Merge tag 'kvmarm-5.9' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm...
[linux-2.6-microblaze.git] / fs / dlm / lowcomms.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /******************************************************************************
3 *******************************************************************************
4 **
5 **  Copyright (C) Sistina Software, Inc.  1997-2003  All rights reserved.
6 **  Copyright (C) 2004-2009 Red Hat, Inc.  All rights reserved.
7 **
8 **
9 *******************************************************************************
10 ******************************************************************************/
11
12 /*
13  * lowcomms.c
14  *
15  * This is the "low-level" comms layer.
16  *
17  * It is responsible for sending/receiving messages
18  * from other nodes in the cluster.
19  *
20  * Cluster nodes are referred to by their nodeids. nodeids are
21  * simply 32 bit numbers to the locking module - if they need to
22  * be expanded for the cluster infrastructure then that is its
23  * responsibility. It is this layer's
24  * responsibility to resolve these into IP address or
25  * whatever it needs for inter-node communication.
26  *
27  * The comms level is two kernel threads that deal mainly with
28  * the receiving of messages from other nodes and passing them
29  * up to the mid-level comms layer (which understands the
30  * message format) for execution by the locking core, and
31  * a send thread which does all the setting up of connections
32  * to remote nodes and the sending of data. Threads are not allowed
33  * to send their own data because it may cause them to wait in times
34  * of high load. Also, this way, the sending thread can collect together
35  * messages bound for one node and send them in one block.
36  *
37  * lowcomms will choose to use either TCP or SCTP as its transport layer
38  * depending on the configuration variable 'protocol'. This should be set
39  * to 0 (default) for TCP or 1 for SCTP. It should be configured using a
40  * cluster-wide mechanism as it must be the same on all nodes of the cluster
41  * for the DLM to function.
42  *
43  */
44
45 #include <asm/ioctls.h>
46 #include <net/sock.h>
47 #include <net/tcp.h>
48 #include <linux/pagemap.h>
49 #include <linux/file.h>
50 #include <linux/mutex.h>
51 #include <linux/sctp.h>
52 #include <linux/slab.h>
53 #include <net/sctp/sctp.h>
54 #include <net/ipv6.h>
55
56 #include "dlm_internal.h"
57 #include "lowcomms.h"
58 #include "midcomms.h"
59 #include "config.h"
60
61 #define NEEDED_RMEM (4*1024*1024)
62 #define CONN_HASH_SIZE 32
63
64 /* Number of messages to send before rescheduling */
65 #define MAX_SEND_MSG_COUNT 25
66 #define DLM_SHUTDOWN_WAIT_TIMEOUT msecs_to_jiffies(10000)
67
68 struct cbuf {
69         unsigned int base;
70         unsigned int len;
71         unsigned int mask;
72 };
73
74 static void cbuf_add(struct cbuf *cb, int n)
75 {
76         cb->len += n;
77 }
78
79 static int cbuf_data(struct cbuf *cb)
80 {
81         return ((cb->base + cb->len) & cb->mask);
82 }
83
84 static void cbuf_init(struct cbuf *cb, int size)
85 {
86         cb->base = cb->len = 0;
87         cb->mask = size-1;
88 }
89
90 static void cbuf_eat(struct cbuf *cb, int n)
91 {
92         cb->len  -= n;
93         cb->base += n;
94         cb->base &= cb->mask;
95 }
96
97 static bool cbuf_empty(struct cbuf *cb)
98 {
99         return cb->len == 0;
100 }
101
102 struct connection {
103         struct socket *sock;    /* NULL if not connected */
104         uint32_t nodeid;        /* So we know who we are in the list */
105         struct mutex sock_mutex;
106         unsigned long flags;
107 #define CF_READ_PENDING 1
108 #define CF_WRITE_PENDING 2
109 #define CF_INIT_PENDING 4
110 #define CF_IS_OTHERCON 5
111 #define CF_CLOSE 6
112 #define CF_APP_LIMITED 7
113 #define CF_CLOSING 8
114 #define CF_SHUTDOWN 9
115         struct list_head writequeue;  /* List of outgoing writequeue_entries */
116         spinlock_t writequeue_lock;
117         int (*rx_action) (struct connection *); /* What to do when active */
118         void (*connect_action) (struct connection *);   /* What to do to connect */
119         void (*shutdown_action)(struct connection *con); /* What to do to shutdown */
120         struct page *rx_page;
121         struct cbuf cb;
122         int retries;
123 #define MAX_CONNECT_RETRIES 3
124         struct hlist_node list;
125         struct connection *othercon;
126         struct work_struct rwork; /* Receive workqueue */
127         struct work_struct swork; /* Send workqueue */
128         wait_queue_head_t shutdown_wait; /* wait for graceful shutdown */
129 };
130 #define sock2con(x) ((struct connection *)(x)->sk_user_data)
131
132 /* An entry waiting to be sent */
133 struct writequeue_entry {
134         struct list_head list;
135         struct page *page;
136         int offset;
137         int len;
138         int end;
139         int users;
140         struct connection *con;
141 };
142
143 struct dlm_node_addr {
144         struct list_head list;
145         int nodeid;
146         int addr_count;
147         int curr_addr_index;
148         struct sockaddr_storage *addr[DLM_MAX_ADDR_COUNT];
149 };
150
151 static struct listen_sock_callbacks {
152         void (*sk_error_report)(struct sock *);
153         void (*sk_data_ready)(struct sock *);
154         void (*sk_state_change)(struct sock *);
155         void (*sk_write_space)(struct sock *);
156 } listen_sock;
157
158 static LIST_HEAD(dlm_node_addrs);
159 static DEFINE_SPINLOCK(dlm_node_addrs_spin);
160
161 static struct sockaddr_storage *dlm_local_addr[DLM_MAX_ADDR_COUNT];
162 static int dlm_local_count;
163 static int dlm_allow_conn;
164
165 /* Work queues */
166 static struct workqueue_struct *recv_workqueue;
167 static struct workqueue_struct *send_workqueue;
168
169 static struct hlist_head connection_hash[CONN_HASH_SIZE];
170 static DEFINE_MUTEX(connections_lock);
171 static struct kmem_cache *con_cache;
172
173 static void process_recv_sockets(struct work_struct *work);
174 static void process_send_sockets(struct work_struct *work);
175
176
177 /* This is deliberately very simple because most clusters have simple
178    sequential nodeids, so we should be able to go straight to a connection
179    struct in the array */
180 static inline int nodeid_hash(int nodeid)
181 {
182         return nodeid & (CONN_HASH_SIZE-1);
183 }
184
185 static struct connection *__find_con(int nodeid)
186 {
187         int r;
188         struct connection *con;
189
190         r = nodeid_hash(nodeid);
191
192         hlist_for_each_entry(con, &connection_hash[r], list) {
193                 if (con->nodeid == nodeid)
194                         return con;
195         }
196         return NULL;
197 }
198
199 /*
200  * If 'allocation' is zero then we don't attempt to create a new
201  * connection structure for this node.
