DLM: fix to reschedule rwork
[linux-2.6-microblaze.git] / fs / dlm / lowcomms.c
1 /******************************************************************************
2 *******************************************************************************
3 **
4 **  Copyright (C) Sistina Software, Inc.  1997-2003  All rights reserved.
5 **  Copyright (C) 2004-2009 Red Hat, Inc.  All rights reserved.
6 **
7 **  This copyrighted material is made available to anyone wishing to use,
8 **  modify, copy, or redistribute it subject to the terms and conditions
9 **  of the GNU General Public License v.2.
10 **
11 *******************************************************************************
12 ******************************************************************************/
13
14 /*
15  * lowcomms.c
16  *
17  * This is the "low-level" comms layer.
18  *
19  * It is responsible for sending/receiving messages
20  * from other nodes in the cluster.
21  *
22  * Cluster nodes are referred to by their nodeids. nodeids are
23  * simply 32 bit numbers to the locking module - if they need to
24  * be expanded for the cluster infrastructure then that is its
25  * responsibility. It is this layer's
26  * responsibility to resolve these into IP address or
27  * whatever it needs for inter-node communication.
28  *
29  * The comms level is two kernel threads that deal mainly with
30  * the receiving of messages from other nodes and passing them
31  * up to the mid-level comms layer (which understands the
32  * message format) for execution by the locking core, and
33  * a send thread which does all the setting up of connections
34  * to remote nodes and the sending of data. Threads are not allowed
35  * to send their own data because it may cause them to wait in times
36  * of high load. Also, this way, the sending thread can collect together
37  * messages bound for one node and send them in one block.
38  *
39  * lowcomms will choose to use either TCP or SCTP as its transport layer
40  * depending on the configuration variable 'protocol'. This should be set
41  * to 0 (default) for TCP or 1 for SCTP. It should be configured using a
42  * cluster-wide mechanism as it must be the same on all nodes of the cluster
43  * for the DLM to function.
44  *
45  */
46
47 #include <asm/ioctls.h>
48 #include <net/sock.h>
49 #include <net/tcp.h>
50 #include <linux/pagemap.h>
51 #include <linux/file.h>
52 #include <linux/mutex.h>
53 #include <linux/sctp.h>
54 #include <linux/slab.h>
55 #include <net/sctp/sctp.h>
56 #include <net/ipv6.h>
57
58 #include "dlm_internal.h"
59 #include "lowcomms.h"
60 #include "midcomms.h"
61 #include "config.h"
62
63 #define NEEDED_RMEM (4*1024*1024)
64 #define CONN_HASH_SIZE 32
65
66 /* Number of messages to send before rescheduling */
67 #define MAX_SEND_MSG_COUNT 25
68
69 struct cbuf {
70         unsigned int base;
71         unsigned int len;
72         unsigned int mask;
73 };
74
75 static void cbuf_add(struct cbuf *cb, int n)
76 {
77         cb->len += n;
78 }
79
80 static int cbuf_data(struct cbuf *cb)
81 {
82         return ((cb->base + cb->len) & cb->mask);
83 }
84
85 static void cbuf_init(struct cbuf *cb, int size)
86 {
87         cb->base = cb->len = 0;
88         cb->mask = size-1;
89 }
90
91 static void cbuf_eat(struct cbuf *cb, int n)
92 {
93         cb->len  -= n;
94         cb->base += n;
95         cb->base &= cb->mask;
96 }
97
98 static bool cbuf_empty(struct cbuf *cb)
99 {
100         return cb->len == 0;
101 }
102
103 struct connection {
104         struct socket *sock;    /* NULL if not connected */
105         uint32_t nodeid;        /* So we know who we are in the list */
106         struct mutex sock_mutex;
107         unsigned long flags;
108 #define CF_READ_PENDING 1
109 #define CF_WRITE_PENDING 2
110 #define CF_INIT_PENDING 4
111 #define CF_IS_OTHERCON 5
112 #define CF_CLOSE 6
113 #define CF_APP_LIMITED 7
114 #define CF_CLOSING 8
115         struct list_head writequeue;  /* List of outgoing writequeue_entries */
116         spinlock_t writequeue_lock;
117         int (*rx_action) (struct connection *); /* What to do when active */
118         void (*connect_action) (struct connection *);   /* What to do to connect */
119         struct page *rx_page;
120         struct cbuf cb;
121         int retries;
122 #define MAX_CONNECT_RETRIES 3
123         struct hlist_node list;
124         struct connection *othercon;
125         struct work_struct rwork; /* Receive workqueue */
126         struct work_struct swork; /* Send workqueue */
127 };
128 #define sock2con(x) ((struct connection *)(x)->sk_user_data)
129
130 /* An entry waiting to be sent */
131 struct writequeue_entry {
132         struct list_head list;
133         struct page *page;
134         int offset;
135         int len;
136         int end;
137         int users;
138         struct connection *con;
139 };
140
141 struct dlm_node_addr {
142         struct list_head list;
143         int nodeid;
144         int addr_count;
145         int curr_addr_index;
146         struct sockaddr_storage *addr[DLM_MAX_ADDR_COUNT];
147 };
148
149 static struct listen_sock_callbacks {
150         void (*sk_error_report)(struct sock *);
151         void (*sk_data_ready)(struct sock *);
152         void (*sk_state_change)(struct sock *);
153         void (*sk_write_space)(struct sock *);
154 } listen_sock;
155
156 static LIST_HEAD(dlm_node_addrs);
157 static DEFINE_SPINLOCK(dlm_node_addrs_spin);
158
159 static struct sockaddr_storage *dlm_local_addr[DLM_MAX_ADDR_COUNT];
160 static int dlm_local_count;
161 static int dlm_allow_conn;
162
163 /* Work queues */
164 static struct workqueue_struct *recv_workqueue;
165 static struct workqueue_struct *send_workqueue;
166
167 static struct hlist_head connection_hash[CONN_HASH_SIZE];
168 static DEFINE_MUTEX(connections_lock);
169 static struct kmem_cache *con_cache;
170
171 static void process_recv_sockets(struct work_struct *work);
172 static void process_send_sockets(struct work_struct *work);
173
174
175 /* This is deliberately very simple because most clusters have simple
176    sequential nodeids, so we should be able to go straight to a connection
177    struct in the array */
178 static inline int nodeid_hash(int nodeid)
179 {
180         return nodeid & (CONN_HASH_SIZE-1);
181 }
182
183 static struct connection *__find_con(int nodeid)
184 {
185         int r;
186         struct connection *con;
187
188         r = nodeid_hash(nodeid);
189
190         hlist_for_each_entry(con, &connection_hash[r], list) {
191                 if (con->nodeid == nodeid)
192                         return con;
193         }
194         return NULL;
195 }
196
197 /*
198  * If 'allocation' is zero then we don't attempt to create a new
199  * connection structure for this node.
