Merge tag 'tsm-for-6.7' of git://git.kernel.org/pub/scm/linux/kernel/git/djbw/linux
[linux-2.6-microblaze.git] / fs / ext4 / file.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/file.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/file.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  ext4 fs regular file handling primitives
17  *
18  *  64-bit file support on 64-bit platforms by Jakub Jelinek
19  *      (jj@sunsite.ms.mff.cuni.cz)
20  */
21
22 #include <linux/time.h>
23 #include <linux/fs.h>
24 #include <linux/iomap.h>
25 #include <linux/mount.h>
26 #include <linux/path.h>
27 #include <linux/dax.h>
28 #include <linux/quotaops.h>
29 #include <linux/pagevec.h>
30 #include <linux/uio.h>
31 #include <linux/mman.h>
32 #include <linux/backing-dev.h>
33 #include "ext4.h"
34 #include "ext4_jbd2.h"
35 #include "xattr.h"
36 #include "acl.h"
37 #include "truncate.h"
38
39 /*
40  * Returns %true if the given DIO request should be attempted with DIO, or
41  * %false if it should fall back to buffered I/O.
42  *
43  * DIO isn't well specified; when it's unsupported (either due to the request
44  * being misaligned, or due to the file not supporting DIO at all), filesystems
45  * either fall back to buffered I/O or return EINVAL.  For files that don't use
46  * any special features like encryption or verity, ext4 has traditionally
47  * returned EINVAL for misaligned DIO.  iomap_dio_rw() uses this convention too.
48  * In this case, we should attempt the DIO, *not* fall back to buffered I/O.
49  *
50  * In contrast, in cases where DIO is unsupported due to ext4 features, ext4
51  * traditionally falls back to buffered I/O.
52  *
53  * This function implements the traditional ext4 behavior in all these cases.
54  */
55 static bool ext4_should_use_dio(struct kiocb *iocb, struct iov_iter *iter)
56 {
57         struct inode *inode = file_inode(iocb->ki_filp);
58         u32 dio_align = ext4_dio_alignment(inode);
59
60         if (dio_align == 0)
61                 return false;
62
63         if (dio_align == 1)
64                 return true;
65
66         return IS_ALIGNED(iocb->ki_pos | iov_iter_alignment(iter), dio_align);
67 }
68
69 static ssize_t ext4_dio_read_iter(struct kiocb *iocb, struct iov_iter *to)
70 {
71         ssize_t ret;
72         struct inode *inode = file_inode(iocb->ki_filp);
73
74         if (iocb->ki_flags & IOCB_NOWAIT) {
75                 if (!inode_trylock_shared(inode))
76                         return -EAGAIN;
77         } else {
78                 inode_lock_shared(inode);
79         }
80
81         if (!ext4_should_use_dio(iocb, to)) {
82                 inode_unlock_shared(inode);
83                 /*
84                  * Fallback to buffered I/O if the operation being performed on
85                  * the inode is not supported by direct I/O. The IOCB_DIRECT
86                  * flag needs to be cleared here in order to ensure that the
87                  * direct I/O path within generic_file_read_iter() is not
88                  * taken.
