sched/headers: Prepare for new header dependencies before moving code to <linux/sched...
[linux-2.6-microblaze.git] / fs / exec.c
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats.
23  */
24
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/vmacache.h>
30 #include <linux/stat.h>
31 #include <linux/fcntl.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/sched/mm.h>
36 #include <linux/sched/coredump.h>
37 #include <linux/sched/signal.h>
38 #include <linux/sched/numa_balancing.h>
39 #include <linux/pagemap.h>
40 #include <linux/perf_event.h>
41 #include <linux/highmem.h>
42 #include <linux/spinlock.h>
43 #include <linux/key.h>
44 #include <linux/personality.h>
45 #include <linux/binfmts.h>
46 #include <linux/utsname.h>
47 #include <linux/pid_namespace.h>
48 #include <linux/module.h>
49 #include <linux/namei.h>
50 #include <linux/mount.h>
51 #include <linux/security.h>
52 #include <linux/syscalls.h>
53 #include <linux/tsacct_kern.h>
54 #include <linux/cn_proc.h>
55 #include <linux/audit.h>
56 #include <linux/tracehook.h>
57 #include <linux/kmod.h>
58 #include <linux/fsnotify.h>
59 #include <linux/fs_struct.h>
60 #include <linux/pipe_fs_i.h>
61 #include <linux/oom.h>
62 #include <linux/compat.h>
63 #include <linux/vmalloc.h>
64
65 #include <linux/uaccess.h>
66 #include <asm/mmu_context.h>
67 #include <asm/tlb.h>
68
69 #include <trace/events/task.h>
70 #include "internal.h"
71
72 #include <trace/events/sched.h>
73
74 int suid_dumpable = 0;
75
76 static LIST_HEAD(formats);
77 static DEFINE_RWLOCK(binfmt_lock);
78
79 void __register_binfmt(struct linux_binfmt * fmt, int insert)
80 {
81         BUG_ON(!fmt);
82         if (WARN_ON(!fmt->load_binary))
83                 return;
84         write_lock(&binfmt_lock);
85         insert ? list_add(&fmt->lh, &formats) :
86                  list_add_tail(&fmt->lh, &formats);
87         write_unlock(&binfmt_lock);
88 }
89
90 EXPORT_SYMBOL(__register_binfmt);
91
92 void unregister_binfmt(struct linux_binfmt * fmt)
93 {
94         write_lock(&binfmt_lock);
95         list_del(&fmt->lh);
96         write_unlock(&binfmt_lock);
97 }
98
99 EXPORT_SYMBOL(unregister_binfmt);
100
101 static inline void put_binfmt(struct linux_binfmt * fmt)
102 {
103         module_put(fmt->module);
104 }
105
106 bool path_noexec(const struct path *path)
107 {
108         return (path->mnt->mnt_flags & MNT_NOEXEC) ||
109                (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
110 }
111
112 #ifdef CONFIG_USELIB
113 /*
114  * Note that a shared library must be both readable and executable due to
115  * security reasons.
116  *
117  * Also note that we take the address to load from from the file itself.
118  */
119 SYSCALL_DEFINE1(uselib, const char __user *, library)
120 {
121         struct linux_binfmt *fmt;
122         struct file *file;
123         struct filename *tmp = getname(library);
124         int error = PTR_ERR(tmp);
125         static const struct open_flags uselib_flags = {
126                 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
127                 .acc_mode = MAY_READ | MAY_EXEC,
128                 .intent = LOOKUP_OPEN,
129                 .lookup_flags = LOOKUP_FOLLOW,
130         };
131
132         if (IS_ERR(tmp))
133                 goto out;
134
135         file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
136         putname(tmp);
137         error = PTR_ERR(file);
138         if (IS_ERR(file))
139                 goto out;
140
141         error = -EINVAL;
142         if (!S_ISREG(file_inode(file)->i_mode))
143                 goto exit;
144
145         error = -EACCES;
146         if (path_noexec(&file->f_path))
147                 goto exit;
148
149         fsnotify_open(file);
150
151         error = -ENOEXEC;
152
153         read_lock(&binfmt_lock);
154         list_for_each_entry(fmt, &formats, lh) {
155                 if (!fmt->load_shlib)
156                         continue;
157                 if (!try_module_get(fmt->module))
158                         continue;
159                 read_unlock(&binfmt_lock);
160                 error = fmt->load_shlib(file);
161                 read_lock(&binfmt_lock);
162                 put_binfmt(fmt);
163                 if (error != -ENOEXEC)
164                         break;
165         }
166         read_unlock(&binfmt_lock);
167 exit:
168         fput(file);
169 out:
170         return error;
171 }
172 #endif /* #ifdef CONFIG_USELIB */
173
174 #ifdef CONFIG_MMU
175 /*
176  * The nascent bprm->mm is not visible until exec_mmap() but it can
177  * use a lot of memory, account these pages in current->mm temporary
178  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
179  * change the counter back via acct_arg_size(0).
180  */
181 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
182 {
183         struct mm_struct *mm = current->mm;
184         long diff = (long)(pages - bprm->vma_pages);
185
186         if (!mm || !diff)
187                 return;
188
189         bprm->vma_pages = pages;
190         add_mm_counter(mm, MM_ANONPAGES, diff);
191 }
192
193 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
194                 int write)
195 {
196         struct page *page;
197         int ret;
198         unsigned int gup_flags = FOLL_FORCE;
199
200 #ifdef CONFIG_STACK_GROWSUP
201         if (write) {
202                 ret = expand_downwards(bprm->vma, pos);
203                 if (ret < 0)
204                         return NULL;
205         }
206 #endif
207
208         if (write)
209                 gup_flags |= FOLL_WRITE;
210
211         /*
212          * We are doing an exec().  'current' is the process
213          * doing the exec and bprm->mm is the new process's mm.
214          */
215         ret = get_user_pages_remote(current, bprm->mm, pos, 1, gup_flags,
216                         &page, NULL, NULL);
217         if (ret <= 0)
218                 return NULL;
219
220         if (write) {
221                 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
222                 struct rlimit *rlim;
223
224                 acct_arg_size(bprm, size / PAGE_SIZE);
225
226                 /*
227                  * We've historically supported up to 32 pages (ARG_MAX)
228                  * of argument strings even with small stacks
229                  */
230                 if (size <= ARG_MAX)
231                         return page;
232
233                 /*
234                  * Limit to 1/4-th the stack size for the argv+env strings.
235                  * This ensures that:
236                  *  - the remaining binfmt code will not run out of stack space,
237                  *  - the program will have a reasonable amount of stack left
238                  *    to work from.
239                  */
240                 rlim = current->signal->rlim;
241                 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
242                         put_page(page);
243                         return NULL;
244                 }
245         }
246
247         return page;
248 }
249
250 static void put_arg_page(struct page *page)
251 {
252         put_page(page);
253 }
254
255 static void free_arg_pages(struct linux_binprm *bprm)
256 {
257 }
258
259 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
260                 struct page *page)
261 {
262         flush_cache_page(bprm->vma, pos, page_to_pfn(page));
263 }
264
265 static int __bprm_mm_init(struct linux_binprm *bprm)
266 {
267         int err;
268         struct vm_area_struct *vma = NULL;
269         struct mm_struct *mm = bprm->mm;
270
271         bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
272         if (!vma)
273                 return -ENOMEM;
274
275         if (down_write_killable(&mm->mmap_sem)) {
276                 err = -EINTR;
277                 goto err_free;
278         }
279         vma->vm_mm = mm;
280
281         /*
282          * Place the stack at the largest stack address the architecture
283          * supports. Later, we'll move this to an appropriate place. We don't
284          * use STACK_TOP because that can depend on attributes which aren't
285          * configured yet.
