Merge tag 'imx-fixes-5.12-2' of git://git.kernel.org/pub/scm/linux/kernel/git/shawngu...
[linux-2.6-microblaze.git] / fs / ext4 / fast_commit.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 /*
4  * fs/ext4/fast_commit.c
5  *
6  * Written by Harshad Shirwadkar <harshadshirwadkar@gmail.com>
7  *
8  * Ext4 fast commits routines.
9  */
10 #include "ext4.h"
11 #include "ext4_jbd2.h"
12 #include "ext4_extents.h"
13 #include "mballoc.h"
14
15 /*
16  * Ext4 Fast Commits
17  * -----------------
18  *
19  * Ext4 fast commits implement fine grained journalling for Ext4.
20  *
21  * Fast commits are organized as a log of tag-length-value (TLV) structs. (See
22  * struct ext4_fc_tl). Each TLV contains some delta that is replayed TLV by
23  * TLV during the recovery phase. For the scenarios for which we currently
24  * don't have replay code, fast commit falls back to full commits.
25  * Fast commits record delta in one of the following three categories.
26  *
27  * (A) Directory entry updates:
28  *
29  * - EXT4_FC_TAG_UNLINK         - records directory entry unlink
30  * - EXT4_FC_TAG_LINK           - records directory entry link
31  * - EXT4_FC_TAG_CREAT          - records inode and directory entry creation
32  *
33  * (B) File specific data range updates:
34  *
35  * - EXT4_FC_TAG_ADD_RANGE      - records addition of new blocks to an inode
36  * - EXT4_FC_TAG_DEL_RANGE      - records deletion of blocks from an inode
37  *
38  * (C) Inode metadata (mtime / ctime etc):
39  *
40  * - EXT4_FC_TAG_INODE          - record the inode that should be replayed
41  *                                during recovery. Note that iblocks field is
42  *                                not replayed and instead derived during
43  *                                replay.
44  * Commit Operation
45  * ----------------
46  * With fast commits, we maintain all the directory entry operations in the
47  * order in which they are issued in an in-memory queue. This queue is flushed
48  * to disk during the commit operation. We also maintain a list of inodes
49  * that need to be committed during a fast commit in another in memory queue of
50  * inodes. During the commit operation, we commit in the following order:
51  *
52  * [1] Lock inodes for any further data updates by setting COMMITTING state
53  * [2] Submit data buffers of all the inodes
54  * [3] Wait for [2] to complete
55  * [4] Commit all the directory entry updates in the fast commit space
56  * [5] Commit all the changed inode structures
57  * [6] Write tail tag (this tag ensures the atomicity, please read the following
58  *     section for more details).
59  * [7] Wait for [4], [5] and [6] to complete.
60  *
61  * All the inode updates must call ext4_fc_start_update() before starting an
62  * update. If such an ongoing update is present, fast commit waits for it to
63  * complete. The completion of such an update is marked by
64  * ext4_fc_stop_update().
65  *
66  * Fast Commit Ineligibility
67  * -------------------------
68  * Not all operations are supported by fast commits today (e.g extended
69  * attributes). Fast commit ineligiblity is marked by calling one of the
70  * two following functions:
71  *
72  * - ext4_fc_mark_ineligible(): This makes next fast commit operation to fall
73  *   back to full commit. This is useful in case of transient errors.
74  *
75  * - ext4_fc_start_ineligible() and ext4_fc_stop_ineligible() - This makes all
76  *   the fast commits happening between ext4_fc_start_ineligible() and
77  *   ext4_fc_stop_ineligible() and one fast commit after the call to
78  *   ext4_fc_stop_ineligible() to fall back to full commits. It is important to
79  *   make one more fast commit to fall back to full commit after stop call so
80  *   that it guaranteed that the fast commit ineligible operation contained
81  *   within ext4_fc_start_ineligible() and ext4_fc_stop_ineligible() is
82  *   followed by at least 1 full commit.
83  *
84  * Atomicity of commits
85  * --------------------
86  * In order to guarantee atomicity during the commit operation, fast commit
87  * uses "EXT4_FC_TAG_TAIL" tag that marks a fast commit as complete. Tail
88  * tag contains CRC of the contents and TID of the transaction after which
89  * this fast commit should be applied. Recovery code replays fast commit
90  * logs only if there's at least 1 valid tail present. For every fast commit
91  * operation, there is 1 tail. This means, we may end up with multiple tails
92  * in the fast commit space. Here's an example:
93  *
94  * - Create a new file A and remove existing file B
95  * - fsync()
96  * - Append contents to file A
97  * - Truncate file A
98  * - fsync()
99  *
100  * The fast commit space at the end of above operations would look like this:
101  *      [HEAD] [CREAT A] [UNLINK B] [TAIL] [ADD_RANGE A] [DEL_RANGE A] [TAIL]
102  *             |<---  Fast Commit 1   --->|<---      Fast Commit 2     ---->|
103  *
104  * Replay code should thus check for all the valid tails in the FC area.
105  *
106  * Fast Commit Replay Idempotence
107  * ------------------------------
108  *
109  * Fast commits tags are idempotent in nature provided the recovery code follows
110  * certain rules. The guiding principle that the commit path follows while
111  * committing is that it stores the result of a particular operation instead of
112  * storing the procedure.
113  *
114  * Let's consider this rename operation: 'mv /a /b'. Let's assume dirent '/a'
115  * was associated with inode 10. During fast commit, instead of storing this
116  * operation as a procedure "rename a to b", we store the resulting file system
117  * state as a "series" of outcomes:
118  *
119  * - Link dirent b to inode 10
120  * - Unlink dirent a
121  * - Inode <10> with valid refcount
122  *
123  * Now when recovery code runs, it needs "enforce" this state on the file
124  * system. This is what guarantees idempotence of fast commit replay.
125  *
126  * Let's take an example of a procedure that is not idempotent and see how fast
127  * commits make it idempotent. Consider following sequence of operations:
128  *
129  *     rm A;    mv B A;    read A
130  *  (x)     (y)        (z)
131  *
132  * (x), (y) and (z) are the points at which we can crash. If we store this
133  * sequence of operations as is then the replay is not idempotent. Let's say
134  * while in replay, we crash at (z). During the second replay, file A (which was
135  * actually created as a result of "mv B A" operation) would get deleted. Thus,
136  * file named A would be absent when we try to read A. So, this sequence of
137  * operations is not idempotent. However, as mentioned above, instead of storing
138  * the procedure fast commits store the outcome of each procedure. Thus the fast
139  * commit log for above procedure would be as follows:
140  *
141  * (Let's assume dirent A was linked to inode 10 and dirent B was linked to
142  * inode 11 before the replay)
143  *
144  *    [Unlink A]   [Link A to inode 11]   [Unlink B]   [Inode 11]
145  * (w)          (x)                    (y)          (z)
146  *
147  * If we crash at (z), we will have file A linked to inode 11. During the second
148  * replay, we will remove file A (inode 11). But we will create it back and make
149  * it point to inode 11. We won't find B, so we'll just skip that step. At this
150  * point, the refcount for inode 11 is not reliable, but that gets fixed by the
151  * replay of last inode 11 tag. Crashes at points (w), (x) and (y) get handled
152  * similarly. Thus, by converting a non-idempotent procedure into a series of
153  * idempotent outcomes, fast commits ensured idempotence during the replay.
154  *
155  * TODOs
156  * -----
157  *
158  * 0) Fast commit replay path hardening: Fast commit replay code should use
159  *    journal handles to make sure all the updates it does during the replay
160  *    path are atomic. With that if we crash during fast commit replay, after
161  *    trying to do recovery again, we will find a file system where fast commit
162  *    area is invalid (because new full commit would be found). In order to deal
163  *    with that, fast commit replay code should ensure that the "FC_REPLAY"
164  *    superblock state is persisted before starting the replay, so that after
165  *    the crash, fast commit recovery code can look at that flag and perform
166  *    fast commit recovery even if that area is invalidated by later full
167  *    commits.
168  *
169  * 1) Make fast commit atomic updates more fine grained. Today, a fast commit
170  *    eligible update must be protected within ext4_fc_start_update() and
171  *    ext4_fc_stop_update(). These routines are called at much higher
172  *    routines. This can be made more fine grained by combining with
173  *    ext4_journal_start().
174  *
175  * 2) Same above for ext4_fc_start_ineligible() and ext4_fc_stop_ineligible()
176  *
177  * 3) Handle more ineligible cases.
178  */
179
180 #include <trace/events/ext4.h>
181 static struct kmem_cache *ext4_fc_dentry_cachep;
182
183 static void ext4_end_buffer_io_sync(struct buffer_head *bh, int uptodate)
184 {
185         BUFFER_TRACE(bh, "");
186         if (uptodate) {
187                 ext4_debug("%s: Block %lld up-to-date",
188                            __func__, bh->b_blocknr);
189                 set_buffer_uptodate(bh);
190         } else {
191                 ext4_debug("%s: Block %lld not up-to-date",
192                            __func__, bh->b_blocknr);
193                 clear_buffer_uptodate(bh);
194         }
195
196         unlock_buffer(bh);
197 }
198
199 static inline void ext4_fc_reset_inode(struct inode *inode)
200 {
201         struct ext4_inode_info *ei = EXT4_I(inode);
202
203         ei->i_fc_lblk_start = 0;
204         ei->i_fc_lblk_len = 0;
205 }
206
207 void ext4_fc_init_inode(struct inode *inode)
208 {
209         struct ext4_inode_info *ei = EXT4_I(inode);
210
211         ext4_fc_reset_inode(inode);
212         ext4_clear_inode_state(inode, EXT4_STATE_FC_COMMITTING);
213         INIT_LIST_HEAD(&ei->i_fc_list);
214         init_waitqueue_head(&ei->i_fc_wait);
215         atomic_set(&ei->i_fc_updates, 0);
216 }
217
218 /* This function must be called with sbi->s_fc_lock held. */
219 static void ext4_fc_wait_committing_inode(struct inode *inode)
220 __releases(&EXT4_SB(inode->i_sb)->s_fc_lock)
221 {
222         wait_queue_head_t *wq;
223         struct ext4_inode_info *ei = EXT4_I(inode);
224
225 #if (BITS_PER_LONG < 64)
226         DEFINE_WAIT_BIT(wait, &ei->i_state_flags,
227                         EXT4_STATE_FC_COMMITTING);
228         wq = bit_waitqueue(&ei->i_state_flags,
229                                 EXT4_STATE_FC_COMMITTING);
230 #else
231         DEFINE_WAIT_BIT(wait, &ei->i_flags,
232                         EXT4_STATE_FC_COMMITTING);
233         wq = bit_waitqueue(&ei->i_flags,
234                                 EXT4_STATE_FC_COMMITTING);
235 #endif
236         lockdep_assert_held(&EXT4_SB(inode->i_sb)->s_fc_lock);
237         prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
238         spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
239         schedule();
240         finish_wait(wq, &wait.wq_entry);
241 }
242
243 /*
244  * Inform Ext4's fast about start of an inode update
245  *
246  * This function is called by the high level call VFS callbacks before
247  * performing any inode update. This function blocks if there's an ongoing
248  * fast commit on the inode in question.
