Merge remote-tracking branch 'spi/for-5.8' into spi-linus
[linux-2.6-microblaze.git] / fs / dlm / lowcomms.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /******************************************************************************
3 *******************************************************************************
4 **
5 **  Copyright (C) Sistina Software, Inc.  1997-2003  All rights reserved.
6 **  Copyright (C) 2004-2009 Red Hat, Inc.  All rights reserved.
7 **
8 **
9 *******************************************************************************
10 ******************************************************************************/
11
12 /*
13  * lowcomms.c
14  *
15  * This is the "low-level" comms layer.
16  *
17  * It is responsible for sending/receiving messages
18  * from other nodes in the cluster.
19  *
20  * Cluster nodes are referred to by their nodeids. nodeids are
21  * simply 32 bit numbers to the locking module - if they need to
22  * be expanded for the cluster infrastructure then that is its
23  * responsibility. It is this layer's
24  * responsibility to resolve these into IP address or
25  * whatever it needs for inter-node communication.
26  *
27  * The comms level is two kernel threads that deal mainly with
28  * the receiving of messages from other nodes and passing them
29  * up to the mid-level comms layer (which understands the
30  * message format) for execution by the locking core, and
31  * a send thread which does all the setting up of connections
32  * to remote nodes and the sending of data. Threads are not allowed
33  * to send their own data because it may cause them to wait in times
34  * of high load. Also, this way, the sending thread can collect together
35  * messages bound for one node and send them in one block.
36  *
37  * lowcomms will choose to use either TCP or SCTP as its transport layer
38  * depending on the configuration variable 'protocol'. This should be set
39  * to 0 (default) for TCP or 1 for SCTP. It should be configured using a
40  * cluster-wide mechanism as it must be the same on all nodes of the cluster
41  * for the DLM to function.
42  *
43  */
44
45 #include <asm/ioctls.h>
46 #include <net/sock.h>
47 #include <net/tcp.h>
48 #include <linux/pagemap.h>
49 #include <linux/file.h>
50 #include <linux/mutex.h>
51 #include <linux/sctp.h>
52 #include <linux/slab.h>
53 #include <net/sctp/sctp.h>
54 #include <net/ipv6.h>
55
56 #include "dlm_internal.h"
57 #include "lowcomms.h"
58 #include "midcomms.h"
59 #include "config.h"
60
61 #define NEEDED_RMEM (4*1024*1024)
62 #define CONN_HASH_SIZE 32
63
64 /* Number of messages to send before rescheduling */
65 #define MAX_SEND_MSG_COUNT 25
66
67 struct cbuf {
68         unsigned int base;
69         unsigned int len;
70         unsigned int mask;
71 };
72
73 static void cbuf_add(struct cbuf *cb, int n)
74 {
75         cb->len += n;
76 }
77
78 static int cbuf_data(struct cbuf *cb)
79 {
80         return ((cb->base + cb->len) & cb->mask);
81 }
82
83 static void cbuf_init(struct cbuf *cb, int size)
84 {
85         cb->base = cb->len = 0;
86         cb->mask = size-1;
87 }
88
89 static void cbuf_eat(struct cbuf *cb, int n)
90 {
91         cb->len  -= n;
92         cb->base += n;
93         cb->base &= cb->mask;
94 }
95
96 static bool cbuf_empty(struct cbuf *cb)
97 {
98         return cb->len == 0;
99 }
100
101 struct connection {
102         struct socket *sock;    /* NULL if not connected */
103         uint32_t nodeid;        /* So we know who we are in the list */
104         struct mutex sock_mutex;
105         unsigned long flags;
106 #define CF_READ_PENDING 1
107 #define CF_WRITE_PENDING 2
108 #define CF_INIT_PENDING 4
109 #define CF_IS_OTHERCON 5
110 #define CF_CLOSE 6
111 #define CF_APP_LIMITED 7
112 #define CF_CLOSING 8
113         struct list_head writequeue;  /* List of outgoing writequeue_entries */
114         spinlock_t writequeue_lock;
115         int (*rx_action) (struct connection *); /* What to do when active */
116         void (*connect_action) (struct connection *);   /* What to do to connect */
117         struct page *rx_page;
118         struct cbuf cb;
119         int retries;
120 #define MAX_CONNECT_RETRIES 3
121         struct hlist_node list;
122         struct connection *othercon;
123         struct work_struct rwork; /* Receive workqueue */
124         struct work_struct swork; /* Send workqueue */
125 };
126 #define sock2con(x) ((struct connection *)(x)->sk_user_data)
127
128 /* An entry waiting to be sent */
129 struct writequeue_entry {
130         struct list_head list;
131         struct page *page;
132         int offset;
133         int len;
134         int end;
135         int users;
136         struct connection *con;
137 };
138
139 struct dlm_node_addr {
140         struct list_head list;
141         int nodeid;
142         int addr_count;
143         int curr_addr_index;
144         struct sockaddr_storage *addr[DLM_MAX_ADDR_COUNT];
145 };
146
147 static struct listen_sock_callbacks {
148         void (*sk_error_report)(struct sock *);
149         void (*sk_data_ready)(struct sock *);
150         void (*sk_state_change)(struct sock *);
151         void (*sk_write_space)(struct sock *);
152 } listen_sock;
153
154 static LIST_HEAD(dlm_node_addrs);
155 static DEFINE_SPINLOCK(dlm_node_addrs_spin);
156
157 static struct sockaddr_storage *dlm_local_addr[DLM_MAX_ADDR_COUNT];
158 static int dlm_local_count;
159 static int dlm_allow_conn;
160
161 /* Work queues */
162 static struct workqueue_struct *recv_workqueue;
163 static struct workqueue_struct *send_workqueue;
164
165 static struct hlist_head connection_hash[CONN_HASH_SIZE];
166 static DEFINE_MUTEX(connections_lock);
167 static struct kmem_cache *con_cache;
168
169 static void process_recv_sockets(struct work_struct *work);
170 static void process_send_sockets(struct work_struct *work);
171
172
173 /* This is deliberately very simple because most clusters have simple
174    sequential nodeids, so we should be able to go straight to a connection
175    struct in the array */
176 static inline int nodeid_hash(int nodeid)
177 {
178         return nodeid & (CONN_HASH_SIZE-1);
179 }
180
181 static struct connection *__find_con(int nodeid)
182 {
183         int r;
184         struct connection *con;
185
186         r = nodeid_hash(nodeid);
187
188         hlist_for_each_entry(con, &connection_hash[r], list) {
189                 if (con->nodeid == nodeid)
190                         return con;
191         }
192         return NULL;
193 }
194
195 /*
196  * If 'allocation' is zero then we don't attempt to create a new
197  * connection structure for this node.
