Merge tag 'block-5.13-2021-05-07' of git://git.kernel.dk/linux-block
[linux-2.6-microblaze.git] / fs / ecryptfs / crypto.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * eCryptfs: Linux filesystem encryption layer
4  *
5  * Copyright (C) 1997-2004 Erez Zadok
6  * Copyright (C) 2001-2004 Stony Brook University
7  * Copyright (C) 2004-2007 International Business Machines Corp.
8  *   Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
9  *              Michael C. Thompson <mcthomps@us.ibm.com>
10  */
11
12 #include <crypto/hash.h>
13 #include <crypto/skcipher.h>
14 #include <linux/fs.h>
15 #include <linux/mount.h>
16 #include <linux/pagemap.h>
17 #include <linux/random.h>
18 #include <linux/compiler.h>
19 #include <linux/key.h>
20 #include <linux/namei.h>
21 #include <linux/file.h>
22 #include <linux/scatterlist.h>
23 #include <linux/slab.h>
24 #include <asm/unaligned.h>
25 #include <linux/kernel.h>
26 #include <linux/xattr.h>
27 #include "ecryptfs_kernel.h"
28
29 #define DECRYPT         0
30 #define ENCRYPT         1
31
32 /**
33  * ecryptfs_from_hex
34  * @dst: Buffer to take the bytes from src hex; must be at least of
35  *       size (src_size / 2)
36  * @src: Buffer to be converted from a hex string representation to raw value
37  * @dst_size: size of dst buffer, or number of hex characters pairs to convert
38  */
39 void ecryptfs_from_hex(char *dst, char *src, int dst_size)
40 {
41         int x;
42         char tmp[3] = { 0, };
43
44         for (x = 0; x < dst_size; x++) {
45                 tmp[0] = src[x * 2];
46                 tmp[1] = src[x * 2 + 1];
47                 dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
48         }
49 }
50
51 /**
52  * ecryptfs_calculate_md5 - calculates the md5 of @src
53  * @dst: Pointer to 16 bytes of allocated memory
54  * @crypt_stat: Pointer to crypt_stat struct for the current inode
55  * @src: Data to be md5'd
56  * @len: Length of @src
57  *
58  * Uses the allocated crypto context that crypt_stat references to
59  * generate the MD5 sum of the contents of src.
60  */
61 static int ecryptfs_calculate_md5(char *dst,
62                                   struct ecryptfs_crypt_stat *crypt_stat,
63                                   char *src, int len)
64 {
65         int rc = crypto_shash_tfm_digest(crypt_stat->hash_tfm, src, len, dst);
66
67         if (rc) {
68                 printk(KERN_ERR
69                        "%s: Error computing crypto hash; rc = [%d]\n",
70                        __func__, rc);
71                 goto out;
72         }
73 out:
74         return rc;
75 }
76
77 static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
78                                                   char *cipher_name,
79                                                   char *chaining_modifier)
80 {
81         int cipher_name_len = strlen(cipher_name);
82         int chaining_modifier_len = strlen(chaining_modifier);
83         int algified_name_len;
84         int rc;
85
86         algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
87         (*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
88         if (!(*algified_name)) {
89                 rc = -ENOMEM;
90                 goto out;
91         }
92         snprintf((*algified_name), algified_name_len, "%s(%s)",
93                  chaining_modifier, cipher_name);
94         rc = 0;
95 out:
96         return rc;
97 }
98
99 /**
100  * ecryptfs_derive_iv
101  * @iv: destination for the derived iv vale
102  * @crypt_stat: Pointer to crypt_stat struct for the current inode
103  * @offset: Offset of the extent whose IV we are to derive
104  *
105  * Generate the initialization vector from the given root IV and page
106  * offset.
107  *
108  * Returns zero on success; non-zero on error.
109  */
110 int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
111                        loff_t offset)
112 {
113         int rc = 0;
114         char dst[MD5_DIGEST_SIZE];
115         char src[ECRYPTFS_MAX_IV_BYTES + 16];
116
117         if (unlikely(ecryptfs_verbosity > 0)) {
118                 ecryptfs_printk(KERN_DEBUG, "root iv:\n");
119                 ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
120         }
121         /* TODO: It is probably secure to just cast the least
122          * significant bits of the root IV into an unsigned long and
123          * add the offset to that rather than go through all this
124          * hashing business. -Halcrow */
125         memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
126         memset((src + crypt_stat->iv_bytes), 0, 16);
127         snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset);
128         if (unlikely(ecryptfs_verbosity > 0)) {
129                 ecryptfs_printk(KERN_DEBUG, "source:\n");
130                 ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
131         }
132         rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
133                                     (crypt_stat->iv_bytes + 16));
134         if (rc) {
135                 ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
136                                 "MD5 while generating IV for a page\n");
137                 goto out;
138         }
139         memcpy(iv, dst, crypt_stat->iv_bytes);
140         if (unlikely(ecryptfs_verbosity > 0)) {
141                 ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
142                 ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
143         }
144 out:
145         return rc;
146 }
147
148 /**
149  * ecryptfs_init_crypt_stat
150  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
151  *
152  * Initialize the crypt_stat structure.
153  */
154 int ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
155 {
156         struct crypto_shash *tfm;
157         int rc;
158
159         tfm = crypto_alloc_shash(ECRYPTFS_DEFAULT_HASH, 0, 0);
160         if (IS_ERR(tfm)) {
161                 rc = PTR_ERR(tfm);
162                 ecryptfs_printk(KERN_ERR, "Error attempting to "
163                                 "allocate crypto context; rc = [%d]\n",
164                                 rc);
165                 return rc;
166         }
167
168         memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
169         INIT_LIST_HEAD(&crypt_stat->keysig_list);
170         mutex_init(&crypt_stat->keysig_list_mutex);
171         mutex_init(&crypt_stat->cs_mutex);
172         mutex_init(&crypt_stat->cs_tfm_mutex);
173         crypt_stat->hash_tfm = tfm;
174         crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
175
176         return 0;
177 }
178
179 /**
180  * ecryptfs_destroy_crypt_stat
181  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
182  *
183  * Releases all memory associated with a crypt_stat struct.
184  */
185 void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
186 {
187         struct ecryptfs_key_sig *key_sig, *key_sig_tmp;
188
189         crypto_free_skcipher(crypt_stat->tfm);
190         crypto_free_shash(crypt_stat->hash_tfm);
191         list_for_each_entry_safe(key_sig, key_sig_tmp,
192                                  &crypt_stat->keysig_list, crypt_stat_list) {
193                 list_del(&key_sig->crypt_stat_list);
194                 kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
195         }
196         memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
197 }
198
199 void ecryptfs_destroy_mount_crypt_stat(
200         struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
201 {
202         struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;
203
204         if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
205                 return;
206         mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
207         list_for_each_entry_safe(auth_tok, auth_tok_tmp,
208                                  &mount_crypt_stat->global_auth_tok_list,
209                                  mount_crypt_stat_list) {
210                 list_del(&auth_tok->mount_crypt_stat_list);
211                 if (!(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
212                         key_put(auth_tok->global_auth_tok_key);
213                 kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
214         }
215         mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
216         memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
217 }
218
219 /**
220  * virt_to_scatterlist
221  * @addr: Virtual address
222  * @size: Size of data; should be an even multiple of the block size
223  * @sg: Pointer to scatterlist array; set to NULL to obtain only
224  *      the number of scatterlist structs required in array
225  * @sg_size: Max array size
226  *
227  * Fills in a scatterlist array with page references for a passed
228  * virtual address.