286          */
287         BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
288         vma->vm_end = STACK_TOP_MAX;
289         vma->vm_start = vma->vm_end - PAGE_SIZE;
290         vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
291         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
292         INIT_LIST_HEAD(&vma->anon_vma_chain);
293
294         err = insert_vm_struct(mm, vma);
295         if (err)
296                 goto err;
297
298         mm->stack_vm = mm->total_vm = 1;
299         arch_bprm_mm_init(mm, vma);
300         up_write(&mm->mmap_sem);
301         bprm->p = vma->vm_end - sizeof(void *);
302         return 0;
303 err:
304         up_write(&mm->mmap_sem);
305 err_free:
306         bprm->vma = NULL;
307         kmem_cache_free(vm_area_cachep, vma);
308         return err;
309 }
310
311 static bool valid_arg_len(struct linux_binprm *bprm, long len)
312 {
313         return len <= MAX_ARG_STRLEN;
314 }
315
316 #else
317
318 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
319 {
320 }
321
322 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
323                 int write)
324 {
325         struct page *page;
326
327         page = bprm->page[pos / PAGE_SIZE];
328         if (!page && write) {
329                 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
330                 if (!page)
331                         return NULL;
332                 bprm->page[pos / PAGE_SIZE] = page;
333         }
334
335         return page;
336 }
337
338 static void put_arg_page(struct page *page)
339 {
340 }
341
342 static void free_arg_page(struct linux_binprm *bprm, int i)
343 {
344         if (bprm->page[i]) {
345                 __free_page(bprm->page[i]);
346                 bprm->page[i] = NULL;
347         }
348 }
349
350 static void free_arg_pages(struct linux_binprm *bprm)
351 {
352         int i;
353
354         for (i = 0; i < MAX_ARG_PAGES; i++)
355                 free_arg_page(bprm, i);
356 }
357
358 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
359                 struct page *page)
360 {
361 }
362
363 static int __bprm_mm_init(struct linux_binprm *bprm)
364 {
365         bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
366         return 0;
367 }
368
369 static bool valid_arg_len(struct linux_binprm *bprm, long len)
370 {
371         return len <= bprm->p;
372 }
373
374 #endif /* CONFIG_MMU */
375
376 /*
377  * Create a new mm_struct and populate it with a temporary stack
378  * vm_area_struct.  We don't have enough context at this point to set the stack
379  * flags, permissions, and offset, so we use temporary values.  We'll update
380  * them later in setup_arg_pages().
381  */
382 static int bprm_mm_init(struct linux_binprm *bprm)
383 {
384         int err;
385         struct mm_struct *mm = NULL;
386
387         bprm->mm = mm = mm_alloc();
388         err = -ENOMEM;
389         if (!mm)
390                 goto err;
391
392         err = __bprm_mm_init(bprm);
393         if (err)
394                 goto err;
395
396         return 0;
397
398 err:
399         if (mm) {
400                 bprm->mm = NULL;
401                 mmdrop(mm);
402         }
403
404         return err;
405 }
406
407 struct user_arg_ptr {
408 #ifdef CONFIG_COMPAT
409         bool is_compat;
410 #endif
411         union {
412                 const char __user *const __user *native;
413 #ifdef CONFIG_COMPAT
414                 const compat_uptr_t __user *compat;
415 #endif
416         } ptr;
417 };
418
419 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
420 {
421         const char __user *native;
422
423 #ifdef CONFIG_COMPAT
424         if (unlikely(argv.is_compat)) {
425                 compat_uptr_t compat;
426
427                 if (get_user(compat, argv.ptr.compat + nr))
428                         return ERR_PTR(-EFAULT);
429
430                 return compat_ptr(compat);
431         }
432 #endif
433
434         if (get_user(native, argv.ptr.native + nr))
435                 return ERR_PTR(-EFAULT);
436
437         return native;
438 }
439
440 /*
441  * count() counts the number of strings in array ARGV.
442  */
443 static int count(struct user_arg_ptr argv, int max)
444 {
445         int i = 0;
446
447         if (argv.ptr.native != NULL) {
448                 for (;;) {
449                         const char __user *p = get_user_arg_ptr(argv, i);
450
451                         if (!p)
452                                 break;
453
454                         if (IS_ERR(p))
455                                 return -EFAULT;
456
457                         if (i >= max)
458                                 return -E2BIG;
459                         ++i;
460
461                         if (fatal_signal_pending(current))
462                                 return -ERESTARTNOHAND;
463                         cond_resched();
464                 }
465         }
466         return i;
467 }
468
469 /*
470  * 'copy_strings()' copies argument/environment strings from the old
471  * processes's memory to the new process's stack.  The call to get_user_pages()
472  * ensures the destination page is created and not swapped out.
473  */
474 static int copy_strings(int argc, struct user_arg_ptr argv,
475                         struct linux_binprm *bprm)
476 {
477         struct page *kmapped_page = NULL;
478         char *kaddr = NULL;
479         unsigned long kpos = 0;
480         int ret;
481
482         while (argc-- > 0) {
483                 const char __user *str;
484                 int len;
485                 unsigned long pos;
486
487                 ret = -EFAULT;
488                 str = get_user_arg_ptr(argv, argc);
489                 if (IS_ERR(str))
490                         goto out;
491
492                 len = strnlen_user(str, MAX_ARG_STRLEN);
493                 if (!len)
494                         goto out;
495
496                 ret = -E2BIG;
497                 if (!valid_arg_len(bprm, len))
498                         goto out;
499
500                 /* We're going to work our way backwords. */
501                 pos = bprm->p;
502                 str += len;
503                 bprm->p -= len;
504
505                 while (len > 0) {
506                         int offset, bytes_to_copy;
507
508                         if (fatal_signal_pending(current)) {
509                                 ret = -ERESTARTNOHAND;
510                                 goto out;
511                         }
512                         cond_resched();
513
514                         offset = pos % PAGE_SIZE;
515                         if (offset == 0)
516                                 offset = PAGE_SIZE;
517
518                         bytes_to_copy = offset;
519                         if (bytes_to_copy > len)
520                                 bytes_to_copy = len;
521
522                         offset -= bytes_to_copy;
523                         pos -= bytes_to_copy;
524                         str -= bytes_to_copy;
525                         len -= bytes_to_copy;
526
527                         if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
528                                 struct page *page;
529
530                                 page = get_arg_page(bprm, pos, 1);
531                                 if (!page) {
532                                         ret = -E2BIG;
533                                         goto out;
534                                 }
535
536                                 if (kmapped_page) {
537                                         flush_kernel_dcache_page(kmapped_page);
538                                         kunmap(kmapped_page);
539                                         put_arg_page(kmapped_page);
540                                 }
541                                 kmapped_page = page;
542                                 kaddr = kmap(kmapped_page);
543                                 kpos = pos & PAGE_MASK;
544                                 flush_arg_page(bprm, kpos, kmapped_page);
545                         }
546                         if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
547                                 ret = -EFAULT;
548                                 goto out;
549                         }
550                 }
551         }
552         ret = 0;
553 out:
554         if (kmapped_page) {
555                 flush_kernel_dcache_page(kmapped_page);
556                 kunmap(kmapped_page);
557                 put_arg_page(kmapped_page);
558         }
559         return ret;
560 }
561
562 /*
563  * Like copy_strings, but get argv and its values from kernel memory.