89                  */
90                 iocb->ki_flags &= ~IOCB_DIRECT;
91                 return generic_file_read_iter(iocb, to);
92         }
93
94         ret = iomap_dio_rw(iocb, to, &ext4_iomap_ops, NULL, 0, NULL, 0);
95         inode_unlock_shared(inode);
96
97         file_accessed(iocb->ki_filp);
98         return ret;
99 }
100
101 #ifdef CONFIG_FS_DAX
102 static ssize_t ext4_dax_read_iter(struct kiocb *iocb, struct iov_iter *to)
103 {
104         struct inode *inode = file_inode(iocb->ki_filp);
105         ssize_t ret;
106
107         if (iocb->ki_flags & IOCB_NOWAIT) {
108                 if (!inode_trylock_shared(inode))
109                         return -EAGAIN;
110         } else {
111                 inode_lock_shared(inode);
112         }
113         /*
114          * Recheck under inode lock - at this point we are sure it cannot
115          * change anymore
116          */
117         if (!IS_DAX(inode)) {
118                 inode_unlock_shared(inode);
119                 /* Fallback to buffered IO in case we cannot support DAX */
120                 return generic_file_read_iter(iocb, to);
121         }
122         ret = dax_iomap_rw(iocb, to, &ext4_iomap_ops);
123         inode_unlock_shared(inode);
124
125         file_accessed(iocb->ki_filp);
126         return ret;
127 }
128 #endif
129
130 static ssize_t ext4_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
131 {
132         struct inode *inode = file_inode(iocb->ki_filp);
133
134         if (unlikely(ext4_forced_shutdown(inode->i_sb)))
135                 return -EIO;
136
137         if (!iov_iter_count(to))
138                 return 0; /* skip atime */
139
140 #ifdef CONFIG_FS_DAX
141         if (IS_DAX(inode))
142                 return ext4_dax_read_iter(iocb, to);
143 #endif
144         if (iocb->ki_flags & IOCB_DIRECT)
145                 return ext4_dio_read_iter(iocb, to);
146
147         return generic_file_read_iter(iocb, to);
148 }
149
150 static ssize_t ext4_file_splice_read(struct file *in, loff_t *ppos,
151                                      struct pipe_inode_info *pipe,
152                                      size_t len, unsigned int flags)
153 {
154         struct inode *inode = file_inode(in);
155
156         if (unlikely(ext4_forced_shutdown(inode->i_sb)))
157                 return -EIO;
158         return filemap_splice_read(in, ppos, pipe, len, flags);
159 }
160
161 /*
162  * Called when an inode is released. Note that this is different
163  * from ext4_file_open: open gets called at every open, but release
164  * gets called only when /all/ the files are closed.
165  */
166 static int ext4_release_file(struct inode *inode, struct file *filp)
167 {
168         if (ext4_test_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE)) {
169                 ext4_alloc_da_blocks(inode);
170                 ext4_clear_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
171         }
172         /* if we are the last writer on the inode, drop the block reservation */
173         if ((filp->f_mode & FMODE_WRITE) &&
174                         (atomic_read(&inode->i_writecount) == 1) &&
175                         !EXT4_I(inode)->i_reserved_data_blocks) {
176                 down_write(&EXT4_I(inode)->i_data_sem);
177                 ext4_discard_preallocations(inode, 0);
178                 up_write(&EXT4_I(inode)->i_data_sem);
179         }
180         if (is_dx(inode) && filp->private_data)
181                 ext4_htree_free_dir_info(filp->private_data);
182
183         return 0;
184 }
185
186 /*
187  * This tests whether the IO in question is block-aligned or not.
188  * Ext4 utilizes unwritten extents when hole-filling during direct IO, and they
189  * are converted to written only after the IO is complete.  Until they are
190  * mapped, these blocks appear as holes, so dio_zero_block() will assume that
191  * it needs to zero out portions of the start and/or end block.  If 2 AIO
192  * threads are at work on the same unwritten block, they must be synchronized
193  * or one thread will zero the other's data, causing corruption.
194  */
195 static bool
196 ext4_unaligned_io(struct inode *inode, struct iov_iter *from, loff_t pos)
197 {
198         struct super_block *sb = inode->i_sb;
199         unsigned long blockmask = sb->s_blocksize - 1;
200
201         if ((pos | iov_iter_alignment(from)) & blockmask)
202                 return true;
203
204         return false;
205 }
206
207 static bool
208 ext4_extending_io(struct inode *inode, loff_t offset, size_t len)
209 {
210         if (offset + len > i_size_read(inode) ||
211             offset + len > EXT4_I(inode)->i_disksize)
212                 return true;
213         return false;
214 }
215
216 /* Is IO overwriting allocated or initialized blocks? */
217 static bool ext4_overwrite_io(struct inode *inode,
218                               loff_t pos, loff_t len, bool *unwritten)
219 {
220         struct ext4_map_blocks map;
221         unsigned int blkbits = inode->i_blkbits;
222         int err, blklen;
223
224         if (pos + len > i_size_read(inode))
225                 return false;
226
227         map.m_lblk = pos >> blkbits;
228         map.m_len = EXT4_MAX_BLOCKS(len, pos, blkbits);
229         blklen = map.m_len;
230
231         err = ext4_map_blocks(NULL, inode, &map, 0);
232         if (err != blklen)
233                 return false;
234         /*
235          * 'err==len' means that all of the blocks have been preallocated,
236          * regardless of whether they have been initialized or not. We need to
237          * check m_flags to distinguish the unwritten extents.