249  */
250 void ext4_fc_start_update(struct inode *inode)
251 {
252         struct ext4_inode_info *ei = EXT4_I(inode);
253
254         if (!test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT) ||
255             (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY))
256                 return;
257
258 restart:
259         spin_lock(&EXT4_SB(inode->i_sb)->s_fc_lock);
260         if (list_empty(&ei->i_fc_list))
261                 goto out;
262
263         if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) {
264                 ext4_fc_wait_committing_inode(inode);
265                 goto restart;
266         }
267 out:
268         atomic_inc(&ei->i_fc_updates);
269         spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
270 }
271
272 /*
273  * Stop inode update and wake up waiting fast commits if any.
274  */
275 void ext4_fc_stop_update(struct inode *inode)
276 {
277         struct ext4_inode_info *ei = EXT4_I(inode);
278
279         if (!test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT) ||
280             (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY))
281                 return;
282
283         if (atomic_dec_and_test(&ei->i_fc_updates))
284                 wake_up_all(&ei->i_fc_wait);
285 }
286
287 /*
288  * Remove inode from fast commit list. If the inode is being committed
289  * we wait until inode commit is done.
290  */
291 void ext4_fc_del(struct inode *inode)
292 {
293         struct ext4_inode_info *ei = EXT4_I(inode);
294
295         if (!test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT) ||
296             (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY))
297                 return;
298
299 restart:
300         spin_lock(&EXT4_SB(inode->i_sb)->s_fc_lock);
301         if (list_empty(&ei->i_fc_list)) {
302                 spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
303                 return;
304         }
305
306         if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) {
307                 ext4_fc_wait_committing_inode(inode);
308                 goto restart;
309         }
310         list_del_init(&ei->i_fc_list);
311         spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
312 }
313
314 /*
315  * Mark file system as fast commit ineligible. This means that next commit
316  * operation would result in a full jbd2 commit.
317  */
318 void ext4_fc_mark_ineligible(struct super_block *sb, int reason)
319 {
320         struct ext4_sb_info *sbi = EXT4_SB(sb);
321
322         if (!test_opt2(sb, JOURNAL_FAST_COMMIT) ||
323             (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))
324                 return;
325
326         ext4_set_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
327         WARN_ON(reason >= EXT4_FC_REASON_MAX);
328         sbi->s_fc_stats.fc_ineligible_reason_count[reason]++;
329 }
330
331 /*
332  * Start a fast commit ineligible update. Any commits that happen while
333  * such an operation is in progress fall back to full commits.
334  */
335 void ext4_fc_start_ineligible(struct super_block *sb, int reason)
336 {
337         struct ext4_sb_info *sbi = EXT4_SB(sb);
338
339         if (!test_opt2(sb, JOURNAL_FAST_COMMIT) ||
340             (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))
341                 return;
342
343         WARN_ON(reason >= EXT4_FC_REASON_MAX);
344         sbi->s_fc_stats.fc_ineligible_reason_count[reason]++;
345         atomic_inc(&sbi->s_fc_ineligible_updates);
346 }
347
348 /*
349  * Stop a fast commit ineligible update. We set EXT4_MF_FC_INELIGIBLE flag here
350  * to ensure that after stopping the ineligible update, at least one full
351  * commit takes place.
352  */
353 void ext4_fc_stop_ineligible(struct super_block *sb)
354 {
355         if (!test_opt2(sb, JOURNAL_FAST_COMMIT) ||
356             (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))
357                 return;
358
359         ext4_set_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
360         atomic_dec(&EXT4_SB(sb)->s_fc_ineligible_updates);
361 }
362
363 static inline int ext4_fc_is_ineligible(struct super_block *sb)
364 {
365         return (ext4_test_mount_flag(sb, EXT4_MF_FC_INELIGIBLE) ||
366                 atomic_read(&EXT4_SB(sb)->s_fc_ineligible_updates));
367 }
368
369 /*
370  * Generic fast commit tracking function. If this is the first time this we are
371  * called after a full commit, we initialize fast commit fields and then call
372  * __fc_track_fn() with update = 0. If we have already been called after a full
373  * commit, we pass update = 1. Based on that, the track function can determine
374  * if it needs to track a field for the first time or if it needs to just
375  * update the previously tracked value.
376  *
377  * If enqueue is set, this function enqueues the inode in fast commit list.
378  */
379 static int ext4_fc_track_template(
380         handle_t *handle, struct inode *inode,
381         int (*__fc_track_fn)(struct inode *, void *, bool),
382         void *args, int enqueue)
383 {
384         bool update = false;
385         struct ext4_inode_info *ei = EXT4_I(inode);
386         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
387         tid_t tid = 0;
388         int ret;
389
390         if (!test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT) ||
391             (sbi->s_mount_state & EXT4_FC_REPLAY))
392                 return -EOPNOTSUPP;
393
394         if (ext4_fc_is_ineligible(inode->i_sb))
395                 return -EINVAL;
396
397         tid = handle->h_transaction->t_tid;
398         mutex_lock(&ei->i_fc_lock);
399         if (tid == ei->i_sync_tid) {
400                 update = true;
401         } else {
402                 ext4_fc_reset_inode(inode);
403                 ei->i_sync_tid = tid;
404         }
405         ret = __fc_track_fn(inode, args, update);
406         mutex_unlock(&ei->i_fc_lock);
407
408         if (!enqueue)
409                 return ret;
410
411         spin_lock(&sbi->s_fc_lock);
412         if (list_empty(&EXT4_I(inode)->i_fc_list))
413                 list_add_tail(&EXT4_I(inode)->i_fc_list,
414                                 (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_COMMITTING)) ?
415                                 &sbi->s_fc_q[FC_Q_STAGING] :
416                                 &sbi->s_fc_q[FC_Q_MAIN]);
417         spin_unlock(&sbi->s_fc_lock);
418
419         return ret;
420 }
421
422 struct __track_dentry_update_args {
423         struct dentry *dentry;
424         int op;
425 };
426
427 /* __track_fn for directory entry updates. Called with ei->i_fc_lock. */
428 static int __track_dentry_update(struct inode *inode, void *arg, bool update)
429 {
430         struct ext4_fc_dentry_update *node;
431         struct ext4_inode_info *ei = EXT4_I(inode);
432         struct __track_dentry_update_args *dentry_update =
433                 (struct __track_dentry_update_args *)arg;
434         struct dentry *dentry = dentry_update->dentry;
435         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
436
437         mutex_unlock(&ei->i_fc_lock);
438         node = kmem_cache_alloc(ext4_fc_dentry_cachep, GFP_NOFS);
439         if (!node) {
440                 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM);
441                 mutex_lock(&ei->i_fc_lock);
442                 return -ENOMEM;
443         }
444
445         node->fcd_op = dentry_update->op;
446         node->fcd_parent = dentry->d_parent->d_inode->i_ino;
447         node->fcd_ino = inode->i_ino;
448         if (dentry->d_name.len > DNAME_INLINE_LEN) {
449                 node->fcd_name.name = kmalloc(dentry->d_name.len, GFP_NOFS);
450                 if (!node->fcd_name.name) {
451                         kmem_cache_free(ext4_fc_dentry_cachep, node);
452                         ext4_fc_mark_ineligible(inode->i_sb,
453                                 EXT4_FC_REASON_NOMEM);
454                         mutex_lock(&ei->i_fc_lock);
455                         return -ENOMEM;
456                 }
457                 memcpy((u8 *)node->fcd_name.name, dentry->d_name.name,
458                         dentry->d_name.len);
459         } else {
460                 memcpy(node->fcd_iname, dentry->d_name.name,
461                         dentry->d_name.len);
462                 node->fcd_name.name = node->fcd_iname;
463         }
464         node->fcd_name.len = dentry->d_name.len;
465
466         spin_lock(&sbi->s_fc_lock);
467         if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_COMMITTING))
468                 list_add_tail(&node->fcd_list,
469                                 &sbi->s_fc_dentry_q[FC_Q_STAGING]);
470         else
471                 list_add_tail(&node->fcd_list, &sbi->s_fc_dentry_q[FC_Q_MAIN]);
472         spin_unlock(&sbi->s_fc_lock);
473         mutex_lock(&ei->i_fc_lock);
474
475         return 0;
476 }
477
478 void __ext4_fc_track_unlink(handle_t *handle,
479                 struct inode *inode, struct dentry *dentry)
480 {
481         struct __track_dentry_update_args args;
482         int ret;
483
484         args.dentry = dentry;
485         args.op = EXT4_FC_TAG_UNLINK;
486
487         ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
488                                         (void *)&args, 0);
489         trace_ext4_fc_track_unlink(inode, dentry, ret);
490 }
491
492 void ext4_fc_track_unlink(handle_t *handle, struct dentry *dentry)
493 {
494         __ext4_fc_track_unlink(handle, d_inode(dentry), dentry);
495 }
496
497 void __ext4_fc_track_link(handle_t *handle,
498         struct inode *inode, struct dentry *dentry)
499 {
500         struct __track_dentry_update_args args;
501         int ret;
502
503         args.dentry = dentry;
504         args.op = EXT4_FC_TAG_LINK;
505
506         ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
507                                         (void *)&args, 0);
508         trace_ext4_fc_track_link(inode, dentry, ret);
509 }
510
511 void ext4_fc_track_link(handle_t *handle, struct dentry *dentry)
512 {
513         __ext4_fc_track_link(handle, d_inode(dentry), dentry);
514 }
515
516 void __ext4_fc_track_create(handle_t *handle, struct inode *inode,
517                           struct dentry *dentry)
518 {
519         struct __track_dentry_update_args args;
520         int ret;
521
522         args.dentry = dentry;
523         args.op = EXT4_FC_TAG_CREAT;
524
525         ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
526                                         (void *)&args, 0);
527         trace_ext4_fc_track_create(inode, dentry, ret);
528 }
529
530 void ext4_fc_track_create(handle_t *handle, struct dentry *dentry)
531 {
532         __ext4_fc_track_create(handle, d_inode(dentry), dentry);
533 }
534
535 /* __track_fn for inode tracking */
536 static int __track_inode(struct inode *inode, void *arg, bool update)
537 {
538         if (update)
539                 return -EEXIST;
540
541         EXT4_I(inode)->i_fc_lblk_len = 0;
542
543         return 0;
544 }
545
546 void ext4_fc_track_inode(handle_t *handle, struct inode *inode)
547 {
548         int ret;
549
550         if (S_ISDIR(inode->i_mode))
551                 return;
552
553         if (ext4_should_journal_data(inode)) {
554                 ext4_fc_mark_ineligible(inode->i_sb,
555                                         EXT4_FC_REASON_INODE_JOURNAL_DATA);
556                 return;
557         }
558
559         ret = ext4_fc_track_template(handle, inode, __track_inode, NULL, 1);
560         trace_ext4_fc_track_inode(inode, ret);
561 }
562
563 struct __track_range_args {
564         ext4_lblk_t start, end;
565 };
566
567 /* __track_fn for tracking data updates */
568 static int __track_range(struct inode *inode, void *arg, bool update)
569 {
570         struct ext4_inode_info *ei = EXT4_I(inode);
571         ext4_lblk_t oldstart;
572         struct __track_range_args *__arg =
573                 (struct __track_range_args *)arg;
574
575         if (inode->i_ino < EXT4_FIRST_INO(inode->i_sb)) {
576                 ext4_debug("Special inode %ld being modified\n", inode->i_ino);
577                 return -ECANCELED;
578         }
579
580         oldstart = ei->i_fc_lblk_start;
581
582         if (update && ei->i_fc_lblk_len > 0) {
583                 ei->i_fc_lblk_start = min(ei->i_fc_lblk_start, __arg->start);
584                 ei->i_fc_lblk_len =
585                         max(oldstart + ei->i_fc_lblk_len - 1, __arg->end) -
586                                 ei->i_fc_lblk_start + 1;
587         } else {
588                 ei->i_fc_lblk_start = __arg->start;
589                 ei->i_fc_lblk_len = __arg->end - __arg->start + 1;
590         }
591
592         return 0;
593 }
594
595 void ext4_fc_track_range(handle_t *handle, struct inode *inode, ext4_lblk_t start,
596                          ext4_lblk_t end)
597 {
598         struct __track_range_args args;
599         int ret;
600
601         if (S_ISDIR(inode->i_mode))
602                 return;
603
604         args.start = start;
605         args.end = end;
606
607         ret = ext4_fc_track_template(handle, inode,  __track_range, &args, 1);
608
609         trace_ext4_fc_track_range(inode, start, end, ret);
610 }
611
612 static void ext4_fc_submit_bh(struct super_block *sb, bool is_tail)
613 {
614         int write_flags = REQ_SYNC;
615         struct buffer_head *bh = EXT4_SB(sb)->s_fc_bh;
616
617         /* Add REQ_FUA | REQ_PREFLUSH only its tail */
618         if (test_opt(sb, BARRIER) && is_tail)
619                 write_flags |= REQ_FUA | REQ_PREFLUSH;
620         lock_buffer(bh);
621         set_buffer_dirty(bh);
622         set_buffer_uptodate(bh);
623         bh->b_end_io = ext4_end_buffer_io_sync;
624         submit_bh(REQ_OP_WRITE, write_flags, bh);
625         EXT4_SB(sb)->s_fc_bh = NULL;
626 }
627
628 /* Ext4 commit path routines */
629
630 /* memzero and update CRC */
631 static void *ext4_fc_memzero(struct super_block *sb, void *dst, int len,
632                                 u32 *crc)
633 {
634         void *ret;
635
636         ret = memset(dst, 0, len);
637         if (crc)
638                 *crc = ext4_chksum(EXT4_SB(sb), *crc, dst, len);
639         return ret;
640 }
641
642 /*
643  * Allocate len bytes on a fast commit buffer.
