kernel/fork: always deny write access to current MM exe_file
[linux-2.6-microblaze.git] / fs / ecryptfs / main.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * eCryptfs: Linux filesystem encryption layer
4  *
5  * Copyright (C) 1997-2003 Erez Zadok
6  * Copyright (C) 2001-2003 Stony Brook University
7  * Copyright (C) 2004-2007 International Business Machines Corp.
8  *   Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
9  *              Michael C. Thompson <mcthomps@us.ibm.com>
10  *              Tyler Hicks <code@tyhicks.com>
11  */
12
13 #include <linux/dcache.h>
14 #include <linux/file.h>
15 #include <linux/module.h>
16 #include <linux/namei.h>
17 #include <linux/skbuff.h>
18 #include <linux/mount.h>
19 #include <linux/pagemap.h>
20 #include <linux/key.h>
21 #include <linux/parser.h>
22 #include <linux/fs_stack.h>
23 #include <linux/slab.h>
24 #include <linux/magic.h>
25 #include "ecryptfs_kernel.h"
26
27 /*
28  * Module parameter that defines the ecryptfs_verbosity level.
29  */
30 int ecryptfs_verbosity = 0;
31
32 module_param(ecryptfs_verbosity, int, 0);
33 MODULE_PARM_DESC(ecryptfs_verbosity,
34                  "Initial verbosity level (0 or 1; defaults to "
35                  "0, which is Quiet)");
36
37 /*
38  * Module parameter that defines the number of message buffer elements
39  */
40 unsigned int ecryptfs_message_buf_len = ECRYPTFS_DEFAULT_MSG_CTX_ELEMS;
41
42 module_param(ecryptfs_message_buf_len, uint, 0);
43 MODULE_PARM_DESC(ecryptfs_message_buf_len,
44                  "Number of message buffer elements");
45
46 /*
47  * Module parameter that defines the maximum guaranteed amount of time to wait
48  * for a response from ecryptfsd.  The actual sleep time will be, more than
49  * likely, a small amount greater than this specified value, but only less if
50  * the message successfully arrives.
51  */
52 signed long ecryptfs_message_wait_timeout = ECRYPTFS_MAX_MSG_CTX_TTL / HZ;
53
54 module_param(ecryptfs_message_wait_timeout, long, 0);
55 MODULE_PARM_DESC(ecryptfs_message_wait_timeout,
56                  "Maximum number of seconds that an operation will "
57                  "sleep while waiting for a message response from "
58                  "userspace");
59
60 /*
61  * Module parameter that is an estimate of the maximum number of users
62  * that will be concurrently using eCryptfs. Set this to the right
63  * value to balance performance and memory use.
64  */
65 unsigned int ecryptfs_number_of_users = ECRYPTFS_DEFAULT_NUM_USERS;
66
67 module_param(ecryptfs_number_of_users, uint, 0);
68 MODULE_PARM_DESC(ecryptfs_number_of_users, "An estimate of the number of "
69                  "concurrent users of eCryptfs");
70
71 void __ecryptfs_printk(const char *fmt, ...)
72 {
73         va_list args;
74         va_start(args, fmt);
75         if (fmt[1] == '7') { /* KERN_DEBUG */
76                 if (ecryptfs_verbosity >= 1)
77                         vprintk(fmt, args);
78         } else
79                 vprintk(fmt, args);
80         va_end(args);
81 }
82
83 /*
84  * ecryptfs_init_lower_file
85  * @ecryptfs_dentry: Fully initialized eCryptfs dentry object, with
86  *                   the lower dentry and the lower mount set
87  *
88  * eCryptfs only ever keeps a single open file for every lower
89  * inode. All I/O operations to the lower inode occur through that
90  * file. When the first eCryptfs dentry that interposes with the first
91  * lower dentry for that inode is created, this function creates the
92  * lower file struct and associates it with the eCryptfs
93  * inode. When all eCryptfs files associated with the inode are released, the
94  * file is closed.
95  *
96  * The lower file will be opened with read/write permissions, if
97  * possible. Otherwise, it is opened read-only.
98  *
99  * This function does nothing if a lower file is already
100  * associated with the eCryptfs inode.
