fs: dlm: rework receive handling
[linux-2.6-microblaze.git] / fs / dlm / lowcomms.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /******************************************************************************
3 *******************************************************************************
4 **
5 **  Copyright (C) Sistina Software, Inc.  1997-2003  All rights reserved.
6 **  Copyright (C) 2004-2009 Red Hat, Inc.  All rights reserved.
7 **
8 **
9 *******************************************************************************
10 ******************************************************************************/
11
12 /*
13  * lowcomms.c
14  *
15  * This is the "low-level" comms layer.
16  *
17  * It is responsible for sending/receiving messages
18  * from other nodes in the cluster.
19  *
20  * Cluster nodes are referred to by their nodeids. nodeids are
21  * simply 32 bit numbers to the locking module - if they need to
22  * be expanded for the cluster infrastructure then that is its
23  * responsibility. It is this layer's
24  * responsibility to resolve these into IP address or
25  * whatever it needs for inter-node communication.
26  *
27  * The comms level is two kernel threads that deal mainly with
28  * the receiving of messages from other nodes and passing them
29  * up to the mid-level comms layer (which understands the
30  * message format) for execution by the locking core, and
31  * a send thread which does all the setting up of connections
32  * to remote nodes and the sending of data. Threads are not allowed
33  * to send their own data because it may cause them to wait in times
34  * of high load. Also, this way, the sending thread can collect together
35  * messages bound for one node and send them in one block.
36  *
37  * lowcomms will choose to use either TCP or SCTP as its transport layer
38  * depending on the configuration variable 'protocol'. This should be set
39  * to 0 (default) for TCP or 1 for SCTP. It should be configured using a
40  * cluster-wide mechanism as it must be the same on all nodes of the cluster
41  * for the DLM to function.
42  *
43  */
44
45 #include <asm/ioctls.h>
46 #include <net/sock.h>
47 #include <net/tcp.h>
48 #include <linux/pagemap.h>
49 #include <linux/file.h>
50 #include <linux/mutex.h>
51 #include <linux/sctp.h>
52 #include <linux/slab.h>
53 #include <net/sctp/sctp.h>
54 #include <net/ipv6.h>
55
56 #include "dlm_internal.h"
57 #include "lowcomms.h"
58 #include "midcomms.h"
59 #include "config.h"
60
61 #define NEEDED_RMEM (4*1024*1024)
62 #define CONN_HASH_SIZE 32
63
64 /* Number of messages to send before rescheduling */
65 #define MAX_SEND_MSG_COUNT 25
66 #define DLM_SHUTDOWN_WAIT_TIMEOUT msecs_to_jiffies(10000)
67
68 struct connection {
69         struct socket *sock;    /* NULL if not connected */
70         uint32_t nodeid;        /* So we know who we are in the list */
71         struct mutex sock_mutex;
72         unsigned long flags;
73 #define CF_READ_PENDING 1
74 #define CF_WRITE_PENDING 2
75 #define CF_INIT_PENDING 4
76 #define CF_IS_OTHERCON 5
77 #define CF_CLOSE 6
78 #define CF_APP_LIMITED 7
79 #define CF_CLOSING 8
80 #define CF_SHUTDOWN 9
81         struct list_head writequeue;  /* List of outgoing writequeue_entries */
82         spinlock_t writequeue_lock;
83         int (*rx_action) (struct connection *); /* What to do when active */
84         void (*connect_action) (struct connection *);   /* What to do to connect */
85         void (*shutdown_action)(struct connection *con); /* What to do to shutdown */
86         int retries;
87 #define MAX_CONNECT_RETRIES 3
88         struct hlist_node list;
89         struct connection *othercon;
90         struct work_struct rwork; /* Receive workqueue */
91         struct work_struct swork; /* Send workqueue */
92         wait_queue_head_t shutdown_wait; /* wait for graceful shutdown */
93         unsigned char *rx_buf;
94         int rx_buflen;
95         int rx_leftover;
96         struct rcu_head rcu;
97 };
98 #define sock2con(x) ((struct connection *)(x)->sk_user_data)
99
100 /* An entry waiting to be sent */
101 struct writequeue_entry {
102         struct list_head list;
103         struct page *page;
104         int offset;
105         int len;
106         int end;
107         int users;
108         struct connection *con;
109 };
110
111 struct dlm_node_addr {
112         struct list_head list;
113         int nodeid;
114         int addr_count;
115         int curr_addr_index;
116         struct sockaddr_storage *addr[DLM_MAX_ADDR_COUNT];
117 };
118
119 static struct listen_sock_callbacks {
120         void (*sk_error_report)(struct sock *);
121         void (*sk_data_ready)(struct sock *);
122         void (*sk_state_change)(struct sock *);
123         void (*sk_write_space)(struct sock *);
124 } listen_sock;
125
126 static LIST_HEAD(dlm_node_addrs);
127 static DEFINE_SPINLOCK(dlm_node_addrs_spin);
128
129 static struct sockaddr_storage *dlm_local_addr[DLM_MAX_ADDR_COUNT];
130 static int dlm_local_count;
131 static int dlm_allow_conn;
132
133 /* Work queues */
134 static struct workqueue_struct *recv_workqueue;
135 static struct workqueue_struct *send_workqueue;
136
137 static struct hlist_head connection_hash[CONN_HASH_SIZE];
138 static DEFINE_SPINLOCK(connections_lock);
139 DEFINE_STATIC_SRCU(connections_srcu);
140
141 static void process_recv_sockets(struct work_struct *work);
142 static void process_send_sockets(struct work_struct *work);
143
144
145 /* This is deliberately very simple because most clusters have simple
146    sequential nodeids, so we should be able to go straight to a connection
147    struct in the array */
148 static inline int nodeid_hash(int nodeid)
149 {
150         return nodeid & (CONN_HASH_SIZE-1);
151 }
152
153 static struct connection *__find_con(int nodeid)
154 {
155         int r, idx;
156         struct connection *con;
157
158         r = nodeid_hash(nodeid);
159
160         idx = srcu_read_lock(&connections_srcu);
161         hlist_for_each_entry_rcu(con, &connection_hash[r], list) {
162                 if (con->nodeid == nodeid) {
163                         srcu_read_unlock(&connections_srcu, idx);
164                         return con;
165                 }
166         }
167         srcu_read_unlock(&connections_srcu, idx);
168
169         return NULL;
170 }
171
172 /*
173  * If 'allocation' is zero then we don't attempt to create a new
174  * connection structure for this node.