200  */
201 static struct connection *__nodeid2con(int nodeid, gfp_t alloc)
202 {
203         struct connection *con = NULL;
204         int r;
205
206         con = __find_con(nodeid);
207         if (con || !alloc)
208                 return con;
209
210         con = kmem_cache_zalloc(con_cache, alloc);
211         if (!con)
212                 return NULL;
213
214         r = nodeid_hash(nodeid);
215         hlist_add_head(&con->list, &connection_hash[r]);
216
217         con->nodeid = nodeid;
218         mutex_init(&con->sock_mutex);
219         INIT_LIST_HEAD(&con->writequeue);
220         spin_lock_init(&con->writequeue_lock);
221         INIT_WORK(&con->swork, process_send_sockets);
222         INIT_WORK(&con->rwork, process_recv_sockets);
223
224         /* Setup action pointers for child sockets */
225         if (con->nodeid) {
226                 struct connection *zerocon = __find_con(0);
227
228                 con->connect_action = zerocon->connect_action;
229                 if (!con->rx_action)
230                         con->rx_action = zerocon->rx_action;
231         }
232
233         return con;
234 }
235
236 /* Loop round all connections */
237 static void foreach_conn(void (*conn_func)(struct connection *c))
238 {
239         int i;
240         struct hlist_node *n;
241         struct connection *con;
242
243         for (i = 0; i < CONN_HASH_SIZE; i++) {
244                 hlist_for_each_entry_safe(con, n, &connection_hash[i], list)
245                         conn_func(con);
246         }
247 }
248
249 static struct connection *nodeid2con(int nodeid, gfp_t allocation)
250 {
251         struct connection *con;
252
253         mutex_lock(&connections_lock);
254         con = __nodeid2con(nodeid, allocation);
255         mutex_unlock(&connections_lock);
256
257         return con;
258 }
259
260 static struct dlm_node_addr *find_node_addr(int nodeid)
261 {
262         struct dlm_node_addr *na;
263
264         list_for_each_entry(na, &dlm_node_addrs, list) {
265                 if (na->nodeid == nodeid)
266                         return na;
267         }
268         return NULL;
269 }
270
271 static int addr_compare(struct sockaddr_storage *x, struct sockaddr_storage *y)
272 {
273         switch (x->ss_family) {
274         case AF_INET: {
275                 struct sockaddr_in *sinx = (struct sockaddr_in *)x;
276                 struct sockaddr_in *siny = (struct sockaddr_in *)y;
277                 if (sinx->sin_addr.s_addr != siny->sin_addr.s_addr)
278                         return 0;
279                 if (sinx->sin_port != siny->sin_port)
280                         return 0;
281                 break;
282         }
283         case AF_INET6: {
284                 struct sockaddr_in6 *sinx = (struct sockaddr_in6 *)x;
285                 struct sockaddr_in6 *siny = (struct sockaddr_in6 *)y;
286                 if (!ipv6_addr_equal(&sinx->sin6_addr, &siny->sin6_addr))
287                         return 0;
288                 if (sinx->sin6_port != siny->sin6_port)
289                         return 0;
290                 break;
291         }
292         default:
293                 return 0;
294         }
295         return 1;
296 }
297
298 static int nodeid_to_addr(int nodeid, struct sockaddr_storage *sas_out,
299                           struct sockaddr *sa_out, bool try_new_addr)
300 {
301         struct sockaddr_storage sas;
302         struct dlm_node_addr *na;
303
304         if (!dlm_local_count)
305                 return -1;
306
307         spin_lock(&dlm_node_addrs_spin);
308         na = find_node_addr(nodeid);
309         if (na && na->addr_count) {
310                 memcpy(&sas, na->addr[na->curr_addr_index],
311                        sizeof(struct sockaddr_storage));
312
313                 if (try_new_addr) {
314                         na->curr_addr_index++;
315                         if (na->curr_addr_index == na->addr_count)
316                                 na->curr_addr_index = 0;
317                 }
318         }
319         spin_unlock(&dlm_node_addrs_spin);
320
321         if (!na)
322                 return -EEXIST;
323
324         if (!na->addr_count)
325                 return -ENOENT;
326
327         if (sas_out)
328                 memcpy(sas_out, &sas, sizeof(struct sockaddr_storage));
329
330         if (!sa_out)
331                 return 0;
332
333         if (dlm_local_addr[0]->ss_family == AF_INET) {
334                 struct sockaddr_in *in4  = (struct sockaddr_in *) &sas;
335                 struct sockaddr_in *ret4 = (struct sockaddr_in *) sa_out;
336                 ret4->sin_addr.s_addr = in4->sin_addr.s_addr;
337         } else {
338                 struct sockaddr_in6 *in6  = (struct sockaddr_in6 *) &sas;
339                 struct sockaddr_in6 *ret6 = (struct sockaddr_in6 *) sa_out;
340                 ret6->sin6_addr = in6->sin6_addr;
341         }
342
343         return 0;
344 }
345
346 static int addr_to_nodeid(struct sockaddr_storage *addr, int *nodeid)
347 {
348         struct dlm_node_addr *na;
349         int rv = -EEXIST;
350         int addr_i;
351
352         spin_lock(&dlm_node_addrs_spin);
353         list_for_each_entry(na, &dlm_node_addrs, list) {
354                 if (!na->addr_count)
355                         continue;
356
357                 for (addr_i = 0; addr_i < na->addr_count; addr_i++) {
358                         if (addr_compare(na->addr[addr_i], addr)) {
359                                 *nodeid = na->nodeid;
360                                 rv = 0;
361                                 goto unlock;
362                         }
363                 }
364         }
365 unlock:
366         spin_unlock(&dlm_node_addrs_spin);
367         return rv;
368 }
369
370 int dlm_lowcomms_addr(int nodeid, struct sockaddr_storage *addr, int len)
371 {
372         struct sockaddr_storage *new_addr;
373         struct dlm_node_addr *new_node, *na;
374
375         new_node = kzalloc(sizeof(struct dlm_node_addr), GFP_NOFS);
376         if (!new_node)
377                 return -ENOMEM;
378
379         new_addr = kzalloc(sizeof(struct sockaddr_storage), GFP_NOFS);
380         if (!new_addr) {
381                 kfree(new_node);
382                 return -ENOMEM;
383         }
384
385         memcpy(new_addr, addr, len);
386
387         spin_lock(&dlm_node_addrs_spin);
388         na = find_node_addr(nodeid);
389         if (!na) {
390                 new_node->nodeid = nodeid;
391                 new_node->addr[0] = new_addr;
392                 new_node->addr_count = 1;
393                 list_add(&new_node->list, &dlm_node_addrs);
394                 spin_unlock(&dlm_node_addrs_spin);
395                 return 0;
396         }
397
398         if (na->addr_count >= DLM_MAX_ADDR_COUNT) {
399                 spin_unlock(&dlm_node_addrs_spin);
400                 kfree(new_addr);
401                 kfree(new_node);
402                 return -ENOSPC;
403         }
404
405         na->addr[na->addr_count++] = new_addr;
406         spin_unlock(&dlm_node_addrs_spin);
407         kfree(new_node);
408         return 0;
409 }
410
411 /* Data available on socket or listen socket received a connect */
412 static void lowcomms_data_ready(struct sock *sk)
413 {
414         struct connection *con;
415
416         read_lock_bh(&sk->sk_callback_lock);
417         con = sock2con(sk);
418         if (con && !test_and_set_bit(CF_READ_PENDING, &con->flags))
419                 queue_work(recv_workqueue, &con->rwork);
420         read_unlock_bh(&sk->sk_callback_lock);
421 }
422
423 static void lowcomms_write_space(struct sock *sk)
424 {
425         struct connection *con;
426
427         read_lock_bh(&sk->sk_callback_lock);
428         con = sock2con(sk);
429         if (!con)
430                 goto out;
431
432         clear_bit(SOCK_NOSPACE, &con->sock->flags);
433
434         if (test_and_clear_bit(CF_APP_LIMITED, &con->flags)) {
435                 con->sock->sk->sk_write_pending--;
436                 clear_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags);
437         }
438
439         queue_work(send_workqueue, &con->swork);
440 out:
441         read_unlock_bh(&sk->sk_callback_lock);
442 }
443
444 static inline void lowcomms_connect_sock(struct connection *con)
445 {
446         if (test_bit(CF_CLOSE, &con->flags))
447                 return;
448         queue_work(send_workqueue, &con->swork);
449         cond_resched();
450 }
451
452 static void lowcomms_state_change(struct sock *sk)
453 {
454         /* SCTP layer is not calling sk_data_ready when the connection
455          * is done, so we catch the signal through here. Also, it
456          * doesn't switch socket state when entering shutdown, so we
457          * skip the write in that case.