229  *
230  * Returns the number of scatterlist structs in array used
231  */
232 int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
233                         int sg_size)
234 {
235         int i = 0;
236         struct page *pg;
237         int offset;
238         int remainder_of_page;
239
240         sg_init_table(sg, sg_size);
241
242         while (size > 0 && i < sg_size) {
243                 pg = virt_to_page(addr);
244                 offset = offset_in_page(addr);
245                 sg_set_page(&sg[i], pg, 0, offset);
246                 remainder_of_page = PAGE_SIZE - offset;
247                 if (size >= remainder_of_page) {
248                         sg[i].length = remainder_of_page;
249                         addr += remainder_of_page;
250                         size -= remainder_of_page;
251                 } else {
252                         sg[i].length = size;
253                         addr += size;
254                         size = 0;
255                 }
256                 i++;
257         }
258         if (size > 0)
259                 return -ENOMEM;
260         return i;
261 }
262
263 struct extent_crypt_result {
264         struct completion completion;
265         int rc;
266 };
267
268 static void extent_crypt_complete(struct crypto_async_request *req, int rc)
269 {
270         struct extent_crypt_result *ecr = req->data;
271
272         if (rc == -EINPROGRESS)
273                 return;
274
275         ecr->rc = rc;
276         complete(&ecr->completion);
277 }
278
279 /**
280  * crypt_scatterlist
281  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
282  * @dst_sg: Destination of the data after performing the crypto operation
283  * @src_sg: Data to be encrypted or decrypted
284  * @size: Length of data
285  * @iv: IV to use
286  * @op: ENCRYPT or DECRYPT to indicate the desired operation
287  *
288  * Returns the number of bytes encrypted or decrypted; negative value on error
289  */
290 static int crypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
291                              struct scatterlist *dst_sg,
292                              struct scatterlist *src_sg, int size,
293                              unsigned char *iv, int op)
294 {
295         struct skcipher_request *req = NULL;
296         struct extent_crypt_result ecr;
297         int rc = 0;
298
299         if (!crypt_stat || !crypt_stat->tfm
300                || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED))
301                 return -EINVAL;
302
303         if (unlikely(ecryptfs_verbosity > 0)) {
304                 ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n",
305                                 crypt_stat->key_size);
306                 ecryptfs_dump_hex(crypt_stat->key,
307                                   crypt_stat->key_size);
308         }
309
310         init_completion(&ecr.completion);
311
312         mutex_lock(&crypt_stat->cs_tfm_mutex);
313         req = skcipher_request_alloc(crypt_stat->tfm, GFP_NOFS);
314         if (!req) {
315                 mutex_unlock(&crypt_stat->cs_tfm_mutex);
316                 rc = -ENOMEM;
317                 goto out;
318         }
319
320         skcipher_request_set_callback(req,
321                         CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
322                         extent_crypt_complete, &ecr);
323         /* Consider doing this once, when the file is opened */
324         if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
325                 rc = crypto_skcipher_setkey(crypt_stat->tfm, crypt_stat->key,
326                                             crypt_stat->key_size);
327                 if (rc) {
328                         ecryptfs_printk(KERN_ERR,
329                                         "Error setting key; rc = [%d]\n",
330                                         rc);
331                         mutex_unlock(&crypt_stat->cs_tfm_mutex);
332                         rc = -EINVAL;
333                         goto out;
334                 }
335                 crypt_stat->flags |= ECRYPTFS_KEY_SET;
336         }
337         mutex_unlock(&crypt_stat->cs_tfm_mutex);
338         skcipher_request_set_crypt(req, src_sg, dst_sg, size, iv);
339         rc = op == ENCRYPT ? crypto_skcipher_encrypt(req) :
340                              crypto_skcipher_decrypt(req);
341         if (rc == -EINPROGRESS || rc == -EBUSY) {
342                 struct extent_crypt_result *ecr = req->base.data;
343
344                 wait_for_completion(&ecr->completion);
345                 rc = ecr->rc;
346                 reinit_completion(&ecr->completion);
347         }
348 out:
349         skcipher_request_free(req);
350         return rc;
351 }
352
353 /*
354  * lower_offset_for_page
355  *
356  * Convert an eCryptfs page index into a lower byte offset
357  */
358 static loff_t lower_offset_for_page(struct ecryptfs_crypt_stat *crypt_stat,
359                                     struct page *page)
360 {
361         return ecryptfs_lower_header_size(crypt_stat) +
362                ((loff_t)page->index << PAGE_SHIFT);
363 }
364
365 /**
366  * crypt_extent
367  * @crypt_stat: crypt_stat containing cryptographic context for the
368  *              encryption operation
369  * @dst_page: The page to write the result into
370  * @src_page: The page to read from
371  * @extent_offset: Page extent offset for use in generating IV
372  * @op: ENCRYPT or DECRYPT to indicate the desired operation
373  *
374  * Encrypts or decrypts one extent of data.
375  *
376  * Return zero on success; non-zero otherwise
377  */
378 static int crypt_extent(struct ecryptfs_crypt_stat *crypt_stat,
379                         struct page *dst_page,
380                         struct page *src_page,
381                         unsigned long extent_offset, int op)
382 {
383         pgoff_t page_index = op == ENCRYPT ? src_page->index : dst_page->index;
384         loff_t extent_base;
385         char extent_iv[ECRYPTFS_MAX_IV_BYTES];
386         struct scatterlist src_sg, dst_sg;
387         size_t extent_size = crypt_stat->extent_size;
388         int rc;
389
390         extent_base = (((loff_t)page_index) * (PAGE_SIZE / extent_size));
391         rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
392                                 (extent_base + extent_offset));
393         if (rc) {
394                 ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for "
395                         "extent [0x%.16llx]; rc = [%d]\n",
396                         (unsigned long long)(extent_base + extent_offset), rc);
397                 goto out;
398         }
399
400         sg_init_table(&src_sg, 1);
401         sg_init_table(&dst_sg, 1);
402
403         sg_set_page(&src_sg, src_page, extent_size,
404                     extent_offset * extent_size);
405         sg_set_page(&dst_sg, dst_page, extent_size,
406                     extent_offset * extent_size);
407
408         rc = crypt_scatterlist(crypt_stat, &dst_sg, &src_sg, extent_size,
409                                extent_iv, op);
410         if (rc < 0) {
411                 printk(KERN_ERR "%s: Error attempting to crypt page with "
412                        "page_index = [%ld], extent_offset = [%ld]; "
413                        "rc = [%d]\n", __func__, page_index, extent_offset, rc);
414                 goto out;
415         }
416         rc = 0;
417 out:
418         return rc;
419 }
420
421 /**
422  * ecryptfs_encrypt_page
423  * @page: Page mapped from the eCryptfs inode for the file; contains
424  *        decrypted content that needs to be encrypted (to a temporary
425  *        page; not in place) and written out to the lower file
426  *
427  * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
428  * that eCryptfs pages may straddle the lower pages -- for instance,
429  * if the file was created on a machine with an 8K page size
430  * (resulting in an 8K header), and then the file is copied onto a
431  * host with a 32K page size, then when reading page 0 of the eCryptfs
432  * file, 24K of page 0 of the lower file will be read and decrypted,
433  * and then 8K of page 1 of the lower file will be read and decrypted.
434  *
435  * Returns zero on success; negative on error
436  */
437 int ecryptfs_encrypt_page(struct page *page)
438 {
439         struct inode *ecryptfs_inode;
440         struct ecryptfs_crypt_stat *crypt_stat;
441         char *enc_extent_virt;
442         struct page *enc_extent_page = NULL;
443         loff_t extent_offset;
444         loff_t lower_offset;
445         int rc = 0;
446
447         ecryptfs_inode = page->mapping->host;
448         crypt_stat =
449                 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
450         BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
451         enc_extent_page = alloc_page(GFP_USER);
452         if (!enc_extent_page) {
453                 rc = -ENOMEM;
454                 ecryptfs_printk(KERN_ERR, "Error allocating memory for "
455                                 "encrypted extent\n");
456                 goto out;
457         }
458
459         for (extent_offset = 0;
460              extent_offset < (PAGE_SIZE / crypt_stat->extent_size);
461              extent_offset++) {
462                 rc = crypt_extent(crypt_stat, enc_extent_page, page,
463                                   extent_offset, ENCRYPT);
464                 if (rc) {
465                         printk(KERN_ERR "%s: Error encrypting extent; "
466                                "rc = [%d]\n", __func__, rc);
467                         goto out;
468                 }
469         }
470
471         lower_offset = lower_offset_for_page(crypt_stat, page);
472         enc_extent_virt = kmap(enc_extent_page);
473         rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt, lower_offset,
474                                   PAGE_SIZE);
475         kunmap(enc_extent_page);
476         if (rc < 0) {
477                 ecryptfs_printk(KERN_ERR,
478                         "Error attempting to write lower page; rc = [%d]\n",
479                         rc);
480                 goto out;
481         }
482         rc = 0;
483 out:
484         if (enc_extent_page) {
485                 __free_page(enc_extent_page);
486         }
487         return rc;
488 }
489
490 /**
491  * ecryptfs_decrypt_page
492  * @page: Page mapped from the eCryptfs inode for the file; data read
493  *        and decrypted from the lower file will be written into this
494  *        page
495  *
496  * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
497  * that eCryptfs pages may straddle the lower pages -- for instance,
498  * if the file was created on a machine with an 8K page size
499  * (resulting in an 8K header), and then the file is copied onto a
500  * host with a 32K page size, then when reading page 0 of the eCryptfs
501  * file, 24K of page 0 of the lower file will be read and decrypted,
502  * and then 8K of page 1 of the lower file will be read and decrypted.
503  *
504  * Returns zero on success; negative on error
505  */
506 int ecryptfs_decrypt_page(struct page *page)
507 {
508         struct inode *ecryptfs_inode;
509         struct ecryptfs_crypt_stat *crypt_stat;
510         char *page_virt;
511         unsigned long extent_offset;
512         loff_t lower_offset;
513         int rc = 0;
514
515         ecryptfs_inode = page->mapping->host;
516         crypt_stat =
517                 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
518         BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
519
520         lower_offset = lower_offset_for_page(crypt_stat, page);
521         page_virt = kmap(page);
522         rc = ecryptfs_read_lower(page_virt, lower_offset, PAGE_SIZE,
523                                  ecryptfs_inode);
524         kunmap(page);
525         if (rc < 0) {
526                 ecryptfs_printk(KERN_ERR,
527                         "Error attempting to read lower page; rc = [%d]\n",
528                         rc);
529                 goto out;
530         }
531
532         for (extent_offset = 0;
533              extent_offset < (PAGE_SIZE / crypt_stat->extent_size);
534              extent_offset++) {
535                 rc = crypt_extent(crypt_stat, page, page,
536                                   extent_offset, DECRYPT);
537                 if (rc) {
538                         printk(KERN_ERR "%s: Error decrypting extent; "
539                                "rc = [%d]\n", __func__, rc);
540                         goto out;
541                 }
542         }
543 out:
544         return rc;
545 }
546
547 #define ECRYPTFS_MAX_SCATTERLIST_LEN 4
548
549 /**
550  * ecryptfs_init_crypt_ctx
551  * @crypt_stat: Uninitialized crypt stats structure
552  *
553  * Initialize the crypto context.
