1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1991, 1992 Linus Torvalds
9 * #!-checking implemented by tytso.
12 * Demand-loading implemented 01.12.91 - no need to read anything but
13 * the header into memory. The inode of the executable is put into
14 * "current->executable", and page faults do the actual loading. Clean.
16 * Once more I can proudly say that linux stood up to being changed: it
17 * was less than 2 hours work to get demand-loading completely implemented.
19 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
20 * current->executable is only used by the procfs. This allows a dispatch
21 * table to check for several different types of binary formats. We keep
22 * trying until we recognize the file or we run out of supported binary
26 #include <linux/kernel_read_file.h>
27 #include <linux/slab.h>
28 #include <linux/file.h>
29 #include <linux/fdtable.h>
31 #include <linux/vmacache.h>
32 #include <linux/stat.h>
33 #include <linux/fcntl.h>
34 #include <linux/swap.h>
35 #include <linux/string.h>
36 #include <linux/init.h>
37 #include <linux/sched/mm.h>
38 #include <linux/sched/coredump.h>
39 #include <linux/sched/signal.h>
40 #include <linux/sched/numa_balancing.h>
41 #include <linux/sched/task.h>
42 #include <linux/pagemap.h>
43 #include <linux/perf_event.h>
44 #include <linux/highmem.h>
45 #include <linux/spinlock.h>
46 #include <linux/key.h>
47 #include <linux/personality.h>
48 #include <linux/binfmts.h>
49 #include <linux/utsname.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/module.h>
52 #include <linux/namei.h>
53 #include <linux/mount.h>
54 #include <linux/security.h>
55 #include <linux/syscalls.h>
56 #include <linux/tsacct_kern.h>
57 #include <linux/cn_proc.h>
58 #include <linux/audit.h>
59 #include <linux/tracehook.h>
60 #include <linux/kmod.h>
61 #include <linux/fsnotify.h>
62 #include <linux/fs_struct.h>
63 #include <linux/oom.h>
64 #include <linux/compat.h>
65 #include <linux/vmalloc.h>
66 #include <linux/io_uring.h>
67 #include <linux/syscall_user_dispatch.h>
69 #include <linux/uaccess.h>
70 #include <asm/mmu_context.h>
73 #include <trace/events/task.h>
76 #include <trace/events/sched.h>
78 static int bprm_creds_from_file(struct linux_binprm *bprm);
80 int suid_dumpable = 0;
82 static LIST_HEAD(formats);
83 static DEFINE_RWLOCK(binfmt_lock);
85 void __register_binfmt(struct linux_binfmt * fmt, int insert)
88 if (WARN_ON(!fmt->load_binary))
90 write_lock(&binfmt_lock);
91 insert ? list_add(&fmt->lh, &formats) :
92 list_add_tail(&fmt->lh, &formats);
93 write_unlock(&binfmt_lock);
96 EXPORT_SYMBOL(__register_binfmt);
98 void unregister_binfmt(struct linux_binfmt * fmt)
100 write_lock(&binfmt_lock);
102 write_unlock(&binfmt_lock);
105 EXPORT_SYMBOL(unregister_binfmt);
107 static inline void put_binfmt(struct linux_binfmt * fmt)
109 module_put(fmt->module);
112 bool path_noexec(const struct path *path)
114 return (path->mnt->mnt_flags & MNT_NOEXEC) ||
115 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
120 * Note that a shared library must be both readable and executable due to
123 * Also note that we take the address to load from from the file itself.
125 SYSCALL_DEFINE1(uselib, const char __user *, library)
127 struct linux_binfmt *fmt;
129 struct filename *tmp = getname(library);
130 int error = PTR_ERR(tmp);
131 static const struct open_flags uselib_flags = {
132 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
133 .acc_mode = MAY_READ | MAY_EXEC,
134 .intent = LOOKUP_OPEN,
135 .lookup_flags = LOOKUP_FOLLOW,
141 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
143 error = PTR_ERR(file);
148 * may_open() has already checked for this, so it should be
149 * impossible to trip now. But we need to be extra cautious
150 * and check again at the very end too.
153 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
154 path_noexec(&file->f_path)))
161 read_lock(&binfmt_lock);
162 list_for_each_entry(fmt, &formats, lh) {
163 if (!fmt->load_shlib)
165 if (!try_module_get(fmt->module))
167 read_unlock(&binfmt_lock);
168 error = fmt->load_shlib(file);
169 read_lock(&binfmt_lock);
171 if (error != -ENOEXEC)
174 read_unlock(&binfmt_lock);
180 #endif /* #ifdef CONFIG_USELIB */
184 * The nascent bprm->mm is not visible until exec_mmap() but it can
185 * use a lot of memory, account these pages in current->mm temporary
186 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
187 * change the counter back via acct_arg_size(0).
189 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
191 struct mm_struct *mm = current->mm;
192 long diff = (long)(pages - bprm->vma_pages);
197 bprm->vma_pages = pages;
198 add_mm_counter(mm, MM_ANONPAGES, diff);
201 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
206 unsigned int gup_flags = FOLL_FORCE;
208 #ifdef CONFIG_STACK_GROWSUP
210 ret = expand_downwards(bprm->vma, pos);
217 gup_flags |= FOLL_WRITE;
220 * We are doing an exec(). 'current' is the process
221 * doing the exec and bprm->mm is the new process's mm.