458          */
459         if (sk->sk_shutdown) {
460                 if (sk->sk_shutdown == RCV_SHUTDOWN)
461                         lowcomms_data_ready(sk);
462         } else if (sk->sk_state == TCP_ESTABLISHED) {
463                 lowcomms_write_space(sk);
464         }
465 }
466
467 int dlm_lowcomms_connect_node(int nodeid)
468 {
469         struct connection *con;
470
471         if (nodeid == dlm_our_nodeid())
472                 return 0;
473
474         con = nodeid2con(nodeid, GFP_NOFS);
475         if (!con)
476                 return -ENOMEM;
477         lowcomms_connect_sock(con);
478         return 0;
479 }
480
481 static void lowcomms_error_report(struct sock *sk)
482 {
483         struct connection *con;
484         struct sockaddr_storage saddr;
485         int buflen;
486         void (*orig_report)(struct sock *) = NULL;
487
488         read_lock_bh(&sk->sk_callback_lock);
489         con = sock2con(sk);
490         if (con == NULL)
491                 goto out;
492
493         orig_report = listen_sock.sk_error_report;
494         if (con->sock == NULL ||
495             kernel_getpeername(con->sock, (struct sockaddr *)&saddr, &buflen)) {
496                 printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
497                                    "sending to node %d, port %d, "
498                                    "sk_err=%d/%d\n", dlm_our_nodeid(),
499                                    con->nodeid, dlm_config.ci_tcp_port,
500                                    sk->sk_err, sk->sk_err_soft);
501         } else if (saddr.ss_family == AF_INET) {
502                 struct sockaddr_in *sin4 = (struct sockaddr_in *)&saddr;
503
504                 printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
505                                    "sending to node %d at %pI4, port %d, "
506                                    "sk_err=%d/%d\n", dlm_our_nodeid(),
507                                    con->nodeid, &sin4->sin_addr.s_addr,
508                                    dlm_config.ci_tcp_port, sk->sk_err,
509                                    sk->sk_err_soft);
510         } else {
511                 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&saddr;
512
513                 printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
514                                    "sending to node %d at %u.%u.%u.%u, "
515                                    "port %d, sk_err=%d/%d\n", dlm_our_nodeid(),
516                                    con->nodeid, sin6->sin6_addr.s6_addr32[0],
517                                    sin6->sin6_addr.s6_addr32[1],
518                                    sin6->sin6_addr.s6_addr32[2],
519                                    sin6->sin6_addr.s6_addr32[3],
520                                    dlm_config.ci_tcp_port, sk->sk_err,
521                                    sk->sk_err_soft);
522         }
523 out:
524         read_unlock_bh(&sk->sk_callback_lock);
525         if (orig_report)
526                 orig_report(sk);
527 }
528
529 /* Note: sk_callback_lock must be locked before calling this function. */
530 static void save_listen_callbacks(struct socket *sock)
531 {
532         struct sock *sk = sock->sk;
533
534         listen_sock.sk_data_ready = sk->sk_data_ready;
535         listen_sock.sk_state_change = sk->sk_state_change;
536         listen_sock.sk_write_space = sk->sk_write_space;
537         listen_sock.sk_error_report = sk->sk_error_report;
538 }
539
540 static void restore_callbacks(struct socket *sock)
541 {
542         struct sock *sk = sock->sk;
543
544         write_lock_bh(&sk->sk_callback_lock);
545         sk->sk_user_data = NULL;
546         sk->sk_data_ready = listen_sock.sk_data_ready;
547         sk->sk_state_change = listen_sock.sk_state_change;
548         sk->sk_write_space = listen_sock.sk_write_space;
549         sk->sk_error_report = listen_sock.sk_error_report;
550         write_unlock_bh(&sk->sk_callback_lock);
551 }
552
553 /* Make a socket active */
554 static void add_sock(struct socket *sock, struct connection *con)
555 {
556         struct sock *sk = sock->sk;
557
558         write_lock_bh(&sk->sk_callback_lock);
559         con->sock = sock;
560
561         sk->sk_user_data = con;
562         /* Install a data_ready callback */
563         sk->sk_data_ready = lowcomms_data_ready;
564         sk->sk_write_space = lowcomms_write_space;
565         sk->sk_state_change = lowcomms_state_change;
566         sk->sk_allocation = GFP_NOFS;
567         sk->sk_error_report = lowcomms_error_report;
568         write_unlock_bh(&sk->sk_callback_lock);
569 }
570
571 /* Add the port number to an IPv6 or 4 sockaddr and return the address
572    length */
573 static void make_sockaddr(struct sockaddr_storage *saddr, uint16_t port,
574                           int *addr_len)
575 {
576         saddr->ss_family =  dlm_local_addr[0]->ss_family;
577         if (saddr->ss_family == AF_INET) {
578                 struct sockaddr_in *in4_addr = (struct sockaddr_in *)saddr;
579                 in4_addr->sin_port = cpu_to_be16(port);
580                 *addr_len = sizeof(struct sockaddr_in);
581                 memset(&in4_addr->sin_zero, 0, sizeof(in4_addr->sin_zero));
582         } else {
583                 struct sockaddr_in6 *in6_addr = (struct sockaddr_in6 *)saddr;
584                 in6_addr->sin6_port = cpu_to_be16(port);
585                 *addr_len = sizeof(struct sockaddr_in6);
586         }
587         memset((char *)saddr + *addr_len, 0, sizeof(struct sockaddr_storage) - *addr_len);
588 }
589
590 /* Close a remote connection and tidy up */
591 static void close_connection(struct connection *con, bool and_other,
592                              bool tx, bool rx)
593 {
594         bool closing = test_and_set_bit(CF_CLOSING, &con->flags);
595
596         if (tx && !closing && cancel_work_sync(&con->swork)) {
597                 log_print("canceled swork for node %d", con->nodeid);
598                 clear_bit(CF_WRITE_PENDING, &con->flags);
599         }
600         if (rx && !closing && cancel_work_sync(&con->rwork)) {
601                 log_print("canceled rwork for node %d", con->nodeid);
602                 clear_bit(CF_READ_PENDING, &con->flags);
603         }
604
605         mutex_lock(&con->sock_mutex);
606         if (con->sock) {
607                 restore_callbacks(con->sock);
608                 sock_release(con->sock);
609                 con->sock = NULL;
610         }
611         if (con->othercon && and_other) {
612                 /* Will only re-enter once. */
613                 close_connection(con->othercon, false, true, true);
614         }
615         if (con->rx_page) {
616                 __free_page(con->rx_page);
617                 con->rx_page = NULL;
618         }
619
620         con->retries = 0;
621         mutex_unlock(&con->sock_mutex);
622         clear_bit(CF_CLOSING, &con->flags);
623 }
624
625 /* Data received from remote end */
626 static int receive_from_sock(struct connection *con)
627 {
628         int ret = 0;
629         struct msghdr msg = {};
630         struct kvec iov[2];
631         unsigned len;
632         int r;
633         int call_again_soon = 0;
634         int nvec;
635
636         mutex_lock(&con->sock_mutex);
637
638         if (con->sock == NULL) {
639                 ret = -EAGAIN;
640                 goto out_close;
641         }
642         if (con->nodeid == 0) {
643                 ret = -EINVAL;
644                 goto out_close;
645         }
646
647         if (con->rx_page == NULL) {
648                 /*
649                  * This doesn't need to be atomic, but I think it should
650                  * improve performance if it is.
651                  */
652                 con->rx_page = alloc_page(GFP_ATOMIC);
653                 if (con->rx_page == NULL)
654                         goto out_resched;
655                 cbuf_init(&con->cb, PAGE_SIZE);
656         }
657
658         /*
659          * iov[0] is the bit of the circular buffer between the current end
660          * point (cb.base + cb.len) and the end of the buffer.