238          */
239         *unwritten = !(map.m_flags & EXT4_MAP_MAPPED);
240         return true;
241 }
242
243 static ssize_t ext4_generic_write_checks(struct kiocb *iocb,
244                                          struct iov_iter *from)
245 {
246         struct inode *inode = file_inode(iocb->ki_filp);
247         ssize_t ret;
248
249         if (unlikely(IS_IMMUTABLE(inode)))
250                 return -EPERM;
251
252         ret = generic_write_checks(iocb, from);
253         if (ret <= 0)
254                 return ret;
255
256         /*
257          * If we have encountered a bitmap-format file, the size limit
258          * is smaller than s_maxbytes, which is for extent-mapped files.
259          */
260         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
261                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
262
263                 if (iocb->ki_pos >= sbi->s_bitmap_maxbytes)
264                         return -EFBIG;
265                 iov_iter_truncate(from, sbi->s_bitmap_maxbytes - iocb->ki_pos);
266         }
267
268         return iov_iter_count(from);
269 }
270
271 static ssize_t ext4_write_checks(struct kiocb *iocb, struct iov_iter *from)
272 {
273         ssize_t ret, count;
274
275         count = ext4_generic_write_checks(iocb, from);
276         if (count <= 0)
277                 return count;
278
279         ret = file_modified(iocb->ki_filp);
280         if (ret)
281                 return ret;
282         return count;
283 }
284
285 static ssize_t ext4_buffered_write_iter(struct kiocb *iocb,
286                                         struct iov_iter *from)
287 {
288         ssize_t ret;
289         struct inode *inode = file_inode(iocb->ki_filp);
290
291         if (iocb->ki_flags & IOCB_NOWAIT)
292                 return -EOPNOTSUPP;
293
294         inode_lock(inode);
295         ret = ext4_write_checks(iocb, from);
296         if (ret <= 0)
297                 goto out;
298
299         ret = generic_perform_write(iocb, from);
300
301 out:
302         inode_unlock(inode);
303         if (unlikely(ret <= 0))
304                 return ret;
305         return generic_write_sync(iocb, ret);
306 }
307
308 static ssize_t ext4_handle_inode_extension(struct inode *inode, loff_t offset,
309                                            ssize_t count)
310 {
311         handle_t *handle;
312
313         lockdep_assert_held_write(&inode->i_rwsem);
314         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
315         if (IS_ERR(handle))
316                 return PTR_ERR(handle);
317
318         if (ext4_update_inode_size(inode, offset + count)) {
319                 int ret = ext4_mark_inode_dirty(handle, inode);
320                 if (unlikely(ret)) {
321                         ext4_journal_stop(handle);
322                         return ret;
323                 }
324         }
325
326         if (inode->i_nlink)
327                 ext4_orphan_del(handle, inode);
328         ext4_journal_stop(handle);
329
330         return count;
331 }
332
333 /*
334  * Clean up the inode after DIO or DAX extending write has completed and the
335  * inode size has been updated using ext4_handle_inode_extension().
336  */
337 static void ext4_inode_extension_cleanup(struct inode *inode, ssize_t count)
338 {
339         lockdep_assert_held_write(&inode->i_rwsem);
340         if (count < 0) {
341                 ext4_truncate_failed_write(inode);
342                 /*
343                  * If the truncate operation failed early, then the inode may
344                  * still be on the orphan list. In that case, we need to try
345                  * remove the inode from the in-memory linked list.
346                  */
347                 if (inode->i_nlink)
348                         ext4_orphan_del(NULL, inode);
349                 return;
350         }
351         /*
352          * If i_disksize got extended due to writeback of delalloc blocks while
353          * the DIO was running we could fail to cleanup the orphan list in
354          * ext4_handle_inode_extension(). Do it now.
355          */
356         if (!list_empty(&EXT4_I(inode)->i_orphan) && inode->i_nlink) {
357                 handle_t *handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
358
359                 if (IS_ERR(handle)) {
360                         /*
361                          * The write has successfully completed. Not much to
362                          * do with the error here so just cleanup the orphan
363                          * list and hope for the best.