175  */
176 static struct connection *nodeid2con(int nodeid, gfp_t alloc)
177 {
178         struct connection *con = NULL;
179         int r;
180
181         con = __find_con(nodeid);
182         if (con || !alloc)
183                 return con;
184
185         con = kzalloc(sizeof(*con), alloc);
186         if (!con)
187                 return NULL;
188
189         con->rx_buflen = dlm_config.ci_buffer_size;
190         con->rx_buf = kmalloc(con->rx_buflen, GFP_NOFS);
191         if (!con->rx_buf) {
192                 kfree(con);
193                 return NULL;
194         }
195
196         con->nodeid = nodeid;
197         mutex_init(&con->sock_mutex);
198         INIT_LIST_HEAD(&con->writequeue);
199         spin_lock_init(&con->writequeue_lock);
200         INIT_WORK(&con->swork, process_send_sockets);
201         INIT_WORK(&con->rwork, process_recv_sockets);
202         init_waitqueue_head(&con->shutdown_wait);
203
204         /* Setup action pointers for child sockets */
205         if (con->nodeid) {
206                 struct connection *zerocon = __find_con(0);
207
208                 con->connect_action = zerocon->connect_action;
209                 if (!con->rx_action)
210                         con->rx_action = zerocon->rx_action;
211         }
212
213         r = nodeid_hash(nodeid);
214
215         spin_lock(&connections_lock);
216         hlist_add_head_rcu(&con->list, &connection_hash[r]);
217         spin_unlock(&connections_lock);
218
219         return con;
220 }
221
222 /* Loop round all connections */
223 static void foreach_conn(void (*conn_func)(struct connection *c))
224 {
225         int i, idx;
226         struct connection *con;
227
228         idx = srcu_read_lock(&connections_srcu);
229         for (i = 0; i < CONN_HASH_SIZE; i++) {
230                 hlist_for_each_entry_rcu(con, &connection_hash[i], list)
231                         conn_func(con);
232         }
233         srcu_read_unlock(&connections_srcu, idx);
234 }
235
236 static struct dlm_node_addr *find_node_addr(int nodeid)
237 {
238         struct dlm_node_addr *na;
239
240         list_for_each_entry(na, &dlm_node_addrs, list) {
241                 if (na->nodeid == nodeid)
242                         return na;
243         }
244         return NULL;
245 }
246
247 static int addr_compare(struct sockaddr_storage *x, struct sockaddr_storage *y)
248 {
249         switch (x->ss_family) {
250         case AF_INET: {
251                 struct sockaddr_in *sinx = (struct sockaddr_in *)x;
252                 struct sockaddr_in *siny = (struct sockaddr_in *)y;
253                 if (sinx->sin_addr.s_addr != siny->sin_addr.s_addr)
254                         return 0;
255                 if (sinx->sin_port != siny->sin_port)
256                         return 0;
257                 break;
258         }
259         case AF_INET6: {
260                 struct sockaddr_in6 *sinx = (struct sockaddr_in6 *)x;
261                 struct sockaddr_in6 *siny = (struct sockaddr_in6 *)y;
262                 if (!ipv6_addr_equal(&sinx->sin6_addr, &siny->sin6_addr))
263                         return 0;
264                 if (sinx->sin6_port != siny->sin6_port)
265                         return 0;
266                 break;
267         }
268         default:
269                 return 0;
270         }
271         return 1;
272 }
273
274 static int nodeid_to_addr(int nodeid, struct sockaddr_storage *sas_out,
275                           struct sockaddr *sa_out, bool try_new_addr)
276 {
277         struct sockaddr_storage sas;
278         struct dlm_node_addr *na;
279
280         if (!dlm_local_count)
281                 return -1;
282
283         spin_lock(&dlm_node_addrs_spin);
284         na = find_node_addr(nodeid);
285         if (na && na->addr_count) {
286                 memcpy(&sas, na->addr[na->curr_addr_index],
287                        sizeof(struct sockaddr_storage));
288
289                 if (try_new_addr) {
290                         na->curr_addr_index++;
291                         if (na->curr_addr_index == na->addr_count)
292                                 na->curr_addr_index = 0;
293                 }
294         }
295         spin_unlock(&dlm_node_addrs_spin);
296
297         if (!na)
298                 return -EEXIST;
299
300         if (!na->addr_count)
301                 return -ENOENT;
302
303         if (sas_out)
304                 memcpy(sas_out, &sas, sizeof(struct sockaddr_storage));
305
306         if (!sa_out)
307                 return 0;
308
309         if (dlm_local_addr[0]->ss_family == AF_INET) {
310                 struct sockaddr_in *in4  = (struct sockaddr_in *) &sas;
311                 struct sockaddr_in *ret4 = (struct sockaddr_in *) sa_out;
312                 ret4->sin_addr.s_addr = in4->sin_addr.s_addr;
313         } else {
314                 struct sockaddr_in6 *in6  = (struct sockaddr_in6 *) &sas;
315                 struct sockaddr_in6 *ret6 = (struct sockaddr_in6 *) sa_out;
316                 ret6->sin6_addr = in6->sin6_addr;
317         }
318
319         return 0;
320 }
321
322 static int addr_to_nodeid(struct sockaddr_storage *addr, int *nodeid)
323 {
324         struct dlm_node_addr *na;
325         int rv = -EEXIST;
326         int addr_i;
327
328         spin_lock(&dlm_node_addrs_spin);
329         list_for_each_entry(na, &dlm_node_addrs, list) {
330                 if (!na->addr_count)
331                         continue;
332
333                 for (addr_i = 0; addr_i < na->addr_count; addr_i++) {
334                         if (addr_compare(na->addr[addr_i], addr)) {
335                                 *nodeid = na->nodeid;
336                                 rv = 0;
337                                 goto unlock;
338                         }
339                 }
340         }
341 unlock:
342         spin_unlock(&dlm_node_addrs_spin);
343         return rv;
344 }
345
346 int dlm_lowcomms_addr(int nodeid, struct sockaddr_storage *addr, int len)
347 {
348         struct sockaddr_storage *new_addr;
349         struct dlm_node_addr *new_node, *na;
350
351         new_node = kzalloc(sizeof(struct dlm_node_addr), GFP_NOFS);
352         if (!new_node)
353                 return -ENOMEM;
354
355         new_addr = kzalloc(sizeof(struct sockaddr_storage), GFP_NOFS);
356         if (!new_addr) {
357                 kfree(new_node);
358                 return -ENOMEM;
359         }
360
361         memcpy(new_addr, addr, len);
362
363         spin_lock(&dlm_node_addrs_spin);
364         na = find_node_addr(nodeid);
365         if (!na) {
366                 new_node->nodeid = nodeid;
367                 new_node->addr[0] = new_addr;
368                 new_node->addr_count = 1;
369                 list_add(&new_node->list, &dlm_node_addrs);
370                 spin_unlock(&dlm_node_addrs_spin);
371                 return 0;
372         }
373
374         if (na->addr_count >= DLM_MAX_ADDR_COUNT) {
375                 spin_unlock(&dlm_node_addrs_spin);
376                 kfree(new_addr);
377                 kfree(new_node);
378                 return -ENOSPC;
379         }
380
381         na->addr[na->addr_count++] = new_addr;
382         spin_unlock(&dlm_node_addrs_spin);
383         kfree(new_node);
384         return 0;
385 }
386
387 /* Data available on socket or listen socket received a connect */
388 static void lowcomms_data_ready(struct sock *sk)
389 {
390         struct connection *con;
391
392         read_lock_bh(&sk->sk_callback_lock);
393         con = sock2con(sk);
394         if (con && !test_and_set_bit(CF_READ_PENDING, &con->flags))
395                 queue_work(recv_workqueue, &con->rwork);
396         read_unlock_bh(&sk->sk_callback_lock);
397 }
398
399 static void lowcomms_write_space(struct sock *sk)
400 {
401         struct connection *con;
402
403         read_lock_bh(&sk->sk_callback_lock);
404         con = sock2con(sk);
405         if (!con)
406                 goto out;
407
408         clear_bit(SOCK_NOSPACE, &con->sock->flags);
409
410         if (test_and_clear_bit(CF_APP_LIMITED, &con->flags)) {
411                 con->sock->sk->sk_write_pending--;
412                 clear_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags);
413         }
414
415         queue_work(send_workqueue, &con->swork);
416 out:
417         read_unlock_bh(&sk->sk_callback_lock);
418 }
419
420 static inline void lowcomms_connect_sock(struct connection *con)
421 {
422         if (test_bit(CF_CLOSE, &con->flags))
423                 return;
424         queue_work(send_workqueue, &con->swork);
425         cond_resched();
426 }
427
428 static void lowcomms_state_change(struct sock *sk)
429 {
430         /* SCTP layer is not calling sk_data_ready when the connection
431          * is done, so we catch the signal through here. Also, it
432          * doesn't switch socket state when entering shutdown, so we
433          * skip the write in that case.