661          */
662         iov[0].iov_len = con->cb.base - cbuf_data(&con->cb);
663         iov[0].iov_base = page_address(con->rx_page) + cbuf_data(&con->cb);
664         iov[1].iov_len = 0;
665         nvec = 1;
666
667         /*
668          * iov[1] is the bit of the circular buffer between the start of the
669          * buffer and the start of the currently used section (cb.base)
670          */
671         if (cbuf_data(&con->cb) >= con->cb.base) {
672                 iov[0].iov_len = PAGE_SIZE - cbuf_data(&con->cb);
673                 iov[1].iov_len = con->cb.base;
674                 iov[1].iov_base = page_address(con->rx_page);
675                 nvec = 2;
676         }
677         len = iov[0].iov_len + iov[1].iov_len;
678
679         r = ret = kernel_recvmsg(con->sock, &msg, iov, nvec, len,
680                                MSG_DONTWAIT | MSG_NOSIGNAL);
681         if (ret <= 0)
682                 goto out_close;
683         else if (ret == len)
684                 call_again_soon = 1;
685
686         cbuf_add(&con->cb, ret);
687         ret = dlm_process_incoming_buffer(con->nodeid,
688                                           page_address(con->rx_page),
689                                           con->cb.base, con->cb.len,
690                                           PAGE_SIZE);
691         if (ret == -EBADMSG) {
692                 log_print("lowcomms: addr=%p, base=%u, len=%u, read=%d",
693                           page_address(con->rx_page), con->cb.base,
694                           con->cb.len, r);
695         }
696         if (ret < 0)
697                 goto out_close;
698         cbuf_eat(&con->cb, ret);
699
700         if (cbuf_empty(&con->cb) && !call_again_soon) {
701                 __free_page(con->rx_page);
702                 con->rx_page = NULL;
703         }
704
705         if (call_again_soon)
706                 goto out_resched;
707         mutex_unlock(&con->sock_mutex);
708         return 0;
709
710 out_resched:
711         if (!test_and_set_bit(CF_READ_PENDING, &con->flags))
712                 queue_work(recv_workqueue, &con->rwork);
713         mutex_unlock(&con->sock_mutex);
714         return -EAGAIN;
715
716 out_close:
717         mutex_unlock(&con->sock_mutex);
718         if (ret != -EAGAIN) {
719                 close_connection(con, true, true, false);
720                 /* Reconnect when there is something to send */
721         }
722         /* Don't return success if we really got EOF */
723         if (ret == 0)
724                 ret = -EAGAIN;
725
726         return ret;
727 }
728
729 /* Listening socket is busy, accept a connection */
730 static int tcp_accept_from_sock(struct connection *con)
731 {
732         int result;
733         struct sockaddr_storage peeraddr;
734         struct socket *newsock;
735         int len;
736         int nodeid;
737         struct connection *newcon;
738         struct connection *addcon;
739
740         mutex_lock(&connections_lock);
741         if (!dlm_allow_conn) {
742                 mutex_unlock(&connections_lock);
743                 return -1;
744         }
745         mutex_unlock(&connections_lock);
746
747         mutex_lock_nested(&con->sock_mutex, 0);
748
749         if (!con->sock) {
750                 mutex_unlock(&con->sock_mutex);
751                 return -ENOTCONN;
752         }
753
754         result = kernel_accept(con->sock, &newsock, O_NONBLOCK);
755         if (result < 0)
756                 goto accept_err;
757
758         /* Get the connected socket's peer */
759         memset(&peeraddr, 0, sizeof(peeraddr));
760         if (newsock->ops->getname(newsock, (struct sockaddr *)&peeraddr,
761                                   &len, 2)) {
762                 result = -ECONNABORTED;
763                 goto accept_err;
764         }
765
766         /* Get the new node's NODEID */
767         make_sockaddr(&peeraddr, 0, &len);
768         if (addr_to_nodeid(&peeraddr, &nodeid)) {
769                 unsigned char *b=(unsigned char *)&peeraddr;
770                 log_print("connect from non cluster node");
771                 print_hex_dump_bytes("ss: ", DUMP_PREFIX_NONE, 
772                                      b, sizeof(struct sockaddr_storage));
773                 sock_release(newsock);
774                 mutex_unlock(&con->sock_mutex);
775                 return -1;
776         }
777
778         log_print("got connection from %d", nodeid);
779
780         /*  Check to see if we already have a connection to this node. This
781          *  could happen if the two nodes initiate a connection at roughly
782          *  the same time and the connections cross on the wire.
783          *  In this case we store the incoming one in "othercon"
784          */
785         newcon = nodeid2con(nodeid, GFP_NOFS);
786         if (!newcon) {
787                 result = -ENOMEM;
788                 goto accept_err;
789         }
790         mutex_lock_nested(&newcon->sock_mutex, 1);
791         if (newcon->sock) {
792                 struct connection *othercon = newcon->othercon;
793
794                 if (!othercon) {
795                         othercon = kmem_cache_zalloc(con_cache, GFP_NOFS);
796                         if (!othercon) {
797                                 log_print("failed to allocate incoming socket");
798                                 mutex_unlock(&newcon->sock_mutex);
799                                 result = -ENOMEM;
800                                 goto accept_err;
801                         }
802                         othercon->nodeid = nodeid;
803                         othercon->rx_action = receive_from_sock;
804                         mutex_init(&othercon->sock_mutex);
805                         INIT_WORK(&othercon->swork, process_send_sockets);
806                         INIT_WORK(&othercon->rwork, process_recv_sockets);
807                         set_bit(CF_IS_OTHERCON, &othercon->flags);
808                 }
809                 mutex_lock_nested(&othercon->sock_mutex, 2);
810                 if (!othercon->sock) {
811                         newcon->othercon = othercon;
812                         add_sock(newsock, othercon);
813                         addcon = othercon;
814                         mutex_unlock(&othercon->sock_mutex);
815                 }
816                 else {
817                         printk("Extra connection from node %d attempted\n", nodeid);
818                         result = -EAGAIN;
819                         mutex_unlock(&othercon->sock_mutex);
820                         mutex_unlock(&newcon->sock_mutex);
821                         goto accept_err;
822                 }
823         }
824         else {
825                 newcon->rx_action = receive_from_sock;
826                 /* accept copies the sk after we've saved the callbacks, so we
827                    don't want to save them a second time or comm errors will
828                    result in calling sk_error_report recursively. */
829                 add_sock(newsock, newcon);
830                 addcon = newcon;
831         }
832
833         mutex_unlock(&newcon->sock_mutex);
834
835         /*
836          * Add it to the active queue in case we got data
837          * between processing the accept adding the socket
838          * to the read_sockets list
839          */
840         if (!test_and_set_bit(CF_READ_PENDING, &addcon->flags))
841                 queue_work(recv_workqueue, &addcon->rwork);
842         mutex_unlock(&con->sock_mutex);
843
844         return 0;
845
846 accept_err:
847         mutex_unlock(&con->sock_mutex);
848         if (newsock)
849                 sock_release(newsock);
850
851         if (result != -EAGAIN)
852                 log_print("error accepting connection from node: %d", result);
853         return result;
854 }
855
856 static int sctp_accept_from_sock(struct connection *con)
857 {
858         /* Check that the new node is in the lockspace */
859         struct sctp_prim prim;
860         int nodeid;
861         int prim_len, ret;
862         int addr_len;
863         struct connection *newcon;
864         struct connection *addcon;
865         struct socket *newsock;
866
867         mutex_lock(&connections_lock);
868         if (!dlm_allow_conn) {
869                 mutex_unlock(&connections_lock);
870                 return -1;
871         }
872         mutex_unlock(&connections_lock);
873
874         mutex_lock_nested(&con->sock_mutex, 0);
875