198  */
199 static struct connection *__nodeid2con(int nodeid, gfp_t alloc)
200 {
201         struct connection *con = NULL;
202         int r;
203
204         con = __find_con(nodeid);
205         if (con || !alloc)
206                 return con;
207
208         con = kmem_cache_zalloc(con_cache, alloc);
209         if (!con)
210                 return NULL;
211
212         r = nodeid_hash(nodeid);
213         hlist_add_head(&con->list, &connection_hash[r]);
214
215         con->nodeid = nodeid;
216         mutex_init(&con->sock_mutex);
217         INIT_LIST_HEAD(&con->writequeue);
218         spin_lock_init(&con->writequeue_lock);
219         INIT_WORK(&con->swork, process_send_sockets);
220         INIT_WORK(&con->rwork, process_recv_sockets);
221
222         /* Setup action pointers for child sockets */
223         if (con->nodeid) {
224                 struct connection *zerocon = __find_con(0);
225
226                 con->connect_action = zerocon->connect_action;
227                 if (!con->rx_action)
228                         con->rx_action = zerocon->rx_action;
229         }
230
231         return con;
232 }
233
234 /* Loop round all connections */
235 static void foreach_conn(void (*conn_func)(struct connection *c))
236 {
237         int i;
238         struct hlist_node *n;
239         struct connection *con;
240
241         for (i = 0; i < CONN_HASH_SIZE; i++) {
242                 hlist_for_each_entry_safe(con, n, &connection_hash[i], list)
243                         conn_func(con);
244         }
245 }
246
247 static struct connection *nodeid2con(int nodeid, gfp_t allocation)
248 {
249         struct connection *con;
250
251         mutex_lock(&connections_lock);
252         con = __nodeid2con(nodeid, allocation);
253         mutex_unlock(&connections_lock);
254
255         return con;
256 }
257
258 static struct dlm_node_addr *find_node_addr(int nodeid)
259 {
260         struct dlm_node_addr *na;
261
262         list_for_each_entry(na, &dlm_node_addrs, list) {
263                 if (na->nodeid == nodeid)
264                         return na;
265         }
266         return NULL;
267 }
268
269 static int addr_compare(struct sockaddr_storage *x, struct sockaddr_storage *y)
270 {
271         switch (x->ss_family) {
272         case AF_INET: {
273                 struct sockaddr_in *sinx = (struct sockaddr_in *)x;
274                 struct sockaddr_in *siny = (struct sockaddr_in *)y;
275                 if (sinx->sin_addr.s_addr != siny->sin_addr.s_addr)
276                         return 0;
277                 if (sinx->sin_port != siny->sin_port)
278                         return 0;
279                 break;
280         }
281         case AF_INET6: {
282                 struct sockaddr_in6 *sinx = (struct sockaddr_in6 *)x;
283                 struct sockaddr_in6 *siny = (struct sockaddr_in6 *)y;
284                 if (!ipv6_addr_equal(&sinx->sin6_addr, &siny->sin6_addr))
285                         return 0;
286                 if (sinx->sin6_port != siny->sin6_port)
287                         return 0;
288                 break;
289         }
290         default:
291                 return 0;
292         }
293         return 1;
294 }
295
296 static int nodeid_to_addr(int nodeid, struct sockaddr_storage *sas_out,
297                           struct sockaddr *sa_out, bool try_new_addr)
298 {
299         struct sockaddr_storage sas;
300         struct dlm_node_addr *na;
301
302         if (!dlm_local_count)
303                 return -1;
304
305         spin_lock(&dlm_node_addrs_spin);
306         na = find_node_addr(nodeid);
307         if (na && na->addr_count) {
308                 memcpy(&sas, na->addr[na->curr_addr_index],
309                        sizeof(struct sockaddr_storage));
310
311                 if (try_new_addr) {
312                         na->curr_addr_index++;
313                         if (na->curr_addr_index == na->addr_count)
314                                 na->curr_addr_index = 0;
315                 }
316         }
317         spin_unlock(&dlm_node_addrs_spin);
318
319         if (!na)
320                 return -EEXIST;
321
322         if (!na->addr_count)
323                 return -ENOENT;
324
325         if (sas_out)
326                 memcpy(sas_out, &sas, sizeof(struct sockaddr_storage));
327
328         if (!sa_out)
329                 return 0;
330
331         if (dlm_local_addr[0]->ss_family == AF_INET) {
332                 struct sockaddr_in *in4  = (struct sockaddr_in *) &sas;
333                 struct sockaddr_in *ret4 = (struct sockaddr_in *) sa_out;
334                 ret4->sin_addr.s_addr = in4->sin_addr.s_addr;
335         } else {
336                 struct sockaddr_in6 *in6  = (struct sockaddr_in6 *) &sas;
337                 struct sockaddr_in6 *ret6 = (struct sockaddr_in6 *) sa_out;
338                 ret6->sin6_addr = in6->sin6_addr;
339         }
340
341         return 0;
342 }
343
344 static int addr_to_nodeid(struct sockaddr_storage *addr, int *nodeid)
345 {
346         struct dlm_node_addr *na;
347         int rv = -EEXIST;
348         int addr_i;
349
350         spin_lock(&dlm_node_addrs_spin);
351         list_for_each_entry(na, &dlm_node_addrs, list) {
352                 if (!na->addr_count)
353                         continue;
354
355                 for (addr_i = 0; addr_i < na->addr_count; addr_i++) {
356                         if (addr_compare(na->addr[addr_i], addr)) {
357                                 *nodeid = na->nodeid;
358                                 rv = 0;
359                                 goto unlock;
360                         }
361                 }
362         }
363 unlock:
364         spin_unlock(&dlm_node_addrs_spin);
365         return rv;
366 }
367
368 int dlm_lowcomms_addr(int nodeid, struct sockaddr_storage *addr, int len)
369 {
370         struct sockaddr_storage *new_addr;
371         struct dlm_node_addr *new_node, *na;
372
373         new_node = kzalloc(sizeof(struct dlm_node_addr), GFP_NOFS);
374         if (!new_node)
375                 return -ENOMEM;
376
377         new_addr = kzalloc(sizeof(struct sockaddr_storage), GFP_NOFS);
378         if (!new_addr) {
379                 kfree(new_node);
380                 return -ENOMEM;
381         }
382
383         memcpy(new_addr, addr, len);
384
385         spin_lock(&dlm_node_addrs_spin);
386         na = find_node_addr(nodeid);
387         if (!na) {
388                 new_node->nodeid = nodeid;
389                 new_node->addr[0] = new_addr;
390                 new_node->addr_count = 1;
391                 list_add(&new_node->list, &dlm_node_addrs);
392                 spin_unlock(&dlm_node_addrs_spin);
393                 return 0;
394         }
395
396         if (na->addr_count >= DLM_MAX_ADDR_COUNT) {
397                 spin_unlock(&dlm_node_addrs_spin);
398                 kfree(new_addr);
399                 kfree(new_node);
400                 return -ENOSPC;
401         }
402
403         na->addr[na->addr_count++] = new_addr;
404         spin_unlock(&dlm_node_addrs_spin);
405         kfree(new_node);
406         return 0;
407 }
408
409 /* Data available on socket or listen socket received a connect */
410 static void lowcomms_data_ready(struct sock *sk)
411 {
412         struct connection *con;
413
414         read_lock_bh(&sk->sk_callback_lock);
415         con = sock2con(sk);
416         if (con && !test_and_set_bit(CF_READ_PENDING, &con->flags))
417                 queue_work(recv_workqueue, &con->rwork);
418         read_unlock_bh(&sk->sk_callback_lock);
419 }
420
421 static void lowcomms_write_space(struct sock *sk)
422 {
423         struct connection *con;
424
425         read_lock_bh(&sk->sk_callback_lock);
426         con = sock2con(sk);
427         if (!con)
428                 goto out;
429
430         clear_bit(SOCK_NOSPACE, &con->sock->flags);
431
432         if (test_and_clear_bit(CF_APP_LIMITED, &con->flags)) {
433                 con->sock->sk->sk_write_pending--;
434                 clear_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags);
435         }
436
437         queue_work(send_workqueue, &con->swork);
438 out:
439         read_unlock_bh(&sk->sk_callback_lock);
440 }
441
442 static inline void lowcomms_connect_sock(struct connection *con)
443 {
444         if (test_bit(CF_CLOSE, &con->flags))
445                 return;
446         queue_work(send_workqueue, &con->swork);
447         cond_resched();
448 }
449
450 static void lowcomms_state_change(struct sock *sk)
451 {
452         /* SCTP layer is not calling sk_data_ready when the connection
453          * is done, so we catch the signal through here. Also, it
454          * doesn't switch socket state when entering shutdown, so we
455          * skip the write in that case.