434          */
435         if (sk->sk_shutdown) {
436                 if (sk->sk_shutdown == RCV_SHUTDOWN)
437                         lowcomms_data_ready(sk);
438         } else if (sk->sk_state == TCP_ESTABLISHED) {
439                 lowcomms_write_space(sk);
440         }
441 }
442
443 int dlm_lowcomms_connect_node(int nodeid)
444 {
445         struct connection *con;
446
447         if (nodeid == dlm_our_nodeid())
448                 return 0;
449
450         con = nodeid2con(nodeid, GFP_NOFS);
451         if (!con)
452                 return -ENOMEM;
453         lowcomms_connect_sock(con);
454         return 0;
455 }
456
457 static void lowcomms_error_report(struct sock *sk)
458 {
459         struct connection *con;
460         struct sockaddr_storage saddr;
461         void (*orig_report)(struct sock *) = NULL;
462
463         read_lock_bh(&sk->sk_callback_lock);
464         con = sock2con(sk);
465         if (con == NULL)
466                 goto out;
467
468         orig_report = listen_sock.sk_error_report;
469         if (con->sock == NULL ||
470             kernel_getpeername(con->sock, (struct sockaddr *)&saddr) < 0) {
471                 printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
472                                    "sending to node %d, port %d, "
473                                    "sk_err=%d/%d\n", dlm_our_nodeid(),
474                                    con->nodeid, dlm_config.ci_tcp_port,
475                                    sk->sk_err, sk->sk_err_soft);
476         } else if (saddr.ss_family == AF_INET) {
477                 struct sockaddr_in *sin4 = (struct sockaddr_in *)&saddr;
478
479                 printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
480                                    "sending to node %d at %pI4, port %d, "
481                                    "sk_err=%d/%d\n", dlm_our_nodeid(),
482                                    con->nodeid, &sin4->sin_addr.s_addr,
483                                    dlm_config.ci_tcp_port, sk->sk_err,
484                                    sk->sk_err_soft);
485         } else {
486                 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&saddr;
487
488                 printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
489                                    "sending to node %d at %u.%u.%u.%u, "
490                                    "port %d, sk_err=%d/%d\n", dlm_our_nodeid(),
491                                    con->nodeid, sin6->sin6_addr.s6_addr32[0],
492                                    sin6->sin6_addr.s6_addr32[1],
493                                    sin6->sin6_addr.s6_addr32[2],
494                                    sin6->sin6_addr.s6_addr32[3],
495                                    dlm_config.ci_tcp_port, sk->sk_err,
496                                    sk->sk_err_soft);
497         }
498 out:
499         read_unlock_bh(&sk->sk_callback_lock);
500         if (orig_report)
501                 orig_report(sk);
502 }
503
504 /* Note: sk_callback_lock must be locked before calling this function. */
505 static void save_listen_callbacks(struct socket *sock)
506 {
507         struct sock *sk = sock->sk;
508
509         listen_sock.sk_data_ready = sk->sk_data_ready;
510         listen_sock.sk_state_change = sk->sk_state_change;
511         listen_sock.sk_write_space = sk->sk_write_space;
512         listen_sock.sk_error_report = sk->sk_error_report;
513 }
514
515 static void restore_callbacks(struct socket *sock)
516 {
517         struct sock *sk = sock->sk;
518
519         write_lock_bh(&sk->sk_callback_lock);
520         sk->sk_user_data = NULL;
521         sk->sk_data_ready = listen_sock.sk_data_ready;
522         sk->sk_state_change = listen_sock.sk_state_change;
523         sk->sk_write_space = listen_sock.sk_write_space;
524         sk->sk_error_report = listen_sock.sk_error_report;
525         write_unlock_bh(&sk->sk_callback_lock);
526 }
527
528 /* Make a socket active */
529 static void add_sock(struct socket *sock, struct connection *con)
530 {
531         struct sock *sk = sock->sk;
532
533         write_lock_bh(&sk->sk_callback_lock);
534         con->sock = sock;
535
536         sk->sk_user_data = con;
537         /* Install a data_ready callback */
538         sk->sk_data_ready = lowcomms_data_ready;
539         sk->sk_write_space = lowcomms_write_space;
540         sk->sk_state_change = lowcomms_state_change;
541         sk->sk_allocation = GFP_NOFS;
542         sk->sk_error_report = lowcomms_error_report;
543         write_unlock_bh(&sk->sk_callback_lock);
544 }
545
546 /* Add the port number to an IPv6 or 4 sockaddr and return the address
547    length */
548 static void make_sockaddr(struct sockaddr_storage *saddr, uint16_t port,
549                           int *addr_len)
550 {
551         saddr->ss_family =  dlm_local_addr[0]->ss_family;
552         if (saddr->ss_family == AF_INET) {
553                 struct sockaddr_in *in4_addr = (struct sockaddr_in *)saddr;
554                 in4_addr->sin_port = cpu_to_be16(port);
555                 *addr_len = sizeof(struct sockaddr_in);
556                 memset(&in4_addr->sin_zero, 0, sizeof(in4_addr->sin_zero));
557         } else {
558                 struct sockaddr_in6 *in6_addr = (struct sockaddr_in6 *)saddr;
559                 in6_addr->sin6_port = cpu_to_be16(port);
560                 *addr_len = sizeof(struct sockaddr_in6);
561         }
562         memset((char *)saddr + *addr_len, 0, sizeof(struct sockaddr_storage) - *addr_len);
563 }
564
565 /* Close a remote connection and tidy up */
566 static void close_connection(struct connection *con, bool and_other,
567                              bool tx, bool rx)
568 {
569         bool closing = test_and_set_bit(CF_CLOSING, &con->flags);
570
571         if (tx && !closing && cancel_work_sync(&con->swork)) {
572                 log_print("canceled swork for node %d", con->nodeid);
573                 clear_bit(CF_WRITE_PENDING, &con->flags);
574         }
575         if (rx && !closing && cancel_work_sync(&con->rwork)) {
576                 log_print("canceled rwork for node %d", con->nodeid);
577                 clear_bit(CF_READ_PENDING, &con->flags);
578         }
579
580         mutex_lock(&con->sock_mutex);
581         if (con->sock) {
582                 restore_callbacks(con->sock);
583                 sock_release(con->sock);
584                 con->sock = NULL;
585         }
586         if (con->othercon && and_other) {
587                 /* Will only re-enter once. */
588                 close_connection(con->othercon, false, true, true);
589         }
590
591         con->rx_leftover = 0;
592         con->retries = 0;
593         mutex_unlock(&con->sock_mutex);
594         clear_bit(CF_CLOSING, &con->flags);
595 }
596
597 static void shutdown_connection(struct connection *con)
598 {
599         int ret;
600
601         if (cancel_work_sync(&con->swork)) {
602                 log_print("canceled swork for node %d", con->nodeid);
603                 clear_bit(CF_WRITE_PENDING, &con->flags);
604         }
605
606         mutex_lock(&con->sock_mutex);
607         /* nothing to shutdown */
608         if (!con->sock) {
609                 mutex_unlock(&con->sock_mutex);