644  *
645  * During the commit time this function is used to manage fast commit
646  * block space. We don't split a fast commit log onto different
647  * blocks. So this function makes sure that if there's not enough space
648  * on the current block, the remaining space in the current block is
649  * marked as unused by adding EXT4_FC_TAG_PAD tag. In that case,
650  * new block is from jbd2 and CRC is updated to reflect the padding
651  * we added.
652  */
653 static u8 *ext4_fc_reserve_space(struct super_block *sb, int len, u32 *crc)
654 {
655         struct ext4_fc_tl *tl;
656         struct ext4_sb_info *sbi = EXT4_SB(sb);
657         struct buffer_head *bh;
658         int bsize = sbi->s_journal->j_blocksize;
659         int ret, off = sbi->s_fc_bytes % bsize;
660         int pad_len;
661
662         /*
663          * After allocating len, we should have space at least for a 0 byte
664          * padding.
665          */
666         if (len + sizeof(struct ext4_fc_tl) > bsize)
667                 return NULL;
668
669         if (bsize - off - 1 > len + sizeof(struct ext4_fc_tl)) {
670                 /*
671                  * Only allocate from current buffer if we have enough space for
672                  * this request AND we have space to add a zero byte padding.
673                  */
674                 if (!sbi->s_fc_bh) {
675                         ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh);
676                         if (ret)
677                                 return NULL;
678                         sbi->s_fc_bh = bh;
679                 }
680                 sbi->s_fc_bytes += len;
681                 return sbi->s_fc_bh->b_data + off;
682         }
683         /* Need to add PAD tag */
684         tl = (struct ext4_fc_tl *)(sbi->s_fc_bh->b_data + off);
685         tl->fc_tag = cpu_to_le16(EXT4_FC_TAG_PAD);
686         pad_len = bsize - off - 1 - sizeof(struct ext4_fc_tl);
687         tl->fc_len = cpu_to_le16(pad_len);
688         if (crc)
689                 *crc = ext4_chksum(sbi, *crc, tl, sizeof(*tl));
690         if (pad_len > 0)
691                 ext4_fc_memzero(sb, tl + 1, pad_len, crc);
692         ext4_fc_submit_bh(sb, false);
693
694         ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh);
695         if (ret)
696                 return NULL;
697         sbi->s_fc_bh = bh;
698         sbi->s_fc_bytes = (sbi->s_fc_bytes / bsize + 1) * bsize + len;
699         return sbi->s_fc_bh->b_data;
700 }
701
702 /* memcpy to fc reserved space and update CRC */
703 static void *ext4_fc_memcpy(struct super_block *sb, void *dst, const void *src,
704                                 int len, u32 *crc)
705 {
706         if (crc)
707                 *crc = ext4_chksum(EXT4_SB(sb), *crc, src, len);
708         return memcpy(dst, src, len);
709 }
710
711 /*
712  * Complete a fast commit by writing tail tag.
713  *
714  * Writing tail tag marks the end of a fast commit. In order to guarantee
715  * atomicity, after writing tail tag, even if there's space remaining
716  * in the block, next commit shouldn't use it. That's why tail tag
717  * has the length as that of the remaining space on the block.
718  */
719 static int ext4_fc_write_tail(struct super_block *sb, u32 crc)
720 {
721         struct ext4_sb_info *sbi = EXT4_SB(sb);
722         struct ext4_fc_tl tl;
723         struct ext4_fc_tail tail;
724         int off, bsize = sbi->s_journal->j_blocksize;
725         u8 *dst;
726
727         /*
728          * ext4_fc_reserve_space takes care of allocating an extra block if
729          * there's no enough space on this block for accommodating this tail.
730          */
731         dst = ext4_fc_reserve_space(sb, sizeof(tl) + sizeof(tail), &crc);
732         if (!dst)
733                 return -ENOSPC;
734
735         off = sbi->s_fc_bytes % bsize;
736
737         tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_TAIL);
738         tl.fc_len = cpu_to_le16(bsize - off - 1 + sizeof(struct ext4_fc_tail));
739         sbi->s_fc_bytes = round_up(sbi->s_fc_bytes, bsize);
740
741         ext4_fc_memcpy(sb, dst, &tl, sizeof(tl), &crc);
742         dst += sizeof(tl);
743         tail.fc_tid = cpu_to_le32(sbi->s_journal->j_running_transaction->t_tid);
744         ext4_fc_memcpy(sb, dst, &tail.fc_tid, sizeof(tail.fc_tid), &crc);
745         dst += sizeof(tail.fc_tid);
746         tail.fc_crc = cpu_to_le32(crc);
747         ext4_fc_memcpy(sb, dst, &tail.fc_crc, sizeof(tail.fc_crc), NULL);
748
749         ext4_fc_submit_bh(sb, true);
750
751         return 0;
752 }
753
754 /*
755  * Adds tag, length, value and updates CRC. Returns true if tlv was added.
756  * Returns false if there's not enough space.
757  */
758 static bool ext4_fc_add_tlv(struct super_block *sb, u16 tag, u16 len, u8 *val,
759                            u32 *crc)
760 {
761         struct ext4_fc_tl tl;
762         u8 *dst;
763
764         dst = ext4_fc_reserve_space(sb, sizeof(tl) + len, crc);
765         if (!dst)
766                 return false;
767
768         tl.fc_tag = cpu_to_le16(tag);
769         tl.fc_len = cpu_to_le16(len);
770
771         ext4_fc_memcpy(sb, dst, &tl, sizeof(tl), crc);
772         ext4_fc_memcpy(sb, dst + sizeof(tl), val, len, crc);
773
774         return true;
775 }
776
777 /* Same as above, but adds dentry tlv. */
778 static  bool ext4_fc_add_dentry_tlv(struct super_block *sb, u16 tag,
779                                         int parent_ino, int ino, int dlen,
780                                         const unsigned char *dname,
781                                         u32 *crc)
782 {
783         struct ext4_fc_dentry_info fcd;
784         struct ext4_fc_tl tl;
785         u8 *dst = ext4_fc_reserve_space(sb, sizeof(tl) + sizeof(fcd) + dlen,
786                                         crc);
787
788         if (!dst)
789                 return false;
790
791         fcd.fc_parent_ino = cpu_to_le32(parent_ino);
792         fcd.fc_ino = cpu_to_le32(ino);
793         tl.fc_tag = cpu_to_le16(tag);
794         tl.fc_len = cpu_to_le16(sizeof(fcd) + dlen);
795         ext4_fc_memcpy(sb, dst, &tl, sizeof(tl), crc);
796         dst += sizeof(tl);
797         ext4_fc_memcpy(sb, dst, &fcd, sizeof(fcd), crc);
798         dst += sizeof(fcd);
799         ext4_fc_memcpy(sb, dst, dname, dlen, crc);
800         dst += dlen;
801
802         return true;
803 }
804
805 /*
806  * Writes inode in the fast commit space under TLV with tag @tag.
807  * Returns 0 on success, error on failure.
808  */
809 static int ext4_fc_write_inode(struct inode *inode, u32 *crc)
810 {
811         struct ext4_inode_info *ei = EXT4_I(inode);
812         int inode_len = EXT4_GOOD_OLD_INODE_SIZE;
813         int ret;
814         struct ext4_iloc iloc;
815         struct ext4_fc_inode fc_inode;
816         struct ext4_fc_tl tl;
817         u8 *dst;
818
819         ret = ext4_get_inode_loc(inode, &iloc);
820         if (ret)
821                 return ret;
822
823         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE)
824                 inode_len += ei->i_extra_isize;
825
826         fc_inode.fc_ino = cpu_to_le32(inode->i_ino);
827         tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_INODE);
828         tl.fc_len = cpu_to_le16(inode_len + sizeof(fc_inode.fc_ino));
829
830         dst = ext4_fc_reserve_space(inode->i_sb,
831                         sizeof(tl) + inode_len + sizeof(fc_inode.fc_ino), crc);
832         if (!dst)
833                 return -ECANCELED;
834
835         if (!ext4_fc_memcpy(inode->i_sb, dst, &tl, sizeof(tl), crc))
836                 return -ECANCELED;
837         dst += sizeof(tl);
838         if (!ext4_fc_memcpy(inode->i_sb, dst, &fc_inode, sizeof(fc_inode), crc))
839                 return -ECANCELED;
840         dst += sizeof(fc_inode);
841         if (!ext4_fc_memcpy(inode->i_sb, dst, (u8 *)ext4_raw_inode(&iloc),
842                                         inode_len, crc))
843                 return -ECANCELED;
844
845         return 0;
846 }
847
848 /*
849  * Writes updated data ranges for the inode in question. Updates CRC.
850  * Returns 0 on success, error otherwise.
