holes. */
921                 if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
922                         ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false);
923
924         if (!wait)
925                 return 0;
926
927         for (i = 0; i < bh_count; i++)
928                 if (bhs[i])
929                         wait_on_buffer(bhs[i]);
930
931         for (i = 0; i < bh_count; i++) {
932                 if (bhs[i] && !buffer_uptodate(bhs[i])) {
933                         err = -EIO;
934                         goto out_brelse;
935                 }
936         }
937         return 0;
938
939 out_brelse:
940         for (i = 0; i < bh_count; i++) {
941                 brelse(bhs[i]);
942                 bhs[i] = NULL;
943         }
944         return err;
945 }
946
947 int ext4_walk_page_buffers(handle_t *handle,
948                            struct buffer_head *head,
949                            unsigned from,
950                            unsigned to,
951                            int *partial,
952                            int (*fn)(handle_t *handle,
953                                      struct buffer_head *bh))
954 {
955         struct buffer_head *bh;
956         unsigned block_start, block_end;
957         unsigned blocksize = head->b_size;
958         int err, ret = 0;
959         struct buffer_head *next;
960
961         for (bh = head, block_start = 0;
962              ret == 0 && (bh != head || !block_start);
963              block_start = block_end, bh = next) {
964                 next = bh->b_this_page;
965                 block_end = block_start + blocksize;
966                 if (block_end <= from || block_start >= to) {
967                         if (partial && !buffer_uptodate(bh))
968                                 *partial = 1;
969                         continue;
970                 }
971                 err = (*fn)(handle, bh);
972                 if (!ret)
973                         ret = err;
974         }
975         return ret;
976 }
977
978 /*
979  * To preserve ordering, it is essential that the hole instantiation and
980  * the data write be encapsulated in a single transaction.  We cannot
981  * close off a transaction and start a new one between the ext4_get_block()
982  * and the commit_write().  So doing the jbd2_journal_start at the start of
983  * prepare_write() is the right place.
984  *
985  * Also, this function can nest inside ext4_writepage().  In that case, we
986  * *know* that ext4_writepage() has generated enough buffer credits to do the
987  * whole page.  So we won't block on the journal in that case, which is good,
988  * because the caller may be PF_MEMALLOC.
989  *
990  * By accident, ext4 can be reentered when a transaction is open via
991  * quota file writes.  If we were to commit the transaction while thus
992  * reentered, there can be a deadlock - we would be holding a quota
993  * lock, and the commit would never complete if another thread had a
994  * transaction open and was blocking on the quota lock - a ranking
995  * violation.
996  *
997  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
998  * will _not_ run commit under these circumstances because handle->h_ref
999  * is elevated.  We'll still have enough credits for the tiny quotafile
1000  * write.
1001  */
1002 int do_journal_get_write_access(handle_t *handle,
1003                                 struct buffer_head *bh)
1004 {
1005         int dirty = buffer_dirty(bh);
1006         int ret;
1007
1008         if (!buffer_mapped(bh) || buffer_freed(bh))
1009                 return 0;
1010         /*
1011          * __block_write_begin() could have dirtied some buffers. Clean
1012          * the dirty bit as jbd2_journal_get_write_access() could complain
1013          * otherwise about fs integrity issues. Setting of the dirty bit
1014          * by __block_write_begin() isn't a real problem here as we clear
1015          * the bit before releasing a page lock and thus writeback cannot
1016          * ever write the buffer.
1017          */
1018         if (dirty)
1019                 clear_buffer_dirty(bh);
1020         BUFFER_TRACE(bh, "get write access");
1021         ret = ext4_journal_get_write_access(handle, bh);
1022         if (!ret && dirty)
1023                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1024         return ret;
1025 }
1026
1027 #ifdef CONFIG_FS_ENCRYPTION
1028 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1029                                   get_block_t *get_block)
1030 {
1031         unsigned from = pos & (PAGE_SIZE - 1);
1032         unsigned to = from + len;
1033         struct inode *inode = page->mapping->host;
1034         unsigned block_start, block_end;
1035         sector_t block;
1036         int err = 0;
1037         unsigned blocksize = inode->i_sb->s_blocksize;
1038         unsigned bbits;
1039         struct buffer_head *bh, *head, *wait[2];
1040         int nr_wait = 0;
1041         int i;
1042
1043         BUG_ON(!PageLocked(page));
1044         BUG_ON(from > PAGE_SIZE);
1045         BUG_ON(to > PAGE_SIZE);
1046         BUG_ON(from > to);
1047
1048         if (!page_has_buffers(page))
1049                 create_empty_buffers(page, blocksize, 0);
1050         head = page_buffers(page);
1051         bbits = ilog2(blocksize);
1052         block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1053
1054         for (bh = head, block_start = 0; bh != head || !block_start;
1055             block++, block_start = block_end, bh = bh->b_this_page) {
1056                 block_end = block_start + blocksize;
1057                 if (block_end <= from || block_start >= to) {
1058                         if (PageUptodate(page)) {
1059                                 if (!buffer_uptodate(bh))
1060                                         set_buffer_uptodate(bh);
1061                         }
1062                         continue;
1063                 }
1064                 if (buffer_new(bh))
1065                         clear_buffer_new(bh);
1066                 if (!buffer_mapped(bh)) {
1067                         WARN_ON(bh->b_size != blocksize);
1068                         err = get_block(inode, block, bh, 1);
1069                         if (err)
1070                                 break;
1071                         if (buffer_new(bh)) {
1072                                 if (PageUptodate(page)) {
1073                                         clear_buffer_new(bh);
1074                                         set_buffer_uptodate(bh);
1075                                         mark_buffer_dirty(bh);
1076                                         continue;
1077                                 }
1078                                 if (block_end > to || block_start < from)
1079                                         zero_user_segments(page, to, block_end,
1080                                                            block_start, from);
1081                                 continue;
1082                         }
1083                 }
1084                 if (PageUptodate(page)) {
1085                         if (!buffer_uptodate(bh))
1086                                 set_buffer_uptodate(bh);
1087                         continue;
1088                 }
1089                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1090                     !buffer_unwritten(bh) &&
1091                     (block_start < from || block_end > to)) {
1092                         ext4_read_bh_lock(bh, 0, false);
1093                         wait[nr_wait++] = bh;
1094                 }
1095         }
1096         /*
1097          * If we issued read requests, let them complete.
1098          */
1099         for (i = 0; i < nr_wait; i++) {
1100                 wait_on_buffer(wait[i]);
1101                 if (!buffer_uptodate(wait[i]))
1102                         err = -EIO;
1103         }
1104         if (unlikely(err)) {
1105                 page_zero_new_buffers(page, from, to);
1106         } else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1107                 for (i = 0; i < nr_wait; i++) {
1108                         int err2;
1109
1110                         err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize,
1111                                                                 bh_offset(wait[i]));
1112                         if (err2) {
1113                                 clear_buffer_uptodate(wait[i]);
1114                                 err = err2;
1115                         }
1116                 }
1117         }
1118
1119         return err;
1120 }
1121 #endif
1122
1123 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1124                             loff_t pos, unsigned len, unsigned flags,
1125                             struct page **pagep, void **fsdata)
1126 {
1127         struct inode *inode = mapping->host;
1128         int ret, needed_blocks;
1129         handle_t *handle;
1130         int retries = 0;
1131         struct page *page;
1132         pgoff_t index;
1133         unsigned from, to;
1134
1135         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1136                 return -EIO;
1137
1138         trace_ext4_write_begin(inode, pos, len, flags);
1139         /*
1140          * Reserve one block more for addition to orphan list in case
1141          * we allocate blocks but write fails for some reason
1142          */
1143         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1144         index = pos >> PAGE_SHIFT;
1145         from = pos & (PAGE_SIZE - 1);
1146         to = from + len;
1147
1148         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1149                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1150                                                     flags, pagep);
1151                 if (ret < 0)
1152                         return ret;
1153                 if (ret == 1)
1154                         return 0;
1155         }
1156
1157         /*
1158          * grab_cache_page_write_begin() can take a long time if the
1159          * system is thrashing due to memory pressure, or if the page
1160          * is being written back.  So grab it first before we start
1161          * the transaction handle.  This also allows us to allocate
1162          * the page (if needed) without using GFP_NOFS.
1163          */
1164 retry_grab:
1165         page = grab_cache_page_write_begin(mapping, index, flags);
1166         if (!page)
1167                 return -ENOMEM;
1168         unlock_page(page);
1169
1170 retry_journal:
1171         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1172         if (IS_ERR(handle)) {
1173                 put_page(page);
1174                 return PTR_ERR(handle);
1175         }
1176
1177         lock_page(page);
1178         if (page->mapping != mapping) {
1179                 /* The page got truncated from under us */
1180                 unlock_page(page);
1181                 put_page(page);
1182                 ext4_journal_stop(handle);
1183                 goto retry_grab;
1184         }
1185         /* In case writeback began while the page was unlocked */
1186         wait_for_stable_page(page);
1187
1188 #ifdef CONFIG_FS_ENCRYPTION
1189         if (ext4_should_dioread_nolock(inode))
1190                 ret = ext4_block_write_begin(page, pos, len,
1191                                              ext4_get_block_unwritten);
1192         else
1193                 ret = ext4_block_write_begin(page, pos, len,
1194                                              ext4_get_block);
1195 #else
1196         if (ext4_should_dioread_nolock(inode))
1197                 ret = __block_write_begin(page, pos, len,
1198                                           ext4_get_block_unwritten);
1199         else
1200                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1201 #endif
1202         if (!ret && ext4_should_journal_data(inode)) {
1203                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1204                                              from, to, NULL,
1205                                              do_journal_get_write_access);
1206         }
1207
1208         if (ret) {
1209                 bool extended = (pos + len > inode->i_size) &&
1210                                 !ext4_verity_in_progress(inode);
1211
1212                 unlock_page(page);
1213                 /*
1214                  * __block_write_begin may have instantiated a few blocks
1215                  * outside i_size.  Trim these off again. Don't need
1216                  * i_size_read because we hold i_mutex.
1217                  *
1218                  * Add inode to orphan list in case we crash before
1219                  * truncate finishes
1220                  */
1221                 if (extended && ext4_can_truncate(inode))
1222                         ext4_orphan_add(handle, inode);
1223
1224                 ext4_journal_stop(handle);
1225                 if (extended) {
1226                         ext4_truncate_failed_write(inode);
1227                         /*
1228                          * If truncate failed early the inode might
1229                          * still be on the orphan list; we need to
1230                          * make sure the inode is removed from the
1231                          * orphan list in that case.
1232                          */
1233                         if (inode->i_nlink)
1234                                 ext4_orphan_del(NULL, inode);
1235                 }
1236
1237                 if (ret == -ENOSPC &&
1238                     ext4_should_retry_alloc(inode->i_sb, &retries))
1239                         goto retry_journal;
1240                 put_page(page);
1241                 return ret;
1242         }
1243         *pagep = page;
1244         return ret;
1245 }
1246
1247 /* For write_end() in data=journal mode */
1248 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1249 {
1250         int ret;
1251         if (!buffer_mapped(bh) || buffer_freed(bh))
1252                 return 0;
1253         set_buffer_uptodate(bh);
1254         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1255         clear_buffer_meta(bh);
1256         clear_buffer_prio(bh);
1257         return ret;
1258 }
1259
1260 /*
1261  * We need to pick up the new inode size which generic_commit_write gave us
1262  * `file' can be NULL - eg, when called from page_symlink().
1263  *
1264  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1265  * buffers are managed internally.
1266  */
1267 static int ext4_write_end(struct file *file,
1268                           struct address_space *mapping,
1269                           loff_t pos, unsigned len, unsigned copied,
1270                           struct page *page, void *fsdata)
1271 {
1272         handle_t *handle = ext4_journal_current_handle();
1273         struct inode *inode = mapping->host;
1274         loff_t old_size = inode->i_size;
1275         int ret = 0, ret2;
1276         int i_size_changed = 0;
1277         int inline_data = ext4_has_inline_data(inode);
1278         bool verity = ext4_verity_in_progress(inode);
1279
1280         trace_ext4_write_end(inode, pos, len, copied);
1281         if (inline_data) {
1282                 ret = ext4_write_inline_data_end(inode, pos, len,
1283                                                  copied, page);
1284                 if (ret < 0) {
1285                         unlock_page(page);
1286                         put_page(page);
1287                         goto errout;
1288                 }
1289                 copied = ret;
1290         } else
1291                 copied = block_write_end(file, mapping, pos,
1292                                          len, copied, page, fsdata);
1293         /*
1294          * it's important to update i_size while still holding page lock:
1295          * page writeout could otherwise come in and zero beyond i_size.
1296          *
1297          * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1298          * blocks are being written past EOF, so skip the i_size update.
1299          */
1300         if (!verity)
1301                 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1302         unlock_page(page);
1303         put_page(page);
1304
1305         if (old_size < pos && !verity)
1306                 pagecache_isize_extended(inode, old_size, pos);
1307         /*
1308          * Don't mark the inode dirty under page lock. First, it unnecessarily
1309          * makes the holding time of page lock longer. Second, it forces lock
1310          * ordering of page lock and transaction start for journaling
1311          * filesystems.
1312          */
1313         if (i_size_changed || inline_data)
1314                 ret = ext4_mark_inode_dirty(handle, inode);
1315
1316         if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1317                 /* if we have allocated more blocks and copied
1318                  * less. We will have blocks allocated outside
1319                  * inode->i_size. So truncate them
1320                  */
1321                 ext4_orphan_add(handle, inode);
1322 errout:
1323         ret2 = ext4_journal_stop(handle);
1324         if (!ret)
1325                 ret = ret2;
1326
1327         if (pos + len > inode->i_size && !verity) {
1328                 ext4_truncate_failed_write(inode);
1329                 /*
1330                  * If truncate failed early the inode might still be
1331                  * on the orphan list; we need to make sure the inode
1332                  * is removed from the orphan list in that case.
1333                  */
1334                 if (inode->i_nlink)
1335                         ext4_orphan_del(NULL, inode);
1336         }
1337
1338         return ret ? ret : copied;
1339 }
1340
1341 /*
1342  * This is a private version of page_zero_new_buffers() which doesn't
1343  * set the buffer to be dirty, since in data=journalled mode we need
1344  * to call ext4_handle_dirty_metadata() instead.
1345  */
1346 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1347                                             struct page *page,
1348                                             unsigned from, unsigned to)
1349 {
1350         unsigned int block_start = 0, block_end;
1351         struct buffer_head *head, *bh;
1352
1353         bh = head = page_buffers(page);
1354         do {
1355                 block_end = block_start + bh->b_size;
1356                 if (buffer_new(bh)) {
1357                         if (block_end > from && block_start < to) {
1358                                 if (!PageUptodate(page)) {
1359                                         unsigned start, size;
1360
1361                                         start = max(from, block_start);
1362                                         size = min(to, block_end) - start;
1363
1364                                         zero_user(page, start, size);
1365                                         write_end_fn(handle, bh);
1366                                 }
1367                                 clear_buffer_new(bh);
1368                         }
1369                 }
1370                 block_start = block_end;
1371                 bh = bh->b_this_page;
1372         } while (bh != head);
1373 }
1374
1375 static int ext4_journalled_write_end(struct file *file,
1376                                      struct address_space *mapping,
1377                                      loff_t pos, unsigned len, unsigned copied,
1378                                      struct page *page, void *fsdata)
1379 {
1380         handle_t *handle = ext4_journal_current_handle();
1381         struct inode *inode = mapping->host;
1382         loff_t old_size = inode->i_size;
1383         int ret = 0, ret2;
1384         int partial = 0;
1385         unsigned from, to;
1386         int size_changed = 0;
1387         int inline_data = ext4_has_inline_data(inode);
1388         bool verity = ext4_verity_in_progress(inode);
1389
1390         trace_ext4_journalled_write_end(inode, pos, len, copied);
1391         from = pos & (PAGE_SIZE - 1);
1392         to = from + len;
1393
1394         BUG_ON(!ext4_handle_valid(handle));
1395
1396         if (inline_data) {
1397                 ret = ext4_write_inline_data_end(inode, pos, len,
1398                                                  copied, page);
1399                 if (ret < 0) {
1400                         unlock_page(page);
1401                         put_page(page);
1402                         goto errout;
1403                 }
1404                 copied = ret;
1405         } else if (unlikely(copied < len) && !PageUptodate(page)) {
1406                 copied = 0;
1407                 ext4_journalled_zero_new_buffers(handle, page, from, to);
1408         } else {
1409                 if (unlikely(copied < len))
1410                         ext4_journalled_zero_new_buffers(handle, page,
1411                                                          from + copied, to);
1412                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1413                                              from + copied, &partial,
1414                                              write_end_fn);
1415                 if (!partial)
1416                         SetPageUptodate(page);
1417         }
1418         if (!verity)
1419                 size_changed = ext4_update_inode_size(inode, pos + copied);
1420         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1421         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1422         unlock_page(page);
1423         put_page(page);
1424
1425         if (old_size < pos && !verity)
1426                 pagecache_isize_extended(inode, old_size, pos);
1427
1428         if (size_changed || inline_data) {
1429                 ret2 = ext4_mark_inode_dirty(handle, inode);
1430                 if (!ret)
1431                         ret = ret2;
1432         }
1433
1434         if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1435                 /* if we have allocated more blocks and copied
1436                  * less. We will have blocks allocated outside
1437                  * inode->i_size. So truncate them
1438                  */
1439                 ext4_orphan_add(handle, inode);
1440
1441 errout:
1442         ret2 = ext4_journal_stop(handle);
1443         if (!ret)
1444                 ret = ret2;
1445         if (pos + len > inode->i_size && !verity) {
1446                 ext4_truncate_failed_write(inode);
1447                 /*
1448                  * If truncate failed early the inode might still be
1449                  * on the orphan list; we need to make sure the inode
1450                  * is removed from the orphan list in that case.
1451                  */
1452                 if (inode->i_nlink)
1453                         ext4_orphan_del(NULL, inode);
1454         }
1455
1456         return ret ? ret : copied;
1457 }
1458
1459 /*
1460  * Reserve space for a single cluster
1461  */
1462 static int ext4_da_reserve_space(struct inode *inode)
1463 {
1464         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1465         struct ext4_inode_info *ei = EXT4_I(inode);
1466         int ret;
1467
1468         /*
1469          * We will charge metadata quota at writeout time; this saves
1470          * us from metadata over-estimation, though we may go over by
1471          * a small amount in the end.  Here we just reserve for data.
1472          */
1473         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1474         if (ret)
1475                 return ret;
1476
1477         spin_lock(&ei->i_block_reservation_lock);
1478         if (ext4_claim_free_clusters(sbi, 1, 0)) {
1479                 spin_unlock(&ei->i_block_reservation_lock);
1480                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1481                 return -ENOSPC;
1482         }
1483         ei->i_reserved_data_blocks++;
1484         trace_ext4_da_reserve_space(inode);
1485         spin_unlock(&ei->i_block_reservation_lock);
1486
1487         return 0;       /* success */
1488 }
1489
1490 void ext4_da_release_space(struct inode *inode, int to_free)
1491 {
1492         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1493         struct ext4_inode_info *ei = EXT4_I(inode);
1494
1495         if (!to_free)
1496                 return;         /* Nothing to release, exit */
1497
1498         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1499
1500         trace_ext4_da_release_space(inode, to_free);
1501         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1502                 /*
1503                  * if there aren't enough reserved blocks, then the
1504                  * counter is messed up somewhere.  Since this
1505                  * function is called from invalidate page, it's
1506                  * harmless to return without any action.
1507                  */
1508                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1509                          "ino %lu, to_free %d with only %d reserved "
1510                          "data blocks", inode->i_ino, to_free,
1511                          ei->i_reserved_data_blocks);
1512                 WARN_ON(1);
1513                 to_free = ei->i_reserved_data_blocks;
1514         }
1515         ei->i_reserved_data_blocks -= to_free;
1516
1517         /* update fs dirty data blocks counter */
1518         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1519
1520         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1521
1522         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1523 }
1524
1525 /*
1526  * Delayed allocation stuff
1527  */
1528
1529 struct mpage_da_data {
1530         struct inode *inode;
1531         struct writeback_control *wbc;
1532
1533         pgoff_t first_page;     /* The first page to write */
1534         pgoff_t next_page;      /* Current page to examine */
1535         pgoff_t last_page;      /* Last page to examine */
1536         /*
1537          * Extent to map - this can be after first_page because that can be
1538          * fully mapped. We somewhat abuse m_flags to store whether the extent
1539          * is delalloc or unwritten.
1540          */
1541         struct ext4_map_blocks map;
1542         struct ext4_io_submit io_submit;        /* IO submission data */
1543         unsigned int do_map:1;
1544         unsigned int scanned_until_end:1;
1545 };
1546
1547 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1548                                        bool invalidate)
1549 {
1550         int nr_pages, i;
1551         pgoff_t index, end;
1552         struct pagevec pvec;
1553         struct inode *inode = mpd->inode;
1554         struct address_space *mapping = inode->i_mapping;
1555
1556         /* This is necessary when next_page == 0. */
1557         if (mpd->first_page >= mpd->next_page)
1558                 return;
1559
1560         mpd->scanned_until_end = 0;
1561         index = mpd->first_page;
1562         end   = mpd->next_page - 1;
1563         if (invalidate) {
1564                 ext4_lblk_t start, last;
1565                 start = index << (PAGE_SHIFT - inode->i_blkbits);
1566                 last = end << (PAGE_SHIFT - inode->i_blkbits);
1567                 ext4_es_remove_extent(inode, start, last - start + 1);
1568         }
1569
1570         pagevec_init(&pvec);
1571         while (index <= end) {
1572                 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1573                 if (nr_pages == 0)
1574                         break;
1575                 for (i = 0; i < nr_pages; i++) {
1576                         struct page *page = pvec.pages[i];
1577
1578                         BUG_ON(!PageLocked(page));
1579                         BUG_ON(PageWriteback(page));
1580                         if (invalidate) {
1581                                 if (page_mapped(page))
1582                                         clear_page_dirty_for_io(page);
1583                                 block_invalidatepage(page, 0, PAGE_SIZE);
1584                                 ClearPageUptodate(page);
1585                         }
1586                         unlock_page(page);
1587                 }
1588                 pagevec_release(&pvec);
1589         }
1590 }
1591
1592 static void ext4_print_free_blocks(struct inode *inode)
1593 {
1594         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1595         struct super_block *sb = inode->i_sb;
1596         struct ext4_inode_info *ei = EXT4_I(inode);
1597
1598         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1599                EXT4_C2B(EXT4_SB(inode->i_sb),
1600                         ext4_count_free_clusters(sb)));
1601         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1602         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1603                (long long) EXT4_C2B(EXT4_SB(sb),
1604                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1605         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1606                (long long) EXT4_C2B(EXT4_SB(sb),
1607                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1608         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1609         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1610                  ei->i_reserved_data_blocks);
1611         return;
1612 }
1613
1614 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1615 {
1616         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1617 }
1618
1619 /*
1620  * ext4_insert_delayed_block - adds a delayed block to the extents status
1621  *                             tree, incrementing the reserved cluster/block
1622  *                             count or making a pending reservation
1623  *                             where needed
1624  *
1625  * @inode - file containing the newly added block
1626  * @lblk - logical block to be added
1627  *
1628  * Returns 0 on success, negative error code on failure.