202  */
203 static struct connection *__nodeid2con(int nodeid, gfp_t alloc)
204 {
205         struct connection *con = NULL;
206         int r;
207
208         con = __find_con(nodeid);
209         if (con || !alloc)
210                 return con;
211
212         con = kmem_cache_zalloc(con_cache, alloc);
213         if (!con)
214                 return NULL;
215
216         r = nodeid_hash(nodeid);
217         hlist_add_head(&con->list, &connection_hash[r]);
218
219         con->nodeid = nodeid;
220         mutex_init(&con->sock_mutex);
221         INIT_LIST_HEAD(&con->writequeue);
222         spin_lock_init(&con->writequeue_lock);
223         INIT_WORK(&con->swork, process_send_sockets);
224         INIT_WORK(&con->rwork, process_recv_sockets);
225         init_waitqueue_head(&con->shutdown_wait);
226
227         /* Setup action pointers for child sockets */
228         if (con->nodeid) {
229                 struct connection *zerocon = __find_con(0);
230
231                 con->connect_action = zerocon->connect_action;
232                 if (!con->rx_action)
233                         con->rx_action = zerocon->rx_action;
234         }
235
236         return con;
237 }
238
239 /* Loop round all connections */
240 static void foreach_conn(void (*conn_func)(struct connection *c))
241 {
242         int i;
243         struct hlist_node *n;
244         struct connection *con;
245
246         for (i = 0; i < CONN_HASH_SIZE; i++) {
247                 hlist_for_each_entry_safe(con, n, &connection_hash[i], list)
248                         conn_func(con);
249         }
250 }
251
252 static struct connection *nodeid2con(int nodeid, gfp_t allocation)
253 {
254         struct connection *con;
255
256         mutex_lock(&connections_lock);
257         con = __nodeid2con(nodeid, allocation);
258         mutex_unlock(&connections_lock);
259
260         return con;
261 }
262
263 static struct dlm_node_addr *find_node_addr(int nodeid)
264 {
265         struct dlm_node_addr *na;
266
267         list_for_each_entry(na, &dlm_node_addrs, list) {
268                 if (na->nodeid == nodeid)
269                         return na;
270         }
271         return NULL;
272 }
273
274 static int addr_compare(struct sockaddr_storage *x, struct sockaddr_storage *y)
275 {
276         switch (x->ss_family) {
277         case AF_INET: {
278                 struct sockaddr_in *sinx = (struct sockaddr_in *)x;
279                 struct sockaddr_in *siny = (struct sockaddr_in *)y;
280                 if (sinx->sin_addr.s_addr != siny->sin_addr.s_addr)
281                         return 0;
282                 if (sinx->sin_port != siny->sin_port)
283                         return 0;
284                 break;
285         }
286         case AF_INET6: {
287                 struct sockaddr_in6 *sinx = (struct sockaddr_in6 *)x;
288                 struct sockaddr_in6 *siny = (struct sockaddr_in6 *)y;
289                 if (!ipv6_addr_equal(&sinx->sin6_addr, &siny->sin6_addr))
290                         return 0;
291                 if (sinx->sin6_port != siny->sin6_port)
292                         return 0;
293                 break;
294         }
295         default:
296                 return 0;
297         }
298         return 1;
299 }
300
301 static int nodeid_to_addr(int nodeid, struct sockaddr_storage *sas_out,
302                           struct sockaddr *sa_out, bool try_new_addr)
303 {
304         struct sockaddr_storage sas;
305         struct dlm_node_addr *na;
306
307         if (!dlm_local_count)
308                 return -1;
309
310         spin_lock(&dlm_node_addrs_spin);
311         na = find_node_addr(nodeid);
312         if (na && na->addr_count) {
313                 memcpy(&sas, na->addr[na->curr_addr_index],
314                        sizeof(struct sockaddr_storage));
315
316                 if (try_new_addr) {
317                         na->curr_addr_index++;
318                         if (na->curr_addr_index == na->addr_count)
319                                 na->curr_addr_index = 0;
320                 }
321         }
322         spin_unlock(&dlm_node_addrs_spin);
323
324         if (!na)
325                 return -EEXIST;
326
327         if (!na->addr_count)
328                 return -ENOENT;
329
330         if (sas_out)
331                 memcpy(sas_out, &sas, sizeof(struct sockaddr_storage));
332
333         if (!sa_out)
334                 return 0;
335
336         if (dlm_local_addr[0]->ss_family == AF_INET) {
337                 struct sockaddr_in *in4  = (struct sockaddr_in *) &sas;
338                 struct sockaddr_in *ret4 = (struct sockaddr_in *) sa_out;
339                 ret4->sin_addr.s_addr = in4->sin_addr.s_addr;
340         } else {
341                 struct sockaddr_in6 *in6  = (struct sockaddr_in6 *) &sas;
342                 struct sockaddr_in6 *ret6 = (struct sockaddr_in6 *) sa_out;
343                 ret6->sin6_addr = in6->sin6_addr;
344         }
345
346         return 0;
347 }
348
349 static int addr_to_nodeid(struct sockaddr_storage *addr, int *nodeid)
350 {
351         struct dlm_node_addr *na;
352         int rv = -EEXIST;
353         int addr_i;
354
355         spin_lock(&dlm_node_addrs_spin);
356         list_for_each_entry(na, &dlm_node_addrs, list) {
357                 if (!na->addr_count)
358                         continue;
359
360                 for (addr_i = 0; addr_i < na->addr_count; addr_i++) {
361                         if (addr_compare(na->addr[addr_i], addr)) {
362                                 *nodeid = na->nodeid;
363                                 rv = 0;
364                                 goto unlock;
365                         }
366                 }
367         }
368 unlock:
369         spin_unlock(&dlm_node_addrs_spin);
370         return rv;
371 }
372
373 int dlm_lowcomms_addr(int nodeid, struct sockaddr_storage *addr, int len)
374 {
375         struct sockaddr_storage *new_addr;
376         struct dlm_node_addr *new_node, *na;
377
378         new_node = kzalloc(sizeof(struct dlm_node_addr), GFP_NOFS);
379         if (!new_node)
380                 return -ENOMEM;
381
382         new_addr = kzalloc(sizeof(struct sockaddr_storage), GFP_NOFS);
383         if (!new_addr) {
384                 kfree(new_node);
385                 return -ENOMEM;
386         }
387
388         memcpy(new_addr, addr, len);
389
390         spin_lock(&dlm_node_addrs_spin);
391         na = find_node_addr(nodeid);
392         if (!na) {
393                 new_node->nodeid = nodeid;
394                 new_node->addr[0] = new_addr;
395                 new_node->addr_count = 1;
396                 list_add(&new_node->list, &dlm_node_addrs);
397                 spin_unlock(&dlm_node_addrs_spin);
398                 return 0;
399         }
400
401         if (na->addr_count >= DLM_MAX_ADDR_COUNT) {
402                 spin_unlock(&dlm_node_addrs_spin);
403                 kfree(new_addr);
404                 kfree(new_node);
405                 return -ENOSPC;
406         }
407
408         na->addr[na->addr_count++] = new_addr;
409         spin_unlock(&dlm_node_addrs_spin);
410         kfree(new_node);
411         return 0;
412 }
413
414 /* Data available on socket or listen socket received a connect */
415 static void lowcomms_data_ready(struct sock *sk)
416 {
417         struct connection *con;
418
419         read_lock_bh(&sk->sk_callback_lock);
420         con = sock2con(sk);
421         if (con && !test_and_set_bit(CF_READ_PENDING, &con->flags))
422                 queue_work(recv_workqueue, &con->rwork);
423         read_unlock_bh(&sk->sk_callback_lock);
424 }
425
426 static void lowcomms_write_space(struct sock *sk)
427 {
428         struct connection *con;
429
430         read_lock_bh(&sk->sk_callback_lock);
431         con = sock2con(sk);
432         if (!con)
433                 goto out;
434
435         clear_bit(SOCK_NOSPACE, &con->sock->flags);
436
437         if (test_and_clear_bit(CF_APP_LIMITED, &con->flags)) {
438                 con->sock->sk->sk_write_pending--;
439                 clear_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags);
440         }
441
442         queue_work(send_workqueue, &con->swork);
443 out:
444         read_unlock_bh(&sk->sk_callback_lock);
445 }
446
447 static inline void lowcomms_connect_sock(struct connection *con)
448 {
449         if (test_bit(CF_CLOSE, &con->flags))
450                 return;
451         queue_work(send_workqueue, &con->swork);
452         cond_resched();
453 }
454
455 static void lowcomms_state_change(struct sock *sk)
456 {
457         /* SCTP layer is not calling sk_data_ready when the connection
458          * is done, so we catch the signal through here. Also, it
459          * doesn't switch socket state when entering shutdown, so we
460          * skip the write in that case.