876         ret = kernel_accept(con->sock, &newsock, O_NONBLOCK);
877         if (ret < 0)
878                 goto accept_err;
879
880         memset(&prim, 0, sizeof(struct sctp_prim));
881         prim_len = sizeof(struct sctp_prim);
882
883         ret = kernel_getsockopt(newsock, IPPROTO_SCTP, SCTP_PRIMARY_ADDR,
884                                 (char *)&prim, &prim_len);
885         if (ret < 0) {
886                 log_print("getsockopt/sctp_primary_addr failed: %d", ret);
887                 goto accept_err;
888         }
889
890         make_sockaddr(&prim.ssp_addr, 0, &addr_len);
891         ret = addr_to_nodeid(&prim.ssp_addr, &nodeid);
892         if (ret) {
893                 unsigned char *b = (unsigned char *)&prim.ssp_addr;
894
895                 log_print("reject connect from unknown addr");
896                 print_hex_dump_bytes("ss: ", DUMP_PREFIX_NONE,
897                                      b, sizeof(struct sockaddr_storage));
898                 goto accept_err;
899         }
900
901         newcon = nodeid2con(nodeid, GFP_NOFS);
902         if (!newcon) {
903                 ret = -ENOMEM;
904                 goto accept_err;
905         }
906
907         mutex_lock_nested(&newcon->sock_mutex, 1);
908
909         if (newcon->sock) {
910                 struct connection *othercon = newcon->othercon;
911
912                 if (!othercon) {
913                         othercon = kmem_cache_zalloc(con_cache, GFP_NOFS);
914                         if (!othercon) {
915                                 log_print("failed to allocate incoming socket");
916                                 mutex_unlock(&newcon->sock_mutex);
917                                 ret = -ENOMEM;
918                                 goto accept_err;
919                         }
920                         othercon->nodeid = nodeid;
921                         othercon->rx_action = receive_from_sock;
922                         mutex_init(&othercon->sock_mutex);
923                         INIT_WORK(&othercon->swork, process_send_sockets);
924                         INIT_WORK(&othercon->rwork, process_recv_sockets);
925                         set_bit(CF_IS_OTHERCON, &othercon->flags);
926                 }
927                 mutex_lock_nested(&othercon->sock_mutex, 2);
928                 if (!othercon->sock) {
929                         newcon->othercon = othercon;
930                         add_sock(newsock, othercon);
931                         addcon = othercon;
932                         mutex_unlock(&othercon->sock_mutex);
933                 } else {
934                         printk("Extra connection from node %d attempted\n", nodeid);
935                         ret = -EAGAIN;
936                         mutex_unlock(&othercon->sock_mutex);
937                         mutex_unlock(&newcon->sock_mutex);
938                         goto accept_err;
939                 }
940         } else {
941                 newcon->rx_action = receive_from_sock;
942                 add_sock(newsock, newcon);
943                 addcon = newcon;
944         }
945
946         log_print("connected to %d", nodeid);
947
948         mutex_unlock(&newcon->sock_mutex);
949
950         /*
951          * Add it to the active queue in case we got data
952          * between processing the accept adding the socket
953          * to the read_sockets list
954          */
955         if (!test_and_set_bit(CF_READ_PENDING, &addcon->flags))
956                 queue_work(recv_workqueue, &addcon->rwork);
957         mutex_unlock(&con->sock_mutex);
958
959         return 0;
960
961 accept_err:
962         mutex_unlock(&con->sock_mutex);
963         if (newsock)
964                 sock_release(newsock);
965         if (ret != -EAGAIN)
966                 log_print("error accepting connection from node: %d", ret);
967
968         return ret;
969 }
970
971 static void free_entry(struct writequeue_entry *e)
972 {
973         __free_page(e->page);
974         kfree(e);
975 }
976
977 /*
978  * writequeue_entry_complete - try to delete and free write queue entry
979  * @e: write queue entry to try to delete
980  * @completed: bytes completed
981  *
982  * writequeue_lock must be held.
983  */
984 static void writequeue_entry_complete(struct writequeue_entry *e, int completed)
985 {
986         e->offset += completed;
987         e->len -= completed;
988
989         if (e->len == 0 && e->users == 0) {
990                 list_del(&e->list);
991                 free_entry(e);
992         }
993 }
994
995 /*
996  * sctp_bind_addrs - bind a SCTP socket to all our addresses
997  */
998 static int sctp_bind_addrs(struct connection *con, uint16_t port)
999 {
1000         struct sockaddr_storage localaddr;
1001         int i, addr_len, result = 0;
1002
1003         for (i = 0; i < dlm_local_count; i++) {
1004                 memcpy(&localaddr, dlm_local_addr[i], sizeof(localaddr));
1005                 make_sockaddr(&localaddr, port, &addr_len);
1006
1007                 if (!i)
1008                         result = kernel_bind(con->sock,
1009                                              (struct sockaddr *)&localaddr,
1010                                              addr_len);
1011                 else
1012                         result = kernel_setsockopt(con->sock, SOL_SCTP,
1013                                                    SCTP_SOCKOPT_BINDX_ADD,
1014                                                    (char *)&localaddr, addr_len);
1015
1016                 if (result < 0) {
1017                         log_print("Can't bind to %d addr number %d, %d.\n",
1018                                   port, i + 1, result);
1019                         break;
1020                 }
1021         }
1022         return result;
1023 }
1024
1025 /* Initiate an SCTP association.
1026    This is a special case of send_to_sock() in that we don't yet have a
1027    peeled-off socket for this association, so we use the listening socket
1028    and add the primary IP address of the remote node.
1029  */
1030 static void sctp_connect_to_sock(struct connection *con)
1031 {
1032         struct sockaddr_storage daddr;
1033         int one = 1;
1034         int result;
1035         int addr_len;
1036         struct socket *sock;
1037
1038         if (con->nodeid == 0) {
1039                 log_print("attempt to connect sock 0 foiled");
1040                 return;
1041         }
1042
1043         mutex_lock(&con->sock_mutex);
1044
1045         /* Some odd races can cause double-connects, ignore them */
1046         if (con->retries++ > MAX_CONNECT_RETRIES)
1047                 goto out;
1048
1049         if (con->sock) {
1050                 log_print("node %d already connected.", con->nodeid);
1051                 goto out;
1052         }
1053
1054         memset(&daddr, 0, sizeof(daddr));
1055         result = nodeid_to_addr(con->nodeid, &daddr, NULL, true);
1056         if (result < 0) {
1057                 log_print("no address for nodeid %d", con->nodeid);
1058                 goto out;
1059         }
1060
1061         /* Create a socket to communicate with */
1062         result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
1063                                   SOCK_STREAM, IPPROTO_SCTP, &sock);
1064         if (result < 0)
1065                 goto socket_err;
1066
1067         con->rx_action = receive_from_sock;
1068         con->connect_action = sctp_connect_to_sock;
1069         add_sock(sock, con);
1070
1071         /* Bind to all addresses. */
1072         if (sctp_bind_addrs(con, 0))
1073                 goto bind_err;
1074
1075         make_sockaddr(&daddr, dlm_config.ci_tcp_port, &addr_len);
1076
1077         log_print("connecting to %d", con->nodeid);
1078
1079         /* Turn off Nagle's algorithm */
1080         kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY, (char *)&one,
1081                           sizeof(one));
1082
1083         result = sock->ops->connect(sock, (struct sockaddr *)&daddr, addr_len,
1084                                    O_NONBLOCK);
1085         if (result == -EINPROGRESS)
1086                 result = 0;
1087         if (result == 0)
1088                 goto out;
1089
1090 bind_err:
1091         con->sock = NULL;
1092         sock_release(sock);
1093
1094 socket_err:
1095         /*
1096          * Some errors are fatal and this list might need adjusting. For other
1097          * errors we try again until the max number of retries is reached.
