Merge tag 'v5.10-rc1' into kvmarm-master/next
[linux-2.6-microblaze.git] / fs / ext4 / fast_commit.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 /*
4  * fs/ext4/fast_commit.c
5  *
6  * Written by Harshad Shirwadkar <harshadshirwadkar@gmail.com>
7  *
8  * Ext4 fast commits routines.
9  */
10 #include "ext4.h"
11 #include "ext4_jbd2.h"
12 #include "ext4_extents.h"
13 #include "mballoc.h"
14
15 /*
16  * Ext4 Fast Commits
17  * -----------------
18  *
19  * Ext4 fast commits implement fine grained journalling for Ext4.
20  *
21  * Fast commits are organized as a log of tag-length-value (TLV) structs. (See
22  * struct ext4_fc_tl). Each TLV contains some delta that is replayed TLV by
23  * TLV during the recovery phase. For the scenarios for which we currently
24  * don't have replay code, fast commit falls back to full commits.
25  * Fast commits record delta in one of the following three categories.
26  *
27  * (A) Directory entry updates:
28  *
29  * - EXT4_FC_TAG_UNLINK         - records directory entry unlink
30  * - EXT4_FC_TAG_LINK           - records directory entry link
31  * - EXT4_FC_TAG_CREAT          - records inode and directory entry creation
32  *
33  * (B) File specific data range updates:
34  *
35  * - EXT4_FC_TAG_ADD_RANGE      - records addition of new blocks to an inode
36  * - EXT4_FC_TAG_DEL_RANGE      - records deletion of blocks from an inode
37  *
38  * (C) Inode metadata (mtime / ctime etc):
39  *
40  * - EXT4_FC_TAG_INODE          - record the inode that should be replayed
41  *                                during recovery. Note that iblocks field is
42  *                                not replayed and instead derived during
43  *                                replay.
44  * Commit Operation
45  * ----------------
46  * With fast commits, we maintain all the directory entry operations in the
47  * order in which they are issued in an in-memory queue. This queue is flushed
48  * to disk during the commit operation. We also maintain a list of inodes
49  * that need to be committed during a fast commit in another in memory queue of
50  * inodes. During the commit operation, we commit in the following order:
51  *
52  * [1] Lock inodes for any further data updates by setting COMMITTING state
53  * [2] Submit data buffers of all the inodes
54  * [3] Wait for [2] to complete
55  * [4] Commit all the directory entry updates in the fast commit space
56  * [5] Commit all the changed inode structures
57  * [6] Write tail tag (this tag ensures the atomicity, please read the following
58  *     section for more details).
59  * [7] Wait for [4], [5] and [6] to complete.
60  *
61  * All the inode updates must call ext4_fc_start_update() before starting an
62  * update. If such an ongoing update is present, fast commit waits for it to
63  * complete. The completion of such an update is marked by
64  * ext4_fc_stop_update().
65  *
66  * Fast Commit Ineligibility
67  * -------------------------
68  * Not all operations are supported by fast commits today (e.g extended
69  * attributes). Fast commit ineligiblity is marked by calling one of the
70  * two following functions:
71  *
72  * - ext4_fc_mark_ineligible(): This makes next fast commit operation to fall
73  *   back to full commit. This is useful in case of transient errors.
74  *
75  * - ext4_fc_start_ineligible() and ext4_fc_stop_ineligible() - This makes all
76  *   the fast commits happening between ext4_fc_start_ineligible() and
77  *   ext4_fc_stop_ineligible() and one fast commit after the call to
78  *   ext4_fc_stop_ineligible() to fall back to full commits. It is important to
79  *   make one more fast commit to fall back to full commit after stop call so
80  *   that it guaranteed that the fast commit ineligible operation contained
81  *   within ext4_fc_start_ineligible() and ext4_fc_stop_ineligible() is
82  *   followed by at least 1 full commit.
83  *
84  * Atomicity of commits
85  * --------------------
86  * In order to gaurantee atomicity during the commit operation, fast commit
87  * uses "EXT4_FC_TAG_TAIL" tag that marks a fast commit as complete. Tail
88  * tag contains CRC of the contents and TID of the transaction after which
89  * this fast commit should be applied. Recovery code replays fast commit
90  * logs only if there's at least 1 valid tail present. For every fast commit
91  * operation, there is 1 tail. This means, we may end up with multiple tails
92  * in the fast commit space. Here's an example:
93  *
94  * - Create a new file A and remove existing file B
95  * - fsync()
96  * - Append contents to file A
97  * - Truncate file A
98  * - fsync()
99  *
100  * The fast commit space at the end of above operations would look like this:
101  *      [HEAD] [CREAT A] [UNLINK B] [TAIL] [ADD_RANGE A] [DEL_RANGE A] [TAIL]
102  *             |<---  Fast Commit 1   --->|<---      Fast Commit 2     ---->|
103  *
104  * Replay code should thus check for all the valid tails in the FC area.
105  *
106  * TODOs
107  * -----
108  * 1) Make fast commit atomic updates more fine grained. Today, a fast commit
109  *    eligible update must be protected within ext4_fc_start_update() and
110  *    ext4_fc_stop_update(). These routines are called at much higher
111  *    routines. This can be made more fine grained by combining with
112  *    ext4_journal_start().
113  *
114  * 2) Same above for ext4_fc_start_ineligible() and ext4_fc_stop_ineligible()
115  *
116  * 3) Handle more ineligible cases.
117  */
118
119 #include <trace/events/ext4.h>
120 static struct kmem_cache *ext4_fc_dentry_cachep;
121
122 static void ext4_end_buffer_io_sync(struct buffer_head *bh, int uptodate)
123 {
124         BUFFER_TRACE(bh, "");
125         if (uptodate) {
126                 ext4_debug("%s: Block %lld up-to-date",
127                            __func__, bh->b_blocknr);
128                 set_buffer_uptodate(bh);
129         } else {
130                 ext4_debug("%s: Block %lld not up-to-date",
131                            __func__, bh->b_blocknr);
132                 clear_buffer_uptodate(bh);
133         }
134
135         unlock_buffer(bh);
136 }
137
138 static inline void ext4_fc_reset_inode(struct inode *inode)
139 {
140         struct ext4_inode_info *ei = EXT4_I(inode);
141
142         ei->i_fc_lblk_start = 0;
143         ei->i_fc_lblk_len = 0;
144 }
145
146 void ext4_fc_init_inode(struct inode *inode)
147 {
148         struct ext4_inode_info *ei = EXT4_I(inode);
149
150         ext4_fc_reset_inode(inode);
151         ext4_clear_inode_state(inode, EXT4_STATE_FC_COMMITTING);
152         INIT_LIST_HEAD(&ei->i_fc_list);
153         init_waitqueue_head(&ei->i_fc_wait);
154         atomic_set(&ei->i_fc_updates, 0);
155         ei->i_fc_committed_subtid = 0;
156 }
157
158 /*
159  * Inform Ext4's fast about start of an inode update
160  *
161  * This function is called by the high level call VFS callbacks before
162  * performing any inode update. This function blocks if there's an ongoing
163  * fast commit on the inode in question.
164  */
165 void ext4_fc_start_update(struct inode *inode)
166 {
167         struct ext4_inode_info *ei = EXT4_I(inode);
168
169         if (!test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT) ||
170             (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY))
171                 return;
172
173 restart:
174         spin_lock(&EXT4_SB(inode->i_sb)->s_fc_lock);
175         if (list_empty(&ei->i_fc_list))
176                 goto out;
177
178         if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) {
179                 wait_queue_head_t *wq;
180 #if (BITS_PER_LONG < 64)
181                 DEFINE_WAIT_BIT(wait, &ei->i_state_flags,
182                                 EXT4_STATE_FC_COMMITTING);
183                 wq = bit_waitqueue(&ei->i_state_flags,
184                                    EXT4_STATE_FC_COMMITTING);
185 #else
186                 DEFINE_WAIT_BIT(wait, &ei->i_flags,
187                                 EXT4_STATE_FC_COMMITTING);
188                 wq = bit_waitqueue(&ei->i_flags,
189                                    EXT4_STATE_FC_COMMITTING);
190 #endif
191                 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
192                 spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
193                 schedule();
194                 finish_wait(wq, &wait.wq_entry);
195                 goto restart;
196         }
197 out:
198         atomic_inc(&ei->i_fc_updates);
199         spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
200 }
201
202 /*
203  * Stop inode update and wake up waiting fast commits if any.
204  */
205 void ext4_fc_stop_update(struct inode *inode)
206 {
207         struct ext4_inode_info *ei = EXT4_I(inode);
208
209         if (!test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT) ||
210             (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY))
211                 return;
212
213         if (atomic_dec_and_test(&ei->i_fc_updates))
214                 wake_up_all(&ei->i_fc_wait);
215 }
216
217 /*
218  * Remove inode from fast commit list. If the inode is being committed
219  * we wait until inode commit is done.
220  */
221 void ext4_fc_del(struct inode *inode)
222 {
223         struct ext4_inode_info *ei = EXT4_I(inode);
224
225         if (!test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT) ||
226             (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY))
227                 return;
228
229 restart:
230         spin_lock(&EXT4_SB(inode->i_sb)->s_fc_lock);
231         if (list_empty(&ei->i_fc_list)) {
232                 spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
233                 return;
234         }
235
236         if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) {
237                 wait_queue_head_t *wq;
238 #if (BITS_PER_LONG < 64)
239                 DEFINE_WAIT_BIT(wait, &ei->i_state_flags,
240                                 EXT4_STATE_FC_COMMITTING);
241                 wq = bit_waitqueue(&ei->i_state_flags,
242                                    EXT4_STATE_FC_COMMITTING);
243 #else
244                 DEFINE_WAIT_BIT(wait, &ei->i_flags,
245                                 EXT4_STATE_FC_COMMITTING);
246                 wq = bit_waitqueue(&ei->i_flags,
247                                    EXT4_STATE_FC_COMMITTING);
248 #endif
249                 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
250                 spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
251                 schedule();
252                 finish_wait(wq, &wait.wq_entry);
253                 goto restart;
254         }
255         if (!list_empty(&ei->i_fc_list))
256                 list_del_init(&ei->i_fc_list);
257         spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
258 }
259
260 /*
261  * Mark file system as fast commit ineligible. This means that next commit
262  * operation would result in a full jbd2 commit.
263  */
264 void ext4_fc_mark_ineligible(struct super_block *sb, int reason)
265 {
266         struct ext4_sb_info *sbi = EXT4_SB(sb);
267
268         if (!test_opt2(sb, JOURNAL_FAST_COMMIT) ||
269             (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))
270                 return;
271
272         sbi->s_mount_state |= EXT4_FC_INELIGIBLE;
273         WARN_ON(reason >= EXT4_FC_REASON_MAX);
274         sbi->s_fc_stats.fc_ineligible_reason_count[reason]++;
275 }
276
277 /*
278  * Start a fast commit ineligible update. Any commits that happen while
279  * such an operation is in progress fall back to full commits.