461          */
462         if (sk->sk_shutdown) {
463                 if (sk->sk_shutdown == RCV_SHUTDOWN)
464                         lowcomms_data_ready(sk);
465         } else if (sk->sk_state == TCP_ESTABLISHED) {
466                 lowcomms_write_space(sk);
467         }
468 }
469
470 int dlm_lowcomms_connect_node(int nodeid)
471 {
472         struct connection *con;
473
474         if (nodeid == dlm_our_nodeid())
475                 return 0;
476
477         con = nodeid2con(nodeid, GFP_NOFS);
478         if (!con)
479                 return -ENOMEM;
480         lowcomms_connect_sock(con);
481         return 0;
482 }
483
484 static void lowcomms_error_report(struct sock *sk)
485 {
486         struct connection *con;
487         struct sockaddr_storage saddr;
488         void (*orig_report)(struct sock *) = NULL;
489
490         read_lock_bh(&sk->sk_callback_lock);
491         con = sock2con(sk);
492         if (con == NULL)
493                 goto out;
494
495         orig_report = listen_sock.sk_error_report;
496         if (con->sock == NULL ||
497             kernel_getpeername(con->sock, (struct sockaddr *)&saddr) < 0) {
498                 printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
499                                    "sending to node %d, port %d, "
500                                    "sk_err=%d/%d\n", dlm_our_nodeid(),
501                                    con->nodeid, dlm_config.ci_tcp_port,
502                                    sk->sk_err, sk->sk_err_soft);
503         } else if (saddr.ss_family == AF_INET) {
504                 struct sockaddr_in *sin4 = (struct sockaddr_in *)&saddr;
505
506                 printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
507                                    "sending to node %d at %pI4, port %d, "
508                                    "sk_err=%d/%d\n", dlm_our_nodeid(),
509                                    con->nodeid, &sin4->sin_addr.s_addr,
510                                    dlm_config.ci_tcp_port, sk->sk_err,
511                                    sk->sk_err_soft);
512         } else {
513                 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&saddr;
514
515                 printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
516                                    "sending to node %d at %u.%u.%u.%u, "
517                                    "port %d, sk_err=%d/%d\n", dlm_our_nodeid(),
518                                    con->nodeid, sin6->sin6_addr.s6_addr32[0],
519                                    sin6->sin6_addr.s6_addr32[1],
520                                    sin6->sin6_addr.s6_addr32[2],
521                                    sin6->sin6_addr.s6_addr32[3],
522                                    dlm_config.ci_tcp_port, sk->sk_err,
523                                    sk->sk_err_soft);
524         }
525 out:
526         read_unlock_bh(&sk->sk_callback_lock);
527         if (orig_report)
528                 orig_report(sk);
529 }
530
531 /* Note: sk_callback_lock must be locked before calling this function. */
532 static void save_listen_callbacks(struct socket *sock)
533 {
534         struct sock *sk = sock->sk;
535
536         listen_sock.sk_data_ready = sk->sk_data_ready;
537         listen_sock.sk_state_change = sk->sk_state_change;
538         listen_sock.sk_write_space = sk->sk_write_space;
539         listen_sock.sk_error_report = sk->sk_error_report;
540 }
541
542 static void restore_callbacks(struct socket *sock)
543 {
544         struct sock *sk = sock->sk;
545
546         write_lock_bh(&sk->sk_callback_lock);
547         sk->sk_user_data = NULL;
548         sk->sk_data_ready = listen_sock.sk_data_ready;
549         sk->sk_state_change = listen_sock.sk_state_change;
550         sk->sk_write_space = listen_sock.sk_write_space;
551         sk->sk_error_report = listen_sock.sk_error_report;
552         write_unlock_bh(&sk->sk_callback_lock);
553 }
554
555 /* Make a socket active */
556 static void add_sock(struct socket *sock, struct connection *con)
557 {
558         struct sock *sk = sock->sk;
559
560         write_lock_bh(&sk->sk_callback_lock);
561         con->sock = sock;
562
563         sk->sk_user_data = con;
564         /* Install a data_ready callback */
565         sk->sk_data_ready = lowcomms_data_ready;
566         sk->sk_write_space = lowcomms_write_space;
567         sk->sk_state_change = lowcomms_state_change;
568         sk->sk_allocation = GFP_NOFS;
569         sk->sk_error_report = lowcomms_error_report;
570         write_unlock_bh(&sk->sk_callback_lock);
571 }
572
573 /* Add the port number to an IPv6 or 4 sockaddr and return the address
574    length */
575 static void make_sockaddr(struct sockaddr_storage *saddr, uint16_t port,
576                           int *addr_len)
577 {
578         saddr->ss_family =  dlm_local_addr[0]->ss_family;
579         if (saddr->ss_family == AF_INET) {
580                 struct sockaddr_in *in4_addr = (struct sockaddr_in *)saddr;
581                 in4_addr->sin_port = cpu_to_be16(port);
582                 *addr_len = sizeof(struct sockaddr_in);
583                 memset(&in4_addr->sin_zero, 0, sizeof(in4_addr->sin_zero));
584         } else {
585                 struct sockaddr_in6 *in6_addr = (struct sockaddr_in6 *)saddr;
586                 in6_addr->sin6_port = cpu_to_be16(port);
587                 *addr_len = sizeof(struct sockaddr_in6);
588         }
589         memset((char *)saddr + *addr_len, 0, sizeof(struct sockaddr_storage) - *addr_len);
590 }
591
592 /* Close a remote connection and tidy up */
593 static void close_connection(struct connection *con, bool and_other,
594                              bool tx, bool rx)
595 {
596         bool closing = test_and_set_bit(CF_CLOSING, &con->flags);
597
598         if (tx && !closing && cancel_work_sync(&con->swork)) {
599                 log_print("canceled swork for node %d", con->nodeid);
600                 clear_bit(CF_WRITE_PENDING, &con->flags);
601         }
602         if (rx && !closing && cancel_work_sync(&con->rwork)) {
603                 log_print("canceled rwork for node %d", con->nodeid);
604                 clear_bit(CF_READ_PENDING, &con->flags);
605         }
606
607         mutex_lock(&con->sock_mutex);
608         if (con->sock) {
609                 restore_callbacks(con->sock);
610                 sock_release(con->sock);
611                 con->sock = NULL;
612         }
613         if (con->othercon && and_other) {
614                 /* Will only re-enter once. */
615                 close_connection(con->othercon, false, true, true);
616         }
617         if (con->rx_page) {
618                 __free_page(con->rx_page);
619                 con->rx_page = NULL;
620         }
621
622         con->retries = 0;
623         mutex_unlock(&con->sock_mutex);
624         clear_bit(CF_CLOSING, &con->flags);
625 }
626
627 static void shutdown_connection(struct connection *con)
628 {
629         int ret;
630
631         if (cancel_work_sync(&con->swork)) {
632                 log_print("canceled swork for node %d", con->nodeid);
633                 clear_bit(CF_WRITE_PENDING, &con->flags);
634         }
635
636         mutex_lock(&con->sock_mutex);
637         /* nothing to shutdown */
638         if (!con->sock) {
639                 mutex_unlock(&con->sock_mutex);
640                 return;
641         }
642
643         set_bit(CF_SHUTDOWN, &con->flags);
644         ret = kernel_sock_shutdown(con->sock, SHUT_WR);
645         mutex_unlock(&con->sock_mutex);
646         if (ret) {
647                 log_print("Connection %p failed to shutdown: %d will force close",
648                           con, ret);
649                 goto force_close;
650         } else {
651                 ret = wait_event_timeout(con->shutdown_wait,
652                                          !test_bit(CF_SHUTDOWN, &con->flags),
653                                          DLM_SHUTDOWN_WAIT_TIMEOUT);
654                 if (ret == 0) {
655                         log_print("Connection %p shutdown timed out, will force close",
656                                   con);
657                         goto force_close;
658                 }
659         }
660
661         return;
662
663 force_close:
664         clear_bit(CF_SHUTDOWN, &con->flags);
665         close_connection(con, false, true, true);
666 }
667
668 static void dlm_tcp_shutdown(struct connection *con)
669 {
670         if (con->othercon)
671                 shutdown_connection(con->othercon);
672         shutdown_connection(con);
673 }
674
675 /* Data received from remote end */
676 static int receive_from_sock(struct connection *con)
677 {
678         int ret = 0;
679         struct msghdr msg = {};
680         struct kvec iov[2];
681         unsigned len;
682         int r;
683         int call_again_soon = 0;
684         int nvec;
685
686         mutex_lock(&con->sock_mutex);
687
688         if (con->sock == NULL) {
689                 ret = -EAGAIN;
690                 goto out_close;
691         }
692         if (con->nodeid == 0) {
693                 ret = -EINVAL;
694                 goto out_close;
695         }
696
697         if (con->rx_page == NULL) {
698                 /*
699                  * This doesn't need to be atomic, but I think it should
700                  * improve performance if it is.