564  */
565 int copy_strings_kernel(int argc, const char *const *__argv,
566                         struct linux_binprm *bprm)
567 {
568         int r;
569         mm_segment_t oldfs = get_fs();
570         struct user_arg_ptr argv = {
571                 .ptr.native = (const char __user *const  __user *)__argv,
572         };
573
574         set_fs(KERNEL_DS);
575         r = copy_strings(argc, argv, bprm);
576         set_fs(oldfs);
577
578         return r;
579 }
580 EXPORT_SYMBOL(copy_strings_kernel);
581
582 #ifdef CONFIG_MMU
583
584 /*
585  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
586  * the binfmt code determines where the new stack should reside, we shift it to
587  * its final location.  The process proceeds as follows:
588  *
589  * 1) Use shift to calculate the new vma endpoints.
590  * 2) Extend vma to cover both the old and new ranges.  This ensures the
591  *    arguments passed to subsequent functions are consistent.
592  * 3) Move vma's page tables to the new range.
593  * 4) Free up any cleared pgd range.
594  * 5) Shrink the vma to cover only the new range.
595  */
596 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
597 {
598         struct mm_struct *mm = vma->vm_mm;
599         unsigned long old_start = vma->vm_start;
600         unsigned long old_end = vma->vm_end;
601         unsigned long length = old_end - old_start;
602         unsigned long new_start = old_start - shift;
603         unsigned long new_end = old_end - shift;
604         struct mmu_gather tlb;
605
606         BUG_ON(new_start > new_end);
607
608         /*
609          * ensure there are no vmas between where we want to go
610          * and where we are
611          */
612         if (vma != find_vma(mm, new_start))
613                 return -EFAULT;
614
615         /*
616          * cover the whole range: [new_start, old_end)
617          */
618         if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
619                 return -ENOMEM;
620
621         /*
622          * move the page tables downwards, on failure we rely on
623          * process cleanup to remove whatever mess we made.
624          */
625         if (length != move_page_tables(vma, old_start,
626                                        vma, new_start, length, false))
627                 return -ENOMEM;
628
629         lru_add_drain();
630         tlb_gather_mmu(&tlb, mm, old_start, old_end);
631         if (new_end > old_start) {
632                 /*
633                  * when the old and new regions overlap clear from new_end.
634                  */
635                 free_pgd_range(&tlb, new_end, old_end, new_end,
636                         vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
637         } else {
638                 /*
639                  * otherwise, clean from old_start; this is done to not touch
640                  * the address space in [new_end, old_start) some architectures
641                  * have constraints on va-space that make this illegal (IA64) -
642                  * for the others its just a little faster.
643                  */
644                 free_pgd_range(&tlb, old_start, old_end, new_end,
645                         vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
646         }
647         tlb_finish_mmu(&tlb, old_start, old_end);
648
649         /*
650          * Shrink the vma to just the new range.  Always succeeds.
651          */
652         vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
653
654         return 0;
655 }
656
657 /*
658  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
659  * the stack is optionally relocated, and some extra space is added.
660  */
661 int setup_arg_pages(struct linux_binprm *bprm,
662                     unsigned long stack_top,
663                     int executable_stack)
664 {
665         unsigned long ret;
666         unsigned long stack_shift;
667         struct mm_struct *mm = current->mm;
668         struct vm_area_struct *vma = bprm->vma;
669         struct vm_area_struct *prev = NULL;
670         unsigned long vm_flags;
671         unsigned long stack_base;
672         unsigned long stack_size;
673         unsigned long stack_expand;
674         unsigned long rlim_stack;
675
676 #ifdef CONFIG_STACK_GROWSUP
677         /* Limit stack size */
678         stack_base = rlimit_max(RLIMIT_STACK);
679         if (stack_base > STACK_SIZE_MAX)
680                 stack_base = STACK_SIZE_MAX;
681
682         /* Add space for stack randomization. */
683         stack_base += (STACK_RND_MASK << PAGE_SHIFT);
684
685         /* Make sure we didn't let the argument array grow too large. */
686         if (vma->vm_end - vma->vm_start > stack_base)
687                 return -ENOMEM;
688
689         stack_base = PAGE_ALIGN(stack_top - stack_base);
690
691         stack_shift = vma->vm_start - stack_base;
692         mm->arg_start = bprm->p - stack_shift;
693         bprm->p = vma->vm_end - stack_shift;
694 #else
695         stack_top = arch_align_stack(stack_top);
696         stack_top = PAGE_ALIGN(stack_top);
697
698         if (unlikely(stack_top < mmap_min_addr) ||
699             unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
700                 return -ENOMEM;
701
702         stack_shift = vma->vm_end - stack_top;
703
704         bprm->p -= stack_shift;
705         mm->arg_start = bprm->p;
706 #endif
707
708         if (bprm->loader)
709                 bprm->loader -= stack_shift;
710         bprm->exec -= stack_shift;
711
712         if (down_write_killable(&mm->mmap_sem))
713                 return -EINTR;
714
715         vm_flags = VM_STACK_FLAGS;
716
717         /*
718          * Adjust stack execute permissions; explicitly enable for
719          * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
720          * (arch default) otherwise.
721          */
722         if (unlikely(executable_stack == EXSTACK_ENABLE_X))
723                 vm_flags |= VM_EXEC;
724         else if (executable_stack == EXSTACK_DISABLE_X)
725                 vm_flags &= ~VM_EXEC;
726         vm_flags |= mm->def_flags;
727         vm_flags |= VM_STACK_INCOMPLETE_SETUP;
728
729         ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
730                         vm_flags);
731         if (ret)
732                 goto out_unlock;
733         BUG_ON(prev != vma);
734
735         /* Move stack pages down in memory. */
736         if (stack_shift) {
737                 ret = shift_arg_pages(vma, stack_shift);
738                 if (ret)
739                         goto out_unlock;
740         }
741
742         /* mprotect_fixup is overkill to remove the temporary stack flags */
743         vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
744
745         stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
746         stack_size = vma->vm_end - vma->vm_start;
747         /*
748          * Align this down to a page boundary as expand_stack
749          * will align it up.
750          */
751         rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
752 #ifdef CONFIG_STACK_GROWSUP
753         if (stack_size + stack_expand > rlim_stack)
754                 stack_base = vma->vm_start + rlim_stack;
755         else
756                 stack_base = vma->vm_end + stack_expand;
757 #else
758         if (stack_size + stack_expand > rlim_stack)
759                 stack_base = vma->vm_end - rlim_stack;
760         else
761                 stack_base = vma->vm_start - stack_expand;
762 #endif
763         current->mm->start_stack = bprm->p;
764         ret = expand_stack(vma, stack_base);
765         if (ret)
766                 ret = -EFAULT;
767
768 out_unlock:
769         up_write(&mm->mmap_sem);
770         return ret;
771 }
772 EXPORT_SYMBOL(setup_arg_pages);
773
774 #else
775
776 /*
777  * Transfer the program arguments and environment from the holding pages
778  * onto the stack. The provided stack pointer is adjusted accordingly.