223 ret = get_user_pages_remote(bprm->mm, pos, 1, gup_flags,
229 acct_arg_size(bprm, vma_pages(bprm->vma));
234 static void put_arg_page(struct page *page)
239 static void free_arg_pages(struct linux_binprm *bprm)
243 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
246 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
249 static int __bprm_mm_init(struct linux_binprm *bprm)
252 struct vm_area_struct *vma = NULL;
253 struct mm_struct *mm = bprm->mm;
255 bprm->vma = vma = vm_area_alloc(mm);
258 vma_set_anonymous(vma);
260 if (mmap_write_lock_killable(mm)) {
266 * Place the stack at the largest stack address the architecture
267 * supports. Later, we'll move this to an appropriate place. We don't
268 * use STACK_TOP because that can depend on attributes which aren't
271 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
272 vma->vm_end = STACK_TOP_MAX;
273 vma->vm_start = vma->vm_end - PAGE_SIZE;
274 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
275 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
277 err = insert_vm_struct(mm, vma);
281 mm->stack_vm = mm->total_vm = 1;
282 mmap_write_unlock(mm);
283 bprm->p = vma->vm_end - sizeof(void *);
286 mmap_write_unlock(mm);
293 static bool valid_arg_len(struct linux_binprm *bprm, long len)
295 return len <= MAX_ARG_STRLEN;
300 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
304 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
309 page = bprm->page[pos / PAGE_SIZE];
310 if (!page && write) {
311 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
314 bprm->page[pos / PAGE_SIZE] = page;
320 static void put_arg_page(struct page *page)
324 static void free_arg_page(struct linux_binprm *bprm, int i)
327 __free_page(bprm->page[i]);
328 bprm->page[i] = NULL;
332 static void free_arg_pages(struct linux_binprm *bprm)
336 for (i = 0; i < MAX_ARG_PAGES; i++)
337 free_arg_page(bprm, i);
340 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
345 static int __bprm_mm_init(struct linux_binprm *bprm)
347 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
351 static bool valid_arg_len(struct linux_binprm *bprm, long len)
353 return len <= bprm->p;
356 #endif /* CONFIG_MMU */
359 * Create a new mm_struct and populate it with a temporary stack
360 * vm_area_struct. We don't have enough context at this point to set the stack
361 * flags, permissions, and offset, so we use temporary values. We'll update
362 * them later in setup_arg_pages().
364 static int bprm_mm_init(struct linux_binprm *bprm)
367 struct mm_struct *mm = NULL;
369 bprm->mm = mm = mm_alloc();
374 /* Save current stack limit for all calculations made during exec. */
375 task_lock(current->group_leader);
376 bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
377 task_unlock(current->group_leader);
379 err = __bprm_mm_init(bprm);
394 struct user_arg_ptr {
399 const char __user *const __user *native;
401 const compat_uptr_t __user *compat;
406 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
408 const char __user *native;
411 if (unlikely(argv.is_compat)) {
412 compat_uptr_t compat;
414 if (get_user(compat, argv.ptr.compat + nr))
415 return ERR_PTR(-EFAULT);
417 return compat_ptr(compat);
421 if (get_user(native, argv.ptr.native + nr))
422 return ERR_PTR(-EFAULT);
428 * count() counts the number of strings in array ARGV.
430 static int count(struct user_arg_ptr argv, int max)
434 if (argv.ptr.native != NULL) {
436 const char __user *p = get_user_arg_ptr(argv, i);
448 if (fatal_signal_pending(current))
449 return -ERESTARTNOHAND;
456 static int count_strings_kernel(const char *const *argv)
463 for (i = 0; argv[i]; ++i) {
464 if (i >= MAX_ARG_STRINGS)
466 if (fatal_signal_pending(current))
467 return -ERESTARTNOHAND;
473 static int bprm_stack_limits(struct linux_binprm *bprm)
475 unsigned long limit, ptr_size;
478 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
479 * (whichever is smaller) for the argv+env strings.
481 * - the remaining binfmt code will not run out of stack space,
482 * - the program will have a reasonable amount of stack left
485 limit = _STK_LIM / 4 * 3;
486 limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
488 * We've historically supported up to 32 pages (ARG_MAX)
489 * of argument strings even with small stacks
491 limit = max_t(unsigned long, limit, ARG_MAX);
493 * We must account for the size of all the argv and envp pointers to
494 * the argv and envp strings, since they will also take up space in
495 * the stack. They aren't stored until much later when we can't
496 * signal to the parent that the child has run out of stack space.
497 * Instead, calculate it here so it's possible to fail gracefully.
499 ptr_size = (bprm->argc + bprm->envc) * sizeof(void *);
500 if (limit <= ptr_size)
504 bprm->argmin = bprm->p - limit;
509 * 'copy_strings()' copies argument/environment strings from the old
510 * processes's memory to the new process's stack. The call to get_user_pages()
511 * ensures the destination page is created and not swapped out.
513 static int copy_strings(int argc, struct user_arg_ptr argv,
514 struct linux_binprm *bprm)
516 struct page *kmapped_page = NULL;
518 unsigned long kpos = 0;
522 const char __user *str;
527 str = get_user_arg_ptr(argv, argc);
531 len = strnlen_user(str, MAX_ARG_STRLEN);
536 if (!valid_arg_len(bprm, len))
539 /* We're going to work our way backwords. */
544 if (bprm->p < bprm->argmin)
549 int offset, bytes_to_copy;
551 if (fatal_signal_pending(current)) {
552 ret = -ERESTARTNOHAND;
557 offset = pos % PAGE_SIZE;
561 bytes_to_copy = offset;
562 if (bytes_to_copy > len)
565 offset -= bytes_to_copy;
566 pos -= bytes_to_copy;
567 str -= bytes_to_copy;
568 len -= bytes_to_copy;
570 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
573 page = get_arg_page(bprm, pos, 1);
580 flush_kernel_dcache_page(kmapped_page);
581 kunmap(kmapped_page);
582 put_arg_page(kmapped_page);
585 kaddr = kmap(kmapped_page);
586 kpos = pos & PAGE_MASK;
587 flush_arg_page(bprm, kpos, kmapped_page);
589 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
598 flush_kernel_dcache_page(kmapped_page);
599 kunmap(kmapped_page);
600 put_arg_page(kmapped_page);
606 * Copy and argument/environment string from the kernel to the processes stack.