101  *
102  * Returns zero on success; non-zero otherwise
103  */
104 static int ecryptfs_init_lower_file(struct dentry *dentry,
105                                     struct file **lower_file)
106 {
107         const struct cred *cred = current_cred();
108         struct path *path = ecryptfs_dentry_to_lower_path(dentry);
109         int rc;
110
111         rc = ecryptfs_privileged_open(lower_file, path->dentry, path->mnt,
112                                       cred);
113         if (rc) {
114                 printk(KERN_ERR "Error opening lower file "
115                        "for lower_dentry [0x%p] and lower_mnt [0x%p]; "
116                        "rc = [%d]\n", path->dentry, path->mnt, rc);
117                 (*lower_file) = NULL;
118         }
119         return rc;
120 }
121
122 int ecryptfs_get_lower_file(struct dentry *dentry, struct inode *inode)
123 {
124         struct ecryptfs_inode_info *inode_info;
125         int count, rc = 0;
126
127         inode_info = ecryptfs_inode_to_private(inode);
128         mutex_lock(&inode_info->lower_file_mutex);
129         count = atomic_inc_return(&inode_info->lower_file_count);
130         if (WARN_ON_ONCE(count < 1))
131                 rc = -EINVAL;
132         else if (count == 1) {
133                 rc = ecryptfs_init_lower_file(dentry,
134                                               &inode_info->lower_file);
135                 if (rc)
136                         atomic_set(&inode_info->lower_file_count, 0);
137         }
138         mutex_unlock(&inode_info->lower_file_mutex);
139         return rc;
140 }
141
142 void ecryptfs_put_lower_file(struct inode *inode)
143 {
144         struct ecryptfs_inode_info *inode_info;
145
146         inode_info = ecryptfs_inode_to_private(inode);
147         if (atomic_dec_and_mutex_lock(&inode_info->lower_file_count,
148                                       &inode_info->lower_file_mutex)) {
149                 filemap_write_and_wait(inode->i_mapping);
150                 fput(inode_info->lower_file);
151                 inode_info->lower_file = NULL;
152                 mutex_unlock(&inode_info->lower_file_mutex);
153         }
154 }
155
156 enum { ecryptfs_opt_sig, ecryptfs_opt_ecryptfs_sig,
157        ecryptfs_opt_cipher, ecryptfs_opt_ecryptfs_cipher,
158        ecryptfs_opt_ecryptfs_key_bytes,
159        ecryptfs_opt_passthrough, ecryptfs_opt_xattr_metadata,
160        ecryptfs_opt_encrypted_view, ecryptfs_opt_fnek_sig,
161        ecryptfs_opt_fn_cipher, ecryptfs_opt_fn_cipher_key_bytes,
162        ecryptfs_opt_unlink_sigs, ecryptfs_opt_mount_auth_tok_only,
163        ecryptfs_opt_check_dev_ruid,
164        ecryptfs_opt_err };
165
166 static const match_table_t tokens = {
167         {ecryptfs_opt_sig, "sig=%s"},
168         {ecryptfs_opt_ecryptfs_sig, "ecryptfs_sig=%s"},
169         {ecryptfs_opt_cipher, "cipher=%s"},
170         {ecryptfs_opt_ecryptfs_cipher, "ecryptfs_cipher=%s"},
171         {ecryptfs_opt_ecryptfs_key_bytes, "ecryptfs_key_bytes=%u"},
172         {ecryptfs_opt_passthrough, "ecryptfs_passthrough"},
173         {ecryptfs_opt_xattr_metadata, "ecryptfs_xattr_metadata"},
174         {ecryptfs_opt_encrypted_view, "ecryptfs_encrypted_view"},
175         {ecryptfs_opt_fnek_sig, "ecryptfs_fnek_sig=%s"},
176         {ecryptfs_opt_fn_cipher, "ecryptfs_fn_cipher=%s"},
177         {ecryptfs_opt_fn_cipher_key_bytes, "ecryptfs_fn_key_bytes=%u"},
178         {ecryptfs_opt_unlink_sigs, "ecryptfs_unlink_sigs"},
179         {ecryptfs_opt_mount_auth_tok_only, "ecryptfs_mount_auth_tok_only"},
180         {ecryptfs_opt_check_dev_ruid, "ecryptfs_check_dev_ruid"},
181         {ecryptfs_opt_err, NULL}
182 };
183
184 static int ecryptfs_init_global_auth_toks(
185         struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
186 {
187         struct ecryptfs_global_auth_tok *global_auth_tok;
188         struct ecryptfs_auth_tok *auth_tok;
189         int rc = 0;
190
191         list_for_each_entry(global_auth_tok,
192                             &mount_crypt_stat->global_auth_tok_list,
193                             mount_crypt_stat_list) {
194                 rc = ecryptfs_keyring_auth_tok_for_sig(
195                         &global_auth_tok->global_auth_tok_key, &auth_tok,
196                         global_auth_tok->sig);
197                 if (rc) {
198                         printk(KERN_ERR "Could not find valid key in user "
199                                "session keyring for sig specified in mount "
200                                "option: [%s]\n", global_auth_tok->sig);
201                         global_auth_tok->flags |= ECRYPTFS_AUTH_TOK_INVALID;
202                         goto out;
203                 } else {
204                         global_auth_tok->flags &= ~ECRYPTFS_AUTH_TOK_INVALID;
205                         up_write(&(global_auth_tok->global_auth_tok_key)->sem);
206                 }
207         }
208 out:
209         return rc;
210 }
211
212 static void ecryptfs_init_mount_crypt_stat(
213         struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
214 {
215         memset((void *)mount_crypt_stat, 0,
216                sizeof(struct ecryptfs_mount_crypt_stat));
217         INIT_LIST_HEAD(&mount_crypt_stat->global_auth_tok_list);
218         mutex_init(&mount_crypt_stat->global_auth_tok_list_mutex);
219         mount_crypt_stat->flags |= ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED;
220 }
221
222 /**
223  * ecryptfs_parse_options
224  * @sbi: The ecryptfs super block
225  * @options: The options passed to the kernel
226  * @check_ruid: set to 1 if device uid should be checked against the ruid
227  *
228  * Parse mount options:
229  * debug=N         - ecryptfs_verbosity level for debug output
230  * sig=XXX         - description(signature) of the key to use
231  *
232  * Returns the dentry object of the lower-level (lower/interposed)
233  * directory; We want to mount our stackable file system on top of
234  * that lower directory.