364                          */
365                         ext4_orphan_del(NULL, inode);
366                         return;
367                 }
368                 ext4_orphan_del(handle, inode);
369                 ext4_journal_stop(handle);
370         }
371 }
372
373 static int ext4_dio_write_end_io(struct kiocb *iocb, ssize_t size,
374                                  int error, unsigned int flags)
375 {
376         loff_t pos = iocb->ki_pos;
377         struct inode *inode = file_inode(iocb->ki_filp);
378
379         if (!error && size && flags & IOMAP_DIO_UNWRITTEN)
380                 error = ext4_convert_unwritten_extents(NULL, inode, pos, size);
381         if (error)
382                 return error;
383         /*
384          * Note that EXT4_I(inode)->i_disksize can get extended up to
385          * inode->i_size while the I/O was running due to writeback of delalloc
386          * blocks. But the code in ext4_iomap_alloc() is careful to use
387          * zeroed/unwritten extents if this is possible; thus we won't leave
388          * uninitialized blocks in a file even if we didn't succeed in writing
389          * as much as we intended.
390          */
391         WARN_ON_ONCE(i_size_read(inode) < READ_ONCE(EXT4_I(inode)->i_disksize));
392         if (pos + size <= READ_ONCE(EXT4_I(inode)->i_disksize))
393                 return size;
394         return ext4_handle_inode_extension(inode, pos, size);
395 }
396
397 static const struct iomap_dio_ops ext4_dio_write_ops = {
398         .end_io = ext4_dio_write_end_io,
399 };
400
401 /*
402  * The intention here is to start with shared lock acquired then see if any
403  * condition requires an exclusive inode lock. If yes, then we restart the
404  * whole operation by releasing the shared lock and acquiring exclusive lock.
405  *
406  * - For unaligned_io we never take shared lock as it may cause data corruption
407  *   when two unaligned IO tries to modify the same block e.g. while zeroing.
408  *
409  * - For extending writes case we don't take the shared lock, since it requires
410  *   updating inode i_disksize and/or orphan handling with exclusive lock.
411  *
412  * - shared locking will only be true mostly with overwrites, including
413  *   initialized blocks and unwritten blocks. For overwrite unwritten blocks
414  *   we protect splitting extents by i_data_sem in ext4_inode_info, so we can
415  *   also release exclusive i_rwsem lock.
416  *
417  * - Otherwise we will switch to exclusive i_rwsem lock.
418  */
419 static ssize_t ext4_dio_write_checks(struct kiocb *iocb, struct iov_iter *from,
420                                      bool *ilock_shared, bool *extend,
421                                      bool *unwritten, int *dio_flags)
422 {
423         struct file *file = iocb->ki_filp;
424         struct inode *inode = file_inode(file);
425         loff_t offset;
426         size_t count;
427         ssize_t ret;
428         bool overwrite, unaligned_io;
429
430 restart:
431         ret = ext4_generic_write_checks(iocb, from);
432         if (ret <= 0)
433                 goto out;
434
435         offset = iocb->ki_pos;
436         count = ret;
437
438         unaligned_io = ext4_unaligned_io(inode, from, offset);
439         *extend = ext4_extending_io(inode, offset, count);
440         overwrite = ext4_overwrite_io(inode, offset, count, unwritten);
441
442         /*
443          * Determine whether we need to upgrade to an exclusive lock. This is
444          * required to change security info in file_modified(), for extending
445          * I/O, any form of non-overwrite I/O, and unaligned I/O to unwritten
446          * extents (as partial block zeroing may be required).
447          *
448          * Note that unaligned writes are allowed under shared lock so long as
449          * they are pure overwrites. Otherwise, concurrent unaligned writes risk
450          * data corruption due to partial block zeroing in the dio layer, and so
451          * the I/O must occur exclusively.
452          */
453         if (*ilock_shared &&
454             ((!IS_NOSEC(inode) || *extend || !overwrite ||
455              (unaligned_io && *unwritten)))) {
456                 if (iocb->ki_flags & IOCB_NOWAIT) {
457                         ret = -EAGAIN;
458                         goto out;
459                 }
460                 inode_unlock_shared(inode);
461                 *ilock_shared = false;
462                 inode_lock(inode);
463                 goto restart;
464         }
465
466         /*
467          * Now that locking is settled, determine dio flags and exclusivity
468          * requirements. We don't use DIO_OVERWRITE_ONLY because we enforce
469          * behavior already. The inode lock is already held exclusive if the
470          * write is non-overwrite or extending, so drain all outstanding dio and
471          * set the force wait dio flag.