554  *
555  * TODO: Performance: Keep a cache of initialized cipher contexts;
556  * only init if needed
557  */
558 int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
559 {
560         char *full_alg_name;
561         int rc = -EINVAL;
562
563         ecryptfs_printk(KERN_DEBUG,
564                         "Initializing cipher [%s]; strlen = [%d]; "
565                         "key_size_bits = [%zd]\n",
566                         crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
567                         crypt_stat->key_size << 3);
568         mutex_lock(&crypt_stat->cs_tfm_mutex);
569         if (crypt_stat->tfm) {
570                 rc = 0;
571                 goto out_unlock;
572         }
573         rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
574                                                     crypt_stat->cipher, "cbc");
575         if (rc)
576                 goto out_unlock;
577         crypt_stat->tfm = crypto_alloc_skcipher(full_alg_name, 0, 0);
578         if (IS_ERR(crypt_stat->tfm)) {
579                 rc = PTR_ERR(crypt_stat->tfm);
580                 crypt_stat->tfm = NULL;
581                 ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
582                                 "Error initializing cipher [%s]\n",
583                                 full_alg_name);
584                 goto out_free;
585         }
586         crypto_skcipher_set_flags(crypt_stat->tfm,
587                                   CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
588         rc = 0;
589 out_free:
590         kfree(full_alg_name);
591 out_unlock:
592         mutex_unlock(&crypt_stat->cs_tfm_mutex);
593         return rc;
594 }
595
596 static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
597 {
598         int extent_size_tmp;
599
600         crypt_stat->extent_mask = 0xFFFFFFFF;
601         crypt_stat->extent_shift = 0;
602         if (crypt_stat->extent_size == 0)
603                 return;
604         extent_size_tmp = crypt_stat->extent_size;
605         while ((extent_size_tmp & 0x01) == 0) {
606                 extent_size_tmp >>= 1;
607                 crypt_stat->extent_mask <<= 1;
608                 crypt_stat->extent_shift++;
609         }
610 }
611
612 void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
613 {
614         /* Default values; may be overwritten as we are parsing the
615          * packets. */
616         crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
617         set_extent_mask_and_shift(crypt_stat);
618         crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
619         if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
620                 crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
621         else {
622                 if (PAGE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)
623                         crypt_stat->metadata_size =
624                                 ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
625                 else
626                         crypt_stat->metadata_size = PAGE_SIZE;
627         }
628 }
629
630 /*
631  * ecryptfs_compute_root_iv
632  *
633  * On error, sets the root IV to all 0's.
634  */
635 int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
636 {
637         int rc = 0;
638         char dst[MD5_DIGEST_SIZE];
639
640         BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
641         BUG_ON(crypt_stat->iv_bytes <= 0);
642         if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
643                 rc = -EINVAL;
644                 ecryptfs_printk(KERN_WARNING, "Session key not valid; "
645                                 "cannot generate root IV\n");
646                 goto out;
647         }
648         rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
649                                     crypt_stat->key_size);
650         if (rc) {
651                 ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
652                                 "MD5 while generating root IV\n");
653                 goto out;
654         }
655         memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
656 out:
657         if (rc) {
658                 memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
659                 crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
660         }
661         return rc;
662 }
663
664 static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
665 {
666         get_random_bytes(crypt_stat->key, crypt_stat->key_size);
667         crypt_stat->flags |= ECRYPTFS_KEY_VALID;
668         ecryptfs_compute_root_iv(crypt_stat);
669         if (unlikely(ecryptfs_verbosity > 0)) {
670                 ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
671                 ecryptfs_dump_hex(crypt_stat->key,
672                                   crypt_stat->key_size);
673         }
674 }
675
676 /**
677  * ecryptfs_copy_mount_wide_flags_to_inode_flags
678  * @crypt_stat: The inode's cryptographic context
679  * @mount_crypt_stat: The mount point's cryptographic context
680  *
681  * This function propagates the mount-wide flags to individual inode
682  * flags.
683  */
684 static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
685         struct ecryptfs_crypt_stat *crypt_stat,
686         struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
687 {
688         if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
689                 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
690         if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
691                 crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
692         if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) {
693                 crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES;
694                 if (mount_crypt_stat->flags
695                     & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)
696                         crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK;
697                 else if (mount_crypt_stat->flags
698                          & ECRYPTFS_GLOBAL_ENCFN_USE_FEK)
699                         crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK;
700         }
701 }
702
703 static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
704         struct ecryptfs_crypt_stat *crypt_stat,
705         struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
706 {
707         struct ecryptfs_global_auth_tok *global_auth_tok;
708         int rc = 0;
709
710         mutex_lock(&crypt_stat->keysig_list_mutex);
711         mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
712
713         list_for_each_entry(global_auth_tok,
714                             &mount_crypt_stat->global_auth_tok_list,
715                             mount_crypt_stat_list) {
716                 if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK)
717                         continue;
718                 rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
719                 if (rc) {
720                         printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
721                         goto out;
722                 }
723         }
724
725 out:
726         mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
727         mutex_unlock(&crypt_stat->keysig_list_mutex);
728         return rc;
729 }
730
731 /**
732  * ecryptfs_set_default_crypt_stat_vals
733  * @crypt_stat: The inode's cryptographic context
734  * @mount_crypt_stat: The mount point's cryptographic context
735  *
736  * Default values in the event that policy does not override them.
737  */
738 static void ecryptfs_set_default_crypt_stat_vals(
739         struct ecryptfs_crypt_stat *crypt_stat,
740         struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
741 {
742         ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
743                                                       mount_crypt_stat);
744         ecryptfs_set_default_sizes(crypt_stat);
745         strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
746         crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
747         crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
748         crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
749         crypt_stat->mount_crypt_stat = mount_crypt_stat;
750 }
751
752 /**
753  * ecryptfs_new_file_context
754  * @ecryptfs_inode: The eCryptfs inode
755  *
756  * If the crypto context for the file has not yet been established,
757  * this is where we do that.  Establishing a new crypto context
758  * involves the following decisions:
759  *  - What cipher to use?
760  *  - What set of authentication tokens to use?
761  * Here we just worry about getting enough information into the
762  * authentication tokens so that we know that they are available.
763  * We associate the available authentication tokens with the new file
764  * via the set of signatures in the crypt_stat struct.  Later, when
765  * the headers are actually written out, we may again defer to
766  * userspace to perform the encryption of the session key; for the
767  * foreseeable future, this will be the case with public key packets.