235  *
236  * The signature of the key to use must be the description of a key
237  * already in the keyring. Mounting will fail if the key can not be
238  * found.
239  *
240  * Returns zero on success; non-zero on error
241  */
242 static int ecryptfs_parse_options(struct ecryptfs_sb_info *sbi, char *options,
243                                   uid_t *check_ruid)
244 {
245         char *p;
246         int rc = 0;
247         int sig_set = 0;
248         int cipher_name_set = 0;
249         int fn_cipher_name_set = 0;
250         int cipher_key_bytes;
251         int cipher_key_bytes_set = 0;
252         int fn_cipher_key_bytes;
253         int fn_cipher_key_bytes_set = 0;
254         struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
255                 &sbi->mount_crypt_stat;
256         substring_t args[MAX_OPT_ARGS];
257         int token;
258         char *sig_src;
259         char *cipher_name_dst;
260         char *cipher_name_src;
261         char *fn_cipher_name_dst;
262         char *fn_cipher_name_src;
263         char *fnek_dst;
264         char *fnek_src;
265         char *cipher_key_bytes_src;
266         char *fn_cipher_key_bytes_src;
267         u8 cipher_code;
268
269         *check_ruid = 0;
270
271         if (!options) {
272                 rc = -EINVAL;
273                 goto out;
274         }
275         ecryptfs_init_mount_crypt_stat(mount_crypt_stat);
276         while ((p = strsep(&options, ",")) != NULL) {
277                 if (!*p)
278                         continue;
279                 token = match_token(p, tokens, args);
280                 switch (token) {
281                 case ecryptfs_opt_sig:
282                 case ecryptfs_opt_ecryptfs_sig:
283                         sig_src = args[0].from;
284                         rc = ecryptfs_add_global_auth_tok(mount_crypt_stat,
285                                                           sig_src, 0);
286                         if (rc) {
287                                 printk(KERN_ERR "Error attempting to register "
288                                        "global sig; rc = [%d]\n", rc);
289                                 goto out;
290                         }
291                         sig_set = 1;
292                         break;
293                 case ecryptfs_opt_cipher:
294                 case ecryptfs_opt_ecryptfs_cipher:
295                         cipher_name_src = args[0].from;
296                         cipher_name_dst =
297                                 mount_crypt_stat->
298                                 global_default_cipher_name;
299                         strncpy(cipher_name_dst, cipher_name_src,
300                                 ECRYPTFS_MAX_CIPHER_NAME_SIZE);
301                         cipher_name_dst[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
302                         cipher_name_set = 1;
303                         break;
304                 case ecryptfs_opt_ecryptfs_key_bytes:
305                         cipher_key_bytes_src = args[0].from;
306                         cipher_key_bytes =
307                                 (int)simple_strtol(cipher_key_bytes_src,
308                                                    &cipher_key_bytes_src, 0);
309                         mount_crypt_stat->global_default_cipher_key_size =
310                                 cipher_key_bytes;
311                         cipher_key_bytes_set = 1;
312                         break;
313                 case ecryptfs_opt_passthrough:
314                         mount_crypt_stat->flags |=
315                                 ECRYPTFS_PLAINTEXT_PASSTHROUGH_ENABLED;
316                         break;
317                 case ecryptfs_opt_xattr_metadata:
318                         mount_crypt_stat->flags |=
319                                 ECRYPTFS_XATTR_METADATA_ENABLED;
320                         break;
321                 case ecryptfs_opt_encrypted_view:
322                         mount_crypt_stat->flags |=
323                                 ECRYPTFS_XATTR_METADATA_ENABLED;
324                         mount_crypt_stat->flags |=
325                                 ECRYPTFS_ENCRYPTED_VIEW_ENABLED;
326                         break;
327                 case ecryptfs_opt_fnek_sig:
328                         fnek_src = args[0].from;
329                         fnek_dst =
330                                 mount_crypt_stat->global_default_fnek_sig;
331                         strncpy(fnek_dst, fnek_src, ECRYPTFS_SIG_SIZE_HEX);
332                         mount_crypt_stat->global_default_fnek_sig[
333                                 ECRYPTFS_SIG_SIZE_HEX] = '\0';
334                         rc = ecryptfs_add_global_auth_tok(
335                                 mount_crypt_stat,
336                                 mount_crypt_stat->global_default_fnek_sig,
337                                 ECRYPTFS_AUTH_TOK_FNEK);
338                         if (rc) {
339                                 printk(KERN_ERR "Error attempting to register "
340                                        "global fnek sig [%s]; rc = [%d]\n",
