io_uring: fix memory ordering when SQPOLL thread goes to sleep
[linux-2.6-microblaze.git] / fs / ext2 / inode.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext2/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  Goal-directed block allocation by Stephen Tweedie
17  *      (sct@dcs.ed.ac.uk), 1993, 1998
18  *  Big-endian to little-endian byte-swapping/bitmaps by
19  *        David S. Miller (davem@caip.rutgers.edu), 1995
20  *  64-bit file support on 64-bit platforms by Jakub Jelinek
21  *      (jj@sunsite.ms.mff.cuni.cz)
22  *
23  *  Assorted race fixes, rewrite of ext2_get_block() by Al Viro, 2000
24  */
25
26 #include <linux/time.h>
27 #include <linux/highuid.h>
28 #include <linux/pagemap.h>
29 #include <linux/dax.h>
30 #include <linux/blkdev.h>
31 #include <linux/quotaops.h>
32 #include <linux/writeback.h>
33 #include <linux/buffer_head.h>
34 #include <linux/mpage.h>
35 #include <linux/fiemap.h>
36 #include <linux/iomap.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/dax.h>
40 #include "ext2.h"
41 #include "acl.h"
42 #include "xattr.h"
43
44 static int __ext2_write_inode(struct inode *inode, int do_sync);
45
46 /*
47  * Test whether an inode is a fast symlink.
48  */
49 static inline int ext2_inode_is_fast_symlink(struct inode *inode)
50 {
51         int ea_blocks = EXT2_I(inode)->i_file_acl ?
52                 (inode->i_sb->s_blocksize >> 9) : 0;
53
54         return (S_ISLNK(inode->i_mode) &&
55                 inode->i_blocks - ea_blocks == 0);
56 }
57
58 static void ext2_truncate_blocks(struct inode *inode, loff_t offset);
59
60 static void ext2_write_failed(struct address_space *mapping, loff_t to)
61 {
62         struct inode *inode = mapping->host;
63
64         if (to > inode->i_size) {
65                 truncate_pagecache(inode, inode->i_size);
66                 ext2_truncate_blocks(inode, inode->i_size);
67         }
68 }
69
70 /*
71  * Called at the last iput() if i_nlink is zero.
72  */
73 void ext2_evict_inode(struct inode * inode)
74 {
75         struct ext2_block_alloc_info *rsv;
76         int want_delete = 0;
77
78         if (!inode->i_nlink && !is_bad_inode(inode)) {
79                 want_delete = 1;
80                 dquot_initialize(inode);
81         } else {
82                 dquot_drop(inode);
83         }
84
85         truncate_inode_pages_final(&inode->i_data);
86
87         if (want_delete) {
88                 sb_start_intwrite(inode->i_sb);
89                 /* set dtime */
90                 EXT2_I(inode)->i_dtime  = ktime_get_real_seconds();
91                 mark_inode_dirty(inode);
92                 __ext2_write_inode(inode, inode_needs_sync(inode));
93                 /* truncate to 0 */
94                 inode->i_size = 0;
95                 if (inode->i_blocks)
96                         ext2_truncate_blocks(inode, 0);
97                 ext2_xattr_delete_inode(inode);
98         }
99
100         invalidate_inode_buffers(inode);
101         clear_inode(inode);
102
103         ext2_discard_reservation(inode);
104         rsv = EXT2_I(inode)->i_block_alloc_info;
105         EXT2_I(inode)->i_block_alloc_info = NULL;
106         if (unlikely(rsv))
107                 kfree(rsv);
108
109         if (want_delete) {
110                 ext2_free_inode(inode);
111                 sb_end_intwrite(inode->i_sb);
112         }
113 }
114
115 typedef struct {
116         __le32  *p;
117         __le32  key;
118         struct buffer_head *bh;
119 } Indirect;
120
121 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
122 {
123         p->key = *(p->p = v);
124         p->bh = bh;
125 }
126
127 static inline int verify_chain(Indirect *from, Indirect *to)
128 {
129         while (from <= to && from->key == *from->p)
130                 from++;
131         return (from > to);
132 }
133
134 /**
135  *      ext2_block_to_path - parse the block number into array of offsets
136  *      @inode: inode in question (we are only interested in its superblock)
137  *      @i_block: block number to be parsed
138  *      @offsets: array to store the offsets in
139  *      @boundary: set this non-zero if the referred-to block is likely to be
140  *             followed (on disk) by an indirect block.
141  *      To store the locations of file's data ext2 uses a data structure common
142  *      for UNIX filesystems - tree of pointers anchored in the inode, with
143  *      data blocks at leaves and indirect blocks in intermediate nodes.
144  *      This function translates the block number into path in that tree -
145  *      return value is the path length and @offsets[n] is the offset of
146  *      pointer to (n+1)th node in the nth one. If @block is out of range
147  *      (negative or too large) warning is printed and zero returned.
148  *
149  *      Note: function doesn't find node addresses, so no IO is needed. All
150  *      we need to know is the capacity of indirect blocks (taken from the
151  *      inode->i_sb).
152  */
153
154 /*
155  * Portability note: the last comparison (check that we fit into triple
156  * indirect block) is spelled differently, because otherwise on an
157  * architecture with 32-bit longs and 8Kb pages we might get into trouble
158  * if our filesystem had 8Kb blocks. We might use long long, but that would
159  * kill us on x86. Oh, well, at least the sign propagation does not matter -
160  * i_block would have to be negative in the very beginning, so we would not
161  * get there at all.
162  */
163
164 static int ext2_block_to_path(struct inode *inode,
165                         long i_block, int offsets[4], int *boundary)
166 {
167         int ptrs = EXT2_ADDR_PER_BLOCK(inode->i_sb);
168         int ptrs_bits = EXT2_ADDR_PER_BLOCK_BITS(inode->i_sb);
169         const long direct_blocks = EXT2_NDIR_BLOCKS,
170                 indirect_blocks = ptrs,
171                 double_blocks = (1 << (ptrs_bits * 2));
172         int n = 0;
173         int final = 0;
174
175         if (i_block < 0) {
176                 ext2_msg(inode->i_sb, KERN_WARNING,
177                         "warning: %s: block < 0", __func__);
178         } else if (i_block < direct_blocks) {
179                 offsets[n++] = i_block;
180                 final = direct_blocks;
181         } else if ( (i_block -= direct_blocks) < indirect_blocks) {
182                 offsets[n++] = EXT2_IND_BLOCK;
183                 offsets[n++] = i_block;
184                 final = ptrs;
185         } else if ((i_block -= indirect_blocks) < double_blocks) {
186                 offsets[n++] = EXT2_DIND_BLOCK;
187                 offsets[n++] = i_block >> ptrs_bits;
188                 offsets[n++] = i_block & (ptrs - 1);
189                 final = ptrs;
190         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
191                 offsets[n++] = EXT2_TIND_BLOCK;
192                 offsets[n++] = i_block >> (ptrs_bits * 2);
193                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
194                 offsets[n++] = i_block & (ptrs - 1);
195                 final = ptrs;
196         } else {
197                 ext2_msg(inode->i_sb, KERN_WARNING,
198                         "warning: %s: block is too big", __func__);
199         }
200         if (boundary)
201                 *boundary = final - 1 - (i_block & (ptrs - 1));
202
203         return n;
204 }
205
206 /**
207  *      ext2_get_branch - read the chain of indirect blocks leading to data
208  *      @inode: inode in question
209  *      @depth: depth of the chain (1 - direct pointer, etc.)
210  *      @offsets: offsets of pointers in inode/indirect blocks
211  *      @chain: place to store the result
212  *      @err: here we store the error value
213  *
214  *      Function fills the array of triples <key, p, bh> and returns %NULL
215  *      if everything went OK or the pointer to the last filled triple
216  *      (incomplete one) otherwise. Upon the return chain[i].key contains
217  *      the number of (i+1)-th block in the chain (as it is stored in memory,
218  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
219  *      number (it points into struct inode for i==0 and into the bh->b_data
220  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
221  *      block for i>0 and NULL for i==0. In other words, it holds the block
222  *      numbers of the chain, addresses they were taken from (and where we can
223  *      verify that chain did not change) and buffer_heads hosting these
224  *      numbers.