608 int copy_string_kernel(const char *arg, struct linux_binprm *bprm)
610 int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */;
611 unsigned long pos = bprm->p;
615 if (!valid_arg_len(bprm, len))
618 /* We're going to work our way backwards. */
621 if (IS_ENABLED(CONFIG_MMU) && bprm->p < bprm->argmin)
625 unsigned int bytes_to_copy = min_t(unsigned int, len,
626 min_not_zero(offset_in_page(pos), PAGE_SIZE));
630 pos -= bytes_to_copy;
631 arg -= bytes_to_copy;
632 len -= bytes_to_copy;
634 page = get_arg_page(bprm, pos, 1);
637 kaddr = kmap_atomic(page);
638 flush_arg_page(bprm, pos & PAGE_MASK, page);
639 memcpy(kaddr + offset_in_page(pos), arg, bytes_to_copy);
640 flush_kernel_dcache_page(page);
641 kunmap_atomic(kaddr);
647 EXPORT_SYMBOL(copy_string_kernel);
649 static int copy_strings_kernel(int argc, const char *const *argv,
650 struct linux_binprm *bprm)
653 int ret = copy_string_kernel(argv[argc], bprm);
656 if (fatal_signal_pending(current))
657 return -ERESTARTNOHAND;
666 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
667 * the binfmt code determines where the new stack should reside, we shift it to
668 * its final location. The process proceeds as follows:
670 * 1) Use shift to calculate the new vma endpoints.
671 * 2) Extend vma to cover both the old and new ranges. This ensures the
672 * arguments passed to subsequent functions are consistent.
673 * 3) Move vma's page tables to the new range.
674 * 4) Free up any cleared pgd range.
675 * 5) Shrink the vma to cover only the new range.
677 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
679 struct mm_struct *mm = vma->vm_mm;
680 unsigned long old_start = vma->vm_start;
681 unsigned long old_end = vma->vm_end;
682 unsigned long length = old_end - old_start;
683 unsigned long new_start = old_start - shift;
684 unsigned long new_end = old_end - shift;
685 struct mmu_gather tlb;
687 BUG_ON(new_start > new_end);
690 * ensure there are no vmas between where we want to go
693 if (vma != find_vma(mm, new_start))
697 * cover the whole range: [new_start, old_end)
699 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
703 * move the page tables downwards, on failure we rely on
704 * process cleanup to remove whatever mess we made.
706 if (length != move_page_tables(vma, old_start,
707 vma, new_start, length, false))
711 tlb_gather_mmu(&tlb, mm);
712 if (new_end > old_start) {
714 * when the old and new regions overlap clear from new_end.
716 free_pgd_range(&tlb, new_end, old_end, new_end,
717 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
720 * otherwise, clean from old_start; this is done to not touch
721 * the address space in [new_end, old_start) some architectures
722 * have constraints on va-space that make this illegal (IA64) -
723 * for the others its just a little faster.
725 free_pgd_range(&tlb, old_start, old_end, new_end,
726 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
728 tlb_finish_mmu(&tlb);
731 * Shrink the vma to just the new range. Always succeeds.
733 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
739 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
740 * the stack is optionally relocated, and some extra space is added.
742 int setup_arg_pages(struct linux_binprm *bprm,
743 unsigned long stack_top,
744 int executable_stack)
747 unsigned long stack_shift;
748 struct mm_struct *mm = current->mm;
749 struct vm_area_struct *vma = bprm->vma;
750 struct vm_area_struct *prev = NULL;
751 unsigned long vm_flags;
752 unsigned long stack_base;
753 unsigned long stack_size;
754 unsigned long stack_expand;
755 unsigned long rlim_stack;
757 #ifdef CONFIG_STACK_GROWSUP
758 /* Limit stack size */
759 stack_base = bprm->rlim_stack.rlim_max;
761 stack_base = calc_max_stack_size(stack_base);
763 /* Add space for stack randomization. */
764 stack_base += (STACK_RND_MASK << PAGE_SHIFT);
766 /* Make sure we didn't let the argument array grow too large. */
767 if (vma->vm_end - vma->vm_start > stack_base)
770 stack_base = PAGE_ALIGN(stack_top - stack_base);
772 stack_shift = vma->vm_start - stack_base;
773 mm->arg_start = bprm->p - stack_shift;
774 bprm->p = vma->vm_end - stack_shift;
776 stack_top = arch_align_stack(stack_top);
777 stack_top = PAGE_ALIGN(stack_top);
779 if (unlikely(stack_top < mmap_min_addr) ||
780 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
783 stack_shift = vma->vm_end - stack_top;
785 bprm->p -= stack_shift;
786 mm->arg_start = bprm->p;
790 bprm->loader -= stack_shift;
791 bprm->exec -= stack_shift;
793 if (mmap_write_lock_killable(mm))
796 vm_flags = VM_STACK_FLAGS;
799 * Adjust stack execute permissions; explicitly enable for
800 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
801 * (arch default) otherwise.
803 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
805 else if (executable_stack == EXSTACK_DISABLE_X)
806 vm_flags &= ~VM_EXEC;
807 vm_flags |= mm->def_flags;
808 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
810 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
816 if (unlikely(vm_flags & VM_EXEC)) {
817 pr_warn_once("process '%pD4' started with executable stack\n",
821 /* Move stack pages down in memory. */
823 ret = shift_arg_pages(vma, stack_shift);
828 /* mprotect_fixup is overkill to remove the temporary stack flags */
829 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
831 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
832 stack_size = vma->vm_end - vma->vm_start;
834 * Align this down to a page boundary as expand_stack
837 rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
838 #ifdef CONFIG_STACK_GROWSUP
839 if (stack_size + stack_expand > rlim_stack)
840 stack_base = vma->vm_start + rlim_stack;
842 stack_base = vma->vm_end + stack_expand;
844 if (stack_size + stack_expand > rlim_stack)
845 stack_base = vma->vm_end - rlim_stack;
847 stack_base = vma->vm_start - stack_expand;
849 current->mm->start_stack = bprm->p;
850 ret = expand_stack(vma, stack_base);
855 mmap_write_unlock(mm);
858 EXPORT_SYMBOL(setup_arg_pages);
863 * Transfer the program arguments and environment from the holding pages
864 * onto the stack. The provided stack pointer is adjusted accordingly.