280  */
281 void ext4_fc_start_ineligible(struct super_block *sb, int reason)
282 {
283         struct ext4_sb_info *sbi = EXT4_SB(sb);
284
285         if (!test_opt2(sb, JOURNAL_FAST_COMMIT) ||
286             (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))
287                 return;
288
289         WARN_ON(reason >= EXT4_FC_REASON_MAX);
290         sbi->s_fc_stats.fc_ineligible_reason_count[reason]++;
291         atomic_inc(&sbi->s_fc_ineligible_updates);
292 }
293
294 /*
295  * Stop a fast commit ineligible update. We set EXT4_FC_INELIGIBLE flag here
296  * to ensure that after stopping the ineligible update, at least one full
297  * commit takes place.
298  */
299 void ext4_fc_stop_ineligible(struct super_block *sb)
300 {
301         if (!test_opt2(sb, JOURNAL_FAST_COMMIT) ||
302             (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))
303                 return;
304
305         EXT4_SB(sb)->s_mount_state |= EXT4_FC_INELIGIBLE;
306         atomic_dec(&EXT4_SB(sb)->s_fc_ineligible_updates);
307 }
308
309 static inline int ext4_fc_is_ineligible(struct super_block *sb)
310 {
311         return (EXT4_SB(sb)->s_mount_state & EXT4_FC_INELIGIBLE) ||
312                 atomic_read(&EXT4_SB(sb)->s_fc_ineligible_updates);
313 }
314
315 /*
316  * Generic fast commit tracking function. If this is the first time this we are
317  * called after a full commit, we initialize fast commit fields and then call
318  * __fc_track_fn() with update = 0. If we have already been called after a full
319  * commit, we pass update = 1. Based on that, the track function can determine
320  * if it needs to track a field for the first time or if it needs to just
321  * update the previously tracked value.
322  *
323  * If enqueue is set, this function enqueues the inode in fast commit list.
324  */
325 static int ext4_fc_track_template(
326         struct inode *inode, int (*__fc_track_fn)(struct inode *, void *, bool),
327         void *args, int enqueue)
328 {
329         tid_t running_txn_tid;
330         bool update = false;
331         struct ext4_inode_info *ei = EXT4_I(inode);
332         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
333         int ret;
334
335         if (!test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT) ||
336             (sbi->s_mount_state & EXT4_FC_REPLAY))
337                 return -EOPNOTSUPP;
338
339         if (ext4_fc_is_ineligible(inode->i_sb))
340                 return -EINVAL;
341
342         running_txn_tid = sbi->s_journal ?
343                 sbi->s_journal->j_commit_sequence + 1 : 0;
344
345         mutex_lock(&ei->i_fc_lock);
346         if (running_txn_tid == ei->i_sync_tid) {
347                 update = true;
348         } else {
349                 ext4_fc_reset_inode(inode);
350                 ei->i_sync_tid = running_txn_tid;
351         }
352         ret = __fc_track_fn(inode, args, update);
353         mutex_unlock(&ei->i_fc_lock);
354
355         if (!enqueue)
356                 return ret;
357
358         spin_lock(&sbi->s_fc_lock);
359         if (list_empty(&EXT4_I(inode)->i_fc_list))
360                 list_add_tail(&EXT4_I(inode)->i_fc_list,
361                                 (sbi->s_mount_state & EXT4_FC_COMMITTING) ?
362                                 &sbi->s_fc_q[FC_Q_STAGING] :
363                                 &sbi->s_fc_q[FC_Q_MAIN]);
364         spin_unlock(&sbi->s_fc_lock);
365
366         return ret;
367 }
368
369 struct __track_dentry_update_args {
370         struct dentry *dentry;
371         int op;
372 };
373
374 /* __track_fn for directory entry updates. Called with ei->i_fc_lock. */
375 static int __track_dentry_update(struct inode *inode, void *arg, bool update)
376 {
377         struct ext4_fc_dentry_update *node;
378         struct ext4_inode_info *ei = EXT4_I(inode);
379         struct __track_dentry_update_args *dentry_update =
380                 (struct __track_dentry_update_args *)arg;
381         struct dentry *dentry = dentry_update->dentry;
382         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
383
384         mutex_unlock(&ei->i_fc_lock);
385         node = kmem_cache_alloc(ext4_fc_dentry_cachep, GFP_NOFS);
386         if (!node) {
387                 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_MEM);
388                 mutex_lock(&ei->i_fc_lock);
389                 return -ENOMEM;
390         }
391
392         node->fcd_op = dentry_update->op;
393         node->fcd_parent = dentry->d_parent->d_inode->i_ino;
394         node->fcd_ino = inode->i_ino;
395         if (dentry->d_name.len > DNAME_INLINE_LEN) {
396                 node->fcd_name.name = kmalloc(dentry->d_name.len, GFP_NOFS);
397                 if (!node->fcd_name.name) {
398                         kmem_cache_free(ext4_fc_dentry_cachep, node);
399                         ext4_fc_mark_ineligible(inode->i_sb,
400                                 EXT4_FC_REASON_MEM);
401                         mutex_lock(&ei->i_fc_lock);
402                         return -ENOMEM;
403                 }
404                 memcpy((u8 *)node->fcd_name.name, dentry->d_name.name,
405                         dentry->d_name.len);
406         } else {
407                 memcpy(node->fcd_iname, dentry->d_name.name,
408                         dentry->d_name.len);
409                 node->fcd_name.name = node->fcd_iname;
410         }
411         node->fcd_name.len = dentry->d_name.len;
412
413         spin_lock(&sbi->s_fc_lock);
414         if (sbi->s_mount_state & EXT4_FC_COMMITTING)
415                 list_add_tail(&node->fcd_list,
416                                 &sbi->s_fc_dentry_q[FC_Q_STAGING]);
417         else
418                 list_add_tail(&node->fcd_list, &sbi->s_fc_dentry_q[FC_Q_MAIN]);
419         spin_unlock(&sbi->s_fc_lock);
420         mutex_lock(&ei->i_fc_lock);
421
422         return 0;
423 }
424
425 void ext4_fc_track_unlink(struct inode *inode, struct dentry *dentry)
426 {
427         struct __track_dentry_update_args args;
428         int ret;
429
430         args.dentry = dentry;
431         args.op = EXT4_FC_TAG_UNLINK;
432
433         ret = ext4_fc_track_template(inode, __track_dentry_update,
434                                         (void *)&args, 0);
435         trace_ext4_fc_track_unlink(inode, dentry, ret);
436 }
437
438 void ext4_fc_track_link(struct inode *inode, struct dentry *dentry)
439 {
440         struct __track_dentry_update_args args;
441         int ret;
442
443         args.dentry = dentry;
444         args.op = EXT4_FC_TAG_LINK;
445
446         ret = ext4_fc_track_template(inode, __track_dentry_update,
447                                         (void *)&args, 0);
448         trace_ext4_fc_track_link(inode, dentry, ret);
449 }
450
451 void ext4_fc_track_create(struct inode *inode, struct dentry *dentry)
452 {
453         struct __track_dentry_update_args args;
454         int ret;
455
456         args.dentry = dentry;
457         args.op = EXT4_FC_TAG_CREAT;
458
459         ret = ext4_fc_track_template(inode, __track_dentry_update,
460                                         (void *)&args, 0);
461         trace_ext4_fc_track_create(inode, dentry, ret);
462 }
463
464 /* __track_fn for inode tracking */
465 static int __track_inode(struct inode *inode, void *arg, bool update)
466 {
467         if (update)
468                 return -EEXIST;
469
470         EXT4_I(inode)->i_fc_lblk_len = 0;
471
472         return 0;
473 }
474
475 void ext4_fc_track_inode(struct inode *inode)
476 {
477         int ret;
478
479         if (S_ISDIR(inode->i_mode))
480                 return;
481
482         ret = ext4_fc_track_template(inode, __track_inode, NULL, 1);
483         trace_ext4_fc_track_inode(inode, ret);
484 }
485
486 struct __track_range_args {
487         ext4_lblk_t start, end;
488 };
489
490 /* __track_fn for tracking data updates */
491 static int __track_range(struct inode *inode, void *arg, bool update)
492 {
493         struct ext4_inode_info *ei = EXT4_I(inode);
494         ext4_lblk_t oldstart;
495         struct __track_range_args *__arg =
496                 (struct __track_range_args *)arg;
497
498         if (inode->i_ino < EXT4_FIRST_INO(inode->i_sb)) {
499                 ext4_debug("Special inode %ld being modified\n", inode->i_ino);
500                 return -ECANCELED;
501         }
502
503         oldstart = ei->i_fc_lblk_start;
504
505         if (update && ei->i_fc_lblk_len > 0) {
506                 ei->i_fc_lblk_start = min(ei->i_fc_lblk_start, __arg->start);
507                 ei->i_fc_lblk_len =
508                         max(oldstart + ei->i_fc_lblk_len - 1, __arg->end) -
509                                 ei->i_fc_lblk_start + 1;
510         } else {
511                 ei->i_fc_lblk_start = __arg->start;
512                 ei->i_fc_lblk_len = __arg->end - __arg->start + 1;
513         }
514
515         return 0;
516 }
517
518 void ext4_fc_track_range(struct inode *inode, ext4_lblk_t start,
519                          ext4_lblk_t end)
520 {
521         struct __track_range_args args;
522         int ret;
523
524         if (S_ISDIR(inode->i_mode))
525                 return;
526
527         args.start = start;
528         args.end = end;
529
530         ret = ext4_fc_track_template(inode,  __track_range, &args, 1);
531
532         trace_ext4_fc_track_range(inode, start, end, ret);
533 }
534
535 static void ext4_fc_submit_bh(struct super_block *sb)
536 {
537         int write_flags = REQ_SYNC;
538         struct buffer_head *bh = EXT4_SB(sb)->s_fc_bh;
539
540         if (test_opt(sb, BARRIER))
541                 write_flags |= REQ_FUA | REQ_PREFLUSH;
542         lock_buffer(bh);
543         clear_buffer_dirty(bh);
544         set_buffer_uptodate(bh);
545         bh->b_end_io = ext4_end_buffer_io_sync;
546         submit_bh(REQ_OP_WRITE, write_flags, bh);
547         EXT4_SB(sb)->s_fc_bh = NULL;
548 }
549
550 /* Ext4 commit path routines */
551
552 /* memzero and update CRC */
553 static void *ext4_fc_memzero(struct super_block *sb, void *dst, int len,
554                                 u32 *crc)
555 {
556         void *ret;
557
558         ret = memset(dst, 0, len);
559         if (crc)
560                 *crc = ext4_chksum(EXT4_SB(sb), *crc, dst, len);
561         return ret;
562 }
563
564 /*
565  * Allocate len bytes on a fast commit buffer.
566  *
567  * During the commit time this function is used to manage fast commit
568  * block space. We don't split a fast commit log onto different
569  * blocks. So this function makes sure that if there's not enough space
570  * on the current block, the remaining space in the current block is
571  * marked as unused by adding EXT4_FC_TAG_PAD tag. In that case,
572  * new block is from jbd2 and CRC is updated to reflect the padding
573  * we added.