225  *
226  *      Function stops when it stumbles upon zero pointer (absent block)
227  *              (pointer to last triple returned, *@err == 0)
228  *      or when it gets an IO error reading an indirect block
229  *              (ditto, *@err == -EIO)
230  *      or when it notices that chain had been changed while it was reading
231  *              (ditto, *@err == -EAGAIN)
232  *      or when it reads all @depth-1 indirect blocks successfully and finds
233  *      the whole chain, all way to the data (returns %NULL, *err == 0).
234  */
235 static Indirect *ext2_get_branch(struct inode *inode,
236                                  int depth,
237                                  int *offsets,
238                                  Indirect chain[4],
239                                  int *err)
240 {
241         struct super_block *sb = inode->i_sb;
242         Indirect *p = chain;
243         struct buffer_head *bh;
244
245         *err = 0;
246         /* i_data is not going away, no lock needed */
247         add_chain (chain, NULL, EXT2_I(inode)->i_data + *offsets);
248         if (!p->key)
249                 goto no_block;
250         while (--depth) {
251                 bh = sb_bread(sb, le32_to_cpu(p->key));
252                 if (!bh)
253                         goto failure;
254                 read_lock(&EXT2_I(inode)->i_meta_lock);
255                 if (!verify_chain(chain, p))
256                         goto changed;
257                 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
258                 read_unlock(&EXT2_I(inode)->i_meta_lock);
259                 if (!p->key)
260                         goto no_block;
261         }
262         return NULL;
263
264 changed:
265         read_unlock(&EXT2_I(inode)->i_meta_lock);
266         brelse(bh);
267         *err = -EAGAIN;
268         goto no_block;
269 failure:
270         *err = -EIO;
271 no_block:
272         return p;
273 }
274
275 /**
276  *      ext2_find_near - find a place for allocation with sufficient locality
277  *      @inode: owner
278  *      @ind: descriptor of indirect block.
279  *
280  *      This function returns the preferred place for block allocation.
281  *      It is used when heuristic for sequential allocation fails.
282  *      Rules are:
283  *        + if there is a block to the left of our position - allocate near it.
284  *        + if pointer will live in indirect block - allocate near that block.
285  *        + if pointer will live in inode - allocate in the same cylinder group.
286  *
287  * In the latter case we colour the starting block by the callers PID to
288  * prevent it from clashing with concurrent allocations for a different inode
289  * in the same block group.   The PID is used here so that functionally related
290  * files will be close-by on-disk.
291  *
292  *      Caller must make sure that @ind is valid and will stay that way.
293  */
294
295 static ext2_fsblk_t ext2_find_near(struct inode *inode, Indirect *ind)
296 {
297         struct ext2_inode_info *ei = EXT2_I(inode);
298         __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
299         __le32 *p;
300         ext2_fsblk_t bg_start;
301         ext2_fsblk_t colour;
302
303         /* Try to find previous block */
304         for (p = ind->p - 1; p >= start; p--)
305                 if (*p)
306                         return le32_to_cpu(*p);
307
308         /* No such thing, so let's try location of indirect block */
309         if (ind->bh)
310                 return ind->bh->b_blocknr;
311
312         /*
313          * It is going to be referred from inode itself? OK, just put it into
314          * the same cylinder group then.
315          */
316         bg_start = ext2_group_first_block_no(inode->i_sb, ei->i_block_group);
317         colour = (current->pid % 16) *
318                         (EXT2_BLOCKS_PER_GROUP(inode->i_sb) / 16);
319         return bg_start + colour;
320 }
321
322 /**
323  *      ext2_find_goal - find a preferred place for allocation.
324  *      @inode: owner
325  *      @block:  block we want
326  *      @partial: pointer to the last triple within a chain
327  *
328  *      Returns preferred place for a block (the goal).
329  */
330
331 static inline ext2_fsblk_t ext2_find_goal(struct inode *inode, long block,
332                                           Indirect *partial)
333 {
334         struct ext2_block_alloc_info *block_i;
335
336         block_i = EXT2_I(inode)->i_block_alloc_info;
337
338         /*
339          * try the heuristic for sequential allocation,
340          * failing that at least try to get decent locality.
341          */
342         if (block_i && (block == block_i->last_alloc_logical_block + 1)
343                 && (block_i->last_alloc_physical_block != 0)) {
344                 return block_i->last_alloc_physical_block + 1;
345         }
346
347         return ext2_find_near(inode, partial);
348 }
349
350 /**
351  *      ext2_blks_to_allocate: Look up the block map and count the number
352  *      of direct blocks need to be allocated for the given branch.
353  *
354  *      @branch: chain of indirect blocks
355  *      @k: number of blocks need for indirect blocks
356  *      @blks: number of data blocks to be mapped.
357  *      @blocks_to_boundary:  the offset in the indirect block
358  *
359  *      return the number of direct blocks to allocate.
360  */
361 static int
362 ext2_blks_to_allocate(Indirect * branch, int k, unsigned long blks,
363                 int blocks_to_boundary)
364 {
365         unsigned long count = 0;
366
367         /*
368          * Simple case, [t,d]Indirect block(s) has not allocated yet
369          * then it's clear blocks on that path have not allocated
370          */
371         if (k > 0) {
372                 /* right now don't hanel cross boundary allocation */
373                 if (blks < blocks_to_boundary + 1)
374                         count += blks;
375                 else
376                         count += blocks_to_boundary + 1;
377                 return count;
378         }
379
380         count++;
381         while (count < blks && count <= blocks_to_boundary
382                 && le32_to_cpu(*(branch[0].p + count)) == 0) {
383                 count++;
384         }
385         return count;
386 }
387
388 /**
389  *      ext2_alloc_blocks: multiple allocate blocks needed for a branch
390  *      @indirect_blks: the number of blocks need to allocate for indirect
391  *                      blocks
392  *      @blks: the number of blocks need to allocate for direct blocks
393  *      @new_blocks: on return it will store the new block numbers for
394  *      the indirect blocks(if needed) and the first direct block,
395  */
396 static int ext2_alloc_blocks(struct inode *inode,
397                         ext2_fsblk_t goal, int indirect_blks, int blks,
398                         ext2_fsblk_t new_blocks[4], int *err)
399 {
400         int target, i;
401         unsigned long count = 0;
402         int index = 0;
403         ext2_fsblk_t current_block = 0;
404         int ret = 0;
405
406         /*
407          * Here we try to allocate the requested multiple blocks at once,
408          * on a best-effort basis.
409          * To build a branch, we should allocate blocks for
410          * the indirect blocks(if not allocated yet), and at least
411          * the first direct block of this branch.  That's the
412          * minimum number of blocks need to allocate(required)
413          */
414         target = blks + indirect_blks;
415
416         while (1) {
417                 count = target;
418                 /* allocating blocks for indirect blocks and direct blocks */
419                 current_block = ext2_new_blocks(inode,goal,&count,err);
420                 if (*err)
421                         goto failed_out;
422
423                 target -= count;
424                 /* allocate blocks for indirect blocks */
425                 while (index < indirect_blks && count) {
426                         new_blocks[index++] = current_block++;
427                         count--;
428                 }
429
430                 if (count > 0)
431                         break;
432         }
433
434         /* save the new block number for the first direct block */
435         new_blocks[index] = current_block;
436
437         /* total number of blocks allocated for direct blocks */
438         ret = count;
439         *err = 0;
440         return ret;
441 failed_out:
442         for (i = 0; i <index; i++)
443                 ext2_free_blocks(inode, new_blocks[i], 1);
444         if (index)
445                 mark_inode_dirty(inode);
446         return ret;
447 }
448
449 /**
450  *      ext2_alloc_branch - allocate and set up a chain of blocks.