1629  */
1630 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1631 {
1632         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1633         int ret;
1634         bool allocated = false;
1635
1636         /*
1637          * If the cluster containing lblk is shared with a delayed,
1638          * written, or unwritten extent in a bigalloc file system, it's
1639          * already been accounted for and does not need to be reserved.
1640          * A pending reservation must be made for the cluster if it's
1641          * shared with a written or unwritten extent and doesn't already
1642          * have one.  Written and unwritten extents can be purged from the
1643          * extents status tree if the system is under memory pressure, so
1644          * it's necessary to examine the extent tree if a search of the
1645          * extents status tree doesn't get a match.
1646          */
1647         if (sbi->s_cluster_ratio == 1) {
1648                 ret = ext4_da_reserve_space(inode);
1649                 if (ret != 0)   /* ENOSPC */
1650                         goto errout;
1651         } else {   /* bigalloc */
1652                 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1653                         if (!ext4_es_scan_clu(inode,
1654                                               &ext4_es_is_mapped, lblk)) {
1655                                 ret = ext4_clu_mapped(inode,
1656                                                       EXT4_B2C(sbi, lblk));
1657                                 if (ret < 0)
1658                                         goto errout;
1659                                 if (ret == 0) {
1660                                         ret = ext4_da_reserve_space(inode);
1661                                         if (ret != 0)   /* ENOSPC */
1662                                                 goto errout;
1663                                 } else {
1664                                         allocated = true;
1665                                 }
1666                         } else {
1667                                 allocated = true;
1668                         }
1669                 }
1670         }
1671
1672         ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1673
1674 errout:
1675         return ret;
1676 }
1677
1678 /*
1679  * This function is grabs code from the very beginning of
1680  * ext4_map_blocks, but assumes that the caller is from delayed write
1681  * time. This function looks up the requested blocks and sets the
1682  * buffer delay bit under the protection of i_data_sem.
1683  */
1684 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1685                               struct ext4_map_blocks *map,
1686                               struct buffer_head *bh)
1687 {
1688         struct extent_status es;
1689         int retval;
1690         sector_t invalid_block = ~((sector_t) 0xffff);
1691 #ifdef ES_AGGRESSIVE_TEST
1692         struct ext4_map_blocks orig_map;
1693
1694         memcpy(&orig_map, map, sizeof(*map));
1695 #endif
1696
1697         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1698                 invalid_block = ~0;
1699
1700         map->m_flags = 0;
1701         ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1702                   (unsigned long) map->m_lblk);
1703
1704         /* Lookup extent status tree firstly */
1705         if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1706                 if (ext4_es_is_hole(&es)) {
1707                         retval = 0;
1708                         down_read(&EXT4_I(inode)->i_data_sem);
1709                         goto add_delayed;
1710                 }
1711
1712                 /*
1713                  * Delayed extent could be allocated by fallocate.
1714                  * So we need to check it.
1715                  */
1716                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1717                         map_bh(bh, inode->i_sb, invalid_block);
1718                         set_buffer_new(bh);
1719                         set_buffer_delay(bh);
1720                         return 0;
1721                 }
1722
1723                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1724                 retval = es.es_len - (iblock - es.es_lblk);
1725                 if (retval > map->m_len)
1726                         retval = map->m_len;
1727                 map->m_len = retval;
1728                 if (ext4_es_is_written(&es))
1729                         map->m_flags |= EXT4_MAP_MAPPED;
1730                 else if (ext4_es_is_unwritten(&es))
1731                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1732                 else
1733                         BUG();
1734
1735 #ifdef ES_AGGRESSIVE_TEST
1736                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1737 #endif
1738                 return retval;
1739         }
1740
1741         /*
1742          * Try to see if we can get the block without requesting a new
1743          * file system block.
1744          */
1745         down_read(&EXT4_I(inode)->i_data_sem);
1746         if (ext4_has_inline_data(inode))
1747                 retval = 0;
1748         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1749                 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1750         else
1751                 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1752
1753 add_delayed:
1754         if (retval == 0) {
1755                 int ret;
1756
1757                 /*
1758                  * XXX: __block_prepare_write() unmaps passed block,
1759                  * is it OK?
1760                  */
1761
1762                 ret = ext4_insert_delayed_block(inode, map->m_lblk);
1763                 if (ret != 0) {
1764                         retval = ret;
1765                         goto out_unlock;
1766                 }
1767
1768                 map_bh(bh, inode->i_sb, invalid_block);
1769                 set_buffer_new(bh);
1770                 set_buffer_delay(bh);
1771         } else if (retval > 0) {
1772                 int ret;
1773                 unsigned int status;
1774
1775                 if (unlikely(retval != map->m_len)) {
1776                         ext4_warning(inode->i_sb,
1777                                      "ES len assertion failed for inode "
1778                                      "%lu: retval %d != map->m_len %d",
1779                                      inode->i_ino, retval, map->m_len);
1780                         WARN_ON(1);
1781                 }
1782
1783                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1784                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1785                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1786                                             map->m_pblk, status);
1787                 if (ret != 0)
1788                         retval = ret;
1789         }
1790
1791 out_unlock:
1792         up_read((&EXT4_I(inode)->i_data_sem));
1793
1794         return retval;
1795 }
1796
1797 /*
1798  * This is a special get_block_t callback which is used by
1799  * ext4_da_write_begin().  It will either return mapped block or
1800  * reserve space for a single block.
1801  *
1802  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1803  * We also have b_blocknr = -1 and b_bdev initialized properly
1804  *
1805  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1806  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1807  * initialized properly.
1808  */
1809 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1810                            struct buffer_head *bh, int create)
1811 {
1812         struct ext4_map_blocks map;
1813         int ret = 0;
1814
1815         BUG_ON(create == 0);
1816         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1817
1818         map.m_lblk = iblock;
1819         map.m_len = 1;
1820
1821         /*
1822          * first, we need to know whether the block is allocated already
1823          * preallocated blocks are unmapped but should treated
1824          * the same as allocated blocks.
1825          */
1826         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1827         if (ret <= 0)
1828                 return ret;
1829
1830         map_bh(bh, inode->i_sb, map.m_pblk);
1831         ext4_update_bh_state(bh, map.m_flags);
1832
1833         if (buffer_unwritten(bh)) {
1834                 /* A delayed write to unwritten bh should be marked
1835                  * new and mapped.  Mapped ensures that we don't do
1836                  * get_block multiple times when we write to the same
1837                  * offset and new ensures that we do proper zero out
1838                  * for partial write.
1839                  */
1840                 set_buffer_new(bh);
1841                 set_buffer_mapped(bh);
1842         }
1843         return 0;
1844 }
1845
1846 static int bget_one(handle_t *handle, struct buffer_head *bh)
1847 {
1848         get_bh(bh);
1849         return 0;
1850 }
1851
1852 static int bput_one(handle_t *handle, struct buffer_head *bh)
1853 {
1854         put_bh(bh);
1855         return 0;
1856 }
1857
1858 static int __ext4_journalled_writepage(struct page *page,
1859                                        unsigned int len)
1860 {
1861         struct address_space *mapping = page->mapping;
1862         struct inode *inode = mapping->host;
1863         struct buffer_head *page_bufs = NULL;
1864         handle_t *handle = NULL;
1865         int ret = 0, err = 0;
1866         int inline_data = ext4_has_inline_data(inode);
1867         struct buffer_head *inode_bh = NULL;
1868
1869         ClearPageChecked(page);
1870
1871         if (inline_data) {
1872                 BUG_ON(page->index != 0);
1873                 BUG_ON(len > ext4_get_max_inline_size(inode));
1874                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1875                 if (inode_bh == NULL)
1876                         goto out;
1877         } else {
1878                 page_bufs = page_buffers(page);
1879                 if (!page_bufs) {
1880                         BUG();
1881                         goto out;
1882                 }
1883                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1884                                        NULL, bget_one);
1885         }
1886         /*
1887          * We need to release the page lock before we start the
1888          * journal, so grab a reference so the page won't disappear
1889          * out from under us.
1890          */
1891         get_page(page);
1892         unlock_page(page);
1893
1894         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1895                                     ext4_writepage_trans_blocks(inode));
1896         if (IS_ERR(handle)) {
1897                 ret = PTR_ERR(handle);
1898                 put_page(page);
1899                 goto out_no_pagelock;
1900         }
1901         BUG_ON(!ext4_handle_valid(handle));
1902
1903         lock_page(page);
1904         put_page(page);
1905         if (page->mapping != mapping) {
1906                 /* The page got truncated from under us */
1907                 ext4_journal_stop(handle);
1908                 ret = 0;
1909                 goto out;
1910         }
1911
1912         if (inline_data) {
1913                 ret = ext4_mark_inode_dirty(handle, inode);
1914         } else {
1915                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1916                                              do_journal_get_write_access);
1917
1918                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1919                                              write_end_fn);
1920         }
1921         if (ret == 0)
1922                 ret = err;
1923         err = ext4_jbd2_inode_add_write(handle, inode, page_offset(page), len);
1924         if (ret == 0)
1925                 ret = err;
1926         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1927         err = ext4_journal_stop(handle);
1928         if (!ret)
1929                 ret = err;
1930
1931         if (!ext4_has_inline_data(inode))
1932                 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1933                                        NULL, bput_one);
1934         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1935 out:
1936         unlock_page(page);
1937 out_no_pagelock:
1938         brelse(inode_bh);
1939         return ret;
1940 }
1941
1942 /*
1943  * Note that we don't need to start a transaction unless we're journaling data
1944  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1945  * need to file the inode to the transaction's list in ordered mode because if
1946  * we are writing back data added by write(), the inode is already there and if
1947  * we are writing back data modified via mmap(), no one guarantees in which
1948  * transaction the data will hit the disk. In case we are journaling data, we
1949  * cannot start transaction directly because transaction start ranks above page
1950  * lock so we have to do some magic.
1951  *
1952  * This function can get called via...
1953  *   - ext4_writepages after taking page lock (have journal handle)
1954  *   - journal_submit_inode_data_buffers (no journal handle)
1955  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1956  *   - grab_page_cache when doing write_begin (have journal handle)
1957  *
1958  * We don't do any block allocation in this function. If we have page with
1959  * multiple blocks we need to write those buffer_heads that are mapped. This
1960  * is important for mmaped based write. So if we do with blocksize 1K
1961  * truncate(f, 1024);
1962  * a = mmap(f, 0, 4096);
1963  * a[0] = 'a';
1964  * truncate(f, 4096);
1965  * we have in the page first buffer_head mapped via page_mkwrite call back
1966  * but other buffer_heads would be unmapped but dirty (dirty done via the
1967  * do_wp_page). So writepage should write the first block. If we modify
1968  * the mmap area beyond 1024 we will again get a page_fault and the
1969  * page_mkwrite callback will do the block allocation and mark the
1970  * buffer_heads mapped.
1971  *
1972  * We redirty the page if we have any buffer_heads that is either delay or
1973  * unwritten in the page.
1974  *
1975  * We can get recursively called as show below.
1976  *
1977  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1978  *              ext4_writepage()
1979  *
1980  * But since we don't do any block allocation we should not deadlock.
1981  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1982  */
1983 static int ext4_writepage(struct page *page,
1984                           struct writeback_control *wbc)
1985 {
1986         int ret = 0;
1987         loff_t size;
1988         unsigned int len;
1989         struct buffer_head *page_bufs = NULL;
1990         struct inode *inode = page->mapping->host;
1991         struct ext4_io_submit io_submit;
1992         bool keep_towrite = false;
1993
1994         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
1995                 inode->i_mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
1996                 unlock_page(page);
1997                 return -EIO;
1998         }
1999
2000         trace_ext4_writepage(page);
2001         size = i_size_read(inode);
2002         if (page->index == size >> PAGE_SHIFT &&
2003             !ext4_verity_in_progress(inode))
2004                 len = size & ~PAGE_MASK;
2005         else
2006                 len = PAGE_SIZE;
2007
2008         page_bufs = page_buffers(page);
2009         /*
2010          * We cannot do block allocation or other extent handling in this
2011          * function. If there are buffers needing that, we have to redirty
2012          * the page. But we may reach here when we do a journal commit via
2013          * journal_submit_inode_data_buffers() and in that case we must write
2014          * allocated buffers to achieve data=ordered mode guarantees.
2015          *
2016          * Also, if there is only one buffer per page (the fs block
2017          * size == the page size), if one buffer needs block
2018          * allocation or needs to modify the extent tree to clear the
2019          * unwritten flag, we know that the page can't be written at
2020          * all, so we might as well refuse the write immediately.
2021          * Unfortunately if the block size != page size, we can't as
2022          * easily detect this case using ext4_walk_page_buffers(), but
2023          * for the extremely common case, this is an optimization that
2024          * skips a useless round trip through ext4_bio_write_page().
2025          */
2026         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2027                                    ext4_bh_delay_or_unwritten)) {
2028                 redirty_page_for_writepage(wbc, page);
2029                 if ((current->flags & PF_MEMALLOC) ||
2030                     (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2031                         /*
2032                          * For memory cleaning there's no point in writing only
2033                          * some buffers. So just bail out. Warn if we came here
2034                          * from direct reclaim.
2035                          */
2036                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2037                                                         == PF_MEMALLOC);
2038                         unlock_page(page);
2039                         return 0;
2040                 }
2041                 keep_towrite = true;
2042         }
2043
2044         if (PageChecked(page) && ext4_should_journal_data(inode))
2045                 /*
2046                  * It's mmapped pagecache.  Add buffers and journal it.  There
2047                  * doesn't seem much point in redirtying the page here.
2048                  */
2049                 return __ext4_journalled_writepage(page, len);
2050
2051         ext4_io_submit_init(&io_submit, wbc);
2052         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2053         if (!io_submit.io_end) {
2054                 redirty_page_for_writepage(wbc, page);
2055                 unlock_page(page);
2056                 return -ENOMEM;
2057         }
2058         ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2059         ext4_io_submit(&io_submit);
2060         /* Drop io_end reference we got from init */
2061         ext4_put_io_end_defer(io_submit.io_end);
2062         return ret;
2063 }
2064
2065 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2066 {
2067         int len;
2068         loff_t size;
2069         int err;
2070
2071         BUG_ON(page->index != mpd->first_page);
2072         clear_page_dirty_for_io(page);
2073         /*
2074          * We have to be very careful here!  Nothing protects writeback path
2075          * against i_size changes and the page can be writeably mapped into
2076          * page tables. So an application can be growing i_size and writing
2077          * data through mmap while writeback runs. clear_page_dirty_for_io()
2078          * write-protects our page in page tables and the page cannot get
2079          * written to again until we release page lock. So only after
2080          * clear_page_dirty_for_io() we are safe to sample i_size for
2081          * ext4_bio_write_page() to zero-out tail of the written page. We rely
2082          * on the barrier provided by TestClearPageDirty in
2083          * clear_page_dirty_for_io() to make sure i_size is really sampled only
2084          * after page tables are updated.
2085          */
2086         size = i_size_read(mpd->inode);
2087         if (page->index == size >> PAGE_SHIFT &&
2088             !ext4_verity_in_progress(mpd->inode))
2089                 len = size & ~PAGE_MASK;
2090         else
2091                 len = PAGE_SIZE;
2092         err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2093         if (!err)
2094                 mpd->wbc->nr_to_write--;
2095         mpd->first_page++;
2096
2097         return err;
2098 }
2099
2100 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
2101
2102 /*
2103  * mballoc gives us at most this number of blocks...
2104  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2105  * The rest of mballoc seems to handle chunks up to full group size.
2106  */
2107 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2108
2109 /*
2110  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2111  *
2112  * @mpd - extent of blocks
2113  * @lblk - logical number of the block in the file
2114  * @bh - buffer head we want to add to the extent
2115  *
2116  * The function is used to collect contig. blocks in the same state. If the
2117  * buffer doesn't require mapping for writeback and we haven't started the
2118  * extent of buffers to map yet, the function returns 'true' immediately - the
2119  * caller can write the buffer right away. Otherwise the function returns true
2120  * if the block has been added to the extent, false if the block couldn't be
2121  * added.
2122  */
2123 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2124                                    struct buffer_head *bh)
2125 {
2126         struct ext4_map_blocks *map = &mpd->map;
2127
2128         /* Buffer that doesn't need mapping for writeback? */
2129         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2130             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2131                 /* So far no extent to map => we write the buffer right away */
2132                 if (map->m_len == 0)
2133                         return true;
2134                 return false;
2135         }
2136
2137         /* First block in the extent? */
2138         if (map->m_len == 0) {
2139                 /* We cannot map unless handle is started... */
2140                 if (!mpd->do_map)
2141                         return false;
2142                 map->m_lblk = lblk;
2143                 map->m_len = 1;
2144                 map->m_flags = bh->b_state & BH_FLAGS;
2145                 return true;
2146         }
2147
2148         /* Don't go larger than mballoc is willing to allocate */
2149         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2150                 return false;
2151
2152         /* Can we merge the block to our big extent? */
2153         if (lblk == map->m_lblk + map->m_len &&
2154             (bh->b_state & BH_FLAGS) == map->m_flags) {
2155                 map->m_len++;
2156                 return true;
2157         }
2158         return false;
2159 }
2160
2161 /*
2162  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2163  *
2164  * @mpd - extent of blocks for mapping
2165  * @head - the first buffer in the page
2166  * @bh - buffer we should start processing from
2167  * @lblk - logical number of the block in the file corresponding to @bh
2168  *
2169  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2170  * the page for IO if all buffers in this page were mapped and there's no
2171  * accumulated extent of buffers to map or add buffers in the page to the
2172  * extent of buffers to map. The function returns 1 if the caller can continue
2173  * by processing the next page, 0 if it should stop adding buffers to the
2174  * extent to map because we cannot extend it anymore. It can also return value
2175  * < 0 in case of error during IO submission.
2176  */
2177 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2178                                    struct buffer_head *head,
2179                                    struct buffer_head *bh,
2180                                    ext4_lblk_t lblk)
2181 {
2182         struct inode *inode = mpd->inode;
2183         int err;
2184         ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2185                                                         >> inode->i_blkbits;
2186
2187         if (ext4_verity_in_progress(inode))
2188                 blocks = EXT_MAX_BLOCKS;
2189
2190         do {
2191                 BUG_ON(buffer_locked(bh));
2192
2193                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2194                         /* Found extent to map? */
2195                         if (mpd->map.m_len)
2196                                 return 0;
2197                         /* Buffer needs mapping and handle is not started? */
2198                         if (!mpd->do_map)
2199                                 return 0;
2200                         /* Everything mapped so far and we hit EOF */
2201                         break;
2202                 }
2203         } while (lblk++, (bh = bh->b_this_page) != head);
2204         /* So far everything mapped? Submit the page for IO. */
2205         if (mpd->map.m_len == 0) {
2206                 err = mpage_submit_page(mpd, head->b_page);
2207                 if (err < 0)
2208                         return err;
2209         }
2210         if (lblk >= blocks) {
2211                 mpd->scanned_until_end = 1;
2212                 return 0;
2213         }
2214         return 1;
2215 }
2216
2217 /*
2218  * mpage_process_page - update page buffers corresponding to changed extent and
2219  *                     may submit fully mapped page for IO
2220  *
2221  * @mpd         - description of extent to map, on return next extent to map
2222  * @m_lblk      - logical block mapping.
2223  * @m_pblk      - corresponding physical mapping.
2224  * @map_bh      - determines on return whether this page requires any further
2225  *                mapping or not.
2226  * Scan given page buffers corresponding to changed extent and update buffer
2227  * state according to new extent state.
2228  * We map delalloc buffers to their physical location, clear unwritten bits.
2229  * If the given page is not fully mapped, we update @map to the next extent in
2230  * the given page that needs mapping & return @map_bh as true.
2231  */
2232 static int mpage_process_page(struct mpage_da_data *mpd, struct page *page,
2233                               ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2234                               bool *map_bh)
2235 {
2236         struct buffer_head *head, *bh;
2237         ext4_io_end_t *io_end = mpd->io_submit.io_end;
2238         ext4_lblk_t lblk = *m_lblk;
2239         ext4_fsblk_t pblock = *m_pblk;
2240         int err = 0;
2241         int blkbits = mpd->inode->i_blkbits;
2242         ssize_t io_end_size = 0;
2243         struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2244
2245         bh = head = page_buffers(page);
2246         do {
2247                 if (lblk < mpd->map.m_lblk)
2248                         continue;
2249                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2250                         /*
2251                          * Buffer after end of mapped extent.
2252                          * Find next buffer in the page to map.