574  */
575 static u8 *ext4_fc_reserve_space(struct super_block *sb, int len, u32 *crc)
576 {
577         struct ext4_fc_tl *tl;
578         struct ext4_sb_info *sbi = EXT4_SB(sb);
579         struct buffer_head *bh;
580         int bsize = sbi->s_journal->j_blocksize;
581         int ret, off = sbi->s_fc_bytes % bsize;
582         int pad_len;
583
584         /*
585          * After allocating len, we should have space at least for a 0 byte
586          * padding.
587          */
588         if (len + sizeof(struct ext4_fc_tl) > bsize)
589                 return NULL;
590
591         if (bsize - off - 1 > len + sizeof(struct ext4_fc_tl)) {
592                 /*
593                  * Only allocate from current buffer if we have enough space for
594                  * this request AND we have space to add a zero byte padding.
595                  */
596                 if (!sbi->s_fc_bh) {
597                         ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh);
598                         if (ret)
599                                 return NULL;
600                         sbi->s_fc_bh = bh;
601                 }
602                 sbi->s_fc_bytes += len;
603                 return sbi->s_fc_bh->b_data + off;
604         }
605         /* Need to add PAD tag */
606         tl = (struct ext4_fc_tl *)(sbi->s_fc_bh->b_data + off);
607         tl->fc_tag = cpu_to_le16(EXT4_FC_TAG_PAD);
608         pad_len = bsize - off - 1 - sizeof(struct ext4_fc_tl);
609         tl->fc_len = cpu_to_le16(pad_len);
610         if (crc)
611                 *crc = ext4_chksum(sbi, *crc, tl, sizeof(*tl));
612         if (pad_len > 0)
613                 ext4_fc_memzero(sb, tl + 1, pad_len, crc);
614         ext4_fc_submit_bh(sb);
615
616         ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh);
617         if (ret)
618                 return NULL;
619         sbi->s_fc_bh = bh;
620         sbi->s_fc_bytes = (sbi->s_fc_bytes / bsize + 1) * bsize + len;
621         return sbi->s_fc_bh->b_data;
622 }
623
624 /* memcpy to fc reserved space and update CRC */
625 static void *ext4_fc_memcpy(struct super_block *sb, void *dst, const void *src,
626                                 int len, u32 *crc)
627 {
628         if (crc)
629                 *crc = ext4_chksum(EXT4_SB(sb), *crc, src, len);
630         return memcpy(dst, src, len);
631 }
632
633 /*
634  * Complete a fast commit by writing tail tag.
635  *
636  * Writing tail tag marks the end of a fast commit. In order to guarantee
637  * atomicity, after writing tail tag, even if there's space remaining
638  * in the block, next commit shouldn't use it. That's why tail tag
639  * has the length as that of the remaining space on the block.
640  */
641 static int ext4_fc_write_tail(struct super_block *sb, u32 crc)
642 {
643         struct ext4_sb_info *sbi = EXT4_SB(sb);
644         struct ext4_fc_tl tl;
645         struct ext4_fc_tail tail;
646         int off, bsize = sbi->s_journal->j_blocksize;
647         u8 *dst;
648
649         /*
650          * ext4_fc_reserve_space takes care of allocating an extra block if
651          * there's no enough space on this block for accommodating this tail.
652          */
653         dst = ext4_fc_reserve_space(sb, sizeof(tl) + sizeof(tail), &crc);
654         if (!dst)
655                 return -ENOSPC;
656
657         off = sbi->s_fc_bytes % bsize;
658
659         tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_TAIL);
660         tl.fc_len = cpu_to_le16(bsize - off - 1 + sizeof(struct ext4_fc_tail));
661         sbi->s_fc_bytes = round_up(sbi->s_fc_bytes, bsize);
662
663         ext4_fc_memcpy(sb, dst, &tl, sizeof(tl), &crc);
664         dst += sizeof(tl);
665         tail.fc_tid = cpu_to_le32(sbi->s_journal->j_running_transaction->t_tid);
666         ext4_fc_memcpy(sb, dst, &tail.fc_tid, sizeof(tail.fc_tid), &crc);
667         dst += sizeof(tail.fc_tid);
668         tail.fc_crc = cpu_to_le32(crc);
669         ext4_fc_memcpy(sb, dst, &tail.fc_crc, sizeof(tail.fc_crc), NULL);
670
671         ext4_fc_submit_bh(sb);
672
673         return 0;
674 }
675
676 /*
677  * Adds tag, length, value and updates CRC. Returns true if tlv was added.
678  * Returns false if there's not enough space.
679  */
680 static bool ext4_fc_add_tlv(struct super_block *sb, u16 tag, u16 len, u8 *val,
681                            u32 *crc)
682 {
683         struct ext4_fc_tl tl;
684         u8 *dst;
685
686         dst = ext4_fc_reserve_space(sb, sizeof(tl) + len, crc);
687         if (!dst)
688                 return false;
689
690         tl.fc_tag = cpu_to_le16(tag);
691         tl.fc_len = cpu_to_le16(len);
692
693         ext4_fc_memcpy(sb, dst, &tl, sizeof(tl), crc);
694         ext4_fc_memcpy(sb, dst + sizeof(tl), val, len, crc);
695
696         return true;
697 }
698
699 /* Same as above, but adds dentry tlv. */
700 static  bool ext4_fc_add_dentry_tlv(struct super_block *sb, u16 tag,
701                                         int parent_ino, int ino, int dlen,
702                                         const unsigned char *dname,
703                                         u32 *crc)
704 {
705         struct ext4_fc_dentry_info fcd;
706         struct ext4_fc_tl tl;
707         u8 *dst = ext4_fc_reserve_space(sb, sizeof(tl) + sizeof(fcd) + dlen,
708                                         crc);
709
710         if (!dst)
711                 return false;
712
713         fcd.fc_parent_ino = cpu_to_le32(parent_ino);
714         fcd.fc_ino = cpu_to_le32(ino);
715         tl.fc_tag = cpu_to_le16(tag);
716         tl.fc_len = cpu_to_le16(sizeof(fcd) + dlen);
717         ext4_fc_memcpy(sb, dst, &tl, sizeof(tl), crc);
718         dst += sizeof(tl);
719         ext4_fc_memcpy(sb, dst, &fcd, sizeof(fcd), crc);
720         dst += sizeof(fcd);
721         ext4_fc_memcpy(sb, dst, dname, dlen, crc);
722         dst += dlen;
723
724         return true;
725 }
726
727 /*
728  * Writes inode in the fast commit space under TLV with tag @tag.
729  * Returns 0 on success, error on failure.
730  */
731 static int ext4_fc_write_inode(struct inode *inode, u32 *crc)
732 {
733         struct ext4_inode_info *ei = EXT4_I(inode);
734         int inode_len = EXT4_GOOD_OLD_INODE_SIZE;
735         int ret;
736         struct ext4_iloc iloc;
737         struct ext4_fc_inode fc_inode;
738         struct ext4_fc_tl tl;
739         u8 *dst;
740
741         ret = ext4_get_inode_loc(inode, &iloc);
742         if (ret)
743                 return ret;
744
745         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE)
746                 inode_len += ei->i_extra_isize;
747
748         fc_inode.fc_ino = cpu_to_le32(inode->i_ino);
749         tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_INODE);
750         tl.fc_len = cpu_to_le16(inode_len + sizeof(fc_inode.fc_ino));
751
752         dst = ext4_fc_reserve_space(inode->i_sb,
753                         sizeof(tl) + inode_len + sizeof(fc_inode.fc_ino), crc);
754         if (!dst)
755                 return -ECANCELED;
756
757         if (!ext4_fc_memcpy(inode->i_sb, dst, &tl, sizeof(tl), crc))
758                 return -ECANCELED;
759         dst += sizeof(tl);
760         if (!ext4_fc_memcpy(inode->i_sb, dst, &fc_inode, sizeof(fc_inode), crc))
761                 return -ECANCELED;
762         dst += sizeof(fc_inode);
763         if (!ext4_fc_memcpy(inode->i_sb, dst, (u8 *)ext4_raw_inode(&iloc),
764                                         inode_len, crc))
765                 return -ECANCELED;
766
767         return 0;
768 }
769
770 /*
771  * Writes updated data ranges for the inode in question. Updates CRC.
772  * Returns 0 on success, error otherwise.