1098          */
1099         if (result != -EHOSTUNREACH &&
1100             result != -ENETUNREACH &&
1101             result != -ENETDOWN &&
1102             result != -EINVAL &&
1103             result != -EPROTONOSUPPORT) {
1104                 log_print("connect %d try %d error %d", con->nodeid,
1105                           con->retries, result);
1106                 mutex_unlock(&con->sock_mutex);
1107                 msleep(1000);
1108                 lowcomms_connect_sock(con);
1109                 return;
1110         }
1111
1112 out:
1113         mutex_unlock(&con->sock_mutex);
1114 }
1115
1116 /* Connect a new socket to its peer */
1117 static void tcp_connect_to_sock(struct connection *con)
1118 {
1119         struct sockaddr_storage saddr, src_addr;
1120         int addr_len;
1121         struct socket *sock = NULL;
1122         int one = 1;
1123         int result;
1124
1125         if (con->nodeid == 0) {
1126                 log_print("attempt to connect sock 0 foiled");
1127                 return;
1128         }
1129
1130         mutex_lock(&con->sock_mutex);
1131         if (con->retries++ > MAX_CONNECT_RETRIES)
1132                 goto out;
1133
1134         /* Some odd races can cause double-connects, ignore them */
1135         if (con->sock)
1136                 goto out;
1137
1138         /* Create a socket to communicate with */
1139         result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
1140                                   SOCK_STREAM, IPPROTO_TCP, &sock);
1141         if (result < 0)
1142                 goto out_err;
1143
1144         memset(&saddr, 0, sizeof(saddr));
1145         result = nodeid_to_addr(con->nodeid, &saddr, NULL, false);
1146         if (result < 0) {
1147                 log_print("no address for nodeid %d", con->nodeid);
1148                 goto out_err;
1149         }
1150
1151         con->rx_action = receive_from_sock;
1152         con->connect_action = tcp_connect_to_sock;
1153         add_sock(sock, con);
1154
1155         /* Bind to our cluster-known address connecting to avoid
1156            routing problems */
1157         memcpy(&src_addr, dlm_local_addr[0], sizeof(src_addr));
1158         make_sockaddr(&src_addr, 0, &addr_len);
1159         result = sock->ops->bind(sock, (struct sockaddr *) &src_addr,
1160                                  addr_len);
1161         if (result < 0) {
1162                 log_print("could not bind for connect: %d", result);
1163                 /* This *may* not indicate a critical error */
1164         }
1165
1166         make_sockaddr(&saddr, dlm_config.ci_tcp_port, &addr_len);
1167
1168         log_print("connecting to %d", con->nodeid);
1169
1170         /* Turn off Nagle's algorithm */
1171         kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY, (char *)&one,
1172                           sizeof(one));
1173
1174         result = sock->ops->connect(sock, (struct sockaddr *)&saddr, addr_len,
1175                                    O_NONBLOCK);
1176         if (result == -EINPROGRESS)
1177                 result = 0;
1178         if (result == 0)
1179                 goto out;
1180
1181 out_err:
1182         if (con->sock) {
1183                 sock_release(con->sock);
1184                 con->sock = NULL;
1185         } else if (sock) {
1186                 sock_release(sock);
1187         }
1188         /*
1189          * Some errors are fatal and this list might need adjusting. For other
1190          * errors we try again until the max number of retries is reached.
1191          */
1192         if (result != -EHOSTUNREACH &&
1193             result != -ENETUNREACH &&
1194             result != -ENETDOWN && 
1195             result != -EINVAL &&
1196             result != -EPROTONOSUPPORT) {
1197                 log_print("connect %d try %d error %d", con->nodeid,
1198                           con->retries, result);
1199                 mutex_unlock(&con->sock_mutex);
1200                 msleep(1000);
1201                 lowcomms_connect_sock(con);
1202                 return;
1203         }
1204 out:
1205         mutex_unlock(&con->sock_mutex);
1206         return;
1207 }
1208
1209 static struct socket *tcp_create_listen_sock(struct connection *con,
1210                                              struct sockaddr_storage *saddr)
1211 {
1212         struct socket *sock = NULL;
1213         int result = 0;
1214         int one = 1;
1215         int addr_len;
1216
1217         if (dlm_local_addr[0]->ss_family == AF_INET)
1218                 addr_len = sizeof(struct sockaddr_in);
1219         else
1220                 addr_len = sizeof(struct sockaddr_in6);
1221
1222         /* Create a socket to communicate with */
1223         result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
1224                                   SOCK_STREAM, IPPROTO_TCP, &sock);
1225         if (result < 0) {
1226                 log_print("Can't create listening comms socket");
1227                 goto create_out;
1228         }
1229
1230         /* Turn off Nagle's algorithm */
1231         kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY, (char *)&one,
1232                           sizeof(one));
1233
1234         result = kernel_setsockopt(sock, SOL_SOCKET, SO_REUSEADDR,
1235                                    (char *)&one, sizeof(one));
1236
1237         if (result < 0) {
1238                 log_print("Failed to set SO_REUSEADDR on socket: %d", result);
1239         }
1240         write_lock_bh(&sock->sk->sk_callback_lock);
1241         sock->sk->sk_user_data = con;
1242         save_listen_callbacks(sock);
1243         con->rx_action = tcp_accept_from_sock;
1244         con->connect_action = tcp_connect_to_sock;
1245         write_unlock_bh(&sock->sk->sk_callback_lock);
1246
1247         /* Bind to our port */
1248         make_sockaddr(saddr, dlm_config.ci_tcp_port, &addr_len);
1249         result = sock->ops->bind(sock, (struct sockaddr *) saddr, addr_len);
1250         if (result < 0) {
1251                 log_print("Can't bind to port %d", dlm_config.ci_tcp_port);
1252                 sock_release(sock);
1253                 sock = NULL;
1254                 con->sock = NULL;
1255                 goto create_out;
1256         }
1257         result = kernel_setsockopt(sock, SOL_SOCKET, SO_KEEPALIVE,
1258                                  (char *)&one, sizeof(one));
1259         if (result < 0) {
1260                 log_print("Set keepalive failed: %d", result);
1261         }
1262
1263         result = sock->ops->listen(sock, 5);
1264         if (result < 0) {
1265                 log_print("Can't listen on port %d", dlm_config.ci_tcp_port);
1266                 sock_release(sock);
1267                 sock = NULL;
1268                 goto create_out;
1269         }
1270
1271 create_out:
1272         return sock;
1273 }
1274
1275 /* Get local addresses */
1276 static void init_local(void)
1277 {
1278         struct sockaddr_storage sas, *addr;
1279         int i;
1280
1281         dlm_local_count = 0;
1282         for (i = 0; i < DLM_MAX_ADDR_COUNT; i++) {
1283                 if (dlm_our_addr(&sas, i))
1284                         break;
1285
1286                 addr = kmemdup(&sas, sizeof(*addr), GFP_NOFS);
1287                 if (!addr)
1288                         break;
1289                 dlm_local_addr[dlm_local_count++] = addr;
1290         }
1291 }
1292