451  *      @inode: owner
452  *      @indirect_blks: depth of the chain (number of blocks to allocate)
453  *      @blks: number of allocated direct blocks
454  *      @goal: preferred place for allocation
455  *      @offsets: offsets (in the blocks) to store the pointers to next.
456  *      @branch: place to store the chain in.
457  *
458  *      This function allocates @num blocks, zeroes out all but the last one,
459  *      links them into chain and (if we are synchronous) writes them to disk.
460  *      In other words, it prepares a branch that can be spliced onto the
461  *      inode. It stores the information about that chain in the branch[], in
462  *      the same format as ext2_get_branch() would do. We are calling it after
463  *      we had read the existing part of chain and partial points to the last
464  *      triple of that (one with zero ->key). Upon the exit we have the same
465  *      picture as after the successful ext2_get_block(), except that in one
466  *      place chain is disconnected - *branch->p is still zero (we did not
467  *      set the last link), but branch->key contains the number that should
468  *      be placed into *branch->p to fill that gap.
469  *
470  *      If allocation fails we free all blocks we've allocated (and forget
471  *      their buffer_heads) and return the error value the from failed
472  *      ext2_alloc_block() (normally -ENOSPC). Otherwise we set the chain
473  *      as described above and return 0.
474  */
475
476 static int ext2_alloc_branch(struct inode *inode,
477                         int indirect_blks, int *blks, ext2_fsblk_t goal,
478                         int *offsets, Indirect *branch)
479 {
480         int blocksize = inode->i_sb->s_blocksize;
481         int i, n = 0;
482         int err = 0;
483         struct buffer_head *bh;
484         int num;
485         ext2_fsblk_t new_blocks[4];
486         ext2_fsblk_t current_block;
487
488         num = ext2_alloc_blocks(inode, goal, indirect_blks,
489                                 *blks, new_blocks, &err);
490         if (err)
491                 return err;
492
493         branch[0].key = cpu_to_le32(new_blocks[0]);
494         /*
495          * metadata blocks and data blocks are allocated.
496          */
497         for (n = 1; n <= indirect_blks;  n++) {
498                 /*
499                  * Get buffer_head for parent block, zero it out
500                  * and set the pointer to new one, then send
501                  * parent to disk.
502                  */
503                 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
504                 if (unlikely(!bh)) {
505                         err = -ENOMEM;
506                         goto failed;
507                 }
508                 branch[n].bh = bh;
509                 lock_buffer(bh);
510                 memset(bh->b_data, 0, blocksize);
511                 branch[n].p = (__le32 *) bh->b_data + offsets[n];
512                 branch[n].key = cpu_to_le32(new_blocks[n]);
513                 *branch[n].p = branch[n].key;
514                 if ( n == indirect_blks) {
515                         current_block = new_blocks[n];
516                         /*
517                          * End of chain, update the last new metablock of
518                          * the chain to point to the new allocated
519                          * data blocks numbers
520                          */
521                         for (i=1; i < num; i++)
522                                 *(branch[n].p + i) = cpu_to_le32(++current_block);
523                 }
524                 set_buffer_uptodate(bh);
525                 unlock_buffer(bh);
526                 mark_buffer_dirty_inode(bh, inode);
527                 /* We used to sync bh here if IS_SYNC(inode).
528                  * But we now rely upon generic_write_sync()
529                  * and b_inode_buffers.  But not for directories.
530                  */
531                 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
532                         sync_dirty_buffer(bh);
533         }
534         *blks = num;
535         return err;
536
537 failed:
538         for (i = 1; i < n; i++)
539                 bforget(branch[i].bh);
540         for (i = 0; i < indirect_blks; i++)
541                 ext2_free_blocks(inode, new_blocks[i], 1);
542         ext2_free_blocks(inode, new_blocks[i], num);
543         return err;
544 }
545
546 /**
547  * ext2_splice_branch - splice the allocated branch onto inode.
548  * @inode: owner
549  * @block: (logical) number of block we are adding
550  * @where: location of missing link
551  * @num:   number of indirect blocks we are adding
552  * @blks:  number of direct blocks we are adding
553  *
554  * This function fills the missing link and does all housekeeping needed in
555  * inode (->i_blocks, etc.). In case of success we end up with the full
556  * chain to new block and return 0.
557  */
558 static void ext2_splice_branch(struct inode *inode,
559                         long block, Indirect *where, int num, int blks)
560 {
561         int i;
562         struct ext2_block_alloc_info *block_i;
563         ext2_fsblk_t current_block;
564
565         block_i = EXT2_I(inode)->i_block_alloc_info;
566
567         /* XXX LOCKING probably should have i_meta_lock ?*/
568         /* That's it */
569
570         *where->p = where->key;
571
572         /*
573          * Update the host buffer_head or inode to point to more just allocated
574          * direct blocks blocks
575          */
576         if (num == 0 && blks > 1) {
577                 current_block = le32_to_cpu(where->key) + 1;
578                 for (i = 1; i < blks; i++)
579                         *(where->p + i ) = cpu_to_le32(current_block++);
580         }
581
582         /*
583          * update the most recently allocated logical & physical block
584          * in i_block_alloc_info, to assist find the proper goal block for next
585          * allocation
586          */
587         if (block_i) {
588                 block_i->last_alloc_logical_block = block + blks - 1;
589                 block_i->last_alloc_physical_block =
590                                 le32_to_cpu(where[num].key) + blks - 1;
591         }
592
593         /* We are done with atomic stuff, now do the rest of housekeeping */
594
595         /* had we spliced it onto indirect block? */
596         if (where->bh)
597                 mark_buffer_dirty_inode(where->bh, inode);
598
599         inode->i_ctime = current_time(inode);
600         mark_inode_dirty(inode);
601 }
602
603 /*
604  * Allocation strategy is simple: if we have to allocate something, we will
605  * have to go the whole way to leaf. So let's do it before attaching anything
606  * to tree, set linkage between the newborn blocks, write them if sync is
607  * required, recheck the path, free and repeat if check fails, otherwise
608  * set the last missing link (that will protect us from any truncate-generated
609  * removals - all blocks on the path are immune now) and possibly force the
610  * write on the parent block.
611  * That has a nice additional property: no special recovery from the failed
612  * allocations is needed - we simply release blocks and do not touch anything
613  * reachable from inode.
614  *
615  * `handle' can be NULL if create == 0.
616  *
617  * return > 0, # of blocks mapped or allocated.
618  * return = 0, if plain lookup failed.
619  * return < 0, error case.
620  */
621 static int ext2_get_blocks(struct inode *inode,
622                            sector_t iblock, unsigned long maxblocks,
623                            u32 *bno, bool *new, bool *boundary,
624                            int create)
625 {
626         int err;
627         int offsets[4];
628         Indirect chain[4];
629         Indirect *partial;
630         ext2_fsblk_t goal;
631         int indirect_blks;
632         int blocks_to_boundary = 0;
633         int depth;
634         struct ext2_inode_info *ei = EXT2_I(inode);
635         int count = 0;
636         ext2_fsblk_t first_block = 0;
637
638         BUG_ON(maxblocks == 0);
639
640         depth = ext2_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
641
642         if (depth == 0)
643                 return -EIO;
644
645         partial = ext2_get_branch(inode, depth, offsets, chain, &err);
646         /* Simplest case - block found, no allocation needed */
647         if (!partial) {
648                 first_block = le32_to_cpu(chain[depth - 1].key);
649                 count++;
650                 /*map more blocks*/
651                 while (count < maxblocks && count <= blocks_to_boundary) {
652                         ext2_fsblk_t blk;
653
654                         if (!verify_chain(chain, chain + depth - 1)) {
655                                 /*
656                                  * Indirect block might be removed by
657                                  * truncate while we were reading it.
658                                  * Handling of that case: forget what we've
659                                  * got now, go to reread.