456          */
457         if (sk->sk_shutdown) {
458                 if (sk->sk_shutdown == RCV_SHUTDOWN)
459                         lowcomms_data_ready(sk);
460         } else if (sk->sk_state == TCP_ESTABLISHED) {
461                 lowcomms_write_space(sk);
462         }
463 }
464
465 int dlm_lowcomms_connect_node(int nodeid)
466 {
467         struct connection *con;
468
469         if (nodeid == dlm_our_nodeid())
470                 return 0;
471
472         con = nodeid2con(nodeid, GFP_NOFS);
473         if (!con)
474                 return -ENOMEM;
475         lowcomms_connect_sock(con);
476         return 0;
477 }
478
479 static void lowcomms_error_report(struct sock *sk)
480 {
481         struct connection *con;
482         struct sockaddr_storage saddr;
483         void (*orig_report)(struct sock *) = NULL;
484
485         read_lock_bh(&sk->sk_callback_lock);
486         con = sock2con(sk);
487         if (con == NULL)
488                 goto out;
489
490         orig_report = listen_sock.sk_error_report;
491         if (con->sock == NULL ||
492             kernel_getpeername(con->sock, (struct sockaddr *)&saddr) < 0) {
493                 printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
494                                    "sending to node %d, port %d, "
495                                    "sk_err=%d/%d\n", dlm_our_nodeid(),
496                                    con->nodeid, dlm_config.ci_tcp_port,
497                                    sk->sk_err, sk->sk_err_soft);
498         } else if (saddr.ss_family == AF_INET) {
499                 struct sockaddr_in *sin4 = (struct sockaddr_in *)&saddr;
500
501                 printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
502                                    "sending to node %d at %pI4, port %d, "
503                                    "sk_err=%d/%d\n", dlm_our_nodeid(),
504                                    con->nodeid, &sin4->sin_addr.s_addr,
505                                    dlm_config.ci_tcp_port, sk->sk_err,
506                                    sk->sk_err_soft);
507         } else {
508                 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&saddr;
509
510                 printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
511                                    "sending to node %d at %u.%u.%u.%u, "
512                                    "port %d, sk_err=%d/%d\n", dlm_our_nodeid(),
513                                    con->nodeid, sin6->sin6_addr.s6_addr32[0],
514                                    sin6->sin6_addr.s6_addr32[1],
515                                    sin6->sin6_addr.s6_addr32[2],
516                                    sin6->sin6_addr.s6_addr32[3],
517                                    dlm_config.ci_tcp_port, sk->sk_err,
518                                    sk->sk_err_soft);
519         }
520 out:
521         read_unlock_bh(&sk->sk_callback_lock);
522         if (orig_report)
523                 orig_report(sk);
524 }
525
526 /* Note: sk_callback_lock must be locked before calling this function. */
527 static void save_listen_callbacks(struct socket *sock)
528 {
529         struct sock *sk = sock->sk;
530
531         listen_sock.sk_data_ready = sk->sk_data_ready;
532         listen_sock.sk_state_change = sk->sk_state_change;
533         listen_sock.sk_write_space = sk->sk_write_space;
534         listen_sock.sk_error_report = sk->sk_error_report;
535 }
536
537 static void restore_callbacks(struct socket *sock)
538 {
539         struct sock *sk = sock->sk;
540
541         write_lock_bh(&sk->sk_callback_lock);
542         sk->sk_user_data = NULL;
543         sk->sk_data_ready = listen_sock.sk_data_ready;
544         sk->sk_state_change = listen_sock.sk_state_change;
545         sk->sk_write_space = listen_sock.sk_write_space;
546         sk->sk_error_report = listen_sock.sk_error_report;
547         write_unlock_bh(&sk->sk_callback_lock);
548 }
549
550 /* Make a socket active */
551 static void add_sock(struct socket *sock, struct connection *con)
552 {
553         struct sock *sk = sock->sk;
554
555         write_lock_bh(&sk->sk_callback_lock);
556         con->sock = sock;
557
558         sk->sk_user_data = con;
559         /* Install a data_ready callback */
560         sk->sk_data_ready = lowcomms_data_ready;
561         sk->sk_write_space = lowcomms_write_space;
562         sk->sk_state_change = lowcomms_state_change;
563         sk->sk_allocation = GFP_NOFS;
564         sk->sk_error_report = lowcomms_error_report;
565         write_unlock_bh(&sk->sk_callback_lock);
566 }
567
568 /* Add the port number to an IPv6 or 4 sockaddr and return the address
569    length */
570 static void make_sockaddr(struct sockaddr_storage *saddr, uint16_t port,
571                           int *addr_len)
572 {
573         saddr->ss_family =  dlm_local_addr[0]->ss_family;
574         if (saddr->ss_family == AF_INET) {
575                 struct sockaddr_in *in4_addr = (struct sockaddr_in *)saddr;
576                 in4_addr->sin_port = cpu_to_be16(port);
577                 *addr_len = sizeof(struct sockaddr_in);
578                 memset(&in4_addr->sin_zero, 0, sizeof(in4_addr->sin_zero));
579         } else {
580                 struct sockaddr_in6 *in6_addr = (struct sockaddr_in6 *)saddr;
581                 in6_addr->sin6_port = cpu_to_be16(port);
582                 *addr_len = sizeof(struct sockaddr_in6);
583         }
584         memset((char *)saddr + *addr_len, 0, sizeof(struct sockaddr_storage) - *addr_len);
585 }
586
587 /* Close a remote connection and tidy up */
588 static void close_connection(struct connection *con, bool and_other,
589                              bool tx, bool rx)
590 {
591         bool closing = test_and_set_bit(CF_CLOSING, &con->flags);
592
593         if (tx && !closing && cancel_work_sync(&con->swork)) {
594                 log_print("canceled swork for node %d", con->nodeid);
595                 clear_bit(CF_WRITE_PENDING, &con->flags);
596         }
597         if (rx && !closing && cancel_work_sync(&con->rwork)) {
598                 log_print("canceled rwork for node %d", con->nodeid);
599                 clear_bit(CF_READ_PENDING, &con->flags);
600         }
601
602         mutex_lock(&con->sock_mutex);
603         if (con->sock) {
604                 restore_callbacks(con->sock);
605                 sock_release(con->sock);
606                 con->sock = NULL;
607         }
608         if (con->othercon && and_other) {
609                 /* Will only re-enter once. */
610                 close_connection(con->othercon, false, true, true);
611         }
612         if (con->rx_page) {
613                 __free_page(con->rx_page);
614                 con->rx_page = NULL;
615         }
616
617         con->retries = 0;
618         mutex_unlock(&con->sock_mutex);
619         clear_bit(CF_CLOSING, &con->flags);
620 }
621
622 /* Data received from remote end */
623 static int receive_from_sock(struct connection *con)
624 {
625         int ret = 0;
626         struct msghdr msg = {};
627         struct kvec iov[2];
628         unsigned len;
629         int r;
630         int call_again_soon = 0;
631         int nvec;
632
633         mutex_lock(&con->sock_mutex);
634
635         if (con->sock == NULL) {
636                 ret = -EAGAIN;
637                 goto out_close;
638         }
639         if (con->nodeid == 0) {
640                 ret = -EINVAL;
641                 goto out_close;
642         }
643
644         if (con->rx_page == NULL) {
645                 /*
646                  * This doesn't need to be atomic, but I think it should
647                  * improve performance if it is.