610                 return;
611         }
612
613         set_bit(CF_SHUTDOWN, &con->flags);
614         ret = kernel_sock_shutdown(con->sock, SHUT_WR);
615         mutex_unlock(&con->sock_mutex);
616         if (ret) {
617                 log_print("Connection %p failed to shutdown: %d will force close",
618                           con, ret);
619                 goto force_close;
620         } else {
621                 ret = wait_event_timeout(con->shutdown_wait,
622                                          !test_bit(CF_SHUTDOWN, &con->flags),
623                                          DLM_SHUTDOWN_WAIT_TIMEOUT);
624                 if (ret == 0) {
625                         log_print("Connection %p shutdown timed out, will force close",
626                                   con);
627                         goto force_close;
628                 }
629         }
630
631         return;
632
633 force_close:
634         clear_bit(CF_SHUTDOWN, &con->flags);
635         close_connection(con, false, true, true);
636 }
637
638 static void dlm_tcp_shutdown(struct connection *con)
639 {
640         if (con->othercon)
641                 shutdown_connection(con->othercon);
642         shutdown_connection(con);
643 }
644
645 static int con_realloc_receive_buf(struct connection *con, int newlen)
646 {
647         unsigned char *newbuf;
648
649         newbuf = kmalloc(newlen, GFP_NOFS);
650         if (!newbuf)
651                 return -ENOMEM;
652
653         /* copy any leftover from last receive */
654         if (con->rx_leftover)
655                 memmove(newbuf, con->rx_buf, con->rx_leftover);
656
657         /* swap to new buffer space */
658         kfree(con->rx_buf);
659         con->rx_buflen = newlen;
660         con->rx_buf = newbuf;
661
662         return 0;
663 }
664
665 /* Data received from remote end */
666 static int receive_from_sock(struct connection *con)
667 {
668         int call_again_soon = 0;
669         struct msghdr msg;
670         struct kvec iov;
671         int ret, buflen;
672
673         mutex_lock(&con->sock_mutex);
674
675         if (con->sock == NULL) {
676                 ret = -EAGAIN;
677                 goto out_close;
678         }
679
680         if (con->nodeid == 0) {
681                 ret = -EINVAL;
682                 goto out_close;
683         }
684
685         /* realloc if we get new buffer size to read out */
686         buflen = dlm_config.ci_buffer_size;
687         if (con->rx_buflen != buflen && con->rx_leftover <= buflen) {
688                 ret = con_realloc_receive_buf(con, buflen);
689                 if (ret < 0)
690                         goto out_resched;
691         }
692
693         /* calculate new buffer parameter regarding last receive and
694          * possible leftover bytes
695          */
696         iov.iov_base = con->rx_buf + con->rx_leftover;
697         iov.iov_len = con->rx_buflen - con->rx_leftover;
698
699         memset(&msg, 0, sizeof(msg));
700         msg.msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
701         ret = kernel_recvmsg(con->sock, &msg, &iov, 1, iov.iov_len,
702                              msg.msg_flags);
703         if (ret <= 0)
704                 goto out_close;
705         else if (ret == iov.iov_len)
706                 call_again_soon = 1;
707
708         /* new buflen according readed bytes and leftover from last receive */
709         buflen = ret + con->rx_leftover;
710         ret = dlm_process_incoming_buffer(con->nodeid, con->rx_buf, buflen);
711         if (ret < 0)
712                 goto out_close;
713
714         /* calculate leftover bytes from process and put it into begin of
715          * the receive buffer, so next receive we have the full message
716          * at the start address of the receive buffer.
717          */
718         con->rx_leftover = buflen - ret;
719         if (con->rx_leftover) {
720                 memmove(con->rx_buf, con->rx_buf + ret,
721                         con->rx_leftover);
722                 call_again_soon = true;
723         }
724
725         if (call_again_soon)
726                 goto out_resched;
727
728         mutex_unlock(&con->sock_mutex);
729         return 0;
730
731 out_resched:
732         if (!test_and_set_bit(CF_READ_PENDING, &con->flags))
733                 queue_work(recv_workqueue, &con->rwork);
734         mutex_unlock(&con->sock_mutex);
735         return -EAGAIN;
736
737 out_close:
738         mutex_unlock(&con->sock_mutex);
739         if (ret != -EAGAIN) {
740                 /* Reconnect when there is something to send */
741                 close_connection(con, false, true, false);
742                 if (ret == 0) {
743                         log_print("connection %p got EOF from %d",
744                                   con, con->nodeid);
745                         /* handling for tcp shutdown */
746                         clear_bit(CF_SHUTDOWN, &con->flags);
747                         wake_up(&con->shutdown_wait);
748                         /* signal to breaking receive worker */
749                         ret = -1;
750                 }
751         }
752         return ret;
753 }
754
755 /* Listening socket is busy, accept a connection */
756 static int accept_from_sock(struct connection *con)
757 {
758         int result;
759         struct sockaddr_storage peeraddr;
760         struct socket *newsock;
761         int len;
762         int nodeid;
763         struct connection *newcon;
764         struct connection *addcon;
765         unsigned int mark;
766
767         if (!dlm_allow_conn) {
768                 return -1;
769         }
770
771         mutex_lock_nested(&con->sock_mutex, 0);
772
773         if (!con->sock) {
774                 mutex_unlock(&con->sock_mutex);
775                 return -ENOTCONN;
776         }
777
778         result = kernel_accept(con->sock, &newsock, O_NONBLOCK);
779         if (result < 0)
780                 goto accept_err;
781
782         /* Get the connected socket's peer */
783         memset(&peeraddr, 0, sizeof(peeraddr));
784         len = newsock->ops->getname(newsock, (struct sockaddr *)&peeraddr, 2);
785         if (len < 0) {
786                 result = -ECONNABORTED;
787                 goto accept_err;
788         }
789
790         /* Get the new node's NODEID */
791         make_sockaddr(&peeraddr, 0, &len);
792         if (addr_to_nodeid(&peeraddr, &nodeid)) {
793                 unsigned char *b=(unsigned char *)&peeraddr;
794                 log_print("connect from non cluster node");
795                 print_hex_dump_bytes("ss: ", DUMP_PREFIX_NONE, 
796                                      b, sizeof(struct sockaddr_storage));
797                 sock_release(newsock);
798                 mutex_unlock(&con->sock_mutex);
799                 return -1;
800         }
801
802         dlm_comm_mark(nodeid, &mark);
803         sock_set_mark(newsock->sk, mark);
804
805         log_print("got connection from %d", nodeid);
806
807         /*  Check to see if we already have a connection to this node. This
808          *  could happen if the two nodes initiate a connection at roughly
809          *  the same time and the connections cross on the wire.