779  */
780 int transfer_args_to_stack(struct linux_binprm *bprm,
781                            unsigned long *sp_location)
782 {
783         unsigned long index, stop, sp;
784         int ret = 0;
785
786         stop = bprm->p >> PAGE_SHIFT;
787         sp = *sp_location;
788
789         for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
790                 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
791                 char *src = kmap(bprm->page[index]) + offset;
792                 sp -= PAGE_SIZE - offset;
793                 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
794                         ret = -EFAULT;
795                 kunmap(bprm->page[index]);
796                 if (ret)
797                         goto out;
798         }
799
800         *sp_location = sp;
801
802 out:
803         return ret;
804 }
805 EXPORT_SYMBOL(transfer_args_to_stack);
806
807 #endif /* CONFIG_MMU */
808
809 static struct file *do_open_execat(int fd, struct filename *name, int flags)
810 {
811         struct file *file;
812         int err;
813         struct open_flags open_exec_flags = {
814                 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
815                 .acc_mode = MAY_EXEC,
816                 .intent = LOOKUP_OPEN,
817                 .lookup_flags = LOOKUP_FOLLOW,
818         };
819
820         if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
821                 return ERR_PTR(-EINVAL);
822         if (flags & AT_SYMLINK_NOFOLLOW)
823                 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
824         if (flags & AT_EMPTY_PATH)
825                 open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
826
827         file = do_filp_open(fd, name, &open_exec_flags);
828         if (IS_ERR(file))
829                 goto out;
830
831         err = -EACCES;
832         if (!S_ISREG(file_inode(file)->i_mode))
833                 goto exit;
834
835         if (path_noexec(&file->f_path))
836                 goto exit;
837
838         err = deny_write_access(file);
839         if (err)
840                 goto exit;
841
842         if (name->name[0] != '\0')
843                 fsnotify_open(file);
844
845 out:
846         return file;
847
848 exit:
849         fput(file);
850         return ERR_PTR(err);
851 }
852
853 struct file *open_exec(const char *name)
854 {
855         struct filename *filename = getname_kernel(name);
856         struct file *f = ERR_CAST(filename);
857
858         if (!IS_ERR(filename)) {
859                 f = do_open_execat(AT_FDCWD, filename, 0);
860                 putname(filename);
861         }
862         return f;
863 }
864 EXPORT_SYMBOL(open_exec);
865
866 int kernel_read(struct file *file, loff_t offset,
867                 char *addr, unsigned long count)
868 {
869         mm_segment_t old_fs;
870         loff_t pos = offset;
871         int result;
872
873         old_fs = get_fs();
874         set_fs(get_ds());
875         /* The cast to a user pointer is valid due to the set_fs() */
876         result = vfs_read(file, (void __user *)addr, count, &pos);
877         set_fs(old_fs);
878         return result;
879 }
880
881 EXPORT_SYMBOL(kernel_read);
882
883 int kernel_read_file(struct file *file, void **buf, loff_t *size,
884                      loff_t max_size, enum kernel_read_file_id id)
885 {
886         loff_t i_size, pos;
887         ssize_t bytes = 0;
888         int ret;
889
890         if (!S_ISREG(file_inode(file)->i_mode) || max_size < 0)
891                 return -EINVAL;
892
893         ret = security_kernel_read_file(file, id);
894         if (ret)
895                 return ret;
896
897         ret = deny_write_access(file);
898         if (ret)
899                 return ret;
900
901         i_size = i_size_read(file_inode(file));
902         if (max_size > 0 && i_size > max_size) {
903                 ret = -EFBIG;
904                 goto out;
905         }
906         if (i_size <= 0) {
907                 ret = -EINVAL;
908                 goto out;
909         }
910
911         if (id != READING_FIRMWARE_PREALLOC_BUFFER)
912                 *buf = vmalloc(i_size);
913         if (!*buf) {
914                 ret = -ENOMEM;
915                 goto out;
916         }
917
918         pos = 0;
919         while (pos < i_size) {
920                 bytes = kernel_read(file, pos, (char *)(*buf) + pos,
921                                     i_size - pos);
922                 if (bytes < 0) {
923                         ret = bytes;
924                         goto out;
925                 }
926
927                 if (bytes == 0)
928                         break;
929                 pos += bytes;
930         }
931
932         if (pos != i_size) {
933                 ret = -EIO;
934                 goto out_free;
935         }
936
937         ret = security_kernel_post_read_file(file, *buf, i_size, id);
938         if (!ret)
939                 *size = pos;
940
941 out_free:
942         if (ret < 0) {
943                 if (id != READING_FIRMWARE_PREALLOC_BUFFER) {
944                         vfree(*buf);
945                         *buf = NULL;
946                 }
947         }
948
949 out:
950         allow_write_access(file);
951         return ret;
952 }
953 EXPORT_SYMBOL_GPL(kernel_read_file);
954
955 int kernel_read_file_from_path(char *path, void **buf, loff_t *size,
956                                loff_t max_size, enum kernel_read_file_id id)
957 {
958         struct file *file;
959         int ret;
960
961         if (!path || !*path)
962                 return -EINVAL;
963
964         file = filp_open(path, O_RDONLY, 0);
965         if (IS_ERR(file))
966                 return PTR_ERR(file);
967
968         ret = kernel_read_file(file, buf, size, max_size, id);
969         fput(file);
970         return ret;
971 }
972 EXPORT_SYMBOL_GPL(kernel_read_file_from_path);
973
974 int kernel_read_file_from_fd(int fd, void **buf, loff_t *size, loff_t max_size,
975                              enum kernel_read_file_id id)
976 {
977         struct fd f = fdget(fd);
978         int ret = -EBADF;
979
980         if (!f.file)
981                 goto out;
982
983         ret = kernel_read_file(f.file, buf, size, max_size, id);
984 out:
985         fdput(f);
986         return ret;
987 }
988 EXPORT_SYMBOL_GPL(kernel_read_file_from_fd);
989
990 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
991 {
992         ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
993         if (res > 0)
994                 flush_icache_range(addr, addr + len);
995         return res;
996 }
997 EXPORT_SYMBOL(read_code);
998
999 static int exec_mmap(struct mm_struct *mm)
1000 {
1001         struct task_struct *tsk;
1002         struct mm_struct *old_mm, *active_mm;
1003
1004         /* Notify parent that we're no longer interested in the old VM */
1005         tsk = current;
1006         old_mm = current->mm;
1007         mm_release(tsk, old_mm);
1008
1009         if (old_mm) {
1010                 sync_mm_rss(old_mm);
1011                 /*
1012                  * Make sure that if there is a core dump in progress
1013                  * for the old mm, we get out and die instead of going
1014                  * through with the exec.  We must hold mmap_sem around
1015                  * checking core_state and changing tsk->mm.
1016                  */
1017                 down_read(&old_mm->mmap_sem);
1018                 if (unlikely(old_mm->core_state)) {
1019                         up_read(&old_mm->mmap_sem);
1020                         return -EINTR;
1021                 }
1022         }
1023         task_lock(tsk);
1024         active_mm = tsk->active_mm;
1025         tsk->mm = mm;
1026         tsk->active_mm = mm;
1027         activate_mm(active_mm, mm);
1028         tsk->mm->vmacache_seqnum = 0;
1029         vmacache_flush(tsk);
1030         task_unlock(tsk);
1031         if (old_mm) {
1032                 up_read(&old_mm->mmap_sem);
1033                 BUG_ON(active_mm != old_mm);
1034                 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1035                 mm_update_next_owner(old_mm);
1036                 mmput(old_mm);
1037                 return 0;
1038         }
1039         mmdrop(active_mm);
1040         return 0;
1041 }
1042
1043 /*
1044  * This function makes sure the current process has its own signal table,
1045  * so that flush_signal_handlers can later reset the handlers without
1046  * disturbing other processes.  (Other processes might share the signal
1047  * table via the CLONE_SIGHAND option to clone().)