851  */
852 static int ext4_fc_write_inode_data(struct inode *inode, u32 *crc)
853 {
854         ext4_lblk_t old_blk_size, cur_lblk_off, new_blk_size;
855         struct ext4_inode_info *ei = EXT4_I(inode);
856         struct ext4_map_blocks map;
857         struct ext4_fc_add_range fc_ext;
858         struct ext4_fc_del_range lrange;
859         struct ext4_extent *ex;
860         int ret;
861
862         mutex_lock(&ei->i_fc_lock);
863         if (ei->i_fc_lblk_len == 0) {
864                 mutex_unlock(&ei->i_fc_lock);
865                 return 0;
866         }
867         old_blk_size = ei->i_fc_lblk_start;
868         new_blk_size = ei->i_fc_lblk_start + ei->i_fc_lblk_len - 1;
869         ei->i_fc_lblk_len = 0;
870         mutex_unlock(&ei->i_fc_lock);
871
872         cur_lblk_off = old_blk_size;
873         jbd_debug(1, "%s: will try writing %d to %d for inode %ld\n",
874                   __func__, cur_lblk_off, new_blk_size, inode->i_ino);
875
876         while (cur_lblk_off <= new_blk_size) {
877                 map.m_lblk = cur_lblk_off;
878                 map.m_len = new_blk_size - cur_lblk_off + 1;
879                 ret = ext4_map_blocks(NULL, inode, &map, 0);
880                 if (ret < 0)
881                         return -ECANCELED;
882
883                 if (map.m_len == 0) {
884                         cur_lblk_off++;
885                         continue;
886                 }
887
888                 if (ret == 0) {
889                         lrange.fc_ino = cpu_to_le32(inode->i_ino);
890                         lrange.fc_lblk = cpu_to_le32(map.m_lblk);
891                         lrange.fc_len = cpu_to_le32(map.m_len);
892                         if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_DEL_RANGE,
893                                             sizeof(lrange), (u8 *)&lrange, crc))
894                                 return -ENOSPC;
895                 } else {
896                         fc_ext.fc_ino = cpu_to_le32(inode->i_ino);
897                         ex = (struct ext4_extent *)&fc_ext.fc_ex;
898                         ex->ee_block = cpu_to_le32(map.m_lblk);
899                         ex->ee_len = cpu_to_le16(map.m_len);
900                         ext4_ext_store_pblock(ex, map.m_pblk);
901                         if (map.m_flags & EXT4_MAP_UNWRITTEN)
902                                 ext4_ext_mark_unwritten(ex);
903                         else
904                                 ext4_ext_mark_initialized(ex);
905                         if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_ADD_RANGE,
906                                             sizeof(fc_ext), (u8 *)&fc_ext, crc))
907                                 return -ENOSPC;
908                 }
909
910                 cur_lblk_off += map.m_len;
911         }
912
913         return 0;
914 }
915
916
917 /* Submit data for all the fast commit inodes */
918 static int ext4_fc_submit_inode_data_all(journal_t *journal)
919 {
920         struct super_block *sb = (struct super_block *)(journal->j_private);
921         struct ext4_sb_info *sbi = EXT4_SB(sb);
922         struct ext4_inode_info *ei;
923         int ret = 0;
924
925         spin_lock(&sbi->s_fc_lock);
926         ext4_set_mount_flag(sb, EXT4_MF_FC_COMMITTING);
927         list_for_each_entry(ei, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
928                 ext4_set_inode_state(&ei->vfs_inode, EXT4_STATE_FC_COMMITTING);
929                 while (atomic_read(&ei->i_fc_updates)) {
930                         DEFINE_WAIT(wait);
931
932                         prepare_to_wait(&ei->i_fc_wait, &wait,
933                                                 TASK_UNINTERRUPTIBLE);
934                         if (atomic_read(&ei->i_fc_updates)) {
935                                 spin_unlock(&sbi->s_fc_lock);
936                                 schedule();
937                                 spin_lock(&sbi->s_fc_lock);
938                         }
939                         finish_wait(&ei->i_fc_wait, &wait);
940                 }
941                 spin_unlock(&sbi->s_fc_lock);
942                 ret = jbd2_submit_inode_data(ei->jinode);
943                 if (ret)
944                         return ret;
945                 spin_lock(&sbi->s_fc_lock);
946         }
947         spin_unlock(&sbi->s_fc_lock);
948
949         return ret;
950 }
951
952 /* Wait for completion of data for all the fast commit inodes */
953 static int ext4_fc_wait_inode_data_all(journal_t *journal)
954 {
955         struct super_block *sb = (struct super_block *)(journal->j_private);
956         struct ext4_sb_info *sbi = EXT4_SB(sb);
957         struct ext4_inode_info *pos, *n;
958         int ret = 0;
959
960         spin_lock(&sbi->s_fc_lock);
961         list_for_each_entry_safe(pos, n, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
962                 if (!ext4_test_inode_state(&pos->vfs_inode,
963                                            EXT4_STATE_FC_COMMITTING))
964                         continue;
965                 spin_unlock(&sbi->s_fc_lock);
966
967                 ret = jbd2_wait_inode_data(journal, pos->jinode);
968                 if (ret)
969                         return ret;
970                 spin_lock(&sbi->s_fc_lock);
971         }
972         spin_unlock(&sbi->s_fc_lock);
973
974         return 0;
975 }
976
977 /* Commit all the directory entry updates */
978 static int ext4_fc_commit_dentry_updates(journal_t *journal, u32 *crc)
979 __acquires(&sbi->s_fc_lock)
980 __releases(&sbi->s_fc_lock)
981 {
982         struct super_block *sb = (struct super_block *)(journal->j_private);
983         struct ext4_sb_info *sbi = EXT4_SB(sb);
984         struct ext4_fc_dentry_update *fc_dentry, *fc_dentry_n;
985         struct inode *inode;
986         struct ext4_inode_info *ei, *ei_n;
987         int ret;
988
989         if (list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN]))
990                 return 0;
991         list_for_each_entry_safe(fc_dentry, fc_dentry_n,
992                                  &sbi->s_fc_dentry_q[FC_Q_MAIN], fcd_list) {
993                 if (fc_dentry->fcd_op != EXT4_FC_TAG_CREAT) {
994                         spin_unlock(&sbi->s_fc_lock);
995                         if (!ext4_fc_add_dentry_tlv(
996                                 sb, fc_dentry->fcd_op,
997                                 fc_dentry->fcd_parent, fc_dentry->fcd_ino,
998                                 fc_dentry->fcd_name.len,
999                                 fc_dentry->fcd_name.name, crc)) {
1000                                 ret = -ENOSPC;
1001                                 goto lock_and_exit;
1002                         }
1003                         spin_lock(&sbi->s_fc_lock);
1004                         continue;
1005                 }
1006
1007                 inode = NULL;
1008                 list_for_each_entry_safe(ei, ei_n, &sbi->s_fc_q[FC_Q_MAIN],
1009                                          i_fc_list) {
1010                         if (ei->vfs_inode.i_ino == fc_dentry->fcd_ino) {
1011                                 inode = &ei->vfs_inode;
1012                                 break;
1013                         }
1014                 }
1015                 /*
1016                  * If we don't find inode in our list, then it was deleted,
1017                  * in which case, we don't need to record it's create tag.
1018                  */
1019                 if (!inode)
1020                         continue;
1021                 spin_unlock(&sbi->s_fc_lock);
1022
1023                 /*
1024                  * We first write the inode and then the create dirent. This
1025                  * allows the recovery code to create an unnamed inode first
1026                  * and then link it to a directory entry. This allows us
1027                  * to use namei.c routines almost as is and simplifies
1028                  * the recovery code.
1029                  */
1030                 ret = ext4_fc_write_inode(inode, crc);
1031                 if (ret)
1032                         goto lock_and_exit;
1033
1034                 ret = ext4_fc_write_inode_data(inode, crc);
1035                 if (ret)
1036                         goto lock_and_exit;
1037
1038                 if (!ext4_fc_add_dentry_tlv(
1039                         sb, fc_dentry->fcd_op,
1040                         fc_dentry->fcd_parent, fc_dentry->fcd_ino,
1041                         fc_dentry->fcd_name.len,
1042                         fc_dentry->fcd_name.name, crc)) {
1043                         ret = -ENOSPC;
1044                         goto lock_and_exit;
1045                 }
1046
1047                 spin_lock(&sbi->s_fc_lock);
1048         }
1049         return 0;
1050 lock_and_exit:
1051         spin_lock(&sbi->s_fc_lock);
1052         return ret;
1053 }
1054
1055 static int ext4_fc_perform_commit(journal_t *journal)
1056 {
1057         struct super_block *sb = (struct super_block *)(journal->j_private);
1058         struct ext4_sb_info *sbi = EXT4_SB(sb);
1059         struct ext4_inode_info *iter;
1060         struct ext4_fc_head head;
1061         struct inode *inode;
1062         struct blk_plug plug;
1063         int ret = 0;
1064         u32 crc = 0;
1065
1066         ret = ext4_fc_submit_inode_data_all(journal);
1067         if (ret)
1068                 return ret;
1069
1070         ret = ext4_fc_wait_inode_data_all(journal);
1071         if (ret)
1072                 return ret;
1073
1074         /*
1075          * If file system device is different from journal device, issue a cache
1076          * flush before we start writing fast commit blocks.
1077          */
1078         if (journal->j_fs_dev != journal->j_dev)
1079                 blkdev_issue_flush(journal->j_fs_dev);
1080
1081         blk_start_plug(&plug);
1082         if (sbi->s_fc_bytes == 0) {
1083                 /*
1084                  * Add a head tag only if this is the first fast commit
1085                  * in this TID.
1086                  */
1087                 head.fc_features = cpu_to_le32(EXT4_FC_SUPPORTED_FEATURES);
1088                 head.fc_tid = cpu_to_le32(
1089                         sbi->s_journal->j_running_transaction->t_tid);
1090                 if (!ext4_fc_add_tlv(sb, EXT4_FC_TAG_HEAD, sizeof(head),
1091                         (u8 *)&head, &crc))
1092                         goto out;
1093         }
1094
1095         spin_lock(&sbi->s_fc_lock);
1096         ret = ext4_fc_commit_dentry_updates(journal, &crc);
1097         if (ret) {
1098                 spin_unlock(&sbi->s_fc_lock);
1099                 goto out;
1100         }
1101
1102         list_for_each_entry(iter, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
1103                 inode = &iter->vfs_inode;
1104                 if (!ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING))
1105                         continue;
1106
1107                 spin_unlock(&sbi->s_fc_lock);
1108                 ret = ext4_fc_write_inode_data(inode, &crc);
1109                 if (ret)
1110                         goto out;
1111                 ret = ext4_fc_write_inode(inode, &crc);
1112                 if (ret)
1113                         goto out;
1114                 spin_lock(&sbi->s_fc_lock);
1115         }
1116         spin_unlock(&sbi->s_fc_lock);
1117
1118         ret = ext4_fc_write_tail(sb, crc);
1119
1120 out:
1121         blk_finish_plug(&plug);
1122         return ret;
1123 }
1124
1125 /*
1126  * The main commit entry point. Performs a fast commit for transaction
1127  * commit_tid if needed. If it's not possible to perform a fast commit
1128  * due to various reasons, we fall back to full commit. Returns 0
1129  * on success, error otherwise.