2253                          */
2254                         mpd->map.m_len = 0;
2255                         mpd->map.m_flags = 0;
2256                         io_end_vec->size += io_end_size;
2257                         io_end_size = 0;
2258
2259                         err = mpage_process_page_bufs(mpd, head, bh, lblk);
2260                         if (err > 0)
2261                                 err = 0;
2262                         if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2263                                 io_end_vec = ext4_alloc_io_end_vec(io_end);
2264                                 if (IS_ERR(io_end_vec)) {
2265                                         err = PTR_ERR(io_end_vec);
2266                                         goto out;
2267                                 }
2268                                 io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits;
2269                         }
2270                         *map_bh = true;
2271                         goto out;
2272                 }
2273                 if (buffer_delay(bh)) {
2274                         clear_buffer_delay(bh);
2275                         bh->b_blocknr = pblock++;
2276                 }
2277                 clear_buffer_unwritten(bh);
2278                 io_end_size += (1 << blkbits);
2279         } while (lblk++, (bh = bh->b_this_page) != head);
2280
2281         io_end_vec->size += io_end_size;
2282         io_end_size = 0;
2283         *map_bh = false;
2284 out:
2285         *m_lblk = lblk;
2286         *m_pblk = pblock;
2287         return err;
2288 }
2289
2290 /*
2291  * mpage_map_buffers - update buffers corresponding to changed extent and
2292  *                     submit fully mapped pages for IO
2293  *
2294  * @mpd - description of extent to map, on return next extent to map
2295  *
2296  * Scan buffers corresponding to changed extent (we expect corresponding pages
2297  * to be already locked) and update buffer state according to new extent state.
2298  * We map delalloc buffers to their physical location, clear unwritten bits,
2299  * and mark buffers as uninit when we perform writes to unwritten extents
2300  * and do extent conversion after IO is finished. If the last page is not fully
2301  * mapped, we update @map to the next extent in the last page that needs
2302  * mapping. Otherwise we submit the page for IO.
2303  */
2304 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2305 {
2306         struct pagevec pvec;
2307         int nr_pages, i;
2308         struct inode *inode = mpd->inode;
2309         int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2310         pgoff_t start, end;
2311         ext4_lblk_t lblk;
2312         ext4_fsblk_t pblock;
2313         int err;
2314         bool map_bh = false;
2315
2316         start = mpd->map.m_lblk >> bpp_bits;
2317         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2318         lblk = start << bpp_bits;
2319         pblock = mpd->map.m_pblk;
2320
2321         pagevec_init(&pvec);
2322         while (start <= end) {
2323                 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2324                                                 &start, end);
2325                 if (nr_pages == 0)
2326                         break;
2327                 for (i = 0; i < nr_pages; i++) {
2328                         struct page *page = pvec.pages[i];
2329
2330                         err = mpage_process_page(mpd, page, &lblk, &pblock,
2331                                                  &map_bh);
2332                         /*
2333                          * If map_bh is true, means page may require further bh
2334                          * mapping, or maybe the page was submitted for IO.
2335                          * So we return to call further extent mapping.
2336                          */
2337                         if (err < 0 || map_bh)
2338                                 goto out;
2339                         /* Page fully mapped - let IO run! */
2340                         err = mpage_submit_page(mpd, page);
2341                         if (err < 0)
2342                                 goto out;
2343                 }
2344                 pagevec_release(&pvec);
2345         }
2346         /* Extent fully mapped and matches with page boundary. We are done. */
2347         mpd->map.m_len = 0;
2348         mpd->map.m_flags = 0;
2349         return 0;
2350 out:
2351         pagevec_release(&pvec);
2352         return err;
2353 }
2354
2355 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2356 {
2357         struct inode *inode = mpd->inode;
2358         struct ext4_map_blocks *map = &mpd->map;
2359         int get_blocks_flags;
2360         int err, dioread_nolock;
2361
2362         trace_ext4_da_write_pages_extent(inode, map);
2363         /*
2364          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2365          * to convert an unwritten extent to be initialized (in the case
2366          * where we have written into one or more preallocated blocks).  It is
2367          * possible that we're going to need more metadata blocks than
2368          * previously reserved. However we must not fail because we're in
2369          * writeback and there is nothing we can do about it so it might result
2370          * in data loss.  So use reserved blocks to allocate metadata if
2371          * possible.
2372          *
2373          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2374          * the blocks in question are delalloc blocks.  This indicates
2375          * that the blocks and quotas has already been checked when
2376          * the data was copied into the page cache.
2377          */
2378         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2379                            EXT4_GET_BLOCKS_METADATA_NOFAIL |
2380                            EXT4_GET_BLOCKS_IO_SUBMIT;
2381         dioread_nolock = ext4_should_dioread_nolock(inode);
2382         if (dioread_nolock)
2383                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2384         if (map->m_flags & BIT(BH_Delay))
2385                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2386
2387         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2388         if (err < 0)
2389                 return err;
2390         if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2391                 if (!mpd->io_submit.io_end->handle &&
2392                     ext4_handle_valid(handle)) {
2393                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2394                         handle->h_rsv_handle = NULL;
2395                 }
2396                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2397         }
2398
2399         BUG_ON(map->m_len == 0);
2400         return 0;
2401 }
2402
2403 /*
2404  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2405  *                               mpd->len and submit pages underlying it for IO
2406  *
2407  * @handle - handle for journal operations
2408  * @mpd - extent to map
2409  * @give_up_on_write - we set this to true iff there is a fatal error and there
2410  *                     is no hope of writing the data. The caller should discard
2411  *                     dirty pages to avoid infinite loops.
2412  *
2413  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2414  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2415  * them to initialized or split the described range from larger unwritten
2416  * extent. Note that we need not map all the described range since allocation
2417  * can return less blocks or the range is covered by more unwritten extents. We
2418  * cannot map more because we are limited by reserved transaction credits. On
2419  * the other hand we always make sure that the last touched page is fully
2420  * mapped so that it can be written out (and thus forward progress is
2421  * guaranteed). After mapping we submit all mapped pages for IO.
2422  */
2423 static int mpage_map_and_submit_extent(handle_t *handle,
2424                                        struct mpage_da_data *mpd,
2425                                        bool *give_up_on_write)
2426 {
2427         struct inode *inode = mpd->inode;
2428         struct ext4_map_blocks *map = &mpd->map;
2429         int err;
2430         loff_t disksize;
2431         int progress = 0;
2432         ext4_io_end_t *io_end = mpd->io_submit.io_end;
2433         struct ext4_io_end_vec *io_end_vec;
2434
2435         io_end_vec = ext4_alloc_io_end_vec(io_end);
2436         if (IS_ERR(io_end_vec))
2437                 return PTR_ERR(io_end_vec);
2438         io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2439         do {
2440                 err = mpage_map_one_extent(handle, mpd);
2441                 if (err < 0) {
2442                         struct super_block *sb = inode->i_sb;
2443
2444                         if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2445                             EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2446                                 goto invalidate_dirty_pages;
2447                         /*
2448                          * Let the uper layers retry transient errors.
2449                          * In the case of ENOSPC, if ext4_count_free_blocks()
2450                          * is non-zero, a commit should free up blocks.
2451                          */
2452                         if ((err == -ENOMEM) ||
2453                             (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2454                                 if (progress)
2455                                         goto update_disksize;
2456                                 return err;
2457                         }
2458                         ext4_msg(sb, KERN_CRIT,
2459                                  "Delayed block allocation failed for "
2460                                  "inode %lu at logical offset %llu with"
2461                                  " max blocks %u with error %d",
2462                                  inode->i_ino,
2463                                  (unsigned long long)map->m_lblk,
2464                                  (unsigned)map->m_len, -err);
2465                         ext4_msg(sb, KERN_CRIT,
2466                                  "This should not happen!! Data will "
2467                                  "be lost\n");
2468                         if (err == -ENOSPC)
2469                                 ext4_print_free_blocks(inode);
2470                 invalidate_dirty_pages:
2471                         *give_up_on_write = true;
2472                         return err;
2473                 }
2474                 progress = 1;
2475                 /*
2476                  * Update buffer state, submit mapped pages, and get us new
2477                  * extent to map
2478                  */
2479                 err = mpage_map_and_submit_buffers(mpd);
2480                 if (err < 0)
2481                         goto update_disksize;
2482         } while (map->m_len);
2483
2484 update_disksize:
2485         /*
2486          * Update on-disk size after IO is submitted.  Races with
2487          * truncate are avoided by checking i_size under i_data_sem.
2488          */
2489         disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2490         if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2491                 int err2;
2492                 loff_t i_size;
2493
2494                 down_write(&EXT4_I(inode)->i_data_sem);
2495                 i_size = i_size_read(inode);
2496                 if (disksize > i_size)
2497                         disksize = i_size;
2498                 if (disksize > EXT4_I(inode)->i_disksize)
2499                         EXT4_I(inode)->i_disksize = disksize;
2500                 up_write(&EXT4_I(inode)->i_data_sem);
2501                 err2 = ext4_mark_inode_dirty(handle, inode);
2502                 if (err2) {
2503                         ext4_error_err(inode->i_sb, -err2,
2504                                        "Failed to mark inode %lu dirty",
2505                                        inode->i_ino);
2506                 }
2507                 if (!err)
2508                         err = err2;
2509         }
2510         return err;
2511 }
2512
2513 /*
2514  * Calculate the total number of credits to reserve for one writepages
2515  * iteration. This is called from ext4_writepages(). We map an extent of
2516  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2517  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2518  * bpp - 1 blocks in bpp different extents.
2519  */
2520 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2521 {
2522         int bpp = ext4_journal_blocks_per_page(inode);
2523
2524         return ext4_meta_trans_blocks(inode,
2525                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2526 }
2527
2528 /*
2529  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2530  *                               and underlying extent to map
2531  *
2532  * @mpd - where to look for pages
2533  *
2534  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2535  * IO immediately. When we find a page which isn't mapped we start accumulating
2536  * extent of buffers underlying these pages that needs mapping (formed by
2537  * either delayed or unwritten buffers). We also lock the pages containing
2538  * these buffers. The extent found is returned in @mpd structure (starting at
2539  * mpd->lblk with length mpd->len blocks).
2540  *
2541  * Note that this function can attach bios to one io_end structure which are
2542  * neither logically nor physically contiguous. Although it may seem as an
2543  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2544  * case as we need to track IO to all buffers underlying a page in one io_end.
2545  */
2546 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2547 {
2548         struct address_space *mapping = mpd->inode->i_mapping;
2549         struct pagevec pvec;
2550         unsigned int nr_pages;
2551         long left = mpd->wbc->nr_to_write;
2552         pgoff_t index = mpd->first_page;
2553         pgoff_t end = mpd->last_page;
2554         xa_mark_t tag;
2555         int i, err = 0;
2556         int blkbits = mpd->inode->i_blkbits;
2557         ext4_lblk_t lblk;
2558         struct buffer_head *head;
2559
2560         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2561                 tag = PAGECACHE_TAG_TOWRITE;
2562         else
2563                 tag = PAGECACHE_TAG_DIRTY;
2564
2565         pagevec_init(&pvec);
2566         mpd->map.m_len = 0;
2567         mpd->next_page = index;
2568         while (index <= end) {
2569                 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2570                                 tag);
2571                 if (nr_pages == 0)
2572                         break;
2573
2574                 for (i = 0; i < nr_pages; i++) {
2575                         struct page *page = pvec.pages[i];
2576
2577                         /*
2578                          * Accumulated enough dirty pages? This doesn't apply
2579                          * to WB_SYNC_ALL mode. For integrity sync we have to
2580                          * keep going because someone may be concurrently
2581                          * dirtying pages, and we might have synced a lot of
2582                          * newly appeared dirty pages, but have not synced all
2583                          * of the old dirty pages.
2584                          */
2585                         if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2586                                 goto out;
2587
2588                         /* If we can't merge this page, we are done. */
2589                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2590                                 goto out;
2591
2592                         lock_page(page);
2593                         /*
2594                          * If the page is no longer dirty, or its mapping no
2595                          * longer corresponds to inode we are writing (which
2596                          * means it has been truncated or invalidated), or the
2597                          * page is already under writeback and we are not doing
2598                          * a data integrity writeback, skip the page
2599                          */
2600                         if (!PageDirty(page) ||
2601                             (PageWriteback(page) &&
2602                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2603                             unlikely(page->mapping != mapping)) {
2604                                 unlock_page(page);
2605                                 continue;
2606                         }
2607
2608                         wait_on_page_writeback(page);
2609                         BUG_ON(PageWriteback(page));
2610
2611                         if (mpd->map.m_len == 0)
2612                                 mpd->first_page = page->index;
2613                         mpd->next_page = page->index + 1;
2614                         /* Add all dirty buffers to mpd */
2615                         lblk = ((ext4_lblk_t)page->index) <<
2616                                 (PAGE_SHIFT - blkbits);
2617                         head = page_buffers(page);
2618                         err = mpage_process_page_bufs(mpd, head, head, lblk);
2619                         if (err <= 0)
2620                                 goto out;
2621                         err = 0;
2622                         left--;
2623                 }
2624                 pagevec_release(&pvec);
2625                 cond_resched();
2626         }
2627         mpd->scanned_until_end = 1;
2628         return 0;
2629 out:
2630         pagevec_release(&pvec);
2631         return err;
2632 }
2633
2634 static int ext4_writepages(struct address_space *mapping,
2635                            struct writeback_control *wbc)
2636 {
2637         pgoff_t writeback_index = 0;
2638         long nr_to_write = wbc->nr_to_write;
2639         int range_whole = 0;
2640         int cycled = 1;
2641         handle_t *handle = NULL;
2642         struct mpage_da_data mpd;
2643         struct inode *inode = mapping->host;
2644         int needed_blocks, rsv_blocks = 0, ret = 0;
2645         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2646         struct blk_plug plug;
2647         bool give_up_on_write = false;
2648
2649         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2650                 return -EIO;
2651
2652         percpu_down_read(&sbi->s_writepages_rwsem);
2653         trace_ext4_writepages(inode, wbc);
2654
2655         /*
2656          * No pages to write? This is mainly a kludge to avoid starting
2657          * a transaction for special inodes like journal inode on last iput()
2658          * because that could violate lock ordering on umount
2659          */
2660         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2661                 goto out_writepages;
2662
2663         if (ext4_should_journal_data(inode)) {
2664                 ret = generic_writepages(mapping, wbc);
2665                 goto out_writepages;
2666         }
2667
2668         /*
2669          * If the filesystem has aborted, it is read-only, so return
2670          * right away instead of dumping stack traces later on that
2671          * will obscure the real source of the problem.  We test
2672          * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2673          * the latter could be true if the filesystem is mounted
2674          * read-only, and in that case, ext4_writepages should
2675          * *never* be called, so if that ever happens, we would want
2676          * the stack trace.
2677          */
2678         if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2679                      sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2680                 ret = -EROFS;
2681                 goto out_writepages;
2682         }
2683
2684         /*
2685          * If we have inline data and arrive here, it means that
2686          * we will soon create the block for the 1st page, so
2687          * we'd better clear the inline data here.
2688          */
2689         if (ext4_has_inline_data(inode)) {
2690                 /* Just inode will be modified... */
2691                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2692                 if (IS_ERR(handle)) {
2693                         ret = PTR_ERR(handle);
2694                         goto out_writepages;
2695                 }
2696                 BUG_ON(ext4_test_inode_state(inode,
2697                                 EXT4_STATE_MAY_INLINE_DATA));
2698                 ext4_destroy_inline_data(handle, inode);
2699                 ext4_journal_stop(handle);
2700         }
2701
2702         if (ext4_should_dioread_nolock(inode)) {
2703                 /*
2704                  * We may need to convert up to one extent per block in
2705                  * the page and we may dirty the inode.
2706                  */
2707                 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2708                                                 PAGE_SIZE >> inode->i_blkbits);
2709         }
2710
2711         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2712                 range_whole = 1;
2713
2714         if (wbc->range_cyclic) {
2715                 writeback_index = mapping->writeback_index;
2716                 if (writeback_index)
2717                         cycled = 0;
2718                 mpd.first_page = writeback_index;
2719                 mpd.last_page = -1;
2720         } else {
2721                 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2722                 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2723         }
2724
2725         mpd.inode = inode;
2726         mpd.wbc = wbc;
2727         ext4_io_submit_init(&mpd.io_submit, wbc);
2728 retry:
2729         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2730                 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2731         blk_start_plug(&plug);
2732
2733         /*
2734          * First writeback pages that don't need mapping - we can avoid
2735          * starting a transaction unnecessarily and also avoid being blocked
2736          * in the block layer on device congestion while having transaction
2737          * started.
2738          */
2739         mpd.do_map = 0;
2740         mpd.scanned_until_end = 0;
2741         mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2742         if (!mpd.io_submit.io_end) {
2743                 ret = -ENOMEM;
2744                 goto unplug;
2745         }
2746         ret = mpage_prepare_extent_to_map(&mpd);
2747         /* Unlock pages we didn't use */
2748         mpage_release_unused_pages(&mpd, false);
2749         /* Submit prepared bio */
2750         ext4_io_submit(&mpd.io_submit);
2751         ext4_put_io_end_defer(mpd.io_submit.io_end);
2752         mpd.io_submit.io_end = NULL;
2753         if (ret < 0)
2754                 goto unplug;
2755
2756         while (!mpd.scanned_until_end && wbc->nr_to_write > 0) {
2757                 /* For each extent of pages we use new io_end */
2758                 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2759                 if (!mpd.io_submit.io_end) {
2760                         ret = -ENOMEM;
2761                         break;
2762                 }
2763
2764                 /*
2765                  * We have two constraints: We find one extent to map and we
2766                  * must always write out whole page (makes a difference when
2767                  * blocksize < pagesize) so that we don't block on IO when we
2768                  * try to write out the rest of the page. Journalled mode is
2769                  * not supported by delalloc.
2770                  */
2771                 BUG_ON(ext4_should_journal_data(inode));
2772                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2773
2774                 /* start a new transaction */
2775                 handle = ext4_journal_start_with_reserve(inode,
2776                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2777                 if (IS_ERR(handle)) {
2778                         ret = PTR_ERR(handle);
2779                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2780                                "%ld pages, ino %lu; err %d", __func__,
2781                                 wbc->nr_to_write, inode->i_ino, ret);
2782                         /* Release allocated io_end */
2783                         ext4_put_io_end(mpd.io_submit.io_end);
2784                         mpd.io_submit.io_end = NULL;
2785                         break;
2786                 }
2787                 mpd.do_map = 1;
2788
2789                 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2790                 ret = mpage_prepare_extent_to_map(&mpd);
2791                 if (!ret && mpd.map.m_len)
2792                         ret = mpage_map_and_submit_extent(handle, &mpd,
2793                                         &give_up_on_write);
2794                 /*
2795                  * Caution: If the handle is synchronous,
2796                  * ext4_journal_stop() can wait for transaction commit
2797                  * to finish which may depend on writeback of pages to
2798                  * complete or on page lock to be released.  In that
2799                  * case, we have to wait until after we have
2800                  * submitted all the IO, released page locks we hold,
2801                  * and dropped io_end reference (for extent conversion
2802                  * to be able to complete) before stopping the handle.
2803                  */
2804                 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2805                         ext4_journal_stop(handle);
2806                         handle = NULL;
2807                         mpd.do_map = 0;
2808                 }
2809                 /* Unlock pages we didn't use */
2810                 mpage_release_unused_pages(&mpd, give_up_on_write);
2811                 /* Submit prepared bio */
2812                 ext4_io_submit(&mpd.io_submit);
2813
2814                 /*
2815                  * Drop our io_end reference we got from init. We have
2816                  * to be careful and use deferred io_end finishing if
2817                  * we are still holding the transaction as we can
2818                  * release the last reference to io_end which may end
2819                  * up doing unwritten extent conversion.
2820                  */
2821                 if (handle) {
2822                         ext4_put_io_end_defer(mpd.io_submit.io_end);
2823                         ext4_journal_stop(handle);
2824                 } else
2825                         ext4_put_io_end(mpd.io_submit.io_end);
2826                 mpd.io_submit.io_end = NULL;
2827
2828                 if (ret == -ENOSPC && sbi->s_journal) {
2829                         /*
2830                          * Commit the transaction which would
2831                          * free blocks released in the transaction
2832                          * and try again
2833                          */
2834                         jbd2_journal_force_commit_nested(sbi->s_journal);
2835                         ret = 0;
2836                         continue;
2837                 }
2838                 /* Fatal error - ENOMEM, EIO... */
2839                 if (ret)
2840                         break;
2841         }
2842 unplug:
2843         blk_finish_plug(&plug);
2844         if (!ret && !cycled && wbc->nr_to_write > 0) {
2845                 cycled = 1;
2846                 mpd.last_page = writeback_index - 1;
2847                 mpd.first_page = 0;
2848                 goto retry;
2849         }
2850
2851         /* Update index */
2852         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2853                 /*
2854                  * Set the writeback_index so that range_cyclic
2855                  * mode will write it back later
2856                  */
2857                 mapping->writeback_index = mpd.first_page;
2858
2859 out_writepages:
2860         trace_ext4_writepages_result(inode, wbc, ret,
2861                                      nr_to_write - wbc->nr_to_write);
2862         percpu_up_read(&sbi->s_writepages_rwsem);
2863         return ret;
2864 }
2865
2866 static int ext4_dax_writepages(struct address_space *mapping,
2867                                struct writeback_control *wbc)
2868 {
2869         int ret;
2870         long nr_to_write = wbc->nr_to_write;
2871         struct inode *inode = mapping->host;
2872         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2873
2874         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2875                 return -EIO;
2876
2877         percpu_down_read(&sbi->s_writepages_rwsem);
2878         trace_ext4_writepages(inode, wbc);
2879
2880         ret = dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc);
2881         trace_ext4_writepages_result(inode, wbc, ret,
2882                                      nr_to_write - wbc->nr_to_write);
2883         percpu_up_read(&sbi->s_writepages_rwsem);
2884         return ret;
2885 }
2886
2887 static int ext4_nonda_switch(struct super_block *sb)
2888 {
2889         s64 free_clusters, dirty_clusters;
2890         struct ext4_sb_info *sbi = EXT4_SB(sb);
2891
2892         /*
2893          * switch to non delalloc mode if we are running low
2894          * on free block. The free block accounting via percpu
2895          * counters can get slightly wrong with percpu_counter_batch getting
2896          * accumulated on each CPU without updating global counters
2897          * Delalloc need an accurate free block accounting. So switch
2898          * to non delalloc when we are near to error range.