866 int transfer_args_to_stack(struct linux_binprm *bprm,
867 unsigned long *sp_location)
869 unsigned long index, stop, sp;
872 stop = bprm->p >> PAGE_SHIFT;
875 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
876 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
877 char *src = kmap(bprm->page[index]) + offset;
878 sp -= PAGE_SIZE - offset;
879 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
881 kunmap(bprm->page[index]);
891 EXPORT_SYMBOL(transfer_args_to_stack);
893 #endif /* CONFIG_MMU */
895 static struct file *do_open_execat(int fd, struct filename *name, int flags)
899 struct open_flags open_exec_flags = {
900 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
901 .acc_mode = MAY_EXEC,
902 .intent = LOOKUP_OPEN,
903 .lookup_flags = LOOKUP_FOLLOW,
906 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
907 return ERR_PTR(-EINVAL);
908 if (flags & AT_SYMLINK_NOFOLLOW)
909 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
910 if (flags & AT_EMPTY_PATH)
911 open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
913 file = do_filp_open(fd, name, &open_exec_flags);
918 * may_open() has already checked for this, so it should be
919 * impossible to trip now. But we need to be extra cautious
920 * and check again at the very end too.
923 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
924 path_noexec(&file->f_path)))
927 err = deny_write_access(file);
931 if (name->name[0] != '\0')
942 struct file *open_exec(const char *name)
944 struct filename *filename = getname_kernel(name);
945 struct file *f = ERR_CAST(filename);
947 if (!IS_ERR(filename)) {
948 f = do_open_execat(AT_FDCWD, filename, 0);
953 EXPORT_SYMBOL(open_exec);
955 #if defined(CONFIG_HAVE_AOUT) || defined(CONFIG_BINFMT_FLAT) || \
956 defined(CONFIG_BINFMT_ELF_FDPIC)
957 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
959 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
961 flush_icache_user_range(addr, addr + len);
964 EXPORT_SYMBOL(read_code);
968 * Maps the mm_struct mm into the current task struct.
969 * On success, this function returns with exec_update_lock
972 static int exec_mmap(struct mm_struct *mm)
974 struct task_struct *tsk;
975 struct mm_struct *old_mm, *active_mm;
978 /* Notify parent that we're no longer interested in the old VM */
980 old_mm = current->mm;
981 exec_mm_release(tsk, old_mm);
985 ret = down_write_killable(&tsk->signal->exec_update_lock);
991 * Make sure that if there is a core dump in progress
992 * for the old mm, we get out and die instead of going
993 * through with the exec. We must hold mmap_lock around
994 * checking core_state and changing tsk->mm.
996 mmap_read_lock(old_mm);
997 if (unlikely(old_mm->core_state)) {
998 mmap_read_unlock(old_mm);
999 up_write(&tsk->signal->exec_update_lock);
1005 membarrier_exec_mmap(mm);
1007 local_irq_disable();
1008 active_mm = tsk->active_mm;
1009 tsk->active_mm = mm;
1012 * This prevents preemption while active_mm is being loaded and
1013 * it and mm are being updated, which could cause problems for
1014 * lazy tlb mm refcounting when these are updated by context
1015 * switches. Not all architectures can handle irqs off over
1018 if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1020 activate_mm(active_mm, mm);
1021 if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1023 tsk->mm->vmacache_seqnum = 0;
1024 vmacache_flush(tsk);
1027 mmap_read_unlock(old_mm);
1028 BUG_ON(active_mm != old_mm);
1029 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1030 mm_update_next_owner(old_mm);
1038 static int de_thread(struct task_struct *tsk)
1040 struct signal_struct *sig = tsk->signal;
1041 struct sighand_struct *oldsighand = tsk->sighand;
1042 spinlock_t *lock = &oldsighand->siglock;
1044 if (thread_group_empty(tsk))
1045 goto no_thread_group;
1048 * Kill all other threads in the thread group.
1050 spin_lock_irq(lock);
1051 if (signal_group_exit(sig)) {
1053 * Another group action in progress, just
1054 * return so that the signal is processed.
1056 spin_unlock_irq(lock);
1060 sig->group_exit_task = tsk;
1061 sig->notify_count = zap_other_threads(tsk);
1062 if (!thread_group_leader(tsk))
1063 sig->notify_count--;
1065 while (sig->notify_count) {
1066 __set_current_state(TASK_KILLABLE);
1067 spin_unlock_irq(lock);
1069 if (__fatal_signal_pending(tsk))
1071 spin_lock_irq(lock);
1073 spin_unlock_irq(lock);
1076 * At this point all other threads have exited, all we have to
1077 * do is to wait for the thread group leader to become inactive,
1078 * and to assume its PID:
1080 if (!thread_group_leader(tsk)) {
1081 struct task_struct *leader = tsk->group_leader;
1084 cgroup_threadgroup_change_begin(tsk);
1085 write_lock_irq(&tasklist_lock);
1087 * Do this under tasklist_lock to ensure that
1088 * exit_notify() can't miss ->group_exit_task
1090 sig->notify_count = -1;
1091 if (likely(leader->exit_state))
1093 __set_current_state(TASK_KILLABLE);
1094 write_unlock_irq(&tasklist_lock);
1095 cgroup_threadgroup_change_end(tsk);
1097 if (__fatal_signal_pending(tsk))
1102 * The only record we have of the real-time age of a
1103 * process, regardless of execs it's done, is start_time.
