Merge tag 'ceph-for-5.10-rc1' of git://github.com/ceph/ceph-client
[linux-2.6-microblaze.git] / fs / dlm / lowcomms.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /******************************************************************************
3 *******************************************************************************
4 **
5 **  Copyright (C) Sistina Software, Inc.  1997-2003  All rights reserved.
6 **  Copyright (C) 2004-2009 Red Hat, Inc.  All rights reserved.
7 **
8 **
9 *******************************************************************************
10 ******************************************************************************/
11
12 /*
13  * lowcomms.c
14  *
15  * This is the "low-level" comms layer.
16  *
17  * It is responsible for sending/receiving messages
18  * from other nodes in the cluster.
19  *
20  * Cluster nodes are referred to by their nodeids. nodeids are
21  * simply 32 bit numbers to the locking module - if they need to
22  * be expanded for the cluster infrastructure then that is its
23  * responsibility. It is this layer's
24  * responsibility to resolve these into IP address or
25  * whatever it needs for inter-node communication.
26  *
27  * The comms level is two kernel threads that deal mainly with
28  * the receiving of messages from other nodes and passing them
29  * up to the mid-level comms layer (which understands the
30  * message format) for execution by the locking core, and
31  * a send thread which does all the setting up of connections
32  * to remote nodes and the sending of data. Threads are not allowed
33  * to send their own data because it may cause them to wait in times
34  * of high load. Also, this way, the sending thread can collect together
35  * messages bound for one node and send them in one block.
36  *
37  * lowcomms will choose to use either TCP or SCTP as its transport layer
38  * depending on the configuration variable 'protocol'. This should be set
39  * to 0 (default) for TCP or 1 for SCTP. It should be configured using a
40  * cluster-wide mechanism as it must be the same on all nodes of the cluster
41  * for the DLM to function.
42  *
43  */
44
45 #include <asm/ioctls.h>
46 #include <net/sock.h>
47 #include <net/tcp.h>
48 #include <linux/pagemap.h>
49 #include <linux/file.h>
50 #include <linux/mutex.h>
51 #include <linux/sctp.h>
52 #include <linux/slab.h>
53 #include <net/sctp/sctp.h>
54 #include <net/ipv6.h>
55
56 #include "dlm_internal.h"
57 #include "lowcomms.h"
58 #include "midcomms.h"
59 #include "config.h"
60
61 #define NEEDED_RMEM (4*1024*1024)
62 #define CONN_HASH_SIZE 32
63
64 /* Number of messages to send before rescheduling */
65 #define MAX_SEND_MSG_COUNT 25
66 #define DLM_SHUTDOWN_WAIT_TIMEOUT msecs_to_jiffies(10000)
67
68 struct connection {
69         struct socket *sock;    /* NULL if not connected */
70         uint32_t nodeid;        /* So we know who we are in the list */
71         struct mutex sock_mutex;
72         unsigned long flags;
73 #define CF_READ_PENDING 1
74 #define CF_WRITE_PENDING 2
75 #define CF_INIT_PENDING 4
76 #define CF_IS_OTHERCON 5
77 #define CF_CLOSE 6
78 #define CF_APP_LIMITED 7
79 #define CF_CLOSING 8
80 #define CF_SHUTDOWN 9
81         struct list_head writequeue;  /* List of outgoing writequeue_entries */
82         spinlock_t writequeue_lock;
83         int (*rx_action) (struct connection *); /* What to do when active */
84         void (*connect_action) (struct connection *);   /* What to do to connect */
85         void (*shutdown_action)(struct connection *con); /* What to do to shutdown */
86         int retries;
87 #define MAX_CONNECT_RETRIES 3
88         struct hlist_node list;
89         struct connection *othercon;
90         struct work_struct rwork; /* Receive workqueue */
91         struct work_struct swork; /* Send workqueue */
92         wait_queue_head_t shutdown_wait; /* wait for graceful shutdown */
93         unsigned char *rx_buf;
94         int rx_buflen;
95         int rx_leftover;
96         struct rcu_head rcu;
97 };
98 #define sock2con(x) ((struct connection *)(x)->sk_user_data)
99
100 /* An entry waiting to be sent */