341                                        mount_crypt_stat->global_default_fnek_sig,
342                                        rc);
343                                 goto out;
344                         }
345                         mount_crypt_stat->flags |=
346                                 (ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES
347                                  | ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK);
348                         break;
349                 case ecryptfs_opt_fn_cipher:
350                         fn_cipher_name_src = args[0].from;
351                         fn_cipher_name_dst =
352                                 mount_crypt_stat->global_default_fn_cipher_name;
353                         strncpy(fn_cipher_name_dst, fn_cipher_name_src,
354                                 ECRYPTFS_MAX_CIPHER_NAME_SIZE);
355                         mount_crypt_stat->global_default_fn_cipher_name[
356                                 ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
357                         fn_cipher_name_set = 1;
358                         break;
359                 case ecryptfs_opt_fn_cipher_key_bytes:
360                         fn_cipher_key_bytes_src = args[0].from;
361                         fn_cipher_key_bytes =
362                                 (int)simple_strtol(fn_cipher_key_bytes_src,
363                                                    &fn_cipher_key_bytes_src, 0);
364                         mount_crypt_stat->global_default_fn_cipher_key_bytes =
365                                 fn_cipher_key_bytes;
366                         fn_cipher_key_bytes_set = 1;
367                         break;
368                 case ecryptfs_opt_unlink_sigs:
369                         mount_crypt_stat->flags |= ECRYPTFS_UNLINK_SIGS;
370                         break;
371                 case ecryptfs_opt_mount_auth_tok_only:
372                         mount_crypt_stat->flags |=
373                                 ECRYPTFS_GLOBAL_MOUNT_AUTH_TOK_ONLY;
374                         break;
375                 case ecryptfs_opt_check_dev_ruid:
376                         *check_ruid = 1;
377                         break;
378                 case ecryptfs_opt_err:
379                 default:
380                         printk(KERN_WARNING
381                                "%s: eCryptfs: unrecognized option [%s]\n",
382                                __func__, p);
383                 }
384         }
385         if (!sig_set) {
386                 rc = -EINVAL;
387                 ecryptfs_printk(KERN_ERR, "You must supply at least one valid "
388                                 "auth tok signature as a mount "
389                                 "parameter; see the eCryptfs README\n");
390                 goto out;
391         }
392         if (!cipher_name_set) {
393                 int cipher_name_len = strlen(ECRYPTFS_DEFAULT_CIPHER);
394
395                 BUG_ON(cipher_name_len > ECRYPTFS_MAX_CIPHER_NAME_SIZE);
396                 strcpy(mount_crypt_stat->global_default_cipher_name,
397                        ECRYPTFS_DEFAULT_CIPHER);
398         }
399         if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)
400             && !fn_cipher_name_set)
401                 strcpy(mount_crypt_stat->global_default_fn_cipher_name,
402                        mount_crypt_stat->global_default_cipher_name);
403         if (!cipher_key_bytes_set)
404                 mount_crypt_stat->global_default_cipher_key_size = 0;
405         if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)
406             && !fn_cipher_key_bytes_set)
407                 mount_crypt_stat->global_default_fn_cipher_key_bytes =
408                         mount_crypt_stat->global_default_cipher_key_size;
409
410         cipher_code = ecryptfs_code_for_cipher_string(
411                 mount_crypt_stat->global_default_cipher_name,
412                 mount_crypt_stat->global_default_cipher_key_size);
413         if (!cipher_code) {
414                 ecryptfs_printk(KERN_ERR,
415                                 "eCryptfs doesn't support cipher: %s\n",
416                                 mount_crypt_stat->global_default_cipher_name);
417                 rc = -EINVAL;
418                 goto out;
419         }
420
421         mutex_lock(&key_tfm_list_mutex);
422         if (!ecryptfs_tfm_exists(mount_crypt_stat->global_default_cipher_name,
423                                  NULL)) {
424                 rc = ecryptfs_add_new_key_tfm(
425                         NULL, mount_crypt_stat->global_default_cipher_name,
426                         mount_crypt_stat->global_default_cipher_key_size);
427                 if (rc) {
428                         printk(KERN_ERR "Error attempting to initialize "
429                                "cipher with name = [%s] and key size = [%td]; "
430                                "rc = [%d]\n",
431                                mount_crypt_stat->global_default_cipher_name,
432                                mount_crypt_stat->global_default_cipher_key_size,