768  *
769  * Returns zero on success; non-zero otherwise
770  */
771 int ecryptfs_new_file_context(struct inode *ecryptfs_inode)
772 {
773         struct ecryptfs_crypt_stat *crypt_stat =
774             &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
775         struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
776             &ecryptfs_superblock_to_private(
777                     ecryptfs_inode->i_sb)->mount_crypt_stat;
778         int cipher_name_len;
779         int rc = 0;
780
781         ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
782         crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
783         ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
784                                                       mount_crypt_stat);
785         rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
786                                                          mount_crypt_stat);
787         if (rc) {
788                 printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
789                        "to the inode key sigs; rc = [%d]\n", rc);
790                 goto out;
791         }
792         cipher_name_len =
793                 strlen(mount_crypt_stat->global_default_cipher_name);
794         memcpy(crypt_stat->cipher,
795                mount_crypt_stat->global_default_cipher_name,
796                cipher_name_len);
797         crypt_stat->cipher[cipher_name_len] = '\0';
798         crypt_stat->key_size =
799                 mount_crypt_stat->global_default_cipher_key_size;
800         ecryptfs_generate_new_key(crypt_stat);
801         rc = ecryptfs_init_crypt_ctx(crypt_stat);
802         if (rc)
803                 ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
804                                 "context for cipher [%s]: rc = [%d]\n",
805                                 crypt_stat->cipher, rc);
806 out:
807         return rc;
808 }
809
810 /**
811  * ecryptfs_validate_marker - check for the ecryptfs marker
812  * @data: The data block in which to check
813  *
814  * Returns zero if marker found; -EINVAL if not found
815  */
816 static int ecryptfs_validate_marker(char *data)
817 {
818         u32 m_1, m_2;
819
820         m_1 = get_unaligned_be32(data);
821         m_2 = get_unaligned_be32(data + 4);
822         if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
823                 return 0;
824         ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
825                         "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
826                         MAGIC_ECRYPTFS_MARKER);
827         ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
828                         "[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
829         return -EINVAL;
830 }
831
832 struct ecryptfs_flag_map_elem {
833         u32 file_flag;
834         u32 local_flag;
835 };
836
837 /* Add support for additional flags by adding elements here. */
838 static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
839         {0x00000001, ECRYPTFS_ENABLE_HMAC},
840         {0x00000002, ECRYPTFS_ENCRYPTED},
841         {0x00000004, ECRYPTFS_METADATA_IN_XATTR},
842         {0x00000008, ECRYPTFS_ENCRYPT_FILENAMES}
843 };
844
845 /**
846  * ecryptfs_process_flags
847  * @crypt_stat: The cryptographic context
848  * @page_virt: Source data to be parsed
849  * @bytes_read: Updated with the number of bytes read
850  */
851 static void ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
852                                   char *page_virt, int *bytes_read)
853 {
854         int i;
855         u32 flags;
856
857         flags = get_unaligned_be32(page_virt);
858         for (i = 0; i < ARRAY_SIZE(ecryptfs_flag_map); i++)
859                 if (flags & ecryptfs_flag_map[i].file_flag) {
860                         crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
861                 } else
862                         crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
863         /* Version is in top 8 bits of the 32-bit flag vector */
864         crypt_stat->file_version = ((flags >> 24) & 0xFF);
865         (*bytes_read) = 4;
866 }
867
868 /**
869  * write_ecryptfs_marker
870  * @page_virt: The pointer to in a page to begin writing the marker
871  * @written: Number of bytes written
872  *
873  * Marker = 0x3c81b7f5
874  */
875 static void write_ecryptfs_marker(char *page_virt, size_t *written)
876 {
877         u32 m_1, m_2;
878
879         get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
880         m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
881         put_unaligned_be32(m_1, page_virt);
882         page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2);
883         put_unaligned_be32(m_2, page_virt);
884         (*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
885 }
886
887 void ecryptfs_write_crypt_stat_flags(char *page_virt,
888                                      struct ecryptfs_crypt_stat *crypt_stat,
889                                      size_t *written)
890 {
891         u32 flags = 0;
892         int i;
893
894         for (i = 0; i < ARRAY_SIZE(ecryptfs_flag_map); i++)
895                 if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
896                         flags |= ecryptfs_flag_map[i].file_flag;
897         /* Version is in top 8 bits of the 32-bit flag vector */
898         flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
899         put_unaligned_be32(flags, page_virt);
900         (*written) = 4;
901 }
902
903 struct ecryptfs_cipher_code_str_map_elem {
904         char cipher_str[16];
905         u8 cipher_code;
906 };
907
908 /* Add support for additional ciphers by adding elements here. The
909  * cipher_code is whatever OpenPGP applications use to identify the
910  * ciphers. List in order of probability. */
911 static struct ecryptfs_cipher_code_str_map_elem
912 ecryptfs_cipher_code_str_map[] = {
913         {"aes",RFC2440_CIPHER_AES_128 },
914         {"blowfish", RFC2440_CIPHER_BLOWFISH},
915         {"des3_ede", RFC2440_CIPHER_DES3_EDE},
916         {"cast5", RFC2440_CIPHER_CAST_5},
917         {"twofish", RFC2440_CIPHER_TWOFISH},
918         {"cast6", RFC2440_CIPHER_CAST_6},
919         {"aes", RFC2440_CIPHER_AES_192},
920         {"aes", RFC2440_CIPHER_AES_256}
921 };
922
923 /**
924  * ecryptfs_code_for_cipher_string
925  * @cipher_name: The string alias for the cipher
926  * @key_bytes: Length of key in bytes; used for AES code selection
927  *
928  * Returns zero on no match, or the cipher code on match
929  */
930 u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes)
931 {
932         int i;
933         u8 code = 0;
934         struct ecryptfs_cipher_code_str_map_elem *map =
935                 ecryptfs_cipher_code_str_map;
936
937         if (strcmp(cipher_name, "aes") == 0) {
938                 switch (key_bytes) {
939                 case 16:
940                         code = RFC2440_CIPHER_AES_128;
941                         break;
942                 case 24:
943                         code = RFC2440_CIPHER_AES_192;
944                         break;
945                 case 32:
946                         code = RFC2440_CIPHER_AES_256;
947                 }
948         } else {
949                 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
950                         if (strcmp(cipher_name, map[i].cipher_str) == 0) {
951                                 code = map[i].cipher_code;
952                                 break;
953                         }
954         }
955         return code;
956 }
957
958 /**
959  * ecryptfs_cipher_code_to_string
960  * @str: Destination to write out the cipher name
961  * @cipher_code: The code to convert to cipher name string
962  *
963  * Returns zero on success
964  */
965 int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code)
966 {
967         int rc = 0;
968         int i;
969
970         str[0] = '\0';
971         for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
972                 if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
973                         strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
974         if (str[0] == '\0') {
975                 ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
976                                 "[%d]\n", cipher_code);
977                 rc = -EINVAL;
978         }
979         return rc;
980 }
981
982 int ecryptfs_read_and_validate_header_region(struct inode *inode)
983 {
984         u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
985         u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
986         int rc;
987
988         rc = ecryptfs_read_lower(file_size, 0, ECRYPTFS_SIZE_AND_MARKER_BYTES,
989                                  inode);
990         if (rc < 0)
991                 return rc;
992         else if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
993                 return -EINVAL;
994         rc = ecryptfs_validate_marker(marker);
995         if (!rc)
996                 ecryptfs_i_size_init(file_size, inode);
997         return rc;
998 }
999
1000 void
1001 ecryptfs_write_header_metadata(char *virt,
1002                                struct ecryptfs_crypt_stat *crypt_stat,
1003                                size_t *written)
1004 {
1005         u32 header_extent_size;
1006         u16 num_header_extents_at_front;
1007
1008         header_extent_size = (u32)crypt_stat->extent_size;
1009         num_header_extents_at_front =
1010                 (u16)(crypt_stat->metadata_size / crypt_stat->extent_size);
1011         put_unaligned_be32(header_extent_size, virt);
1012         virt += 4;
1013         put_unaligned_be16(num_header_extents_at_front, virt);
1014         (*written) = 6;
1015 }
1016
1017 struct kmem_cache *ecryptfs_header_cache;
1018
1019 /**
1020  * ecryptfs_write_headers_virt
1021  * @page_virt: The virtual address to write the headers to
1022  * @max: The size of memory allocated at page_virt
1023  * @size: Set to the number of bytes written by this function
1024  * @crypt_stat: The cryptographic context
1025  * @ecryptfs_dentry: The eCryptfs dentry
1026  *
1027  * Format version: 1
1028  *
1029  *   Header Extent:
1030  *     Octets 0-7:        Unencrypted file size (big-endian)
1031  *     Octets 8-15:       eCryptfs special marker
1032  *     Octets 16-19:      Flags
1033  *      Octet 16:         File format version number (between 0 and 255)
1034  *      Octets 17-18:     Reserved
1035  *      Octet 19:         Bit 1 (lsb): Reserved
1036  *                        Bit 2: Encrypted?
1037  *                        Bits 3-8: Reserved
1038  *     Octets 20-23:      Header extent size (big-endian)
1039  *     Octets 24-25:      Number of header extents at front of file
1040  *                        (big-endian)
1041  *     Octet  26:         Begin RFC 2440 authentication token packet set
1042  *   Data Extent 0:
1043  *     Lower data (CBC encrypted)
1044  *   Data Extent 1:
1045  *     Lower data (CBC encrypted)
1046  *   ...
1047  *
1048  * Returns zero on success
1049  */
1050 static int ecryptfs_write_headers_virt(char *page_virt, size_t max,
1051                                        size_t *size,
1052                                        struct ecryptfs_crypt_stat *crypt_stat,
1053                                        struct dentry *ecryptfs_dentry)
1054 {
1055         int rc;
1056         size_t written;
1057         size_t offset;
1058
1059         offset = ECRYPTFS_FILE_SIZE_BYTES;
1060         write_ecryptfs_marker((page_virt + offset), &written);
1061         offset += written;
1062         ecryptfs_write_crypt_stat_flags((page_virt + offset), crypt_stat,
1063                                         &written);
1064         offset += written;
1065         ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
1066                                        &written);
1067         offset += written;
1068         rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
1069                                               ecryptfs_dentry, &written,
1070                                               max - offset);
1071         if (rc)
1072                 ecryptfs_printk(KERN_WARNING, "Error generating key packet "
1073                                 "set; rc = [%d]\n", rc);
1074         if (size) {
1075                 offset += written;
1076                 *size = offset;
1077         }
1078         return rc;
1079 }
1080
1081 static int
1082 ecryptfs_write_metadata_to_contents(struct inode *ecryptfs_inode,
1083                                     char *virt, size_t virt_len)
1084 {
1085         int rc;
1086
1087         rc = ecryptfs_write_lower(ecryptfs_inode, virt,
1088                                   0, virt_len);
1089         if (rc < 0)
1090                 printk(KERN_ERR "%s: Error attempting to write header "
1091                        "information to lower file; rc = [%d]\n", __func__, rc);
1092         else
1093                 rc = 0;
1094         return rc;
1095 }
1096
1097 static int
1098 ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
1099                                  struct inode *ecryptfs_inode,
1100                                  char *page_virt, size_t size)
1101 {
1102         int rc;
1103         struct dentry *lower_dentry = ecryptfs_dentry_to_lower(ecryptfs_dentry);
1104         struct inode *lower_inode = d_inode(lower_dentry);
1105
1106         if (!(lower_inode->i_opflags & IOP_XATTR)) {
1107                 rc = -EOPNOTSUPP;
1108                 goto out;
1109         }
1110
1111         inode_lock(lower_inode);
1112         rc = __vfs_setxattr(&init_user_ns, lower_dentry, lower_inode,
1113                             ECRYPTFS_XATTR_NAME, page_virt, size, 0);
1114         if (!rc && ecryptfs_inode)
1115                 fsstack_copy_attr_all(ecryptfs_inode, lower_inode);
1116         inode_unlock(lower_inode);
1117 out:
1118         return rc;
1119 }
1120
1121 static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask,
1122                                                unsigned int order)
1123 {
1124         struct page *page;
1125
1126         page = alloc_pages(gfp_mask | __GFP_ZERO, order);
1127         if (page)
1128                 return (unsigned long) page_address(page);
1129         return 0;
1130 }
1131
1132 /**
1133  * ecryptfs_write_metadata
1134  * @ecryptfs_dentry: The eCryptfs dentry, which should be negative
1135  * @ecryptfs_inode: The newly created eCryptfs inode
1136  *
1137  * Write the file headers out.  This will likely involve a userspace
1138  * callout, in which the session key is encrypted with one or more
1139  * public keys and/or the passphrase necessary to do the encryption is
1140  * retrieved via a prompt.  Exactly what happens at this point should
1141  * be policy-dependent.