773  */
774 static int ext4_fc_write_inode_data(struct inode *inode, u32 *crc)
775 {
776         ext4_lblk_t old_blk_size, cur_lblk_off, new_blk_size;
777         struct ext4_inode_info *ei = EXT4_I(inode);
778         struct ext4_map_blocks map;
779         struct ext4_fc_add_range fc_ext;
780         struct ext4_fc_del_range lrange;
781         struct ext4_extent *ex;
782         int ret;
783
784         mutex_lock(&ei->i_fc_lock);
785         if (ei->i_fc_lblk_len == 0) {
786                 mutex_unlock(&ei->i_fc_lock);
787                 return 0;
788         }
789         old_blk_size = ei->i_fc_lblk_start;
790         new_blk_size = ei->i_fc_lblk_start + ei->i_fc_lblk_len - 1;
791         ei->i_fc_lblk_len = 0;
792         mutex_unlock(&ei->i_fc_lock);
793
794         cur_lblk_off = old_blk_size;
795         jbd_debug(1, "%s: will try writing %d to %d for inode %ld\n",
796                   __func__, cur_lblk_off, new_blk_size, inode->i_ino);
797
798         while (cur_lblk_off <= new_blk_size) {
799                 map.m_lblk = cur_lblk_off;
800                 map.m_len = new_blk_size - cur_lblk_off + 1;
801                 ret = ext4_map_blocks(NULL, inode, &map, 0);
802                 if (ret < 0)
803                         return -ECANCELED;
804
805                 if (map.m_len == 0) {
806                         cur_lblk_off++;
807                         continue;
808                 }
809
810                 if (ret == 0) {
811                         lrange.fc_ino = cpu_to_le32(inode->i_ino);
812                         lrange.fc_lblk = cpu_to_le32(map.m_lblk);
813                         lrange.fc_len = cpu_to_le32(map.m_len);
814                         if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_DEL_RANGE,
815                                             sizeof(lrange), (u8 *)&lrange, crc))
816                                 return -ENOSPC;
817                 } else {
818                         fc_ext.fc_ino = cpu_to_le32(inode->i_ino);
819                         ex = (struct ext4_extent *)&fc_ext.fc_ex;
820                         ex->ee_block = cpu_to_le32(map.m_lblk);
821                         ex->ee_len = cpu_to_le16(map.m_len);
822                         ext4_ext_store_pblock(ex, map.m_pblk);
823                         if (map.m_flags & EXT4_MAP_UNWRITTEN)
824                                 ext4_ext_mark_unwritten(ex);
825                         else
826                                 ext4_ext_mark_initialized(ex);
827                         if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_ADD_RANGE,
828                                             sizeof(fc_ext), (u8 *)&fc_ext, crc))
829                                 return -ENOSPC;
830                 }
831
832                 cur_lblk_off += map.m_len;
833         }
834
835         return 0;
836 }
837
838
839 /* Submit data for all the fast commit inodes */
840 static int ext4_fc_submit_inode_data_all(journal_t *journal)
841 {
842         struct super_block *sb = (struct super_block *)(journal->j_private);
843         struct ext4_sb_info *sbi = EXT4_SB(sb);
844         struct ext4_inode_info *ei;
845         struct list_head *pos;
846         int ret = 0;
847
848         spin_lock(&sbi->s_fc_lock);
849         sbi->s_mount_state |= EXT4_FC_COMMITTING;
850         list_for_each(pos, &sbi->s_fc_q[FC_Q_MAIN]) {
851                 ei = list_entry(pos, struct ext4_inode_info, i_fc_list);
852                 ext4_set_inode_state(&ei->vfs_inode, EXT4_STATE_FC_COMMITTING);
853                 while (atomic_read(&ei->i_fc_updates)) {
854                         DEFINE_WAIT(wait);
855
856                         prepare_to_wait(&ei->i_fc_wait, &wait,
857                                                 TASK_UNINTERRUPTIBLE);
858                         if (atomic_read(&ei->i_fc_updates)) {
859                                 spin_unlock(&sbi->s_fc_lock);
860                                 schedule();
861                                 spin_lock(&sbi->s_fc_lock);
862                         }
863                         finish_wait(&ei->i_fc_wait, &wait);
864                 }
865                 spin_unlock(&sbi->s_fc_lock);
866                 ret = jbd2_submit_inode_data(ei->jinode);
867                 if (ret)
868                         return ret;
869                 spin_lock(&sbi->s_fc_lock);
870         }
871         spin_unlock(&sbi->s_fc_lock);
872
873         return ret;
874 }
875
876 /* Wait for completion of data for all the fast commit inodes */
877 static int ext4_fc_wait_inode_data_all(journal_t *journal)
878 {
879         struct super_block *sb = (struct super_block *)(journal->j_private);
880         struct ext4_sb_info *sbi = EXT4_SB(sb);
881         struct ext4_inode_info *pos, *n;
882         int ret = 0;
883
884         spin_lock(&sbi->s_fc_lock);
885         list_for_each_entry_safe(pos, n, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
886                 if (!ext4_test_inode_state(&pos->vfs_inode,
887                                            EXT4_STATE_FC_COMMITTING))
888                         continue;
889                 spin_unlock(&sbi->s_fc_lock);
890
891                 ret = jbd2_wait_inode_data(journal, pos->jinode);
892                 if (ret)
893                         return ret;
894                 spin_lock(&sbi->s_fc_lock);
895         }
896         spin_unlock(&sbi->s_fc_lock);
897
898         return 0;
899 }
900
901 /* Commit all the directory entry updates */
902 static int ext4_fc_commit_dentry_updates(journal_t *journal, u32 *crc)
903 {
904         struct super_block *sb = (struct super_block *)(journal->j_private);
905         struct ext4_sb_info *sbi = EXT4_SB(sb);
906         struct ext4_fc_dentry_update *fc_dentry;
907         struct inode *inode;
908         struct list_head *pos, *n, *fcd_pos, *fcd_n;
909         struct ext4_inode_info *ei;
910         int ret;
911
912         if (list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN]))
913                 return 0;
914         list_for_each_safe(fcd_pos, fcd_n, &sbi->s_fc_dentry_q[FC_Q_MAIN]) {
915                 fc_dentry = list_entry(fcd_pos, struct ext4_fc_dentry_update,
916                                         fcd_list);
917                 if (fc_dentry->fcd_op != EXT4_FC_TAG_CREAT) {
918                         spin_unlock(&sbi->s_fc_lock);
919                         if (!ext4_fc_add_dentry_tlv(
920                                 sb, fc_dentry->fcd_op,
921                                 fc_dentry->fcd_parent, fc_dentry->fcd_ino,
922                                 fc_dentry->fcd_name.len,
923                                 fc_dentry->fcd_name.name, crc)) {
924                                 ret = -ENOSPC;
925                                 goto lock_and_exit;
926                         }
927                         spin_lock(&sbi->s_fc_lock);
928                         continue;
929                 }
930
931                 inode = NULL;
932                 list_for_each_safe(pos, n, &sbi->s_fc_q[FC_Q_MAIN]) {
933                         ei = list_entry(pos, struct ext4_inode_info, i_fc_list);
934                         if (ei->vfs_inode.i_ino == fc_dentry->fcd_ino) {
935                                 inode = &ei->vfs_inode;
936                                 break;
937                         }
938                 }
939                 /*
940                  * If we don't find inode in our list, then it was deleted,
941                  * in which case, we don't need to record it's create tag.
942                  */
943                 if (!inode)
944                         continue;
945                 spin_unlock(&sbi->s_fc_lock);
946
947                 /*
948                  * We first write the inode and then the create dirent. This
949                  * allows the recovery code to create an unnamed inode first
950                  * and then link it to a directory entry. This allows us
951                  * to use namei.c routines almost as is and simplifies
952                  * the recovery code.
953                  */
954                 ret = ext4_fc_write_inode(inode, crc);
955                 if (ret)
956                         goto lock_and_exit;
957
958                 ret = ext4_fc_write_inode_data(inode, crc);
959                 if (ret)
960                         goto lock_and_exit;
961
962                 if (!ext4_fc_add_dentry_tlv(
963                         sb, fc_dentry->fcd_op,
964                         fc_dentry->fcd_parent, fc_dentry->fcd_ino,
965                         fc_dentry->fcd_name.len,
966                         fc_dentry->fcd_name.name, crc)) {
967                         spin_lock(&sbi->s_fc_lock);
968                         ret = -ENOSPC;
969                         goto lock_and_exit;
970                 }
971
972                 spin_lock(&sbi->s_fc_lock);
973         }
974         return 0;
975 lock_and_exit:
976         spin_lock(&sbi->s_fc_lock);
977         return ret;
978 }
979
980 static int ext4_fc_perform_commit(journal_t *journal)
981 {
982         struct super_block *sb = (struct super_block *)(journal->j_private);
983         struct ext4_sb_info *sbi = EXT4_SB(sb);
984         struct ext4_inode_info *iter;
985         struct ext4_fc_head head;
986         struct list_head *pos;
987         struct inode *inode;
988         struct blk_plug plug;
989         int ret = 0;
990         u32 crc = 0;
991
992         ret = ext4_fc_submit_inode_data_all(journal);
993         if (ret)
994                 return ret;
995
996         ret = ext4_fc_wait_inode_data_all(journal);
997         if (ret)
998                 return ret;
999
1000         blk_start_plug(&plug);
1001         if (sbi->s_fc_bytes == 0) {
1002                 /*
1003                  * Add a head tag only if this is the first fast commit
1004                  * in this TID.
1005                  */
1006                 head.fc_features = cpu_to_le32(EXT4_FC_SUPPORTED_FEATURES);
1007                 head.fc_tid = cpu_to_le32(
1008                         sbi->s_journal->j_running_transaction->t_tid);
1009                 if (!ext4_fc_add_tlv(sb, EXT4_FC_TAG_HEAD, sizeof(head),
1010                         (u8 *)&head, &crc))
1011                         goto out;
1012         }
1013
1014         spin_lock(&sbi->s_fc_lock);
1015         ret = ext4_fc_commit_dentry_updates(journal, &crc);
1016         if (ret) {
1017                 spin_unlock(&sbi->s_fc_lock);
1018                 goto out;
1019         }
1020
1021         list_for_each(pos, &sbi->s_fc_q[FC_Q_MAIN]) {
1022                 iter = list_entry(pos, struct ext4_inode_info, i_fc_list);
1023                 inode = &iter->vfs_inode;
1024                 if (!ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING))
1025                         continue;
1026
1027                 spin_unlock(&sbi->s_fc_lock);
1028                 ret = ext4_fc_write_inode_data(inode, &crc);
1029                 if (ret)
1030                         goto out;
1031                 ret = ext4_fc_write_inode(inode, &crc);
1032                 if (ret)
1033                         goto out;
1034                 spin_lock(&sbi->s_fc_lock);
1035                 EXT4_I(inode)->i_fc_committed_subtid =
1036                         atomic_read(&sbi->s_fc_subtid);
1037         }
1038         spin_unlock(&sbi->s_fc_lock);
1039
1040         ret = ext4_fc_write_tail(sb, crc);
1041
1042 out:
1043         blk_finish_plug(&plug);
1044         return ret;
1045 }
1046
1047 /*
1048  * The main commit entry point. Performs a fast commit for transaction
1049  * commit_tid if needed. If it's not possible to perform a fast commit
1050  * due to various reasons, we fall back to full commit. Returns 0
1051  * on success, error otherwise.
1052  */
1053 int ext4_fc_commit(journal_t *journal, tid_t commit_tid)
1054 {
1055         struct super_block *sb = (struct super_block *)(journal->j_private);
1056         struct ext4_sb_info *sbi = EXT4_SB(sb);
1057         int nblks = 0, ret, bsize = journal->j_blocksize;
1058         int subtid = atomic_read(&sbi->s_fc_subtid);
1059         int reason = EXT4_FC_REASON_OK, fc_bufs_before = 0;
1060         ktime_t start_time, commit_time;
1061
1062         trace_ext4_fc_commit_start(sb);
1063
1064         start_time = ktime_get();
1065
1066         if (!test_opt2(sb, JOURNAL_FAST_COMMIT) ||
1067                 (ext4_fc_is_ineligible(sb))) {
1068                 reason = EXT4_FC_REASON_INELIGIBLE;
1069                 goto out;
1070         }
1071
1072 restart_fc:
1073         ret = jbd2_fc_begin_commit(journal, commit_tid);
1074         if (ret == -EALREADY) {
1075                 /* There was an ongoing commit, check if we need to restart */
1076                 if (atomic_read(&sbi->s_fc_subtid) <= subtid &&
1077                         commit_tid > journal->j_commit_sequence)
1078                         goto restart_fc;
1079                 reason = EXT4_FC_REASON_ALREADY_COMMITTED;
1080                 goto out;
1081         } else if (ret) {
1082                 sbi->s_fc_stats.fc_ineligible_reason_count[EXT4_FC_COMMIT_FAILED]++;
1083                 reason = EXT4_FC_REASON_FC_START_FAILED;
1084                 goto out;
1085         }
1086
1087         fc_bufs_before = (sbi->s_fc_bytes + bsize - 1) / bsize;
1088         ret = ext4_fc_perform_commit(journal);
1089         if (ret < 0) {
1090                 sbi->s_fc_stats.fc_ineligible_reason_count[EXT4_FC_COMMIT_FAILED]++;
1091                 reason = EXT4_FC_REASON_FC_FAILED;
1092                 goto out;
1093         }
1094         nblks = (sbi->s_fc_bytes + bsize - 1) / bsize - fc_bufs_before;
1095         ret = jbd2_fc_wait_bufs(journal, nblks);
1096         if (ret < 0) {
1097                 sbi->s_fc_stats.fc_ineligible_reason_count[EXT4_FC_COMMIT_FAILED]++;
1098                 reason = EXT4_FC_REASON_FC_FAILED;
1099                 goto out;
1100         }
1101         atomic_inc(&sbi->s_fc_subtid);
1102         jbd2_fc_end_commit(journal);
1103 out:
1104         /* Has any ineligible update happened since we started? */
1105         if (reason == EXT4_FC_REASON_OK && ext4_fc_is_ineligible(sb)) {
1106                 sbi->s_fc_stats.fc_ineligible_reason_count[EXT4_FC_COMMIT_FAILED]++;
1107                 reason = EXT4_FC_REASON_INELIGIBLE;
1108         }
1109
1110         spin_lock(&sbi->s_fc_lock);
1111         if (reason != EXT4_FC_REASON_OK &&
1112                 reason != EXT4_FC_REASON_ALREADY_COMMITTED) {
1113                 sbi->s_fc_stats.fc_ineligible_commits++;
1114         } else {
1115                 sbi->s_fc_stats.fc_num_commits++;
1116                 sbi->s_fc_stats.fc_numblks += nblks;
1117         }
1118         spin_unlock(&sbi->s_fc_lock);
1119         nblks = (reason == EXT4_FC_REASON_OK) ? nblks : 0;
1120         trace_ext4_fc_commit_stop(sb, nblks, reason);
1121         commit_time = ktime_to_ns(ktime_sub(ktime_get(), start_time));
1122         /*
1123          * weight the commit time higher than the average time so we don't
1124          * react too strongly to vast changes in the commit time
1125          */
1126         if (likely(sbi->s_fc_avg_commit_time))
1127                 sbi->s_fc_avg_commit_time = (commit_time +
1128                                 sbi->s_fc_avg_commit_time * 3) / 4;
1129         else
1130                 sbi->s_fc_avg_commit_time = commit_time;
1131         jbd_debug(1,
1132                 "Fast commit ended with blks = %d, reason = %d, subtid - %d",
1133                 nblks, reason, subtid);
1134         if (reason == EXT4_FC_REASON_FC_FAILED)
1135                 return jbd2_fc_end_commit_fallback(journal, commit_tid);
1136         if (reason == EXT4_FC_REASON_FC_START_FAILED ||
1137                 reason == EXT4_FC_REASON_INELIGIBLE)
1138                 return jbd2_complete_transaction(journal, commit_tid);
1139         return 0;
1140 }
1141
1142 /*
1143  * Fast commit cleanup routine. This is called after every fast commit and
1144  * full commit. full is true if we are called after a full commit.