660                                  */
661                                 err = -EAGAIN;
662                                 count = 0;
663                                 partial = chain + depth - 1;
664                                 break;
665                         }
666                         blk = le32_to_cpu(*(chain[depth-1].p + count));
667                         if (blk == first_block + count)
668                                 count++;
669                         else
670                                 break;
671                 }
672                 if (err != -EAGAIN)
673                         goto got_it;
674         }
675
676         /* Next simple case - plain lookup or failed read of indirect block */
677         if (!create || err == -EIO)
678                 goto cleanup;
679
680         mutex_lock(&ei->truncate_mutex);
681         /*
682          * If the indirect block is missing while we are reading
683          * the chain(ext2_get_branch() returns -EAGAIN err), or
684          * if the chain has been changed after we grab the semaphore,
685          * (either because another process truncated this branch, or
686          * another get_block allocated this branch) re-grab the chain to see if
687          * the request block has been allocated or not.
688          *
689          * Since we already block the truncate/other get_block
690          * at this point, we will have the current copy of the chain when we
691          * splice the branch into the tree.
692          */
693         if (err == -EAGAIN || !verify_chain(chain, partial)) {
694                 while (partial > chain) {
695                         brelse(partial->bh);
696                         partial--;
697                 }
698                 partial = ext2_get_branch(inode, depth, offsets, chain, &err);
699                 if (!partial) {
700                         count++;
701                         mutex_unlock(&ei->truncate_mutex);
702                         goto got_it;
703                 }
704
705                 if (err) {
706                         mutex_unlock(&ei->truncate_mutex);
707                         goto cleanup;
708                 }
709         }
710
711         /*
712          * Okay, we need to do block allocation.  Lazily initialize the block
713          * allocation info here if necessary
714         */
715         if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
716                 ext2_init_block_alloc_info(inode);
717
718         goal = ext2_find_goal(inode, iblock, partial);
719
720         /* the number of blocks need to allocate for [d,t]indirect blocks */
721         indirect_blks = (chain + depth) - partial - 1;
722         /*
723          * Next look up the indirect map to count the total number of
724          * direct blocks to allocate for this branch.
725          */
726         count = ext2_blks_to_allocate(partial, indirect_blks,
727                                         maxblocks, blocks_to_boundary);
728         /*
729          * XXX ???? Block out ext2_truncate while we alter the tree
730          */
731         err = ext2_alloc_branch(inode, indirect_blks, &count, goal,
732                                 offsets + (partial - chain), partial);
733
734         if (err) {
735                 mutex_unlock(&ei->truncate_mutex);
736                 goto cleanup;
737         }
738
739         if (IS_DAX(inode)) {
740                 /*
741                  * We must unmap blocks before zeroing so that writeback cannot
742                  * overwrite zeros with stale data from block device page cache.
743                  */
744                 clean_bdev_aliases(inode->i_sb->s_bdev,
745                                    le32_to_cpu(chain[depth-1].key),
746                                    count);
747                 /*
748                  * block must be initialised before we put it in the tree
749                  * so that it's not found by another thread before it's
750                  * initialised
751                  */
752                 err = sb_issue_zeroout(inode->i_sb,
753                                 le32_to_cpu(chain[depth-1].key), count,
754                                 GFP_NOFS);
755                 if (err) {
756                         mutex_unlock(&ei->truncate_mutex);
757                         goto cleanup;
758                 }
759         }
760         *new = true;
761
762         ext2_splice_branch(inode, iblock, partial, indirect_blks, count);
763         mutex_unlock(&ei->truncate_mutex);
764 got_it:
765         if (count > blocks_to_boundary)
766                 *boundary = true;
767         err = count;
768         /* Clean up and exit */
769         partial = chain + depth - 1;    /* the whole chain */
770 cleanup:
771         while (partial > chain) {
772                 brelse(partial->bh);
773                 partial--;
774         }
775         if (err > 0)
776                 *bno = le32_to_cpu(chain[depth-1].key);
777         return err;
778 }
779
780 int ext2_get_block(struct inode *inode, sector_t iblock,
781                 struct buffer_head *bh_result, int create)
782 {
783         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
784         bool new = false, boundary = false;
785         u32 bno;
786         int ret;
787
788         ret = ext2_get_blocks(inode, iblock, max_blocks, &bno, &new, &boundary,
789                         create);
790         if (ret <= 0)
791                 return ret;
792
793         map_bh(bh_result, inode->i_sb, bno);
794         bh_result->b_size = (ret << inode->i_blkbits);
795         if (new)
796                 set_buffer_new(bh_result);
797         if (boundary)
798                 set_buffer_boundary(bh_result);
799         return 0;
800
801 }
802
803 static int ext2_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
804                 unsigned flags, struct iomap *iomap, struct iomap *srcmap)
805 {
806         unsigned int blkbits = inode->i_blkbits;
807         unsigned long first_block = offset >> blkbits;
808         unsigned long max_blocks = (length + (1 << blkbits) - 1) >> blkbits;
809         struct ext2_sb_info *sbi = EXT2_SB(inode->i_sb);
810         bool new = false, boundary = false;
811         u32 bno;
812         int ret;
813
814         ret = ext2_get_blocks(inode, first_block, max_blocks,
815                         &bno, &new, &boundary, flags & IOMAP_WRITE);
816         if (ret < 0)
817                 return ret;
818
819         iomap->flags = 0;
820         iomap->offset = (u64)first_block << blkbits;
821         if (flags & IOMAP_DAX)
822                 iomap->dax_dev = sbi->s_daxdev;
823         else
824                 iomap->bdev = inode->i_sb->s_bdev;
825
826         if (ret == 0) {
827                 iomap->type = IOMAP_HOLE;
828                 iomap->addr = IOMAP_NULL_ADDR;
829                 iomap->length = 1 << blkbits;
830         } else {
831                 iomap->type = IOMAP_MAPPED;
832                 iomap->addr = (u64)bno << blkbits;
833                 if (flags & IOMAP_DAX)
834                         iomap->addr += sbi->s_dax_part_off;
835                 iomap->length = (u64)ret << blkbits;
836                 iomap->flags |= IOMAP_F_MERGED;
837         }
838
839         if (new)
840                 iomap->flags |= IOMAP_F_NEW;
841         return 0;
842 }
843
844 static int
845 ext2_iomap_end(struct inode *inode, loff_t offset, loff_t length,
846                 ssize_t written, unsigned flags, struct iomap *iomap)
847 {
848         if (iomap->type == IOMAP_MAPPED &&
849             written < length &&
850             (flags & IOMAP_WRITE))
851                 ext2_write_failed(inode->i_mapping, offset + length);
852         return 0;
853 }
854
855 const struct iomap_ops ext2_iomap_ops = {
856         .iomap_begin            = ext2_iomap_begin,
857         .iomap_end              = ext2_iomap_end,
858 };
859
860 int ext2_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
861                 u64 start, u64 len)
862 {
863         int ret;
864
865         inode_lock(inode);
866         len = min_t(u64, len, i_size_read(inode));
867         ret = iomap_fiemap(inode, fieinfo, start, len, &ext2_iomap_ops);
868         inode_unlock(inode);
869
870         return ret;
871 }
872
873 static int ext2_writepage(struct page *page, struct writeback_control *wbc)
874 {
875         return block_write_full_page(page, ext2_get_block, wbc);
876 }
877
878 static int ext2_readpage(struct file *file, struct page *page)
879 {
880         return mpage_readpage(page, ext2_get_block);
881 }
882
883 static void ext2_readahead(struct readahead_control *rac)
884 {
885         mpage_readahead(rac, ext2_get_block);
886 }
887
888 static int
889 ext2_write_begin(struct file *file, struct address_space *mapping,
890                 loff_t pos, unsigned len, unsigned flags,
891                 struct page **pagep, void **fsdata)
892 {
893         int ret;
894