1142  *
1143  * Returns zero on success; non-zero on error
1144  */
1145 int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry,
1146                             struct inode *ecryptfs_inode)
1147 {
1148         struct ecryptfs_crypt_stat *crypt_stat =
1149                 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1150         unsigned int order;
1151         char *virt;
1152         size_t virt_len;
1153         size_t size = 0;
1154         int rc = 0;
1155
1156         if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
1157                 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
1158                         printk(KERN_ERR "Key is invalid; bailing out\n");
1159                         rc = -EINVAL;
1160                         goto out;
1161                 }
1162         } else {
1163                 printk(KERN_WARNING "%s: Encrypted flag not set\n",
1164                        __func__);
1165                 rc = -EINVAL;
1166                 goto out;
1167         }
1168         virt_len = crypt_stat->metadata_size;
1169         order = get_order(virt_len);
1170         /* Released in this function */
1171         virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order);
1172         if (!virt) {
1173                 printk(KERN_ERR "%s: Out of memory\n", __func__);
1174                 rc = -ENOMEM;
1175                 goto out;
1176         }
1177         /* Zeroed page ensures the in-header unencrypted i_size is set to 0 */
1178         rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat,
1179                                          ecryptfs_dentry);
1180         if (unlikely(rc)) {
1181                 printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n",
1182                        __func__, rc);
1183                 goto out_free;
1184         }
1185         if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1186                 rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, ecryptfs_inode,
1187                                                       virt, size);
1188         else
1189                 rc = ecryptfs_write_metadata_to_contents(ecryptfs_inode, virt,
1190                                                          virt_len);
1191         if (rc) {
1192                 printk(KERN_ERR "%s: Error writing metadata out to lower file; "
1193                        "rc = [%d]\n", __func__, rc);
1194                 goto out_free;
1195         }
1196 out_free:
1197         free_pages((unsigned long)virt, order);
1198 out:
1199         return rc;
1200 }
1201
1202 #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1203 #define ECRYPTFS_VALIDATE_HEADER_SIZE 1
1204 static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
1205                                  char *virt, int *bytes_read,
1206                                  int validate_header_size)
1207 {
1208         int rc = 0;
1209         u32 header_extent_size;
1210         u16 num_header_extents_at_front;
1211
1212         header_extent_size = get_unaligned_be32(virt);
1213         virt += sizeof(__be32);
1214         num_header_extents_at_front = get_unaligned_be16(virt);
1215         crypt_stat->metadata_size = (((size_t)num_header_extents_at_front
1216                                      * (size_t)header_extent_size));
1217         (*bytes_read) = (sizeof(__be32) + sizeof(__be16));
1218         if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
1219             && (crypt_stat->metadata_size
1220                 < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
1221                 rc = -EINVAL;
1222                 printk(KERN_WARNING "Invalid header size: [%zd]\n",
1223                        crypt_stat->metadata_size);
1224         }
1225         return rc;
1226 }
1227
1228 /**
1229  * set_default_header_data
1230  * @crypt_stat: The cryptographic context
1231  *
1232  * For version 0 file format; this function is only for backwards
1233  * compatibility for files created with the prior versions of
1234  * eCryptfs.
1235  */
1236 static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
1237 {
1238         crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
1239 }
1240
1241 void ecryptfs_i_size_init(const char *page_virt, struct inode *inode)
1242 {
1243         struct ecryptfs_mount_crypt_stat *mount_crypt_stat;
1244         struct ecryptfs_crypt_stat *crypt_stat;
1245         u64 file_size;
1246
1247         crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat;
1248         mount_crypt_stat =
1249                 &ecryptfs_superblock_to_private(inode->i_sb)->mount_crypt_stat;
1250         if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) {
1251                 file_size = i_size_read(ecryptfs_inode_to_lower(inode));
1252                 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1253                         file_size += crypt_stat->metadata_size;
1254         } else
1255                 file_size = get_unaligned_be64(page_virt);
1256         i_size_write(inode, (loff_t)file_size);
1257         crypt_stat->flags |= ECRYPTFS_I_SIZE_INITIALIZED;
1258 }
1259
1260 /**
1261  * ecryptfs_read_headers_virt
1262  * @page_virt: The virtual address into which to read the headers
1263  * @crypt_stat: The cryptographic context
1264  * @ecryptfs_dentry: The eCryptfs dentry
1265  * @validate_header_size: Whether to validate the header size while reading
1266  *
1267  * Read/parse the header data. The header format is detailed in the
1268  * comment block for the ecryptfs_write_headers_virt() function.
1269  *
1270  * Returns zero on success
1271  */
1272 static int ecryptfs_read_headers_virt(char *page_virt,
1273                                       struct ecryptfs_crypt_stat *crypt_stat,
1274                                       struct dentry *ecryptfs_dentry,
1275                                       int validate_header_size)
1276 {
1277         int rc = 0;
1278         int offset;
1279         int bytes_read;
1280
1281         ecryptfs_set_default_sizes(crypt_stat);
1282         crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
1283                 ecryptfs_dentry->d_sb)->mount_crypt_stat;
1284         offset = ECRYPTFS_FILE_SIZE_BYTES;
1285         rc = ecryptfs_validate_marker(page_virt + offset);
1286         if (rc)
1287                 goto out;
1288         if (!(crypt_stat->flags & ECRYPTFS_I_SIZE_INITIALIZED))
1289                 ecryptfs_i_size_init(page_virt, d_inode(ecryptfs_dentry));
1290         offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1291         ecryptfs_process_flags(crypt_stat, (page_virt + offset), &bytes_read);
1292         if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
1293                 ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
1294                                 "file version [%d] is supported by this "
1295                                 "version of eCryptfs\n",
1296                                 crypt_stat->file_version,
1297                                 ECRYPTFS_SUPPORTED_FILE_VERSION);
1298                 rc = -EINVAL;
1299                 goto out;
1300         }
1301         offset += bytes_read;
1302         if (crypt_stat->file_version >= 1) {
1303                 rc = parse_header_metadata(crypt_stat, (page_virt + offset),
1304                                            &bytes_read, validate_header_size);
1305                 if (rc) {
1306                         ecryptfs_printk(KERN_WARNING, "Error reading header "
1307                                         "metadata; rc = [%d]\n", rc);
1308                 }
1309                 offset += bytes_read;
1310         } else
1311                 set_default_header_data(crypt_stat);
1312         rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
1313                                        ecryptfs_dentry);
1314 out:
1315         return rc;
1316 }
1317
1318 /**
1319  * ecryptfs_read_xattr_region
1320  * @page_virt: The vitual address into which to read the xattr data
1321  * @ecryptfs_inode: The eCryptfs inode
1322  *
1323  * Attempts to read the crypto metadata from the extended attribute
1324  * region of the lower file.