2899          */
2900         free_clusters =
2901                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2902         dirty_clusters =
2903                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2904         /*
2905          * Start pushing delalloc when 1/2 of free blocks are dirty.
2906          */
2907         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2908                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2909
2910         if (2 * free_clusters < 3 * dirty_clusters ||
2911             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2912                 /*
2913                  * free block count is less than 150% of dirty blocks
2914                  * or free blocks is less than watermark
2915                  */
2916                 return 1;
2917         }
2918         return 0;
2919 }
2920
2921 /* We always reserve for an inode update; the superblock could be there too */
2922 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2923 {
2924         if (likely(ext4_has_feature_large_file(inode->i_sb)))
2925                 return 1;
2926
2927         if (pos + len <= 0x7fffffffULL)
2928                 return 1;
2929
2930         /* We might need to update the superblock to set LARGE_FILE */
2931         return 2;
2932 }
2933
2934 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2935                                loff_t pos, unsigned len, unsigned flags,
2936                                struct page **pagep, void **fsdata)
2937 {
2938         int ret, retries = 0;
2939         struct page *page;
2940         pgoff_t index;
2941         struct inode *inode = mapping->host;
2942         handle_t *handle;
2943
2944         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2945                 return -EIO;
2946
2947         index = pos >> PAGE_SHIFT;
2948
2949         if (ext4_nonda_switch(inode->i_sb) || S_ISLNK(inode->i_mode) ||
2950             ext4_verity_in_progress(inode)) {
2951                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2952                 return ext4_write_begin(file, mapping, pos,
2953                                         len, flags, pagep, fsdata);
2954         }
2955         *fsdata = (void *)0;
2956         trace_ext4_da_write_begin(inode, pos, len, flags);
2957
2958         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2959                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2960                                                       pos, len, flags,
2961                                                       pagep, fsdata);
2962                 if (ret < 0)
2963                         return ret;
2964                 if (ret == 1)
2965                         return 0;
2966         }
2967
2968         /*
2969          * grab_cache_page_write_begin() can take a long time if the
2970          * system is thrashing due to memory pressure, or if the page
2971          * is being written back.  So grab it first before we start
2972          * the transaction handle.  This also allows us to allocate
2973          * the page (if needed) without using GFP_NOFS.
2974          */
2975 retry_grab:
2976         page = grab_cache_page_write_begin(mapping, index, flags);
2977         if (!page)
2978                 return -ENOMEM;
2979         unlock_page(page);
2980
2981         /*
2982          * With delayed allocation, we don't log the i_disksize update
2983          * if there is delayed block allocation. But we still need
2984          * to journalling the i_disksize update if writes to the end
2985          * of file which has an already mapped buffer.
2986          */
2987 retry_journal:
2988         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2989                                 ext4_da_write_credits(inode, pos, len));
2990         if (IS_ERR(handle)) {
2991                 put_page(page);
2992                 return PTR_ERR(handle);
2993         }
2994
2995         lock_page(page);
2996         if (page->mapping != mapping) {
2997                 /* The page got truncated from under us */
2998                 unlock_page(page);
2999                 put_page(page);
3000                 ext4_journal_stop(handle);
3001                 goto retry_grab;
3002         }
3003         /* In case writeback began while the page was unlocked */
3004         wait_for_stable_page(page);
3005
3006 #ifdef CONFIG_FS_ENCRYPTION
3007         ret = ext4_block_write_begin(page, pos, len,
3008                                      ext4_da_get_block_prep);
3009 #else
3010         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3011 #endif
3012         if (ret < 0) {
3013                 unlock_page(page);
3014                 ext4_journal_stop(handle);
3015                 /*
3016                  * block_write_begin may have instantiated a few blocks
3017                  * outside i_size.  Trim these off again. Don't need
3018                  * i_size_read because we hold i_mutex.
3019                  */
3020                 if (pos + len > inode->i_size)
3021                         ext4_truncate_failed_write(inode);
3022
3023                 if (ret == -ENOSPC &&
3024                     ext4_should_retry_alloc(inode->i_sb, &retries))
3025                         goto retry_journal;
3026
3027                 put_page(page);
3028                 return ret;
3029         }
3030
3031         *pagep = page;
3032         return ret;
3033 }
3034
3035 /*
3036  * Check if we should update i_disksize
3037  * when write to the end of file but not require block allocation
3038  */
3039 static int ext4_da_should_update_i_disksize(struct page *page,
3040                                             unsigned long offset)
3041 {
3042         struct buffer_head *bh;
3043         struct inode *inode = page->mapping->host;
3044         unsigned int idx;
3045         int i;
3046
3047         bh = page_buffers(page);
3048         idx = offset >> inode->i_blkbits;
3049
3050         for (i = 0; i < idx; i++)
3051                 bh = bh->b_this_page;
3052
3053         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3054                 return 0;
3055         return 1;
3056 }
3057
3058 static int ext4_da_write_end(struct file *file,
3059                              struct address_space *mapping,
3060                              loff_t pos, unsigned len, unsigned copied,
3061                              struct page *page, void *fsdata)
3062 {
3063         struct inode *inode = mapping->host;
3064         int ret = 0, ret2;
3065         handle_t *handle = ext4_journal_current_handle();
3066         loff_t new_i_size;
3067         unsigned long start, end;
3068         int write_mode = (int)(unsigned long)fsdata;
3069
3070         if (write_mode == FALL_BACK_TO_NONDELALLOC)
3071                 return ext4_write_end(file, mapping, pos,
3072                                       len, copied, page, fsdata);
3073
3074         trace_ext4_da_write_end(inode, pos, len, copied);
3075         start = pos & (PAGE_SIZE - 1);
3076         end = start + copied - 1;
3077
3078         /*
3079          * generic_write_end() will run mark_inode_dirty() if i_size
3080          * changes.  So let's piggyback the i_disksize mark_inode_dirty
3081          * into that.
3082          */
3083         new_i_size = pos + copied;
3084         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3085                 if (ext4_has_inline_data(inode) ||
3086                     ext4_da_should_update_i_disksize(page, end)) {
3087                         ext4_update_i_disksize(inode, new_i_size);
3088                         /* We need to mark inode dirty even if
3089                          * new_i_size is less that inode->i_size
3090                          * bu greater than i_disksize.(hint delalloc)
3091                          */
3092                         ret = ext4_mark_inode_dirty(handle, inode);
3093                 }
3094         }
3095
3096         if (write_mode != CONVERT_INLINE_DATA &&
3097             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3098             ext4_has_inline_data(inode))
3099                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3100                                                      page);
3101         else
3102                 ret2 = generic_write_end(file, mapping, pos, len, copied,
3103                                                         page, fsdata);
3104
3105         copied = ret2;
3106         if (ret2 < 0)
3107                 ret = ret2;
3108         ret2 = ext4_journal_stop(handle);
3109         if (unlikely(ret2 && !ret))
3110                 ret = ret2;
3111
3112         return ret ? ret : copied;
3113 }
3114
3115 /*
3116  * Force all delayed allocation blocks to be allocated for a given inode.
3117  */
3118 int ext4_alloc_da_blocks(struct inode *inode)
3119 {
3120         trace_ext4_alloc_da_blocks(inode);
3121
3122         if (!EXT4_I(inode)->i_reserved_data_blocks)
3123                 return 0;
3124
3125         /*
3126          * We do something simple for now.  The filemap_flush() will
3127          * also start triggering a write of the data blocks, which is
3128          * not strictly speaking necessary (and for users of
3129          * laptop_mode, not even desirable).  However, to do otherwise
3130          * would require replicating code paths in:
3131          *
3132          * ext4_writepages() ->
3133          *    write_cache_pages() ---> (via passed in callback function)
3134          *        __mpage_da_writepage() -->
3135          *           mpage_add_bh_to_extent()
3136          *           mpage_da_map_blocks()
3137          *
3138          * The problem is that write_cache_pages(), located in
3139          * mm/page-writeback.c, marks pages clean in preparation for
3140          * doing I/O, which is not desirable if we're not planning on
3141          * doing I/O at all.
3142          *
3143          * We could call write_cache_pages(), and then redirty all of
3144          * the pages by calling redirty_page_for_writepage() but that
3145          * would be ugly in the extreme.  So instead we would need to
3146          * replicate parts of the code in the above functions,
3147          * simplifying them because we wouldn't actually intend to
3148          * write out the pages, but rather only collect contiguous
3149          * logical block extents, call the multi-block allocator, and
3150          * then update the buffer heads with the block allocations.
3151          *
3152          * For now, though, we'll cheat by calling filemap_flush(),
3153          * which will map the blocks, and start the I/O, but not
3154          * actually wait for the I/O to complete.
3155          */
3156         return filemap_flush(inode->i_mapping);
3157 }
3158
3159 /*
3160  * bmap() is special.  It gets used by applications such as lilo and by
3161  * the swapper to find the on-disk block of a specific piece of data.
3162  *
3163  * Naturally, this is dangerous if the block concerned is still in the
3164  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3165  * filesystem and enables swap, then they may get a nasty shock when the
3166  * data getting swapped to that swapfile suddenly gets overwritten by
3167  * the original zero's written out previously to the journal and
3168  * awaiting writeback in the kernel's buffer cache.
3169  *
3170  * So, if we see any bmap calls here on a modified, data-journaled file,
3171  * take extra steps to flush any blocks which might be in the cache.
3172  */
3173 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3174 {
3175         struct inode *inode = mapping->host;
3176         journal_t *journal;
3177         int err;
3178
3179         /*
3180          * We can get here for an inline file via the FIBMAP ioctl
3181          */
3182         if (ext4_has_inline_data(inode))
3183                 return 0;
3184
3185         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3186                         test_opt(inode->i_sb, DELALLOC)) {
3187                 /*
3188                  * With delalloc we want to sync the file
3189                  * so that we can make sure we allocate
3190                  * blocks for file
3191                  */
3192                 filemap_write_and_wait(mapping);
3193         }
3194
3195         if (EXT4_JOURNAL(inode) &&
3196             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3197                 /*
3198                  * This is a REALLY heavyweight approach, but the use of
3199                  * bmap on dirty files is expected to be extremely rare:
3200                  * only if we run lilo or swapon on a freshly made file
3201                  * do we expect this to happen.
3202                  *
3203                  * (bmap requires CAP_SYS_RAWIO so this does not
3204                  * represent an unprivileged user DOS attack --- we'd be
3205                  * in trouble if mortal users could trigger this path at
3206                  * will.)
3207                  *
3208                  * NB. EXT4_STATE_JDATA is not set on files other than
3209                  * regular files.  If somebody wants to bmap a directory
3210                  * or symlink and gets confused because the buffer
3211                  * hasn't yet been flushed to disk, they deserve
3212                  * everything they get.
3213                  */
3214
3215                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3216                 journal = EXT4_JOURNAL(inode);
3217                 jbd2_journal_lock_updates(journal);
3218                 err = jbd2_journal_flush(journal);
3219                 jbd2_journal_unlock_updates(journal);
3220
3221                 if (err)
3222                         return 0;
3223         }
3224
3225         return iomap_bmap(mapping, block, &ext4_iomap_ops);
3226 }
3227
3228 static int ext4_readpage(struct file *file, struct page *page)
3229 {
3230         int ret = -EAGAIN;
3231         struct inode *inode = page->mapping->host;
3232
3233         trace_ext4_readpage(page);
3234
3235         if (ext4_has_inline_data(inode))
3236                 ret = ext4_readpage_inline(inode, page);
3237
3238         if (ret == -EAGAIN)
3239                 return ext4_mpage_readpages(inode, NULL, page);
3240
3241         return ret;
3242 }
3243
3244 static void ext4_readahead(struct readahead_control *rac)
3245 {
3246         struct inode *inode = rac->mapping->host;
3247
3248         /* If the file has inline data, no need to do readahead. */
3249         if (ext4_has_inline_data(inode))
3250                 return;
3251
3252         ext4_mpage_readpages(inode, rac, NULL);
3253 }
3254
3255 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3256                                 unsigned int length)
3257 {
3258         trace_ext4_invalidatepage(page, offset, length);
3259
3260         /* No journalling happens on data buffers when this function is used */
3261         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3262
3263         block_invalidatepage(page, offset, length);
3264 }
3265
3266 static int __ext4_journalled_invalidatepage(struct page *page,
3267                                             unsigned int offset,
3268                                             unsigned int length)
3269 {
3270         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3271
3272         trace_ext4_journalled_invalidatepage(page, offset, length);
3273
3274         /*
3275          * If it's a full truncate we just forget about the pending dirtying
3276          */
3277         if (offset == 0 && length == PAGE_SIZE)
3278                 ClearPageChecked(page);
3279
3280         return jbd2_journal_invalidatepage(journal, page, offset, length);
3281 }
3282
3283 /* Wrapper for aops... */
3284 static void ext4_journalled_invalidatepage(struct page *page,
3285                                            unsigned int offset,
3286                                            unsigned int length)
3287 {
3288         WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3289 }
3290
3291 static int ext4_releasepage(struct page *page, gfp_t wait)
3292 {
3293         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3294
3295         trace_ext4_releasepage(page);
3296
3297         /* Page has dirty journalled data -> cannot release */
3298         if (PageChecked(page))
3299                 return 0;
3300         if (journal)
3301                 return jbd2_journal_try_to_free_buffers(journal, page);
3302         else
3303                 return try_to_free_buffers(page);
3304 }
3305
3306 static bool ext4_inode_datasync_dirty(struct inode *inode)
3307 {
3308         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3309
3310         if (journal) {
3311                 if (jbd2_transaction_committed(journal,
3312                         EXT4_I(inode)->i_datasync_tid))
3313                         return false;
3314                 if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
3315                         return atomic_read(&EXT4_SB(inode->i_sb)->s_fc_subtid) <
3316                                 EXT4_I(inode)->i_fc_committed_subtid;
3317                 return true;
3318         }
3319
3320         /* Any metadata buffers to write? */
3321         if (!list_empty(&inode->i_mapping->private_list))
3322                 return true;
3323         return inode->i_state & I_DIRTY_DATASYNC;
3324 }
3325
3326 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3327                            struct ext4_map_blocks *map, loff_t offset,
3328                            loff_t length)
3329 {
3330         u8 blkbits = inode->i_blkbits;
3331
3332         /*
3333          * Writes that span EOF might trigger an I/O size update on completion,
3334          * so consider them to be dirty for the purpose of O_DSYNC, even if
3335          * there is no other metadata changes being made or are pending.
3336          */
3337         iomap->flags = 0;
3338         if (ext4_inode_datasync_dirty(inode) ||
3339             offset + length > i_size_read(inode))
3340                 iomap->flags |= IOMAP_F_DIRTY;
3341
3342         if (map->m_flags & EXT4_MAP_NEW)
3343                 iomap->flags |= IOMAP_F_NEW;
3344
3345         iomap->bdev = inode->i_sb->s_bdev;
3346         iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3347         iomap->offset = (u64) map->m_lblk << blkbits;
3348         iomap->length = (u64) map->m_len << blkbits;
3349
3350         if ((map->m_flags & EXT4_MAP_MAPPED) &&
3351             !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3352                 iomap->flags |= IOMAP_F_MERGED;
3353
3354         /*
3355          * Flags passed to ext4_map_blocks() for direct I/O writes can result
3356          * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3357          * set. In order for any allocated unwritten extents to be converted
3358          * into written extents correctly within the ->end_io() handler, we
3359          * need to ensure that the iomap->type is set appropriately. Hence, the
3360          * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3361          * been set first.
3362          */
3363         if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3364                 iomap->type = IOMAP_UNWRITTEN;
3365                 iomap->addr = (u64) map->m_pblk << blkbits;
3366         } else if (map->m_flags & EXT4_MAP_MAPPED) {
3367                 iomap->type = IOMAP_MAPPED;
3368                 iomap->addr = (u64) map->m_pblk << blkbits;
3369         } else {
3370                 iomap->type = IOMAP_HOLE;
3371                 iomap->addr = IOMAP_NULL_ADDR;
3372         }
3373 }
3374
3375 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3376                             unsigned int flags)
3377 {
3378         handle_t *handle;
3379         u8 blkbits = inode->i_blkbits;
3380         int ret, dio_credits, m_flags = 0, retries = 0;
3381
3382         /*
3383          * Trim the mapping request to the maximum value that we can map at
3384          * once for direct I/O.
3385          */
3386         if (map->m_len > DIO_MAX_BLOCKS)
3387                 map->m_len = DIO_MAX_BLOCKS;
3388         dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3389
3390 retry:
3391         /*
3392          * Either we allocate blocks and then don't get an unwritten extent, so
3393          * in that case we have reserved enough credits. Or, the blocks are
3394          * already allocated and unwritten. In that case, the extent conversion
3395          * fits into the credits as well.
3396          */
3397         handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3398         if (IS_ERR(handle))
3399                 return PTR_ERR(handle);
3400
3401         /*
3402          * DAX and direct I/O are the only two operations that are currently
3403          * supported with IOMAP_WRITE.
3404          */
3405         WARN_ON(!IS_DAX(inode) && !(flags & IOMAP_DIRECT));
3406         if (IS_DAX(inode))
3407                 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3408         /*
3409          * We use i_size instead of i_disksize here because delalloc writeback
3410          * can complete at any point during the I/O and subsequently push the
3411          * i_disksize out to i_size. This could be beyond where direct I/O is
3412          * happening and thus expose allocated blocks to direct I/O reads.
3413          */
3414         else if ((map->m_lblk * (1 << blkbits)) >= i_size_read(inode))
3415                 m_flags = EXT4_GET_BLOCKS_CREATE;
3416         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3417                 m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3418
3419         ret = ext4_map_blocks(handle, inode, map, m_flags);
3420
3421         /*
3422          * We cannot fill holes in indirect tree based inodes as that could
3423          * expose stale data in the case of a crash. Use the magic error code
3424          * to fallback to buffered I/O.
3425          */
3426         if (!m_flags && !ret)
3427                 ret = -ENOTBLK;
3428
3429         ext4_journal_stop(handle);
3430         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3431                 goto retry;
3432
3433         return ret;
3434 }
3435
3436
3437 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3438                 unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3439 {
3440         int ret;
3441         struct ext4_map_blocks map;
3442         u8 blkbits = inode->i_blkbits;
3443
3444         if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3445                 return -EINVAL;
3446
3447         if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3448                 return -ERANGE;
3449
3450         /*
3451          * Calculate the first and last logical blocks respectively.
3452          */
3453         map.m_lblk = offset >> blkbits;
3454         map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3455                           EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3456
3457         if (flags & IOMAP_WRITE) {
3458                 /*
3459                  * We check here if the blocks are already allocated, then we
3460                  * don't need to start a journal txn and we can directly return
3461                  * the mapping information. This could boost performance
3462                  * especially in multi-threaded overwrite requests.
3463                  */
3464                 if (offset + length <= i_size_read(inode)) {
3465                         ret = ext4_map_blocks(NULL, inode, &map, 0);
3466                         if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED))
3467                                 goto out;
3468                 }
3469                 ret = ext4_iomap_alloc(inode, &map, flags);
3470         } else {
3471                 ret = ext4_map_blocks(NULL, inode, &map, 0);
3472         }
3473
3474         if (ret < 0)
3475                 return ret;
3476 out:
3477         ext4_set_iomap(inode, iomap, &map, offset, length);
3478
3479         return 0;
3480 }
3481
3482 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3483                 loff_t length, unsigned flags, struct iomap *iomap,
3484                 struct iomap *srcmap)
3485 {
3486         int ret;
3487
3488         /*
3489          * Even for writes we don't need to allocate blocks, so just pretend
3490          * we are reading to save overhead of starting a transaction.
3491          */
3492         flags &= ~IOMAP_WRITE;
3493         ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3494         WARN_ON_ONCE(iomap->type != IOMAP_MAPPED);
3495         return ret;
3496 }
3497
3498 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3499                           ssize_t written, unsigned flags, struct iomap *iomap)
3500 {
3501         /*
3502          * Check to see whether an error occurred while writing out the data to
3503          * the allocated blocks. If so, return the magic error code so that we
3504          * fallback to buffered I/O and attempt to complete the remainder of
3505          * the I/O. Any blocks that may have been allocated in preparation for
3506          * the direct I/O will be reused during buffered I/O.
3507          */
3508         if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3509                 return -ENOTBLK;
3510
3511         return 0;
3512 }
3513
3514 const struct iomap_ops ext4_iomap_ops = {
3515         .iomap_begin            = ext4_iomap_begin,
3516         .iomap_end              = ext4_iomap_end,
3517 };
3518
3519 const struct iomap_ops ext4_iomap_overwrite_ops = {
3520         .iomap_begin            = ext4_iomap_overwrite_begin,
3521         .iomap_end              = ext4_iomap_end,
3522 };
3523
3524 static bool ext4_iomap_is_delalloc(struct inode *inode,
3525                                    struct ext4_map_blocks *map)
3526 {
3527         struct extent_status es;
3528         ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1;
3529
3530         ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3531                                   map->m_lblk, end, &es);
3532
3533         if (!es.es_len || es.es_lblk > end)
3534                 return false;
3535
3536         if (es.es_lblk > map->m_lblk) {
3537                 map->m_len = es.es_lblk - map->m_lblk;
3538                 return false;
3539         }
3540
3541         offset = map->m_lblk - es.es_lblk;
3542         map->m_len = es.es_len - offset;
3543
3544         return true;
3545 }
3546
3547 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3548                                    loff_t length, unsigned int flags,
3549                                    struct iomap *iomap, struct iomap *srcmap)
3550 {
3551         int ret;
3552         bool delalloc = false;
3553         struct ext4_map_blocks map;
3554         u8 blkbits = inode->i_blkbits;
3555
3556         if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3557                 return -EINVAL;
3558
3559         if (ext4_has_inline_data(inode)) {
3560                 ret = ext4_inline_data_iomap(inode, iomap);
3561                 if (ret != -EAGAIN) {
3562                         if (ret == 0 && offset >= iomap->length)
3563                                 ret = -ENOENT;
3564                         return ret;
3565                 }
3566         }
3567
3568         /*
3569          * Calculate the first and last logical block respectively.
3570          */
3571         map.m_lblk = offset >> blkbits;
3572         map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3573                           EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3574
3575         /*
3576          * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3577          * So handle it here itself instead of querying ext4_map_blocks().