433                                rc);
434                         rc = -EINVAL;
435                         mutex_unlock(&key_tfm_list_mutex);
436                         goto out;
437                 }
438         }
439         if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)
440             && !ecryptfs_tfm_exists(
441                     mount_crypt_stat->global_default_fn_cipher_name, NULL)) {
442                 rc = ecryptfs_add_new_key_tfm(
443                         NULL, mount_crypt_stat->global_default_fn_cipher_name,
444                         mount_crypt_stat->global_default_fn_cipher_key_bytes);
445                 if (rc) {
446                         printk(KERN_ERR "Error attempting to initialize "
447                                "cipher with name = [%s] and key size = [%td]; "
448                                "rc = [%d]\n",
449                                mount_crypt_stat->global_default_fn_cipher_name,
450                                mount_crypt_stat->global_default_fn_cipher_key_bytes,
451                                rc);
452                         rc = -EINVAL;
453                         mutex_unlock(&key_tfm_list_mutex);
454                         goto out;
455                 }
456         }
457         mutex_unlock(&key_tfm_list_mutex);
458         rc = ecryptfs_init_global_auth_toks(mount_crypt_stat);
459         if (rc)
460                 printk(KERN_WARNING "One or more global auth toks could not "
461                        "properly register; rc = [%d]\n", rc);
462 out:
463         return rc;
464 }
465
466 struct kmem_cache *ecryptfs_sb_info_cache;
467 static struct file_system_type ecryptfs_fs_type;
468
469 /*
470  * ecryptfs_mount
471  * @fs_type: The filesystem type that the superblock should belong to
472  * @flags: The flags associated with the mount
473  * @dev_name: The path to mount over
474  * @raw_data: The options passed into the kernel
475  */
476 static struct dentry *ecryptfs_mount(struct file_system_type *fs_type, int flags,
477                         const char *dev_name, void *raw_data)
478 {
479         struct super_block *s;
480         struct ecryptfs_sb_info *sbi;
481         struct ecryptfs_mount_crypt_stat *mount_crypt_stat;
482         struct ecryptfs_dentry_info *root_info;
483         const char *err = "Getting sb failed";
484         struct inode *inode;
485         struct path path;
486         uid_t check_ruid;
487         int rc;
488
489         sbi = kmem_cache_zalloc(ecryptfs_sb_info_cache, GFP_KERNEL);
490         if (!sbi) {
491                 rc = -ENOMEM;
492                 goto out;
493         }
494
495         if (!dev_name) {
496                 rc = -EINVAL;
497                 err = "Device name cannot be null";
498                 goto out;
499         }
500
501         rc = ecryptfs_parse_options(sbi, raw_data, &check_ruid);
502         if (rc) {
503                 err = "Error parsing options";
504                 goto out;
505         }
506         mount_crypt_stat = &sbi->mount_crypt_stat;
507
508         s = sget(fs_type, NULL, set_anon_super, flags, NULL);
509         if (IS_ERR(s)) {
510                 rc = PTR_ERR(s);
511                 goto out;
512         }
513
514         rc = super_setup_bdi(s);
515         if (rc)
516                 goto out1;
517
518         ecryptfs_set_superblock_private(s, sbi);
519
520         /* ->kill_sb() will take care of sbi after that point */
521         sbi = NULL;
522         s->s_op = &ecryptfs_sops;
523         s->s_xattr = ecryptfs_xattr_handlers;
524         s->s_d_op = &ecryptfs_dops;
525
526         err = "Reading sb failed";
527         rc = kern_path(dev_name, LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &path);
528         if (rc) {
529                 ecryptfs_printk(KERN_WARNING, "kern_path() failed\n");
530                 goto out1;
531         }
532         if (path.dentry->d_sb->s_type == &ecryptfs_fs_type) {
533                 rc = -EINVAL;
534                 printk(KERN_ERR "Mount on filesystem of type "
535                         "eCryptfs explicitly disallowed due to "
536                         "known incompatibilities\n");
537                 goto out_free;
538         }
539
540         if (mnt_user_ns(path.mnt) != &init_user_ns) {
541                 rc = -EINVAL;
542                 printk(KERN_ERR "Mounting on idmapped mounts currently disallowed\n");
543                 goto out_free;
544         }
545
546         if (check_ruid && !uid_eq(d_inode(path.dentry)->i_uid, current_uid())) {
547                 rc = -EPERM;
548                 printk(KERN_ERR "Mount of device (uid: %d) not owned by "
549                        "requested user (uid: %d)\n",
550                         i_uid_read(d_inode(path.dentry)),
551                         from_kuid(&init_user_ns, current_uid()));
552                 goto out_free;
553         }
554
555         ecryptfs_set_superblock_lower(s, path.dentry->d_sb);
556
557         /**
558          * Set the POSIX ACL flag based on whether they're enabled in the lower
559          * mount.