472          */
473         if (!*ilock_shared && (unaligned_io || *extend)) {
474                 if (iocb->ki_flags & IOCB_NOWAIT) {
475                         ret = -EAGAIN;
476                         goto out;
477                 }
478                 if (unaligned_io && (!overwrite || *unwritten))
479                         inode_dio_wait(inode);
480                 *dio_flags = IOMAP_DIO_FORCE_WAIT;
481         }
482
483         ret = file_modified(file);
484         if (ret < 0)
485                 goto out;
486
487         return count;
488 out:
489         if (*ilock_shared)
490                 inode_unlock_shared(inode);
491         else
492                 inode_unlock(inode);
493         return ret;
494 }
495
496 static ssize_t ext4_dio_write_iter(struct kiocb *iocb, struct iov_iter *from)
497 {
498         ssize_t ret;
499         handle_t *handle;
500         struct inode *inode = file_inode(iocb->ki_filp);
501         loff_t offset = iocb->ki_pos;
502         size_t count = iov_iter_count(from);
503         const struct iomap_ops *iomap_ops = &ext4_iomap_ops;
504         bool extend = false, unwritten = false;
505         bool ilock_shared = true;
506         int dio_flags = 0;
507
508         /*
509          * Quick check here without any i_rwsem lock to see if it is extending
510          * IO. A more reliable check is done in ext4_dio_write_checks() with
511          * proper locking in place.
512          */
513         if (offset + count > i_size_read(inode))
514                 ilock_shared = false;
515
516         if (iocb->ki_flags & IOCB_NOWAIT) {
517                 if (ilock_shared) {
518                         if (!inode_trylock_shared(inode))
519                                 return -EAGAIN;
520                 } else {
521                         if (!inode_trylock(inode))
522                                 return -EAGAIN;
523                 }
524         } else {
525                 if (ilock_shared)
526                         inode_lock_shared(inode);
527                 else
528                         inode_lock(inode);
529         }
530
531         /* Fallback to buffered I/O if the inode does not support direct I/O. */
532         if (!ext4_should_use_dio(iocb, from)) {
533                 if (ilock_shared)
534                         inode_unlock_shared(inode);
535                 else
536                         inode_unlock(inode);
537                 return ext4_buffered_write_iter(iocb, from);
538         }
539
540         /*
541          * Prevent inline data from being created since we are going to allocate
542          * blocks for DIO. We know the inode does not currently have inline data
543          * because ext4_should_use_dio() checked for it, but we have to clear
544          * the state flag before the write checks because a lock cycle could
545          * introduce races with other writers.
546          */
547         ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
548
549         ret = ext4_dio_write_checks(iocb, from, &ilock_shared, &extend,
550                                     &unwritten, &dio_flags);
551         if (ret <= 0)
552                 return ret;
553
554         offset = iocb->ki_pos;
555         count = ret;
556
557         if (extend) {
558                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
559                 if (IS_ERR(handle)) {
560                         ret = PTR_ERR(handle);
561                         goto out;
562                 }
563
564                 ret = ext4_orphan_add(handle, inode);
565                 if (ret) {
566                         ext4_journal_stop(handle);
567                         goto out;
568                 }
569
570                 ext4_journal_stop(handle);
571         }
572
573         if (ilock_shared && !unwritten)
574                 iomap_ops = &ext4_iomap_overwrite_ops;
575         ret = iomap_dio_rw(iocb, from, iomap_ops, &ext4_dio_write_ops,
576                            dio_flags, NULL, 0);
577         if (ret == -ENOTBLK)
578                 ret = 0;
579         if (extend) {
580                 /*
581                  * We always perform extending DIO write synchronously so by
582                  * now the IO is completed and ext4_handle_inode_extension()
583                  * was called. Cleanup the inode in case of error or race with
584                  * writeback of delalloc blocks.
585                  */
586                 WARN_ON_ONCE(ret == -EIOCBQUEUED);
587                 ext4_inode_extension_cleanup(inode, ret);
588         }
589
590 out:
591         if (ilock_shared)
592                 inode_unlock_shared(inode);
593         else
594                 inode_unlock(inode);
595
596         if (ret >= 0 && iov_iter_count(from)) {
597                 ssize_t err;
598                 loff_t endbyte;
599
600                 offset = iocb->ki_pos;
601                 err = ext4_buffered_write_iter(iocb, from);
602                 if (err < 0)
603                         return err;
604
605                 /*
606                  * We need to ensure that the pages within the page cache for
607                  * the range covered by this I/O are written to disk and
608                  * invalidated. This is in attempt to preserve the expected
609                  * direct I/O semantics in the case we fallback to buffered I/O
610                  * to complete off the I/O request.