1130  */
1131 int ext4_fc_commit(journal_t *journal, tid_t commit_tid)
1132 {
1133         struct super_block *sb = (struct super_block *)(journal->j_private);
1134         struct ext4_sb_info *sbi = EXT4_SB(sb);
1135         int nblks = 0, ret, bsize = journal->j_blocksize;
1136         int subtid = atomic_read(&sbi->s_fc_subtid);
1137         int reason = EXT4_FC_REASON_OK, fc_bufs_before = 0;
1138         ktime_t start_time, commit_time;
1139
1140         trace_ext4_fc_commit_start(sb);
1141
1142         start_time = ktime_get();
1143
1144         if (!test_opt2(sb, JOURNAL_FAST_COMMIT) ||
1145                 (ext4_fc_is_ineligible(sb))) {
1146                 reason = EXT4_FC_REASON_INELIGIBLE;
1147                 goto out;
1148         }
1149
1150 restart_fc:
1151         ret = jbd2_fc_begin_commit(journal, commit_tid);
1152         if (ret == -EALREADY) {
1153                 /* There was an ongoing commit, check if we need to restart */
1154                 if (atomic_read(&sbi->s_fc_subtid) <= subtid &&
1155                         commit_tid > journal->j_commit_sequence)
1156                         goto restart_fc;
1157                 reason = EXT4_FC_REASON_ALREADY_COMMITTED;
1158                 goto out;
1159         } else if (ret) {
1160                 sbi->s_fc_stats.fc_ineligible_reason_count[EXT4_FC_COMMIT_FAILED]++;
1161                 reason = EXT4_FC_REASON_FC_START_FAILED;
1162                 goto out;
1163         }
1164
1165         fc_bufs_before = (sbi->s_fc_bytes + bsize - 1) / bsize;
1166         ret = ext4_fc_perform_commit(journal);
1167         if (ret < 0) {
1168                 sbi->s_fc_stats.fc_ineligible_reason_count[EXT4_FC_COMMIT_FAILED]++;
1169                 reason = EXT4_FC_REASON_FC_FAILED;
1170                 goto out;
1171         }
1172         nblks = (sbi->s_fc_bytes + bsize - 1) / bsize - fc_bufs_before;
1173         ret = jbd2_fc_wait_bufs(journal, nblks);
1174         if (ret < 0) {
1175                 sbi->s_fc_stats.fc_ineligible_reason_count[EXT4_FC_COMMIT_FAILED]++;
1176                 reason = EXT4_FC_REASON_FC_FAILED;
1177                 goto out;
1178         }
1179         atomic_inc(&sbi->s_fc_subtid);
1180         jbd2_fc_end_commit(journal);
1181 out:
1182         /* Has any ineligible update happened since we started? */
1183         if (reason == EXT4_FC_REASON_OK && ext4_fc_is_ineligible(sb)) {
1184                 sbi->s_fc_stats.fc_ineligible_reason_count[EXT4_FC_COMMIT_FAILED]++;
1185                 reason = EXT4_FC_REASON_INELIGIBLE;
1186         }
1187
1188         spin_lock(&sbi->s_fc_lock);
1189         if (reason != EXT4_FC_REASON_OK &&
1190                 reason != EXT4_FC_REASON_ALREADY_COMMITTED) {
1191                 sbi->s_fc_stats.fc_ineligible_commits++;
1192         } else {
1193                 sbi->s_fc_stats.fc_num_commits++;
1194                 sbi->s_fc_stats.fc_numblks += nblks;
1195         }
1196         spin_unlock(&sbi->s_fc_lock);
1197         nblks = (reason == EXT4_FC_REASON_OK) ? nblks : 0;
1198         trace_ext4_fc_commit_stop(sb, nblks, reason);
1199         commit_time = ktime_to_ns(ktime_sub(ktime_get(), start_time));
1200         /*
1201          * weight the commit time higher than the average time so we don't
1202          * react too strongly to vast changes in the commit time
1203          */
1204         if (likely(sbi->s_fc_avg_commit_time))
1205                 sbi->s_fc_avg_commit_time = (commit_time +
1206                                 sbi->s_fc_avg_commit_time * 3) / 4;
1207         else
1208                 sbi->s_fc_avg_commit_time = commit_time;
1209         jbd_debug(1,
1210                 "Fast commit ended with blks = %d, reason = %d, subtid - %d",
1211                 nblks, reason, subtid);
1212         if (reason == EXT4_FC_REASON_FC_FAILED)
1213                 return jbd2_fc_end_commit_fallback(journal);
1214         if (reason == EXT4_FC_REASON_FC_START_FAILED ||
1215                 reason == EXT4_FC_REASON_INELIGIBLE)
1216                 return jbd2_complete_transaction(journal, commit_tid);
1217         return 0;
1218 }
1219
1220 /*
1221  * Fast commit cleanup routine. This is called after every fast commit and
1222  * full commit. full is true if we are called after a full commit.
1223  */
1224 static void ext4_fc_cleanup(journal_t *journal, int full)
1225 {
1226         struct super_block *sb = journal->j_private;
1227         struct ext4_sb_info *sbi = EXT4_SB(sb);
1228         struct ext4_inode_info *iter, *iter_n;
1229         struct ext4_fc_dentry_update *fc_dentry;
1230
1231         if (full && sbi->s_fc_bh)
1232                 sbi->s_fc_bh = NULL;
1233
1234         jbd2_fc_release_bufs(journal);
1235
1236         spin_lock(&sbi->s_fc_lock);
1237         list_for_each_entry_safe(iter, iter_n, &sbi->s_fc_q[FC_Q_MAIN],
1238                                  i_fc_list) {
1239                 list_del_init(&iter->i_fc_list);
1240                 ext4_clear_inode_state(&iter->vfs_inode,
1241                                        EXT4_STATE_FC_COMMITTING);
1242                 ext4_fc_reset_inode(&iter->vfs_inode);
1243                 /* Make sure EXT4_STATE_FC_COMMITTING bit is clear */
1244                 smp_mb();
1245 #if (BITS_PER_LONG < 64)
1246                 wake_up_bit(&iter->i_state_flags, EXT4_STATE_FC_COMMITTING);
1247 #else
1248                 wake_up_bit(&iter->i_flags, EXT4_STATE_FC_COMMITTING);
1249 #endif
1250         }
1251
1252         while (!list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN])) {
1253                 fc_dentry = list_first_entry(&sbi->s_fc_dentry_q[FC_Q_MAIN],
1254                                              struct ext4_fc_dentry_update,
1255                                              fcd_list);
1256                 list_del_init(&fc_dentry->fcd_list);
1257                 spin_unlock(&sbi->s_fc_lock);
1258
1259                 if (fc_dentry->fcd_name.name &&
1260                         fc_dentry->fcd_name.len > DNAME_INLINE_LEN)
1261                         kfree(fc_dentry->fcd_name.name);
1262                 kmem_cache_free(ext4_fc_dentry_cachep, fc_dentry);
1263                 spin_lock(&sbi->s_fc_lock);
1264         }
1265
1266         list_splice_init(&sbi->s_fc_dentry_q[FC_Q_STAGING],
1267                                 &sbi->s_fc_dentry_q[FC_Q_MAIN]);
1268         list_splice_init(&sbi->s_fc_q[FC_Q_STAGING],
1269                                 &sbi->s_fc_q[FC_Q_MAIN]);
1270
1271         ext4_clear_mount_flag(sb, EXT4_MF_FC_COMMITTING);
1272         ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
1273
1274         if (full)
1275                 sbi->s_fc_bytes = 0;
1276         spin_unlock(&sbi->s_fc_lock);
1277         trace_ext4_fc_stats(sb);
1278 }
1279
1280 /* Ext4 Replay Path Routines */
1281
1282 /* Helper struct for dentry replay routines */
1283 struct dentry_info_args {
1284         int parent_ino, dname_len, ino, inode_len;
1285         char *dname;
1286 };
1287
1288 static inline void tl_to_darg(struct dentry_info_args *darg,
1289                                 struct  ext4_fc_tl *tl)
1290 {
1291         struct ext4_fc_dentry_info *fcd;
1292
1293         fcd = (struct ext4_fc_dentry_info *)ext4_fc_tag_val(tl);
1294
1295         darg->parent_ino = le32_to_cpu(fcd->fc_parent_ino);
1296         darg->ino = le32_to_cpu(fcd->fc_ino);
1297         darg->dname = fcd->fc_dname;
1298         darg->dname_len = ext4_fc_tag_len(tl) -
1299                         sizeof(struct ext4_fc_dentry_info);
1300 }
1301
1302 /* Unlink replay function */
1303 static int ext4_fc_replay_unlink(struct super_block *sb, struct ext4_fc_tl *tl)
1304 {
1305         struct inode *inode, *old_parent;
1306         struct qstr entry;
1307         struct dentry_info_args darg;
1308         int ret = 0;
1309
1310         tl_to_darg(&darg, tl);
1311
1312         trace_ext4_fc_replay(sb, EXT4_FC_TAG_UNLINK, darg.ino,
1313                         darg.parent_ino, darg.dname_len);
1314
1315         entry.name = darg.dname;
1316         entry.len = darg.dname_len;
1317         inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1318
1319         if (IS_ERR(inode)) {
1320                 jbd_debug(1, "Inode %d not found", darg.ino);
1321                 return 0;
1322         }
1323
1324         old_parent = ext4_iget(sb, darg.parent_ino,
1325                                 EXT4_IGET_NORMAL);
1326         if (IS_ERR(old_parent)) {
1327                 jbd_debug(1, "Dir with inode  %d not found", darg.parent_ino);
1328                 iput(inode);
1329                 return 0;
1330         }
1331
1332         ret = __ext4_unlink(NULL, old_parent, &entry, inode);
1333         /* -ENOENT ok coz it might not exist anymore. */
1334         if (ret == -ENOENT)
1335                 ret = 0;
1336         iput(old_parent);
1337         iput(inode);
1338         return ret;
1339 }
1340
1341 static int ext4_fc_replay_link_internal(struct super_block *sb,
1342                                 struct dentry_info_args *darg,
1343                                 struct inode *inode)
1344 {
1345         struct inode *dir = NULL;
1346         struct dentry *dentry_dir = NULL, *dentry_inode = NULL;
1347         struct qstr qstr_dname = QSTR_INIT(darg->dname, darg->dname_len);
1348         int ret = 0;
1349
1350         dir = ext4_iget(sb, darg->parent_ino, EXT4_IGET_NORMAL);
1351         if (IS_ERR(dir)) {
1352                 jbd_debug(1, "Dir with inode %d not found.", darg->parent_ino);
1353                 dir = NULL;
1354                 goto out;
1355         }
1356
1357         dentry_dir = d_obtain_alias(dir);
1358         if (IS_ERR(dentry_dir)) {
1359                 jbd_debug(1, "Failed to obtain dentry");
1360                 dentry_dir = NULL;
1361                 goto out;
1362         }
1363
1364         dentry_inode = d_alloc(dentry_dir, &qstr_dname);
1365         if (!dentry_inode) {
1366                 jbd_debug(1, "Inode dentry not created.");
1367                 ret = -ENOMEM;
1368                 goto out;
1369         }
1370
1371         ret = __ext4_link(dir, inode, dentry_inode);
1372         /*
1373          * It's possible that link already existed since data blocks
1374          * for the dir in question got persisted before we crashed OR
1375          * we replayed this tag and crashed before the entire replay
1376          * could complete.