1048  */
1049 static int de_thread(struct task_struct *tsk)
1050 {
1051         struct signal_struct *sig = tsk->signal;
1052         struct sighand_struct *oldsighand = tsk->sighand;
1053         spinlock_t *lock = &oldsighand->siglock;
1054
1055         if (thread_group_empty(tsk))
1056                 goto no_thread_group;
1057
1058         /*
1059          * Kill all other threads in the thread group.
1060          */
1061         spin_lock_irq(lock);
1062         if (signal_group_exit(sig)) {
1063                 /*
1064                  * Another group action in progress, just
1065                  * return so that the signal is processed.
1066                  */
1067                 spin_unlock_irq(lock);
1068                 return -EAGAIN;
1069         }
1070
1071         sig->group_exit_task = tsk;
1072         sig->notify_count = zap_other_threads(tsk);
1073         if (!thread_group_leader(tsk))
1074                 sig->notify_count--;
1075
1076         while (sig->notify_count) {
1077                 __set_current_state(TASK_KILLABLE);
1078                 spin_unlock_irq(lock);
1079                 schedule();
1080                 if (unlikely(__fatal_signal_pending(tsk)))
1081                         goto killed;
1082                 spin_lock_irq(lock);
1083         }
1084         spin_unlock_irq(lock);
1085
1086         /*
1087          * At this point all other threads have exited, all we have to
1088          * do is to wait for the thread group leader to become inactive,
1089          * and to assume its PID:
1090          */
1091         if (!thread_group_leader(tsk)) {
1092                 struct task_struct *leader = tsk->group_leader;
1093
1094                 for (;;) {
1095                         cgroup_threadgroup_change_begin(tsk);
1096                         write_lock_irq(&tasklist_lock);
1097                         /*
1098                          * Do this under tasklist_lock to ensure that
1099                          * exit_notify() can't miss ->group_exit_task
1100                          */
1101                         sig->notify_count = -1;
1102                         if (likely(leader->exit_state))
1103                                 break;
1104                         __set_current_state(TASK_KILLABLE);
1105                         write_unlock_irq(&tasklist_lock);
1106                         cgroup_threadgroup_change_end(tsk);
1107                         schedule();
1108                         if (unlikely(__fatal_signal_pending(tsk)))
1109                                 goto killed;
1110                 }
1111
1112                 /*
1113                  * The only record we have of the real-time age of a
1114                  * process, regardless of execs it's done, is start_time.
1115                  * All the past CPU time is accumulated in signal_struct
1116                  * from sister threads now dead.  But in this non-leader
1117                  * exec, nothing survives from the original leader thread,
1118                  * whose birth marks the true age of this process now.
1119                  * When we take on its identity by switching to its PID, we
1120                  * also take its birthdate (always earlier than our own).
1121                  */
1122                 tsk->start_time = leader->start_time;
1123                 tsk->real_start_time = leader->real_start_time;
1124
1125                 BUG_ON(!same_thread_group(leader, tsk));
1126                 BUG_ON(has_group_leader_pid(tsk));
1127                 /*
1128                  * An exec() starts a new thread group with the
1129                  * TGID of the previous thread group. Rehash the
1130                  * two threads with a switched PID, and release
1131                  * the former thread group leader:
1132                  */
1133
1134                 /* Become a process group leader with the old leader's pid.
1135                  * The old leader becomes a thread of the this thread group.
1136                  * Note: The old leader also uses this pid until release_task
1137                  *       is called.  Odd but simple and correct.
1138                  */
1139                 tsk->pid = leader->pid;
1140                 change_pid(tsk, PIDTYPE_PID, task_pid(leader));
1141                 transfer_pid(leader, tsk, PIDTYPE_PGID);
1142                 transfer_pid(leader, tsk, PIDTYPE_SID);
1143
1144                 list_replace_rcu(&leader->tasks, &tsk->tasks);
1145                 list_replace_init(&leader->sibling, &tsk->sibling);
1146
1147                 tsk->group_leader = tsk;
1148                 leader->group_leader = tsk;
1149
1150                 tsk->exit_signal = SIGCHLD;
1151                 leader->exit_signal = -1;
1152
1153                 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1154                 leader->exit_state = EXIT_DEAD;
1155
1156                 /*
1157                  * We are going to release_task()->ptrace_unlink() silently,
1158                  * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1159                  * the tracer wont't block again waiting for this thread.
1160                  */
1161                 if (unlikely(leader->ptrace))
1162                         __wake_up_parent(leader, leader->parent);
1163                 write_unlock_irq(&tasklist_lock);
1164                 cgroup_threadgroup_change_end(tsk);
1165
1166                 release_task(leader);
1167         }
1168
1169         sig->group_exit_task = NULL;
1170         sig->notify_count = 0;
1171
1172 no_thread_group:
1173         /* we have changed execution domain */
1174         tsk->exit_signal = SIGCHLD;
1175
1176 #ifdef CONFIG_POSIX_TIMERS
1177         exit_itimers(sig);
1178         flush_itimer_signals();
1179 #endif
1180
1181         if (atomic_read(&oldsighand->count) != 1) {
1182                 struct sighand_struct *newsighand;
1183                 /*
1184                  * This ->sighand is shared with the CLONE_SIGHAND
1185                  * but not CLONE_THREAD task, switch to the new one.
1186                  */
1187                 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1188                 if (!newsighand)
1189                         return -ENOMEM;
1190
1191                 atomic_set(&newsighand->count, 1);
1192                 memcpy(newsighand->action, oldsighand->action,
1193                        sizeof(newsighand->action));
1194
1195                 write_lock_irq(&tasklist_lock);
1196                 spin_lock(&oldsighand->siglock);
1197                 rcu_assign_pointer(tsk->sighand, newsighand);
1198                 spin_unlock(&oldsighand->siglock);
1199                 write_unlock_irq(&tasklist_lock);
1200
1201                 __cleanup_sighand(oldsighand);
1202         }
1203
1204         BUG_ON(!thread_group_leader(tsk));
1205         return 0;
1206
1207 killed:
1208         /* protects against exit_notify() and __exit_signal() */
1209         read_lock(&tasklist_lock);
1210         sig->group_exit_task = NULL;
1211         sig->notify_count = 0;
1212         read_unlock(&tasklist_lock);
1213         return -EAGAIN;
1214 }
1215
1216 char *get_task_comm(char *buf, struct task_struct *tsk)
1217 {
1218         /* buf must be at least sizeof(tsk->comm) in size */
1219         task_lock(tsk);
1220         strncpy(buf, tsk->comm, sizeof(tsk->comm));
1221         task_unlock(tsk);
1222         return buf;
1223 }
1224 EXPORT_SYMBOL_GPL(get_task_comm);
1225
1226 /*
1227  * These functions flushes out all traces of the currently running executable
1228  * so that a new one can be started
1229  */
1230
1231 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1232 {
1233         task_lock(tsk);
1234         trace_task_rename(tsk, buf);
1235         strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1236         task_unlock(tsk);
1237         perf_event_comm(tsk, exec);
1238 }
1239
1240 int flush_old_exec(struct linux_binprm * bprm)
1241 {
1242         int retval;
1243
1244         /*
1245          * Make sure we have a private signal table and that
1246          * we are unassociated from the previous thread group.