895         ret = block_write_begin(mapping, pos, len, flags, pagep,
896                                 ext2_get_block);
897         if (ret < 0)
898                 ext2_write_failed(mapping, pos + len);
899         return ret;
900 }
901
902 static int ext2_write_end(struct file *file, struct address_space *mapping,
903                         loff_t pos, unsigned len, unsigned copied,
904                         struct page *page, void *fsdata)
905 {
906         int ret;
907
908         ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
909         if (ret < len)
910                 ext2_write_failed(mapping, pos + len);
911         return ret;
912 }
913
914 static int
915 ext2_nobh_write_begin(struct file *file, struct address_space *mapping,
916                 loff_t pos, unsigned len, unsigned flags,
917                 struct page **pagep, void **fsdata)
918 {
919         int ret;
920
921         ret = nobh_write_begin(mapping, pos, len, flags, pagep, fsdata,
922                                ext2_get_block);
923         if (ret < 0)
924                 ext2_write_failed(mapping, pos + len);
925         return ret;
926 }
927
928 static int ext2_nobh_writepage(struct page *page,
929                         struct writeback_control *wbc)
930 {
931         return nobh_writepage(page, ext2_get_block, wbc);
932 }
933
934 static sector_t ext2_bmap(struct address_space *mapping, sector_t block)
935 {
936         return generic_block_bmap(mapping,block,ext2_get_block);
937 }
938
939 static ssize_t
940 ext2_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
941 {
942         struct file *file = iocb->ki_filp;
943         struct address_space *mapping = file->f_mapping;
944         struct inode *inode = mapping->host;
945         size_t count = iov_iter_count(iter);
946         loff_t offset = iocb->ki_pos;
947         ssize_t ret;
948
949         ret = blockdev_direct_IO(iocb, inode, iter, ext2_get_block);
950         if (ret < 0 && iov_iter_rw(iter) == WRITE)
951                 ext2_write_failed(mapping, offset + count);
952         return ret;
953 }
954
955 static int
956 ext2_writepages(struct address_space *mapping, struct writeback_control *wbc)
957 {
958         return mpage_writepages(mapping, wbc, ext2_get_block);
959 }
960
961 static int
962 ext2_dax_writepages(struct address_space *mapping, struct writeback_control *wbc)
963 {
964         struct ext2_sb_info *sbi = EXT2_SB(mapping->host->i_sb);
965
966         return dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc);
967 }
968
969 const struct address_space_operations ext2_aops = {
970         .set_page_dirty         = __set_page_dirty_buffers,
971         .readpage               = ext2_readpage,
972         .readahead              = ext2_readahead,
973         .writepage              = ext2_writepage,
974         .write_begin            = ext2_write_begin,
975         .write_end              = ext2_write_end,
976         .bmap                   = ext2_bmap,
977         .direct_IO              = ext2_direct_IO,
978         .writepages             = ext2_writepages,
979         .migratepage            = buffer_migrate_page,
980         .is_partially_uptodate  = block_is_partially_uptodate,
981         .error_remove_page      = generic_error_remove_page,
982 };
983
984 const struct address_space_operations ext2_nobh_aops = {
985         .set_page_dirty         = __set_page_dirty_buffers,
986         .readpage               = ext2_readpage,
987         .readahead              = ext2_readahead,
988         .writepage              = ext2_nobh_writepage,
989         .write_begin            = ext2_nobh_write_begin,
990         .write_end              = nobh_write_end,
991         .bmap                   = ext2_bmap,
992         .direct_IO              = ext2_direct_IO,
993         .writepages             = ext2_writepages,
994         .migratepage            = buffer_migrate_page,
995         .error_remove_page      = generic_error_remove_page,
996 };
997
998 static const struct address_space_operations ext2_dax_aops = {
999         .writepages             = ext2_dax_writepages,
1000         .direct_IO              = noop_direct_IO,
1001         .set_page_dirty         = __set_page_dirty_no_writeback,
1002         .invalidatepage         = noop_invalidatepage,
1003 };
1004
1005 /*
1006  * Probably it should be a library function... search for first non-zero word
1007  * or memcmp with zero_page, whatever is better for particular architecture.
1008  * Linus?
1009  */
1010 static inline int all_zeroes(__le32 *p, __le32 *q)
1011 {
1012         while (p < q)
1013                 if (*p++)
1014                         return 0;
1015         return 1;
1016 }
1017
1018 /**
1019  *      ext2_find_shared - find the indirect blocks for partial truncation.
1020  *      @inode:   inode in question
1021  *      @depth:   depth of the affected branch
1022  *      @offsets: offsets of pointers in that branch (see ext2_block_to_path)
1023  *      @chain:   place to store the pointers to partial indirect blocks
1024  *      @top:     place to the (detached) top of branch
1025  *
1026  *      This is a helper function used by ext2_truncate().
1027  *
1028  *      When we do truncate() we may have to clean the ends of several indirect
1029  *      blocks but leave the blocks themselves alive. Block is partially
1030  *      truncated if some data below the new i_size is referred from it (and
1031  *      it is on the path to the first completely truncated data block, indeed).
1032  *      We have to free the top of that path along with everything to the right
1033  *      of the path. Since no allocation past the truncation point is possible
1034  *      until ext2_truncate() finishes, we may safely do the latter, but top
1035  *      of branch may require special attention - pageout below the truncation
1036  *      point might try to populate it.
1037  *
1038  *      We atomically detach the top of branch from the tree, store the block
1039  *      number of its root in *@top, pointers to buffer_heads of partially
1040  *      truncated blocks - in @chain[].bh and pointers to their last elements
1041  *      that should not be removed - in @chain[].p. Return value is the pointer
1042  *      to last filled element of @chain.
1043  *
1044  *      The work left to caller to do the actual freeing of subtrees:
1045  *              a) free the subtree starting from *@top
1046  *              b) free the subtrees whose roots are stored in
1047  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
1048  *              c) free the subtrees growing from the inode past the @chain[0].p
1049  *                      (no partially truncated stuff there).
1050  */
1051
1052 static Indirect *ext2_find_shared(struct inode *inode,
1053                                 int depth,
1054                                 int offsets[4],
1055                                 Indirect chain[4],
1056                                 __le32 *top)
1057 {
1058         Indirect *partial, *p;
1059         int k, err;
1060
1061         *top = 0;
1062         for (k = depth; k > 1 && !offsets[k-1]; k--)
1063                 ;
1064         partial = ext2_get_branch(inode, k, offsets, chain, &err);
1065         if (!partial)
1066                 partial = chain + k-1;
1067         /*
1068          * If the branch acquired continuation since we've looked at it -
1069          * fine, it should all survive and (new) top doesn't belong to us.
1070          */
1071         write_lock(&EXT2_I(inode)->i_meta_lock);
1072         if (!partial->key && *partial->p) {
1073                 write_unlock(&EXT2_I(inode)->i_meta_lock);
1074                 goto no_top;
1075         }
1076         for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
1077                 ;
1078         /*
1079          * OK, we've found the last block that must survive. The rest of our
1080          * branch should be detached before unlocking. However, if that rest
1081          * of branch is all ours and does not grow immediately from the inode
1082          * it's easier to cheat and just decrement partial->p.
1083          */
1084         if (p == chain + k - 1 && p > chain) {
1085                 p->p--;
1086         } else {
1087                 *top = *p->p;
1088                 *p->p = 0;
1089         }
1090         write_unlock(&EXT2_I(inode)->i_meta_lock);
1091
1092         while(partial > p)
1093         {
1094                 brelse(partial->bh);
1095                 partial--;
1096         }
1097 no_top:
1098         return partial;
1099 }
1100
1101 /**
1102  *      ext2_free_data - free a list of data blocks
1103  *      @inode: inode we are dealing with
1104  *      @p:     array of block numbers
1105  *      @q:     points immediately past the end of array
1106  *
1107  *      We are freeing all blocks referred from that array (numbers are
1108  *      stored as little-endian 32-bit) and updating @inode->i_blocks
1109  *      appropriately.