101 struct writequeue_entry {
102         struct list_head list;
103         struct page *page;
104         int offset;
105         int len;
106         int end;
107         int users;
108         struct connection *con;
109 };
110
111 struct dlm_node_addr {
112         struct list_head list;
113         int nodeid;
114         int addr_count;
115         int curr_addr_index;
116         struct sockaddr_storage *addr[DLM_MAX_ADDR_COUNT];
117 };
118
119 static struct listen_sock_callbacks {
120         void (*sk_error_report)(struct sock *);
121         void (*sk_data_ready)(struct sock *);
122         void (*sk_state_change)(struct sock *);
123         void (*sk_write_space)(struct sock *);
124 } listen_sock;
125
126 static LIST_HEAD(dlm_node_addrs);
127 static DEFINE_SPINLOCK(dlm_node_addrs_spin);
128
129 static struct sockaddr_storage *dlm_local_addr[DLM_MAX_ADDR_COUNT];
130 static int dlm_local_count;
131 static int dlm_allow_conn;
132
133 /* Work queues */
134 static struct workqueue_struct *recv_workqueue;
135 static struct workqueue_struct *send_workqueue;
136
137 static struct hlist_head connection_hash[CONN_HASH_SIZE];
138 static DEFINE_SPINLOCK(connections_lock);
139 DEFINE_STATIC_SRCU(connections_srcu);
140
141 static void process_recv_sockets(struct work_struct *work);
142 static void process_send_sockets(struct work_struct *work);
143
144
145 /* This is deliberately very simple because most clusters have simple
146    sequential nodeids, so we should be able to go straight to a connection
147    struct in the array */
148 static inline int nodeid_hash(int nodeid)
149 {
150         return nodeid & (CONN_HASH_SIZE-1);
151 }
152
153 static struct connection *__find_con(int nodeid)
154 {
155         int r, idx;
156         struct connection *con;
157
158         r = nodeid_hash(nodeid);
159
160         idx = srcu_read_lock(&connections_srcu);
161         hlist_for_each_entry_rcu(con, &connection_hash[r], list) {
162                 if (con->nodeid == nodeid) {
163                         srcu_read_unlock(&connections_srcu, idx);
164                         return con;
165                 }
166         }
167         srcu_read_unlock(&connections_srcu, idx);
168
169         return NULL;
170 }
171
172 /*
173  * If 'allocation' is zero then we don't attempt to create a new
174  * connection structure for this node.
175  */
176 static struct connection *nodeid2con(int nodeid, gfp_t alloc)
177 {
178         struct connection *con, *tmp;
179         int r;
180
181         con = __find_con(nodeid);
182         if (con || !alloc)
183                 return con;
184
185         con = kzalloc(sizeof(*con), alloc);
186         if (!con)
187                 return NULL;
188
189         con->rx_buflen = dlm_config.ci_buffer_size;
190         con->rx_buf = kmalloc(con->rx_buflen, GFP_NOFS);
191         if (!con->rx_buf) {
192                 kfree(con);
193                 return NULL;
194         }
195
196         con->nodeid = nodeid;
197         mutex_init(&con->sock_mutex);
198         INIT_LIST_HEAD(&con->writequeue);
199         spin_lock_init(&con->writequeue_lock);
200         INIT_WORK(&con->swork, process_send_sockets);
201         INIT_WORK(&con->rwork, process_recv_sockets);
202         init_waitqueue_head(&con->shutdown_wait);
203
204         /* Setup action pointers for child sockets */
205         if (con->nodeid) {
206                 struct connection *zerocon = __find_con(0);
207
208                 con->connect_action = zerocon->connect_action;
209                 if (!con->rx_action)
210                         con->rx_action = zerocon->rx_action;
211         }
212
213         r = nodeid_hash(nodeid);
214
215         spin_lock(&connections_lock);
216         /* Because multiple workqueues/threads calls this function it can
217          * race on multiple cpu's. Instead of locking hot path __find_con()
218          * we just check in rare cases of recently added nodes again
219          * under protection of connections_lock. If this is the case we
220          * abort our connection creation and return the existing connection.