701                  */
702                 con->rx_page = alloc_page(GFP_ATOMIC);
703                 if (con->rx_page == NULL)
704                         goto out_resched;
705                 cbuf_init(&con->cb, PAGE_SIZE);
706         }
707
708         /*
709          * iov[0] is the bit of the circular buffer between the current end
710          * point (cb.base + cb.len) and the end of the buffer.
711          */
712         iov[0].iov_len = con->cb.base - cbuf_data(&con->cb);
713         iov[0].iov_base = page_address(con->rx_page) + cbuf_data(&con->cb);
714         iov[1].iov_len = 0;
715         nvec = 1;
716
717         /*
718          * iov[1] is the bit of the circular buffer between the start of the
719          * buffer and the start of the currently used section (cb.base)
720          */
721         if (cbuf_data(&con->cb) >= con->cb.base) {
722                 iov[0].iov_len = PAGE_SIZE - cbuf_data(&con->cb);
723                 iov[1].iov_len = con->cb.base;
724                 iov[1].iov_base = page_address(con->rx_page);
725                 nvec = 2;
726         }
727         len = iov[0].iov_len + iov[1].iov_len;
728         iov_iter_kvec(&msg.msg_iter, READ, iov, nvec, len);
729
730         r = ret = sock_recvmsg(con->sock, &msg, MSG_DONTWAIT | MSG_NOSIGNAL);
731         if (ret <= 0)
732                 goto out_close;
733         else if (ret == len)
734                 call_again_soon = 1;
735
736         cbuf_add(&con->cb, ret);
737         ret = dlm_process_incoming_buffer(con->nodeid,
738                                           page_address(con->rx_page),
739                                           con->cb.base, con->cb.len,
740                                           PAGE_SIZE);
741         if (ret < 0) {
742                 log_print("lowcomms err %d: addr=%p, base=%u, len=%u, read=%d",
743                           ret, page_address(con->rx_page), con->cb.base,
744                           con->cb.len, r);
745                 cbuf_eat(&con->cb, r);
746         } else {
747                 cbuf_eat(&con->cb, ret);
748         }
749
750         if (cbuf_empty(&con->cb) && !call_again_soon) {
751                 __free_page(con->rx_page);
752                 con->rx_page = NULL;
753         }
754
755         if (call_again_soon)
756                 goto out_resched;
757         mutex_unlock(&con->sock_mutex);
758         return 0;
759
760 out_resched:
761         if (!test_and_set_bit(CF_READ_PENDING, &con->flags))
762                 queue_work(recv_workqueue, &con->rwork);
763         mutex_unlock(&con->sock_mutex);
764         return -EAGAIN;
765
766 out_close:
767         mutex_unlock(&con->sock_mutex);
768         if (ret != -EAGAIN) {
769                 /* Reconnect when there is something to send */
770                 close_connection(con, false, true, false);
771                 if (ret == 0) {
772                         log_print("connection %p got EOF from %d",
773                                   con, con->nodeid);
774                         /* handling for tcp shutdown */
775                         clear_bit(CF_SHUTDOWN, &con->flags);
776                         wake_up(&con->shutdown_wait);
777                         /* signal to breaking receive worker */
778                         ret = -1;
779                 }
780         }
781         return ret;
782 }
783
784 /* Listening socket is busy, accept a connection */
785 static int accept_from_sock(struct connection *con)
786 {
787         int result;
788         struct sockaddr_storage peeraddr;
789         struct socket *newsock;
790         int len;
791         int nodeid;
792         struct connection *newcon;
793         struct connection *addcon;
794
795         mutex_lock(&connections_lock);
796         if (!dlm_allow_conn) {
797                 mutex_unlock(&connections_lock);
798                 return -1;
799         }
800         mutex_unlock(&connections_lock);
801
802         mutex_lock_nested(&con->sock_mutex, 0);
803
804         if (!con->sock) {
805                 mutex_unlock(&con->sock_mutex);
806                 return -ENOTCONN;
807         }
808
809         result = kernel_accept(con->sock, &newsock, O_NONBLOCK);
810         if (result < 0)
811                 goto accept_err;
812
813         /* Get the connected socket's peer */
814         memset(&peeraddr, 0, sizeof(peeraddr));
815         len = newsock->ops->getname(newsock, (struct sockaddr *)&peeraddr, 2);
816         if (len < 0) {
817                 result = -ECONNABORTED;
818                 goto accept_err;
819         }
820
821         /* Get the new node's NODEID */
822         make_sockaddr(&peeraddr, 0, &len);
823         if (addr_to_nodeid(&peeraddr, &nodeid)) {
824                 unsigned char *b=(unsigned char *)&peeraddr;
825                 log_print("connect from non cluster node");
826                 print_hex_dump_bytes("ss: ", DUMP_PREFIX_NONE, 
827                                      b, sizeof(struct sockaddr_storage));
828                 sock_release(newsock);
829                 mutex_unlock(&con->sock_mutex);
830                 return -1;
831         }
832
833         log_print("got connection from %d", nodeid);
834
835         /*  Check to see if we already have a connection to this node. This
836          *  could happen if the two nodes initiate a connection at roughly
837          *  the same time and the connections cross on the wire.