560          */
561         s->s_flags = flags & ~SB_POSIXACL;
562         s->s_flags |= path.dentry->d_sb->s_flags & SB_POSIXACL;
563
564         /**
565          * Force a read-only eCryptfs mount when:
566          *   1) The lower mount is ro
567          *   2) The ecryptfs_encrypted_view mount option is specified
568          */
569         if (sb_rdonly(path.dentry->d_sb) || mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
570                 s->s_flags |= SB_RDONLY;
571
572         s->s_maxbytes = path.dentry->d_sb->s_maxbytes;
573         s->s_blocksize = path.dentry->d_sb->s_blocksize;
574         s->s_magic = ECRYPTFS_SUPER_MAGIC;
575         s->s_stack_depth = path.dentry->d_sb->s_stack_depth + 1;
576
577         rc = -EINVAL;
578         if (s->s_stack_depth > FILESYSTEM_MAX_STACK_DEPTH) {
579                 pr_err("eCryptfs: maximum fs stacking depth exceeded\n");
580                 goto out_free;
581         }
582
583         inode = ecryptfs_get_inode(d_inode(path.dentry), s);
584         rc = PTR_ERR(inode);
585         if (IS_ERR(inode))
586                 goto out_free;
587
588         s->s_root = d_make_root(inode);
589         if (!s->s_root) {
590                 rc = -ENOMEM;
591                 goto out_free;
592         }
593
594         rc = -ENOMEM;
595         root_info = kmem_cache_zalloc(ecryptfs_dentry_info_cache, GFP_KERNEL);
596         if (!root_info)
597                 goto out_free;
598
599         /* ->kill_sb() will take care of root_info */
600         ecryptfs_set_dentry_private(s->s_root, root_info);
601         root_info->lower_path = path;
602
603         s->s_flags |= SB_ACTIVE;
604         return dget(s->s_root);
605
606 out_free:
607         path_put(&path);
608 out1:
609         deactivate_locked_super(s);
610 out:
611         if (sbi) {
612                 ecryptfs_destroy_mount_crypt_stat(&sbi->mount_crypt_stat);
613                 kmem_cache_free(ecryptfs_sb_info_cache, sbi);
614         }
615         printk(KERN_ERR "%s; rc = [%d]\n", err, rc);
616         return ERR_PTR(rc);
617 }
618
619 /**
620  * ecryptfs_kill_block_super
621  * @sb: The ecryptfs super block
622  *
623  * Used to bring the superblock down and free the private data.