1145  */
1146 static void ext4_fc_cleanup(journal_t *journal, int full)
1147 {
1148         struct super_block *sb = journal->j_private;
1149         struct ext4_sb_info *sbi = EXT4_SB(sb);
1150         struct ext4_inode_info *iter;
1151         struct ext4_fc_dentry_update *fc_dentry;
1152         struct list_head *pos, *n;
1153
1154         if (full && sbi->s_fc_bh)
1155                 sbi->s_fc_bh = NULL;
1156
1157         jbd2_fc_release_bufs(journal);
1158
1159         spin_lock(&sbi->s_fc_lock);
1160         list_for_each_safe(pos, n, &sbi->s_fc_q[FC_Q_MAIN]) {
1161                 iter = list_entry(pos, struct ext4_inode_info, i_fc_list);
1162                 list_del_init(&iter->i_fc_list);
1163                 ext4_clear_inode_state(&iter->vfs_inode,
1164                                        EXT4_STATE_FC_COMMITTING);
1165                 ext4_fc_reset_inode(&iter->vfs_inode);
1166                 /* Make sure EXT4_STATE_FC_COMMITTING bit is clear */
1167                 smp_mb();
1168 #if (BITS_PER_LONG < 64)
1169                 wake_up_bit(&iter->i_state_flags, EXT4_STATE_FC_COMMITTING);
1170 #else
1171                 wake_up_bit(&iter->i_flags, EXT4_STATE_FC_COMMITTING);
1172 #endif
1173         }
1174
1175         while (!list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN])) {
1176                 fc_dentry = list_first_entry(&sbi->s_fc_dentry_q[FC_Q_MAIN],
1177                                              struct ext4_fc_dentry_update,
1178                                              fcd_list);
1179                 list_del_init(&fc_dentry->fcd_list);
1180                 spin_unlock(&sbi->s_fc_lock);
1181
1182                 if (fc_dentry->fcd_name.name &&
1183                         fc_dentry->fcd_name.len > DNAME_INLINE_LEN)
1184                         kfree(fc_dentry->fcd_name.name);
1185                 kmem_cache_free(ext4_fc_dentry_cachep, fc_dentry);
1186                 spin_lock(&sbi->s_fc_lock);
1187         }
1188
1189         list_splice_init(&sbi->s_fc_dentry_q[FC_Q_STAGING],
1190                                 &sbi->s_fc_dentry_q[FC_Q_MAIN]);
1191         list_splice_init(&sbi->s_fc_q[FC_Q_STAGING],
1192                                 &sbi->s_fc_q[FC_Q_STAGING]);
1193
1194         sbi->s_mount_state &= ~EXT4_FC_COMMITTING;
1195         sbi->s_mount_state &= ~EXT4_FC_INELIGIBLE;
1196
1197         if (full)
1198                 sbi->s_fc_bytes = 0;
1199         spin_unlock(&sbi->s_fc_lock);
1200         trace_ext4_fc_stats(sb);
1201 }
1202
1203 /* Ext4 Replay Path Routines */
1204
1205 /* Get length of a particular tlv */
1206 static inline int ext4_fc_tag_len(struct ext4_fc_tl *tl)
1207 {
1208         return le16_to_cpu(tl->fc_len);
1209 }
1210
1211 /* Get a pointer to "value" of a tlv */
1212 static inline u8 *ext4_fc_tag_val(struct ext4_fc_tl *tl)
1213 {
1214         return (u8 *)tl + sizeof(*tl);
1215 }
1216
1217 /* Helper struct for dentry replay routines */
1218 struct dentry_info_args {
1219         int parent_ino, dname_len, ino, inode_len;
1220         char *dname;
1221 };
1222
1223 static inline void tl_to_darg(struct dentry_info_args *darg,
1224                                 struct  ext4_fc_tl *tl)
1225 {
1226         struct ext4_fc_dentry_info *fcd;
1227
1228         fcd = (struct ext4_fc_dentry_info *)ext4_fc_tag_val(tl);
1229
1230         darg->parent_ino = le32_to_cpu(fcd->fc_parent_ino);
1231         darg->ino = le32_to_cpu(fcd->fc_ino);
1232         darg->dname = fcd->fc_dname;
1233         darg->dname_len = ext4_fc_tag_len(tl) -
1234                         sizeof(struct ext4_fc_dentry_info);
1235 }
1236
1237 /* Unlink replay function */
1238 static int ext4_fc_replay_unlink(struct super_block *sb, struct ext4_fc_tl *tl)
1239 {
1240         struct inode *inode, *old_parent;
1241         struct qstr entry;
1242         struct dentry_info_args darg;
1243         int ret = 0;
1244
1245         tl_to_darg(&darg, tl);
1246
1247         trace_ext4_fc_replay(sb, EXT4_FC_TAG_UNLINK, darg.ino,
1248                         darg.parent_ino, darg.dname_len);
1249
1250         entry.name = darg.dname;
1251         entry.len = darg.dname_len;
1252         inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1253
1254         if (IS_ERR_OR_NULL(inode)) {
1255                 jbd_debug(1, "Inode %d not found", darg.ino);
1256                 return 0;
1257         }
1258
1259         old_parent = ext4_iget(sb, darg.parent_ino,
1260                                 EXT4_IGET_NORMAL);
1261         if (IS_ERR_OR_NULL(old_parent)) {
1262                 jbd_debug(1, "Dir with inode  %d not found", darg.parent_ino);
1263                 iput(inode);
1264                 return 0;
1265         }
1266
1267         ret = __ext4_unlink(old_parent, &entry, inode);
1268         /* -ENOENT ok coz it might not exist anymore. */
1269         if (ret == -ENOENT)
1270                 ret = 0;
1271         iput(old_parent);
1272         iput(inode);
1273         return ret;
1274 }
1275
1276 static int ext4_fc_replay_link_internal(struct super_block *sb,
1277                                 struct dentry_info_args *darg,
1278                                 struct inode *inode)
1279 {
1280         struct inode *dir = NULL;
1281         struct dentry *dentry_dir = NULL, *dentry_inode = NULL;
1282         struct qstr qstr_dname = QSTR_INIT(darg->dname, darg->dname_len);
1283         int ret = 0;
1284
1285         dir = ext4_iget(sb, darg->parent_ino, EXT4_IGET_NORMAL);
1286         if (IS_ERR(dir)) {
1287                 jbd_debug(1, "Dir with inode %d not found.", darg->parent_ino);
1288                 dir = NULL;
1289                 goto out;
1290         }
1291
1292         dentry_dir = d_obtain_alias(dir);
1293         if (IS_ERR(dentry_dir)) {
1294                 jbd_debug(1, "Failed to obtain dentry");
1295                 dentry_dir = NULL;
1296                 goto out;
1297         }
1298
1299         dentry_inode = d_alloc(dentry_dir, &qstr_dname);
1300         if (!dentry_inode) {
1301                 jbd_debug(1, "Inode dentry not created.");
1302                 ret = -ENOMEM;
1303                 goto out;
1304         }
1305
1306         ret = __ext4_link(dir, inode, dentry_inode);
1307         /*
1308          * It's possible that link already existed since data blocks
1309          * for the dir in question got persisted before we crashed OR
1310          * we replayed this tag and crashed before the entire replay
1311          * could complete.
1312          */
1313         if (ret && ret != -EEXIST) {
1314                 jbd_debug(1, "Failed to link\n");
1315                 goto out;
1316         }
1317
1318         ret = 0;
1319 out:
1320         if (dentry_dir) {
1321                 d_drop(dentry_dir);
1322                 dput(dentry_dir);
1323         } else if (dir) {
1324                 iput(dir);
1325         }
1326         if (dentry_inode) {
1327                 d_drop(dentry_inode);
1328                 dput(dentry_inode);
1329         }
1330
1331         return ret;
1332 }
1333
1334 /* Link replay function */
1335 static int ext4_fc_replay_link(struct super_block *sb, struct ext4_fc_tl *tl)
1336 {
1337         struct inode *inode;
1338         struct dentry_info_args darg;
1339         int ret = 0;
1340
1341         tl_to_darg(&darg, tl);
1342         trace_ext4_fc_replay(sb, EXT4_FC_TAG_LINK, darg.ino,
1343                         darg.parent_ino, darg.dname_len);
1344
1345         inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1346         if (IS_ERR_OR_NULL(inode)) {
1347                 jbd_debug(1, "Inode not found.");
1348                 return 0;
1349         }
1350
1351         ret = ext4_fc_replay_link_internal(sb, &darg, inode);
1352         iput(inode);
1353         return ret;
1354 }
1355
1356 /*
1357  * Record all the modified inodes during replay. We use this later to setup
1358  * block bitmaps correctly.