838          *  In this case we store the incoming one in "othercon"
839          */
840         newcon = nodeid2con(nodeid, GFP_NOFS);
841         if (!newcon) {
842                 result = -ENOMEM;
843                 goto accept_err;
844         }
845         mutex_lock_nested(&newcon->sock_mutex, 1);
846         if (newcon->sock) {
847                 struct connection *othercon = newcon->othercon;
848
849                 if (!othercon) {
850                         othercon = kmem_cache_zalloc(con_cache, GFP_NOFS);
851                         if (!othercon) {
852                                 log_print("failed to allocate incoming socket");
853                                 mutex_unlock(&newcon->sock_mutex);
854                                 result = -ENOMEM;
855                                 goto accept_err;
856                         }
857                         othercon->nodeid = nodeid;
858                         othercon->rx_action = receive_from_sock;
859                         mutex_init(&othercon->sock_mutex);
860                         INIT_LIST_HEAD(&othercon->writequeue);
861                         spin_lock_init(&othercon->writequeue_lock);
862                         INIT_WORK(&othercon->swork, process_send_sockets);
863                         INIT_WORK(&othercon->rwork, process_recv_sockets);
864                         init_waitqueue_head(&othercon->shutdown_wait);
865                         set_bit(CF_IS_OTHERCON, &othercon->flags);
866                 } else {
867                         /* close other sock con if we have something new */
868                         close_connection(othercon, false, true, false);
869                 }
870
871                 mutex_lock_nested(&othercon->sock_mutex, 2);
872                 newcon->othercon = othercon;
873                 add_sock(newsock, othercon);
874                 addcon = othercon;
875                 mutex_unlock(&othercon->sock_mutex);
876         }
877         else {
878                 newcon->rx_action = receive_from_sock;
879                 /* accept copies the sk after we've saved the callbacks, so we
880                    don't want to save them a second time or comm errors will
881                    result in calling sk_error_report recursively. */
882                 add_sock(newsock, newcon);
883                 addcon = newcon;
884         }
885
886         mutex_unlock(&newcon->sock_mutex);
887
888         /*
889          * Add it to the active queue in case we got data
890          * between processing the accept adding the socket
891          * to the read_sockets list
892          */
893         if (!test_and_set_bit(CF_READ_PENDING, &addcon->flags))
894                 queue_work(recv_workqueue, &addcon->rwork);
895         mutex_unlock(&con->sock_mutex);
896
897         return 0;
898
899 accept_err:
900         mutex_unlock(&con->sock_mutex);
901         if (newsock)
902                 sock_release(newsock);
903
904         if (result != -EAGAIN)
905                 log_print("error accepting connection from node: %d", result);
906         return result;
907 }
908
909 static void free_entry(struct writequeue_entry *e)
910 {
911         __free_page(e->page);
912         kfree(e);
913 }
914
915 /*
916  * writequeue_entry_complete - try to delete and free write queue entry
917  * @e: write queue entry to try to delete
918  * @completed: bytes completed
919  *
920  * writequeue_lock must be held.
921  */
922 static void writequeue_entry_complete(struct writequeue_entry *e, int completed)
923 {
924         e->offset += completed;
925         e->len -= completed;
926
927         if (e->len == 0 && e->users == 0) {
928                 list_del(&e->list);
929                 free_entry(e);
930         }
931 }
932
933 /*
934  * sctp_bind_addrs - bind a SCTP socket to all our addresses
935  */
936 static int sctp_bind_addrs(struct connection *con, uint16_t port)
937 {
938         struct sockaddr_storage localaddr;
939         struct sockaddr *addr = (struct sockaddr *)&localaddr;
940         int i, addr_len, result = 0;
941
942         for (i = 0; i < dlm_local_count; i++) {
943                 memcpy(&localaddr, dlm_local_addr[i], sizeof(localaddr));
944                 make_sockaddr(&localaddr, port, &addr_len);
945
946                 if (!i)
947                         result = kernel_bind(con->sock, addr, addr_len);
948                 else
949                         result = sock_bind_add(con->sock->sk, addr, addr_len);
950
951                 if (result < 0) {
952                         log_print("Can't bind to %d addr number %d, %d.\n",
953                                   port, i + 1, result);
954                         break;
955                 }
956         }
957         return result;
958 }
959
960 /* Initiate an SCTP association.
961    This is a special case of send_to_sock() in that we don't yet have a
962    peeled-off socket for this association, so we use the listening socket
963    and add the primary IP address of the remote node.
964  */
965 static void sctp_connect_to_sock(struct connection *con)
966 {
967         struct sockaddr_storage daddr;
968         int result;
969         int addr_len;
970         struct socket *sock;
971         unsigned int mark;
972
973         if (con->nodeid == 0) {
974                 log_print("attempt to connect sock 0 foiled");
975                 return;
976         }
977
978         mutex_lock(&con->sock_mutex);
979
980         /* Some odd races can cause double-connects, ignore them */
981         if (con->retries++ > MAX_CONNECT_RETRIES)
982                 goto out;
983
984         if (con->sock) {
985                 log_print("node %d already connected.", con->nodeid);
986                 goto out;
987         }
988
989         memset(&daddr, 0, sizeof(daddr));
990         result = nodeid_to_addr(con->nodeid, &daddr, NULL, true);
991         if (result < 0) {
992                 log_print("no address for nodeid %d", con->nodeid);
993                 goto out;
994         }
995
996         /* Create a socket to communicate with */
997         result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
998                                   SOCK_STREAM, IPPROTO_SCTP, &sock);
999         if (result < 0)
1000                 goto socket_err;
1001
1002         /* set skb mark */
1003         result = dlm_comm_mark(con->nodeid, &mark);
1004         if (result < 0)
1005                 goto bind_err;
1006
1007         sock_set_mark(sock->sk, mark);
1008
1009         con->rx_action = receive_from_sock;
1010         con->connect_action = sctp_connect_to_sock;
1011         add_sock(sock, con);
1012
1013         /* Bind to all addresses. */
1014         if (sctp_bind_addrs(con, 0))
1015                 goto bind_err;
1016
1017         make_sockaddr(&daddr, dlm_config.ci_tcp_port, &addr_len);
1018
1019         log_print("connecting to %d", con->nodeid);
1020
1021         /* Turn off Nagle's algorithm */
1022         sctp_sock_set_nodelay(sock->sk);
1023
1024         /*
1025          * Make sock->ops->connect() function return in specified time,
1026          * since O_NONBLOCK argument in connect() function does not work here,
1027          * then, we should restore the default value of this attribute.
1028          */
1029         sock_set_sndtimeo(sock->sk, 5);
1030         result = sock->ops->connect(sock, (struct sockaddr *)&daddr, addr_len,
1031                                    0);
1032         sock_set_sndtimeo(sock->sk, 0);
1033
1034         if (result == -EINPROGRESS)
1035                 result = 0;
1036         if (result == 0)
1037                 goto out;
1038
1039 bind_err:
1040         con->sock = NULL;
1041         sock_release(sock);
1042
1043 socket_err:
1044         /*
1045          * Some errors are fatal and this list might need adjusting. For other
1046          * errors we try again until the max number of retries is reached.