810          *  In this case we store the incoming one in "othercon"
811          */
812         newcon = nodeid2con(nodeid, GFP_NOFS);
813         if (!newcon) {
814                 result = -ENOMEM;
815                 goto accept_err;
816         }
817         mutex_lock_nested(&newcon->sock_mutex, 1);
818         if (newcon->sock) {
819                 struct connection *othercon = newcon->othercon;
820
821                 if (!othercon) {
822                         othercon = kzalloc(sizeof(*othercon), GFP_NOFS);
823                         if (!othercon) {
824                                 log_print("failed to allocate incoming socket");
825                                 mutex_unlock(&newcon->sock_mutex);
826                                 result = -ENOMEM;
827                                 goto accept_err;
828                         }
829
830                         othercon->rx_buflen = dlm_config.ci_buffer_size;
831                         othercon->rx_buf = kmalloc(othercon->rx_buflen, GFP_NOFS);
832                         if (!othercon->rx_buf) {
833                                 mutex_unlock(&newcon->sock_mutex);
834                                 kfree(othercon);
835                                 log_print("failed to allocate incoming socket receive buffer");
836                                 result = -ENOMEM;
837                                 goto accept_err;
838                         }
839
840                         othercon->nodeid = nodeid;
841                         othercon->rx_action = receive_from_sock;
842                         mutex_init(&othercon->sock_mutex);
843                         INIT_LIST_HEAD(&othercon->writequeue);
844                         spin_lock_init(&othercon->writequeue_lock);
845                         INIT_WORK(&othercon->swork, process_send_sockets);
846                         INIT_WORK(&othercon->rwork, process_recv_sockets);
847                         init_waitqueue_head(&othercon->shutdown_wait);
848                         set_bit(CF_IS_OTHERCON, &othercon->flags);
849                 } else {
850                         /* close other sock con if we have something new */
851                         close_connection(othercon, false, true, false);
852                 }
853
854                 mutex_lock_nested(&othercon->sock_mutex, 2);
855                 newcon->othercon = othercon;
856                 add_sock(newsock, othercon);
857                 addcon = othercon;
858                 mutex_unlock(&othercon->sock_mutex);
859         }
860         else {
861                 newcon->rx_action = receive_from_sock;
862                 /* accept copies the sk after we've saved the callbacks, so we
863                    don't want to save them a second time or comm errors will
864                    result in calling sk_error_report recursively. */
865                 add_sock(newsock, newcon);
866                 addcon = newcon;
867         }
868
869         mutex_unlock(&newcon->sock_mutex);
870
871         /*
872          * Add it to the active queue in case we got data
873          * between processing the accept adding the socket
874          * to the read_sockets list
875          */
876         if (!test_and_set_bit(CF_READ_PENDING, &addcon->flags))
877                 queue_work(recv_workqueue, &addcon->rwork);
878         mutex_unlock(&con->sock_mutex);
879
880         return 0;
881
882 accept_err:
883         mutex_unlock(&con->sock_mutex);
884         if (newsock)
885                 sock_release(newsock);
886
887         if (result != -EAGAIN)
888                 log_print("error accepting connection from node: %d", result);
889         return result;
890 }
891
892 static void free_entry(struct writequeue_entry *e)
893 {
894         __free_page(e->page);
895         kfree(e);
896 }
897
898 /*
899  * writequeue_entry_complete - try to delete and free write queue entry
900  * @e: write queue entry to try to delete
901  * @completed: bytes completed
902  *
903  * writequeue_lock must be held.
904  */
905 static void writequeue_entry_complete(struct writequeue_entry *e, int completed)
906 {
907         e->offset += completed;
908         e->len -= completed;
909
910         if (e->len == 0 && e->users == 0) {
911                 list_del(&e->list);
912                 free_entry(e);
913         }
914 }
915
916 /*
917  * sctp_bind_addrs - bind a SCTP socket to all our addresses
918  */
919 static int sctp_bind_addrs(struct connection *con, uint16_t port)
920 {
921         struct sockaddr_storage localaddr;
922         struct sockaddr *addr = (struct sockaddr *)&localaddr;
923         int i, addr_len, result = 0;
924
925         for (i = 0; i < dlm_local_count; i++) {
926                 memcpy(&localaddr, dlm_local_addr[i], sizeof(localaddr));
927                 make_sockaddr(&localaddr, port, &addr_len);
928
929                 if (!i)
930                         result = kernel_bind(con->sock, addr, addr_len);
931                 else
932                         result = sock_bind_add(con->sock->sk, addr, addr_len);
933
934                 if (result < 0) {
935                         log_print("Can't bind to %d addr number %d, %d.\n",
936                                   port, i + 1, result);
937                         break;
938                 }
939         }
940         return result;
941 }
942
943 /* Initiate an SCTP association.
944    This is a special case of send_to_sock() in that we don't yet have a
945    peeled-off socket for this association, so we use the listening socket
946    and add the primary IP address of the remote node.
947  */
948 static void sctp_connect_to_sock(struct connection *con)
949 {
950         struct sockaddr_storage daddr;
951         int result;
952         int addr_len;
953         struct socket *sock;
954         unsigned int mark;
955
956         if (con->nodeid == 0) {
957                 log_print("attempt to connect sock 0 foiled");
958                 return;
959         }
960
961         dlm_comm_mark(con->nodeid, &mark);
962
963         mutex_lock(&con->sock_mutex);
964
965         /* Some odd races can cause double-connects, ignore them */
966         if (con->retries++ > MAX_CONNECT_RETRIES)
967                 goto out;
968
969         if (con->sock) {
970                 log_print("node %d already connected.", con->nodeid);
971                 goto out;
972         }
973
974         memset(&daddr, 0, sizeof(daddr));
975         result = nodeid_to_addr(con->nodeid, &daddr, NULL, true);
976         if (result < 0) {
977                 log_print("no address for nodeid %d", con->nodeid);
978                 goto out;
979         }
980
981         /* Create a socket to communicate with */
982         result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
983                                   SOCK_STREAM, IPPROTO_SCTP, &sock);
984         if (result < 0)
985                 goto socket_err;
986
987         sock_set_mark(sock->sk, mark);
988
989         con->rx_action = receive_from_sock;
990         con->connect_action = sctp_connect_to_sock;
991         add_sock(sock, con);
992
993         /* Bind to all addresses. */
994         if (sctp_bind_addrs(con, 0))
995                 goto bind_err;
996
997         make_sockaddr(&daddr, dlm_config.ci_tcp_port, &addr_len);
998
999         log_print("connecting to %d", con->nodeid);
1000
1001         /* Turn off Nagle's algorithm */
1002         sctp_sock_set_nodelay(sock->sk);
1003
1004         /*
1005          * Make sock->ops->connect() function return in specified time,
1006          * since O_NONBLOCK argument in connect() function does not work here,
1007          * then, we should restore the default value of this attribute.
1008          */
1009         sock_set_sndtimeo(sock->sk, 5);
1010         result = sock->ops->connect(sock, (struct sockaddr *)&daddr, addr_len,
1011                                    0);
1012         sock_set_sndtimeo(sock->sk, 0);
1013
1014         if (result == -EINPROGRESS)
1015                 result = 0;
1016         if (result == 0)
1017                 goto out;
1018
1019 bind_err:
1020         con->sock = NULL;
1021         sock_release(sock);
1022
1023 socket_err:
1024         /*
1025          * Some errors are fatal and this list might need adjusting. For other
1026          * errors we try again until the max number of retries is reached.