1104 * All the past CPU time is accumulated in signal_struct
1105 * from sister threads now dead. But in this non-leader
1106 * exec, nothing survives from the original leader thread,
1107 * whose birth marks the true age of this process now.
1108 * When we take on its identity by switching to its PID, we
1109 * also take its birthdate (always earlier than our own).
1111 tsk->start_time = leader->start_time;
1112 tsk->start_boottime = leader->start_boottime;
1114 BUG_ON(!same_thread_group(leader, tsk));
1116 * An exec() starts a new thread group with the
1117 * TGID of the previous thread group. Rehash the
1118 * two threads with a switched PID, and release
1119 * the former thread group leader:
1122 /* Become a process group leader with the old leader's pid.
1123 * The old leader becomes a thread of the this thread group.
1125 exchange_tids(tsk, leader);
1126 transfer_pid(leader, tsk, PIDTYPE_TGID);
1127 transfer_pid(leader, tsk, PIDTYPE_PGID);
1128 transfer_pid(leader, tsk, PIDTYPE_SID);
1130 list_replace_rcu(&leader->tasks, &tsk->tasks);
1131 list_replace_init(&leader->sibling, &tsk->sibling);
1133 tsk->group_leader = tsk;
1134 leader->group_leader = tsk;
1136 tsk->exit_signal = SIGCHLD;
1137 leader->exit_signal = -1;
1139 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1140 leader->exit_state = EXIT_DEAD;
1143 * We are going to release_task()->ptrace_unlink() silently,
1144 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1145 * the tracer wont't block again waiting for this thread.
1147 if (unlikely(leader->ptrace))
1148 __wake_up_parent(leader, leader->parent);
1149 write_unlock_irq(&tasklist_lock);
1150 cgroup_threadgroup_change_end(tsk);
1152 release_task(leader);
1155 sig->group_exit_task = NULL;
1156 sig->notify_count = 0;
1159 /* we have changed execution domain */
1160 tsk->exit_signal = SIGCHLD;
1162 BUG_ON(!thread_group_leader(tsk));
1166 /* protects against exit_notify() and __exit_signal() */
1167 read_lock(&tasklist_lock);
1168 sig->group_exit_task = NULL;
1169 sig->notify_count = 0;
1170 read_unlock(&tasklist_lock);
1176 * This function makes sure the current process has its own signal table,
1177 * so that flush_signal_handlers can later reset the handlers without
1178 * disturbing other processes. (Other processes might share the signal
1179 * table via the CLONE_SIGHAND option to clone().)
1181 static int unshare_sighand(struct task_struct *me)
1183 struct sighand_struct *oldsighand = me->sighand;
1185 if (refcount_read(&oldsighand->count) != 1) {
1186 struct sighand_struct *newsighand;
1188 * This ->sighand is shared with the CLONE_SIGHAND
1189 * but not CLONE_THREAD task, switch to the new one.
1191 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1195 refcount_set(&newsighand->count, 1);
1196 memcpy(newsighand->action, oldsighand->action,
1197 sizeof(newsighand->action));
1199 write_lock_irq(&tasklist_lock);
1200 spin_lock(&oldsighand->siglock);
1201 rcu_assign_pointer(me->sighand, newsighand);
1202 spin_unlock(&oldsighand->siglock);
1203 write_unlock_irq(&tasklist_lock);
1205 __cleanup_sighand(oldsighand);
1210 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1213 strncpy(buf, tsk->comm, buf_size);
1217 EXPORT_SYMBOL_GPL(__get_task_comm);
1220 * These functions flushes out all traces of the currently running executable
1221 * so that a new one can be started
1224 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1227 trace_task_rename(tsk, buf);
1228 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1230 perf_event_comm(tsk, exec);
1234 * Calling this is the point of no return. None of the failures will be
1235 * seen by userspace since either the process is already taking a fatal
1236 * signal (via de_thread() or coredump), or will have SEGV raised
1237 * (after exec_mmap()) by search_binary_handler (see below).
1239 int begin_new_exec(struct linux_binprm * bprm)
1241 struct task_struct *me = current;
1244 /* Once we are committed compute the creds */
1245 retval = bprm_creds_from_file(bprm);
1250 * Ensure all future errors are fatal.
1252 bprm->point_of_no_return = true;
1255 * Make this the only thread in the thread group.
1257 retval = de_thread(me);
1262 * Cancel any io_uring activity across execve
1264 io_uring_task_cancel();
1266 /* Ensure the files table is not shared. */
1267 retval = unshare_files();
1272 * Must be called _before_ exec_mmap() as bprm->mm is
1273 * not visibile until then. This also enables the update
1276 set_mm_exe_file(bprm->mm, bprm->file);
1278 /* If the binary is not readable then enforce mm->dumpable=0 */
1279 would_dump(bprm, bprm->file);
1280 if (bprm->have_execfd)
1281 would_dump(bprm, bprm->executable);
1284 * Release all of the old mmap stuff
1286 acct_arg_size(bprm, 0);
1287 retval = exec_mmap(bprm->mm);
1293 #ifdef CONFIG_POSIX_TIMERS
1294 exit_itimers(me->signal);
1295 flush_itimer_signals();
1299 * Make the signal table private.
1301 retval = unshare_sighand(me);
1306 * Ensure that the uaccess routines can actually operate on userspace
1309 force_uaccess_begin();
1311 me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1312 PF_NOFREEZE | PF_NO_SETAFFINITY);
1314 me->personality &= ~bprm->per_clear;
1316 clear_syscall_work_syscall_user_dispatch(me);
1319 * We have to apply CLOEXEC before we change whether the process is
1320 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1321 * trying to access the should-be-closed file descriptors of a process
1322 * undergoing exec(2).