648                  */
649                 con->rx_page = alloc_page(GFP_ATOMIC);
650                 if (con->rx_page == NULL)
651                         goto out_resched;
652                 cbuf_init(&con->cb, PAGE_SIZE);
653         }
654
655         /*
656          * iov[0] is the bit of the circular buffer between the current end
657          * point (cb.base + cb.len) and the end of the buffer.
658          */
659         iov[0].iov_len = con->cb.base - cbuf_data(&con->cb);
660         iov[0].iov_base = page_address(con->rx_page) + cbuf_data(&con->cb);
661         iov[1].iov_len = 0;
662         nvec = 1;
663
664         /*
665          * iov[1] is the bit of the circular buffer between the start of the
666          * buffer and the start of the currently used section (cb.base)
667          */
668         if (cbuf_data(&con->cb) >= con->cb.base) {
669                 iov[0].iov_len = PAGE_SIZE - cbuf_data(&con->cb);
670                 iov[1].iov_len = con->cb.base;
671                 iov[1].iov_base = page_address(con->rx_page);
672                 nvec = 2;
673         }
674         len = iov[0].iov_len + iov[1].iov_len;
675         iov_iter_kvec(&msg.msg_iter, READ, iov, nvec, len);
676
677         r = ret = sock_recvmsg(con->sock, &msg, MSG_DONTWAIT | MSG_NOSIGNAL);
678         if (ret <= 0)
679                 goto out_close;
680         else if (ret == len)
681                 call_again_soon = 1;
682
683         cbuf_add(&con->cb, ret);
684         ret = dlm_process_incoming_buffer(con->nodeid,
685                                           page_address(con->rx_page),
686                                           con->cb.base, con->cb.len,
687                                           PAGE_SIZE);
688         if (ret == -EBADMSG) {
689                 log_print("lowcomms: addr=%p, base=%u, len=%u, read=%d",
690                           page_address(con->rx_page), con->cb.base,
691                           con->cb.len, r);
692         }
693         if (ret < 0)
694                 goto out_close;
695         cbuf_eat(&con->cb, ret);
696
697         if (cbuf_empty(&con->cb) && !call_again_soon) {
698                 __free_page(con->rx_page);
699                 con->rx_page = NULL;
700         }
701
702         if (call_again_soon)
703                 goto out_resched;
704         mutex_unlock(&con->sock_mutex);
705         return 0;
706
707 out_resched:
708         if (!test_and_set_bit(CF_READ_PENDING, &con->flags))
709                 queue_work(recv_workqueue, &con->rwork);
710         mutex_unlock(&con->sock_mutex);
711         return -EAGAIN;
712
713 out_close:
714         mutex_unlock(&con->sock_mutex);
715         if (ret != -EAGAIN) {
716                 close_connection(con, true, true, false);
717                 /* Reconnect when there is something to send */
718         }
719         /* Don't return success if we really got EOF */
720         if (ret == 0)
721                 ret = -EAGAIN;
722
723         return ret;
724 }
725
726 /* Listening socket is busy, accept a connection */
727 static int accept_from_sock(struct connection *con)
728 {
729         int result;
730         struct sockaddr_storage peeraddr;
731         struct socket *newsock;
732         int len;
733         int nodeid;
734         struct connection *newcon;
735         struct connection *addcon;
736
737         mutex_lock(&connections_lock);
738         if (!dlm_allow_conn) {
739                 mutex_unlock(&connections_lock);
740                 return -1;
741         }
742         mutex_unlock(&connections_lock);
743
744         mutex_lock_nested(&con->sock_mutex, 0);
745
746         if (!con->sock) {
747                 mutex_unlock(&con->sock_mutex);
748                 return -ENOTCONN;
749         }
750
751         result = kernel_accept(con->sock, &newsock, O_NONBLOCK);
752         if (result < 0)
753                 goto accept_err;
754
755         /* Get the connected socket's peer */
756         memset(&peeraddr, 0, sizeof(peeraddr));
757         len = newsock->ops->getname(newsock, (struct sockaddr *)&peeraddr, 2);
758         if (len < 0) {
759                 result = -ECONNABORTED;
760                 goto accept_err;
761         }
762
763         /* Get the new node's NODEID */
764         make_sockaddr(&peeraddr, 0, &len);
765         if (addr_to_nodeid(&peeraddr, &nodeid)) {
766                 unsigned char *b=(unsigned char *)&peeraddr;
767                 log_print("connect from non cluster node");
768                 print_hex_dump_bytes("ss: ", DUMP_PREFIX_NONE, 
769                                      b, sizeof(struct sockaddr_storage));
770                 sock_release(newsock);
771                 mutex_unlock(&con->sock_mutex);
772                 return -1;
773         }
774
775         log_print("got connection from %d", nodeid);
776
777         /*  Check to see if we already have a connection to this node. This
778          *  could happen if the two nodes initiate a connection at roughly
779          *  the same time and the connections cross on the wire.