1110  */
1111 static inline void ext2_free_data(struct inode *inode, __le32 *p, __le32 *q)
1112 {
1113         unsigned long block_to_free = 0, count = 0;
1114         unsigned long nr;
1115
1116         for ( ; p < q ; p++) {
1117                 nr = le32_to_cpu(*p);
1118                 if (nr) {
1119                         *p = 0;
1120                         /* accumulate blocks to free if they're contiguous */
1121                         if (count == 0)
1122                                 goto free_this;
1123                         else if (block_to_free == nr - count)
1124                                 count++;
1125                         else {
1126                                 ext2_free_blocks (inode, block_to_free, count);
1127                                 mark_inode_dirty(inode);
1128                         free_this:
1129                                 block_to_free = nr;
1130                                 count = 1;
1131                         }
1132                 }
1133         }
1134         if (count > 0) {
1135                 ext2_free_blocks (inode, block_to_free, count);
1136                 mark_inode_dirty(inode);
1137         }
1138 }
1139
1140 /**
1141  *      ext2_free_branches - free an array of branches
1142  *      @inode: inode we are dealing with
1143  *      @p:     array of block numbers
1144  *      @q:     pointer immediately past the end of array
1145  *      @depth: depth of the branches to free
1146  *
1147  *      We are freeing all blocks referred from these branches (numbers are
1148  *      stored as little-endian 32-bit) and updating @inode->i_blocks
1149  *      appropriately.
1150  */
1151 static void ext2_free_branches(struct inode *inode, __le32 *p, __le32 *q, int depth)
1152 {
1153         struct buffer_head * bh;
1154         unsigned long nr;
1155
1156         if (depth--) {
1157                 int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1158                 for ( ; p < q ; p++) {
1159                         nr = le32_to_cpu(*p);
1160                         if (!nr)
1161                                 continue;
1162                         *p = 0;
1163                         bh = sb_bread(inode->i_sb, nr);
1164                         /*
1165                          * A read failure? Report error and clear slot
1166                          * (should be rare).
1167                          */ 
1168                         if (!bh) {
1169                                 ext2_error(inode->i_sb, "ext2_free_branches",
1170                                         "Read failure, inode=%ld, block=%ld",
1171                                         inode->i_ino, nr);
1172                                 continue;
1173                         }
1174                         ext2_free_branches(inode,
1175                                            (__le32*)bh->b_data,
1176                                            (__le32*)bh->b_data + addr_per_block,
1177                                            depth);
1178                         bforget(bh);
1179                         ext2_free_blocks(inode, nr, 1);
1180                         mark_inode_dirty(inode);
1181                 }
1182         } else
1183                 ext2_free_data(inode, p, q);
1184 }
1185
1186 /* mapping->invalidate_lock must be held when calling this function */
1187 static void __ext2_truncate_blocks(struct inode *inode, loff_t offset)
1188 {
1189         __le32 *i_data = EXT2_I(inode)->i_data;
1190         struct ext2_inode_info *ei = EXT2_I(inode);
1191         int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1192         int offsets[4];
1193         Indirect chain[4];
1194         Indirect *partial;
1195         __le32 nr = 0;
1196         int n;
1197         long iblock;
1198         unsigned blocksize;
1199         blocksize = inode->i_sb->s_blocksize;
1200         iblock = (offset + blocksize-1) >> EXT2_BLOCK_SIZE_BITS(inode->i_sb);
1201
1202 #ifdef CONFIG_FS_DAX
1203         WARN_ON(!rwsem_is_locked(&inode->i_mapping->invalidate_lock));
1204 #endif
1205
1206         n = ext2_block_to_path(inode, iblock, offsets, NULL);
1207         if (n == 0)
1208                 return;
1209
1210         /*
1211          * From here we block out all ext2_get_block() callers who want to
1212          * modify the block allocation tree.
1213          */
1214         mutex_lock(&ei->truncate_mutex);
1215
1216         if (n == 1) {
1217                 ext2_free_data(inode, i_data+offsets[0],
1218                                         i_data + EXT2_NDIR_BLOCKS);
1219                 goto do_indirects;
1220         }
1221
1222         partial = ext2_find_shared(inode, n, offsets, chain, &nr);
1223         /* Kill the top of shared branch (already detached) */
1224         if (nr) {
1225                 if (partial == chain)
1226                         mark_inode_dirty(inode);
1227                 else
1228                         mark_buffer_dirty_inode(partial->bh, inode);
1229                 ext2_free_branches(inode, &nr, &nr+1, (chain+n-1) - partial);
1230         }
1231         /* Clear the ends of indirect blocks on the shared branch */
1232         while (partial > chain) {
1233                 ext2_free_branches(inode,
1234                                    partial->p + 1,
1235                                    (__le32*)partial->bh->b_data+addr_per_block,
1236                                    (chain+n-1) - partial);
1237                 mark_buffer_dirty_inode(partial->bh, inode);
1238                 brelse (partial->bh);
1239                 partial--;
1240         }
1241 do_indirects:
1242         /* Kill the remaining (whole) subtrees */
1243         switch (offsets[0]) {
1244                 default:
1245                         nr = i_data[EXT2_IND_BLOCK];
1246                         if (nr) {
1247                                 i_data[EXT2_IND_BLOCK] = 0;
1248                                 mark_inode_dirty(inode);
1249                                 ext2_free_branches(inode, &nr, &nr+1, 1);
1250                         }
1251                         fallthrough;
1252                 case EXT2_IND_BLOCK:
1253                         nr = i_data[EXT2_DIND_BLOCK];
1254                         if (nr) {
1255                                 i_data[EXT2_DIND_BLOCK] = 0;
1256                                 mark_inode_dirty(inode);
1257                                 ext2_free_branches(inode, &nr, &nr+1, 2);
1258                         }
1259                         fallthrough;
1260                 case EXT2_DIND_BLOCK:
1261                         nr = i_data[EXT2_TIND_BLOCK];
1262                         if (nr) {
1263                                 i_data[EXT2_TIND_BLOCK] = 0;
1264                                 mark_inode_dirty(inode);
1265                                 ext2_free_branches(inode, &nr, &nr+1, 3);
1266                         }
1267                         break;
1268                 case EXT2_TIND_BLOCK:
1269                         ;
1270         }
1271
1272         ext2_discard_reservation(inode);
1273
1274         mutex_unlock(&ei->truncate_mutex);
1275 }
1276
1277 static void ext2_truncate_blocks(struct inode *inode, loff_t offset)
1278 {
1279         if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1280             S_ISLNK(inode->i_mode)))
1281                 return;
1282         if (ext2_inode_is_fast_symlink(inode))
1283                 return;
1284
1285         filemap_invalidate_lock(inode->i_mapping);
1286         __ext2_truncate_blocks(inode, offset);
1287         filemap_invalidate_unlock(inode->i_mapping);
1288 }
1289
1290 static int ext2_setsize(struct inode *inode, loff_t newsize)
1291 {
1292         int error;
1293
1294         if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1295             S_ISLNK(inode->i_mode)))
1296                 return -EINVAL;
1297         if (ext2_inode_is_fast_symlink(inode))
1298                 return -EINVAL;
1299         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1300                 return -EPERM;
1301