1027          */
1028         if (result != -EHOSTUNREACH &&
1029             result != -ENETUNREACH &&
1030             result != -ENETDOWN &&
1031             result != -EINVAL &&
1032             result != -EPROTONOSUPPORT) {
1033                 log_print("connect %d try %d error %d", con->nodeid,
1034                           con->retries, result);
1035                 mutex_unlock(&con->sock_mutex);
1036                 msleep(1000);
1037                 lowcomms_connect_sock(con);
1038                 return;
1039         }
1040
1041 out:
1042         mutex_unlock(&con->sock_mutex);
1043 }
1044
1045 /* Connect a new socket to its peer */
1046 static void tcp_connect_to_sock(struct connection *con)
1047 {
1048         struct sockaddr_storage saddr, src_addr;
1049         int addr_len;
1050         struct socket *sock = NULL;
1051         unsigned int mark;
1052         int result;
1053
1054         if (con->nodeid == 0) {
1055                 log_print("attempt to connect sock 0 foiled");
1056                 return;
1057         }
1058
1059         dlm_comm_mark(con->nodeid, &mark);
1060
1061         mutex_lock(&con->sock_mutex);
1062         if (con->retries++ > MAX_CONNECT_RETRIES)
1063                 goto out;
1064
1065         /* Some odd races can cause double-connects, ignore them */
1066         if (con->sock)
1067                 goto out;
1068
1069         /* Create a socket to communicate with */
1070         result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
1071                                   SOCK_STREAM, IPPROTO_TCP, &sock);
1072         if (result < 0)
1073                 goto out_err;
1074
1075         sock_set_mark(sock->sk, mark);
1076
1077         memset(&saddr, 0, sizeof(saddr));
1078         result = nodeid_to_addr(con->nodeid, &saddr, NULL, false);
1079         if (result < 0) {
1080                 log_print("no address for nodeid %d", con->nodeid);
1081                 goto out_err;
1082         }
1083
1084         con->rx_action = receive_from_sock;
1085         con->connect_action = tcp_connect_to_sock;
1086         con->shutdown_action = dlm_tcp_shutdown;
1087         add_sock(sock, con);
1088
1089         /* Bind to our cluster-known address connecting to avoid
1090            routing problems */
1091         memcpy(&src_addr, dlm_local_addr[0], sizeof(src_addr));
1092         make_sockaddr(&src_addr, 0, &addr_len);
1093         result = sock->ops->bind(sock, (struct sockaddr *) &src_addr,
1094                                  addr_len);
1095         if (result < 0) {
1096                 log_print("could not bind for connect: %d", result);
1097                 /* This *may* not indicate a critical error */
1098         }
1099
1100         make_sockaddr(&saddr, dlm_config.ci_tcp_port, &addr_len);
1101
1102         log_print("connecting to %d", con->nodeid);
1103
1104         /* Turn off Nagle's algorithm */
1105         tcp_sock_set_nodelay(sock->sk);
1106
1107         result = sock->ops->connect(sock, (struct sockaddr *)&saddr, addr_len,
1108                                    O_NONBLOCK);
1109         if (result == -EINPROGRESS)
1110                 result = 0;
1111         if (result == 0)
1112                 goto out;
1113
1114 out_err:
1115         if (con->sock) {
1116                 sock_release(con->sock);
1117                 con->sock = NULL;
1118         } else if (sock) {
1119                 sock_release(sock);
1120         }
1121         /*
1122          * Some errors are fatal and this list might need adjusting. For other
1123          * errors we try again until the max number of retries is reached.
1124          */
1125         if (result != -EHOSTUNREACH &&
1126             result != -ENETUNREACH &&
1127             result != -ENETDOWN && 
1128             result != -EINVAL &&
1129             result != -EPROTONOSUPPORT) {
1130                 log_print("connect %d try %d error %d", con->nodeid,
1131                           con->retries, result);
1132                 mutex_unlock(&con->sock_mutex);
1133                 msleep(1000);
1134                 lowcomms_connect_sock(con);
1135                 return;
1136         }
1137 out:
1138         mutex_unlock(&con->sock_mutex);
1139         return;
1140 }
1141
1142 static struct socket *tcp_create_listen_sock(struct connection *con,
1143                                              struct sockaddr_storage *saddr)
1144 {
1145         struct socket *sock = NULL;
1146         int result = 0;
1147         int addr_len;
1148
1149         if (dlm_local_addr[0]->ss_family == AF_INET)
1150                 addr_len = sizeof(struct sockaddr_in);
1151         else
1152                 addr_len = sizeof(struct sockaddr_in6);
1153
1154         /* Create a socket to communicate with */
1155         result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
1156                                   SOCK_STREAM, IPPROTO_TCP, &sock);
1157         if (result < 0) {
1158                 log_print("Can't create listening comms socket");
1159                 goto create_out;
1160         }
1161
1162         sock_set_mark(sock->sk, dlm_config.ci_mark);
1163
1164         /* Turn off Nagle's algorithm */
1165         tcp_sock_set_nodelay(sock->sk);
1166
1167         sock_set_reuseaddr(sock->sk);
1168
1169         write_lock_bh(&sock->sk->sk_callback_lock);
1170         sock->sk->sk_user_data = con;
1171         save_listen_callbacks(sock);
1172         con->rx_action = accept_from_sock;
1173         con->connect_action = tcp_connect_to_sock;
1174         write_unlock_bh(&sock->sk->sk_callback_lock);
1175
1176         /* Bind to our port */
1177         make_sockaddr(saddr, dlm_config.ci_tcp_port, &addr_len);
1178         result = sock->ops->bind(sock, (struct sockaddr *) saddr, addr_len);
1179         if (result < 0) {
1180                 log_print("Can't bind to port %d", dlm_config.ci_tcp_port);
1181                 sock_release(sock);
1182                 sock = NULL;
1183                 con->sock = NULL;
1184                 goto create_out;
1185         }
1186         sock_set_keepalive(sock->sk);
1187
1188         result = sock->ops->listen(sock, 5);
1189         if (result < 0) {
1190                 log_print("Can't listen on port %d", dlm_config.ci_tcp_port);
1191                 sock_release(sock);
1192                 sock = NULL;
1193                 goto create_out;
1194         }
1195
1196 create_out:
1197         return sock;
1198 }
1199
1200 /* Get local addresses */
1201 static void init_local(void)
1202 {
1203         struct sockaddr_storage sas, *addr;
1204         int i;
1205
1206         dlm_local_count = 0;
1207         for (i = 0; i < DLM_MAX_ADDR_COUNT; i++) {
1208                 if (dlm_our_addr(&sas, i))
1209                         break;
1210
1211                 addr = kmemdup(&sas, sizeof(*addr), GFP_NOFS);
1212                 if (!addr)
1213                         break;
1214                 dlm_local_addr[dlm_local_count++] = addr;
1215         }
1216 }
1217
1218 static void deinit_local(void)
1219 {
1220         int i;
1221
1222         for (i = 0; i < dlm_local_count; i++)