780          *  In this case we store the incoming one in "othercon"
781          */
782         newcon = nodeid2con(nodeid, GFP_NOFS);
783         if (!newcon) {
784                 result = -ENOMEM;
785                 goto accept_err;
786         }
787         mutex_lock_nested(&newcon->sock_mutex, 1);
788         if (newcon->sock) {
789                 struct connection *othercon = newcon->othercon;
790
791                 if (!othercon) {
792                         othercon = kmem_cache_zalloc(con_cache, GFP_NOFS);
793                         if (!othercon) {
794                                 log_print("failed to allocate incoming socket");
795                                 mutex_unlock(&newcon->sock_mutex);
796                                 result = -ENOMEM;
797                                 goto accept_err;
798                         }
799                         othercon->nodeid = nodeid;
800                         othercon->rx_action = receive_from_sock;
801                         mutex_init(&othercon->sock_mutex);
802                         INIT_LIST_HEAD(&othercon->writequeue);
803                         spin_lock_init(&othercon->writequeue_lock);
804                         INIT_WORK(&othercon->swork, process_send_sockets);
805                         INIT_WORK(&othercon->rwork, process_recv_sockets);
806                         set_bit(CF_IS_OTHERCON, &othercon->flags);
807                 }
808                 mutex_lock_nested(&othercon->sock_mutex, 2);
809                 if (!othercon->sock) {
810                         newcon->othercon = othercon;
811                         add_sock(newsock, othercon);
812                         addcon = othercon;
813                         mutex_unlock(&othercon->sock_mutex);
814                 }
815                 else {
816                         printk("Extra connection from node %d attempted\n", nodeid);
817                         result = -EAGAIN;
818                         mutex_unlock(&othercon->sock_mutex);
819                         mutex_unlock(&newcon->sock_mutex);
820                         goto accept_err;
821                 }
822         }
823         else {
824                 newcon->rx_action = receive_from_sock;
825                 /* accept copies the sk after we've saved the callbacks, so we
826                    don't want to save them a second time or comm errors will
827                    result in calling sk_error_report recursively. */
828                 add_sock(newsock, newcon);
829                 addcon = newcon;
830         }
831
832         mutex_unlock(&newcon->sock_mutex);
833
834         /*
835          * Add it to the active queue in case we got data
836          * between processing the accept adding the socket
837          * to the read_sockets list
838          */
839         if (!test_and_set_bit(CF_READ_PENDING, &addcon->flags))
840                 queue_work(recv_workqueue, &addcon->rwork);
841         mutex_unlock(&con->sock_mutex);
842
843         return 0;
844
845 accept_err:
846         mutex_unlock(&con->sock_mutex);
847         if (newsock)
848                 sock_release(newsock);
849
850         if (result != -EAGAIN)
851                 log_print("error accepting connection from node: %d", result);
852         return result;
853 }
854
855 static void free_entry(struct writequeue_entry *e)
856 {
857         __free_page(e->page);
858         kfree(e);
859 }
860
861 /*
862  * writequeue_entry_complete - try to delete and free write queue entry
863  * @e: write queue entry to try to delete
864  * @completed: bytes completed
865  *
866  * writequeue_lock must be held.
867  */
868 static void writequeue_entry_complete(struct writequeue_entry *e, int completed)
869 {
870         e->offset += completed;
871         e->len -= completed;
872
873         if (e->len == 0 && e->users == 0) {
874                 list_del(&e->list);
875                 free_entry(e);
876         }
877 }
878
879 /*
880  * sctp_bind_addrs - bind a SCTP socket to all our addresses
881  */
882 static int sctp_bind_addrs(struct connection *con, uint16_t port)
883 {
884         struct sockaddr_storage localaddr;
885         struct sockaddr *addr = (struct sockaddr *)&localaddr;
886         int i, addr_len, result = 0;
887
888         for (i = 0; i < dlm_local_count; i++) {
889                 memcpy(&localaddr, dlm_local_addr[i], sizeof(localaddr));
890                 make_sockaddr(&localaddr, port, &addr_len);
891
892                 if (!i)
893                         result = kernel_bind(con->sock, addr, addr_len);
894                 else
895                         result = sock_bind_add(con->sock->sk, addr, addr_len);
896
897                 if (result < 0) {
898                         log_print("Can't bind to %d addr number %d, %d.\n",
899                                   port, i + 1, result);
900                         break;
901                 }
902         }
903         return result;
904 }
905
906 /* Initiate an SCTP association.
907    This is a special case of send_to_sock() in that we don't yet have a
908    peeled-off socket for this association, so we use the listening socket
909    and add the primary IP address of the remote node.
910  */
911 static void sctp_connect_to_sock(struct connection *con)
912 {
913         struct sockaddr_storage daddr;
914         int result;
915         int addr_len;
916         struct socket *sock;
917
918         if (con->nodeid == 0) {
919                 log_print("attempt to connect sock 0 foiled");
920                 return;
921         }
922
923         mutex_lock(&con->sock_mutex);
924
925         /* Some odd races can cause double-connects, ignore them */
926         if (con->retries++ > MAX_CONNECT_RETRIES)
927                 goto out;
928
929         if (con->sock) {
930                 log_print("node %d already connected.", con->nodeid);
931                 goto out;
932         }
933
934         memset(&daddr, 0, sizeof(daddr));
935         result = nodeid_to_addr(con->nodeid, &daddr, NULL, true);
936         if (result < 0) {
937                 log_print("no address for nodeid %d", con->nodeid);
938                 goto out;
939         }
940
941         /* Create a socket to communicate with */
942         result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
943                                   SOCK_STREAM, IPPROTO_SCTP, &sock);
944         if (result < 0)
945                 goto socket_err;
946
947         con->rx_action = receive_from_sock;
948         con->connect_action = sctp_connect_to_sock;
949         add_sock(sock, con);
950
951         /* Bind to all addresses. */
952         if (sctp_bind_addrs(con, 0))
953                 goto bind_err;
954
955         make_sockaddr(&daddr, dlm_config.ci_tcp_port, &addr_len);
956
957         log_print("connecting to %d", con->nodeid);
958
959         /* Turn off Nagle's algorithm */
960         sctp_sock_set_nodelay(sock->sk);
961
962         /*
963          * Make sock->ops->connect() function return in specified time,
964          * since O_NONBLOCK argument in connect() function does not work here,
965          * then, we should restore the default value of this attribute.
966          */
967         sock_set_sndtimeo(sock->sk, 5);
968         result = sock->ops->connect(sock, (struct sockaddr *)&daddr, addr_len,
969                                    0);
970         sock_set_sndtimeo(sock->sk, 0);
971
972         if (result == -EINPROGRESS)
973                 result = 0;
974         if (result == 0)
975                 goto out;
976
977 bind_err:
978         con->sock = NULL;
979         sock_release(sock);
980
981 socket_err:
982         /*
983          * Some errors are fatal and this list might need adjusting. For other
984          * errors we try again until the max number of retries is reached.