1359  */
1360 static int ext4_fc_record_modified_inode(struct super_block *sb, int ino)
1361 {
1362         struct ext4_fc_replay_state *state;
1363         int i;
1364
1365         state = &EXT4_SB(sb)->s_fc_replay_state;
1366         for (i = 0; i < state->fc_modified_inodes_used; i++)
1367                 if (state->fc_modified_inodes[i] == ino)
1368                         return 0;
1369         if (state->fc_modified_inodes_used == state->fc_modified_inodes_size) {
1370                 state->fc_modified_inodes_size +=
1371                         EXT4_FC_REPLAY_REALLOC_INCREMENT;
1372                 state->fc_modified_inodes = krealloc(
1373                                         state->fc_modified_inodes, sizeof(int) *
1374                                         state->fc_modified_inodes_size,
1375                                         GFP_KERNEL);
1376                 if (!state->fc_modified_inodes)
1377                         return -ENOMEM;
1378         }
1379         state->fc_modified_inodes[state->fc_modified_inodes_used++] = ino;
1380         return 0;
1381 }
1382
1383 /*
1384  * Inode replay function
1385  */
1386 static int ext4_fc_replay_inode(struct super_block *sb, struct ext4_fc_tl *tl)
1387 {
1388         struct ext4_fc_inode *fc_inode;
1389         struct ext4_inode *raw_inode;
1390         struct ext4_inode *raw_fc_inode;
1391         struct inode *inode = NULL;
1392         struct ext4_iloc iloc;
1393         int inode_len, ino, ret, tag = le16_to_cpu(tl->fc_tag);
1394         struct ext4_extent_header *eh;
1395
1396         fc_inode = (struct ext4_fc_inode *)ext4_fc_tag_val(tl);
1397
1398         ino = le32_to_cpu(fc_inode->fc_ino);
1399         trace_ext4_fc_replay(sb, tag, ino, 0, 0);
1400
1401         inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
1402         if (!IS_ERR_OR_NULL(inode)) {
1403                 ext4_ext_clear_bb(inode);
1404                 iput(inode);
1405         }
1406
1407         ext4_fc_record_modified_inode(sb, ino);
1408
1409         raw_fc_inode = (struct ext4_inode *)fc_inode->fc_raw_inode;
1410         ret = ext4_get_fc_inode_loc(sb, ino, &iloc);
1411         if (ret)
1412                 goto out;
1413
1414         inode_len = ext4_fc_tag_len(tl) - sizeof(struct ext4_fc_inode);
1415         raw_inode = ext4_raw_inode(&iloc);
1416
1417         memcpy(raw_inode, raw_fc_inode, offsetof(struct ext4_inode, i_block));
1418         memcpy(&raw_inode->i_generation, &raw_fc_inode->i_generation,
1419                 inode_len - offsetof(struct ext4_inode, i_generation));
1420         if (le32_to_cpu(raw_inode->i_flags) & EXT4_EXTENTS_FL) {
1421                 eh = (struct ext4_extent_header *)(&raw_inode->i_block[0]);
1422                 if (eh->eh_magic != EXT4_EXT_MAGIC) {
1423                         memset(eh, 0, sizeof(*eh));
1424                         eh->eh_magic = EXT4_EXT_MAGIC;
1425                         eh->eh_max = cpu_to_le16(
1426                                 (sizeof(raw_inode->i_block) -
1427                                  sizeof(struct ext4_extent_header))
1428                                  / sizeof(struct ext4_extent));
1429                 }
1430         } else if (le32_to_cpu(raw_inode->i_flags) & EXT4_INLINE_DATA_FL) {
1431                 memcpy(raw_inode->i_block, raw_fc_inode->i_block,
1432                         sizeof(raw_inode->i_block));
1433         }
1434
1435         /* Immediately update the inode on disk. */
1436         ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh);
1437         if (ret)
1438                 goto out;
1439         ret = sync_dirty_buffer(iloc.bh);
1440         if (ret)
1441                 goto out;
1442         ret = ext4_mark_inode_used(sb, ino);
1443         if (ret)
1444                 goto out;
1445
1446         /* Given that we just wrote the inode on disk, this SHOULD succeed. */
1447         inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
1448         if (IS_ERR_OR_NULL(inode)) {
1449                 jbd_debug(1, "Inode not found.");
1450                 return -EFSCORRUPTED;
1451         }
1452
1453         /*
1454          * Our allocator could have made different decisions than before
1455          * crashing. This should be fixed but until then, we calculate
1456          * the number of blocks the inode.
1457          */
1458         ext4_ext_replay_set_iblocks(inode);
1459
1460         inode->i_generation = le32_to_cpu(ext4_raw_inode(&iloc)->i_generation);
1461         ext4_reset_inode_seed(inode);
1462
1463         ext4_inode_csum_set(inode, ext4_raw_inode(&iloc), EXT4_I(inode));
1464         ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh);
1465         sync_dirty_buffer(iloc.bh);
1466         brelse(iloc.bh);
1467 out:
1468         iput(inode);
1469         if (!ret)
1470                 blkdev_issue_flush(sb->s_bdev, GFP_KERNEL);
1471
1472         return 0;
1473 }
1474
1475 /*
1476  * Dentry create replay function.
1477  *
1478  * EXT4_FC_TAG_CREAT is preceded by EXT4_FC_TAG_INODE_FULL. Which means, the
1479  * inode for which we are trying to create a dentry here, should already have
1480  * been replayed before we start here.
1481  */
1482 static int ext4_fc_replay_create(struct super_block *sb, struct ext4_fc_tl *tl)
1483 {
1484         int ret = 0;
1485         struct inode *inode = NULL;
1486         struct inode *dir = NULL;
1487         struct dentry_info_args darg;
1488
1489         tl_to_darg(&darg, tl);
1490
1491         trace_ext4_fc_replay(sb, EXT4_FC_TAG_CREAT, darg.ino,
1492                         darg.parent_ino, darg.dname_len);
1493
1494         /* This takes care of update group descriptor and other metadata */
1495         ret = ext4_mark_inode_used(sb, darg.ino);
1496         if (ret)
1497                 goto out;
1498
1499         inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1500         if (IS_ERR_OR_NULL(inode)) {
1501                 jbd_debug(1, "inode %d not found.", darg.ino);
1502                 inode = NULL;
1503                 ret = -EINVAL;
1504                 goto out;
1505         }
1506
1507         if (S_ISDIR(inode->i_mode)) {
1508                 /*
1509                  * If we are creating a directory, we need to make sure that the
1510                  * dot and dot dot dirents are setup properly.
1511                  */
1512                 dir = ext4_iget(sb, darg.parent_ino, EXT4_IGET_NORMAL);
1513                 if (IS_ERR_OR_NULL(dir)) {
1514                         jbd_debug(1, "Dir %d not found.", darg.ino);
1515                         goto out;
1516                 }
1517                 ret = ext4_init_new_dir(NULL, dir, inode);
1518                 iput(dir);
1519                 if (ret) {
1520                         ret = 0;
1521                         goto out;
1522                 }
1523         }
1524         ret = ext4_fc_replay_link_internal(sb, &darg, inode);
1525         if (ret)
1526                 goto out;
1527         set_nlink(inode, 1);
1528         ext4_mark_inode_dirty(NULL, inode);
1529 out:
1530         if (inode)
1531                 iput(inode);
1532         return ret;
1533 }
1534
1535 /*
1536  * Record physical disk regions which are in use as per fast commit area. Our
1537  * simple replay phase allocator excludes these regions from allocation.
1538  */
1539 static int ext4_fc_record_regions(struct super_block *sb, int ino,
1540                 ext4_lblk_t lblk, ext4_fsblk_t pblk, int len)
1541 {
1542         struct ext4_fc_replay_state *state;
1543         struct ext4_fc_alloc_region *region;
1544
1545         state = &EXT4_SB(sb)->s_fc_replay_state;
1546         if (state->fc_regions_used == state->fc_regions_size) {
1547                 state->fc_regions_size +=
1548                         EXT4_FC_REPLAY_REALLOC_INCREMENT;
1549                 state->fc_regions = krealloc(
1550                                         state->fc_regions,
1551                                         state->fc_regions_size *
1552                                         sizeof(struct ext4_fc_alloc_region),
1553                                         GFP_KERNEL);
1554                 if (!state->fc_regions)
1555                         return -ENOMEM;
1556         }
1557         region = &state->fc_regions[state->fc_regions_used++];
1558         region->ino = ino;
1559         region->lblk = lblk;
1560         region->pblk = pblk;
1561         region->len = len;
1562
1563         return 0;
1564 }
1565
1566 /* Replay add range tag */
1567 static int ext4_fc_replay_add_range(struct super_block *sb,
1568                                 struct ext4_fc_tl *tl)
1569 {
1570         struct ext4_fc_add_range *fc_add_ex;
1571         struct ext4_extent newex, *ex;
1572         struct inode *inode;
1573         ext4_lblk_t start, cur;
1574         int remaining, len;
1575         ext4_fsblk_t start_pblk;
1576         struct ext4_map_blocks map;
1577         struct ext4_ext_path *path = NULL;
1578         int ret;
1579
1580         fc_add_ex = (struct ext4_fc_add_range *)ext4_fc_tag_val(tl);
1581         ex = (struct ext4_extent *)&fc_add_ex->fc_ex;
1582
1583         trace_ext4_fc_replay(sb, EXT4_FC_TAG_ADD_RANGE,
1584                 le32_to_cpu(fc_add_ex->fc_ino), le32_to_cpu(ex->ee_block),
1585                 ext4_ext_get_actual_len(ex));
1586
1587         inode = ext4_iget(sb, le32_to_cpu(fc_add_ex->fc_ino),
1588                                 EXT4_IGET_NORMAL);
1589         if (IS_ERR_OR_NULL(inode)) {
1590                 jbd_debug(1, "Inode not found.");
1591                 return 0;
1592         }
1593
1594         ret = ext4_fc_record_modified_inode(sb, inode->i_ino);
1595
1596         start = le32_to_cpu(ex->ee_block);
1597         start_pblk = ext4_ext_pblock(ex);
1598         len = ext4_ext_get_actual_len(ex);
1599
1600         cur = start;
1601         remaining = len;
1602         jbd_debug(1, "ADD_RANGE, lblk %d, pblk %lld, len %d, unwritten %d, inode %ld\n",
1603                   start, start_pblk, len, ext4_ext_is_unwritten(ex),
1604                   inode->i_ino);
1605
1606         while (remaining > 0) {
1607                 map.m_lblk = cur;
1608                 map.m_len = remaining;
1609                 map.m_pblk = 0;
1610                 ret = ext4_map_blocks(NULL, inode, &map, 0);
1611
1612                 if (ret < 0) {
1613                         iput(inode);
1614                         return 0;
1615                 }
1616
1617                 if (ret == 0) {
1618                         /* Range is not mapped */
1619                         path = ext4_find_extent(inode, cur, NULL, 0);
1620                         if (!path)
1621                                 continue;
1622                         memset(&newex, 0, sizeof(newex));
1623                         newex.ee_block = cpu_to_le32(cur);
1624                         ext4_ext_store_pblock(
1625                                 &newex, start_pblk + cur - start);
1626                         newex.ee_len = cpu_to_le16(map.m_len);
1627                         if (ext4_ext_is_unwritten(ex))
1628                                 ext4_ext_mark_unwritten(&newex);
1629                         down_write(&EXT4_I(inode)->i_data_sem);
1630                         ret = ext4_ext_insert_extent(
1631                                 NULL, inode, &path, &newex, 0);
1632                         up_write((&EXT4_I(inode)->i_data_sem));
1633                         ext4_ext_drop_refs(path);
1634                         kfree(path);
1635                         if (ret) {
1636                                 iput(inode);
1637                                 return 0;
1638                         }
1639                         goto next;
1640                 }
1641
1642                 if (start_pblk + cur - start != map.m_pblk) {
1643                         /*
1644                          * Logical to physical mapping changed. This can happen
1645                          * if this range was removed and then reallocated to
1646                          * map to new physical blocks during a fast commit.