1047          */
1048         if (result != -EHOSTUNREACH &&
1049             result != -ENETUNREACH &&
1050             result != -ENETDOWN &&
1051             result != -EINVAL &&
1052             result != -EPROTONOSUPPORT) {
1053                 log_print("connect %d try %d error %d", con->nodeid,
1054                           con->retries, result);
1055                 mutex_unlock(&con->sock_mutex);
1056                 msleep(1000);
1057                 lowcomms_connect_sock(con);
1058                 return;
1059         }
1060
1061 out:
1062         mutex_unlock(&con->sock_mutex);
1063 }
1064
1065 /* Connect a new socket to its peer */
1066 static void tcp_connect_to_sock(struct connection *con)
1067 {
1068         struct sockaddr_storage saddr, src_addr;
1069         int addr_len;
1070         struct socket *sock = NULL;
1071         unsigned int mark;
1072         int result;
1073
1074         if (con->nodeid == 0) {
1075                 log_print("attempt to connect sock 0 foiled");
1076                 return;
1077         }
1078
1079         mutex_lock(&con->sock_mutex);
1080         if (con->retries++ > MAX_CONNECT_RETRIES)
1081                 goto out;
1082
1083         /* Some odd races can cause double-connects, ignore them */
1084         if (con->sock)
1085                 goto out;
1086
1087         /* Create a socket to communicate with */
1088         result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
1089                                   SOCK_STREAM, IPPROTO_TCP, &sock);
1090         if (result < 0)
1091                 goto out_err;
1092
1093         /* set skb mark */
1094         result = dlm_comm_mark(con->nodeid, &mark);
1095         if (result < 0)
1096                 goto out_err;
1097
1098         sock_set_mark(sock->sk, mark);
1099
1100         memset(&saddr, 0, sizeof(saddr));
1101         result = nodeid_to_addr(con->nodeid, &saddr, NULL, false);
1102         if (result < 0) {
1103                 log_print("no address for nodeid %d", con->nodeid);
1104                 goto out_err;
1105         }
1106
1107         con->rx_action = receive_from_sock;
1108         con->connect_action = tcp_connect_to_sock;
1109         con->shutdown_action = dlm_tcp_shutdown;
1110         add_sock(sock, con);
1111
1112         /* Bind to our cluster-known address connecting to avoid
1113            routing problems */
1114         memcpy(&src_addr, dlm_local_addr[0], sizeof(src_addr));
1115         make_sockaddr(&src_addr, 0, &addr_len);
1116         result = sock->ops->bind(sock, (struct sockaddr *) &src_addr,
1117                                  addr_len);
1118         if (result < 0) {
1119                 log_print("could not bind for connect: %d", result);
1120                 /* This *may* not indicate a critical error */
1121         }
1122
1123         make_sockaddr(&saddr, dlm_config.ci_tcp_port, &addr_len);
1124
1125         log_print("connecting to %d", con->nodeid);
1126
1127         /* Turn off Nagle's algorithm */
1128         tcp_sock_set_nodelay(sock->sk);
1129
1130         result = sock->ops->connect(sock, (struct sockaddr *)&saddr, addr_len,
1131                                    O_NONBLOCK);
1132         if (result == -EINPROGRESS)
1133                 result = 0;
1134         if (result == 0)
1135                 goto out;
1136
1137 out_err:
1138         if (con->sock) {
1139                 sock_release(con->sock);
1140                 con->sock = NULL;
1141         } else if (sock) {
1142                 sock_release(sock);
1143         }
1144         /*
1145          * Some errors are fatal and this list might need adjusting. For other
1146          * errors we try again until the max number of retries is reached.
1147          */
1148         if (result != -EHOSTUNREACH &&
1149             result != -ENETUNREACH &&
1150             result != -ENETDOWN && 
1151             result != -EINVAL &&
1152             result != -EPROTONOSUPPORT) {
1153                 log_print("connect %d try %d error %d", con->nodeid,
1154                           con->retries, result);
1155                 mutex_unlock(&con->sock_mutex);
1156                 msleep(1000);
1157                 lowcomms_connect_sock(con);
1158                 return;
1159         }
1160 out:
1161         mutex_unlock(&con->sock_mutex);
1162         return;
1163 }
1164
1165 static struct socket *tcp_create_listen_sock(struct connection *con,
1166                                              struct sockaddr_storage *saddr)
1167 {
1168         struct socket *sock = NULL;
1169         int result = 0;
1170         int addr_len;
1171
1172         if (dlm_local_addr[0]->ss_family == AF_INET)
1173                 addr_len = sizeof(struct sockaddr_in);
1174         else
1175                 addr_len = sizeof(struct sockaddr_in6);
1176
1177         /* Create a socket to communicate with */
1178         result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
1179                                   SOCK_STREAM, IPPROTO_TCP, &sock);
1180         if (result < 0) {
1181                 log_print("Can't create listening comms socket");
1182                 goto create_out;
1183         }
1184
1185         sock_set_mark(sock->sk, dlm_config.ci_mark);
1186
1187         /* Turn off Nagle's algorithm */
1188         tcp_sock_set_nodelay(sock->sk);
1189
1190         sock_set_reuseaddr(sock->sk);
1191
1192         write_lock_bh(&sock->sk->sk_callback_lock);
1193         sock->sk->sk_user_data = con;
1194         save_listen_callbacks(sock);
1195         con->rx_action = accept_from_sock;
1196         con->connect_action = tcp_connect_to_sock;
1197         write_unlock_bh(&sock->sk->sk_callback_lock);
1198
1199         /* Bind to our port */
1200         make_sockaddr(saddr, dlm_config.ci_tcp_port, &addr_len);
1201         result = sock->ops->bind(sock, (struct sockaddr *) saddr, addr_len);
1202         if (result < 0) {
1203                 log_print("Can't bind to port %d", dlm_config.ci_tcp_port);
1204                 sock_release(sock);
1205                 sock = NULL;
1206                 con->sock = NULL;
1207                 goto create_out;
1208         }
1209         sock_set_keepalive(sock->sk);
1210
1211         result = sock->ops->listen(sock, 5);
1212         if (result < 0) {
1213                 log_print("Can't listen on port %d", dlm_config.ci_tcp_port);
1214                 sock_release(sock);
1215                 sock = NULL;
1216                 goto create_out;
1217         }
1218
1219 create_out:
1220         return sock;
1221 }
1222
1223 /* Get local addresses */
1224 static void init_local(void)
1225 {
1226         struct sockaddr_storage sas, *addr;
1227         int i;
1228
1229         dlm_local_count = 0;
1230         for (i = 0; i < DLM_MAX_ADDR_COUNT; i++) {
1231                 if (dlm_our_addr(&sas, i))
1232                         break;
1233
1234                 addr = kmemdup(&sas, sizeof(*addr), GFP_NOFS);
1235                 if (!addr)
1236                         break;
1237                 dlm_local_addr[dlm_local_count++] = addr;