611                  */
612                 ret += err;
613                 endbyte = offset + err - 1;
614                 err = filemap_write_and_wait_range(iocb->ki_filp->f_mapping,
615                                                    offset, endbyte);
616                 if (!err)
617                         invalidate_mapping_pages(iocb->ki_filp->f_mapping,
618                                                  offset >> PAGE_SHIFT,
619                                                  endbyte >> PAGE_SHIFT);
620         }
621
622         return ret;
623 }
624
625 #ifdef CONFIG_FS_DAX
626 static ssize_t
627 ext4_dax_write_iter(struct kiocb *iocb, struct iov_iter *from)
628 {
629         ssize_t ret;
630         size_t count;
631         loff_t offset;
632         handle_t *handle;
633         bool extend = false;
634         struct inode *inode = file_inode(iocb->ki_filp);
635
636         if (iocb->ki_flags & IOCB_NOWAIT) {
637                 if (!inode_trylock(inode))
638                         return -EAGAIN;
639         } else {
640                 inode_lock(inode);
641         }
642
643         ret = ext4_write_checks(iocb, from);
644         if (ret <= 0)
645                 goto out;
646
647         offset = iocb->ki_pos;
648         count = iov_iter_count(from);
649
650         if (offset + count > EXT4_I(inode)->i_disksize) {
651                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
652                 if (IS_ERR(handle)) {
653                         ret = PTR_ERR(handle);
654                         goto out;
655                 }
656
657                 ret = ext4_orphan_add(handle, inode);
658                 if (ret) {
659                         ext4_journal_stop(handle);
660                         goto out;
661                 }
662
663                 extend = true;
664                 ext4_journal_stop(handle);
665         }
666
667         ret = dax_iomap_rw(iocb, from, &ext4_iomap_ops);
668
669         if (extend) {
670                 ret = ext4_handle_inode_extension(inode, offset, ret);
671                 ext4_inode_extension_cleanup(inode, ret);
672         }
673 out:
674         inode_unlock(inode);
675         if (ret > 0)
676                 ret = generic_write_sync(iocb, ret);
677         return ret;
678 }
679 #endif
680
681 static ssize_t
682 ext4_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
683 {
684         struct inode *inode = file_inode(iocb->ki_filp);
685
686         if (unlikely(ext4_forced_shutdown(inode->i_sb)))
687                 return -EIO;
688
689 #ifdef CONFIG_FS_DAX
690         if (IS_DAX(inode))
691                 return ext4_dax_write_iter(iocb, from);
692 #endif
693         if (iocb->ki_flags & IOCB_DIRECT)
694                 return ext4_dio_write_iter(iocb, from);
695         else
696                 return ext4_buffered_write_iter(iocb, from);
697 }
698
699 #ifdef CONFIG_FS_DAX
700 static vm_fault_t ext4_dax_huge_fault(struct vm_fault *vmf, unsigned int order)
701 {
702         int error = 0;
703         vm_fault_t result;
704         int retries = 0;
705         handle_t *handle = NULL;
706         struct inode *inode = file_inode(vmf->vma->vm_file);
707         struct super_block *sb = inode->i_sb;
708
709         /*
710          * We have to distinguish real writes from writes which will result in a
711          * COW page; COW writes should *not* poke the journal (the file will not
712          * be changed). Doing so would cause unintended failures when mounted
713          * read-only.
714          *
715          * We check for VM_SHARED rather than vmf->cow_page since the latter is
716          * unset for order != 0 (i.e. only in do_cow_fault); for
717          * other sizes, dax_iomap_fault will handle splitting / fallback so that
718          * we eventually come back with a COW page.