1325  *
1326  * Returns zero on success; non-zero on error
1327  */
1328 int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode)
1329 {
1330         struct dentry *lower_dentry =
1331                 ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_path.dentry;
1332         ssize_t size;
1333         int rc = 0;
1334
1335         size = ecryptfs_getxattr_lower(lower_dentry,
1336                                        ecryptfs_inode_to_lower(ecryptfs_inode),
1337                                        ECRYPTFS_XATTR_NAME,
1338                                        page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
1339         if (size < 0) {
1340                 if (unlikely(ecryptfs_verbosity > 0))
1341                         printk(KERN_INFO "Error attempting to read the [%s] "
1342                                "xattr from the lower file; return value = "
1343                                "[%zd]\n", ECRYPTFS_XATTR_NAME, size);
1344                 rc = -EINVAL;
1345                 goto out;
1346         }
1347 out:
1348         return rc;
1349 }
1350
1351 int ecryptfs_read_and_validate_xattr_region(struct dentry *dentry,
1352                                             struct inode *inode)
1353 {
1354         u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1355         u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1356         int rc;
1357
1358         rc = ecryptfs_getxattr_lower(ecryptfs_dentry_to_lower(dentry),
1359                                      ecryptfs_inode_to_lower(inode),
1360                                      ECRYPTFS_XATTR_NAME, file_size,
1361                                      ECRYPTFS_SIZE_AND_MARKER_BYTES);
1362         if (rc < 0)
1363                 return rc;
1364         else if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1365                 return -EINVAL;
1366         rc = ecryptfs_validate_marker(marker);
1367         if (!rc)
1368                 ecryptfs_i_size_init(file_size, inode);
1369         return rc;
1370 }
1371
1372 /*
1373  * ecryptfs_read_metadata
1374  *
1375  * Common entry point for reading file metadata. From here, we could
1376  * retrieve the header information from the header region of the file,
1377  * the xattr region of the file, or some other repository that is
1378  * stored separately from the file itself. The current implementation
1379  * supports retrieving the metadata information from the file contents
1380  * and from the xattr region.
1381  *
1382  * Returns zero if valid headers found and parsed; non-zero otherwise
1383  */
1384 int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry)
1385 {
1386         int rc;
1387         char *page_virt;
1388         struct inode *ecryptfs_inode = d_inode(ecryptfs_dentry);
1389         struct ecryptfs_crypt_stat *crypt_stat =
1390             &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1391         struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1392                 &ecryptfs_superblock_to_private(
1393                         ecryptfs_dentry->d_sb)->mount_crypt_stat;
1394
1395         ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1396                                                       mount_crypt_stat);
1397         /* Read the first page from the underlying file */
1398         page_virt = kmem_cache_alloc(ecryptfs_header_cache, GFP_USER);
1399         if (!page_virt) {
1400                 rc = -ENOMEM;
1401                 goto out;
1402         }
1403         rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size,
1404                                  ecryptfs_inode);
1405         if (rc >= 0)
1406                 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1407                                                 ecryptfs_dentry,
1408                                                 ECRYPTFS_VALIDATE_HEADER_SIZE);
1409         if (rc) {
1410                 /* metadata is not in the file header, so try xattrs */
1411                 memset(page_virt, 0, PAGE_SIZE);
1412                 rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode);
1413                 if (rc) {
1414                         printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1415                                "file header region or xattr region, inode %lu\n",
1416                                 ecryptfs_inode->i_ino);
1417                         rc = -EINVAL;
1418                         goto out;
1419                 }
1420                 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1421                                                 ecryptfs_dentry,
1422                                                 ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
1423                 if (rc) {
1424                         printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1425                                "file xattr region either, inode %lu\n",
1426                                 ecryptfs_inode->i_ino);
1427                         rc = -EINVAL;
1428                 }
1429                 if (crypt_stat->mount_crypt_stat->flags
1430                     & ECRYPTFS_XATTR_METADATA_ENABLED) {
1431                         crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
1432                 } else {
1433                         printk(KERN_WARNING "Attempt to access file with "
1434                                "crypto metadata only in the extended attribute "
1435                                "region, but eCryptfs was mounted without "
1436                                "xattr support enabled. eCryptfs will not treat "
1437                                "this like an encrypted file, inode %lu\n",
1438                                 ecryptfs_inode->i_ino);
1439                         rc = -EINVAL;
1440                 }
1441         }
1442 out:
1443         if (page_virt) {
1444                 memset(page_virt, 0, PAGE_SIZE);
1445                 kmem_cache_free(ecryptfs_header_cache, page_virt);
1446         }
1447         return rc;
1448 }
1449
1450 /*
1451  * ecryptfs_encrypt_filename - encrypt filename
1452  *
1453  * CBC-encrypts the filename. We do not want to encrypt the same
1454  * filename with the same key and IV, which may happen with hard
1455  * links, so we prepend random bits to each filename.
1456  *
1457  * Returns zero on success; non-zero otherwise
1458  */
1459 static int
1460 ecryptfs_encrypt_filename(struct ecryptfs_filename *filename,
1461                           struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
1462 {
1463         int rc = 0;
1464
1465         filename->encrypted_filename = NULL;
1466         filename->encrypted_filename_size = 0;
1467         if (mount_crypt_stat && (mount_crypt_stat->flags
1468                                      & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) {
1469                 size_t packet_size;
1470                 size_t remaining_bytes;
1471
1472                 rc = ecryptfs_write_tag_70_packet(
1473                         NULL, NULL,
1474                         &filename->encrypted_filename_size,
1475                         mount_crypt_stat, NULL,
1476                         filename->filename_size);
1477                 if (rc) {
1478                         printk(KERN_ERR "%s: Error attempting to get packet "
1479                                "size for tag 72; rc = [%d]\n", __func__,
1480                                rc);
1481                         filename->encrypted_filename_size = 0;
1482                         goto out;
1483                 }
1484                 filename->encrypted_filename =
1485                         kmalloc(filename->encrypted_filename_size, GFP_KERNEL);
1486                 if (!filename->encrypted_filename) {
1487                         rc = -ENOMEM;
1488                         goto out;
1489                 }
1490                 remaining_bytes = filename->encrypted_filename_size;
1491                 rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename,
1492                                                   &remaining_bytes,
1493                                                   &packet_size,
1494                                                   mount_crypt_stat,
1495                                                   filename->filename,
1496                                                   filename->filename_size);
1497                 if (rc) {
1498                         printk(KERN_ERR "%s: Error attempting to generate "
1499                                "tag 70 packet; rc = [%d]\n", __func__,
1500                                rc);
1501                         kfree(filename->encrypted_filename);
1502                         filename->encrypted_filename = NULL;
1503                         filename->encrypted_filename_size = 0;
1504                         goto out;
1505                 }
1506                 filename->encrypted_filename_size = packet_size;
1507         } else {
1508                 printk(KERN_ERR "%s: No support for requested filename "
1509                        "encryption method in this release\n", __func__);
1510                 rc = -EOPNOTSUPP;
1511                 goto out;
1512         }
1513 out:
1514         return rc;
1515 }
1516
1517 static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size,
1518                                   const char *name, size_t name_size)
1519 {
1520         int rc = 0;
1521
1522         (*copied_name) = kmalloc((name_size + 1), GFP_KERNEL);
1523         if (!(*copied_name)) {
1524                 rc = -ENOMEM;
1525                 goto out;
1526         }
1527         memcpy((void *)(*copied_name), (void *)name, name_size);
1528         (*copied_name)[(name_size)] = '\0';     /* Only for convenience
1529                                                  * in printing out the
1530                                                  * string in debug
1531                                                  * messages */
1532         (*copied_name_size) = name_size;
1533 out:
1534         return rc;
1535 }
1536
1537 /**
1538  * ecryptfs_process_key_cipher - Perform key cipher initialization.
1539  * @key_tfm: Crypto context for key material, set by this function
1540  * @cipher_name: Name of the cipher
1541  * @key_size: Size of the key in bytes
1542  *
1543  * Returns zero on success. Any crypto_tfm structs allocated here
1544  * should be released by other functions, such as on a superblock put
1545  * event, regardless of whether this function succeeds for fails.