3578          * Since ext4_map_blocks() will warn about it and will return
3579          * -EIO error.
3580          */
3581         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3582                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3583
3584                 if (offset >= sbi->s_bitmap_maxbytes) {
3585                         map.m_flags = 0;
3586                         goto set_iomap;
3587                 }
3588         }
3589
3590         ret = ext4_map_blocks(NULL, inode, &map, 0);
3591         if (ret < 0)
3592                 return ret;
3593         if (ret == 0)
3594                 delalloc = ext4_iomap_is_delalloc(inode, &map);
3595
3596 set_iomap:
3597         ext4_set_iomap(inode, iomap, &map, offset, length);
3598         if (delalloc && iomap->type == IOMAP_HOLE)
3599                 iomap->type = IOMAP_DELALLOC;
3600
3601         return 0;
3602 }
3603
3604 const struct iomap_ops ext4_iomap_report_ops = {
3605         .iomap_begin = ext4_iomap_begin_report,
3606 };
3607
3608 /*
3609  * Pages can be marked dirty completely asynchronously from ext4's journalling
3610  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3611  * much here because ->set_page_dirty is called under VFS locks.  The page is
3612  * not necessarily locked.
3613  *
3614  * We cannot just dirty the page and leave attached buffers clean, because the
3615  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3616  * or jbddirty because all the journalling code will explode.
3617  *
3618  * So what we do is to mark the page "pending dirty" and next time writepage
3619  * is called, propagate that into the buffers appropriately.
3620  */
3621 static int ext4_journalled_set_page_dirty(struct page *page)
3622 {
3623         SetPageChecked(page);
3624         return __set_page_dirty_nobuffers(page);
3625 }
3626
3627 static int ext4_set_page_dirty(struct page *page)
3628 {
3629         WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3630         WARN_ON_ONCE(!page_has_buffers(page));
3631         return __set_page_dirty_buffers(page);
3632 }
3633
3634 static int ext4_iomap_swap_activate(struct swap_info_struct *sis,
3635                                     struct file *file, sector_t *span)
3636 {
3637         return iomap_swapfile_activate(sis, file, span,
3638                                        &ext4_iomap_report_ops);
3639 }
3640
3641 static const struct address_space_operations ext4_aops = {
3642         .readpage               = ext4_readpage,
3643         .readahead              = ext4_readahead,
3644         .writepage              = ext4_writepage,
3645         .writepages             = ext4_writepages,
3646         .write_begin            = ext4_write_begin,
3647         .write_end              = ext4_write_end,
3648         .set_page_dirty         = ext4_set_page_dirty,
3649         .bmap                   = ext4_bmap,
3650         .invalidatepage         = ext4_invalidatepage,
3651         .releasepage            = ext4_releasepage,
3652         .direct_IO              = noop_direct_IO,
3653         .migratepage            = buffer_migrate_page,
3654         .is_partially_uptodate  = block_is_partially_uptodate,
3655         .error_remove_page      = generic_error_remove_page,
3656         .swap_activate          = ext4_iomap_swap_activate,
3657 };
3658
3659 static const struct address_space_operations ext4_journalled_aops = {
3660         .readpage               = ext4_readpage,
3661         .readahead              = ext4_readahead,
3662         .writepage              = ext4_writepage,
3663         .writepages             = ext4_writepages,
3664         .write_begin            = ext4_write_begin,
3665         .write_end              = ext4_journalled_write_end,
3666         .set_page_dirty         = ext4_journalled_set_page_dirty,
3667         .bmap                   = ext4_bmap,
3668         .invalidatepage         = ext4_journalled_invalidatepage,
3669         .releasepage            = ext4_releasepage,
3670         .direct_IO              = noop_direct_IO,
3671         .is_partially_uptodate  = block_is_partially_uptodate,
3672         .error_remove_page      = generic_error_remove_page,
3673         .swap_activate          = ext4_iomap_swap_activate,
3674 };
3675
3676 static const struct address_space_operations ext4_da_aops = {
3677         .readpage               = ext4_readpage,
3678         .readahead              = ext4_readahead,
3679         .writepage              = ext4_writepage,
3680         .writepages             = ext4_writepages,
3681         .write_begin            = ext4_da_write_begin,
3682         .write_end              = ext4_da_write_end,
3683         .set_page_dirty         = ext4_set_page_dirty,
3684         .bmap                   = ext4_bmap,
3685         .invalidatepage         = ext4_invalidatepage,
3686         .releasepage            = ext4_releasepage,
3687         .direct_IO              = noop_direct_IO,
3688         .migratepage            = buffer_migrate_page,
3689         .is_partially_uptodate  = block_is_partially_uptodate,
3690         .error_remove_page      = generic_error_remove_page,
3691         .swap_activate          = ext4_iomap_swap_activate,
3692 };
3693
3694 static const struct address_space_operations ext4_dax_aops = {
3695         .writepages             = ext4_dax_writepages,
3696         .direct_IO              = noop_direct_IO,
3697         .set_page_dirty         = noop_set_page_dirty,
3698         .bmap                   = ext4_bmap,
3699         .invalidatepage         = noop_invalidatepage,
3700         .swap_activate          = ext4_iomap_swap_activate,
3701 };
3702
3703 void ext4_set_aops(struct inode *inode)
3704 {
3705         switch (ext4_inode_journal_mode(inode)) {
3706         case EXT4_INODE_ORDERED_DATA_MODE:
3707         case EXT4_INODE_WRITEBACK_DATA_MODE:
3708                 break;
3709         case EXT4_INODE_JOURNAL_DATA_MODE:
3710                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3711                 return;
3712         default:
3713                 BUG();
3714         }
3715         if (IS_DAX(inode))
3716                 inode->i_mapping->a_ops = &ext4_dax_aops;
3717         else if (test_opt(inode->i_sb, DELALLOC))
3718                 inode->i_mapping->a_ops = &ext4_da_aops;
3719         else
3720                 inode->i_mapping->a_ops = &ext4_aops;
3721 }
3722
3723 static int __ext4_block_zero_page_range(handle_t *handle,
3724                 struct address_space *mapping, loff_t from, loff_t length)
3725 {
3726         ext4_fsblk_t index = from >> PAGE_SHIFT;
3727         unsigned offset = from & (PAGE_SIZE-1);
3728         unsigned blocksize, pos;
3729         ext4_lblk_t iblock;
3730         struct inode *inode = mapping->host;
3731         struct buffer_head *bh;
3732         struct page *page;
3733         int err = 0;
3734
3735         page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3736                                    mapping_gfp_constraint(mapping, ~__GFP_FS));
3737         if (!page)
3738                 return -ENOMEM;
3739
3740         blocksize = inode->i_sb->s_blocksize;
3741
3742         iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3743
3744         if (!page_has_buffers(page))
3745                 create_empty_buffers(page, blocksize, 0);
3746
3747         /* Find the buffer that contains "offset" */
3748         bh = page_buffers(page);
3749         pos = blocksize;
3750         while (offset >= pos) {
3751                 bh = bh->b_this_page;
3752                 iblock++;
3753                 pos += blocksize;
3754         }
3755         if (buffer_freed(bh)) {
3756                 BUFFER_TRACE(bh, "freed: skip");
3757                 goto unlock;
3758         }
3759         if (!buffer_mapped(bh)) {
3760                 BUFFER_TRACE(bh, "unmapped");
3761                 ext4_get_block(inode, iblock, bh, 0);
3762                 /* unmapped? It's a hole - nothing to do */
3763                 if (!buffer_mapped(bh)) {
3764                         BUFFER_TRACE(bh, "still unmapped");
3765                         goto unlock;
3766                 }
3767         }
3768
3769         /* Ok, it's mapped. Make sure it's up-to-date */
3770         if (PageUptodate(page))
3771                 set_buffer_uptodate(bh);
3772
3773         if (!buffer_uptodate(bh)) {
3774                 err = ext4_read_bh_lock(bh, 0, true);
3775                 if (err)
3776                         goto unlock;
3777                 if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
3778                         /* We expect the key to be set. */
3779                         BUG_ON(!fscrypt_has_encryption_key(inode));
3780                         err = fscrypt_decrypt_pagecache_blocks(page, blocksize,
3781                                                                bh_offset(bh));
3782                         if (err) {
3783                                 clear_buffer_uptodate(bh);
3784                                 goto unlock;
3785                         }
3786                 }
3787         }
3788         if (ext4_should_journal_data(inode)) {
3789                 BUFFER_TRACE(bh, "get write access");
3790                 err = ext4_journal_get_write_access(handle, bh);
3791                 if (err)
3792                         goto unlock;
3793         }
3794         zero_user(page, offset, length);
3795         BUFFER_TRACE(bh, "zeroed end of block");
3796
3797         if (ext4_should_journal_data(inode)) {
3798                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3799         } else {
3800                 err = 0;
3801                 mark_buffer_dirty(bh);
3802                 if (ext4_should_order_data(inode))
3803                         err = ext4_jbd2_inode_add_write(handle, inode, from,
3804                                         length);
3805         }
3806
3807 unlock:
3808         unlock_page(page);
3809         put_page(page);
3810         return err;
3811 }
3812
3813 /*
3814  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3815  * starting from file offset 'from'.  The range to be zero'd must
3816  * be contained with in one block.  If the specified range exceeds
3817  * the end of the block it will be shortened to end of the block
3818  * that cooresponds to 'from'
3819  */
3820 static int ext4_block_zero_page_range(handle_t *handle,
3821                 struct address_space *mapping, loff_t from, loff_t length)
3822 {
3823         struct inode *inode = mapping->host;
3824         unsigned offset = from & (PAGE_SIZE-1);
3825         unsigned blocksize = inode->i_sb->s_blocksize;
3826         unsigned max = blocksize - (offset & (blocksize - 1));
3827
3828         /*
3829          * correct length if it does not fall between
3830          * 'from' and the end of the block
3831          */
3832         if (length > max || length < 0)
3833                 length = max;
3834
3835         if (IS_DAX(inode)) {
3836                 return iomap_zero_range(inode, from, length, NULL,
3837                                         &ext4_iomap_ops);
3838         }
3839         return __ext4_block_zero_page_range(handle, mapping, from, length);
3840 }
3841
3842 /*
3843  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3844  * up to the end of the block which corresponds to `from'.
3845  * This required during truncate. We need to physically zero the tail end
3846  * of that block so it doesn't yield old data if the file is later grown.
3847  */
3848 static int ext4_block_truncate_page(handle_t *handle,
3849                 struct address_space *mapping, loff_t from)
3850 {
3851         unsigned offset = from & (PAGE_SIZE-1);
3852         unsigned length;
3853         unsigned blocksize;
3854         struct inode *inode = mapping->host;
3855
3856         /* If we are processing an encrypted inode during orphan list handling */
3857         if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3858                 return 0;
3859
3860         blocksize = inode->i_sb->s_blocksize;
3861         length = blocksize - (offset & (blocksize - 1));
3862
3863         return ext4_block_zero_page_range(handle, mapping, from, length);
3864 }
3865
3866 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3867                              loff_t lstart, loff_t length)
3868 {
3869         struct super_block *sb = inode->i_sb;
3870         struct address_space *mapping = inode->i_mapping;
3871         unsigned partial_start, partial_end;
3872         ext4_fsblk_t start, end;
3873         loff_t byte_end = (lstart + length - 1);
3874         int err = 0;
3875
3876         partial_start = lstart & (sb->s_blocksize - 1);
3877         partial_end = byte_end & (sb->s_blocksize - 1);
3878
3879         start = lstart >> sb->s_blocksize_bits;
3880         end = byte_end >> sb->s_blocksize_bits;
3881
3882         /* Handle partial zero within the single block */
3883         if (start == end &&
3884             (partial_start || (partial_end != sb->s_blocksize - 1))) {
3885                 err = ext4_block_zero_page_range(handle, mapping,
3886                                                  lstart, length);
3887                 return err;
3888         }
3889         /* Handle partial zero out on the start of the range */
3890         if (partial_start) {
3891                 err = ext4_block_zero_page_range(handle, mapping,
3892                                                  lstart, sb->s_blocksize);
3893                 if (err)
3894                         return err;
3895         }
3896         /* Handle partial zero out on the end of the range */
3897         if (partial_end != sb->s_blocksize - 1)
3898                 err = ext4_block_zero_page_range(handle, mapping,
3899                                                  byte_end - partial_end,
3900                                                  partial_end + 1);
3901         return err;
3902 }
3903
3904 int ext4_can_truncate(struct inode *inode)
3905 {
3906         if (S_ISREG(inode->i_mode))
3907                 return 1;
3908         if (S_ISDIR(inode->i_mode))
3909                 return 1;
3910         if (S_ISLNK(inode->i_mode))
3911                 return !ext4_inode_is_fast_symlink(inode);
3912         return 0;
3913 }
3914
3915 /*
3916  * We have to make sure i_disksize gets properly updated before we truncate
3917  * page cache due to hole punching or zero range. Otherwise i_disksize update
3918  * can get lost as it may have been postponed to submission of writeback but
3919  * that will never happen after we truncate page cache.
3920  */
3921 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3922                                       loff_t len)
3923 {
3924         handle_t *handle;
3925         int ret;
3926
3927         loff_t size = i_size_read(inode);
3928
3929         WARN_ON(!inode_is_locked(inode));
3930         if (offset > size || offset + len < size)
3931                 return 0;
3932
3933         if (EXT4_I(inode)->i_disksize >= size)
3934                 return 0;
3935
3936         handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3937         if (IS_ERR(handle))
3938                 return PTR_ERR(handle);
3939         ext4_update_i_disksize(inode, size);
3940         ret = ext4_mark_inode_dirty(handle, inode);
3941         ext4_journal_stop(handle);
3942
3943         return ret;
3944 }
3945
3946 static void ext4_wait_dax_page(struct ext4_inode_info *ei)
3947 {
3948         up_write(&ei->i_mmap_sem);
3949         schedule();
3950         down_write(&ei->i_mmap_sem);
3951 }
3952
3953 int ext4_break_layouts(struct inode *inode)
3954 {
3955         struct ext4_inode_info *ei = EXT4_I(inode);
3956         struct page *page;
3957         int error;
3958
3959         if (WARN_ON_ONCE(!rwsem_is_locked(&ei->i_mmap_sem)))
3960                 return -EINVAL;
3961
3962         do {
3963                 page = dax_layout_busy_page(inode->i_mapping);
3964                 if (!page)
3965                         return 0;
3966
3967                 error = ___wait_var_event(&page->_refcount,
3968                                 atomic_read(&page->_refcount) == 1,
3969                                 TASK_INTERRUPTIBLE, 0, 0,
3970                                 ext4_wait_dax_page(ei));
3971         } while (error == 0);
3972
3973         return error;
3974 }
3975
3976 /*
3977  * ext4_punch_hole: punches a hole in a file by releasing the blocks
3978  * associated with the given offset and length
3979  *
3980  * @inode:  File inode
3981  * @offset: The offset where the hole will begin
3982  * @len:    The length of the hole
3983  *
3984  * Returns: 0 on success or negative on failure
3985  */
3986
3987 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3988 {
3989         struct super_block *sb = inode->i_sb;
3990         ext4_lblk_t first_block, stop_block;
3991         struct address_space *mapping = inode->i_mapping;
3992         loff_t first_block_offset, last_block_offset;
3993         handle_t *handle;
3994         unsigned int credits;
3995         int ret = 0, ret2 = 0;
3996
3997         trace_ext4_punch_hole(inode, offset, length, 0);
3998
3999         ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
4000         if (ext4_has_inline_data(inode)) {
4001                 down_write(&EXT4_I(inode)->i_mmap_sem);
4002                 ret = ext4_convert_inline_data(inode);
4003                 up_write(&EXT4_I(inode)->i_mmap_sem);
4004                 if (ret)
4005                         return ret;
4006         }
4007
4008         /*
4009          * Write out all dirty pages to avoid race conditions
4010          * Then release them.
4011          */
4012         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4013                 ret = filemap_write_and_wait_range(mapping, offset,
4014                                                    offset + length - 1);
4015                 if (ret)
4016                         return ret;
4017         }
4018
4019         inode_lock(inode);
4020
4021         /* No need to punch hole beyond i_size */
4022         if (offset >= inode->i_size)
4023                 goto out_mutex;
4024
4025         /*
4026          * If the hole extends beyond i_size, set the hole
4027          * to end after the page that contains i_size
4028          */
4029         if (offset + length > inode->i_size) {
4030                 length = inode->i_size +
4031                    PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4032                    offset;
4033         }
4034
4035         if (offset & (sb->s_blocksize - 1) ||
4036             (offset + length) & (sb->s_blocksize - 1)) {
4037                 /*
4038                  * Attach jinode to inode for jbd2 if we do any zeroing of
4039                  * partial block
4040                  */
4041                 ret = ext4_inode_attach_jinode(inode);
4042                 if (ret < 0)
4043                         goto out_mutex;
4044
4045         }
4046
4047         /* Wait all existing dio workers, newcomers will block on i_mutex */
4048         inode_dio_wait(inode);
4049
4050         /*
4051          * Prevent page faults from reinstantiating pages we have released from
4052          * page cache.
4053          */
4054         down_write(&EXT4_I(inode)->i_mmap_sem);
4055
4056         ret = ext4_break_layouts(inode);
4057         if (ret)
4058                 goto out_dio;
4059
4060         first_block_offset = round_up(offset, sb->s_blocksize);
4061         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4062
4063         /* Now release the pages and zero block aligned part of pages*/
4064         if (last_block_offset > first_block_offset) {
4065                 ret = ext4_update_disksize_before_punch(inode, offset, length);
4066                 if (ret)
4067                         goto out_dio;
4068                 truncate_pagecache_range(inode, first_block_offset,
4069                                          last_block_offset);
4070         }
4071
4072         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4073                 credits = ext4_writepage_trans_blocks(inode);
4074         else
4075                 credits = ext4_blocks_for_truncate(inode);
4076         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4077         if (IS_ERR(handle)) {
4078                 ret = PTR_ERR(handle);
4079                 ext4_std_error(sb, ret);
4080                 goto out_dio;
4081         }
4082
4083         ret = ext4_zero_partial_blocks(handle, inode, offset,
4084                                        length);
4085         if (ret)
4086                 goto out_stop;
4087
4088         first_block = (offset + sb->s_blocksize - 1) >>
4089                 EXT4_BLOCK_SIZE_BITS(sb);
4090         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4091
4092         /* If there are blocks to remove, do it */
4093         if (stop_block > first_block) {
4094
4095                 down_write(&EXT4_I(inode)->i_data_sem);
4096                 ext4_discard_preallocations(inode, 0);
4097
4098                 ret = ext4_es_remove_extent(inode, first_block,
4099                                             stop_block - first_block);
4100                 if (ret) {
4101                         up_write(&EXT4_I(inode)->i_data_sem);
4102                         goto out_stop;
4103                 }
4104
4105                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4106                         ret = ext4_ext_remove_space(inode, first_block,
4107                                                     stop_block - 1);
4108                 else
4109                         ret = ext4_ind_remove_space(handle, inode, first_block,
4110                                                     stop_block);
4111
4112                 up_write(&EXT4_I(inode)->i_data_sem);
4113         }
4114         ext4_fc_track_range(inode, first_block, stop_block);
4115         if (IS_SYNC(inode))
4116                 ext4_handle_sync(handle);
4117
4118         inode->i_mtime = inode->i_ctime = current_time(inode);
4119         ret2 = ext4_mark_inode_dirty(handle, inode);
4120         if (unlikely(ret2))
4121                 ret = ret2;
4122         if (ret >= 0)
4123                 ext4_update_inode_fsync_trans(handle, inode, 1);
4124 out_stop:
4125         ext4_journal_stop(handle);
4126 out_dio:
4127         up_write(&EXT4_I(inode)->i_mmap_sem);
4128 out_mutex:
4129         inode_unlock(inode);
4130         return ret;
4131 }
4132
4133 int ext4_inode_attach_jinode(struct inode *inode)
4134 {
4135         struct ext4_inode_info *ei = EXT4_I(inode);
4136         struct jbd2_inode *jinode;
4137
4138         if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4139                 return 0;
4140
4141         jinode = jbd2_alloc_inode(GFP_KERNEL);
4142         spin_lock(&inode->i_lock);
4143         if (!ei->jinode) {
4144                 if (!jinode) {
4145                         spin_unlock(&inode->i_lock);
4146                         return -ENOMEM;
4147                 }
4148                 ei->jinode = jinode;
4149                 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4150                 jinode = NULL;
4151         }
4152         spin_unlock(&inode->i_lock);
4153         if (unlikely(jinode != NULL))
4154                 jbd2_free_inode(jinode);
4155         return 0;
4156 }
4157
4158 /*
4159  * ext4_truncate()
4160  *
4161  * We block out ext4_get_block() block instantiations across the entire
4162  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4163  * simultaneously on behalf of the same inode.
4164  *
4165  * As we work through the truncate and commit bits of it to the journal there
4166  * is one core, guiding principle: the file's tree must always be consistent on
4167  * disk.  We must be able to restart the truncate after a crash.
4168  *
4169  * The file's tree may be transiently inconsistent in memory (although it
4170  * probably isn't), but whenever we close off and commit a journal transaction,
4171  * the contents of (the filesystem + the journal) must be consistent and
4172  * restartable.  It's pretty simple, really: bottom up, right to left (although
4173  * left-to-right works OK too).
4174  *
4175  * Note that at recovery time, journal replay occurs *before* the restart of
4176  * truncate against the orphan inode list.
4177  *
4178  * The committed inode has the new, desired i_size (which is the same as
4179  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4180  * that this inode's truncate did not complete and it will again call
4181  * ext4_truncate() to have another go.  So there will be instantiated blocks
4182  * to the right of the truncation point in a crashed ext4 filesystem.  But
4183  * that's fine - as long as they are linked from the inode, the post-crash
4184  * ext4_truncate() run will find them and release them.