1302         inode_dio_wait(inode);
1303
1304         if (IS_DAX(inode)) {
1305                 error = dax_zero_range(inode, newsize,
1306                                        PAGE_ALIGN(newsize) - newsize, NULL,
1307                                        &ext2_iomap_ops);
1308         } else if (test_opt(inode->i_sb, NOBH))
1309                 error = nobh_truncate_page(inode->i_mapping,
1310                                 newsize, ext2_get_block);
1311         else
1312                 error = block_truncate_page(inode->i_mapping,
1313                                 newsize, ext2_get_block);
1314         if (error)
1315                 return error;
1316
1317         filemap_invalidate_lock(inode->i_mapping);
1318         truncate_setsize(inode, newsize);
1319         __ext2_truncate_blocks(inode, newsize);
1320         filemap_invalidate_unlock(inode->i_mapping);
1321
1322         inode->i_mtime = inode->i_ctime = current_time(inode);
1323         if (inode_needs_sync(inode)) {
1324                 sync_mapping_buffers(inode->i_mapping);
1325                 sync_inode_metadata(inode, 1);
1326         } else {
1327                 mark_inode_dirty(inode);
1328         }
1329
1330         return 0;
1331 }
1332
1333 static struct ext2_inode *ext2_get_inode(struct super_block *sb, ino_t ino,
1334                                         struct buffer_head **p)
1335 {
1336         struct buffer_head * bh;
1337         unsigned long block_group;
1338         unsigned long block;
1339         unsigned long offset;
1340         struct ext2_group_desc * gdp;
1341
1342         *p = NULL;
1343         if ((ino != EXT2_ROOT_INO && ino < EXT2_FIRST_INO(sb)) ||
1344             ino > le32_to_cpu(EXT2_SB(sb)->s_es->s_inodes_count))
1345                 goto Einval;
1346
1347         block_group = (ino - 1) / EXT2_INODES_PER_GROUP(sb);
1348         gdp = ext2_get_group_desc(sb, block_group, NULL);
1349         if (!gdp)
1350                 goto Egdp;
1351         /*
1352          * Figure out the offset within the block group inode table
1353          */
1354         offset = ((ino - 1) % EXT2_INODES_PER_GROUP(sb)) * EXT2_INODE_SIZE(sb);
1355         block = le32_to_cpu(gdp->bg_inode_table) +
1356                 (offset >> EXT2_BLOCK_SIZE_BITS(sb));
1357         if (!(bh = sb_bread(sb, block)))
1358                 goto Eio;
1359
1360         *p = bh;
1361         offset &= (EXT2_BLOCK_SIZE(sb) - 1);
1362         return (struct ext2_inode *) (bh->b_data + offset);
1363
1364 Einval:
1365         ext2_error(sb, "ext2_get_inode", "bad inode number: %lu",
1366                    (unsigned long) ino);
1367         return ERR_PTR(-EINVAL);
1368 Eio:
1369         ext2_error(sb, "ext2_get_inode",
1370                    "unable to read inode block - inode=%lu, block=%lu",
1371                    (unsigned long) ino, block);
1372 Egdp:
1373         return ERR_PTR(-EIO);
1374 }
1375
1376 void ext2_set_inode_flags(struct inode *inode)
1377 {
1378         unsigned int flags = EXT2_I(inode)->i_flags;
1379
1380         inode->i_flags &= ~(S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME |
1381                                 S_DIRSYNC | S_DAX);
1382         if (flags & EXT2_SYNC_FL)
1383                 inode->i_flags |= S_SYNC;
1384         if (flags & EXT2_APPEND_FL)
1385                 inode->i_flags |= S_APPEND;
1386         if (flags & EXT2_IMMUTABLE_FL)
1387                 inode->i_flags |= S_IMMUTABLE;
1388         if (flags & EXT2_NOATIME_FL)
1389                 inode->i_flags |= S_NOATIME;
1390         if (flags & EXT2_DIRSYNC_FL)
1391                 inode->i_flags |= S_DIRSYNC;
1392         if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode))
1393                 inode->i_flags |= S_DAX;
1394 }
1395
1396 void ext2_set_file_ops(struct inode *inode)
1397 {
1398         inode->i_op = &ext2_file_inode_operations;
1399         inode->i_fop = &ext2_file_operations;
1400         if (IS_DAX(inode))
1401                 inode->i_mapping->a_ops = &ext2_dax_aops;
1402         else if (test_opt(inode->i_sb, NOBH))
1403                 inode->i_mapping->a_ops = &ext2_nobh_aops;
1404         else
1405                 inode->i_mapping->a_ops = &ext2_aops;
1406 }
1407
1408 struct inode *ext2_iget (struct super_block *sb, unsigned long ino)
1409 {
1410         struct ext2_inode_info *ei;
1411         struct buffer_head * bh = NULL;
1412         struct ext2_inode *raw_inode;
1413         struct inode *inode;
1414         long ret = -EIO;
1415         int n;
1416         uid_t i_uid;
1417         gid_t i_gid;
1418
1419         inode = iget_locked(sb, ino);
1420         if (!inode)
1421                 return ERR_PTR(-ENOMEM);
1422         if (!(inode->i_state & I_NEW))
1423                 return inode;
1424
1425         ei = EXT2_I(inode);
1426         ei->i_block_alloc_info = NULL;
1427
1428         raw_inode = ext2_get_inode(inode->i_sb, ino, &bh);
1429         if (IS_ERR(raw_inode)) {
1430                 ret = PTR_ERR(raw_inode);
1431                 goto bad_inode;
1432         }
1433
1434         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
1435         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
1436         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
1437         if (!(test_opt (inode->i_sb, NO_UID32))) {
1438                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
1439                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
1440         }
1441         i_uid_write(inode, i_uid);
1442         i_gid_write(inode, i_gid);
1443         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
1444         inode->i_size = le32_to_cpu(raw_inode->i_size);
1445         inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
1446         inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
1447         inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
1448         inode->i_atime.tv_nsec = inode->i_mtime.tv_nsec = inode->i_ctime.tv_nsec = 0;
1449         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
1450         /* We now have enough fields to check if the inode was active or not.
1451          * This is needed because nfsd might try to access dead inodes
1452          * the test is that same one that e2fsck uses
1453          * NeilBrown 1999oct15
1454          */
1455         if (inode->i_nlink == 0 && (inode->i_mode == 0 || ei->i_dtime)) {
1456                 /* this inode is deleted */
1457                 ret = -ESTALE;
1458                 goto bad_inode;
1459         }
1460         inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
1461         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
1462         ext2_set_inode_flags(inode);
1463         ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
1464         ei->i_frag_no = raw_inode->i_frag;
1465         ei->i_frag_size = raw_inode->i_fsize;
1466         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
1467         ei->i_dir_acl = 0;
1468
1469         if (ei->i_file_acl &&
1470             !ext2_data_block_valid(EXT2_SB(sb), ei->i_file_acl, 1)) {
1471                 ext2_error(sb, "ext2_iget", "bad extended attribute block %u",
1472                            ei->i_file_acl);
1473                 ret = -EFSCORRUPTED;
1474                 goto bad_inode;
1475         }
1476
1477         if (S_ISREG(inode->i_mode))
1478                 inode->i_size |= ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
1479         else
1480                 ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
1481         if (i_size_read(inode) < 0) {
1482                 ret = -EFSCORRUPTED;
1483                 goto bad_inode;
1484         }
1485         ei->i_dtime = 0;
1486         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
1487         ei->i_state = 0;
1488         ei->i_block_group = (ino - 1) / EXT2_INODES_PER_GROUP(inode->i_sb);
1489         ei->i_dir_start_lookup = 0;
1490
1491         /*
1492          * NOTE! The in-memory inode i_data array is in little-endian order
1493          * even on big-endian machines: we do NOT byteswap the block numbers!