985          */
986         if (result != -EHOSTUNREACH &&
987             result != -ENETUNREACH &&
988             result != -ENETDOWN &&
989             result != -EINVAL &&
990             result != -EPROTONOSUPPORT) {
991                 log_print("connect %d try %d error %d", con->nodeid,
992                           con->retries, result);
993                 mutex_unlock(&con->sock_mutex);
994                 msleep(1000);
995                 lowcomms_connect_sock(con);
996                 return;
997         }
998
999 out:
1000         mutex_unlock(&con->sock_mutex);
1001 }
1002
1003 /* Connect a new socket to its peer */
1004 static void tcp_connect_to_sock(struct connection *con)
1005 {
1006         struct sockaddr_storage saddr, src_addr;
1007         int addr_len;
1008         struct socket *sock = NULL;
1009         int result;
1010
1011         if (con->nodeid == 0) {
1012                 log_print("attempt to connect sock 0 foiled");
1013                 return;
1014         }
1015
1016         mutex_lock(&con->sock_mutex);
1017         if (con->retries++ > MAX_CONNECT_RETRIES)
1018                 goto out;
1019
1020         /* Some odd races can cause double-connects, ignore them */
1021         if (con->sock)
1022                 goto out;
1023
1024         /* Create a socket to communicate with */
1025         result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
1026                                   SOCK_STREAM, IPPROTO_TCP, &sock);
1027         if (result < 0)
1028                 goto out_err;
1029
1030         memset(&saddr, 0, sizeof(saddr));
1031         result = nodeid_to_addr(con->nodeid, &saddr, NULL, false);
1032         if (result < 0) {
1033                 log_print("no address for nodeid %d", con->nodeid);
1034                 goto out_err;
1035         }
1036
1037         con->rx_action = receive_from_sock;
1038         con->connect_action = tcp_connect_to_sock;
1039         add_sock(sock, con);
1040
1041         /* Bind to our cluster-known address connecting to avoid
1042            routing problems */
1043         memcpy(&src_addr, dlm_local_addr[0], sizeof(src_addr));
1044         make_sockaddr(&src_addr, 0, &addr_len);
1045         result = sock->ops->bind(sock, (struct sockaddr *) &src_addr,
1046                                  addr_len);
1047         if (result < 0) {
1048                 log_print("could not bind for connect: %d", result);
1049                 /* This *may* not indicate a critical error */
1050         }
1051
1052         make_sockaddr(&saddr, dlm_config.ci_tcp_port, &addr_len);
1053
1054         log_print("connecting to %d", con->nodeid);
1055
1056         /* Turn off Nagle's algorithm */
1057         tcp_sock_set_nodelay(sock->sk);
1058
1059         result = sock->ops->connect(sock, (struct sockaddr *)&saddr, addr_len,
1060                                    O_NONBLOCK);
1061         if (result == -EINPROGRESS)
1062                 result = 0;
1063         if (result == 0)
1064                 goto out;
1065
1066 out_err:
1067         if (con->sock) {
1068                 sock_release(con->sock);
1069                 con->sock = NULL;
1070         } else if (sock) {
1071                 sock_release(sock);
1072         }
1073         /*
1074          * Some errors are fatal and this list might need adjusting. For other
1075          * errors we try again until the max number of retries is reached.
1076          */
1077         if (result != -EHOSTUNREACH &&
1078             result != -ENETUNREACH &&
1079             result != -ENETDOWN && 
1080             result != -EINVAL &&
1081             result != -EPROTONOSUPPORT) {
1082                 log_print("connect %d try %d error %d", con->nodeid,
1083                           con->retries, result);
1084                 mutex_unlock(&con->sock_mutex);
1085                 msleep(1000);
1086                 lowcomms_connect_sock(con);
1087                 return;
1088         }
1089 out:
1090         mutex_unlock(&con->sock_mutex);
1091         return;
1092 }
1093
1094 static struct socket *tcp_create_listen_sock(struct connection *con,
1095                                              struct sockaddr_storage *saddr)
1096 {
1097         struct socket *sock = NULL;
1098         int result = 0;
1099         int addr_len;
1100
1101         if (dlm_local_addr[0]->ss_family == AF_INET)
1102                 addr_len = sizeof(struct sockaddr_in);
1103         else
1104                 addr_len = sizeof(struct sockaddr_in6);
1105
1106         /* Create a socket to communicate with */
1107         result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
1108                                   SOCK_STREAM, IPPROTO_TCP, &sock);
1109         if (result < 0) {
1110                 log_print("Can't create listening comms socket");
1111                 goto create_out;
1112         }
1113
1114         /* Turn off Nagle's algorithm */
1115         tcp_sock_set_nodelay(sock->sk);
1116
1117         sock_set_reuseaddr(sock->sk);
1118
1119         write_lock_bh(&sock->sk->sk_callback_lock);
1120         sock->sk->sk_user_data = con;
1121         save_listen_callbacks(sock);
1122         con->rx_action = accept_from_sock;
1123         con->connect_action = tcp_connect_to_sock;
1124         write_unlock_bh(&sock->sk->sk_callback_lock);
1125
1126         /* Bind to our port */
1127         make_sockaddr(saddr, dlm_config.ci_tcp_port, &addr_len);
1128         result = sock->ops->bind(sock, (struct sockaddr *) saddr, addr_len);
1129         if (result < 0) {
1130                 log_print("Can't bind to port %d", dlm_config.ci_tcp_port);
1131                 sock_release(sock);
1132                 sock = NULL;
1133                 con->sock = NULL;
1134                 goto create_out;
1135         }
1136         sock_set_keepalive(sock->sk);
1137
1138         result = sock->ops->listen(sock, 5);
1139         if (result < 0) {
1140                 log_print("Can't listen on port %d", dlm_config.ci_tcp_port);
1141                 sock_release(sock);
1142                 sock = NULL;
1143                 goto create_out;
1144         }
1145
1146 create_out:
1147         return sock;
1148 }
1149
1150 /* Get local addresses */
1151 static void init_local(void)
1152 {
1153         struct sockaddr_storage sas, *addr;
1154         int i;
1155
1156         dlm_local_count = 0;
1157         for (i = 0; i < DLM_MAX_ADDR_COUNT; i++) {
1158                 if (dlm_our_addr(&sas, i))
1159                         break;
1160
1161                 addr = kmemdup(&sas, sizeof(*addr), GFP_NOFS);
1162                 if (!addr)
1163                         break;
1164                 dlm_local_addr[dlm_local_count++] = addr;
1165         }
1166 }
1167
1168 /* Initialise SCTP socket and bind to all interfaces */
1169 static int sctp_listen_for_all(void)
1170 {
1171         struct socket *sock = NULL;
1172         int result = -EINVAL;
1173         struct connection *con = nodeid2con(0, GFP_NOFS);
1174
1175         if (!con)
1176                 return -ENOMEM;
1177
1178         log_print("Using SCTP for communications");
1179
1180         result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
1181                                   SOCK_STREAM, IPPROTO_SCTP, &sock);
1182         if (result < 0) {
1183                 log_print("Can't create comms socket, check SCTP is loaded");
1184                 goto out;
1185         }
1186
1187         sock_set_rcvbuf(sock->sk, NEEDED_RMEM);
1188         sctp_sock_set_nodelay(sock->sk);
1189
1190         write_lock_bh(&sock->sk->sk_callback_lock);
1191         /* Init con struct */
1192         sock->sk->sk_user_data = con;
1193         save_listen_callbacks(sock);
1194         con->sock = sock;
1195         con->sock->sk->sk_data_ready = lowcomms_data_ready;
1196         con->rx_action = accept_from_sock;