4185  */
4186 int ext4_truncate(struct inode *inode)
4187 {
4188         struct ext4_inode_info *ei = EXT4_I(inode);
4189         unsigned int credits;
4190         int err = 0, err2;
4191         handle_t *handle;
4192         struct address_space *mapping = inode->i_mapping;
4193
4194         /*
4195          * There is a possibility that we're either freeing the inode
4196          * or it's a completely new inode. In those cases we might not
4197          * have i_mutex locked because it's not necessary.
4198          */
4199         if (!(inode->i_state & (I_NEW|I_FREEING)))
4200                 WARN_ON(!inode_is_locked(inode));
4201         trace_ext4_truncate_enter(inode);
4202
4203         if (!ext4_can_truncate(inode))
4204                 goto out_trace;
4205
4206         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4207                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4208
4209         if (ext4_has_inline_data(inode)) {
4210                 int has_inline = 1;
4211
4212                 err = ext4_inline_data_truncate(inode, &has_inline);
4213                 if (err || has_inline)
4214                         goto out_trace;
4215         }
4216
4217         /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4218         if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4219                 if (ext4_inode_attach_jinode(inode) < 0)
4220                         goto out_trace;
4221         }
4222
4223         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4224                 credits = ext4_writepage_trans_blocks(inode);
4225         else
4226                 credits = ext4_blocks_for_truncate(inode);
4227
4228         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4229         if (IS_ERR(handle)) {
4230                 err = PTR_ERR(handle);
4231                 goto out_trace;
4232         }
4233
4234         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4235                 ext4_block_truncate_page(handle, mapping, inode->i_size);
4236
4237         /*
4238          * We add the inode to the orphan list, so that if this
4239          * truncate spans multiple transactions, and we crash, we will
4240          * resume the truncate when the filesystem recovers.  It also
4241          * marks the inode dirty, to catch the new size.
4242          *
4243          * Implication: the file must always be in a sane, consistent
4244          * truncatable state while each transaction commits.
4245          */
4246         err = ext4_orphan_add(handle, inode);
4247         if (err)
4248                 goto out_stop;
4249
4250         down_write(&EXT4_I(inode)->i_data_sem);
4251
4252         ext4_discard_preallocations(inode, 0);
4253
4254         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4255                 err = ext4_ext_truncate(handle, inode);
4256         else
4257                 ext4_ind_truncate(handle, inode);
4258
4259         up_write(&ei->i_data_sem);
4260         if (err)
4261                 goto out_stop;
4262
4263         if (IS_SYNC(inode))
4264                 ext4_handle_sync(handle);
4265
4266 out_stop:
4267         /*
4268          * If this was a simple ftruncate() and the file will remain alive,
4269          * then we need to clear up the orphan record which we created above.
4270          * However, if this was a real unlink then we were called by
4271          * ext4_evict_inode(), and we allow that function to clean up the
4272          * orphan info for us.
4273          */
4274         if (inode->i_nlink)
4275                 ext4_orphan_del(handle, inode);
4276
4277         inode->i_mtime = inode->i_ctime = current_time(inode);
4278         err2 = ext4_mark_inode_dirty(handle, inode);
4279         if (unlikely(err2 && !err))
4280                 err = err2;
4281         ext4_journal_stop(handle);
4282
4283 out_trace:
4284         trace_ext4_truncate_exit(inode);
4285         return err;
4286 }
4287
4288 /*
4289  * ext4_get_inode_loc returns with an extra refcount against the inode's
4290  * underlying buffer_head on success. If 'in_mem' is true, we have all
4291  * data in memory that is needed to recreate the on-disk version of this
4292  * inode.
4293  */
4294 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino,
4295                                 struct ext4_iloc *iloc, int in_mem,
4296                                 ext4_fsblk_t *ret_block)
4297 {
4298         struct ext4_group_desc  *gdp;
4299         struct buffer_head      *bh;
4300         ext4_fsblk_t            block;
4301         struct blk_plug         plug;
4302         int                     inodes_per_block, inode_offset;
4303
4304         iloc->bh = NULL;
4305         if (ino < EXT4_ROOT_INO ||
4306             ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4307                 return -EFSCORRUPTED;
4308
4309         iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
4310         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4311         if (!gdp)
4312                 return -EIO;
4313
4314         /*
4315          * Figure out the offset within the block group inode table
4316          */
4317         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4318         inode_offset = ((ino - 1) %
4319                         EXT4_INODES_PER_GROUP(sb));
4320         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4321         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4322
4323         bh = sb_getblk(sb, block);
4324         if (unlikely(!bh))
4325                 return -ENOMEM;
4326         if (ext4_simulate_fail(sb, EXT4_SIM_INODE_EIO))
4327                 goto simulate_eio;
4328         if (!buffer_uptodate(bh)) {
4329                 lock_buffer(bh);
4330
4331                 if (ext4_buffer_uptodate(bh)) {
4332                         /* someone brought it uptodate while we waited */
4333                         unlock_buffer(bh);
4334                         goto has_buffer;
4335                 }
4336
4337                 /*
4338                  * If we have all information of the inode in memory and this
4339                  * is the only valid inode in the block, we need not read the
4340                  * block.
4341                  */
4342                 if (in_mem) {
4343                         struct buffer_head *bitmap_bh;
4344                         int i, start;
4345
4346                         start = inode_offset & ~(inodes_per_block - 1);
4347
4348                         /* Is the inode bitmap in cache? */
4349                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4350                         if (unlikely(!bitmap_bh))
4351                                 goto make_io;
4352
4353                         /*
4354                          * If the inode bitmap isn't in cache then the
4355                          * optimisation may end up performing two reads instead
4356                          * of one, so skip it.
4357                          */
4358                         if (!buffer_uptodate(bitmap_bh)) {
4359                                 brelse(bitmap_bh);
4360                                 goto make_io;
4361                         }
4362                         for (i = start; i < start + inodes_per_block; i++) {
4363                                 if (i == inode_offset)
4364                                         continue;
4365                                 if (ext4_test_bit(i, bitmap_bh->b_data))
4366                                         break;
4367                         }
4368                         brelse(bitmap_bh);
4369                         if (i == start + inodes_per_block) {
4370                                 /* all other inodes are free, so skip I/O */
4371                                 memset(bh->b_data, 0, bh->b_size);
4372                                 set_buffer_uptodate(bh);
4373                                 unlock_buffer(bh);
4374                                 goto has_buffer;
4375                         }
4376                 }
4377
4378 make_io:
4379                 /*
4380                  * If we need to do any I/O, try to pre-readahead extra
4381                  * blocks from the inode table.
4382                  */
4383                 blk_start_plug(&plug);
4384                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4385                         ext4_fsblk_t b, end, table;
4386                         unsigned num;
4387                         __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4388
4389                         table = ext4_inode_table(sb, gdp);
4390                         /* s_inode_readahead_blks is always a power of 2 */
4391                         b = block & ~((ext4_fsblk_t) ra_blks - 1);
4392                         if (table > b)
4393                                 b = table;
4394                         end = b + ra_blks;
4395                         num = EXT4_INODES_PER_GROUP(sb);
4396                         if (ext4_has_group_desc_csum(sb))
4397                                 num -= ext4_itable_unused_count(sb, gdp);
4398                         table += num / inodes_per_block;
4399                         if (end > table)
4400                                 end = table;
4401                         while (b <= end)
4402                                 ext4_sb_breadahead_unmovable(sb, b++);
4403                 }
4404
4405                 /*
4406                  * There are other valid inodes in the buffer, this inode
4407                  * has in-inode xattrs, or we don't have this inode in memory.
4408                  * Read the block from disk.
4409                  */
4410                 trace_ext4_load_inode(sb, ino);
4411                 ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL);
4412                 blk_finish_plug(&plug);
4413                 wait_on_buffer(bh);
4414                 if (!buffer_uptodate(bh)) {
4415                 simulate_eio:
4416                         if (ret_block)
4417                                 *ret_block = block;
4418                         brelse(bh);
4419                         return -EIO;
4420                 }
4421         }
4422 has_buffer:
4423         iloc->bh = bh;
4424         return 0;
4425 }
4426
4427 static int __ext4_get_inode_loc_noinmem(struct inode *inode,
4428                                         struct ext4_iloc *iloc)
4429 {
4430         ext4_fsblk_t err_blk;
4431         int ret;
4432
4433         ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, iloc, 0,
4434                                         &err_blk);
4435
4436         if (ret == -EIO)
4437                 ext4_error_inode_block(inode, err_blk, EIO,
4438                                         "unable to read itable block");
4439
4440         return ret;
4441 }
4442
4443 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4444 {
4445         ext4_fsblk_t err_blk;
4446         int ret;
4447
4448         /* We have all inode data except xattrs in memory here. */
4449         ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, iloc,
4450                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR), &err_blk);
4451
4452         if (ret == -EIO)
4453                 ext4_error_inode_block(inode, err_blk, EIO,
4454                                         "unable to read itable block");
4455
4456         return ret;
4457 }
4458
4459
4460 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino,
4461                           struct ext4_iloc *iloc)
4462 {
4463         return __ext4_get_inode_loc(sb, ino, iloc, 0, NULL);
4464 }
4465
4466 static bool ext4_should_enable_dax(struct inode *inode)
4467 {
4468         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4469
4470         if (test_opt2(inode->i_sb, DAX_NEVER))
4471                 return false;
4472         if (!S_ISREG(inode->i_mode))
4473                 return false;
4474         if (ext4_should_journal_data(inode))
4475                 return false;
4476         if (ext4_has_inline_data(inode))
4477                 return false;
4478         if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4479                 return false;
4480         if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4481                 return false;
4482         if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4483                 return false;
4484         if (test_opt(inode->i_sb, DAX_ALWAYS))
4485                 return true;
4486
4487         return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
4488 }
4489
4490 void ext4_set_inode_flags(struct inode *inode, bool init)
4491 {
4492         unsigned int flags = EXT4_I(inode)->i_flags;
4493         unsigned int new_fl = 0;
4494
4495         WARN_ON_ONCE(IS_DAX(inode) && init);
4496
4497         if (flags & EXT4_SYNC_FL)
4498                 new_fl |= S_SYNC;
4499         if (flags & EXT4_APPEND_FL)
4500                 new_fl |= S_APPEND;
4501         if (flags & EXT4_IMMUTABLE_FL)
4502                 new_fl |= S_IMMUTABLE;
4503         if (flags & EXT4_NOATIME_FL)
4504                 new_fl |= S_NOATIME;
4505         if (flags & EXT4_DIRSYNC_FL)
4506                 new_fl |= S_DIRSYNC;
4507
4508         /* Because of the way inode_set_flags() works we must preserve S_DAX
4509          * here if already set. */
4510         new_fl |= (inode->i_flags & S_DAX);
4511         if (init && ext4_should_enable_dax(inode))
4512                 new_fl |= S_DAX;
4513
4514         if (flags & EXT4_ENCRYPT_FL)
4515                 new_fl |= S_ENCRYPTED;
4516         if (flags & EXT4_CASEFOLD_FL)
4517                 new_fl |= S_CASEFOLD;
4518         if (flags & EXT4_VERITY_FL)
4519                 new_fl |= S_VERITY;
4520         inode_set_flags(inode, new_fl,
4521                         S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4522                         S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4523 }
4524
4525 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4526                                   struct ext4_inode_info *ei)
4527 {
4528         blkcnt_t i_blocks ;
4529         struct inode *inode = &(ei->vfs_inode);
4530         struct super_block *sb = inode->i_sb;
4531
4532         if (ext4_has_feature_huge_file(sb)) {
4533                 /* we are using combined 48 bit field */
4534                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4535                                         le32_to_cpu(raw_inode->i_blocks_lo);
4536                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4537                         /* i_blocks represent file system block size */
4538                         return i_blocks  << (inode->i_blkbits - 9);
4539                 } else {
4540                         return i_blocks;
4541                 }
4542         } else {
4543                 return le32_to_cpu(raw_inode->i_blocks_lo);
4544         }
4545 }
4546
4547 static inline int ext4_iget_extra_inode(struct inode *inode,
4548                                          struct ext4_inode *raw_inode,
4549                                          struct ext4_inode_info *ei)
4550 {
4551         __le32 *magic = (void *)raw_inode +
4552                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4553
4554         if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4555             EXT4_INODE_SIZE(inode->i_sb) &&
4556             *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4557                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4558                 return ext4_find_inline_data_nolock(inode);
4559         } else
4560                 EXT4_I(inode)->i_inline_off = 0;
4561         return 0;
4562 }
4563
4564 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4565 {
4566         if (!ext4_has_feature_project(inode->i_sb))
4567                 return -EOPNOTSUPP;
4568         *projid = EXT4_I(inode)->i_projid;
4569         return 0;
4570 }
4571
4572 /*
4573  * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4574  * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4575  * set.
4576  */
4577 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4578 {
4579         if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4580                 inode_set_iversion_raw(inode, val);
4581         else
4582                 inode_set_iversion_queried(inode, val);
4583 }
4584 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4585 {
4586         if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4587                 return inode_peek_iversion_raw(inode);
4588         else
4589                 return inode_peek_iversion(inode);
4590 }
4591
4592 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4593                           ext4_iget_flags flags, const char *function,
4594                           unsigned int line)
4595 {
4596         struct ext4_iloc iloc;
4597         struct ext4_inode *raw_inode;
4598         struct ext4_inode_info *ei;
4599         struct inode *inode;
4600         journal_t *journal = EXT4_SB(sb)->s_journal;
4601         long ret;
4602         loff_t size;
4603         int block;
4604         uid_t i_uid;
4605         gid_t i_gid;
4606         projid_t i_projid;
4607
4608         if ((!(flags & EXT4_IGET_SPECIAL) &&
4609              (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)) ||
4610             (ino < EXT4_ROOT_INO) ||
4611             (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))) {
4612                 if (flags & EXT4_IGET_HANDLE)
4613                         return ERR_PTR(-ESTALE);
4614                 __ext4_error(sb, function, line, EFSCORRUPTED, 0,
4615                              "inode #%lu: comm %s: iget: illegal inode #",
4616                              ino, current->comm);
4617                 return ERR_PTR(-EFSCORRUPTED);
4618         }
4619
4620         inode = iget_locked(sb, ino);
4621         if (!inode)
4622                 return ERR_PTR(-ENOMEM);
4623         if (!(inode->i_state & I_NEW))
4624                 return inode;
4625
4626         ei = EXT4_I(inode);
4627         iloc.bh = NULL;
4628
4629         ret = __ext4_get_inode_loc_noinmem(inode, &iloc);
4630         if (ret < 0)
4631                 goto bad_inode;
4632         raw_inode = ext4_raw_inode(&iloc);
4633
4634         if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4635                 ext4_error_inode(inode, function, line, 0,
4636                                  "iget: root inode unallocated");
4637                 ret = -EFSCORRUPTED;
4638                 goto bad_inode;
4639         }
4640
4641         if ((flags & EXT4_IGET_HANDLE) &&
4642             (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4643                 ret = -ESTALE;
4644                 goto bad_inode;
4645         }
4646
4647         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4648                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4649                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4650                         EXT4_INODE_SIZE(inode->i_sb) ||
4651                     (ei->i_extra_isize & 3)) {
4652                         ext4_error_inode(inode, function, line, 0,
4653                                          "iget: bad extra_isize %u "
4654                                          "(inode size %u)",
4655                                          ei->i_extra_isize,
4656                                          EXT4_INODE_SIZE(inode->i_sb));
4657                         ret = -EFSCORRUPTED;
4658                         goto bad_inode;
4659                 }
4660         } else
4661                 ei->i_extra_isize = 0;
4662
4663         /* Precompute checksum seed for inode metadata */
4664         if (ext4_has_metadata_csum(sb)) {
4665                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4666                 __u32 csum;
4667                 __le32 inum = cpu_to_le32(inode->i_ino);
4668                 __le32 gen = raw_inode->i_generation;
4669                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4670                                    sizeof(inum));
4671                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4672                                               sizeof(gen));
4673         }
4674
4675         if ((!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4676             ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) &&
4677              (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) {
4678                 ext4_error_inode_err(inode, function, line, 0,
4679                                 EFSBADCRC, "iget: checksum invalid");
4680                 ret = -EFSBADCRC;
4681                 goto bad_inode;
4682         }
4683
4684         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4685         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4686         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4687         if (ext4_has_feature_project(sb) &&
4688             EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4689             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4690                 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4691         else
4692                 i_projid = EXT4_DEF_PROJID;
4693
4694         if (!(test_opt(inode->i_sb, NO_UID32))) {
4695                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4696                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4697         }
4698         i_uid_write(inode, i_uid);
4699         i_gid_write(inode, i_gid);
4700         ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4701         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4702
4703         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4704         ei->i_inline_off = 0;
4705         ei->i_dir_start_lookup = 0;
4706         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4707         /* We now have enough fields to check if the inode was active or not.
4708          * This is needed because nfsd might try to access dead inodes
4709          * the test is that same one that e2fsck uses
4710          * NeilBrown 1999oct15
4711          */
4712         if (inode->i_nlink == 0) {
4713                 if ((inode->i_mode == 0 ||
4714                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4715                     ino != EXT4_BOOT_LOADER_INO) {
4716                         /* this inode is deleted */
4717                         ret = -ESTALE;
4718                         goto bad_inode;
4719                 }
4720                 /* The only unlinked inodes we let through here have
4721                  * valid i_mode and are being read by the orphan
4722                  * recovery code: that's fine, we're about to complete
4723                  * the process of deleting those.
4724                  * OR it is the EXT4_BOOT_LOADER_INO which is
4725                  * not initialized on a new filesystem. */
4726         }
4727         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4728         ext4_set_inode_flags(inode, true);
4729         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4730         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4731         if (ext4_has_feature_64bit(sb))
4732                 ei->i_file_acl |=
4733                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4734         inode->i_size = ext4_isize(sb, raw_inode);
4735         if ((size = i_size_read(inode)) < 0) {
4736                 ext4_error_inode(inode, function, line, 0,
4737                                  "iget: bad i_size value: %lld", size);
4738                 ret = -EFSCORRUPTED;
4739                 goto bad_inode;
4740         }
4741         /*
4742          * If dir_index is not enabled but there's dir with INDEX flag set,
4743          * we'd normally treat htree data as empty space. But with metadata
4744          * checksumming that corrupts checksums so forbid that.
4745          */
4746         if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4747             ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4748                 ext4_error_inode(inode, function, line, 0,
4749                          "iget: Dir with htree data on filesystem without dir_index feature.");
4750                 ret = -EFSCORRUPTED;
4751                 goto bad_inode;
4752         }
4753         ei->i_disksize = inode->i_size;
4754 #ifdef CONFIG_QUOTA
4755         ei->i_reserved_quota = 0;
4756 #endif
4757         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4758         ei->i_block_group = iloc.block_group;
4759         ei->i_last_alloc_group = ~0;
4760         /*
4761          * NOTE! The in-memory inode i_data array is in little-endian order
4762          * even on big-endian machines: we do NOT byteswap the block numbers!
4763          */
4764         for (block = 0; block < EXT4_N_BLOCKS; block++)
4765                 ei->i_data[block] = raw_inode->i_block[block];
4766         INIT_LIST_HEAD(&ei->i_orphan);
4767         ext4_fc_init_inode(&ei->vfs_inode);
4768
4769         /*
4770          * Set transaction id's of transactions that have to be committed
4771          * to finish f[data]sync. We set them to currently running transaction
4772          * as we cannot be sure that the inode or some of its metadata isn't
4773          * part of the transaction - the inode could have been reclaimed and
4774          * now it is reread from disk.