719          */
720         bool write = (vmf->flags & FAULT_FLAG_WRITE) &&
721                 (vmf->vma->vm_flags & VM_SHARED);
722         struct address_space *mapping = vmf->vma->vm_file->f_mapping;
723         pfn_t pfn;
724
725         if (write) {
726                 sb_start_pagefault(sb);
727                 file_update_time(vmf->vma->vm_file);
728                 filemap_invalidate_lock_shared(mapping);
729 retry:
730                 handle = ext4_journal_start_sb(sb, EXT4_HT_WRITE_PAGE,
731                                                EXT4_DATA_TRANS_BLOCKS(sb));
732                 if (IS_ERR(handle)) {
733                         filemap_invalidate_unlock_shared(mapping);
734                         sb_end_pagefault(sb);
735                         return VM_FAULT_SIGBUS;
736                 }
737         } else {
738                 filemap_invalidate_lock_shared(mapping);
739         }
740         result = dax_iomap_fault(vmf, order, &pfn, &error, &ext4_iomap_ops);
741         if (write) {
742                 ext4_journal_stop(handle);
743
744                 if ((result & VM_FAULT_ERROR) && error == -ENOSPC &&
745                     ext4_should_retry_alloc(sb, &retries))
746                         goto retry;
747                 /* Handling synchronous page fault? */
748                 if (result & VM_FAULT_NEEDDSYNC)
749                         result = dax_finish_sync_fault(vmf, order, pfn);
750                 filemap_invalidate_unlock_shared(mapping);
751                 sb_end_pagefault(sb);
752         } else {
753                 filemap_invalidate_unlock_shared(mapping);
754         }
755
756         return result;
757 }
758
759 static vm_fault_t ext4_dax_fault(struct vm_fault *vmf)
760 {
761         return ext4_dax_huge_fault(vmf, 0);
762 }
763
764 static const struct vm_operations_struct ext4_dax_vm_ops = {
765         .fault          = ext4_dax_fault,
766         .huge_fault     = ext4_dax_huge_fault,
767         .page_mkwrite   = ext4_dax_fault,
768         .pfn_mkwrite    = ext4_dax_fault,
769 };
770 #else
771 #define ext4_dax_vm_ops ext4_file_vm_ops
772 #endif
773
774 static const struct vm_operations_struct ext4_file_vm_ops = {
775         .fault          = filemap_fault,
776         .map_pages      = filemap_map_pages,
777         .page_mkwrite   = ext4_page_mkwrite,
778 };
779
780 static int ext4_file_mmap(struct file *file, struct vm_area_struct *vma)
781 {
782         struct inode *inode = file->f_mapping->host;
783         struct dax_device *dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
784
785         if (unlikely(ext4_forced_shutdown(inode->i_sb)))
786                 return -EIO;
787
788         /*
789          * We don't support synchronous mappings for non-DAX files and
790          * for DAX files if underneath dax_device is not synchronous.
791          */
792         if (!daxdev_mapping_supported(vma, dax_dev))
793                 return -EOPNOTSUPP;
794
795         file_accessed(file);
796         if (IS_DAX(file_inode(file))) {
797                 vma->vm_ops = &ext4_dax_vm_ops;
798                 vm_flags_set(vma, VM_HUGEPAGE);
799         } else {
800                 vma->vm_ops = &ext4_file_vm_ops;
801         }
802         return 0;
803 }
804
805 static int ext4_sample_last_mounted(struct super_block *sb,
806                                     struct vfsmount *mnt)
807 {
808         struct ext4_sb_info *sbi = EXT4_SB(sb);
809         struct path path;
810         char buf[64], *cp;
811         handle_t *handle;
812         int err;
813
814         if (likely(ext4_test_mount_flag(sb, EXT4_MF_MNTDIR_SAMPLED)))
815                 return 0;
816
817         if (sb_rdonly(sb) || !sb_start_intwrite_trylock(sb))
818                 return 0;
819
820         ext4_set_mount_flag(sb, EXT4_MF_MNTDIR_SAMPLED);
821         /*
822          * Sample where the filesystem has been mounted and
823          * store it in the superblock for sysadmin convenience
824          * when trying to sort through large numbers of block
825          * devices or filesystem images.