1238         }
1239 }
1240
1241 /* Initialise SCTP socket and bind to all interfaces */
1242 static int sctp_listen_for_all(void)
1243 {
1244         struct socket *sock = NULL;
1245         int result = -EINVAL;
1246         struct connection *con = nodeid2con(0, GFP_NOFS);
1247
1248         if (!con)
1249                 return -ENOMEM;
1250
1251         log_print("Using SCTP for communications");
1252
1253         result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
1254                                   SOCK_STREAM, IPPROTO_SCTP, &sock);
1255         if (result < 0) {
1256                 log_print("Can't create comms socket, check SCTP is loaded");
1257                 goto out;
1258         }
1259
1260         sock_set_rcvbuf(sock->sk, NEEDED_RMEM);
1261         sock_set_mark(sock->sk, dlm_config.ci_mark);
1262         sctp_sock_set_nodelay(sock->sk);
1263
1264         write_lock_bh(&sock->sk->sk_callback_lock);
1265         /* Init con struct */
1266         sock->sk->sk_user_data = con;
1267         save_listen_callbacks(sock);
1268         con->sock = sock;
1269         con->sock->sk->sk_data_ready = lowcomms_data_ready;
1270         con->rx_action = accept_from_sock;
1271         con->connect_action = sctp_connect_to_sock;
1272
1273         write_unlock_bh(&sock->sk->sk_callback_lock);
1274
1275         /* Bind to all addresses. */
1276         if (sctp_bind_addrs(con, dlm_config.ci_tcp_port))
1277                 goto create_delsock;
1278
1279         result = sock->ops->listen(sock, 5);
1280         if (result < 0) {
1281                 log_print("Can't set socket listening");
1282                 goto create_delsock;
1283         }
1284
1285         return 0;
1286
1287 create_delsock:
1288         sock_release(sock);
1289         con->sock = NULL;
1290 out:
1291         return result;
1292 }
1293
1294 static int tcp_listen_for_all(void)
1295 {
1296         struct socket *sock = NULL;
1297         struct connection *con = nodeid2con(0, GFP_NOFS);
1298         int result = -EINVAL;
1299
1300         if (!con)
1301                 return -ENOMEM;
1302
1303         /* We don't support multi-homed hosts */
1304         if (dlm_local_addr[1] != NULL) {
1305                 log_print("TCP protocol can't handle multi-homed hosts, "
1306                           "try SCTP");
1307                 return -EINVAL;
1308         }
1309
1310         log_print("Using TCP for communications");
1311
1312         sock = tcp_create_listen_sock(con, dlm_local_addr[0]);
1313         if (sock) {
1314                 add_sock(sock, con);
1315                 result = 0;
1316         }
1317         else {
1318                 result = -EADDRINUSE;
1319         }
1320
1321         return result;
1322 }
1323
1324
1325
1326 static struct writequeue_entry *new_writequeue_entry(struct connection *con,
1327                                                      gfp_t allocation)
1328 {
1329         struct writequeue_entry *entry;
1330
1331         entry = kmalloc(sizeof(struct writequeue_entry), allocation);
1332         if (!entry)
1333                 return NULL;
1334
1335         entry->page = alloc_page(allocation);
1336         if (!entry->page) {
1337                 kfree(entry);
1338                 return NULL;
1339         }
1340
1341         entry->offset = 0;
1342         entry->len = 0;
1343         entry->end = 0;
1344         entry->users = 0;
1345         entry->con = con;
1346
1347         return entry;
1348 }
1349
1350 void *dlm_lowcomms_get_buffer(int nodeid, int len, gfp_t allocation, char **ppc)
1351 {
1352         struct connection *con;
1353         struct writequeue_entry *e;
1354         int offset = 0;
1355
1356         con = nodeid2con(nodeid, allocation);
1357         if (!con)
1358                 return NULL;
1359
1360         spin_lock(&con->writequeue_lock);
1361         e = list_entry(con->writequeue.prev, struct writequeue_entry, list);
1362         if ((&e->list == &con->writequeue) ||
1363             (PAGE_SIZE - e->end < len)) {
1364                 e = NULL;
1365         } else {
1366                 offset = e->end;
1367                 e->end += len;
1368                 e->users++;
1369         }
1370         spin_unlock(&con->writequeue_lock);
1371
1372         if (e) {
1373         got_one:
1374                 *ppc = page_address(e->page) + offset;
1375                 return e;
1376         }
1377
1378         e = new_writequeue_entry(con, allocation);
1379         if (e) {
1380                 spin_lock(&con->writequeue_lock);
1381                 offset = e->end;
1382                 e->end += len;
1383                 e->users++;
1384                 list_add_tail(&e->list, &con->writequeue);
1385                 spin_unlock(&con->writequeue_lock);
1386                 goto got_one;
1387         }
1388         return NULL;
1389 }
1390
1391 void dlm_lowcomms_commit_buffer(void *mh)
1392 {
1393         struct writequeue_entry *e = (struct writequeue_entry *)mh;
1394         struct connection *con = e->con;
1395         int users;
1396
1397         spin_lock(&con->writequeue_lock);
1398         users = --e->users;
1399         if (users)
1400                 goto out;
1401         e->len = e->end - e->offset;
1402         spin_unlock(&con->writequeue_lock);
1403
1404         queue_work(send_workqueue, &con->swork);
1405         return;
1406
1407 out:
1408         spin_unlock(&con->writequeue_lock);
1409         return;
1410 }
1411
1412 /* Send a message */
1413 static void send_to_sock(struct connection *con)
1414 {
1415         int ret = 0;
1416         const int msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
1417         struct writequeue_entry *e;
1418         int len, offset;
1419         int count = 0;
1420
1421         mutex_lock(&con->sock_mutex);
1422         if (con->sock == NULL)
1423                 goto out_connect;
1424
1425         spin_lock(&con->writequeue_lock);
1426         for (;;) {
1427                 e = list_entry(con->writequeue.next, struct writequeue_entry,
1428                                list);
1429                 if ((struct list_head *) e == &con->writequeue)
1430                         break;
1431
1432                 len = e->len;
1433                 offset = e->offset;
1434                 BUG_ON(len == 0 && e->users == 0);
1435                 spin_unlock(&con->writequeue_lock);
1436
1437                 ret = 0;
1438                 if (len) {
1439                         ret = kernel_sendpage(con->sock, e->page, offset, len,
1440                                               msg_flags);
1441                         if (ret == -EAGAIN || ret == 0) {
1442                                 if (ret == -EAGAIN &&
1443                                     test_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags) &&
1444                                     !test_and_set_bit(CF_APP_LIMITED, &con->flags)) {
1445                                         /* Notify TCP that we're limited by the
1446                                          * application window size.