1324 do_close_on_exec(me->files);
1326 if (bprm->secureexec) {
1327 /* Make sure parent cannot signal privileged process. */
1328 me->pdeath_signal = 0;
1331 * For secureexec, reset the stack limit to sane default to
1332 * avoid bad behavior from the prior rlimits. This has to
1333 * happen before arch_pick_mmap_layout(), which examines
1334 * RLIMIT_STACK, but after the point of no return to avoid
1335 * needing to clean up the change on failure.
1337 if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1338 bprm->rlim_stack.rlim_cur = _STK_LIM;
1341 me->sas_ss_sp = me->sas_ss_size = 0;
1344 * Figure out dumpability. Note that this checking only of current
1345 * is wrong, but userspace depends on it. This should be testing
1346 * bprm->secureexec instead.
1348 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1349 !(uid_eq(current_euid(), current_uid()) &&
1350 gid_eq(current_egid(), current_gid())))
1351 set_dumpable(current->mm, suid_dumpable);
1353 set_dumpable(current->mm, SUID_DUMP_USER);
1356 __set_task_comm(me, kbasename(bprm->filename), true);
1358 /* An exec changes our domain. We are no longer part of the thread
1360 WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1);
1361 flush_signal_handlers(me, 0);
1364 * install the new credentials for this executable
1366 security_bprm_committing_creds(bprm);
1368 commit_creds(bprm->cred);
1372 * Disable monitoring for regular users
1373 * when executing setuid binaries. Must
1374 * wait until new credentials are committed
1375 * by commit_creds() above
1377 if (get_dumpable(me->mm) != SUID_DUMP_USER)
1378 perf_event_exit_task(me);
1380 * cred_guard_mutex must be held at least to this point to prevent
1381 * ptrace_attach() from altering our determination of the task's
1382 * credentials; any time after this it may be unlocked.
1384 security_bprm_committed_creds(bprm);
1386 /* Pass the opened binary to the interpreter. */
1387 if (bprm->have_execfd) {
1388 retval = get_unused_fd_flags(0);
1391 fd_install(retval, bprm->executable);
1392 bprm->executable = NULL;
1393 bprm->execfd = retval;
1398 up_write(&me->signal->exec_update_lock);
1402 EXPORT_SYMBOL(begin_new_exec);
1404 void would_dump(struct linux_binprm *bprm, struct file *file)
1406 struct inode *inode = file_inode(file);
1407 struct user_namespace *mnt_userns = file_mnt_user_ns(file);
1408 if (inode_permission(mnt_userns, inode, MAY_READ) < 0) {
1409 struct user_namespace *old, *user_ns;
1410 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1412 /* Ensure mm->user_ns contains the executable */
1413 user_ns = old = bprm->mm->user_ns;
1414 while ((user_ns != &init_user_ns) &&
1415 !privileged_wrt_inode_uidgid(user_ns, mnt_userns, inode))
1416 user_ns = user_ns->parent;
1418 if (old != user_ns) {
1419 bprm->mm->user_ns = get_user_ns(user_ns);
1424 EXPORT_SYMBOL(would_dump);
1426 void setup_new_exec(struct linux_binprm * bprm)
1428 /* Setup things that can depend upon the personality */
1429 struct task_struct *me = current;
1431 arch_pick_mmap_layout(me->mm, &bprm->rlim_stack);
1433 arch_setup_new_exec();
1435 /* Set the new mm task size. We have to do that late because it may
1436 * depend on TIF_32BIT which is only updated in flush_thread() on
1437 * some architectures like powerpc
1439 me->mm->task_size = TASK_SIZE;
1440 up_write(&me->signal->exec_update_lock);
1441 mutex_unlock(&me->signal->cred_guard_mutex);
1443 EXPORT_SYMBOL(setup_new_exec);
1445 /* Runs immediately before start_thread() takes over. */
1446 void finalize_exec(struct linux_binprm *bprm)
1448 /* Store any stack rlimit changes before starting thread. */
1449 task_lock(current->group_leader);
1450 current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1451 task_unlock(current->group_leader);
1453 EXPORT_SYMBOL(finalize_exec);
1456 * Prepare credentials and lock ->cred_guard_mutex.
1457 * setup_new_exec() commits the new creds and drops the lock.
1458 * Or, if exec fails before, free_bprm() should release ->cred
1461 static int prepare_bprm_creds(struct linux_binprm *bprm)
1463 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex))
1464 return -ERESTARTNOINTR;
1466 bprm->cred = prepare_exec_creds();
1467 if (likely(bprm->cred))
1470 mutex_unlock(¤t->signal->cred_guard_mutex);
1474 static void free_bprm(struct linux_binprm *bprm)
1477 acct_arg_size(bprm, 0);
1480 free_arg_pages(bprm);
1482 mutex_unlock(¤t->signal->cred_guard_mutex);
1483 abort_creds(bprm->cred);
1486 allow_write_access(bprm->file);
1489 if (bprm->executable)
1490 fput(bprm->executable);
1491 /* If a binfmt changed the interp, free it. */
1492 if (bprm->interp != bprm->filename)
1493 kfree(bprm->interp);
1494 kfree(bprm->fdpath);
1498 static struct linux_binprm *alloc_bprm(int fd, struct filename *filename)
1500 struct linux_binprm *bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1501 int retval = -ENOMEM;
1505 if (fd == AT_FDCWD || filename->name[0] == '/') {
1506 bprm->filename = filename->name;
1508 if (filename->name[0] == '\0')
1509 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1511 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1512 fd, filename->name);
1516 bprm->filename = bprm->fdpath;
1518 bprm->interp = bprm->filename;
1520 retval = bprm_mm_init(bprm);
1528 return ERR_PTR(retval);
1531 int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1533 /* If a binfmt changed the interp, free it first. */
1534 if (bprm->interp != bprm->filename)
1535 kfree(bprm->interp);