1647                          */
1648                         ret = ext4_ext_replay_update_ex(inode, cur, map.m_len,
1649                                         ext4_ext_is_unwritten(ex),
1650                                         start_pblk + cur - start);
1651                         if (ret) {
1652                                 iput(inode);
1653                                 return 0;
1654                         }
1655                         /*
1656                          * Mark the old blocks as free since they aren't used
1657                          * anymore. We maintain an array of all the modified
1658                          * inodes. In case these blocks are still used at either
1659                          * a different logical range in the same inode or in
1660                          * some different inode, we will mark them as allocated
1661                          * at the end of the FC replay using our array of
1662                          * modified inodes.
1663                          */
1664                         ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, 0);
1665                         goto next;
1666                 }
1667
1668                 /* Range is mapped and needs a state change */
1669                 jbd_debug(1, "Converting from %d to %d %lld",
1670                                 map.m_flags & EXT4_MAP_UNWRITTEN,
1671                         ext4_ext_is_unwritten(ex), map.m_pblk);
1672                 ret = ext4_ext_replay_update_ex(inode, cur, map.m_len,
1673                                         ext4_ext_is_unwritten(ex), map.m_pblk);
1674                 if (ret) {
1675                         iput(inode);
1676                         return 0;
1677                 }
1678                 /*
1679                  * We may have split the extent tree while toggling the state.
1680                  * Try to shrink the extent tree now.
1681                  */
1682                 ext4_ext_replay_shrink_inode(inode, start + len);
1683 next:
1684                 cur += map.m_len;
1685                 remaining -= map.m_len;
1686         }
1687         ext4_ext_replay_shrink_inode(inode, i_size_read(inode) >>
1688                                         sb->s_blocksize_bits);
1689         iput(inode);
1690         return 0;
1691 }
1692
1693 /* Replay DEL_RANGE tag */
1694 static int
1695 ext4_fc_replay_del_range(struct super_block *sb, struct ext4_fc_tl *tl)
1696 {
1697         struct inode *inode;
1698         struct ext4_fc_del_range *lrange;
1699         struct ext4_map_blocks map;
1700         ext4_lblk_t cur, remaining;
1701         int ret;
1702
1703         lrange = (struct ext4_fc_del_range *)ext4_fc_tag_val(tl);
1704         cur = le32_to_cpu(lrange->fc_lblk);
1705         remaining = le32_to_cpu(lrange->fc_len);
1706
1707         trace_ext4_fc_replay(sb, EXT4_FC_TAG_DEL_RANGE,
1708                 le32_to_cpu(lrange->fc_ino), cur, remaining);
1709
1710         inode = ext4_iget(sb, le32_to_cpu(lrange->fc_ino), EXT4_IGET_NORMAL);
1711         if (IS_ERR_OR_NULL(inode)) {
1712                 jbd_debug(1, "Inode %d not found", le32_to_cpu(lrange->fc_ino));
1713                 return 0;
1714         }
1715
1716         ret = ext4_fc_record_modified_inode(sb, inode->i_ino);
1717
1718         jbd_debug(1, "DEL_RANGE, inode %ld, lblk %d, len %d\n",
1719                         inode->i_ino, le32_to_cpu(lrange->fc_lblk),
1720                         le32_to_cpu(lrange->fc_len));
1721         while (remaining > 0) {
1722                 map.m_lblk = cur;
1723                 map.m_len = remaining;
1724
1725                 ret = ext4_map_blocks(NULL, inode, &map, 0);
1726                 if (ret < 0) {
1727                         iput(inode);
1728                         return 0;
1729                 }
1730                 if (ret > 0) {
1731                         remaining -= ret;
1732                         cur += ret;
1733                         ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, 0);
1734                 } else {
1735                         remaining -= map.m_len;
1736                         cur += map.m_len;
1737                 }
1738         }
1739
1740         ret = ext4_punch_hole(inode,
1741                 le32_to_cpu(lrange->fc_lblk) << sb->s_blocksize_bits,
1742                 le32_to_cpu(lrange->fc_len) <<  sb->s_blocksize_bits);
1743         if (ret)
1744                 jbd_debug(1, "ext4_punch_hole returned %d", ret);
1745         ext4_ext_replay_shrink_inode(inode,
1746                 i_size_read(inode) >> sb->s_blocksize_bits);
1747         ext4_mark_inode_dirty(NULL, inode);
1748         iput(inode);
1749
1750         return 0;
1751 }
1752
1753 static inline const char *tag2str(u16 tag)
1754 {
1755         switch (tag) {
1756         case EXT4_FC_TAG_LINK:
1757                 return "TAG_ADD_ENTRY";
1758         case EXT4_FC_TAG_UNLINK:
1759                 return "TAG_DEL_ENTRY";
1760         case EXT4_FC_TAG_ADD_RANGE:
1761                 return "TAG_ADD_RANGE";
1762         case EXT4_FC_TAG_CREAT:
1763                 return "TAG_CREAT_DENTRY";
1764         case EXT4_FC_TAG_DEL_RANGE:
1765                 return "TAG_DEL_RANGE";
1766         case EXT4_FC_TAG_INODE:
1767                 return "TAG_INODE";
1768         case EXT4_FC_TAG_PAD:
1769                 return "TAG_PAD";
1770         case EXT4_FC_TAG_TAIL:
1771                 return "TAG_TAIL";
1772         case EXT4_FC_TAG_HEAD:
1773                 return "TAG_HEAD";
1774         default:
1775                 return "TAG_ERROR";
1776         }
1777 }
1778
1779 static void ext4_fc_set_bitmaps_and_counters(struct super_block *sb)
1780 {
1781         struct ext4_fc_replay_state *state;
1782         struct inode *inode;
1783         struct ext4_ext_path *path = NULL;
1784         struct ext4_map_blocks map;
1785         int i, ret, j;
1786         ext4_lblk_t cur, end;
1787
1788         state = &EXT4_SB(sb)->s_fc_replay_state;
1789         for (i = 0; i < state->fc_modified_inodes_used; i++) {
1790                 inode = ext4_iget(sb, state->fc_modified_inodes[i],
1791                         EXT4_IGET_NORMAL);
1792                 if (IS_ERR_OR_NULL(inode)) {
1793                         jbd_debug(1, "Inode %d not found.",
1794                                 state->fc_modified_inodes[i]);
1795                         continue;
1796                 }
1797                 cur = 0;
1798                 end = EXT_MAX_BLOCKS;
1799                 while (cur < end) {
1800                         map.m_lblk = cur;
1801                         map.m_len = end - cur;
1802
1803                         ret = ext4_map_blocks(NULL, inode, &map, 0);
1804                         if (ret < 0)
1805                                 break;
1806
1807                         if (ret > 0) {
1808                                 path = ext4_find_extent(inode, map.m_lblk, NULL, 0);
1809                                 if (!IS_ERR_OR_NULL(path)) {
1810                                         for (j = 0; j < path->p_depth; j++)
1811                                                 ext4_mb_mark_bb(inode->i_sb,
1812                                                         path[j].p_block, 1, 1);
1813                                         ext4_ext_drop_refs(path);
1814                                         kfree(path);
1815                                 }
1816                                 cur += ret;
1817                                 ext4_mb_mark_bb(inode->i_sb, map.m_pblk,
1818                                                         map.m_len, 1);
1819                         } else {
1820                                 cur = cur + (map.m_len ? map.m_len : 1);
1821                         }
1822                 }
1823                 iput(inode);
1824         }
1825 }
1826
1827 /*
1828  * Check if block is in excluded regions for block allocation. The simple
1829  * allocator that runs during replay phase is calls this function to see
1830  * if it is okay to use a block.
1831  */
1832 bool ext4_fc_replay_check_excluded(struct super_block *sb, ext4_fsblk_t blk)
1833 {
1834         int i;
1835         struct ext4_fc_replay_state *state;
1836
1837         state = &EXT4_SB(sb)->s_fc_replay_state;
1838         for (i = 0; i < state->fc_regions_valid; i++) {
1839                 if (state->fc_regions[i].ino == 0 ||
1840                         state->fc_regions[i].len == 0)
1841                         continue;
1842                 if (blk >= state->fc_regions[i].pblk &&
1843                     blk < state->fc_regions[i].pblk + state->fc_regions[i].len)
1844                         return true;
1845         }
1846         return false;
1847 }
1848
1849 /* Cleanup function called after replay */
1850 void ext4_fc_replay_cleanup(struct super_block *sb)
1851 {
1852         struct ext4_sb_info *sbi = EXT4_SB(sb);
1853
1854         sbi->s_mount_state &= ~EXT4_FC_REPLAY;
1855         kfree(sbi->s_fc_replay_state.fc_regions);
1856         kfree(sbi->s_fc_replay_state.fc_modified_inodes);
1857 }
1858
1859 /*
1860  * Recovery Scan phase handler
1861  *
1862  * This function is called during the scan phase and is responsible
1863  * for doing following things:
1864  * - Make sure the fast commit area has valid tags for replay
1865  * - Count number of tags that need to be replayed by the replay handler
1866  * - Verify CRC
1867  * - Create a list of excluded blocks for allocation during replay phase
1868  *
1869  * This function returns JBD2_FC_REPLAY_CONTINUE to indicate that SCAN is
1870  * incomplete and JBD2 should send more blocks. It returns JBD2_FC_REPLAY_STOP
1871  * to indicate that scan has finished and JBD2 can now start replay phase.
1872  * It returns a negative error to indicate that there was an error. At the end
1873  * of a successful scan phase, sbi->s_fc_replay_state.fc_replay_num_tags is set
1874  * to indicate the number of tags that need to replayed during the replay phase.