1293 /* Initialise SCTP socket and bind to all interfaces */
1294 static int sctp_listen_for_all(void)
1295 {
1296         struct socket *sock = NULL;
1297         int result = -EINVAL;
1298         struct connection *con = nodeid2con(0, GFP_NOFS);
1299         int bufsize = NEEDED_RMEM;
1300         int one = 1;
1301
1302         if (!con)
1303                 return -ENOMEM;
1304
1305         log_print("Using SCTP for communications");
1306
1307         result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
1308                                   SOCK_STREAM, IPPROTO_SCTP, &sock);
1309         if (result < 0) {
1310                 log_print("Can't create comms socket, check SCTP is loaded");
1311                 goto out;
1312         }
1313
1314         result = kernel_setsockopt(sock, SOL_SOCKET, SO_RCVBUFFORCE,
1315                                  (char *)&bufsize, sizeof(bufsize));
1316         if (result)
1317                 log_print("Error increasing buffer space on socket %d", result);
1318
1319         result = kernel_setsockopt(sock, SOL_SCTP, SCTP_NODELAY, (char *)&one,
1320                                    sizeof(one));
1321         if (result < 0)
1322                 log_print("Could not set SCTP NODELAY error %d\n", result);
1323
1324         write_lock_bh(&sock->sk->sk_callback_lock);
1325         /* Init con struct */
1326         sock->sk->sk_user_data = con;
1327         save_listen_callbacks(sock);
1328         con->sock = sock;
1329         con->sock->sk->sk_data_ready = lowcomms_data_ready;
1330         con->rx_action = sctp_accept_from_sock;
1331         con->connect_action = sctp_connect_to_sock;
1332
1333         write_unlock_bh(&sock->sk->sk_callback_lock);
1334
1335         /* Bind to all addresses. */
1336         if (sctp_bind_addrs(con, dlm_config.ci_tcp_port))
1337                 goto create_delsock;
1338
1339         result = sock->ops->listen(sock, 5);
1340         if (result < 0) {
1341                 log_print("Can't set socket listening");
1342                 goto create_delsock;
1343         }
1344
1345         return 0;
1346
1347 create_delsock:
1348         sock_release(sock);
1349         con->sock = NULL;
1350 out:
1351         return result;
1352 }
1353
1354 static int tcp_listen_for_all(void)
1355 {
1356         struct socket *sock = NULL;
1357         struct connection *con = nodeid2con(0, GFP_NOFS);
1358         int result = -EINVAL;
1359
1360         if (!con)
1361                 return -ENOMEM;
1362
1363         /* We don't support multi-homed hosts */
1364         if (dlm_local_addr[1] != NULL) {
1365                 log_print("TCP protocol can't handle multi-homed hosts, "
1366                           "try SCTP");
1367                 return -EINVAL;
1368         }
1369
1370         log_print("Using TCP for communications");
1371
1372         sock = tcp_create_listen_sock(con, dlm_local_addr[0]);
1373         if (sock) {
1374                 add_sock(sock, con);
1375                 result = 0;
1376         }
1377         else {
1378                 result = -EADDRINUSE;
1379         }
1380
1381         return result;
1382 }
1383
1384
1385
1386 static struct writequeue_entry *new_writequeue_entry(struct connection *con,
1387                                                      gfp_t allocation)
1388 {
1389         struct writequeue_entry *entry;
1390
1391         entry = kmalloc(sizeof(struct writequeue_entry), allocation);
1392         if (!entry)
1393                 return NULL;
1394
1395         entry->page = alloc_page(allocation);
1396         if (!entry->page) {
1397                 kfree(entry);
1398                 return NULL;
1399         }
1400
1401         entry->offset = 0;
1402         entry->len = 0;
1403         entry->end = 0;
1404         entry->users = 0;
1405         entry->con = con;
1406
1407         return entry;
1408 }
1409
1410 void *dlm_lowcomms_get_buffer(int nodeid, int len, gfp_t allocation, char **ppc)
1411 {
1412         struct connection *con;
1413         struct writequeue_entry *e;
1414         int offset = 0;
1415
1416         con = nodeid2con(nodeid, allocation);
1417         if (!con)
1418                 return NULL;
1419
1420         spin_lock(&con->writequeue_lock);
1421         e = list_entry(con->writequeue.prev, struct writequeue_entry, list);
1422         if ((&e->list == &con->writequeue) ||
1423             (PAGE_SIZE - e->end < len)) {
1424                 e = NULL;
1425         } else {
1426                 offset = e->end;
1427                 e->end += len;
1428                 e->users++;
1429         }
1430         spin_unlock(&con->writequeue_lock);
1431
1432         if (e) {
1433         got_one:
1434                 *ppc = page_address(e->page) + offset;
1435                 return e;
1436         }
1437
1438         e = new_writequeue_entry(con, allocation);
1439         if (e) {
1440                 spin_lock(&con->writequeue_lock);
1441                 offset = e->end;
1442                 e->end += len;
1443                 e->users++;
1444                 list_add_tail(&e->list, &con->writequeue);
1445                 spin_unlock(&con->writequeue_lock);
1446                 goto got_one;
1447         }
1448         return NULL;
1449 }
1450
1451 void dlm_lowcomms_commit_buffer(void *mh)
1452 {
1453         struct writequeue_entry *e = (struct writequeue_entry *)mh;
1454         struct connection *con = e->con;
1455         int users;
1456
1457         spin_lock(&con->writequeue_lock);
1458         users = --e->users;
1459         if (users)
1460                 goto out;
1461         e->len = e->end - e->offset;
1462         spin_unlock(&con->writequeue_lock);
1463
1464         queue_work(send_workqueue, &con->swork);
1465         return;
1466
1467 out:
1468         spin_unlock(&con->writequeue_lock);
1469         return;
1470 }
1471
1472 /* Send a message */
1473 static void send_to_sock(struct connection *con)
1474 {
1475         int ret = 0;
1476         const int msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
1477         struct writequeue_entry *e;
1478         int len, offset;
1479         int count = 0;
1480
1481         mutex_lock(&con->sock_mutex);
1482         if (con->sock == NULL)
1483                 goto out_connect;
1484
1485         spin_lock(&con->writequeue_lock);
1486         for (;;) {
1487                 e = list_entry(con->writequeue.next, struct writequeue_entry,
1488                                list);
1489                 if ((struct list_head *) e == &con->writequeue)
1490                         break;
1491
1492                 len = e->len;
1493                 offset = e->offset;
1494                 BUG_ON(len == 0 && e->users == 0);
1495                 spin_unlock(&con->writequeue_lock);
1496
1497                 ret = 0;
1498                 if (len) {
1499                         ret = kernel_sendpage(con->sock, e->page, offset, len,
1500                                               msg_flags);
1501                         if (ret == -EAGAIN || ret == 0) {
1502                                 if (ret == -EAGAIN &&
1503                                     test_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags) &&
1504                                     !test_and_set_bit(CF_APP_LIMITED, &con->flags)) {
1505                                         /* Notify TCP that we're limited by the
1506                                          * application window size.