1247          */
1248         retval = de_thread(current);
1249         if (retval)
1250                 goto out;
1251
1252         /*
1253          * Must be called _before_ exec_mmap() as bprm->mm is
1254          * not visibile until then. This also enables the update
1255          * to be lockless.
1256          */
1257         set_mm_exe_file(bprm->mm, bprm->file);
1258
1259         /*
1260          * Release all of the old mmap stuff
1261          */
1262         acct_arg_size(bprm, 0);
1263         retval = exec_mmap(bprm->mm);
1264         if (retval)
1265                 goto out;
1266
1267         bprm->mm = NULL;                /* We're using it now */
1268
1269         set_fs(USER_DS);
1270         current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1271                                         PF_NOFREEZE | PF_NO_SETAFFINITY);
1272         flush_thread();
1273         current->personality &= ~bprm->per_clear;
1274
1275         /*
1276          * We have to apply CLOEXEC before we change whether the process is
1277          * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1278          * trying to access the should-be-closed file descriptors of a process
1279          * undergoing exec(2).
1280          */
1281         do_close_on_exec(current->files);
1282         return 0;
1283
1284 out:
1285         return retval;
1286 }
1287 EXPORT_SYMBOL(flush_old_exec);
1288
1289 void would_dump(struct linux_binprm *bprm, struct file *file)
1290 {
1291         struct inode *inode = file_inode(file);
1292         if (inode_permission(inode, MAY_READ) < 0) {
1293                 struct user_namespace *old, *user_ns;
1294                 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1295
1296                 /* Ensure mm->user_ns contains the executable */
1297                 user_ns = old = bprm->mm->user_ns;
1298                 while ((user_ns != &init_user_ns) &&
1299                        !privileged_wrt_inode_uidgid(user_ns, inode))
1300                         user_ns = user_ns->parent;
1301
1302                 if (old != user_ns) {
1303                         bprm->mm->user_ns = get_user_ns(user_ns);
1304                         put_user_ns(old);
1305                 }
1306         }
1307 }
1308 EXPORT_SYMBOL(would_dump);
1309
1310 void setup_new_exec(struct linux_binprm * bprm)
1311 {
1312         arch_pick_mmap_layout(current->mm);
1313
1314         /* This is the point of no return */
1315         current->sas_ss_sp = current->sas_ss_size = 0;
1316
1317         if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid()))
1318                 set_dumpable(current->mm, SUID_DUMP_USER);
1319         else
1320                 set_dumpable(current->mm, suid_dumpable);
1321
1322         perf_event_exec();
1323         __set_task_comm(current, kbasename(bprm->filename), true);
1324
1325         /* Set the new mm task size. We have to do that late because it may
1326          * depend on TIF_32BIT which is only updated in flush_thread() on
1327          * some architectures like powerpc
1328          */
1329         current->mm->task_size = TASK_SIZE;
1330
1331         /* install the new credentials */
1332         if (!uid_eq(bprm->cred->uid, current_euid()) ||
1333             !gid_eq(bprm->cred->gid, current_egid())) {
1334                 current->pdeath_signal = 0;
1335         } else {
1336                 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
1337                         set_dumpable(current->mm, suid_dumpable);
1338         }
1339
1340         /* An exec changes our domain. We are no longer part of the thread
1341            group */
1342         current->self_exec_id++;
1343         flush_signal_handlers(current, 0);
1344 }
1345 EXPORT_SYMBOL(setup_new_exec);
1346
1347 /*
1348  * Prepare credentials and lock ->cred_guard_mutex.
1349  * install_exec_creds() commits the new creds and drops the lock.
1350  * Or, if exec fails before, free_bprm() should release ->cred and
1351  * and unlock.
1352  */
1353 int prepare_bprm_creds(struct linux_binprm *bprm)
1354 {
1355         if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1356                 return -ERESTARTNOINTR;
1357
1358         bprm->cred = prepare_exec_creds();
1359         if (likely(bprm->cred))
1360                 return 0;
1361
1362         mutex_unlock(&current->signal->cred_guard_mutex);
1363         return -ENOMEM;
1364 }
1365
1366 static void free_bprm(struct linux_binprm *bprm)
1367 {
1368         free_arg_pages(bprm);
1369         if (bprm->cred) {
1370                 mutex_unlock(&current->signal->cred_guard_mutex);
1371                 abort_creds(bprm->cred);
1372         }
1373         if (bprm->file) {
1374                 allow_write_access(bprm->file);
1375                 fput(bprm->file);
1376         }
1377         /* If a binfmt changed the interp, free it. */
1378         if (bprm->interp != bprm->filename)
1379                 kfree(bprm->interp);
1380         kfree(bprm);
1381 }
1382
1383 int bprm_change_interp(char *interp, struct linux_binprm *bprm)
1384 {
1385         /* If a binfmt changed the interp, free it first. */
1386         if (bprm->interp != bprm->filename)
1387                 kfree(bprm->interp);
1388         bprm->interp = kstrdup(interp, GFP_KERNEL);
1389         if (!bprm->interp)
1390                 return -ENOMEM;
1391         return 0;
1392 }
1393 EXPORT_SYMBOL(bprm_change_interp);
1394
1395 /*
1396  * install the new credentials for this executable
1397  */
1398 void install_exec_creds(struct linux_binprm *bprm)
1399 {
1400         security_bprm_committing_creds(bprm);
1401
1402         commit_creds(bprm->cred);
1403         bprm->cred = NULL;
1404
1405         /*
1406          * Disable monitoring for regular users
1407          * when executing setuid binaries. Must
1408          * wait until new credentials are committed
1409          * by commit_creds() above
1410          */
1411         if (get_dumpable(current->mm) != SUID_DUMP_USER)
1412                 perf_event_exit_task(current);
1413         /*
1414          * cred_guard_mutex must be held at least to this point to prevent
1415          * ptrace_attach() from altering our determination of the task's
1416          * credentials; any time after this it may be unlocked.
1417          */
1418         security_bprm_committed_creds(bprm);
1419         mutex_unlock(&current->signal->cred_guard_mutex);
1420 }
1421 EXPORT_SYMBOL(install_exec_creds);
1422
1423 /*
1424  * determine how safe it is to execute the proposed program
1425  * - the caller must hold ->cred_guard_mutex to protect against
1426  *   PTRACE_ATTACH or seccomp thread-sync
1427  */
1428 static void check_unsafe_exec(struct linux_binprm *bprm)
1429 {
1430         struct task_struct *p = current, *t;
1431         unsigned n_fs;
1432
1433         if (p->ptrace)
1434                 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1435
1436         /*
1437          * This isn't strictly necessary, but it makes it harder for LSMs to
1438          * mess up.
1439          */
1440         if (task_no_new_privs(current))
1441                 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1442
1443         t = p;
1444         n_fs = 1;
1445         spin_lock(&p->fs->lock);
1446         rcu_read_lock();
1447         while_each_thread(p, t) {
1448                 if (t->fs == p->fs)
1449                         n_fs++;
1450         }
1451         rcu_read_unlock();
1452
1453         if (p->fs->users > n_fs)
1454                 bprm->unsafe |= LSM_UNSAFE_SHARE;
1455         else
1456                 p->fs->in_exec = 1;
1457         spin_unlock(&p->fs->lock);
1458 }
1459
1460 static void bprm_fill_uid(struct linux_binprm *bprm)
1461 {
1462         struct inode *inode;
1463         unsigned int mode;
1464         kuid_t uid;
1465         kgid_t gid;
1466
1467         /*
1468          * Since this can be called multiple times (via prepare_binprm),
1469          * we must clear any previous work done when setting set[ug]id
1470          * bits from any earlier bprm->file uses (for example when run
1471          * first for a setuid script then again for its interpreter).