1377          */
1378         if (ret && ret != -EEXIST) {
1379                 jbd_debug(1, "Failed to link\n");
1380                 goto out;
1381         }
1382
1383         ret = 0;
1384 out:
1385         if (dentry_dir) {
1386                 d_drop(dentry_dir);
1387                 dput(dentry_dir);
1388         } else if (dir) {
1389                 iput(dir);
1390         }
1391         if (dentry_inode) {
1392                 d_drop(dentry_inode);
1393                 dput(dentry_inode);
1394         }
1395
1396         return ret;
1397 }
1398
1399 /* Link replay function */
1400 static int ext4_fc_replay_link(struct super_block *sb, struct ext4_fc_tl *tl)
1401 {
1402         struct inode *inode;
1403         struct dentry_info_args darg;
1404         int ret = 0;
1405
1406         tl_to_darg(&darg, tl);
1407         trace_ext4_fc_replay(sb, EXT4_FC_TAG_LINK, darg.ino,
1408                         darg.parent_ino, darg.dname_len);
1409
1410         inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1411         if (IS_ERR(inode)) {
1412                 jbd_debug(1, "Inode not found.");
1413                 return 0;
1414         }
1415
1416         ret = ext4_fc_replay_link_internal(sb, &darg, inode);
1417         iput(inode);
1418         return ret;
1419 }
1420
1421 /*
1422  * Record all the modified inodes during replay. We use this later to setup
1423  * block bitmaps correctly.
1424  */
1425 static int ext4_fc_record_modified_inode(struct super_block *sb, int ino)
1426 {
1427         struct ext4_fc_replay_state *state;
1428         int i;
1429
1430         state = &EXT4_SB(sb)->s_fc_replay_state;
1431         for (i = 0; i < state->fc_modified_inodes_used; i++)
1432                 if (state->fc_modified_inodes[i] == ino)
1433                         return 0;
1434         if (state->fc_modified_inodes_used == state->fc_modified_inodes_size) {
1435                 state->fc_modified_inodes_size +=
1436                         EXT4_FC_REPLAY_REALLOC_INCREMENT;
1437                 state->fc_modified_inodes = krealloc(
1438                                         state->fc_modified_inodes, sizeof(int) *
1439                                         state->fc_modified_inodes_size,
1440                                         GFP_KERNEL);
1441                 if (!state->fc_modified_inodes)
1442                         return -ENOMEM;
1443         }
1444         state->fc_modified_inodes[state->fc_modified_inodes_used++] = ino;
1445         return 0;
1446 }
1447
1448 /*
1449  * Inode replay function
1450  */
1451 static int ext4_fc_replay_inode(struct super_block *sb, struct ext4_fc_tl *tl)
1452 {
1453         struct ext4_fc_inode *fc_inode;
1454         struct ext4_inode *raw_inode;
1455         struct ext4_inode *raw_fc_inode;
1456         struct inode *inode = NULL;
1457         struct ext4_iloc iloc;
1458         int inode_len, ino, ret, tag = le16_to_cpu(tl->fc_tag);
1459         struct ext4_extent_header *eh;
1460
1461         fc_inode = (struct ext4_fc_inode *)ext4_fc_tag_val(tl);
1462
1463         ino = le32_to_cpu(fc_inode->fc_ino);
1464         trace_ext4_fc_replay(sb, tag, ino, 0, 0);
1465
1466         inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
1467         if (!IS_ERR(inode)) {
1468                 ext4_ext_clear_bb(inode);
1469                 iput(inode);
1470         }
1471         inode = NULL;
1472
1473         ext4_fc_record_modified_inode(sb, ino);
1474
1475         raw_fc_inode = (struct ext4_inode *)fc_inode->fc_raw_inode;
1476         ret = ext4_get_fc_inode_loc(sb, ino, &iloc);
1477         if (ret)
1478                 goto out;
1479
1480         inode_len = ext4_fc_tag_len(tl) - sizeof(struct ext4_fc_inode);
1481         raw_inode = ext4_raw_inode(&iloc);
1482
1483         memcpy(raw_inode, raw_fc_inode, offsetof(struct ext4_inode, i_block));
1484         memcpy(&raw_inode->i_generation, &raw_fc_inode->i_generation,
1485                 inode_len - offsetof(struct ext4_inode, i_generation));
1486         if (le32_to_cpu(raw_inode->i_flags) & EXT4_EXTENTS_FL) {
1487                 eh = (struct ext4_extent_header *)(&raw_inode->i_block[0]);
1488                 if (eh->eh_magic != EXT4_EXT_MAGIC) {
1489                         memset(eh, 0, sizeof(*eh));
1490                         eh->eh_magic = EXT4_EXT_MAGIC;
1491                         eh->eh_max = cpu_to_le16(
1492                                 (sizeof(raw_inode->i_block) -
1493                                  sizeof(struct ext4_extent_header))
1494                                  / sizeof(struct ext4_extent));
1495                 }
1496         } else if (le32_to_cpu(raw_inode->i_flags) & EXT4_INLINE_DATA_FL) {
1497                 memcpy(raw_inode->i_block, raw_fc_inode->i_block,
1498                         sizeof(raw_inode->i_block));
1499         }
1500
1501         /* Immediately update the inode on disk. */
1502         ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh);
1503         if (ret)
1504                 goto out;
1505         ret = sync_dirty_buffer(iloc.bh);
1506         if (ret)
1507                 goto out;
1508         ret = ext4_mark_inode_used(sb, ino);
1509         if (ret)
1510                 goto out;
1511
1512         /* Given that we just wrote the inode on disk, this SHOULD succeed. */
1513         inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
1514         if (IS_ERR(inode)) {
1515                 jbd_debug(1, "Inode not found.");
1516                 return -EFSCORRUPTED;
1517         }
1518
1519         /*
1520          * Our allocator could have made different decisions than before
1521          * crashing. This should be fixed but until then, we calculate
1522          * the number of blocks the inode.
1523          */
1524         ext4_ext_replay_set_iblocks(inode);
1525
1526         inode->i_generation = le32_to_cpu(ext4_raw_inode(&iloc)->i_generation);
1527         ext4_reset_inode_seed(inode);
1528
1529         ext4_inode_csum_set(inode, ext4_raw_inode(&iloc), EXT4_I(inode));
1530         ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh);
1531         sync_dirty_buffer(iloc.bh);
1532         brelse(iloc.bh);
1533 out:
1534         iput(inode);
1535         if (!ret)
1536                 blkdev_issue_flush(sb->s_bdev);
1537
1538         return 0;
1539 }
1540
1541 /*
1542  * Dentry create replay function.
1543  *
1544  * EXT4_FC_TAG_CREAT is preceded by EXT4_FC_TAG_INODE_FULL. Which means, the
1545  * inode for which we are trying to create a dentry here, should already have
1546  * been replayed before we start here.
1547  */
1548 static int ext4_fc_replay_create(struct super_block *sb, struct ext4_fc_tl *tl)
1549 {
1550         int ret = 0;
1551         struct inode *inode = NULL;
1552         struct inode *dir = NULL;
1553         struct dentry_info_args darg;
1554
1555         tl_to_darg(&darg, tl);
1556
1557         trace_ext4_fc_replay(sb, EXT4_FC_TAG_CREAT, darg.ino,
1558                         darg.parent_ino, darg.dname_len);
1559
1560         /* This takes care of update group descriptor and other metadata */
1561         ret = ext4_mark_inode_used(sb, darg.ino);
1562         if (ret)
1563                 goto out;
1564
1565         inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1566         if (IS_ERR(inode)) {
1567                 jbd_debug(1, "inode %d not found.", darg.ino);
1568                 inode = NULL;
1569                 ret = -EINVAL;
1570                 goto out;
1571         }
1572
1573         if (S_ISDIR(inode->i_mode)) {
1574                 /*
1575                  * If we are creating a directory, we need to make sure that the
1576                  * dot and dot dot dirents are setup properly.
1577                  */
1578                 dir = ext4_iget(sb, darg.parent_ino, EXT4_IGET_NORMAL);
1579                 if (IS_ERR(dir)) {
1580                         jbd_debug(1, "Dir %d not found.", darg.ino);
1581                         goto out;
1582                 }
1583                 ret = ext4_init_new_dir(NULL, dir, inode);
1584                 iput(dir);
1585                 if (ret) {
1586                         ret = 0;
1587                         goto out;
1588                 }
1589         }
1590         ret = ext4_fc_replay_link_internal(sb, &darg, inode);
1591         if (ret)
1592                 goto out;
1593         set_nlink(inode, 1);
1594         ext4_mark_inode_dirty(NULL, inode);
1595 out:
1596         if (inode)
1597                 iput(inode);
1598         return ret;
1599 }
1600
1601 /*
1602  * Record physical disk regions which are in use as per fast commit area. Our
1603  * simple replay phase allocator excludes these regions from allocation.
1604  */
1605 static int ext4_fc_record_regions(struct super_block *sb, int ino,
1606                 ext4_lblk_t lblk, ext4_fsblk_t pblk, int len)
1607 {
1608         struct ext4_fc_replay_state *state;
1609         struct ext4_fc_alloc_region *region;
1610
1611         state = &EXT4_SB(sb)->s_fc_replay_state;
1612         if (state->fc_regions_used == state->fc_regions_size) {
1613                 state->fc_regions_size +=
1614                         EXT4_FC_REPLAY_REALLOC_INCREMENT;
1615                 state->fc_regions = krealloc(
1616                                         state->fc_regions,
1617                                         state->fc_regions_size *
1618                                         sizeof(struct ext4_fc_alloc_region),
1619                                         GFP_KERNEL);
1620                 if (!state->fc_regions)
1621                         return -ENOMEM;
1622         }
1623         region = &state->fc_regions[state->fc_regions_used++];
1624         region->ino = ino;
1625         region->lblk = lblk;
1626         region->pblk = pblk;
1627         region->len = len;
1628
1629         return 0;
1630 }
1631
1632 /* Replay add range tag */
1633 static int ext4_fc_replay_add_range(struct super_block *sb,
1634                                 struct ext4_fc_tl *tl)
1635 {
1636         struct ext4_fc_add_range *fc_add_ex;
1637         struct ext4_extent newex, *ex;
1638         struct inode *inode;
1639         ext4_lblk_t start, cur;
1640         int remaining, len;
1641         ext4_fsblk_t start_pblk;
1642         struct ext4_map_blocks map;
1643         struct ext4_ext_path *path = NULL;
1644         int ret;
1645
1646         fc_add_ex = (struct ext4_fc_add_range *)ext4_fc_tag_val(tl);
1647         ex = (struct ext4_extent *)&fc_add_ex->fc_ex;
1648
1649         trace_ext4_fc_replay(sb, EXT4_FC_TAG_ADD_RANGE,
1650                 le32_to_cpu(fc_add_ex->fc_ino), le32_to_cpu(ex->ee_block),
1651                 ext4_ext_get_actual_len(ex));
1652
1653         inode = ext4_iget(sb, le32_to_cpu(fc_add_ex->fc_ino),
1654                                 EXT4_IGET_NORMAL);
1655         if (IS_ERR(inode)) {
1656                 jbd_debug(1, "Inode not found.");
1657                 return 0;
1658         }
1659
1660         ret = ext4_fc_record_modified_inode(sb, inode->i_ino);
1661
1662         start = le32_to_cpu(ex->ee_block);
1663         start_pblk = ext4_ext_pblock(ex);
1664         len = ext4_ext_get_actual_len(ex);
1665
1666         cur = start;
1667         remaining = len;
1668         jbd_debug(1, "ADD_RANGE, lblk %d, pblk %lld, len %d, unwritten %d, inode %ld\n",
1669                   start, start_pblk, len, ext4_ext_is_unwritten(ex),
1670                   inode->i_ino);
1671
1672         while (remaining > 0) {
1673                 map.m_lblk = cur;
1674                 map.m_len = remaining;
1675                 map.m_pblk = 0;
1676                 ret = ext4_map_blocks(NULL, inode, &map, 0);
1677
1678                 if (ret < 0) {
1679                         iput(inode);
1680                         return 0;
1681                 }
1682
1683                 if (ret == 0) {
1684                         /* Range is not mapped */
1685                         path = ext4_find_extent(inode, cur, NULL, 0);
1686                         if (IS_ERR(path)) {
1687                                 iput(inode);
1688                                 return 0;
1689                         }
1690                         memset(&newex, 0, sizeof(newex));
1691                         newex.ee_block = cpu_to_le32(cur);
1692                         ext4_ext_store_pblock(
1693                                 &newex, start_pblk + cur - start);
1694                         newex.ee_len = cpu_to_le16(map.m_len);
1695                         if (ext4_ext_is_unwritten(ex))
1696                                 ext4_ext_mark_unwritten(&newex);
1697                         down_write(&EXT4_I(inode)->i_data_sem);
1698                         ret = ext4_ext_insert_extent(
1699                                 NULL, inode, &path, &newex, 0);
1700                         up_write((&EXT4_I(inode)->i_data_sem));
1701                         ext4_ext_drop_refs(path);
1702                         kfree(path);
1703                         if (ret) {
1704                                 iput(inode);
1705                                 return 0;
1706                         }
1707                         goto next;
1708                 }
1709
1710                 if (start_pblk + cur - start != map.m_pblk) {
1711                         /*
1712                          * Logical to physical mapping changed. This can happen
1713                          * if this range was removed and then reallocated to
1714                          * map to new physical blocks during a fast commit.