1197         con->connect_action = sctp_connect_to_sock;
1198
1199         write_unlock_bh(&sock->sk->sk_callback_lock);
1200
1201         /* Bind to all addresses. */
1202         if (sctp_bind_addrs(con, dlm_config.ci_tcp_port))
1203                 goto create_delsock;
1204
1205         result = sock->ops->listen(sock, 5);
1206         if (result < 0) {
1207                 log_print("Can't set socket listening");
1208                 goto create_delsock;
1209         }
1210
1211         return 0;
1212
1213 create_delsock:
1214         sock_release(sock);
1215         con->sock = NULL;
1216 out:
1217         return result;
1218 }
1219
1220 static int tcp_listen_for_all(void)
1221 {
1222         struct socket *sock = NULL;
1223         struct connection *con = nodeid2con(0, GFP_NOFS);
1224         int result = -EINVAL;
1225
1226         if (!con)
1227                 return -ENOMEM;
1228
1229         /* We don't support multi-homed hosts */
1230         if (dlm_local_addr[1] != NULL) {
1231                 log_print("TCP protocol can't handle multi-homed hosts, "
1232                           "try SCTP");
1233                 return -EINVAL;
1234         }
1235
1236         log_print("Using TCP for communications");
1237
1238         sock = tcp_create_listen_sock(con, dlm_local_addr[0]);
1239         if (sock) {
1240                 add_sock(sock, con);
1241                 result = 0;
1242         }
1243         else {
1244                 result = -EADDRINUSE;
1245         }
1246
1247         return result;
1248 }
1249
1250
1251
1252 static struct writequeue_entry *new_writequeue_entry(struct connection *con,
1253                                                      gfp_t allocation)
1254 {
1255         struct writequeue_entry *entry;
1256
1257         entry = kmalloc(sizeof(struct writequeue_entry), allocation);
1258         if (!entry)
1259                 return NULL;
1260
1261         entry->page = alloc_page(allocation);
1262         if (!entry->page) {
1263                 kfree(entry);
1264                 return NULL;
1265         }
1266
1267         entry->offset = 0;
1268         entry->len = 0;
1269         entry->end = 0;
1270         entry->users = 0;
1271         entry->con = con;
1272
1273         return entry;
1274 }
1275
1276 void *dlm_lowcomms_get_buffer(int nodeid, int len, gfp_t allocation, char **ppc)
1277 {
1278         struct connection *con;
1279         struct writequeue_entry *e;
1280         int offset = 0;
1281
1282         con = nodeid2con(nodeid, allocation);
1283         if (!con)
1284                 return NULL;
1285
1286         spin_lock(&con->writequeue_lock);
1287         e = list_entry(con->writequeue.prev, struct writequeue_entry, list);
1288         if ((&e->list == &con->writequeue) ||
1289             (PAGE_SIZE - e->end < len)) {
1290                 e = NULL;
1291         } else {
1292                 offset = e->end;
1293                 e->end += len;
1294                 e->users++;
1295         }
1296         spin_unlock(&con->writequeue_lock);
1297
1298         if (e) {
1299         got_one:
1300                 *ppc = page_address(e->page) + offset;
1301                 return e;
1302         }
1303
1304         e = new_writequeue_entry(con, allocation);
1305         if (e) {
1306                 spin_lock(&con->writequeue_lock);
1307                 offset = e->end;
1308                 e->end += len;
1309                 e->users++;
1310                 list_add_tail(&e->list, &con->writequeue);
1311                 spin_unlock(&con->writequeue_lock);
1312                 goto got_one;
1313         }
1314         return NULL;
1315 }
1316
1317 void dlm_lowcomms_commit_buffer(void *mh)
1318 {
1319         struct writequeue_entry *e = (struct writequeue_entry *)mh;
1320         struct connection *con = e->con;
1321         int users;
1322
1323         spin_lock(&con->writequeue_lock);
1324         users = --e->users;
1325         if (users)
1326                 goto out;
1327         e->len = e->end - e->offset;
1328         spin_unlock(&con->writequeue_lock);
1329
1330         queue_work(send_workqueue, &con->swork);
1331         return;
1332
1333 out:
1334         spin_unlock(&con->writequeue_lock);
1335         return;
1336 }
1337
1338 /* Send a message */
1339 static void send_to_sock(struct connection *con)
1340 {
1341         int ret = 0;
1342         const int msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
1343         struct writequeue_entry *e;
1344         int len, offset;
1345         int count = 0;
1346
1347         mutex_lock(&con->sock_mutex);
1348         if (con->sock == NULL)
1349                 goto out_connect;
1350
1351         spin_lock(&con->writequeue_lock);
1352         for (;;) {
1353                 e = list_entry(con->writequeue.next, struct writequeue_entry,
1354                                list);
1355                 if ((struct list_head *) e == &con->writequeue)
1356                         break;
1357
1358                 len = e->len;
1359                 offset = e->offset;
1360                 BUG_ON(len == 0 && e->users == 0);
1361                 spin_unlock(&con->writequeue_lock);
1362
1363                 ret = 0;
1364                 if (len) {
1365                         ret = kernel_sendpage(con->sock, e->page, offset, len,
1366                                               msg_flags);
1367                         if (ret == -EAGAIN || ret == 0) {
1368                                 if (ret == -EAGAIN &&
1369                                     test_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags) &&
1370                                     !test_and_set_bit(CF_APP_LIMITED, &con->flags)) {
1371                                         /* Notify TCP that we're limited by the
1372                                          * application window size.
1373                                          */
1374                                         set_bit(SOCK_NOSPACE, &con->sock->flags);
1375                                         con->sock->sk->sk_write_pending++;
1376                                 }
1377                                 cond_resched();
1378                                 goto out;
1379                         } else if (ret < 0)
1380                                 goto send_error;
1381                 }
1382
1383                 /* Don't starve people filling buffers */
1384                 if (++count >= MAX_SEND_MSG_COUNT) {
1385                         cond_resched();
1386                         count = 0;
1387                 }
1388
1389                 spin_lock(&con->writequeue_lock);
1390                 writequeue_entry_complete(e, ret);
1391         }
1392         spin_unlock(&con->writequeue_lock);
1393 out:
1394         mutex_unlock(&con->sock_mutex);
1395         return;
1396
1397 send_error:
1398         mutex_unlock(&con->sock_mutex);
1399         close_connection(con, true, false, true);
1400         /* Requeue the send work. When the work daemon runs again, it will try
1401            a new connection, then call this function again. */
1402         queue_work(send_workqueue, &con->swork);
1403         return;
1404
1405 out_connect:
1406         mutex_unlock(&con->sock_mutex);
1407         queue_work(send_workqueue, &con->swork);
1408         cond_resched();
1409 }
1410
1411 static void clean_one_writequeue(struct connection *con)
1412 {
1413         struct writequeue_entry *e, *safe;
1414
1415         spin_lock(&con->writequeue_lock);
1416         list_for_each_entry_safe(e, safe, &con->writequeue, list) {
1417                 list_del(&e->list);
1418                 free_entry(e);
1419         }
1420         spin_unlock(&con->writequeue_lock);
1421 }
1422
1423 /* Called from recovery when it knows that a node has
1424    left the cluster */
1425 int dlm_lowcomms_close(int nodeid)