624  */
625 static void ecryptfs_kill_block_super(struct super_block *sb)
626 {
627         struct ecryptfs_sb_info *sb_info = ecryptfs_superblock_to_private(sb);
628         kill_anon_super(sb);
629         if (!sb_info)
630                 return;
631         ecryptfs_destroy_mount_crypt_stat(&sb_info->mount_crypt_stat);
632         kmem_cache_free(ecryptfs_sb_info_cache, sb_info);
633 }
634
635 static struct file_system_type ecryptfs_fs_type = {
636         .owner = THIS_MODULE,
637         .name = "ecryptfs",
638         .mount = ecryptfs_mount,
639         .kill_sb = ecryptfs_kill_block_super,
640         .fs_flags = 0
641 };
642 MODULE_ALIAS_FS("ecryptfs");
643
644 /*
645  * inode_info_init_once
646  *
647  * Initializes the ecryptfs_inode_info_cache when it is created
648  */
649 static void
650 inode_info_init_once(void *vptr)
651 {
652         struct ecryptfs_inode_info *ei = (struct ecryptfs_inode_info *)vptr;
653
654         inode_init_once(&ei->vfs_inode);
655 }
656
657 static struct ecryptfs_cache_info {
658         struct kmem_cache **cache;
659         const char *name;
660         size_t size;
661         slab_flags_t flags;
662         void (*ctor)(void *obj);
663 } ecryptfs_cache_infos[] = {
664         {
665                 .cache = &ecryptfs_auth_tok_list_item_cache,
666                 .name = "ecryptfs_auth_tok_list_item",
667                 .size = sizeof(struct ecryptfs_auth_tok_list_item),
668         },
669         {
670                 .cache = &ecryptfs_file_info_cache,
671                 .name = "ecryptfs_file_cache",
672                 .size = sizeof(struct ecryptfs_file_info),
673         },
674         {
675                 .cache = &ecryptfs_dentry_info_cache,
676                 .name = "ecryptfs_dentry_info_cache",
677                 .size = sizeof(struct ecryptfs_dentry_info),
678         },
679         {
680                 .cache = &ecryptfs_inode_info_cache,
681                 .name = "ecryptfs_inode_cache",
682                 .size = sizeof(struct ecryptfs_inode_info),
683                 .flags = SLAB_ACCOUNT,
684                 .ctor = inode_info_init_once,
685         },
686         {
687                 .cache = &ecryptfs_sb_info_cache,
688                 .name = "ecryptfs_sb_cache",
689                 .size = sizeof(struct ecryptfs_sb_info),
690         },
691         {
692                 .cache = &ecryptfs_header_cache,
693                 .name = "ecryptfs_headers",
694                 .size = PAGE_SIZE,
695         },
696         {
697                 .cache = &ecryptfs_xattr_cache,
698                 .name = "ecryptfs_xattr_cache",
699                 .size = PAGE_SIZE,
700         },
701         {
702                 .cache = &ecryptfs_key_record_cache,
703                 .name = "ecryptfs_key_record_cache",
704                 .size = sizeof(struct ecryptfs_key_record),
705         },
706         {
707                 .cache = &ecryptfs_key_sig_cache,
708                 .name = "ecryptfs_key_sig_cache",
709                 .size = sizeof(struct ecryptfs_key_sig),
710         },
711         {
712                 .cache = &ecryptfs_global_auth_tok_cache,
713                 .name = "ecryptfs_global_auth_tok_cache",
714                 .size = sizeof(struct ecryptfs_global_auth_tok),
715         },
716         {
717                 .cache = &ecryptfs_key_tfm_cache,
718                 .name = "ecryptfs_key_tfm_cache",
719                 .size = sizeof(struct ecryptfs_key_tfm),
720         },
721 };
722
723 static void ecryptfs_free_kmem_caches(void)
724 {
725         int i;
726
727         /*
728          * Make sure all delayed rcu free inodes are flushed before we
729          * destroy cache.
730          */
731         rcu_barrier();
732
733         for (i = 0; i < ARRAY_SIZE(ecryptfs_cache_infos); i++) {
734                 struct ecryptfs_cache_info *info;
735
736                 info = &ecryptfs_cache_infos[i];
737                 kmem_cache_destroy(*(info->cache));
738         }
739 }
740
741 /**
742  * ecryptfs_init_kmem_caches
743  *
744  * Returns zero on success; non-zero otherwise
745  */
746 static int ecryptfs_init_kmem_caches(void)
747 {
748         int i;
749
750         for (i = 0; i < ARRAY_SIZE(ecryptfs_cache_infos); i++) {
751                 struct ecryptfs_cache_info *info;
752
753                 info = &ecryptfs_cache_infos[i];
754                 *(info->cache) = kmem_cache_create(info->name, info->size, 0,
755                                 SLAB_HWCACHE_ALIGN | info->flags, info->ctor);
756                 if (!*(info->cache)) {
757                         ecryptfs_free_kmem_caches();
758                         ecryptfs_printk(KERN_WARNING, "%s: "
759                                         "kmem_cache_create failed\n",
760                                         info->name);
761                         return -ENOMEM;
762                 }