1507                                          */
1508                                         set_bit(SOCK_NOSPACE, &con->sock->flags);
1509                                         con->sock->sk->sk_write_pending++;
1510                                 }
1511                                 cond_resched();
1512                                 goto out;
1513                         } else if (ret < 0)
1514                                 goto send_error;
1515                 }
1516
1517                 /* Don't starve people filling buffers */
1518                 if (++count >= MAX_SEND_MSG_COUNT) {
1519                         cond_resched();
1520                         count = 0;
1521                 }
1522
1523                 spin_lock(&con->writequeue_lock);
1524                 writequeue_entry_complete(e, ret);
1525         }
1526         spin_unlock(&con->writequeue_lock);
1527 out:
1528         mutex_unlock(&con->sock_mutex);
1529         return;
1530
1531 send_error:
1532         mutex_unlock(&con->sock_mutex);
1533         close_connection(con, true, false, true);
1534         /* Requeue the send work. When the work daemon runs again, it will try
1535            a new connection, then call this function again. */
1536         queue_work(send_workqueue, &con->swork);
1537         return;
1538
1539 out_connect:
1540         mutex_unlock(&con->sock_mutex);
1541         queue_work(send_workqueue, &con->swork);
1542         cond_resched();
1543 }
1544
1545 static void clean_one_writequeue(struct connection *con)
1546 {
1547         struct writequeue_entry *e, *safe;
1548
1549         spin_lock(&con->writequeue_lock);
1550         list_for_each_entry_safe(e, safe, &con->writequeue, list) {
1551                 list_del(&e->list);
1552                 free_entry(e);
1553         }
1554         spin_unlock(&con->writequeue_lock);
1555 }
1556
1557 /* Called from recovery when it knows that a node has
1558    left the cluster */
1559 int dlm_lowcomms_close(int nodeid)
1560 {
1561         struct connection *con;
1562         struct dlm_node_addr *na;
1563
1564         log_print("closing connection to node %d", nodeid);
1565         con = nodeid2con(nodeid, 0);
1566         if (con) {
1567                 set_bit(CF_CLOSE, &con->flags);
1568                 close_connection(con, true, true, true);
1569                 clean_one_writequeue(con);
1570         }
1571
1572         spin_lock(&dlm_node_addrs_spin);
1573         na = find_node_addr(nodeid);
1574         if (na) {
1575                 list_del(&na->list);
1576                 while (na->addr_count--)
1577                         kfree(na->addr[na->addr_count]);
1578                 kfree(na);
1579         }
1580         spin_unlock(&dlm_node_addrs_spin);
1581
1582         return 0;
1583 }
1584
1585 /* Receive workqueue function */
1586 static void process_recv_sockets(struct work_struct *work)
1587 {
1588         struct connection *con = container_of(work, struct connection, rwork);
1589         int err;
1590
1591         clear_bit(CF_READ_PENDING, &con->flags);
1592         do {
1593                 err = con->rx_action(con);
1594         } while (!err);
1595 }
1596
1597 /* Send workqueue function */
1598 static void process_send_sockets(struct work_struct *work)
1599 {
1600         struct connection *con = container_of(work, struct connection, swork);
1601
1602         clear_bit(CF_WRITE_PENDING, &con->flags);
1603         if (con->sock == NULL) /* not mutex protected so check it inside too */
1604                 con->connect_action(con);
1605         if (!list_empty(&con->writequeue))
1606                 send_to_sock(con);
1607 }
1608
1609
1610 /* Discard all entries on the write queues */
1611 static void clean_writequeues(void)
1612 {
1613         foreach_conn(clean_one_writequeue);
1614 }
1615
1616 static void work_stop(void)
1617 {
1618         destroy_workqueue(recv_workqueue);
1619         destroy_workqueue(send_workqueue);
1620 }
1621
1622 static int work_start(void)
1623 {
1624         recv_workqueue = alloc_workqueue("dlm_recv",
1625                                          WQ_UNBOUND | WQ_MEM_RECLAIM, 1);
1626         if (!recv_workqueue) {
1627                 log_print("can't start dlm_recv");
1628                 return -ENOMEM;
1629         }
1630
1631         send_workqueue = alloc_workqueue("dlm_send",
1632                                          WQ_UNBOUND | WQ_MEM_RECLAIM, 1);
1633         if (!send_workqueue) {
1634                 log_print("can't start dlm_send");
1635                 destroy_workqueue(recv_workqueue);
1636                 return -ENOMEM;
1637         }
1638
1639         return 0;
1640 }
1641
1642 static void _stop_conn(struct connection *con, bool and_other)
1643 {
1644         mutex_lock(&con->sock_mutex);
1645         set_bit(CF_CLOSE, &con->flags);
1646         set_bit(CF_READ_PENDING, &con->flags);
1647         set_bit(CF_WRITE_PENDING, &con->flags);
1648         if (con->sock && con->sock->sk) {
1649                 write_lock_bh(&con->sock->sk->sk_callback_lock);
1650                 con->sock->sk->sk_user_data = NULL;
1651                 write_unlock_bh(&con->sock->sk->sk_callback_lock);
1652         }
1653         if (con->othercon && and_other)
1654                 _stop_conn(con->othercon, false);
1655         mutex_unlock(&con->sock_mutex);
1656 }
1657
1658 static void stop_conn(struct connection *con)
1659 {
1660         _stop_conn(con, true);
1661 }
1662
1663 static void free_conn(struct connection *con)
1664 {
1665         close_connection(con, true, true, true);
1666         if (con->othercon)
1667                 kmem_cache_free(con_cache, con->othercon);
1668         hlist_del(&con->list);
1669         kmem_cache_free(con_cache, con);
1670 }
1671
1672 static void work_flush(void)
1673 {
1674         int ok;
1675         int i;
1676         struct hlist_node *n;
1677         struct connection *con;
1678
1679         flush_workqueue(recv_workqueue);
1680         flush_workqueue(send_workqueue);
1681         do {
1682                 ok = 1;
1683                 foreach_conn(stop_conn);
1684                 flush_workqueue(recv_workqueue);
1685                 flush_workqueue(send_workqueue);
1686                 for (i = 0; i < CONN_HASH_SIZE && ok; i++) {
1687                         hlist_for_each_entry_safe(con, n,
1688                                                   &connection_hash[i], list) {
1689                                 ok &= test_bit(CF_READ_PENDING, &con->flags);
1690                                 ok &= test_bit(CF_WRITE_PENDING, &con->flags);
1691                                 if (con->othercon) {
1692                                         ok &= test_bit(CF_READ_PENDING,
1693                                                        &con->othercon->flags);
1694                                         ok &= test_bit(CF_WRITE_PENDING,
1695                                                        &con->othercon->flags);
1696                                 }
1697                         }
1698                 }
1699         } while (!ok);
1700 }
1701
1702 void dlm_lowcomms_stop(void)
1703 {
1704         /* Set all the flags to prevent any
1705            socket activity.
1706         */
1707         mutex_lock(&connections_lock);
1708         dlm_allow_conn = 0;
1709         mutex_unlock(&connections_lock);
1710         work_flush();
1711         clean_writequeues();
1712         foreach_conn(free_conn);
1713         work_stop();
1714
1715         kmem_cache_destroy(con_cache);
1716 }
1717
1718 int dlm_lowcomms_start(void)
1719 {
1720         int error = -EINVAL;
1721         struct connection *con;
1722         int i;
1723
1724         for (i = 0; i < CONN_HASH_SIZE; i++)
1725                 INIT_HLIST_HEAD(&connection_hash[i]);
1726
1727         init_local();
1728         if (!dlm_local_count) {
1729                 error = -ENOTCONN;
1730                 log_print("no local IP address has been set");
1731                 goto fail;
1732         }
1733
1734         error = -ENOMEM;
1735         con_cache = kmem_cache_create("dlm_conn", sizeof(struct connection),
1736                                       __alignof__(struct connection), 0,
1737                                       NULL);
1738         if (!con_cache)
1739                 goto fail;
1740
1741         error = work_start();
1742         if (error)
1743                 goto fail_destroy;
1744
1745         dlm_allow_conn = 1;
1746
1747         /* Start listening */
1748         if (dlm_config.ci_protocol == 0)
1749                 error = tcp_listen_for_all();
1750         else
1751                 error = sctp_listen_for_all();
1752         if (error)
1753                 goto fail_unlisten;
1754
1755         return 0;
1756
1757 fail_unlisten:
1758         dlm_allow_conn = 0;
1759         con = nodeid2con(0,0);
1760         if (con) {
1761                 close_connection(con, false, true, true);
1762                 kmem_cache_free(con_cache, con);
1763         }
1764 fail_destroy:
1765         kmem_cache_destroy(con_cache);
1766 fail:
1767         return error;
1768 }
1769
1770 void dlm_lowcomms_exit(void)
1771 {
1772         struct dlm_node_addr *na, *safe;
1773
1774         spin_lock(&dlm_node_addrs_spin);
1775         list_for_each_entry_safe(na, safe, &dlm_node_addrs, list) {
1776                 list_del(&na->list);
1777                 while (na->addr_count--)
1778                         kfree(na->addr[na->addr_count]);
1779                 kfree(na);
1780         }
1781         spin_unlock(&dlm_node_addrs_spin);
1782 }