1715                          */
1716                         ret = ext4_ext_replay_update_ex(inode, cur, map.m_len,
1717                                         ext4_ext_is_unwritten(ex),
1718                                         start_pblk + cur - start);
1719                         if (ret) {
1720                                 iput(inode);
1721                                 return 0;
1722                         }
1723                         /*
1724                          * Mark the old blocks as free since they aren't used
1725                          * anymore. We maintain an array of all the modified
1726                          * inodes. In case these blocks are still used at either
1727                          * a different logical range in the same inode or in
1728                          * some different inode, we will mark them as allocated
1729                          * at the end of the FC replay using our array of
1730                          * modified inodes.
1731                          */
1732                         ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, 0);
1733                         goto next;
1734                 }
1735
1736                 /* Range is mapped and needs a state change */
1737                 jbd_debug(1, "Converting from %d to %d %lld",
1738                                 map.m_flags & EXT4_MAP_UNWRITTEN,
1739                         ext4_ext_is_unwritten(ex), map.m_pblk);
1740                 ret = ext4_ext_replay_update_ex(inode, cur, map.m_len,
1741                                         ext4_ext_is_unwritten(ex), map.m_pblk);
1742                 if (ret) {
1743                         iput(inode);
1744                         return 0;
1745                 }
1746                 /*
1747                  * We may have split the extent tree while toggling the state.
1748                  * Try to shrink the extent tree now.
1749                  */
1750                 ext4_ext_replay_shrink_inode(inode, start + len);
1751 next:
1752                 cur += map.m_len;
1753                 remaining -= map.m_len;
1754         }
1755         ext4_ext_replay_shrink_inode(inode, i_size_read(inode) >>
1756                                         sb->s_blocksize_bits);
1757         iput(inode);
1758         return 0;
1759 }
1760
1761 /* Replay DEL_RANGE tag */
1762 static int
1763 ext4_fc_replay_del_range(struct super_block *sb, struct ext4_fc_tl *tl)
1764 {
1765         struct inode *inode;
1766         struct ext4_fc_del_range *lrange;
1767         struct ext4_map_blocks map;
1768         ext4_lblk_t cur, remaining;
1769         int ret;
1770
1771         lrange = (struct ext4_fc_del_range *)ext4_fc_tag_val(tl);
1772         cur = le32_to_cpu(lrange->fc_lblk);
1773         remaining = le32_to_cpu(lrange->fc_len);
1774
1775         trace_ext4_fc_replay(sb, EXT4_FC_TAG_DEL_RANGE,
1776                 le32_to_cpu(lrange->fc_ino), cur, remaining);
1777
1778         inode = ext4_iget(sb, le32_to_cpu(lrange->fc_ino), EXT4_IGET_NORMAL);
1779         if (IS_ERR(inode)) {
1780                 jbd_debug(1, "Inode %d not found", le32_to_cpu(lrange->fc_ino));
1781                 return 0;
1782         }
1783
1784         ret = ext4_fc_record_modified_inode(sb, inode->i_ino);
1785
1786         jbd_debug(1, "DEL_RANGE, inode %ld, lblk %d, len %d\n",
1787                         inode->i_ino, le32_to_cpu(lrange->fc_lblk),
1788                         le32_to_cpu(lrange->fc_len));
1789         while (remaining > 0) {
1790                 map.m_lblk = cur;
1791                 map.m_len = remaining;
1792
1793                 ret = ext4_map_blocks(NULL, inode, &map, 0);
1794                 if (ret < 0) {
1795                         iput(inode);
1796                         return 0;
1797                 }
1798                 if (ret > 0) {
1799                         remaining -= ret;
1800                         cur += ret;
1801                         ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, 0);
1802                 } else {
1803                         remaining -= map.m_len;
1804                         cur += map.m_len;
1805                 }
1806         }
1807
1808         ret = ext4_punch_hole(inode,
1809                 le32_to_cpu(lrange->fc_lblk) << sb->s_blocksize_bits,
1810                 le32_to_cpu(lrange->fc_len) <<  sb->s_blocksize_bits);
1811         if (ret)
1812                 jbd_debug(1, "ext4_punch_hole returned %d", ret);
1813         ext4_ext_replay_shrink_inode(inode,
1814                 i_size_read(inode) >> sb->s_blocksize_bits);
1815         ext4_mark_inode_dirty(NULL, inode);
1816         iput(inode);
1817
1818         return 0;
1819 }
1820
1821 static void ext4_fc_set_bitmaps_and_counters(struct super_block *sb)
1822 {
1823         struct ext4_fc_replay_state *state;
1824         struct inode *inode;
1825         struct ext4_ext_path *path = NULL;
1826         struct ext4_map_blocks map;
1827         int i, ret, j;
1828         ext4_lblk_t cur, end;
1829
1830         state = &EXT4_SB(sb)->s_fc_replay_state;
1831         for (i = 0; i < state->fc_modified_inodes_used; i++) {
1832                 inode = ext4_iget(sb, state->fc_modified_inodes[i],
1833                         EXT4_IGET_NORMAL);
1834                 if (IS_ERR(inode)) {
1835                         jbd_debug(1, "Inode %d not found.",
1836                                 state->fc_modified_inodes[i]);
1837                         continue;
1838                 }
1839                 cur = 0;
1840                 end = EXT_MAX_BLOCKS;
1841                 while (cur < end) {
1842                         map.m_lblk = cur;
1843                         map.m_len = end - cur;
1844
1845                         ret = ext4_map_blocks(NULL, inode, &map, 0);
1846                         if (ret < 0)
1847                                 break;
1848
1849                         if (ret > 0) {
1850                                 path = ext4_find_extent(inode, map.m_lblk, NULL, 0);
1851                                 if (!IS_ERR(path)) {
1852                                         for (j = 0; j < path->p_depth; j++)
1853                                                 ext4_mb_mark_bb(inode->i_sb,
1854                                                         path[j].p_block, 1, 1);
1855                                         ext4_ext_drop_refs(path);
1856                                         kfree(path);
1857                                 }
1858                                 cur += ret;
1859                                 ext4_mb_mark_bb(inode->i_sb, map.m_pblk,
1860                                                         map.m_len, 1);
1861                         } else {
1862                                 cur = cur + (map.m_len ? map.m_len : 1);
1863                         }
1864                 }
1865                 iput(inode);
1866         }
1867 }
1868
1869 /*
1870  * Check if block is in excluded regions for block allocation. The simple
1871  * allocator that runs during replay phase is calls this function to see
1872  * if it is okay to use a block.
1873  */
1874 bool ext4_fc_replay_check_excluded(struct super_block *sb, ext4_fsblk_t blk)
1875 {
1876         int i;
1877         struct ext4_fc_replay_state *state;
1878
1879         state = &EXT4_SB(sb)->s_fc_replay_state;
1880         for (i = 0; i < state->fc_regions_valid; i++) {
1881                 if (state->fc_regions[i].ino == 0 ||
1882                         state->fc_regions[i].len == 0)
1883                         continue;
1884                 if (blk >= state->fc_regions[i].pblk &&
1885                     blk < state->fc_regions[i].pblk + state->fc_regions[i].len)
1886                         return true;
1887         }
1888         return false;
1889 }
1890
1891 /* Cleanup function called after replay */
1892 void ext4_fc_replay_cleanup(struct super_block *sb)
1893 {
1894         struct ext4_sb_info *sbi = EXT4_SB(sb);
1895
1896         sbi->s_mount_state &= ~EXT4_FC_REPLAY;
1897         kfree(sbi->s_fc_replay_state.fc_regions);
1898         kfree(sbi->s_fc_replay_state.fc_modified_inodes);
1899 }
1900
1901 /*
1902  * Recovery Scan phase handler
1903  *
1904  * This function is called during the scan phase and is responsible
1905  * for doing following things:
1906  * - Make sure the fast commit area has valid tags for replay
1907  * - Count number of tags that need to be replayed by the replay handler
1908  * - Verify CRC
1909  * - Create a list of excluded blocks for allocation during replay phase
1910  *
1911  * This function returns JBD2_FC_REPLAY_CONTINUE to indicate that SCAN is
1912  * incomplete and JBD2 should send more blocks. It returns JBD2_FC_REPLAY_STOP
1913  * to indicate that scan has finished and JBD2 can now start replay phase.
1914  * It returns a negative error to indicate that there was an error. At the end
1915  * of a successful scan phase, sbi->s_fc_replay_state.fc_replay_num_tags is set
1916  * to indicate the number of tags that need to replayed during the replay phase.