1223                 kfree(dlm_local_addr[i]);
1224 }
1225
1226 /* Initialise SCTP socket and bind to all interfaces */
1227 static int sctp_listen_for_all(void)
1228 {
1229         struct socket *sock = NULL;
1230         int result = -EINVAL;
1231         struct connection *con = nodeid2con(0, GFP_NOFS);
1232
1233         if (!con)
1234                 return -ENOMEM;
1235
1236         log_print("Using SCTP for communications");
1237
1238         result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
1239                                   SOCK_STREAM, IPPROTO_SCTP, &sock);
1240         if (result < 0) {
1241                 log_print("Can't create comms socket, check SCTP is loaded");
1242                 goto out;
1243         }
1244
1245         sock_set_rcvbuf(sock->sk, NEEDED_RMEM);
1246         sock_set_mark(sock->sk, dlm_config.ci_mark);
1247         sctp_sock_set_nodelay(sock->sk);
1248
1249         write_lock_bh(&sock->sk->sk_callback_lock);
1250         /* Init con struct */
1251         sock->sk->sk_user_data = con;
1252         save_listen_callbacks(sock);
1253         con->sock = sock;
1254         con->sock->sk->sk_data_ready = lowcomms_data_ready;
1255         con->rx_action = accept_from_sock;
1256         con->connect_action = sctp_connect_to_sock;
1257
1258         write_unlock_bh(&sock->sk->sk_callback_lock);
1259
1260         /* Bind to all addresses. */
1261         if (sctp_bind_addrs(con, dlm_config.ci_tcp_port))
1262                 goto create_delsock;
1263
1264         result = sock->ops->listen(sock, 5);
1265         if (result < 0) {
1266                 log_print("Can't set socket listening");
1267                 goto create_delsock;
1268         }
1269
1270         return 0;
1271
1272 create_delsock:
1273         sock_release(sock);
1274         con->sock = NULL;
1275 out:
1276         return result;
1277 }
1278
1279 static int tcp_listen_for_all(void)
1280 {
1281         struct socket *sock = NULL;
1282         struct connection *con = nodeid2con(0, GFP_NOFS);
1283         int result = -EINVAL;
1284
1285         if (!con)
1286                 return -ENOMEM;
1287
1288         /* We don't support multi-homed hosts */
1289         if (dlm_local_addr[1] != NULL) {
1290                 log_print("TCP protocol can't handle multi-homed hosts, "
1291                           "try SCTP");
1292                 return -EINVAL;
1293         }
1294
1295         log_print("Using TCP for communications");
1296
1297         sock = tcp_create_listen_sock(con, dlm_local_addr[0]);
1298         if (sock) {
1299                 add_sock(sock, con);
1300                 result = 0;
1301         }
1302         else {
1303                 result = -EADDRINUSE;
1304         }
1305
1306         return result;
1307 }
1308
1309
1310
1311 static struct writequeue_entry *new_writequeue_entry(struct connection *con,
1312                                                      gfp_t allocation)
1313 {
1314         struct writequeue_entry *entry;
1315
1316         entry = kmalloc(sizeof(struct writequeue_entry), allocation);
1317         if (!entry)
1318                 return NULL;
1319
1320         entry->page = alloc_page(allocation);
1321         if (!entry->page) {
1322                 kfree(entry);
1323                 return NULL;
1324         }
1325
1326         entry->offset = 0;
1327         entry->len = 0;
1328         entry->end = 0;
1329         entry->users = 0;
1330         entry->con = con;
1331
1332         return entry;
1333 }
1334
1335 void *dlm_lowcomms_get_buffer(int nodeid, int len, gfp_t allocation, char **ppc)
1336 {
1337         struct connection *con;
1338         struct writequeue_entry *e;
1339         int offset = 0;
1340
1341         con = nodeid2con(nodeid, allocation);
1342         if (!con)
1343                 return NULL;
1344
1345         spin_lock(&con->writequeue_lock);
1346         e = list_entry(con->writequeue.prev, struct writequeue_entry, list);
1347         if ((&e->list == &con->writequeue) ||
1348             (PAGE_SIZE - e->end < len)) {
1349                 e = NULL;
1350         } else {
1351                 offset = e->end;
1352                 e->end += len;
1353                 e->users++;
1354         }
1355         spin_unlock(&con->writequeue_lock);
1356
1357         if (e) {
1358         got_one:
1359                 *ppc = page_address(e->page) + offset;
1360                 return e;
1361         }
1362
1363         e = new_writequeue_entry(con, allocation);
1364         if (e) {
1365                 spin_lock(&con->writequeue_lock);
1366                 offset = e->end;
1367                 e->end += len;
1368                 e->users++;
1369                 list_add_tail(&e->list, &con->writequeue);
1370                 spin_unlock(&con->writequeue_lock);
1371                 goto got_one;
1372         }
1373         return NULL;
1374 }
1375
1376 void dlm_lowcomms_commit_buffer(void *mh)
1377 {
1378         struct writequeue_entry *e = (struct writequeue_entry *)mh;
1379         struct connection *con = e->con;
1380         int users;
1381
1382         spin_lock(&con->writequeue_lock);
1383         users = --e->users;
1384         if (users)
1385                 goto out;
1386         e->len = e->end - e->offset;
1387         spin_unlock(&con->writequeue_lock);
1388
1389         queue_work(send_workqueue, &con->swork);
1390         return;
1391
1392 out:
1393         spin_unlock(&con->writequeue_lock);
1394         return;
1395 }
1396
1397 /* Send a message */
1398 static void send_to_sock(struct connection *con)
1399 {
1400         int ret = 0;
1401         const int msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
1402         struct writequeue_entry *e;
1403         int len, offset;
1404         int count = 0;
1405
1406         mutex_lock(&con->sock_mutex);
1407         if (con->sock == NULL)
1408                 goto out_connect;
1409
1410         spin_lock(&con->writequeue_lock);
1411         for (;;) {
1412                 e = list_entry(con->writequeue.next, struct writequeue_entry,
1413                                list);
1414                 if ((struct list_head *) e == &con->writequeue)
1415                         break;
1416
1417                 len = e->len;
1418                 offset = e->offset;
1419                 BUG_ON(len == 0 && e->users == 0);
1420                 spin_unlock(&con->writequeue_lock);
1421
1422                 ret = 0;
1423                 if (len) {
1424                         ret = kernel_sendpage(con->sock, e->page, offset, len,
1425                                               msg_flags);
1426                         if (ret == -EAGAIN || ret == 0) {
1427                                 if (ret == -EAGAIN &&
1428                                     test_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags) &&
1429                                     !test_and_set_bit(CF_APP_LIMITED, &con->flags)) {
1430                                         /* Notify TCP that we're limited by the
1431                                          * application window size.