1546  */
1547 static int
1548 ecryptfs_process_key_cipher(struct crypto_skcipher **key_tfm,
1549                             char *cipher_name, size_t *key_size)
1550 {
1551         char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
1552         char *full_alg_name = NULL;
1553         int rc;
1554
1555         *key_tfm = NULL;
1556         if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
1557                 rc = -EINVAL;
1558                 printk(KERN_ERR "Requested key size is [%zd] bytes; maximum "
1559                       "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
1560                 goto out;
1561         }
1562         rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
1563                                                     "ecb");
1564         if (rc)
1565                 goto out;
1566         *key_tfm = crypto_alloc_skcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
1567         if (IS_ERR(*key_tfm)) {
1568                 rc = PTR_ERR(*key_tfm);
1569                 printk(KERN_ERR "Unable to allocate crypto cipher with name "
1570                        "[%s]; rc = [%d]\n", full_alg_name, rc);
1571                 goto out;
1572         }
1573         crypto_skcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
1574         if (*key_size == 0)
1575                 *key_size = crypto_skcipher_max_keysize(*key_tfm);
1576         get_random_bytes(dummy_key, *key_size);
1577         rc = crypto_skcipher_setkey(*key_tfm, dummy_key, *key_size);
1578         if (rc) {
1579                 printk(KERN_ERR "Error attempting to set key of size [%zd] for "
1580                        "cipher [%s]; rc = [%d]\n", *key_size, full_alg_name,
1581                        rc);
1582                 rc = -EINVAL;
1583                 goto out;
1584         }
1585 out:
1586         kfree(full_alg_name);
1587         return rc;
1588 }
1589
1590 struct kmem_cache *ecryptfs_key_tfm_cache;
1591 static struct list_head key_tfm_list;
1592 DEFINE_MUTEX(key_tfm_list_mutex);
1593
1594 int __init ecryptfs_init_crypto(void)
1595 {
1596         INIT_LIST_HEAD(&key_tfm_list);
1597         return 0;
1598 }
1599
1600 /**
1601  * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
1602  *
1603  * Called only at module unload time
1604  */
1605 int ecryptfs_destroy_crypto(void)
1606 {
1607         struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;
1608
1609         mutex_lock(&key_tfm_list_mutex);
1610         list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
1611                                  key_tfm_list) {
1612                 list_del(&key_tfm->key_tfm_list);
1613                 crypto_free_skcipher(key_tfm->key_tfm);
1614                 kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
1615         }
1616         mutex_unlock(&key_tfm_list_mutex);
1617         return 0;
1618 }
1619
1620 int
1621 ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
1622                          size_t key_size)
1623 {
1624         struct ecryptfs_key_tfm *tmp_tfm;
1625         int rc = 0;
1626
1627         BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1628
1629         tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
1630         if (key_tfm)
1631                 (*key_tfm) = tmp_tfm;
1632         if (!tmp_tfm) {
1633                 rc = -ENOMEM;
1634                 goto out;
1635         }
1636         mutex_init(&tmp_tfm->key_tfm_mutex);
1637         strncpy(tmp_tfm->cipher_name, cipher_name,
1638                 ECRYPTFS_MAX_CIPHER_NAME_SIZE);
1639         tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
1640         tmp_tfm->key_size = key_size;
1641         rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
1642                                          tmp_tfm->cipher_name,
1643                                          &tmp_tfm->key_size);
1644         if (rc) {
1645                 printk(KERN_ERR "Error attempting to initialize key TFM "
1646                        "cipher with name = [%s]; rc = [%d]\n",
1647                        tmp_tfm->cipher_name, rc);
1648                 kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
1649                 if (key_tfm)
1650                         (*key_tfm) = NULL;
1651                 goto out;
1652         }
1653         list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
1654 out:
1655         return rc;
1656 }
1657
1658 /**
1659  * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
1660  * @cipher_name: the name of the cipher to search for
1661  * @key_tfm: set to corresponding tfm if found
1662  *
1663  * Searches for cached key_tfm matching @cipher_name
1664  * Must be called with &key_tfm_list_mutex held
1665  * Returns 1 if found, with @key_tfm set
1666  * Returns 0 if not found, with @key_tfm set to NULL
1667  */
1668 int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm)
1669 {
1670         struct ecryptfs_key_tfm *tmp_key_tfm;
1671
1672         BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1673
1674         list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) {
1675                 if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) {
1676                         if (key_tfm)
1677                                 (*key_tfm) = tmp_key_tfm;
1678                         return 1;
1679                 }
1680         }
1681         if (key_tfm)
1682                 (*key_tfm) = NULL;
1683         return 0;
1684 }
1685
1686 /**
1687  * ecryptfs_get_tfm_and_mutex_for_cipher_name
1688  *
1689  * @tfm: set to cached tfm found, or new tfm created
1690  * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
1691  * @cipher_name: the name of the cipher to search for and/or add
1692  *
1693  * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
1694  * Searches for cached item first, and creates new if not found.
1695  * Returns 0 on success, non-zero if adding new cipher failed
1696  */
1697 int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_skcipher **tfm,
1698                                                struct mutex **tfm_mutex,
1699                                                char *cipher_name)
1700 {
1701         struct ecryptfs_key_tfm *key_tfm;
1702         int rc = 0;
1703
1704         (*tfm) = NULL;
1705         (*tfm_mutex) = NULL;
1706
1707         mutex_lock(&key_tfm_list_mutex);
1708         if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) {
1709                 rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0);
1710                 if (rc) {
1711                         printk(KERN_ERR "Error adding new key_tfm to list; "
1712                                         "rc = [%d]\n", rc);
1713                         goto out;
1714                 }
1715         }
1716         (*tfm) = key_tfm->key_tfm;
1717         (*tfm_mutex) = &key_tfm->key_tfm_mutex;
1718 out:
1719         mutex_unlock(&key_tfm_list_mutex);
1720         return rc;
1721 }
1722
1723 /* 64 characters forming a 6-bit target field */
1724 static unsigned char *portable_filename_chars = ("-.0123456789ABCD"
1725                                                  "EFGHIJKLMNOPQRST"
1726                                                  "UVWXYZabcdefghij"
1727                                                  "klmnopqrstuvwxyz");
1728
1729 /* We could either offset on every reverse map or just pad some 0x00's
1730  * at the front here */
1731 static const unsigned char filename_rev_map[256] = {
1732         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
1733         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
1734         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
1735         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
1736         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
1737         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
1738         0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
1739         0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
1740         0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
1741         0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
1742         0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
1743         0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
1744         0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
1745         0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
1746         0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
1747         0x3D, 0x3E, 0x3F /* 123 - 255 initialized to 0x00 */
1748 };
1749
1750 /**
1751  * ecryptfs_encode_for_filename
1752  * @dst: Destination location for encoded filename
1753  * @dst_size: Size of the encoded filename in bytes
1754  * @src: Source location for the filename to encode
1755  * @src_size: Size of the source in bytes
1756  */
1757 static void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size,
1758                                   unsigned char *src, size_t src_size)
1759 {
1760         size_t num_blocks;
1761         size_t block_num = 0;
1762         size_t dst_offset = 0;
1763         unsigned char last_block[3];
1764
1765         if (src_size == 0) {
1766                 (*dst_size) = 0;
1767                 goto out;
1768         }
1769         num_blocks = (src_size / 3);
1770         if ((src_size % 3) == 0) {
1771                 memcpy(last_block, (&src[src_size - 3]), 3);
1772         } else {
1773                 num_blocks++;
1774                 last_block[2] = 0x00;
1775                 switch (src_size % 3) {
1776                 case 1:
1777                         last_block[0] = src[src_size - 1];
1778                         last_block[1] = 0x00;
1779                         break;
1780                 case 2:
1781                         last_block[0] = src[src_size - 2];
1782                         last_block[1] = src[src_size - 1];
1783                 }
1784         }
1785         (*dst_size) = (num_blocks * 4);
1786         if (!dst)
1787                 goto out;
1788         while (block_num < num_blocks) {
1789                 unsigned char *src_block;
1790                 unsigned char dst_block[4];
1791
1792                 if (block_num == (num_blocks - 1))
1793                         src_block = last_block;
1794                 else
1795                         src_block = &src[block_num * 3];
1796                 dst_block[0] = ((src_block[0] >> 2) & 0x3F);
1797                 dst_block[1] = (((src_block[0] << 4) & 0x30)
1798                                 | ((src_block[1] >> 4) & 0x0F));
1799                 dst_block[2] = (((src_block[1] << 2) & 0x3C)
1800                                 | ((src_block[2] >> 6) & 0x03));
1801                 dst_block[3] = (src_block[2] & 0x3F);
1802                 dst[dst_offset++] = portable_filename_chars[dst_block[0]];
1803                 dst[dst_offset++] = portable_filename_chars[dst_block[1]];
1804                 dst[dst_offset++] = portable_filename_chars[dst_block[2]];
1805                 dst[dst_offset++] = portable_filename_chars[dst_block[3]];
1806                 block_num++;
1807         }
1808 out:
1809         return;
1810 }
1811
1812 static size_t ecryptfs_max_decoded_size(size_t encoded_size)
1813 {
1814         /* Not exact; conservatively long. Every block of 4
1815          * encoded characters decodes into a block of 3
1816          * decoded characters. This segment of code provides
1817          * the caller with the maximum amount of allocated
1818          * space that @dst will need to point to in a
1819          * subsequent call. */
1820         return ((encoded_size + 1) * 3) / 4;
1821 }
1822
1823 /**
1824  * ecryptfs_decode_from_filename
1825  * @dst: If NULL, this function only sets @dst_size and returns. If
1826  *       non-NULL, this function decodes the encoded octets in @src
1827  *       into the memory that @dst points to.
1828  * @dst_size: Set to the size of the decoded string.
1829  * @src: The encoded set of octets to decode.
1830  * @src_size: The size of the encoded set of octets to decode.