1447                                          */
1448                                         set_bit(SOCK_NOSPACE, &con->sock->flags);
1449                                         con->sock->sk->sk_write_pending++;
1450                                 }
1451                                 cond_resched();
1452                                 goto out;
1453                         } else if (ret < 0)
1454                                 goto send_error;
1455                 }
1456
1457                 /* Don't starve people filling buffers */
1458                 if (++count >= MAX_SEND_MSG_COUNT) {
1459                         cond_resched();
1460                         count = 0;
1461                 }
1462
1463                 spin_lock(&con->writequeue_lock);
1464                 writequeue_entry_complete(e, ret);
1465         }
1466         spin_unlock(&con->writequeue_lock);
1467 out:
1468         mutex_unlock(&con->sock_mutex);
1469         return;
1470
1471 send_error:
1472         mutex_unlock(&con->sock_mutex);
1473         close_connection(con, false, false, true);
1474         /* Requeue the send work. When the work daemon runs again, it will try
1475            a new connection, then call this function again. */
1476         queue_work(send_workqueue, &con->swork);
1477         return;
1478
1479 out_connect:
1480         mutex_unlock(&con->sock_mutex);
1481         queue_work(send_workqueue, &con->swork);
1482         cond_resched();
1483 }
1484
1485 static void clean_one_writequeue(struct connection *con)
1486 {
1487         struct writequeue_entry *e, *safe;
1488
1489         spin_lock(&con->writequeue_lock);
1490         list_for_each_entry_safe(e, safe, &con->writequeue, list) {
1491                 list_del(&e->list);
1492                 free_entry(e);
1493         }
1494         spin_unlock(&con->writequeue_lock);
1495 }
1496
1497 /* Called from recovery when it knows that a node has
1498    left the cluster */
1499 int dlm_lowcomms_close(int nodeid)
1500 {
1501         struct connection *con;
1502         struct dlm_node_addr *na;
1503
1504         log_print("closing connection to node %d", nodeid);
1505         con = nodeid2con(nodeid, 0);
1506         if (con) {
1507                 set_bit(CF_CLOSE, &con->flags);
1508                 close_connection(con, true, true, true);
1509                 clean_one_writequeue(con);
1510         }
1511
1512         spin_lock(&dlm_node_addrs_spin);
1513         na = find_node_addr(nodeid);
1514         if (na) {
1515                 list_del(&na->list);
1516                 while (na->addr_count--)
1517                         kfree(na->addr[na->addr_count]);
1518                 kfree(na);
1519         }
1520         spin_unlock(&dlm_node_addrs_spin);
1521
1522         return 0;
1523 }
1524
1525 /* Receive workqueue function */
1526 static void process_recv_sockets(struct work_struct *work)
1527 {
1528         struct connection *con = container_of(work, struct connection, rwork);
1529         int err;
1530
1531         clear_bit(CF_READ_PENDING, &con->flags);
1532         do {
1533                 err = con->rx_action(con);
1534         } while (!err);
1535 }
1536
1537 /* Send workqueue function */
1538 static void process_send_sockets(struct work_struct *work)
1539 {
1540         struct connection *con = container_of(work, struct connection, swork);
1541
1542         clear_bit(CF_WRITE_PENDING, &con->flags);
1543         if (con->sock == NULL) /* not mutex protected so check it inside too */
1544                 con->connect_action(con);
1545         if (!list_empty(&con->writequeue))
1546                 send_to_sock(con);
1547 }
1548
1549
1550 /* Discard all entries on the write queues */
1551 static void clean_writequeues(void)
1552 {
1553         foreach_conn(clean_one_writequeue);
1554 }
1555
1556 static void work_stop(void)
1557 {
1558         if (recv_workqueue)
1559                 destroy_workqueue(recv_workqueue);
1560         if (send_workqueue)
1561                 destroy_workqueue(send_workqueue);
1562 }
1563
1564 static int work_start(void)
1565 {
1566         recv_workqueue = alloc_workqueue("dlm_recv",
1567                                          WQ_UNBOUND | WQ_MEM_RECLAIM, 1);
1568         if (!recv_workqueue) {
1569                 log_print("can't start dlm_recv");
1570                 return -ENOMEM;
1571         }
1572
1573         send_workqueue = alloc_workqueue("dlm_send",
1574                                          WQ_UNBOUND | WQ_MEM_RECLAIM, 1);
1575         if (!send_workqueue) {
1576                 log_print("can't start dlm_send");
1577                 destroy_workqueue(recv_workqueue);
1578                 return -ENOMEM;
1579         }
1580
1581         return 0;
1582 }
1583
1584 static void _stop_conn(struct connection *con, bool and_other)
1585 {
1586         mutex_lock(&con->sock_mutex);
1587         set_bit(CF_CLOSE, &con->flags);
1588         set_bit(CF_READ_PENDING, &con->flags);
1589         set_bit(CF_WRITE_PENDING, &con->flags);
1590         if (con->sock && con->sock->sk) {
1591                 write_lock_bh(&con->sock->sk->sk_callback_lock);
1592                 con->sock->sk->sk_user_data = NULL;
1593                 write_unlock_bh(&con->sock->sk->sk_callback_lock);
1594         }
1595         if (con->othercon && and_other)
1596                 _stop_conn(con->othercon, false);
1597         mutex_unlock(&con->sock_mutex);
1598 }
1599
1600 static void stop_conn(struct connection *con)
1601 {
1602         _stop_conn(con, true);
1603 }
1604
1605 static void shutdown_conn(struct connection *con)
1606 {
1607         if (con->shutdown_action)
1608                 con->shutdown_action(con);
1609 }
1610
1611 static void free_conn(struct connection *con)
1612 {
1613         close_connection(con, true, true, true);
1614         if (con->othercon)
1615                 kmem_cache_free(con_cache, con->othercon);
1616         hlist_del(&con->list);
1617         kmem_cache_free(con_cache, con);
1618 }
1619
1620 static void work_flush(void)
1621 {
1622         int ok;
1623         int i;
1624         struct hlist_node *n;
1625         struct connection *con;
1626
1627         if (recv_workqueue)
1628                 flush_workqueue(recv_workqueue);
1629         if (send_workqueue)
1630                 flush_workqueue(send_workqueue);
1631         do {
1632                 ok = 1;
1633                 foreach_conn(stop_conn);
1634                 if (recv_workqueue)
1635                         flush_workqueue(recv_workqueue);
1636                 if (send_workqueue)
1637                         flush_workqueue(send_workqueue);
1638                 for (i = 0; i < CONN_HASH_SIZE && ok; i++) {
1639                         hlist_for_each_entry_safe(con, n,
1640                                                   &connection_hash[i], list) {
1641                                 ok &= test_bit(CF_READ_PENDING, &con->flags);
1642                                 ok &= test_bit(CF_WRITE_PENDING, &con->flags);
1643                                 if (con->othercon) {
1644                                         ok &= test_bit(CF_READ_PENDING,
1645                                                        &con->othercon->flags);
1646                                         ok &= test_bit(CF_WRITE_PENDING,
1647                                                        &con->othercon->flags);
1648                                 }
1649                         }
1650                 }
1651         } while (!ok);
1652 }
1653
1654 void dlm_lowcomms_stop(void)
1655 {
1656         /* Set all the flags to prevent any
1657            socket activity.
1658         */
1659         mutex_lock(&connections_lock);
1660         dlm_allow_conn = 0;
1661         mutex_unlock(&connections_lock);
1662         foreach_conn(shutdown_conn);
1663         work_flush();
1664         clean_writequeues();
1665         foreach_conn(free_conn);
1666         work_stop();
1667
1668         kmem_cache_destroy(con_cache);
1669 }
1670
1671 int dlm_lowcomms_start(void)
1672 {
1673         int error = -EINVAL;
1674         struct connection *con;
1675         int i;
1676
1677         for (i = 0; i < CONN_HASH_SIZE; i++)
1678                 INIT_HLIST_HEAD(&connection_hash[i]);
1679
1680         init_local();
1681         if (!dlm_local_count) {
1682                 error = -ENOTCONN;
1683                 log_print("no local IP address has been set");
1684                 goto fail;
1685         }
1686
1687         error = -ENOMEM;
1688         con_cache = kmem_cache_create("dlm_conn", sizeof(struct connection),
1689                                       __alignof__(struct connection), 0,
1690                                       NULL);
1691         if (!con_cache)
1692                 goto fail;
1693
1694         error = work_start();
1695         if (error)
1696                 goto fail_destroy;
1697
1698         dlm_allow_conn = 1;
1699
1700         /* Start listening */
1701         if (dlm_config.ci_protocol == 0)
1702                 error = tcp_listen_for_all();
1703         else
1704                 error = sctp_listen_for_all();
1705         if (error)
1706                 goto fail_unlisten;
1707
1708         return 0;
1709
1710 fail_unlisten:
1711         dlm_allow_conn = 0;
1712         con = nodeid2con(0,0);
1713         if (con) {
1714                 close_connection(con, false, true, true);
1715                 kmem_cache_free(con_cache, con);
1716         }
1717 fail_destroy:
1718         kmem_cache_destroy(con_cache);
1719 fail:
1720         return error;
1721 }
1722
1723 void dlm_lowcomms_exit(void)
1724 {
1725         struct dlm_node_addr *na, *safe;
1726
1727         spin_lock(&dlm_node_addrs_spin);
1728         list_for_each_entry_safe(na, safe, &dlm_node_addrs, list) {
1729                 list_del(&na->list);
1730                 while (na->addr_count--)
1731                         kfree(na->addr[na->addr_count]);
1732                 kfree(na);
1733         }
1734         spin_unlock(&dlm_node_addrs_spin);
1735 }