4775          */
4776         if (journal) {
4777                 transaction_t *transaction;
4778                 tid_t tid;
4779
4780                 read_lock(&journal->j_state_lock);
4781                 if (journal->j_running_transaction)
4782                         transaction = journal->j_running_transaction;
4783                 else
4784                         transaction = journal->j_committing_transaction;
4785                 if (transaction)
4786                         tid = transaction->t_tid;
4787                 else
4788                         tid = journal->j_commit_sequence;
4789                 read_unlock(&journal->j_state_lock);
4790                 ei->i_sync_tid = tid;
4791                 ei->i_datasync_tid = tid;
4792         }
4793
4794         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4795                 if (ei->i_extra_isize == 0) {
4796                         /* The extra space is currently unused. Use it. */
4797                         BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4798                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4799                                             EXT4_GOOD_OLD_INODE_SIZE;
4800                 } else {
4801                         ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4802                         if (ret)
4803                                 goto bad_inode;
4804                 }
4805         }
4806
4807         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4808         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4809         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4810         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4811
4812         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4813                 u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4814
4815                 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4816                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4817                                 ivers |=
4818                     (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4819                 }
4820                 ext4_inode_set_iversion_queried(inode, ivers);
4821         }
4822
4823         ret = 0;
4824         if (ei->i_file_acl &&
4825             !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
4826                 ext4_error_inode(inode, function, line, 0,
4827                                  "iget: bad extended attribute block %llu",
4828                                  ei->i_file_acl);
4829                 ret = -EFSCORRUPTED;
4830                 goto bad_inode;
4831         } else if (!ext4_has_inline_data(inode)) {
4832                 /* validate the block references in the inode */
4833                 if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) &&
4834                         (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4835                         (S_ISLNK(inode->i_mode) &&
4836                         !ext4_inode_is_fast_symlink(inode)))) {
4837                         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4838                                 ret = ext4_ext_check_inode(inode);
4839                         else
4840                                 ret = ext4_ind_check_inode(inode);
4841                 }
4842         }
4843         if (ret)
4844                 goto bad_inode;
4845
4846         if (S_ISREG(inode->i_mode)) {
4847                 inode->i_op = &ext4_file_inode_operations;
4848                 inode->i_fop = &ext4_file_operations;
4849                 ext4_set_aops(inode);
4850         } else if (S_ISDIR(inode->i_mode)) {
4851                 inode->i_op = &ext4_dir_inode_operations;
4852                 inode->i_fop = &ext4_dir_operations;
4853         } else if (S_ISLNK(inode->i_mode)) {
4854                 /* VFS does not allow setting these so must be corruption */
4855                 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
4856                         ext4_error_inode(inode, function, line, 0,
4857                                          "iget: immutable or append flags "
4858                                          "not allowed on symlinks");
4859                         ret = -EFSCORRUPTED;
4860                         goto bad_inode;
4861                 }
4862                 if (IS_ENCRYPTED(inode)) {
4863                         inode->i_op = &ext4_encrypted_symlink_inode_operations;
4864                         ext4_set_aops(inode);
4865                 } else if (ext4_inode_is_fast_symlink(inode)) {
4866                         inode->i_link = (char *)ei->i_data;
4867                         inode->i_op = &ext4_fast_symlink_inode_operations;
4868                         nd_terminate_link(ei->i_data, inode->i_size,
4869                                 sizeof(ei->i_data) - 1);
4870                 } else {
4871                         inode->i_op = &ext4_symlink_inode_operations;
4872                         ext4_set_aops(inode);
4873                 }
4874                 inode_nohighmem(inode);
4875         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4876               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4877                 inode->i_op = &ext4_special_inode_operations;
4878                 if (raw_inode->i_block[0])
4879                         init_special_inode(inode, inode->i_mode,
4880                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4881                 else
4882                         init_special_inode(inode, inode->i_mode,
4883                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4884         } else if (ino == EXT4_BOOT_LOADER_INO) {
4885                 make_bad_inode(inode);
4886         } else {
4887                 ret = -EFSCORRUPTED;
4888                 ext4_error_inode(inode, function, line, 0,
4889                                  "iget: bogus i_mode (%o)", inode->i_mode);
4890                 goto bad_inode;
4891         }
4892         if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb))
4893                 ext4_error_inode(inode, function, line, 0,
4894                                  "casefold flag without casefold feature");
4895         brelse(iloc.bh);
4896
4897         unlock_new_inode(inode);
4898         return inode;
4899
4900 bad_inode:
4901         brelse(iloc.bh);
4902         iget_failed(inode);
4903         return ERR_PTR(ret);
4904 }
4905
4906 static int ext4_inode_blocks_set(handle_t *handle,
4907                                 struct ext4_inode *raw_inode,
4908                                 struct ext4_inode_info *ei)
4909 {
4910         struct inode *inode = &(ei->vfs_inode);
4911         u64 i_blocks = READ_ONCE(inode->i_blocks);
4912         struct super_block *sb = inode->i_sb;
4913
4914         if (i_blocks <= ~0U) {
4915                 /*
4916                  * i_blocks can be represented in a 32 bit variable
4917                  * as multiple of 512 bytes
4918                  */
4919                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4920                 raw_inode->i_blocks_high = 0;
4921                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4922                 return 0;
4923         }
4924         if (!ext4_has_feature_huge_file(sb))
4925                 return -EFBIG;
4926
4927         if (i_blocks <= 0xffffffffffffULL) {
4928                 /*
4929                  * i_blocks can be represented in a 48 bit variable
4930                  * as multiple of 512 bytes
4931                  */
4932                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4933                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4934                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4935         } else {
4936                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4937                 /* i_block is stored in file system block size */
4938                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4939                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4940                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4941         }
4942         return 0;
4943 }
4944
4945 static void __ext4_update_other_inode_time(struct super_block *sb,
4946                                            unsigned long orig_ino,
4947                                            unsigned long ino,
4948                                            struct ext4_inode *raw_inode)
4949 {
4950         struct inode *inode;
4951
4952         inode = find_inode_by_ino_rcu(sb, ino);
4953         if (!inode)
4954                 return;
4955
4956         if ((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4957                                I_DIRTY_INODE)) ||
4958             ((inode->i_state & I_DIRTY_TIME) == 0))
4959                 return;
4960
4961         spin_lock(&inode->i_lock);
4962         if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4963                                 I_DIRTY_INODE)) == 0) &&
4964             (inode->i_state & I_DIRTY_TIME)) {
4965                 struct ext4_inode_info  *ei = EXT4_I(inode);
4966
4967                 inode->i_state &= ~I_DIRTY_TIME;
4968                 spin_unlock(&inode->i_lock);
4969
4970                 spin_lock(&ei->i_raw_lock);
4971                 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4972                 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4973                 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4974                 ext4_inode_csum_set(inode, raw_inode, ei);
4975                 spin_unlock(&ei->i_raw_lock);
4976                 trace_ext4_other_inode_update_time(inode, orig_ino);
4977                 return;
4978         }
4979         spin_unlock(&inode->i_lock);
4980 }
4981
4982 /*
4983  * Opportunistically update the other time fields for other inodes in
4984  * the same inode table block.
4985  */
4986 static void ext4_update_other_inodes_time(struct super_block *sb,
4987                                           unsigned long orig_ino, char *buf)
4988 {
4989         unsigned long ino;
4990         int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4991         int inode_size = EXT4_INODE_SIZE(sb);
4992
4993         /*
4994          * Calculate the first inode in the inode table block.  Inode
4995          * numbers are one-based.  That is, the first inode in a block
4996          * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4997          */
4998         ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4999         rcu_read_lock();
5000         for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5001                 if (ino == orig_ino)
5002                         continue;
5003                 __ext4_update_other_inode_time(sb, orig_ino, ino,
5004                                                (struct ext4_inode *)buf);
5005         }
5006         rcu_read_unlock();
5007 }
5008
5009 /*
5010  * Post the struct inode info into an on-disk inode location in the
5011  * buffer-cache.  This gobbles the caller's reference to the
5012  * buffer_head in the inode location struct.
5013  *
5014  * The caller must have write access to iloc->bh.
5015  */
5016 static int ext4_do_update_inode(handle_t *handle,
5017                                 struct inode *inode,
5018                                 struct ext4_iloc *iloc)
5019 {
5020         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5021         struct ext4_inode_info *ei = EXT4_I(inode);
5022         struct buffer_head *bh = iloc->bh;
5023         struct super_block *sb = inode->i_sb;
5024         int err = 0, rc, block;
5025         int need_datasync = 0, set_large_file = 0;
5026         uid_t i_uid;
5027         gid_t i_gid;
5028         projid_t i_projid;
5029
5030         spin_lock(&ei->i_raw_lock);
5031
5032         /* For fields not tracked in the in-memory inode,
5033          * initialise them to zero for new inodes. */
5034         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5035                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5036
5037         err = ext4_inode_blocks_set(handle, raw_inode, ei);
5038         if (err) {
5039                 spin_unlock(&ei->i_raw_lock);
5040                 goto out_brelse;
5041         }
5042
5043         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5044         i_uid = i_uid_read(inode);
5045         i_gid = i_gid_read(inode);
5046         i_projid = from_kprojid(&init_user_ns, ei->i_projid);
5047         if (!(test_opt(inode->i_sb, NO_UID32))) {
5048                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
5049                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
5050 /*
5051  * Fix up interoperability with old kernels. Otherwise, old inodes get
5052  * re-used with the upper 16 bits of the uid/gid intact
5053  */
5054                 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
5055                         raw_inode->i_uid_high = 0;
5056                         raw_inode->i_gid_high = 0;
5057                 } else {
5058                         raw_inode->i_uid_high =
5059                                 cpu_to_le16(high_16_bits(i_uid));
5060                         raw_inode->i_gid_high =
5061                                 cpu_to_le16(high_16_bits(i_gid));
5062                 }
5063         } else {
5064                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
5065                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
5066                 raw_inode->i_uid_high = 0;
5067                 raw_inode->i_gid_high = 0;
5068         }
5069         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5070
5071         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5072         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5073         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5074         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5075
5076         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5077         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5078         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
5079                 raw_inode->i_file_acl_high =
5080                         cpu_to_le16(ei->i_file_acl >> 32);
5081         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5082         if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode)) {
5083                 ext4_isize_set(raw_inode, ei->i_disksize);
5084                 need_datasync = 1;
5085         }
5086         if (ei->i_disksize > 0x7fffffffULL) {
5087                 if (!ext4_has_feature_large_file(sb) ||
5088                                 EXT4_SB(sb)->s_es->s_rev_level ==
5089                     cpu_to_le32(EXT4_GOOD_OLD_REV))
5090                         set_large_file = 1;
5091         }
5092         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5093         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5094                 if (old_valid_dev(inode->i_rdev)) {
5095                         raw_inode->i_block[0] =
5096                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
5097                         raw_inode->i_block[1] = 0;
5098                 } else {
5099                         raw_inode->i_block[0] = 0;
5100                         raw_inode->i_block[1] =
5101                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
5102                         raw_inode->i_block[2] = 0;
5103                 }
5104         } else if (!ext4_has_inline_data(inode)) {
5105                 for (block = 0; block < EXT4_N_BLOCKS; block++)
5106                         raw_inode->i_block[block] = ei->i_data[block];
5107         }
5108
5109         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5110                 u64 ivers = ext4_inode_peek_iversion(inode);
5111
5112                 raw_inode->i_disk_version = cpu_to_le32(ivers);
5113                 if (ei->i_extra_isize) {
5114                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5115                                 raw_inode->i_version_hi =
5116                                         cpu_to_le32(ivers >> 32);
5117                         raw_inode->i_extra_isize =
5118                                 cpu_to_le16(ei->i_extra_isize);
5119                 }
5120         }
5121
5122         BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5123                i_projid != EXT4_DEF_PROJID);
5124
5125         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5126             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5127                 raw_inode->i_projid = cpu_to_le32(i_projid);
5128
5129         ext4_inode_csum_set(inode, raw_inode, ei);
5130         spin_unlock(&ei->i_raw_lock);
5131         if (inode->i_sb->s_flags & SB_LAZYTIME)
5132                 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5133                                               bh->b_data);
5134
5135         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5136         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5137         if (!err)
5138                 err = rc;
5139         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5140         if (set_large_file) {
5141                 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5142                 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5143                 if (err)
5144                         goto out_brelse;
5145                 ext4_set_feature_large_file(sb);
5146                 ext4_handle_sync(handle);
5147                 err = ext4_handle_dirty_super(handle, sb);
5148         }
5149         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5150 out_brelse:
5151         brelse(bh);
5152         ext4_std_error(inode->i_sb, err);
5153         return err;
5154 }
5155
5156 /*
5157  * ext4_write_inode()
5158  *
5159  * We are called from a few places:
5160  *
5161  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5162  *   Here, there will be no transaction running. We wait for any running
5163  *   transaction to commit.
5164  *
5165  * - Within flush work (sys_sync(), kupdate and such).
5166  *   We wait on commit, if told to.
5167  *
5168  * - Within iput_final() -> write_inode_now()
5169  *   We wait on commit, if told to.
5170  *
5171  * In all cases it is actually safe for us to return without doing anything,
5172  * because the inode has been copied into a raw inode buffer in
5173  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5174  * writeback.
5175  *
5176  * Note that we are absolutely dependent upon all inode dirtiers doing the
5177  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5178  * which we are interested.
5179  *
5180  * It would be a bug for them to not do this.  The code:
5181  *
5182  *      mark_inode_dirty(inode)
5183  *      stuff();
5184  *      inode->i_size = expr;
5185  *
5186  * is in error because write_inode() could occur while `stuff()' is running,
5187  * and the new i_size will be lost.  Plus the inode will no longer be on the
5188  * superblock's dirty inode list.
5189  */
5190 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5191 {
5192         int err;
5193
5194         if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5195             sb_rdonly(inode->i_sb))
5196                 return 0;
5197
5198         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5199                 return -EIO;
5200
5201         if (EXT4_SB(inode->i_sb)->s_journal) {
5202                 if (ext4_journal_current_handle()) {
5203                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5204                         dump_stack();
5205                         return -EIO;
5206                 }
5207
5208                 /*
5209                  * No need to force transaction in WB_SYNC_NONE mode. Also
5210                  * ext4_sync_fs() will force the commit after everything is
5211                  * written.
5212                  */
5213                 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5214                         return 0;
5215
5216                 err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal,
5217                                                 EXT4_I(inode)->i_sync_tid);
5218         } else {
5219                 struct ext4_iloc iloc;
5220
5221                 err = __ext4_get_inode_loc_noinmem(inode, &iloc);
5222                 if (err)
5223                         return err;
5224                 /*
5225                  * sync(2) will flush the whole buffer cache. No need to do
5226                  * it here separately for each inode.
5227                  */
5228                 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5229                         sync_dirty_buffer(iloc.bh);
5230                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5231                         ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5232                                                "IO error syncing inode");
5233                         err = -EIO;
5234                 }
5235                 brelse(iloc.bh);
5236         }
5237         return err;
5238 }
5239
5240 /*
5241  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5242  * buffers that are attached to a page stradding i_size and are undergoing
5243  * commit. In that case we have to wait for commit to finish and try again.
5244  */
5245 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5246 {
5247         struct page *page;
5248         unsigned offset;
5249         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5250         tid_t commit_tid = 0;
5251         int ret;
5252
5253         offset = inode->i_size & (PAGE_SIZE - 1);
5254         /*
5255          * If the page is fully truncated, we don't need to wait for any commit
5256          * (and we even should not as __ext4_journalled_invalidatepage() may
5257          * strip all buffers from the page but keep the page dirty which can then
5258          * confuse e.g. concurrent ext4_writepage() seeing dirty page without
5259          * buffers). Also we don't need to wait for any commit if all buffers in
5260          * the page remain valid. This is most beneficial for the common case of
5261          * blocksize == PAGESIZE.
5262          */
5263         if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5264                 return;
5265         while (1) {
5266                 page = find_lock_page(inode->i_mapping,
5267                                       inode->i_size >> PAGE_SHIFT);
5268                 if (!page)
5269                         return;
5270                 ret = __ext4_journalled_invalidatepage(page, offset,
5271                                                 PAGE_SIZE - offset);
5272                 unlock_page(page);
5273                 put_page(page);
5274                 if (ret != -EBUSY)
5275                         return;
5276                 commit_tid = 0;
5277                 read_lock(&journal->j_state_lock);
5278                 if (journal->j_committing_transaction)
5279                         commit_tid = journal->j_committing_transaction->t_tid;
5280                 read_unlock(&journal->j_state_lock);
5281                 if (commit_tid)
5282                         jbd2_log_wait_commit(journal, commit_tid);
5283         }
5284 }
5285
5286 /*
5287  * ext4_setattr()
5288  *
5289  * Called from notify_change.
5290  *
5291  * We want to trap VFS attempts to truncate the file as soon as
5292  * possible.  In particular, we want to make sure that when the VFS
5293  * shrinks i_size, we put the inode on the orphan list and modify
5294  * i_disksize immediately, so that during the subsequent flushing of
5295  * dirty pages and freeing of disk blocks, we can guarantee that any
5296  * commit will leave the blocks being flushed in an unused state on
5297  * disk.  (On recovery, the inode will get truncated and the blocks will
5298  * be freed, so we have a strong guarantee that no future commit will
5299  * leave these blocks visible to the user.)
5300  *
5301  * Another thing we have to assure is that if we are in ordered mode
5302  * and inode is still attached to the committing transaction, we must
5303  * we start writeout of all the dirty pages which are being truncated.
5304  * This way we are sure that all the data written in the previous
5305  * transaction are already on disk (truncate waits for pages under
5306  * writeback).
5307  *
5308  * Called with inode->i_mutex down.
5309  */
5310 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5311 {
5312         struct inode *inode = d_inode(dentry);
5313         int error, rc = 0;
5314         int orphan = 0;
5315         const unsigned int ia_valid = attr->ia_valid;
5316
5317         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5318                 return -EIO;
5319
5320         if (unlikely(IS_IMMUTABLE(inode)))
5321                 return -EPERM;
5322
5323         if (unlikely(IS_APPEND(inode) &&
5324                      (ia_valid & (ATTR_MODE | ATTR_UID |
5325                                   ATTR_GID | ATTR_TIMES_SET))))
5326                 return -EPERM;
5327
5328         error = setattr_prepare(dentry, attr);
5329         if (error)
5330                 return error;
5331
5332         error = fscrypt_prepare_setattr(dentry, attr);
5333         if (error)
5334                 return error;
5335
5336         error = fsverity_prepare_setattr(dentry, attr);
5337         if (error)
5338                 return error;
5339
5340         if (is_quota_modification(inode, attr)) {
5341                 error = dquot_initialize(inode);
5342                 if (error)
5343                         return error;
5344         }
5345         ext4_fc_start_update(inode);
5346         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5347             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5348                 handle_t *handle;
5349
5350                 /* (user+group)*(old+new) structure, inode write (sb,
5351                  * inode block, ? - but truncate inode update has it) */
5352                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5353                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5354                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5355                 if (IS_ERR(handle)) {
5356                         error = PTR_ERR(handle);
5357                         goto err_out;
5358                 }
5359
5360                 /* dquot_transfer() calls back ext4_get_inode_usage() which
5361                  * counts xattr inode references.
5362                  */
5363                 down_read(&EXT4_I(inode)->xattr_sem);
5364                 error = dquot_transfer(inode, attr);
5365                 up_read(&EXT4_I(inode)->xattr_sem);
5366
5367                 if (error) {
5368                         ext4_journal_stop(handle);
5369                         ext4_fc_stop_update(inode);
5370                         return error;
5371                 }
5372                 /* Update corresponding info in inode so that everything is in
5373                  * one transaction */
5374                 if (attr->ia_valid & ATTR_UID)
5375                         inode->i_uid = attr->ia_uid;
5376                 if (attr->ia_valid & ATTR_GID)
5377                         inode->i_gid = attr->ia_gid;
5378                 error = ext4_mark_inode_dirty(handle, inode);
5379                 ext4_journal_stop(handle);
5380                 if (unlikely(error))
5381                         return error;
5382         }
5383
5384         if (attr->ia_valid & ATTR_SIZE) {
5385                 handle_t *handle;
5386                 loff_t oldsize = inode->i_size;
5387                 int shrink = (attr->ia_size < inode->i_size);
5388
5389                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5390                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5391
5392                         if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5393                                 ext4_fc_stop_update(inode);
5394                                 return -EFBIG;
5395                         }
5396                 }
5397                 if (!S_ISREG(inode->i_mode)) {
5398                         ext4_fc_stop_update(inode);
5399                         return -EINVAL;
5400                 }
5401
5402                 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5403                         inode_inc_iversion(inode);
5404
5405                 if (shrink) {
5406                         if (ext4_should_order_data(inode)) {
5407                                 error = ext4_begin_ordered_truncate(inode,
5408                                                             attr->ia_size);
5409                                 if (error)
5410                                         goto err_out;
5411                         }
5412                         /*
5413                          * Blocks are going to be removed from the inode. Wait
5414                          * for dio in flight.
5415                          */
5416                         inode_dio_wait(inode);
5417                 }
5418
5419                 down_write(&EXT4_I(inode)->i_mmap_sem);
5420
5421                 rc = ext4_break_layouts(inode);
5422                 if (rc) {
5423                         up_write(&EXT4_I(inode)->i_mmap_sem);
5424                         goto err_out;
5425                 }
5426
5427                 if (attr->ia_size != inode->i_size) {
5428                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5429                         if (IS_ERR(handle)) {
5430                                 error = PTR_ERR(handle);
5431                                 goto out_mmap_sem;
5432                         }
5433                         if (ext4_handle_valid(handle) && shrink) {
5434                                 error = ext4_orphan_add(handle, inode);
5435                                 orphan = 1;
5436                         }
5437                         /*
5438                          * Update c/mtime on truncate up, ext4_truncate() will
5439                          * update c/mtime in shrink case below
5440                          */
5441                         if (!shrink) {
5442                                 inode->i_mtime = current_time(inode);
5443                                 inode->i_ctime = inode->i_mtime;
5444                         }
5445
5446                         if (shrink)
5447                                 ext4_fc_track_range(inode,
5448                                         (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5449                                         inode->i_sb->s_blocksize_bits,
5450                                         (oldsize > 0 ? oldsize - 1 : 0) >>
5451                                         inode->i_sb->s_blocksize_bits);
5452                         else
5453                                 ext4_fc_track_range(
5454                                         inode,
5455                                         (oldsize > 0 ? oldsize - 1 : oldsize) >>
5456                                         inode->i_sb->s_blocksize_bits,
5457                                         (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5458                                         inode->i_sb->s_blocksize_bits);
5459
5460                         down_write(&EXT4_I(inode)->i_data_sem);
5461                         EXT4_I(inode)->i_disksize = attr->ia_size;
5462                         rc = ext4_mark_inode_dirty(handle, inode);
5463                         if (!error)
5464                                 error = rc;
5465                         /*
5466                          * We have to update i_size under i_data_sem together
5467                          * with i_disksize to avoid races with writeback code
5468                          * running ext4_wb_update_i_disksize().
5469                          */
5470                         if (!error)
5471                                 i_size_write(inode, attr->ia_size);
5472                         up_write(&EXT4_I(inode)->i_data_sem);
5473                         ext4_journal_stop(handle);
5474                         if (error)
5475                                 goto out_mmap_sem;
5476                         if (!shrink) {
5477                                 pagecache_isize_extended(inode, oldsize,
5478                                                          inode->i_size);
5479                         } else if (ext4_should_journal_data(inode)) {
5480                                 ext4_wait_for_tail_page_commit(inode);
5481                         }
5482                 }
5483
5484                 /*
5485                  * Truncate pagecache after we've waited for commit
5486                  * in data=journal mode to make pages freeable.
5487                  */
5488                 truncate_pagecache(inode, inode->i_size);
5489                 /*
5490                  * Call ext4_truncate() even if i_size didn't change to
5491                  * truncate possible preallocated blocks.
5492                  */
5493                 if (attr->ia_size <= oldsize) {
5494                         rc = ext4_truncate(inode);
5495                         if (rc)
5496                                 error = rc;
5497                 }
5498 out_mmap_sem:
5499                 up_write(&EXT4_I(inode)->i_mmap_sem);
5500         }
5501
5502         if (!error) {
5503                 setattr_copy(inode, attr);
5504                 mark_inode_dirty(inode);
5505         }
5506
5507         /*
5508          * If the call to ext4_truncate failed to get a transaction handle at
5509          * all, we need to clean up the in-core orphan list manually.