1875  */
1876 static int ext4_fc_replay_scan(journal_t *journal,
1877                                 struct buffer_head *bh, int off,
1878                                 tid_t expected_tid)
1879 {
1880         struct super_block *sb = journal->j_private;
1881         struct ext4_sb_info *sbi = EXT4_SB(sb);
1882         struct ext4_fc_replay_state *state;
1883         int ret = JBD2_FC_REPLAY_CONTINUE;
1884         struct ext4_fc_add_range *ext;
1885         struct ext4_fc_tl *tl;
1886         struct ext4_fc_tail *tail;
1887         __u8 *start, *end;
1888         struct ext4_fc_head *head;
1889         struct ext4_extent *ex;
1890
1891         state = &sbi->s_fc_replay_state;
1892
1893         start = (u8 *)bh->b_data;
1894         end = (__u8 *)bh->b_data + journal->j_blocksize - 1;
1895
1896         if (state->fc_replay_expected_off == 0) {
1897                 state->fc_cur_tag = 0;
1898                 state->fc_replay_num_tags = 0;
1899                 state->fc_crc = 0;
1900                 state->fc_regions = NULL;
1901                 state->fc_regions_valid = state->fc_regions_used =
1902                         state->fc_regions_size = 0;
1903                 /* Check if we can stop early */
1904                 if (le16_to_cpu(((struct ext4_fc_tl *)start)->fc_tag)
1905                         != EXT4_FC_TAG_HEAD)
1906                         return 0;
1907         }
1908
1909         if (off != state->fc_replay_expected_off) {
1910                 ret = -EFSCORRUPTED;
1911                 goto out_err;
1912         }
1913
1914         state->fc_replay_expected_off++;
1915         fc_for_each_tl(start, end, tl) {
1916                 jbd_debug(3, "Scan phase, tag:%s, blk %lld\n",
1917                           tag2str(le16_to_cpu(tl->fc_tag)), bh->b_blocknr);
1918                 switch (le16_to_cpu(tl->fc_tag)) {
1919                 case EXT4_FC_TAG_ADD_RANGE:
1920                         ext = (struct ext4_fc_add_range *)ext4_fc_tag_val(tl);
1921                         ex = (struct ext4_extent *)&ext->fc_ex;
1922                         ret = ext4_fc_record_regions(sb,
1923                                 le32_to_cpu(ext->fc_ino),
1924                                 le32_to_cpu(ex->ee_block), ext4_ext_pblock(ex),
1925                                 ext4_ext_get_actual_len(ex));
1926                         if (ret < 0)
1927                                 break;
1928                         ret = JBD2_FC_REPLAY_CONTINUE;
1929                         fallthrough;
1930                 case EXT4_FC_TAG_DEL_RANGE:
1931                 case EXT4_FC_TAG_LINK:
1932                 case EXT4_FC_TAG_UNLINK:
1933                 case EXT4_FC_TAG_CREAT:
1934                 case EXT4_FC_TAG_INODE:
1935                 case EXT4_FC_TAG_PAD:
1936                         state->fc_cur_tag++;
1937                         state->fc_crc = ext4_chksum(sbi, state->fc_crc, tl,
1938                                         sizeof(*tl) + ext4_fc_tag_len(tl));
1939                         break;
1940                 case EXT4_FC_TAG_TAIL:
1941                         state->fc_cur_tag++;
1942                         tail = (struct ext4_fc_tail *)ext4_fc_tag_val(tl);
1943                         state->fc_crc = ext4_chksum(sbi, state->fc_crc, tl,
1944                                                 sizeof(*tl) +
1945                                                 offsetof(struct ext4_fc_tail,
1946                                                 fc_crc));
1947                         if (le32_to_cpu(tail->fc_tid) == expected_tid &&
1948                                 le32_to_cpu(tail->fc_crc) == state->fc_crc) {
1949                                 state->fc_replay_num_tags = state->fc_cur_tag;
1950                                 state->fc_regions_valid =
1951                                         state->fc_regions_used;
1952                         } else {
1953                                 ret = state->fc_replay_num_tags ?
1954                                         JBD2_FC_REPLAY_STOP : -EFSBADCRC;
1955                         }
1956                         state->fc_crc = 0;
1957                         break;
1958                 case EXT4_FC_TAG_HEAD:
1959                         head = (struct ext4_fc_head *)ext4_fc_tag_val(tl);
1960                         if (le32_to_cpu(head->fc_features) &
1961                                 ~EXT4_FC_SUPPORTED_FEATURES) {
1962                                 ret = -EOPNOTSUPP;
1963                                 break;
1964                         }
1965                         if (le32_to_cpu(head->fc_tid) != expected_tid) {
1966                                 ret = JBD2_FC_REPLAY_STOP;
1967                                 break;
1968                         }
1969                         state->fc_cur_tag++;
1970                         state->fc_crc = ext4_chksum(sbi, state->fc_crc, tl,
1971                                         sizeof(*tl) + ext4_fc_tag_len(tl));
1972                         break;
1973                 default:
1974                         ret = state->fc_replay_num_tags ?
1975                                 JBD2_FC_REPLAY_STOP : -ECANCELED;
1976                 }
1977                 if (ret < 0 || ret == JBD2_FC_REPLAY_STOP)
1978                         break;
1979         }
1980
1981 out_err:
1982         trace_ext4_fc_replay_scan(sb, ret, off);
1983         return ret;
1984 }
1985
1986 /*
1987  * Main recovery path entry point.
1988  * The meaning of return codes is similar as above.
1989  */
1990 static int ext4_fc_replay(journal_t *journal, struct buffer_head *bh,
1991                                 enum passtype pass, int off, tid_t expected_tid)
1992 {
1993         struct super_block *sb = journal->j_private;
1994         struct ext4_sb_info *sbi = EXT4_SB(sb);
1995         struct ext4_fc_tl *tl;
1996         __u8 *start, *end;
1997         int ret = JBD2_FC_REPLAY_CONTINUE;
1998         struct ext4_fc_replay_state *state = &sbi->s_fc_replay_state;
1999         struct ext4_fc_tail *tail;
2000
2001         if (pass == PASS_SCAN) {
2002                 state->fc_current_pass = PASS_SCAN;
2003                 return ext4_fc_replay_scan(journal, bh, off, expected_tid);
2004         }
2005
2006         if (state->fc_current_pass != pass) {
2007                 state->fc_current_pass = pass;
2008                 sbi->s_mount_state |= EXT4_FC_REPLAY;
2009         }
2010         if (!sbi->s_fc_replay_state.fc_replay_num_tags) {
2011                 jbd_debug(1, "Replay stops\n");
2012                 ext4_fc_set_bitmaps_and_counters(sb);
2013                 return 0;
2014         }
2015
2016 #ifdef CONFIG_EXT4_DEBUG
2017         if (sbi->s_fc_debug_max_replay && off >= sbi->s_fc_debug_max_replay) {
2018                 pr_warn("Dropping fc block %d because max_replay set\n", off);
2019                 return JBD2_FC_REPLAY_STOP;
2020         }
2021 #endif
2022
2023         start = (u8 *)bh->b_data;
2024         end = (__u8 *)bh->b_data + journal->j_blocksize - 1;
2025
2026         fc_for_each_tl(start, end, tl) {
2027                 if (state->fc_replay_num_tags == 0) {
2028                         ret = JBD2_FC_REPLAY_STOP;
2029                         ext4_fc_set_bitmaps_and_counters(sb);
2030                         break;
2031                 }
2032                 jbd_debug(3, "Replay phase, tag:%s\n",
2033                                 tag2str(le16_to_cpu(tl->fc_tag)));
2034                 state->fc_replay_num_tags--;
2035                 switch (le16_to_cpu(tl->fc_tag)) {
2036                 case EXT4_FC_TAG_LINK:
2037                         ret = ext4_fc_replay_link(sb, tl);
2038                         break;
2039                 case EXT4_FC_TAG_UNLINK:
2040                         ret = ext4_fc_replay_unlink(sb, tl);
2041                         break;
2042                 case EXT4_FC_TAG_ADD_RANGE:
2043                         ret = ext4_fc_replay_add_range(sb, tl);
2044                         break;
2045                 case EXT4_FC_TAG_CREAT:
2046                         ret = ext4_fc_replay_create(sb, tl);
2047                         break;
2048                 case EXT4_FC_TAG_DEL_RANGE:
2049                         ret = ext4_fc_replay_del_range(sb, tl);
2050                         break;
2051                 case EXT4_FC_TAG_INODE:
2052                         ret = ext4_fc_replay_inode(sb, tl);
2053                         break;
2054                 case EXT4_FC_TAG_PAD:
2055                         trace_ext4_fc_replay(sb, EXT4_FC_TAG_PAD, 0,
2056                                 ext4_fc_tag_len(tl), 0);
2057                         break;
2058                 case EXT4_FC_TAG_TAIL:
2059                         trace_ext4_fc_replay(sb, EXT4_FC_TAG_TAIL, 0,
2060                                 ext4_fc_tag_len(tl), 0);
2061                         tail = (struct ext4_fc_tail *)ext4_fc_tag_val(tl);
2062                         WARN_ON(le32_to_cpu(tail->fc_tid) != expected_tid);
2063                         break;
2064                 case EXT4_FC_TAG_HEAD:
2065                         break;
2066                 default:
2067                         trace_ext4_fc_replay(sb, le16_to_cpu(tl->fc_tag), 0,
2068                                 ext4_fc_tag_len(tl), 0);
2069                         ret = -ECANCELED;
2070                         break;
2071                 }
2072                 if (ret < 0)
2073                         break;
2074                 ret = JBD2_FC_REPLAY_CONTINUE;
2075         }
2076         return ret;
2077 }
2078
2079 void ext4_fc_init(struct super_block *sb, journal_t *journal)
2080 {
2081         /*
2082          * We set replay callback even if fast commit disabled because we may
2083          * could still have fast commit blocks that need to be replayed even if
2084          * fast commit has now been turned off.
2085          */
2086         journal->j_fc_replay_callback = ext4_fc_replay;
2087         if (!test_opt2(sb, JOURNAL_FAST_COMMIT))
2088                 return;
2089         journal->j_fc_cleanup_callback = ext4_fc_cleanup;
2090         if (jbd2_fc_init(journal, EXT4_NUM_FC_BLKS)) {
2091                 pr_warn("Error while enabling fast commits, turning off.");
2092                 ext4_clear_feature_fast_commit(sb);
2093         }
2094 }
2095
2096 const char *fc_ineligible_reasons[] = {
2097         "Extended attributes changed",
2098         "Cross rename",
2099         "Journal flag changed",
2100         "Insufficient memory",
2101         "Swap boot",
2102         "Resize",
2103         "Dir renamed",
2104         "Falloc range op",
2105         "FC Commit Failed"
2106 };
2107
2108 int ext4_fc_info_show(struct seq_file *seq, void *v)
2109 {
2110         struct ext4_sb_info *sbi = EXT4_SB((struct super_block *)seq->private);
2111         struct ext4_fc_stats *stats = &sbi->s_fc_stats;
2112         int i;
2113
2114         if (v != SEQ_START_TOKEN)
2115                 return 0;
2116
2117         seq_printf(seq,
2118                 "fc stats:\n%ld commits\n%ld ineligible\n%ld numblks\n%lluus avg_commit_time\n",
2119                    stats->fc_num_commits, stats->fc_ineligible_commits,
2120                    stats->fc_numblks,
2121                    div_u64(sbi->s_fc_avg_commit_time, 1000));
2122         seq_puts(seq, "Ineligible reasons:\n");
2123         for (i = 0; i < EXT4_FC_REASON_MAX; i++)
2124                 seq_printf(seq, "\"%s\":\t%d\n", fc_ineligible_reasons[i],
2125                         stats->fc_ineligible_reason_count[i]);
2126
2127         return 0;
2128 }
2129
2130 int __init ext4_fc_init_dentry_cache(void)
2131 {
2132         ext4_fc_dentry_cachep = KMEM_CACHE(ext4_fc_dentry_update,
2133                                            SLAB_RECLAIM_ACCOUNT);
2134
2135         if (ext4_fc_dentry_cachep == NULL)
2136                 return -ENOMEM;
2137
2138         return 0;
2139 }