1536 bprm->interp = kstrdup(interp, GFP_KERNEL);
1541 EXPORT_SYMBOL(bprm_change_interp);
1544 * determine how safe it is to execute the proposed program
1545 * - the caller must hold ->cred_guard_mutex to protect against
1546 * PTRACE_ATTACH or seccomp thread-sync
1548 static void check_unsafe_exec(struct linux_binprm *bprm)
1550 struct task_struct *p = current, *t;
1554 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1557 * This isn't strictly necessary, but it makes it harder for LSMs to
1560 if (task_no_new_privs(current))
1561 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1565 spin_lock(&p->fs->lock);
1567 while_each_thread(p, t) {
1573 if (p->fs->users > n_fs)
1574 bprm->unsafe |= LSM_UNSAFE_SHARE;
1577 spin_unlock(&p->fs->lock);
1580 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file)
1582 /* Handle suid and sgid on files */
1583 struct user_namespace *mnt_userns;
1584 struct inode *inode;
1589 if (!mnt_may_suid(file->f_path.mnt))
1592 if (task_no_new_privs(current))
1595 inode = file->f_path.dentry->d_inode;
1596 mode = READ_ONCE(inode->i_mode);
1597 if (!(mode & (S_ISUID|S_ISGID)))
1600 mnt_userns = file_mnt_user_ns(file);
1602 /* Be careful if suid/sgid is set */
1605 /* reload atomically mode/uid/gid now that lock held */
1606 mode = inode->i_mode;
1607 uid = i_uid_into_mnt(mnt_userns, inode);
1608 gid = i_gid_into_mnt(mnt_userns, inode);
1609 inode_unlock(inode);
1611 /* We ignore suid/sgid if there are no mappings for them in the ns */
1612 if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1613 !kgid_has_mapping(bprm->cred->user_ns, gid))
1616 if (mode & S_ISUID) {
1617 bprm->per_clear |= PER_CLEAR_ON_SETID;
1618 bprm->cred->euid = uid;
1621 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1622 bprm->per_clear |= PER_CLEAR_ON_SETID;
1623 bprm->cred->egid = gid;
1628 * Compute brpm->cred based upon the final binary.
1630 static int bprm_creds_from_file(struct linux_binprm *bprm)
1632 /* Compute creds based on which file? */
1633 struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file;
1635 bprm_fill_uid(bprm, file);
1636 return security_bprm_creds_from_file(bprm, file);
1640 * Fill the binprm structure from the inode.
1641 * Read the first BINPRM_BUF_SIZE bytes
1643 * This may be called multiple times for binary chains (scripts for example).
1645 static int prepare_binprm(struct linux_binprm *bprm)
1649 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1650 return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1654 * Arguments are '\0' separated strings found at the location bprm->p
1655 * points to; chop off the first by relocating brpm->p to right after
1656 * the first '\0' encountered.
1658 int remove_arg_zero(struct linux_binprm *bprm)
1661 unsigned long offset;
1669 offset = bprm->p & ~PAGE_MASK;
1670 page = get_arg_page(bprm, bprm->p, 0);
1675 kaddr = kmap_atomic(page);
1677 for (; offset < PAGE_SIZE && kaddr[offset];
1678 offset++, bprm->p++)
1681 kunmap_atomic(kaddr);
1683 } while (offset == PAGE_SIZE);
1692 EXPORT_SYMBOL(remove_arg_zero);
1694 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1696 * cycle the list of binary formats handler, until one recognizes the image
1698 static int search_binary_handler(struct linux_binprm *bprm)
1700 bool need_retry = IS_ENABLED(CONFIG_MODULES);
1701 struct linux_binfmt *fmt;
1704 retval = prepare_binprm(bprm);
1708 retval = security_bprm_check(bprm);
1714 read_lock(&binfmt_lock);
1715 list_for_each_entry(fmt, &formats, lh) {
1716 if (!try_module_get(fmt->module))
1718 read_unlock(&binfmt_lock);
1720 retval = fmt->load_binary(bprm);
1722 read_lock(&binfmt_lock);
1724 if (bprm->point_of_no_return || (retval != -ENOEXEC)) {
1725 read_unlock(&binfmt_lock);
1729 read_unlock(&binfmt_lock);
1732 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1733 printable(bprm->buf[2]) && printable(bprm->buf[3]))
1735 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1744 static int exec_binprm(struct linux_binprm *bprm)
1746 pid_t old_pid, old_vpid;
1749 /* Need to fetch pid before load_binary changes it */
1750 old_pid = current->pid;
1752 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1755 /* This allows 4 levels of binfmt rewrites before failing hard. */
1756 for (depth = 0;; depth++) {
1761 ret = search_binary_handler(bprm);
1764 if (!bprm->interpreter)
1768 bprm->file = bprm->interpreter;
1769 bprm->interpreter = NULL;
1771 allow_write_access(exec);
1772 if (unlikely(bprm->have_execfd)) {
1773 if (bprm->executable) {
1777 bprm->executable = exec;
1783 trace_sched_process_exec(current, old_pid, bprm);
1784 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1785 proc_exec_connector(current);
1790 * sys_execve() executes a new program.
1792 static int bprm_execve(struct linux_binprm *bprm,
1793 int fd, struct filename *filename, int flags)
1798 retval = prepare_bprm_creds(bprm);
1802 check_unsafe_exec(bprm);
1803 current->in_execve = 1;
1805 file = do_open_execat(fd, filename, flags);
1806 retval = PTR_ERR(file);
1814 * Record that a name derived from an O_CLOEXEC fd will be
1815 * inaccessible after exec. This allows the code in exec to
1816 * choose to fail when the executable is not mmaped into the
1817 * interpreter and an open file descriptor is not passed to
1818 * the interpreter. This makes for a better user experience
1819 * than having the interpreter start and then immediately fail
1820 * when it finds the executable is inaccessible.