1831  */
1832 static void
1833 ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size,
1834                               const unsigned char *src, size_t src_size)
1835 {
1836         u8 current_bit_offset = 0;
1837         size_t src_byte_offset = 0;
1838         size_t dst_byte_offset = 0;
1839
1840         if (!dst) {
1841                 (*dst_size) = ecryptfs_max_decoded_size(src_size);
1842                 goto out;
1843         }
1844         while (src_byte_offset < src_size) {
1845                 unsigned char src_byte =
1846                                 filename_rev_map[(int)src[src_byte_offset]];
1847
1848                 switch (current_bit_offset) {
1849                 case 0:
1850                         dst[dst_byte_offset] = (src_byte << 2);
1851                         current_bit_offset = 6;
1852                         break;
1853                 case 6:
1854                         dst[dst_byte_offset++] |= (src_byte >> 4);
1855                         dst[dst_byte_offset] = ((src_byte & 0xF)
1856                                                  << 4);
1857                         current_bit_offset = 4;
1858                         break;
1859                 case 4:
1860                         dst[dst_byte_offset++] |= (src_byte >> 2);
1861                         dst[dst_byte_offset] = (src_byte << 6);
1862                         current_bit_offset = 2;
1863                         break;
1864                 case 2:
1865                         dst[dst_byte_offset++] |= (src_byte);
1866                         current_bit_offset = 0;
1867                         break;
1868                 }
1869                 src_byte_offset++;
1870         }
1871         (*dst_size) = dst_byte_offset;
1872 out:
1873         return;
1874 }
1875
1876 /**
1877  * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
1878  * @encoded_name: The encrypted name
1879  * @encoded_name_size: Length of the encrypted name
1880  * @mount_crypt_stat: The crypt_stat struct associated with the file name to encode
1881  * @name: The plaintext name
1882  * @name_size: The length of the plaintext name
1883  *
1884  * Encrypts and encodes a filename into something that constitutes a
1885  * valid filename for a filesystem, with printable characters.
1886  *
1887  * We assume that we have a properly initialized crypto context,
1888  * pointed to by crypt_stat->tfm.
1889  *
1890  * Returns zero on success; non-zero on otherwise
1891  */
1892 int ecryptfs_encrypt_and_encode_filename(
1893         char **encoded_name,
1894         size_t *encoded_name_size,
1895         struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
1896         const char *name, size_t name_size)
1897 {
1898         size_t encoded_name_no_prefix_size;
1899         int rc = 0;
1900
1901         (*encoded_name) = NULL;
1902         (*encoded_name_size) = 0;
1903         if (mount_crypt_stat && (mount_crypt_stat->flags
1904                                      & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
1905                 struct ecryptfs_filename *filename;
1906
1907                 filename = kzalloc(sizeof(*filename), GFP_KERNEL);
1908                 if (!filename) {
1909                         rc = -ENOMEM;
1910                         goto out;
1911                 }
1912                 filename->filename = (char *)name;
1913                 filename->filename_size = name_size;
1914                 rc = ecryptfs_encrypt_filename(filename, mount_crypt_stat);
1915                 if (rc) {
1916                         printk(KERN_ERR "%s: Error attempting to encrypt "
1917                                "filename; rc = [%d]\n", __func__, rc);
1918                         kfree(filename);
1919                         goto out;
1920                 }
1921                 ecryptfs_encode_for_filename(
1922                         NULL, &encoded_name_no_prefix_size,
1923                         filename->encrypted_filename,
1924                         filename->encrypted_filename_size);
1925                 if (mount_crypt_stat
1926                         && (mount_crypt_stat->flags
1927                             & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))
1928                         (*encoded_name_size) =
1929                                 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1930                                  + encoded_name_no_prefix_size);
1931                 else
1932                         (*encoded_name_size) =
1933                                 (ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1934                                  + encoded_name_no_prefix_size);
1935                 (*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL);
1936                 if (!(*encoded_name)) {
1937                         rc = -ENOMEM;
1938                         kfree(filename->encrypted_filename);
1939                         kfree(filename);
1940                         goto out;
1941                 }
1942                 if (mount_crypt_stat
1943                         && (mount_crypt_stat->flags
1944                             & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) {
1945                         memcpy((*encoded_name),
1946                                ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
1947                                ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE);
1948                         ecryptfs_encode_for_filename(
1949                             ((*encoded_name)
1950                              + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE),
1951                             &encoded_name_no_prefix_size,
1952                             filename->encrypted_filename,
1953                             filename->encrypted_filename_size);
1954                         (*encoded_name_size) =
1955                                 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1956                                  + encoded_name_no_prefix_size);
1957                         (*encoded_name)[(*encoded_name_size)] = '\0';
1958                 } else {
1959                         rc = -EOPNOTSUPP;
1960                 }
1961                 if (rc) {
1962                         printk(KERN_ERR "%s: Error attempting to encode "
1963                                "encrypted filename; rc = [%d]\n", __func__,
1964                                rc);
1965                         kfree((*encoded_name));
1966                         (*encoded_name) = NULL;
1967                         (*encoded_name_size) = 0;
1968                 }
1969                 kfree(filename->encrypted_filename);
1970                 kfree(filename);
1971         } else {
1972                 rc = ecryptfs_copy_filename(encoded_name,
1973                                             encoded_name_size,
1974                                             name, name_size);
1975         }
1976 out:
1977         return rc;
1978 }
1979
1980 static bool is_dot_dotdot(const char *name, size_t name_size)
1981 {
1982         if (name_size == 1 && name[0] == '.')
1983                 return true;
1984         else if (name_size == 2 && name[0] == '.' && name[1] == '.')
1985                 return true;
1986
1987         return false;
1988 }
1989
1990 /**
1991  * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
1992  * @plaintext_name: The plaintext name
1993  * @plaintext_name_size: The plaintext name size
1994  * @sb: Ecryptfs's super_block
1995  * @name: The filename in cipher text
1996  * @name_size: The cipher text name size
1997  *
1998  * Decrypts and decodes the filename.
1999  *
2000  * Returns zero on error; non-zero otherwise
2001  */
2002 int ecryptfs_decode_and_decrypt_filename(char **plaintext_name,
2003                                          size_t *plaintext_name_size,
2004                                          struct super_block *sb,
2005                                          const char *name, size_t name_size)
2006 {
2007         struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2008                 &ecryptfs_superblock_to_private(sb)->mount_crypt_stat;
2009         char *decoded_name;
2010         size_t decoded_name_size;
2011         size_t packet_size;
2012         int rc = 0;
2013
2014         if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) &&
2015             !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)) {
2016                 if (is_dot_dotdot(name, name_size)) {
2017                         rc = ecryptfs_copy_filename(plaintext_name,
2018                                                     plaintext_name_size,
2019                                                     name, name_size);
2020                         goto out;
2021                 }
2022
2023                 if (name_size <= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE ||
2024                     strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2025                             ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE)) {
2026                         rc = -EINVAL;
2027                         goto out;
2028                 }
2029
2030                 name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2031                 name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2032                 ecryptfs_decode_from_filename(NULL, &decoded_name_size,
2033                                               name, name_size);
2034                 decoded_name = kmalloc(decoded_name_size, GFP_KERNEL);
2035                 if (!decoded_name) {
2036                         rc = -ENOMEM;
2037                         goto out;
2038                 }
2039                 ecryptfs_decode_from_filename(decoded_name, &decoded_name_size,
2040                                               name, name_size);
2041                 rc = ecryptfs_parse_tag_70_packet(plaintext_name,
2042                                                   plaintext_name_size,
2043                                                   &packet_size,
2044                                                   mount_crypt_stat,
2045                                                   decoded_name,
2046                                                   decoded_name_size);
2047                 if (rc) {
2048                         ecryptfs_printk(KERN_DEBUG,
2049                                         "%s: Could not parse tag 70 packet from filename\n",
2050                                         __func__);
2051                         goto out_free;
2052                 }
2053         } else {
2054                 rc = ecryptfs_copy_filename(plaintext_name,
2055                                             plaintext_name_size,
2056                                             name, name_size);
2057                 goto out;
2058         }
2059 out_free:
2060         kfree(decoded_name);
2061 out:
2062         return rc;
2063 }
2064
2065 #define ENC_NAME_MAX_BLOCKLEN_8_OR_16   143
2066
2067 int ecryptfs_set_f_namelen(long *namelen, long lower_namelen,
2068                            struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
2069 {
2070         struct crypto_skcipher *tfm;
2071         struct mutex *tfm_mutex;
2072         size_t cipher_blocksize;
2073         int rc;
2074
2075         if (!(mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
2076                 (*namelen) = lower_namelen;
2077                 return 0;
2078         }
2079
2080         rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&tfm, &tfm_mutex,
2081                         mount_crypt_stat->global_default_fn_cipher_name);
2082         if (unlikely(rc)) {
2083                 (*namelen) = 0;
2084                 return rc;
2085         }
2086
2087         mutex_lock(tfm_mutex);
2088         cipher_blocksize = crypto_skcipher_blocksize(tfm);
2089         mutex_unlock(tfm_mutex);
2090
2091         /* Return an exact amount for the common cases */
2092         if (lower_namelen == NAME_MAX
2093             && (cipher_blocksize == 8 || cipher_blocksize == 16)) {
2094                 (*namelen) = ENC_NAME_MAX_BLOCKLEN_8_OR_16;
2095                 return 0;
2096         }
2097
2098         /* Return a safe estimate for the uncommon cases */
2099         (*namelen) = lower_namelen;
2100         (*namelen) -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2101         /* Since this is the max decoded size, subtract 1 "decoded block" len */
2102         (*namelen) = ecryptfs_max_decoded_size(*namelen) - 3;
2103         (*namelen) -= ECRYPTFS_TAG_70_MAX_METADATA_SIZE;
2104         (*namelen) -= ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES;
2105         /* Worst case is that the filename is padded nearly a full block size */
2106         (*namelen) -= cipher_blocksize - 1;
2107
2108         if ((*namelen) < 0)
2109                 (*namelen) = 0;
2110
2111         return 0;
2112 }