763         }
764         return 0;
765 }
766
767 static struct kobject *ecryptfs_kobj;
768
769 static ssize_t version_show(struct kobject *kobj,
770                             struct kobj_attribute *attr, char *buff)
771 {
772         return snprintf(buff, PAGE_SIZE, "%d\n", ECRYPTFS_VERSIONING_MASK);
773 }
774
775 static struct kobj_attribute version_attr = __ATTR_RO(version);
776
777 static struct attribute *attributes[] = {
778         &version_attr.attr,
779         NULL,
780 };
781
782 static const struct attribute_group attr_group = {
783         .attrs = attributes,
784 };
785
786 static int do_sysfs_registration(void)
787 {
788         int rc;
789
790         ecryptfs_kobj = kobject_create_and_add("ecryptfs", fs_kobj);
791         if (!ecryptfs_kobj) {
792                 printk(KERN_ERR "Unable to create ecryptfs kset\n");
793                 rc = -ENOMEM;
794                 goto out;
795         }
796         rc = sysfs_create_group(ecryptfs_kobj, &attr_group);
797         if (rc) {
798                 printk(KERN_ERR
799                        "Unable to create ecryptfs version attributes\n");
800                 kobject_put(ecryptfs_kobj);
801         }
802 out:
803         return rc;
804 }
805
806 static void do_sysfs_unregistration(void)
807 {
808         sysfs_remove_group(ecryptfs_kobj, &attr_group);
809         kobject_put(ecryptfs_kobj);
810 }
811
812 static int __init ecryptfs_init(void)
813 {
814         int rc;
815
816         if (ECRYPTFS_DEFAULT_EXTENT_SIZE > PAGE_SIZE) {
817                 rc = -EINVAL;
818                 ecryptfs_printk(KERN_ERR, "The eCryptfs extent size is "
819                                 "larger than the host's page size, and so "
820                                 "eCryptfs cannot run on this system. The "
821                                 "default eCryptfs extent size is [%u] bytes; "
822                                 "the page size is [%lu] bytes.\n",
823                                 ECRYPTFS_DEFAULT_EXTENT_SIZE,
824                                 (unsigned long)PAGE_SIZE);
825                 goto out;
826         }
827         rc = ecryptfs_init_kmem_caches();
828         if (rc) {
829                 printk(KERN_ERR
830                        "Failed to allocate one or more kmem_cache objects\n");
831                 goto out;
832         }
833         rc = do_sysfs_registration();
834         if (rc) {
835                 printk(KERN_ERR "sysfs registration failed\n");
836                 goto out_free_kmem_caches;
837         }
838         rc = ecryptfs_init_kthread();
839         if (rc) {
840                 printk(KERN_ERR "%s: kthread initialization failed; "
841                        "rc = [%d]\n", __func__, rc);
842                 goto out_do_sysfs_unregistration;
843         }
844         rc = ecryptfs_init_messaging();
845         if (rc) {
846                 printk(KERN_ERR "Failure occurred while attempting to "
847                                 "initialize the communications channel to "
848                                 "ecryptfsd\n");
849                 goto out_destroy_kthread;
850         }
851         rc = ecryptfs_init_crypto();
852         if (rc) {
853                 printk(KERN_ERR "Failure whilst attempting to init crypto; "
854                        "rc = [%d]\n", rc);
855                 goto out_release_messaging;
856         }
857         rc = register_filesystem(&ecryptfs_fs_type);
858         if (rc) {
859                 printk(KERN_ERR "Failed to register filesystem\n");
860                 goto out_destroy_crypto;
861         }
862         if (ecryptfs_verbosity > 0)
863                 printk(KERN_CRIT "eCryptfs verbosity set to %d. Secret values "
864                         "will be written to the syslog!\n", ecryptfs_verbosity);
865
866         goto out;
867 out_destroy_crypto:
868         ecryptfs_destroy_crypto();
869 out_release_messaging:
870         ecryptfs_release_messaging();
871 out_destroy_kthread:
872         ecryptfs_destroy_kthread();
873 out_do_sysfs_unregistration:
874         do_sysfs_unregistration();
875 out_free_kmem_caches:
876         ecryptfs_free_kmem_caches();
877 out:
878         return rc;
879 }
880
881 static void __exit ecryptfs_exit(void)
882 {
883         int rc;
884
885         rc = ecryptfs_destroy_crypto();
886         if (rc)
887                 printk(KERN_ERR "Failure whilst attempting to destroy crypto; "
888                        "rc = [%d]\n", rc);
889         ecryptfs_release_messaging();
890         ecryptfs_destroy_kthread();
891         do_sysfs_unregistration();
892         unregister_filesystem(&ecryptfs_fs_type);
893         ecryptfs_free_kmem_caches();
894 }
895
896 MODULE_AUTHOR("Michael A. Halcrow <mhalcrow@us.ibm.com>");
897 MODULE_DESCRIPTION("eCryptfs");
898
899 MODULE_LICENSE("GPL");
900
901 module_init(ecryptfs_init)
902 module_exit(ecryptfs_exit)