5510          */
5511         if (orphan && inode->i_nlink)
5512                 ext4_orphan_del(NULL, inode);
5513
5514         if (!error && (ia_valid & ATTR_MODE))
5515                 rc = posix_acl_chmod(inode, inode->i_mode);
5516
5517 err_out:
5518         if  (error)
5519                 ext4_std_error(inode->i_sb, error);
5520         if (!error)
5521                 error = rc;
5522         ext4_fc_stop_update(inode);
5523         return error;
5524 }
5525
5526 int ext4_getattr(const struct path *path, struct kstat *stat,
5527                  u32 request_mask, unsigned int query_flags)
5528 {
5529         struct inode *inode = d_inode(path->dentry);
5530         struct ext4_inode *raw_inode;
5531         struct ext4_inode_info *ei = EXT4_I(inode);
5532         unsigned int flags;
5533
5534         if ((request_mask & STATX_BTIME) &&
5535             EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5536                 stat->result_mask |= STATX_BTIME;
5537                 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5538                 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5539         }
5540
5541         flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5542         if (flags & EXT4_APPEND_FL)
5543                 stat->attributes |= STATX_ATTR_APPEND;
5544         if (flags & EXT4_COMPR_FL)
5545                 stat->attributes |= STATX_ATTR_COMPRESSED;
5546         if (flags & EXT4_ENCRYPT_FL)
5547                 stat->attributes |= STATX_ATTR_ENCRYPTED;
5548         if (flags & EXT4_IMMUTABLE_FL)
5549                 stat->attributes |= STATX_ATTR_IMMUTABLE;
5550         if (flags & EXT4_NODUMP_FL)
5551                 stat->attributes |= STATX_ATTR_NODUMP;
5552         if (flags & EXT4_VERITY_FL)
5553                 stat->attributes |= STATX_ATTR_VERITY;
5554
5555         stat->attributes_mask |= (STATX_ATTR_APPEND |
5556                                   STATX_ATTR_COMPRESSED |
5557                                   STATX_ATTR_ENCRYPTED |
5558                                   STATX_ATTR_IMMUTABLE |
5559                                   STATX_ATTR_NODUMP |
5560                                   STATX_ATTR_VERITY);
5561
5562         generic_fillattr(inode, stat);
5563         return 0;
5564 }
5565
5566 int ext4_file_getattr(const struct path *path, struct kstat *stat,
5567                       u32 request_mask, unsigned int query_flags)
5568 {
5569         struct inode *inode = d_inode(path->dentry);
5570         u64 delalloc_blocks;
5571
5572         ext4_getattr(path, stat, request_mask, query_flags);
5573
5574         /*
5575          * If there is inline data in the inode, the inode will normally not
5576          * have data blocks allocated (it may have an external xattr block).
5577          * Report at least one sector for such files, so tools like tar, rsync,
5578          * others don't incorrectly think the file is completely sparse.
5579          */
5580         if (unlikely(ext4_has_inline_data(inode)))
5581                 stat->blocks += (stat->size + 511) >> 9;
5582
5583         /*
5584          * We can't update i_blocks if the block allocation is delayed
5585          * otherwise in the case of system crash before the real block
5586          * allocation is done, we will have i_blocks inconsistent with
5587          * on-disk file blocks.
5588          * We always keep i_blocks updated together with real
5589          * allocation. But to not confuse with user, stat
5590          * will return the blocks that include the delayed allocation
5591          * blocks for this file.
5592          */
5593         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5594                                    EXT4_I(inode)->i_reserved_data_blocks);
5595         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5596         return 0;
5597 }
5598
5599 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5600                                    int pextents)
5601 {
5602         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5603                 return ext4_ind_trans_blocks(inode, lblocks);
5604         return ext4_ext_index_trans_blocks(inode, pextents);
5605 }
5606
5607 /*
5608  * Account for index blocks, block groups bitmaps and block group
5609  * descriptor blocks if modify datablocks and index blocks
5610  * worse case, the indexs blocks spread over different block groups
5611  *
5612  * If datablocks are discontiguous, they are possible to spread over
5613  * different block groups too. If they are contiguous, with flexbg,
5614  * they could still across block group boundary.
5615  *
5616  * Also account for superblock, inode, quota and xattr blocks
5617  */
5618 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5619                                   int pextents)
5620 {
5621         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5622         int gdpblocks;
5623         int idxblocks;
5624         int ret = 0;
5625
5626         /*
5627          * How many index blocks need to touch to map @lblocks logical blocks
5628          * to @pextents physical extents?
5629          */
5630         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5631
5632         ret = idxblocks;
5633
5634         /*
5635          * Now let's see how many group bitmaps and group descriptors need
5636          * to account
5637          */
5638         groups = idxblocks + pextents;
5639         gdpblocks = groups;
5640         if (groups > ngroups)
5641                 groups = ngroups;
5642         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5643                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5644
5645         /* bitmaps and block group descriptor blocks */
5646         ret += groups + gdpblocks;
5647
5648         /* Blocks for super block, inode, quota and xattr blocks */
5649         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5650
5651         return ret;
5652 }
5653
5654 /*
5655  * Calculate the total number of credits to reserve to fit
5656  * the modification of a single pages into a single transaction,
5657  * which may include multiple chunks of block allocations.
5658  *
5659  * This could be called via ext4_write_begin()
5660  *
5661  * We need to consider the worse case, when
5662  * one new block per extent.
5663  */
5664 int ext4_writepage_trans_blocks(struct inode *inode)
5665 {
5666         int bpp = ext4_journal_blocks_per_page(inode);
5667         int ret;
5668
5669         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5670
5671         /* Account for data blocks for journalled mode */
5672         if (ext4_should_journal_data(inode))
5673                 ret += bpp;
5674         return ret;
5675 }
5676
5677 /*
5678  * Calculate the journal credits for a chunk of data modification.
5679  *
5680  * This is called from DIO, fallocate or whoever calling
5681  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5682  *
5683  * journal buffers for data blocks are not included here, as DIO
5684  * and fallocate do no need to journal data buffers.
5685  */
5686 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5687 {
5688         return ext4_meta_trans_blocks(inode, nrblocks, 1);
5689 }
5690
5691 /*
5692  * The caller must have previously called ext4_reserve_inode_write().
5693  * Give this, we know that the caller already has write access to iloc->bh.
5694  */
5695 int ext4_mark_iloc_dirty(handle_t *handle,
5696                          struct inode *inode, struct ext4_iloc *iloc)
5697 {
5698         int err = 0;
5699
5700         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5701                 put_bh(iloc->bh);
5702                 return -EIO;
5703         }
5704         ext4_fc_track_inode(inode);
5705
5706         if (IS_I_VERSION(inode))
5707                 inode_inc_iversion(inode);
5708
5709         /* the do_update_inode consumes one bh->b_count */
5710         get_bh(iloc->bh);
5711
5712         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5713         err = ext4_do_update_inode(handle, inode, iloc);
5714         put_bh(iloc->bh);
5715         return err;
5716 }
5717
5718 /*
5719  * On success, We end up with an outstanding reference count against
5720  * iloc->bh.  This _must_ be cleaned up later.
5721  */
5722
5723 int
5724 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5725                          struct ext4_iloc *iloc)
5726 {
5727         int err;
5728
5729         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5730                 return -EIO;
5731
5732         err = ext4_get_inode_loc(inode, iloc);
5733         if (!err) {
5734                 BUFFER_TRACE(iloc->bh, "get_write_access");
5735                 err = ext4_journal_get_write_access(handle, iloc->bh);
5736                 if (err) {
5737                         brelse(iloc->bh);
5738                         iloc->bh = NULL;
5739                 }
5740         }
5741         ext4_std_error(inode->i_sb, err);
5742         return err;
5743 }
5744
5745 static int __ext4_expand_extra_isize(struct inode *inode,
5746                                      unsigned int new_extra_isize,
5747                                      struct ext4_iloc *iloc,
5748                                      handle_t *handle, int *no_expand)
5749 {
5750         struct ext4_inode *raw_inode;
5751         struct ext4_xattr_ibody_header *header;
5752         unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5753         struct ext4_inode_info *ei = EXT4_I(inode);
5754         int error;
5755
5756         /* this was checked at iget time, but double check for good measure */
5757         if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5758             (ei->i_extra_isize & 3)) {
5759                 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5760                                  ei->i_extra_isize,
5761                                  EXT4_INODE_SIZE(inode->i_sb));
5762                 return -EFSCORRUPTED;
5763         }
5764         if ((new_extra_isize < ei->i_extra_isize) ||
5765             (new_extra_isize < 4) ||
5766             (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5767                 return -EINVAL; /* Should never happen */
5768
5769         raw_inode = ext4_raw_inode(iloc);
5770
5771         header = IHDR(inode, raw_inode);
5772
5773         /* No extended attributes present */
5774         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5775             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5776                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5777                        EXT4_I(inode)->i_extra_isize, 0,
5778                        new_extra_isize - EXT4_I(inode)->i_extra_isize);
5779                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5780                 return 0;
5781         }
5782
5783         /* try to expand with EAs present */
5784         error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5785                                            raw_inode, handle);
5786         if (error) {
5787                 /*
5788                  * Inode size expansion failed; don't try again
5789                  */
5790                 *no_expand = 1;
5791         }
5792
5793         return error;
5794 }
5795
5796 /*
5797  * Expand an inode by new_extra_isize bytes.
5798  * Returns 0 on success or negative error number on failure.
5799  */
5800 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5801                                           unsigned int new_extra_isize,
5802                                           struct ext4_iloc iloc,
5803                                           handle_t *handle)
5804 {
5805         int no_expand;
5806         int error;
5807
5808         if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5809                 return -EOVERFLOW;
5810
5811         /*
5812          * In nojournal mode, we can immediately attempt to expand
5813          * the inode.  When journaled, we first need to obtain extra
5814          * buffer credits since we may write into the EA block
5815          * with this same handle. If journal_extend fails, then it will
5816          * only result in a minor loss of functionality for that inode.
5817          * If this is felt to be critical, then e2fsck should be run to
5818          * force a large enough s_min_extra_isize.
5819          */
5820         if (ext4_journal_extend(handle,
5821                                 EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5822                 return -ENOSPC;
5823
5824         if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5825                 return -EBUSY;
5826
5827         error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5828                                           handle, &no_expand);
5829         ext4_write_unlock_xattr(inode, &no_expand);
5830
5831         return error;
5832 }
5833
5834 int ext4_expand_extra_isize(struct inode *inode,
5835                             unsigned int new_extra_isize,
5836                             struct ext4_iloc *iloc)
5837 {
5838         handle_t *handle;
5839         int no_expand;
5840         int error, rc;
5841
5842         if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5843                 brelse(iloc->bh);
5844                 return -EOVERFLOW;
5845         }
5846
5847         handle = ext4_journal_start(inode, EXT4_HT_INODE,
5848                                     EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5849         if (IS_ERR(handle)) {
5850                 error = PTR_ERR(handle);
5851                 brelse(iloc->bh);
5852                 return error;
5853         }
5854
5855         ext4_write_lock_xattr(inode, &no_expand);
5856
5857         BUFFER_TRACE(iloc->bh, "get_write_access");
5858         error = ext4_journal_get_write_access(handle, iloc->bh);
5859         if (error) {
5860                 brelse(iloc->bh);
5861                 goto out_unlock;
5862         }
5863
5864         error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5865                                           handle, &no_expand);
5866
5867         rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5868         if (!error)
5869                 error = rc;
5870
5871 out_unlock:
5872         ext4_write_unlock_xattr(inode, &no_expand);
5873         ext4_journal_stop(handle);
5874         return error;
5875 }
5876
5877 /*
5878  * What we do here is to mark the in-core inode as clean with respect to inode
5879  * dirtiness (it may still be data-dirty).
5880  * This means that the in-core inode may be reaped by prune_icache
5881  * without having to perform any I/O.  This is a very good thing,
5882  * because *any* task may call prune_icache - even ones which
5883  * have a transaction open against a different journal.
5884  *
5885  * Is this cheating?  Not really.  Sure, we haven't written the
5886  * inode out, but prune_icache isn't a user-visible syncing function.
5887  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5888  * we start and wait on commits.
5889  */
5890 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
5891                                 const char *func, unsigned int line)
5892 {
5893         struct ext4_iloc iloc;
5894         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5895         int err;
5896
5897         might_sleep();
5898         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5899         err = ext4_reserve_inode_write(handle, inode, &iloc);
5900         if (err)
5901                 goto out;
5902
5903         if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5904                 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5905                                                iloc, handle);
5906
5907         err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5908 out:
5909         if (unlikely(err))
5910                 ext4_error_inode_err(inode, func, line, 0, err,
5911                                         "mark_inode_dirty error");
5912         return err;
5913 }
5914
5915 /*
5916  * ext4_dirty_inode() is called from __mark_inode_dirty()
5917  *
5918  * We're really interested in the case where a file is being extended.
5919  * i_size has been changed by generic_commit_write() and we thus need
5920  * to include the updated inode in the current transaction.
5921  *
5922  * Also, dquot_alloc_block() will always dirty the inode when blocks
5923  * are allocated to the file.
5924  *
5925  * If the inode is marked synchronous, we don't honour that here - doing
5926  * so would cause a commit on atime updates, which we don't bother doing.
5927  * We handle synchronous inodes at the highest possible level.
5928  *
5929  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
5930  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5931  * to copy into the on-disk inode structure are the timestamp files.
5932  */
5933 void ext4_dirty_inode(struct inode *inode, int flags)
5934 {
5935         handle_t *handle;
5936
5937         if (flags == I_DIRTY_TIME)
5938                 return;
5939         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5940         if (IS_ERR(handle))
5941                 goto out;
5942
5943         ext4_mark_inode_dirty(handle, inode);
5944
5945         ext4_journal_stop(handle);
5946 out:
5947         return;
5948 }
5949
5950 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5951 {
5952         journal_t *journal;
5953         handle_t *handle;
5954         int err;
5955         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5956
5957         /*
5958          * We have to be very careful here: changing a data block's
5959          * journaling status dynamically is dangerous.  If we write a
5960          * data block to the journal, change the status and then delete
5961          * that block, we risk forgetting to revoke the old log record
5962          * from the journal and so a subsequent replay can corrupt data.
5963          * So, first we make sure that the journal is empty and that
5964          * nobody is changing anything.
5965          */
5966
5967         journal = EXT4_JOURNAL(inode);
5968         if (!journal)
5969                 return 0;
5970         if (is_journal_aborted(journal))
5971                 return -EROFS;
5972
5973         /* Wait for all existing dio workers */
5974         inode_dio_wait(inode);
5975
5976         /*
5977          * Before flushing the journal and switching inode's aops, we have
5978          * to flush all dirty data the inode has. There can be outstanding
5979          * delayed allocations, there can be unwritten extents created by
5980          * fallocate or buffered writes in dioread_nolock mode covered by
5981          * dirty data which can be converted only after flushing the dirty
5982          * data (and journalled aops don't know how to handle these cases).
5983          */
5984         if (val) {
5985                 down_write(&EXT4_I(inode)->i_mmap_sem);
5986                 err = filemap_write_and_wait(inode->i_mapping);
5987                 if (err < 0) {
5988                         up_write(&EXT4_I(inode)->i_mmap_sem);
5989                         return err;
5990                 }
5991         }
5992
5993         percpu_down_write(&sbi->s_writepages_rwsem);
5994         jbd2_journal_lock_updates(journal);
5995
5996         /*
5997          * OK, there are no updates running now, and all cached data is
5998          * synced to disk.  We are now in a completely consistent state
5999          * which doesn't have anything in the journal, and we know that
6000          * no filesystem updates are running, so it is safe to modify
6001          * the inode's in-core data-journaling state flag now.
6002          */
6003
6004         if (val)
6005                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6006         else {
6007                 err = jbd2_journal_flush(journal);
6008                 if (err < 0) {
6009                         jbd2_journal_unlock_updates(journal);
6010                         percpu_up_write(&sbi->s_writepages_rwsem);
6011                         return err;
6012                 }
6013                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6014         }
6015         ext4_set_aops(inode);
6016
6017         jbd2_journal_unlock_updates(journal);
6018         percpu_up_write(&sbi->s_writepages_rwsem);
6019
6020         if (val)
6021                 up_write(&EXT4_I(inode)->i_mmap_sem);
6022
6023         /* Finally we can mark the inode as dirty. */
6024
6025         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6026         if (IS_ERR(handle))
6027                 return PTR_ERR(handle);
6028
6029         ext4_fc_mark_ineligible(inode->i_sb,
6030                 EXT4_FC_REASON_JOURNAL_FLAG_CHANGE);
6031         err = ext4_mark_inode_dirty(handle, inode);
6032         ext4_handle_sync(handle);
6033         ext4_journal_stop(handle);
6034         ext4_std_error(inode->i_sb, err);
6035
6036         return err;
6037 }
6038
6039 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
6040 {
6041         return !buffer_mapped(bh);
6042 }
6043
6044 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6045 {
6046         struct vm_area_struct *vma = vmf->vma;
6047         struct page *page = vmf->page;
6048         loff_t size;
6049         unsigned long len;
6050         int err;
6051         vm_fault_t ret;
6052         struct file *file = vma->vm_file;
6053         struct inode *inode = file_inode(file);
6054         struct address_space *mapping = inode->i_mapping;
6055         handle_t *handle;
6056         get_block_t *get_block;
6057         int retries = 0;
6058
6059         if (unlikely(IS_IMMUTABLE(inode)))
6060                 return VM_FAULT_SIGBUS;
6061
6062         sb_start_pagefault(inode->i_sb);
6063         file_update_time(vma->vm_file);
6064
6065         down_read(&EXT4_I(inode)->i_mmap_sem);
6066
6067         err = ext4_convert_inline_data(inode);
6068         if (err)
6069                 goto out_ret;
6070
6071         /*
6072          * On data journalling we skip straight to the transaction handle:
6073          * there's no delalloc; page truncated will be checked later; the
6074          * early return w/ all buffers mapped (calculates size/len) can't
6075          * be used; and there's no dioread_nolock, so only ext4_get_block.
6076          */
6077         if (ext4_should_journal_data(inode))
6078                 goto retry_alloc;
6079
6080         /* Delalloc case is easy... */
6081         if (test_opt(inode->i_sb, DELALLOC) &&
6082             !ext4_nonda_switch(inode->i_sb)) {
6083                 do {
6084                         err = block_page_mkwrite(vma, vmf,
6085                                                    ext4_da_get_block_prep);
6086                 } while (err == -ENOSPC &&
6087                        ext4_should_retry_alloc(inode->i_sb, &retries));
6088                 goto out_ret;
6089         }
6090
6091         lock_page(page);
6092         size = i_size_read(inode);
6093         /* Page got truncated from under us? */
6094         if (page->mapping != mapping || page_offset(page) > size) {
6095                 unlock_page(page);
6096                 ret = VM_FAULT_NOPAGE;
6097                 goto out;
6098         }
6099
6100         if (page->index == size >> PAGE_SHIFT)
6101                 len = size & ~PAGE_MASK;
6102         else
6103                 len = PAGE_SIZE;
6104         /*
6105          * Return if we have all the buffers mapped. This avoids the need to do
6106          * journal_start/journal_stop which can block and take a long time
6107          *
6108          * This cannot be done for data journalling, as we have to add the
6109          * inode to the transaction's list to writeprotect pages on commit.
6110          */
6111         if (page_has_buffers(page)) {
6112                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
6113                                             0, len, NULL,
6114                                             ext4_bh_unmapped)) {
6115                         /* Wait so that we don't change page under IO */
6116                         wait_for_stable_page(page);
6117                         ret = VM_FAULT_LOCKED;
6118                         goto out;
6119                 }
6120         }
6121         unlock_page(page);
6122         /* OK, we need to fill the hole... */
6123         if (ext4_should_dioread_nolock(inode))
6124                 get_block = ext4_get_block_unwritten;
6125         else
6126                 get_block = ext4_get_block;
6127 retry_alloc:
6128         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6129                                     ext4_writepage_trans_blocks(inode));
6130         if (IS_ERR(handle)) {
6131                 ret = VM_FAULT_SIGBUS;
6132                 goto out;
6133         }
6134         /*
6135          * Data journalling can't use block_page_mkwrite() because it
6136          * will set_buffer_dirty() before do_journal_get_write_access()
6137          * thus might hit warning messages for dirty metadata buffers.
6138          */
6139         if (!ext4_should_journal_data(inode)) {
6140                 err = block_page_mkwrite(vma, vmf, get_block);
6141         } else {
6142                 lock_page(page);
6143                 size = i_size_read(inode);
6144                 /* Page got truncated from under us? */
6145                 if (page->mapping != mapping || page_offset(page) > size) {
6146                         ret = VM_FAULT_NOPAGE;
6147                         goto out_error;
6148                 }
6149
6150                 if (page->index == size >> PAGE_SHIFT)
6151                         len = size & ~PAGE_MASK;
6152                 else
6153                         len = PAGE_SIZE;
6154
6155                 err = __block_write_begin(page, 0, len, ext4_get_block);
6156                 if (!err) {
6157                         ret = VM_FAULT_SIGBUS;
6158                         if (ext4_walk_page_buffers(handle, page_buffers(page),
6159                                         0, len, NULL, do_journal_get_write_access))
6160                                 goto out_error;
6161                         if (ext4_walk_page_buffers(handle, page_buffers(page),
6162                                         0, len, NULL, write_end_fn))
6163                                 goto out_error;
6164                         if (ext4_jbd2_inode_add_write(handle, inode,
6165                                                       page_offset(page), len))
6166                                 goto out_error;
6167                         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6168                 } else {
6169                         unlock_page(page);
6170                 }
6171         }
6172         ext4_journal_stop(handle);
6173         if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6174                 goto retry_alloc;
6175 out_ret:
6176         ret = block_page_mkwrite_return(err);
6177 out:
6178         up_read(&EXT4_I(inode)->i_mmap_sem);
6179         sb_end_pagefault(inode->i_sb);
6180         return ret;
6181 out_error:
6182         unlock_page(page);
6183         ext4_journal_stop(handle);
6184         goto out;
6185 }
6186
6187 vm_fault_t ext4_filemap_fault(struct vm_fault *vmf)
6188 {
6189         struct inode *inode = file_inode(vmf->vma->vm_file);
6190         vm_fault_t ret;
6191
6192         down_read(&EXT4_I(inode)->i_mmap_sem);
6193         ret = filemap_fault(vmf);
6194         up_read(&EXT4_I(inode)->i_mmap_sem);
6195
6196         return ret;
6197 }