1494          */
1495         for (n = 0; n < EXT2_N_BLOCKS; n++)
1496                 ei->i_data[n] = raw_inode->i_block[n];
1497
1498         if (S_ISREG(inode->i_mode)) {
1499                 ext2_set_file_ops(inode);
1500         } else if (S_ISDIR(inode->i_mode)) {
1501                 inode->i_op = &ext2_dir_inode_operations;
1502                 inode->i_fop = &ext2_dir_operations;
1503                 if (test_opt(inode->i_sb, NOBH))
1504                         inode->i_mapping->a_ops = &ext2_nobh_aops;
1505                 else
1506                         inode->i_mapping->a_ops = &ext2_aops;
1507         } else if (S_ISLNK(inode->i_mode)) {
1508                 if (ext2_inode_is_fast_symlink(inode)) {
1509                         inode->i_link = (char *)ei->i_data;
1510                         inode->i_op = &ext2_fast_symlink_inode_operations;
1511                         nd_terminate_link(ei->i_data, inode->i_size,
1512                                 sizeof(ei->i_data) - 1);
1513                 } else {
1514                         inode->i_op = &ext2_symlink_inode_operations;
1515                         inode_nohighmem(inode);
1516                         if (test_opt(inode->i_sb, NOBH))
1517                                 inode->i_mapping->a_ops = &ext2_nobh_aops;
1518                         else
1519                                 inode->i_mapping->a_ops = &ext2_aops;
1520                 }
1521         } else {
1522                 inode->i_op = &ext2_special_inode_operations;
1523                 if (raw_inode->i_block[0])
1524                         init_special_inode(inode, inode->i_mode,
1525                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
1526                 else 
1527                         init_special_inode(inode, inode->i_mode,
1528                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
1529         }
1530         brelse (bh);
1531         unlock_new_inode(inode);
1532         return inode;
1533         
1534 bad_inode:
1535         brelse(bh);
1536         iget_failed(inode);
1537         return ERR_PTR(ret);
1538 }
1539
1540 static int __ext2_write_inode(struct inode *inode, int do_sync)
1541 {
1542         struct ext2_inode_info *ei = EXT2_I(inode);
1543         struct super_block *sb = inode->i_sb;
1544         ino_t ino = inode->i_ino;
1545         uid_t uid = i_uid_read(inode);
1546         gid_t gid = i_gid_read(inode);
1547         struct buffer_head * bh;
1548         struct ext2_inode * raw_inode = ext2_get_inode(sb, ino, &bh);
1549         int n;
1550         int err = 0;
1551
1552         if (IS_ERR(raw_inode))
1553                 return -EIO;
1554
1555         /* For fields not not tracking in the in-memory inode,
1556          * initialise them to zero for new inodes. */
1557         if (ei->i_state & EXT2_STATE_NEW)
1558                 memset(raw_inode, 0, EXT2_SB(sb)->s_inode_size);
1559
1560         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
1561         if (!(test_opt(sb, NO_UID32))) {
1562                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(uid));
1563                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(gid));
1564 /*
1565  * Fix up interoperability with old kernels. Otherwise, old inodes get
1566  * re-used with the upper 16 bits of the uid/gid intact
1567  */
1568                 if (!ei->i_dtime) {
1569                         raw_inode->i_uid_high = cpu_to_le16(high_16_bits(uid));
1570                         raw_inode->i_gid_high = cpu_to_le16(high_16_bits(gid));
1571                 } else {
1572                         raw_inode->i_uid_high = 0;
1573                         raw_inode->i_gid_high = 0;
1574                 }
1575         } else {
1576                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(uid));
1577                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(gid));
1578                 raw_inode->i_uid_high = 0;
1579                 raw_inode->i_gid_high = 0;
1580         }
1581         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
1582         raw_inode->i_size = cpu_to_le32(inode->i_size);
1583         raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
1584         raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
1585         raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
1586
1587         raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
1588         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
1589         raw_inode->i_flags = cpu_to_le32(ei->i_flags);
1590         raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
1591         raw_inode->i_frag = ei->i_frag_no;
1592         raw_inode->i_fsize = ei->i_frag_size;
1593         raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
1594         if (!S_ISREG(inode->i_mode))
1595                 raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
1596         else {
1597                 raw_inode->i_size_high = cpu_to_le32(inode->i_size >> 32);
1598                 if (inode->i_size > 0x7fffffffULL) {
1599                         if (!EXT2_HAS_RO_COMPAT_FEATURE(sb,
1600                                         EXT2_FEATURE_RO_COMPAT_LARGE_FILE) ||
1601                             EXT2_SB(sb)->s_es->s_rev_level ==
1602                                         cpu_to_le32(EXT2_GOOD_OLD_REV)) {
1603                                /* If this is the first large file
1604                                 * created, add a flag to the superblock.
1605                                 */
1606                                 spin_lock(&EXT2_SB(sb)->s_lock);
1607                                 ext2_update_dynamic_rev(sb);
1608                                 EXT2_SET_RO_COMPAT_FEATURE(sb,
1609                                         EXT2_FEATURE_RO_COMPAT_LARGE_FILE);
1610                                 spin_unlock(&EXT2_SB(sb)->s_lock);
1611                                 ext2_sync_super(sb, EXT2_SB(sb)->s_es, 1);
1612                         }
1613                 }
1614         }
1615         
1616         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
1617         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1618                 if (old_valid_dev(inode->i_rdev)) {
1619                         raw_inode->i_block[0] =
1620                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
1621                         raw_inode->i_block[1] = 0;
1622                 } else {
1623                         raw_inode->i_block[0] = 0;
1624                         raw_inode->i_block[1] =
1625                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
1626                         raw_inode->i_block[2] = 0;
1627                 }
1628         } else for (n = 0; n < EXT2_N_BLOCKS; n++)
1629                 raw_inode->i_block[n] = ei->i_data[n];
1630         mark_buffer_dirty(bh);
1631         if (do_sync) {
1632                 sync_dirty_buffer(bh);
1633                 if (buffer_req(bh) && !buffer_uptodate(bh)) {
1634                         printk ("IO error syncing ext2 inode [%s:%08lx]\n",
1635                                 sb->s_id, (unsigned long) ino);
1636                         err = -EIO;
1637                 }
1638         }
1639         ei->i_state &= ~EXT2_STATE_NEW;
1640         brelse (bh);
1641         return err;
1642 }
1643
1644 int ext2_write_inode(struct inode *inode, struct writeback_control *wbc)
1645 {
1646         return __ext2_write_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1647 }
1648
1649 int ext2_getattr(struct user_namespace *mnt_userns, const struct path *path,
1650                  struct kstat *stat, u32 request_mask, unsigned int query_flags)
1651 {
1652         struct inode *inode = d_inode(path->dentry);
1653         struct ext2_inode_info *ei = EXT2_I(inode);
1654         unsigned int flags;
1655
1656         flags = ei->i_flags & EXT2_FL_USER_VISIBLE;
1657         if (flags & EXT2_APPEND_FL)
1658                 stat->attributes |= STATX_ATTR_APPEND;
1659         if (flags & EXT2_COMPR_FL)
1660                 stat->attributes |= STATX_ATTR_COMPRESSED;
1661         if (flags & EXT2_IMMUTABLE_FL)
1662                 stat->attributes |= STATX_ATTR_IMMUTABLE;
1663         if (flags & EXT2_NODUMP_FL)
1664                 stat->attributes |= STATX_ATTR_NODUMP;
1665         stat->attributes_mask |= (STATX_ATTR_APPEND |
1666                         STATX_ATTR_COMPRESSED |
1667                         STATX_ATTR_ENCRYPTED |
1668                         STATX_ATTR_IMMUTABLE |
1669                         STATX_ATTR_NODUMP);
1670
1671         generic_fillattr(&init_user_ns, inode, stat);
1672         return 0;
1673 }
1674
1675 int ext2_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
1676                  struct iattr *iattr)
1677 {
1678         struct inode *inode = d_inode(dentry);
1679         int error;
1680
1681         error = setattr_prepare(&init_user_ns, dentry, iattr);
1682         if (error)
1683                 return error;
1684
1685         if (is_quota_modification(inode, iattr)) {
1686                 error = dquot_initialize(inode);
1687                 if (error)
1688                         return error;
1689         }
1690         if ((iattr->ia_valid & ATTR_UID && !uid_eq(iattr->ia_uid, inode->i_uid)) ||
1691             (iattr->ia_valid & ATTR_GID && !gid_eq(iattr->ia_gid, inode->i_gid))) {
1692                 error = dquot_transfer(inode, iattr);
1693                 if (error)
1694                         return error;
1695         }
1696         if (iattr->ia_valid & ATTR_SIZE && iattr->ia_size != inode->i_size) {
1697                 error = ext2_setsize(inode, iattr->ia_size);
1698                 if (error)
1699                         return error;
1700         }
1701         setattr_copy(&init_user_ns, inode, iattr);
1702         if (iattr->ia_valid & ATTR_MODE)
1703                 error = posix_acl_chmod(&init_user_ns, inode, inode->i_mode);
1704         mark_inode_dirty(inode);
1705
1706         return error;
1707 }