1822 if (bprm->fdpath && get_close_on_exec(fd))
1823 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1825 /* Set the unchanging part of bprm->cred */
1826 retval = security_bprm_creds_for_exec(bprm);
1830 retval = exec_binprm(bprm);
1834 /* execve succeeded */
1835 current->fs->in_exec = 0;
1836 current->in_execve = 0;
1837 rseq_execve(current);
1838 acct_update_integrals(current);
1839 task_numa_free(current, false);
1844 * If past the point of no return ensure the code never
1845 * returns to the userspace process. Use an existing fatal
1846 * signal if present otherwise terminate the process with
1849 if (bprm->point_of_no_return && !fatal_signal_pending(current))
1850 force_sigsegv(SIGSEGV);
1853 current->fs->in_exec = 0;
1854 current->in_execve = 0;
1859 static int do_execveat_common(int fd, struct filename *filename,
1860 struct user_arg_ptr argv,
1861 struct user_arg_ptr envp,
1864 struct linux_binprm *bprm;
1867 if (IS_ERR(filename))
1868 return PTR_ERR(filename);
1871 * We move the actual failure in case of RLIMIT_NPROC excess from
1872 * set*uid() to execve() because too many poorly written programs
1873 * don't check setuid() return code. Here we additionally recheck
1874 * whether NPROC limit is still exceeded.
1876 if ((current->flags & PF_NPROC_EXCEEDED) &&
1877 atomic_read(¤t_user()->processes) > rlimit(RLIMIT_NPROC)) {
1882 /* We're below the limit (still or again), so we don't want to make
1883 * further execve() calls fail. */
1884 current->flags &= ~PF_NPROC_EXCEEDED;
1886 bprm = alloc_bprm(fd, filename);
1888 retval = PTR_ERR(bprm);
1892 retval = count(argv, MAX_ARG_STRINGS);
1895 bprm->argc = retval;
1897 retval = count(envp, MAX_ARG_STRINGS);
1900 bprm->envc = retval;
1902 retval = bprm_stack_limits(bprm);
1906 retval = copy_string_kernel(bprm->filename, bprm);
1909 bprm->exec = bprm->p;
1911 retval = copy_strings(bprm->envc, envp, bprm);
1915 retval = copy_strings(bprm->argc, argv, bprm);
1919 retval = bprm_execve(bprm, fd, filename, flags);
1928 int kernel_execve(const char *kernel_filename,
1929 const char *const *argv, const char *const *envp)
1931 struct filename *filename;
1932 struct linux_binprm *bprm;
1936 filename = getname_kernel(kernel_filename);
1937 if (IS_ERR(filename))
1938 return PTR_ERR(filename);
1940 bprm = alloc_bprm(fd, filename);
1942 retval = PTR_ERR(bprm);
1946 retval = count_strings_kernel(argv);
1949 bprm->argc = retval;
1951 retval = count_strings_kernel(envp);
1954 bprm->envc = retval;
1956 retval = bprm_stack_limits(bprm);
1960 retval = copy_string_kernel(bprm->filename, bprm);
1963 bprm->exec = bprm->p;
1965 retval = copy_strings_kernel(bprm->envc, envp, bprm);
1969 retval = copy_strings_kernel(bprm->argc, argv, bprm);
1973 retval = bprm_execve(bprm, fd, filename, 0);
1981 static int do_execve(struct filename *filename,
1982 const char __user *const __user *__argv,
1983 const char __user *const __user *__envp)
1985 struct user_arg_ptr argv = { .ptr.native = __argv };
1986 struct user_arg_ptr envp = { .ptr.native = __envp };
1987 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1990 static int do_execveat(int fd, struct filename *filename,
1991 const char __user *const __user *__argv,
1992 const char __user *const __user *__envp,
1995 struct user_arg_ptr argv = { .ptr.native = __argv };
1996 struct user_arg_ptr envp = { .ptr.native = __envp };
1998 return do_execveat_common(fd, filename, argv, envp, flags);
2001 #ifdef CONFIG_COMPAT
2002 static int compat_do_execve(struct filename *filename,
2003 const compat_uptr_t __user *__argv,
2004 const compat_uptr_t __user *__envp)
2006 struct user_arg_ptr argv = {
2008 .ptr.compat = __argv,
2010 struct user_arg_ptr envp = {
2012 .ptr.compat = __envp,
2014 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2017 static int compat_do_execveat(int fd, struct filename *filename,
2018 const compat_uptr_t __user *__argv,
2019 const compat_uptr_t __user *__envp,
2022 struct user_arg_ptr argv = {
2024 .ptr.compat = __argv,
2026 struct user_arg_ptr envp = {
2028 .ptr.compat = __envp,
2030 return do_execveat_common(fd, filename, argv, envp, flags);
2034 void set_binfmt(struct linux_binfmt *new)
2036 struct mm_struct *mm = current->mm;
2039 module_put(mm->binfmt->module);
2043 __module_get(new->module);
2045 EXPORT_SYMBOL(set_binfmt);
2048 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
2050 void set_dumpable(struct mm_struct *mm, int value)
2052 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
2055 set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value);
2058 SYSCALL_DEFINE3(execve,
2059 const char __user *, filename,
2060 const char __user *const __user *, argv,
2061 const char __user *const __user *, envp)
2063 return do_execve(getname(filename), argv, envp);
2066 SYSCALL_DEFINE5(execveat,
2067 int, fd, const char __user *, filename,
2068 const char __user *const __user *, argv,
2069 const char __user *const __user *, envp,
2072 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
2074 return do_execveat(fd,
2075 getname_flags(filename, lookup_flags, NULL),
2079 #ifdef CONFIG_COMPAT
2080 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
2081 const compat_uptr_t __user *, argv,
2082 const compat_uptr_t __user *, envp)
2084 return compat_do_execve(getname(filename), argv, envp);
2087 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
2088 const char __user *, filename,
2089 const compat_uptr_t __user *, argv,
2090 const compat_uptr_t __user *, envp,
2093 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
2095 return compat_do_execveat(fd,
2096 getname_flags(filename, lookup_flags, NULL),