826          */
827         memset(buf, 0, sizeof(buf));
828         path.mnt = mnt;
829         path.dentry = mnt->mnt_root;
830         cp = d_path(&path, buf, sizeof(buf));
831         err = 0;
832         if (IS_ERR(cp))
833                 goto out;
834
835         handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
836         err = PTR_ERR(handle);
837         if (IS_ERR(handle))
838                 goto out;
839         BUFFER_TRACE(sbi->s_sbh, "get_write_access");
840         err = ext4_journal_get_write_access(handle, sb, sbi->s_sbh,
841                                             EXT4_JTR_NONE);
842         if (err)
843                 goto out_journal;
844         lock_buffer(sbi->s_sbh);
845         strncpy(sbi->s_es->s_last_mounted, cp,
846                 sizeof(sbi->s_es->s_last_mounted));
847         ext4_superblock_csum_set(sb);
848         unlock_buffer(sbi->s_sbh);
849         ext4_handle_dirty_metadata(handle, NULL, sbi->s_sbh);
850 out_journal:
851         ext4_journal_stop(handle);
852 out:
853         sb_end_intwrite(sb);
854         return err;
855 }
856
857 static int ext4_file_open(struct inode *inode, struct file *filp)
858 {
859         int ret;
860
861         if (unlikely(ext4_forced_shutdown(inode->i_sb)))
862                 return -EIO;
863
864         ret = ext4_sample_last_mounted(inode->i_sb, filp->f_path.mnt);
865         if (ret)
866                 return ret;
867
868         ret = fscrypt_file_open(inode, filp);
869         if (ret)
870                 return ret;
871
872         ret = fsverity_file_open(inode, filp);
873         if (ret)
874                 return ret;
875
876         /*
877          * Set up the jbd2_inode if we are opening the inode for
878          * writing and the journal is present
879          */
880         if (filp->f_mode & FMODE_WRITE) {
881                 ret = ext4_inode_attach_jinode(inode);
882                 if (ret < 0)
883                         return ret;
884         }
885
886         filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC |
887                         FMODE_DIO_PARALLEL_WRITE;
888         return dquot_file_open(inode, filp);
889 }
890
891 /*
892  * ext4_llseek() handles both block-mapped and extent-mapped maxbytes values
893  * by calling generic_file_llseek_size() with the appropriate maxbytes
894  * value for each.
895  */
896 loff_t ext4_llseek(struct file *file, loff_t offset, int whence)
897 {
898         struct inode *inode = file->f_mapping->host;
899         loff_t maxbytes;
900
901         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
902                 maxbytes = EXT4_SB(inode->i_sb)->s_bitmap_maxbytes;
903         else
904                 maxbytes = inode->i_sb->s_maxbytes;
905
906         switch (whence) {
907         default:
908                 return generic_file_llseek_size(file, offset, whence,
909                                                 maxbytes, i_size_read(inode));
910         case SEEK_HOLE:
911                 inode_lock_shared(inode);
912                 offset = iomap_seek_hole(inode, offset,
913                                          &ext4_iomap_report_ops);
914                 inode_unlock_shared(inode);
915                 break;
916         case SEEK_DATA:
917                 inode_lock_shared(inode);
918                 offset = iomap_seek_data(inode, offset,
919                                          &ext4_iomap_report_ops);
920                 inode_unlock_shared(inode);
921                 break;
922         }
923
924         if (offset < 0)
925                 return offset;
926         return vfs_setpos(file, offset, maxbytes);
927 }
928
929 const struct file_operations ext4_file_operations = {
930         .llseek         = ext4_llseek,
931         .read_iter      = ext4_file_read_iter,
932         .write_iter     = ext4_file_write_iter,
933         .iopoll         = iocb_bio_iopoll,
934         .unlocked_ioctl = ext4_ioctl,
935 #ifdef CONFIG_COMPAT
936         .compat_ioctl   = ext4_compat_ioctl,
937 #endif
938         .mmap           = ext4_file_mmap,
939         .mmap_supported_flags = MAP_SYNC,
940         .open           = ext4_file_open,
941         .release        = ext4_release_file,
942         .fsync          = ext4_sync_file,
943         .get_unmapped_area = thp_get_unmapped_area,
944         .splice_read    = ext4_file_splice_read,
945         .splice_write   = iter_file_splice_write,
946         .fallocate      = ext4_fallocate,
947 };
948
949 const struct inode_operations ext4_file_inode_operations = {
950         .setattr        = ext4_setattr,
951         .getattr        = ext4_file_getattr,
952         .listxattr      = ext4_listxattr,
953         .get_inode_acl  = ext4_get_acl,
954         .set_acl        = ext4_set_acl,
955         .fiemap         = ext4_fiemap,
956         .fileattr_get   = ext4_fileattr_get,
957         .fileattr_set   = ext4_fileattr_set,
958 };
959