1917  */
1918 static int ext4_fc_replay_scan(journal_t *journal,
1919                                 struct buffer_head *bh, int off,
1920                                 tid_t expected_tid)
1921 {
1922         struct super_block *sb = journal->j_private;
1923         struct ext4_sb_info *sbi = EXT4_SB(sb);
1924         struct ext4_fc_replay_state *state;
1925         int ret = JBD2_FC_REPLAY_CONTINUE;
1926         struct ext4_fc_add_range *ext;
1927         struct ext4_fc_tl *tl;
1928         struct ext4_fc_tail *tail;
1929         __u8 *start, *end;
1930         struct ext4_fc_head *head;
1931         struct ext4_extent *ex;
1932
1933         state = &sbi->s_fc_replay_state;
1934
1935         start = (u8 *)bh->b_data;
1936         end = (__u8 *)bh->b_data + journal->j_blocksize - 1;
1937
1938         if (state->fc_replay_expected_off == 0) {
1939                 state->fc_cur_tag = 0;
1940                 state->fc_replay_num_tags = 0;
1941                 state->fc_crc = 0;
1942                 state->fc_regions = NULL;
1943                 state->fc_regions_valid = state->fc_regions_used =
1944                         state->fc_regions_size = 0;
1945                 /* Check if we can stop early */
1946                 if (le16_to_cpu(((struct ext4_fc_tl *)start)->fc_tag)
1947                         != EXT4_FC_TAG_HEAD)
1948                         return 0;
1949         }
1950
1951         if (off != state->fc_replay_expected_off) {
1952                 ret = -EFSCORRUPTED;
1953                 goto out_err;
1954         }
1955
1956         state->fc_replay_expected_off++;
1957         fc_for_each_tl(start, end, tl) {
1958                 jbd_debug(3, "Scan phase, tag:%s, blk %lld\n",
1959                           tag2str(le16_to_cpu(tl->fc_tag)), bh->b_blocknr);
1960                 switch (le16_to_cpu(tl->fc_tag)) {
1961                 case EXT4_FC_TAG_ADD_RANGE:
1962                         ext = (struct ext4_fc_add_range *)ext4_fc_tag_val(tl);
1963                         ex = (struct ext4_extent *)&ext->fc_ex;
1964                         ret = ext4_fc_record_regions(sb,
1965                                 le32_to_cpu(ext->fc_ino),
1966                                 le32_to_cpu(ex->ee_block), ext4_ext_pblock(ex),
1967                                 ext4_ext_get_actual_len(ex));
1968                         if (ret < 0)
1969                                 break;
1970                         ret = JBD2_FC_REPLAY_CONTINUE;
1971                         fallthrough;
1972                 case EXT4_FC_TAG_DEL_RANGE:
1973                 case EXT4_FC_TAG_LINK:
1974                 case EXT4_FC_TAG_UNLINK:
1975                 case EXT4_FC_TAG_CREAT:
1976                 case EXT4_FC_TAG_INODE:
1977                 case EXT4_FC_TAG_PAD:
1978                         state->fc_cur_tag++;
1979                         state->fc_crc = ext4_chksum(sbi, state->fc_crc, tl,
1980                                         sizeof(*tl) + ext4_fc_tag_len(tl));
1981                         break;
1982                 case EXT4_FC_TAG_TAIL:
1983                         state->fc_cur_tag++;
1984                         tail = (struct ext4_fc_tail *)ext4_fc_tag_val(tl);
1985                         state->fc_crc = ext4_chksum(sbi, state->fc_crc, tl,
1986                                                 sizeof(*tl) +
1987                                                 offsetof(struct ext4_fc_tail,
1988                                                 fc_crc));
1989                         if (le32_to_cpu(tail->fc_tid) == expected_tid &&
1990                                 le32_to_cpu(tail->fc_crc) == state->fc_crc) {
1991                                 state->fc_replay_num_tags = state->fc_cur_tag;
1992                                 state->fc_regions_valid =
1993                                         state->fc_regions_used;
1994                         } else {
1995                                 ret = state->fc_replay_num_tags ?
1996                                         JBD2_FC_REPLAY_STOP : -EFSBADCRC;
1997                         }
1998                         state->fc_crc = 0;
1999                         break;
2000                 case EXT4_FC_TAG_HEAD:
2001                         head = (struct ext4_fc_head *)ext4_fc_tag_val(tl);
2002                         if (le32_to_cpu(head->fc_features) &
2003                                 ~EXT4_FC_SUPPORTED_FEATURES) {
2004                                 ret = -EOPNOTSUPP;
2005                                 break;
2006                         }
2007                         if (le32_to_cpu(head->fc_tid) != expected_tid) {
2008                                 ret = JBD2_FC_REPLAY_STOP;
2009                                 break;
2010                         }
2011                         state->fc_cur_tag++;
2012                         state->fc_crc = ext4_chksum(sbi, state->fc_crc, tl,
2013                                         sizeof(*tl) + ext4_fc_tag_len(tl));
2014                         break;
2015                 default:
2016                         ret = state->fc_replay_num_tags ?
2017                                 JBD2_FC_REPLAY_STOP : -ECANCELED;
2018                 }
2019                 if (ret < 0 || ret == JBD2_FC_REPLAY_STOP)
2020                         break;
2021         }
2022
2023 out_err:
2024         trace_ext4_fc_replay_scan(sb, ret, off);
2025         return ret;
2026 }
2027
2028 /*
2029  * Main recovery path entry point.
2030  * The meaning of return codes is similar as above.
2031  */
2032 static int ext4_fc_replay(journal_t *journal, struct buffer_head *bh,
2033                                 enum passtype pass, int off, tid_t expected_tid)
2034 {
2035         struct super_block *sb = journal->j_private;
2036         struct ext4_sb_info *sbi = EXT4_SB(sb);
2037         struct ext4_fc_tl *tl;
2038         __u8 *start, *end;
2039         int ret = JBD2_FC_REPLAY_CONTINUE;
2040         struct ext4_fc_replay_state *state = &sbi->s_fc_replay_state;
2041         struct ext4_fc_tail *tail;
2042
2043         if (pass == PASS_SCAN) {
2044                 state->fc_current_pass = PASS_SCAN;
2045                 return ext4_fc_replay_scan(journal, bh, off, expected_tid);
2046         }
2047
2048         if (state->fc_current_pass != pass) {
2049                 state->fc_current_pass = pass;
2050                 sbi->s_mount_state |= EXT4_FC_REPLAY;
2051         }
2052         if (!sbi->s_fc_replay_state.fc_replay_num_tags) {
2053                 jbd_debug(1, "Replay stops\n");
2054                 ext4_fc_set_bitmaps_and_counters(sb);
2055                 return 0;
2056         }
2057
2058 #ifdef CONFIG_EXT4_DEBUG
2059         if (sbi->s_fc_debug_max_replay && off >= sbi->s_fc_debug_max_replay) {
2060                 pr_warn("Dropping fc block %d because max_replay set\n", off);
2061                 return JBD2_FC_REPLAY_STOP;
2062         }
2063 #endif
2064
2065         start = (u8 *)bh->b_data;
2066         end = (__u8 *)bh->b_data + journal->j_blocksize - 1;
2067
2068         fc_for_each_tl(start, end, tl) {
2069                 if (state->fc_replay_num_tags == 0) {
2070                         ret = JBD2_FC_REPLAY_STOP;
2071                         ext4_fc_set_bitmaps_and_counters(sb);
2072                         break;
2073                 }
2074                 jbd_debug(3, "Replay phase, tag:%s\n",
2075                                 tag2str(le16_to_cpu(tl->fc_tag)));
2076                 state->fc_replay_num_tags--;
2077                 switch (le16_to_cpu(tl->fc_tag)) {
2078                 case EXT4_FC_TAG_LINK:
2079                         ret = ext4_fc_replay_link(sb, tl);
2080                         break;
2081                 case EXT4_FC_TAG_UNLINK:
2082                         ret = ext4_fc_replay_unlink(sb, tl);
2083                         break;
2084                 case EXT4_FC_TAG_ADD_RANGE:
2085                         ret = ext4_fc_replay_add_range(sb, tl);
2086                         break;
2087                 case EXT4_FC_TAG_CREAT:
2088                         ret = ext4_fc_replay_create(sb, tl);
2089                         break;
2090                 case EXT4_FC_TAG_DEL_RANGE:
2091                         ret = ext4_fc_replay_del_range(sb, tl);
2092                         break;
2093                 case EXT4_FC_TAG_INODE:
2094                         ret = ext4_fc_replay_inode(sb, tl);
2095                         break;
2096                 case EXT4_FC_TAG_PAD:
2097                         trace_ext4_fc_replay(sb, EXT4_FC_TAG_PAD, 0,
2098                                 ext4_fc_tag_len(tl), 0);
2099                         break;
2100                 case EXT4_FC_TAG_TAIL:
2101                         trace_ext4_fc_replay(sb, EXT4_FC_TAG_TAIL, 0,
2102                                 ext4_fc_tag_len(tl), 0);
2103                         tail = (struct ext4_fc_tail *)ext4_fc_tag_val(tl);
2104                         WARN_ON(le32_to_cpu(tail->fc_tid) != expected_tid);
2105                         break;
2106                 case EXT4_FC_TAG_HEAD:
2107                         break;
2108                 default:
2109                         trace_ext4_fc_replay(sb, le16_to_cpu(tl->fc_tag), 0,
2110                                 ext4_fc_tag_len(tl), 0);
2111                         ret = -ECANCELED;
2112                         break;
2113                 }
2114                 if (ret < 0)
2115                         break;
2116                 ret = JBD2_FC_REPLAY_CONTINUE;
2117         }
2118         return ret;
2119 }
2120
2121 void ext4_fc_init(struct super_block *sb, journal_t *journal)
2122 {
2123         /*
2124          * We set replay callback even if fast commit disabled because we may
2125          * could still have fast commit blocks that need to be replayed even if
2126          * fast commit has now been turned off.
2127          */
2128         journal->j_fc_replay_callback = ext4_fc_replay;
2129         if (!test_opt2(sb, JOURNAL_FAST_COMMIT))
2130                 return;
2131         journal->j_fc_cleanup_callback = ext4_fc_cleanup;
2132 }
2133
2134 static const char *fc_ineligible_reasons[] = {
2135         "Extended attributes changed",
2136         "Cross rename",
2137         "Journal flag changed",
2138         "Insufficient memory",
2139         "Swap boot",
2140         "Resize",
2141         "Dir renamed",
2142         "Falloc range op",
2143         "Data journalling",
2144         "FC Commit Failed"
2145 };
2146
2147 int ext4_fc_info_show(struct seq_file *seq, void *v)
2148 {
2149         struct ext4_sb_info *sbi = EXT4_SB((struct super_block *)seq->private);
2150         struct ext4_fc_stats *stats = &sbi->s_fc_stats;
2151         int i;
2152
2153         if (v != SEQ_START_TOKEN)
2154                 return 0;
2155
2156         seq_printf(seq,
2157                 "fc stats:\n%ld commits\n%ld ineligible\n%ld numblks\n%lluus avg_commit_time\n",
2158                    stats->fc_num_commits, stats->fc_ineligible_commits,
2159                    stats->fc_numblks,
2160                    div_u64(sbi->s_fc_avg_commit_time, 1000));
2161         seq_puts(seq, "Ineligible reasons:\n");
2162         for (i = 0; i < EXT4_FC_REASON_MAX; i++)
2163                 seq_printf(seq, "\"%s\":\t%d\n", fc_ineligible_reasons[i],
2164                         stats->fc_ineligible_reason_count[i]);
2165
2166         return 0;
2167 }
2168
2169 int __init ext4_fc_init_dentry_cache(void)
2170 {
2171         ext4_fc_dentry_cachep = KMEM_CACHE(ext4_fc_dentry_update,
2172                                            SLAB_RECLAIM_ACCOUNT);
2173
2174         if (ext4_fc_dentry_cachep == NULL)
2175                 return -ENOMEM;
2176
2177         return 0;
2178 }