1426 {
1427         struct connection *con;
1428         struct dlm_node_addr *na;
1429
1430         log_print("closing connection to node %d", nodeid);
1431         con = nodeid2con(nodeid, 0);
1432         if (con) {
1433                 set_bit(CF_CLOSE, &con->flags);
1434                 close_connection(con, true, true, true);
1435                 clean_one_writequeue(con);
1436         }
1437
1438         spin_lock(&dlm_node_addrs_spin);
1439         na = find_node_addr(nodeid);
1440         if (na) {
1441                 list_del(&na->list);
1442                 while (na->addr_count--)
1443                         kfree(na->addr[na->addr_count]);
1444                 kfree(na);
1445         }
1446         spin_unlock(&dlm_node_addrs_spin);
1447
1448         return 0;
1449 }
1450
1451 /* Receive workqueue function */
1452 static void process_recv_sockets(struct work_struct *work)
1453 {
1454         struct connection *con = container_of(work, struct connection, rwork);
1455         int err;
1456
1457         clear_bit(CF_READ_PENDING, &con->flags);
1458         do {
1459                 err = con->rx_action(con);
1460         } while (!err);
1461 }
1462
1463 /* Send workqueue function */
1464 static void process_send_sockets(struct work_struct *work)
1465 {
1466         struct connection *con = container_of(work, struct connection, swork);
1467
1468         clear_bit(CF_WRITE_PENDING, &con->flags);
1469         if (con->sock == NULL) /* not mutex protected so check it inside too */
1470                 con->connect_action(con);
1471         if (!list_empty(&con->writequeue))
1472                 send_to_sock(con);
1473 }
1474
1475
1476 /* Discard all entries on the write queues */
1477 static void clean_writequeues(void)
1478 {
1479         foreach_conn(clean_one_writequeue);
1480 }
1481
1482 static void work_stop(void)
1483 {
1484         if (recv_workqueue)
1485                 destroy_workqueue(recv_workqueue);
1486         if (send_workqueue)
1487                 destroy_workqueue(send_workqueue);
1488 }
1489
1490 static int work_start(void)
1491 {
1492         recv_workqueue = alloc_workqueue("dlm_recv",
1493                                          WQ_UNBOUND | WQ_MEM_RECLAIM, 1);
1494         if (!recv_workqueue) {
1495                 log_print("can't start dlm_recv");
1496                 return -ENOMEM;
1497         }
1498
1499         send_workqueue = alloc_workqueue("dlm_send",
1500                                          WQ_UNBOUND | WQ_MEM_RECLAIM, 1);
1501         if (!send_workqueue) {
1502                 log_print("can't start dlm_send");
1503                 destroy_workqueue(recv_workqueue);
1504                 return -ENOMEM;
1505         }
1506
1507         return 0;
1508 }
1509
1510 static void _stop_conn(struct connection *con, bool and_other)
1511 {
1512         mutex_lock(&con->sock_mutex);
1513         set_bit(CF_CLOSE, &con->flags);
1514         set_bit(CF_READ_PENDING, &con->flags);
1515         set_bit(CF_WRITE_PENDING, &con->flags);
1516         if (con->sock && con->sock->sk) {
1517                 write_lock_bh(&con->sock->sk->sk_callback_lock);
1518                 con->sock->sk->sk_user_data = NULL;
1519                 write_unlock_bh(&con->sock->sk->sk_callback_lock);
1520         }
1521         if (con->othercon && and_other)
1522                 _stop_conn(con->othercon, false);
1523         mutex_unlock(&con->sock_mutex);
1524 }
1525
1526 static void stop_conn(struct connection *con)
1527 {
1528         _stop_conn(con, true);
1529 }
1530
1531 static void free_conn(struct connection *con)
1532 {
1533         close_connection(con, true, true, true);
1534         if (con->othercon)
1535                 kmem_cache_free(con_cache, con->othercon);
1536         hlist_del(&con->list);
1537         kmem_cache_free(con_cache, con);
1538 }
1539
1540 static void work_flush(void)
1541 {
1542         int ok;
1543         int i;
1544         struct hlist_node *n;
1545         struct connection *con;
1546
1547         if (recv_workqueue)
1548                 flush_workqueue(recv_workqueue);
1549         if (send_workqueue)
1550                 flush_workqueue(send_workqueue);
1551         do {
1552                 ok = 1;
1553                 foreach_conn(stop_conn);
1554                 if (recv_workqueue)
1555                         flush_workqueue(recv_workqueue);
1556                 if (send_workqueue)
1557                         flush_workqueue(send_workqueue);
1558                 for (i = 0; i < CONN_HASH_SIZE && ok; i++) {
1559                         hlist_for_each_entry_safe(con, n,
1560                                                   &connection_hash[i], list) {
1561                                 ok &= test_bit(CF_READ_PENDING, &con->flags);
1562                                 ok &= test_bit(CF_WRITE_PENDING, &con->flags);
1563                                 if (con->othercon) {
1564                                         ok &= test_bit(CF_READ_PENDING,
1565                                                        &con->othercon->flags);
1566                                         ok &= test_bit(CF_WRITE_PENDING,
1567                                                        &con->othercon->flags);
1568                                 }
1569                         }
1570                 }
1571         } while (!ok);
1572 }
1573
1574 void dlm_lowcomms_stop(void)
1575 {
1576         /* Set all the flags to prevent any
1577            socket activity.
1578         */
1579         mutex_lock(&connections_lock);
1580         dlm_allow_conn = 0;
1581         mutex_unlock(&connections_lock);
1582         work_flush();
1583         clean_writequeues();
1584         foreach_conn(free_conn);
1585         work_stop();
1586
1587         kmem_cache_destroy(con_cache);
1588 }
1589
1590 int dlm_lowcomms_start(void)
1591 {
1592         int error = -EINVAL;
1593         struct connection *con;
1594         int i;
1595
1596         for (i = 0; i < CONN_HASH_SIZE; i++)
1597                 INIT_HLIST_HEAD(&connection_hash[i]);
1598
1599         init_local();
1600         if (!dlm_local_count) {
1601                 error = -ENOTCONN;
1602                 log_print("no local IP address has been set");
1603                 goto fail;
1604         }
1605
1606         error = -ENOMEM;
1607         con_cache = kmem_cache_create("dlm_conn", sizeof(struct connection),
1608                                       __alignof__(struct connection), 0,
1609                                       NULL);
1610         if (!con_cache)
1611                 goto fail;
1612
1613         error = work_start();
1614         if (error)
1615                 goto fail_destroy;
1616
1617         dlm_allow_conn = 1;
1618
1619         /* Start listening */
1620         if (dlm_config.ci_protocol == 0)
1621                 error = tcp_listen_for_all();
1622         else
1623                 error = sctp_listen_for_all();
1624         if (error)
1625                 goto fail_unlisten;
1626
1627         return 0;
1628
1629 fail_unlisten:
1630         dlm_allow_conn = 0;
1631         con = nodeid2con(0,0);
1632         if (con) {
1633                 close_connection(con, false, true, true);
1634                 kmem_cache_free(con_cache, con);
1635         }
1636 fail_destroy:
1637         kmem_cache_destroy(con_cache);
1638 fail:
1639         return error;
1640 }
1641
1642 void dlm_lowcomms_exit(void)
1643 {
1644         struct dlm_node_addr *na, *safe;
1645
1646         spin_lock(&dlm_node_addrs_spin);
1647         list_for_each_entry_safe(na, safe, &dlm_node_addrs, list) {
1648                 list_del(&na->list);
1649                 while (na->addr_count--)
1650                         kfree(na->addr[na->addr_count]);
1651                 kfree(na);
1652         }
1653         spin_unlock(&dlm_node_addrs_spin);
1654 }