1472          */
1473         bprm->cred->euid = current_euid();
1474         bprm->cred->egid = current_egid();
1475
1476         if (!mnt_may_suid(bprm->file->f_path.mnt))
1477                 return;
1478
1479         if (task_no_new_privs(current))
1480                 return;
1481
1482         inode = bprm->file->f_path.dentry->d_inode;
1483         mode = READ_ONCE(inode->i_mode);
1484         if (!(mode & (S_ISUID|S_ISGID)))
1485                 return;
1486
1487         /* Be careful if suid/sgid is set */
1488         inode_lock(inode);
1489
1490         /* reload atomically mode/uid/gid now that lock held */
1491         mode = inode->i_mode;
1492         uid = inode->i_uid;
1493         gid = inode->i_gid;
1494         inode_unlock(inode);
1495
1496         /* We ignore suid/sgid if there are no mappings for them in the ns */
1497         if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1498                  !kgid_has_mapping(bprm->cred->user_ns, gid))
1499                 return;
1500
1501         if (mode & S_ISUID) {
1502                 bprm->per_clear |= PER_CLEAR_ON_SETID;
1503                 bprm->cred->euid = uid;
1504         }
1505
1506         if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1507                 bprm->per_clear |= PER_CLEAR_ON_SETID;
1508                 bprm->cred->egid = gid;
1509         }
1510 }
1511
1512 /*
1513  * Fill the binprm structure from the inode.
1514  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1515  *
1516  * This may be called multiple times for binary chains (scripts for example).
1517  */
1518 int prepare_binprm(struct linux_binprm *bprm)
1519 {
1520         int retval;
1521
1522         bprm_fill_uid(bprm);
1523
1524         /* fill in binprm security blob */
1525         retval = security_bprm_set_creds(bprm);
1526         if (retval)
1527                 return retval;
1528         bprm->cred_prepared = 1;
1529
1530         memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1531         return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1532 }
1533
1534 EXPORT_SYMBOL(prepare_binprm);
1535
1536 /*
1537  * Arguments are '\0' separated strings found at the location bprm->p
1538  * points to; chop off the first by relocating brpm->p to right after
1539  * the first '\0' encountered.
1540  */
1541 int remove_arg_zero(struct linux_binprm *bprm)
1542 {
1543         int ret = 0;
1544         unsigned long offset;
1545         char *kaddr;
1546         struct page *page;
1547
1548         if (!bprm->argc)
1549                 return 0;
1550
1551         do {
1552                 offset = bprm->p & ~PAGE_MASK;
1553                 page = get_arg_page(bprm, bprm->p, 0);
1554                 if (!page) {
1555                         ret = -EFAULT;
1556                         goto out;
1557                 }
1558                 kaddr = kmap_atomic(page);
1559
1560                 for (; offset < PAGE_SIZE && kaddr[offset];
1561                                 offset++, bprm->p++)
1562                         ;
1563
1564                 kunmap_atomic(kaddr);
1565                 put_arg_page(page);
1566         } while (offset == PAGE_SIZE);
1567
1568         bprm->p++;
1569         bprm->argc--;
1570         ret = 0;
1571
1572 out:
1573         return ret;
1574 }
1575 EXPORT_SYMBOL(remove_arg_zero);
1576
1577 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1578 /*
1579  * cycle the list of binary formats handler, until one recognizes the image
1580  */
1581 int search_binary_handler(struct linux_binprm *bprm)
1582 {
1583         bool need_retry = IS_ENABLED(CONFIG_MODULES);
1584         struct linux_binfmt *fmt;
1585         int retval;
1586
1587         /* This allows 4 levels of binfmt rewrites before failing hard. */
1588         if (bprm->recursion_depth > 5)
1589                 return -ELOOP;
1590
1591         retval = security_bprm_check(bprm);
1592         if (retval)
1593                 return retval;
1594
1595         retval = -ENOENT;
1596  retry:
1597         read_lock(&binfmt_lock);
1598         list_for_each_entry(fmt, &formats, lh) {
1599                 if (!try_module_get(fmt->module))
1600                         continue;
1601                 read_unlock(&binfmt_lock);
1602                 bprm->recursion_depth++;
1603                 retval = fmt->load_binary(bprm);
1604                 read_lock(&binfmt_lock);
1605                 put_binfmt(fmt);
1606                 bprm->recursion_depth--;
1607                 if (retval < 0 && !bprm->mm) {
1608                         /* we got to flush_old_exec() and failed after it */
1609                         read_unlock(&binfmt_lock);
1610                         force_sigsegv(SIGSEGV, current);
1611                         return retval;
1612                 }
1613                 if (retval != -ENOEXEC || !bprm->file) {
1614                         read_unlock(&binfmt_lock);
1615                         return retval;
1616                 }
1617         }
1618         read_unlock(&binfmt_lock);
1619
1620         if (need_retry) {
1621                 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1622                     printable(bprm->buf[2]) && printable(bprm->buf[3]))
1623                         return retval;
1624                 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1625                         return retval;
1626                 need_retry = false;
1627                 goto retry;
1628         }
1629
1630         return retval;
1631 }
1632 EXPORT_SYMBOL(search_binary_handler);
1633
1634 static int exec_binprm(struct linux_binprm *bprm)
1635 {
1636         pid_t old_pid, old_vpid;
1637         int ret;
1638
1639         /* Need to fetch pid before load_binary changes it */
1640         old_pid = current->pid;
1641         rcu_read_lock();
1642         old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1643         rcu_read_unlock();
1644
1645         ret = search_binary_handler(bprm);
1646         if (ret >= 0) {
1647                 audit_bprm(bprm);
1648                 trace_sched_process_exec(current, old_pid, bprm);
1649                 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1650                 proc_exec_connector(current);
1651         }
1652
1653         return ret;
1654 }
1655
1656 /*
1657  * sys_execve() executes a new program.
1658  */
1659 static int do_execveat_common(int fd, struct filename *filename,
1660                               struct user_arg_ptr argv,
1661                               struct user_arg_ptr envp,
1662                               int flags)
1663 {
1664         char *pathbuf = NULL;
1665         struct linux_binprm *bprm;
1666         struct file *file;
1667         struct files_struct *displaced;
1668         int retval;
1669
1670         if (IS_ERR(filename))
1671                 return PTR_ERR(filename);
1672
1673         /*
1674          * We move the actual failure in case of RLIMIT_NPROC excess from
1675          * set*uid() to execve() because too many poorly written programs
1676          * don't check setuid() return code.  Here we additionally recheck
1677          * whether NPROC limit is still exceeded.