1432                                          */
1433                                         set_bit(SOCK_NOSPACE, &con->sock->flags);
1434                                         con->sock->sk->sk_write_pending++;
1435                                 }
1436                                 cond_resched();
1437                                 goto out;
1438                         } else if (ret < 0)
1439                                 goto send_error;
1440                 }
1441
1442                 /* Don't starve people filling buffers */
1443                 if (++count >= MAX_SEND_MSG_COUNT) {
1444                         cond_resched();
1445                         count = 0;
1446                 }
1447
1448                 spin_lock(&con->writequeue_lock);
1449                 writequeue_entry_complete(e, ret);
1450         }
1451         spin_unlock(&con->writequeue_lock);
1452 out:
1453         mutex_unlock(&con->sock_mutex);
1454         return;
1455
1456 send_error:
1457         mutex_unlock(&con->sock_mutex);
1458         close_connection(con, false, false, true);
1459         /* Requeue the send work. When the work daemon runs again, it will try
1460            a new connection, then call this function again. */
1461         queue_work(send_workqueue, &con->swork);
1462         return;
1463
1464 out_connect:
1465         mutex_unlock(&con->sock_mutex);
1466         queue_work(send_workqueue, &con->swork);
1467         cond_resched();
1468 }
1469
1470 static void clean_one_writequeue(struct connection *con)
1471 {
1472         struct writequeue_entry *e, *safe;
1473
1474         spin_lock(&con->writequeue_lock);
1475         list_for_each_entry_safe(e, safe, &con->writequeue, list) {
1476                 list_del(&e->list);
1477                 free_entry(e);
1478         }
1479         spin_unlock(&con->writequeue_lock);
1480 }
1481
1482 /* Called from recovery when it knows that a node has
1483    left the cluster */
1484 int dlm_lowcomms_close(int nodeid)
1485 {
1486         struct connection *con;
1487         struct dlm_node_addr *na;
1488
1489         log_print("closing connection to node %d", nodeid);
1490         con = nodeid2con(nodeid, 0);
1491         if (con) {
1492                 set_bit(CF_CLOSE, &con->flags);
1493                 close_connection(con, true, true, true);
1494                 clean_one_writequeue(con);
1495         }
1496
1497         spin_lock(&dlm_node_addrs_spin);
1498         na = find_node_addr(nodeid);
1499         if (na) {
1500                 list_del(&na->list);
1501                 while (na->addr_count--)
1502                         kfree(na->addr[na->addr_count]);
1503                 kfree(na);
1504         }
1505         spin_unlock(&dlm_node_addrs_spin);
1506
1507         return 0;
1508 }
1509
1510 /* Receive workqueue function */
1511 static void process_recv_sockets(struct work_struct *work)
1512 {
1513         struct connection *con = container_of(work, struct connection, rwork);
1514         int err;
1515
1516         clear_bit(CF_READ_PENDING, &con->flags);
1517         do {
1518                 err = con->rx_action(con);
1519         } while (!err);
1520 }
1521
1522 /* Send workqueue function */
1523 static void process_send_sockets(struct work_struct *work)
1524 {
1525         struct connection *con = container_of(work, struct connection, swork);
1526
1527         clear_bit(CF_WRITE_PENDING, &con->flags);
1528         if (con->sock == NULL) /* not mutex protected so check it inside too */
1529                 con->connect_action(con);
1530         if (!list_empty(&con->writequeue))
1531                 send_to_sock(con);
1532 }
1533
1534 static void work_stop(void)
1535 {
1536         if (recv_workqueue)
1537                 destroy_workqueue(recv_workqueue);
1538         if (send_workqueue)
1539                 destroy_workqueue(send_workqueue);
1540 }
1541
1542 static int work_start(void)
1543 {
1544         recv_workqueue = alloc_workqueue("dlm_recv",
1545                                          WQ_UNBOUND | WQ_MEM_RECLAIM, 1);
1546         if (!recv_workqueue) {
1547                 log_print("can't start dlm_recv");
1548                 return -ENOMEM;
1549         }
1550
1551         send_workqueue = alloc_workqueue("dlm_send",
1552                                          WQ_UNBOUND | WQ_MEM_RECLAIM, 1);
1553         if (!send_workqueue) {
1554                 log_print("can't start dlm_send");
1555                 destroy_workqueue(recv_workqueue);
1556                 return -ENOMEM;
1557         }
1558
1559         return 0;
1560 }
1561
1562 static void _stop_conn(struct connection *con, bool and_other)
1563 {
1564         mutex_lock(&con->sock_mutex);
1565         set_bit(CF_CLOSE, &con->flags);
1566         set_bit(CF_READ_PENDING, &con->flags);
1567         set_bit(CF_WRITE_PENDING, &con->flags);
1568         if (con->sock && con->sock->sk) {
1569                 write_lock_bh(&con->sock->sk->sk_callback_lock);
1570                 con->sock->sk->sk_user_data = NULL;
1571                 write_unlock_bh(&con->sock->sk->sk_callback_lock);
1572         }
1573         if (con->othercon && and_other)
1574                 _stop_conn(con->othercon, false);
1575         mutex_unlock(&con->sock_mutex);
1576 }
1577
1578 static void stop_conn(struct connection *con)
1579 {
1580         _stop_conn(con, true);
1581 }
1582
1583 static void shutdown_conn(struct connection *con)
1584 {
1585         if (con->shutdown_action)
1586                 con->shutdown_action(con);
1587 }
1588
1589 static void connection_release(struct rcu_head *rcu)
1590 {
1591         struct connection *con = container_of(rcu, struct connection, rcu);
1592
1593         kfree(con->rx_buf);
1594         kfree(con);
1595 }
1596
1597 static void free_conn(struct connection *con)
1598 {
1599         close_connection(con, true, true, true);
1600         spin_lock(&connections_lock);
1601         hlist_del_rcu(&con->list);
1602         spin_unlock(&connections_lock);
1603         if (con->othercon) {
1604                 clean_one_writequeue(con->othercon);
1605                 call_rcu(&con->othercon->rcu, connection_release);
1606         }
1607         clean_one_writequeue(con);
1608         call_rcu(&con->rcu, connection_release);
1609 }
1610
1611 static void work_flush(void)
1612 {
1613         int ok, idx;
1614         int i;
1615         struct connection *con;
1616
1617         do {
1618                 ok = 1;
1619                 foreach_conn(stop_conn);
1620                 if (recv_workqueue)
1621                         flush_workqueue(recv_workqueue);
1622                 if (send_workqueue)
1623                         flush_workqueue(send_workqueue);
1624                 idx = srcu_read_lock(&connections_srcu);
1625                 for (i = 0; i < CONN_HASH_SIZE && ok; i++) {
1626                         hlist_for_each_entry_rcu(con, &connection_hash[i],
1627                                                  list) {
1628                                 ok &= test_bit(CF_READ_PENDING, &con->flags);
1629                                 ok &= test_bit(CF_WRITE_PENDING, &con->flags);
1630                                 if (con->othercon) {
1631                                         ok &= test_bit(CF_READ_PENDING,
1632                                                        &con->othercon->flags);
1633                                         ok &= test_bit(CF_WRITE_PENDING,
1634                                                        &con->othercon->flags);
1635                                 }
1636                         }
1637                 }
1638                 srcu_read_unlock(&connections_srcu, idx);
1639         } while (!ok);
1640 }
1641
1642 void dlm_lowcomms_stop(void)
1643 {
1644         /* Set all the flags to prevent any
1645            socket activity.
1646         */
1647         dlm_allow_conn = 0;
1648
1649         if (recv_workqueue)
1650                 flush_workqueue(recv_workqueue);
1651         if (send_workqueue)
1652                 flush_workqueue(send_workqueue);
1653
1654         foreach_conn(shutdown_conn);
1655         work_flush();
1656         foreach_conn(free_conn);
1657         work_stop();
1658         deinit_local();
1659 }
1660
1661 int dlm_lowcomms_start(void)
1662 {
1663         int error = -EINVAL;
1664         struct connection *con;
1665         int i;
1666
1667         for (i = 0; i < CONN_HASH_SIZE; i++)
1668                 INIT_HLIST_HEAD(&connection_hash[i]);
1669
1670         init_local();
1671         if (!dlm_local_count) {
1672                 error = -ENOTCONN;
1673                 log_print("no local IP address has been set");
1674                 goto fail;
1675         }
1676
1677         error = work_start();
1678         if (error)
1679                 goto fail;
1680
1681         dlm_allow_conn = 1;
1682
1683         /* Start listening */
1684         if (dlm_config.ci_protocol == 0)
1685                 error = tcp_listen_for_all();
1686         else
1687                 error = sctp_listen_for_all();
1688         if (error)
1689                 goto fail_unlisten;
1690
1691         return 0;
1692
1693 fail_unlisten:
1694         dlm_allow_conn = 0;
1695         con = nodeid2con(0,0);
1696         if (con)
1697                 free_conn(con);
1698 fail:
1699         return error;
1700 }
1701
1702 void dlm_lowcomms_exit(void)
1703 {
1704         struct dlm_node_addr *na, *safe;
1705
1706         spin_lock(&dlm_node_addrs_spin);
1707         list_for_each_entry_safe(na, safe, &dlm_node_addrs, list) {
1708                 list_del(&na->list);
1709                 while (na->addr_count--)
1710                         kfree(na->addr[na->addr_count]);
1711                 kfree(na);
1712         }
1713         spin_unlock(&dlm_node_addrs_spin);
1714 }