1678          */
1679         if ((current->flags & PF_NPROC_EXCEEDED) &&
1680             atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1681                 retval = -EAGAIN;
1682                 goto out_ret;
1683         }
1684
1685         /* We're below the limit (still or again), so we don't want to make
1686          * further execve() calls fail. */
1687         current->flags &= ~PF_NPROC_EXCEEDED;
1688
1689         retval = unshare_files(&displaced);
1690         if (retval)
1691                 goto out_ret;
1692
1693         retval = -ENOMEM;
1694         bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1695         if (!bprm)
1696                 goto out_files;
1697
1698         retval = prepare_bprm_creds(bprm);
1699         if (retval)
1700                 goto out_free;
1701
1702         check_unsafe_exec(bprm);
1703         current->in_execve = 1;
1704
1705         file = do_open_execat(fd, filename, flags);
1706         retval = PTR_ERR(file);
1707         if (IS_ERR(file))
1708                 goto out_unmark;
1709
1710         sched_exec();
1711
1712         bprm->file = file;
1713         if (fd == AT_FDCWD || filename->name[0] == '/') {
1714                 bprm->filename = filename->name;
1715         } else {
1716                 if (filename->name[0] == '\0')
1717                         pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d", fd);
1718                 else
1719                         pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d/%s",
1720                                             fd, filename->name);
1721                 if (!pathbuf) {
1722                         retval = -ENOMEM;
1723                         goto out_unmark;
1724                 }
1725                 /*
1726                  * Record that a name derived from an O_CLOEXEC fd will be
1727                  * inaccessible after exec. Relies on having exclusive access to
1728                  * current->files (due to unshare_files above).
1729                  */
1730                 if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt)))
1731                         bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1732                 bprm->filename = pathbuf;
1733         }
1734         bprm->interp = bprm->filename;
1735
1736         retval = bprm_mm_init(bprm);
1737         if (retval)
1738                 goto out_unmark;
1739
1740         bprm->argc = count(argv, MAX_ARG_STRINGS);
1741         if ((retval = bprm->argc) < 0)
1742                 goto out;
1743
1744         bprm->envc = count(envp, MAX_ARG_STRINGS);
1745         if ((retval = bprm->envc) < 0)
1746                 goto out;
1747
1748         retval = prepare_binprm(bprm);
1749         if (retval < 0)
1750                 goto out;
1751
1752         retval = copy_strings_kernel(1, &bprm->filename, bprm);
1753         if (retval < 0)
1754                 goto out;
1755
1756         bprm->exec = bprm->p;
1757         retval = copy_strings(bprm->envc, envp, bprm);
1758         if (retval < 0)
1759                 goto out;
1760
1761         retval = copy_strings(bprm->argc, argv, bprm);
1762         if (retval < 0)
1763                 goto out;
1764
1765         would_dump(bprm, bprm->file);
1766
1767         retval = exec_binprm(bprm);
1768         if (retval < 0)
1769                 goto out;
1770
1771         /* execve succeeded */
1772         current->fs->in_exec = 0;
1773         current->in_execve = 0;
1774         acct_update_integrals(current);
1775         task_numa_free(current);
1776         free_bprm(bprm);
1777         kfree(pathbuf);
1778         putname(filename);
1779         if (displaced)
1780                 put_files_struct(displaced);
1781         return retval;
1782
1783 out:
1784         if (bprm->mm) {
1785                 acct_arg_size(bprm, 0);
1786                 mmput(bprm->mm);
1787         }
1788
1789 out_unmark:
1790         current->fs->in_exec = 0;
1791         current->in_execve = 0;
1792
1793 out_free:
1794         free_bprm(bprm);
1795         kfree(pathbuf);
1796
1797 out_files:
1798         if (displaced)
1799                 reset_files_struct(displaced);
1800 out_ret:
1801         putname(filename);
1802         return retval;
1803 }
1804
1805 int do_execve(struct filename *filename,
1806         const char __user *const __user *__argv,
1807         const char __user *const __user *__envp)
1808 {
1809         struct user_arg_ptr argv = { .ptr.native = __argv };
1810         struct user_arg_ptr envp = { .ptr.native = __envp };
1811         return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1812 }
1813
1814 int do_execveat(int fd, struct filename *filename,
1815                 const char __user *const __user *__argv,
1816                 const char __user *const __user *__envp,
1817                 int flags)
1818 {
1819         struct user_arg_ptr argv = { .ptr.native = __argv };
1820         struct user_arg_ptr envp = { .ptr.native = __envp };
1821
1822         return do_execveat_common(fd, filename, argv, envp, flags);
1823 }
1824
1825 #ifdef CONFIG_COMPAT
1826 static int compat_do_execve(struct filename *filename,
1827         const compat_uptr_t __user *__argv,
1828         const compat_uptr_t __user *__envp)
1829 {
1830         struct user_arg_ptr argv = {
1831                 .is_compat = true,
1832                 .ptr.compat = __argv,
1833         };
1834         struct user_arg_ptr envp = {
1835                 .is_compat = true,
1836                 .ptr.compat = __envp,
1837         };
1838         return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1839 }
1840
1841 static int compat_do_execveat(int fd, struct filename *filename,
1842                               const compat_uptr_t __user *__argv,
1843                               const compat_uptr_t __user *__envp,
1844                               int flags)
1845 {
1846         struct user_arg_ptr argv = {
1847                 .is_compat = true,
1848                 .ptr.compat = __argv,
1849         };
1850         struct user_arg_ptr envp = {
1851                 .is_compat = true,
1852                 .ptr.compat = __envp,
1853         };
1854         return do_execveat_common(fd, filename, argv, envp, flags);
1855 }
1856 #endif
1857
1858 void set_binfmt(struct linux_binfmt *new)
1859 {
1860         struct mm_struct *mm = current->mm;
1861
1862         if (mm->binfmt)
1863                 module_put(mm->binfmt->module);
1864
1865         mm->binfmt = new;
1866         if (new)
1867                 __module_get(new->module);
1868 }
1869 EXPORT_SYMBOL(set_binfmt);
1870
1871 /*
1872  * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1873  */
1874 void set_dumpable(struct mm_struct *mm, int value)
1875 {
1876         unsigned long old, new;
1877
1878         if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1879                 return;
1880
1881         do {
1882                 old = ACCESS_ONCE(mm->flags);
1883                 new = (old & ~MMF_DUMPABLE_MASK) | value;
1884         } while (cmpxchg(&mm->flags, old, new) != old);
1885 }
1886
1887 SYSCALL_DEFINE3(execve,
1888                 const char __user *, filename,
1889                 const char __user *const __user *, argv,
1890                 const char __user *const __user *, envp)
1891 {
1892         return do_execve(getname(filename), argv, envp);
1893 }
1894
1895 SYSCALL_DEFINE5(execveat,
1896                 int, fd, const char __user *, filename,
1897                 const char __user *const __user *, argv,
1898                 const char __user *const __user *, envp,
1899                 int, flags)
1900 {
1901         int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1902
1903         return do_execveat(fd,
1904                            getname_flags(filename, lookup_flags, NULL),
1905                            argv, envp, flags);
1906 }
1907
1908 #ifdef CONFIG_COMPAT
1909 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
1910         const compat_uptr_t __user *, argv,
1911         const compat_uptr_t __user *, envp)
1912 {
1913         return compat_do_execve(getname(filename), argv, envp);
1914 }
1915
1916 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
1917                        const char __user *, filename,
1918                        const compat_uptr_t __user *, argv,
1919                        const compat_uptr_t __user *, envp,
1920                        int,  flags)
1921 {
1922         int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1923
1924         return compat_do_execveat(fd,
1925                                   getname_flags(filename, lookup_flags, NULL),
1926                                   argv, envp, flags);
1927 }
1928 #endif