221          */
222         tmp = __find_con(nodeid);
223         if (tmp) {
224                 spin_unlock(&connections_lock);
225                 kfree(con->rx_buf);
226                 kfree(con);
227                 return tmp;
228         }
229
230         hlist_add_head_rcu(&con->list, &connection_hash[r]);
231         spin_unlock(&connections_lock);
232
233         return con;
234 }
235
236 /* Loop round all connections */
237 static void foreach_conn(void (*conn_func)(struct connection *c))
238 {
239         int i, idx;
240         struct connection *con;
241
242         idx = srcu_read_lock(&connections_srcu);
243         for (i = 0; i < CONN_HASH_SIZE; i++) {
244                 hlist_for_each_entry_rcu(con, &connection_hash[i], list)
245                         conn_func(con);
246         }
247         srcu_read_unlock(&connections_srcu, idx);
248 }
249
250 static struct dlm_node_addr *find_node_addr(int nodeid)
251 {
252         struct dlm_node_addr *na;
253
254         list_for_each_entry(na, &dlm_node_addrs, list) {
255                 if (na->nodeid == nodeid)
256                         return na;
257         }
258         return NULL;
259 }
260
261 static int addr_compare(struct sockaddr_storage *x, struct sockaddr_storage *y)
262 {
263         switch (x->ss_family) {
264         case AF_INET: {
265                 struct sockaddr_in *sinx = (struct sockaddr_in *)x;
266                 struct sockaddr_in *siny = (struct sockaddr_in *)y;
267                 if (sinx->sin_addr.s_addr != siny->sin_addr.s_addr)
268                         return 0;
269                 if (sinx->sin_port != siny->sin_port)
270                         return 0;
271                 break;
272         }
273         case AF_INET6: {
274                 struct sockaddr_in6 *sinx = (struct sockaddr_in6 *)x;
275                 struct sockaddr_in6 *siny = (struct sockaddr_in6 *)y;
276                 if (!ipv6_addr_equal(&sinx->sin6_addr, &siny->sin6_addr))
277                         return 0;
278                 if (sinx->sin6_port != siny->sin6_port)
279                         return 0;
280                 break;
281         }
282         default:
283                 return 0;
284         }
285         return 1;
286 }
287
288 static int nodeid_to_addr(int nodeid, struct sockaddr_storage *sas_out,
289                           struct sockaddr *sa_out, bool try_new_addr)
290 {
291         struct sockaddr_storage sas;
292         struct dlm_node_addr *na;
293
294         if (!dlm_local_count)
295                 return -1;
296
297         spin_lock(&dlm_node_addrs_spin);
298         na = find_node_addr(nodeid);
299         if (na && na->addr_count) {
300                 memcpy(&sas, na->addr[na->curr_addr_index],
301                        sizeof(struct sockaddr_storage));
302
303                 if (try_new_addr) {
304                         na->curr_addr_index++;
305                         if (na->curr_addr_index == na->addr_count)
306                                 na->curr_addr_index = 0;
307                 }
308         }
309         spin_unlock(&dlm_node_addrs_spin);
310
311         if (!na)
312                 return -EEXIST;
313
314         if (!na->addr_count)
315                 return -ENOENT;
316
317         if (sas_out)
318                 memcpy(sas_out, &sas, sizeof(struct sockaddr_storage));
319
320         if (!sa_out)
321                 return 0;
322
323         if (dlm_local_addr[0]->ss_family == AF_INET) {
324                 struct sockaddr_in *in4  = (struct sockaddr_in *) &sas;
325                 struct sockaddr_in *ret4 = (struct sockaddr_in *) sa_out;
326                 ret4->sin_addr.s_addr = in4->sin_addr.s_addr;
327         } else {
328                 struct sockaddr_in6 *in6  = (struct sockaddr_in6 *) &sas;
329                 struct sockaddr_in6 *ret6 = (struct sockaddr_in6 *) sa_out;
330                 ret6->sin6_addr = in6->sin6_addr;
331         }
332
333         return 0;
334 }
335
336 static int addr_to_nodeid(struct sockaddr_storage *addr, int *nodeid)
337 {
338         struct dlm_node_addr *na;
339         int rv = -EEXIST;
340         int addr_i;
341
342         spin_lock(&dlm_node_addrs_spin);
343         list_for_each_entry(na, &dlm_node_addrs, list) {
344                 if (!na->addr_count)
345                         continue;
346
347                 for (addr_i = 0; addr_i < na->addr_count; addr_i++) {
348                         if (addr_compare(na->addr[addr_i], addr)) {
349                                 *nodeid = na->nodeid;
350                                 rv = 0;
351                                 goto unlock;
352                         }
353                 }
354         }
355 unlock:
356         spin_unlock(&dlm_node_addrs_spin);
357         return rv;
358 }
359
360 int dlm_lowcomms_addr(int nodeid, struct sockaddr_storage *addr, int len)
361 {
362         struct sockaddr_storage *new_addr;
363         struct dlm_node_addr *new_node, *na;
364
365         new_node = kzalloc(sizeof(struct dlm_node_addr), GFP_NOFS);
366         if (!new_node)
367                 return -ENOMEM;
368
369         new_addr = kzalloc(sizeof(struct sockaddr_storage), GFP_NOFS);
370         if (!new_addr) {
371                 kfree(new_node);
372                 return -ENOMEM;
373         }
374
375         memcpy(new_addr, addr, len);
376
377         spin_lock(&dlm_node_addrs_spin);
378         na = find_node_addr(nodeid);
379         if (!na) {
380                 new_node->nodeid = nodeid;
381                 new_node->addr[0] = new_addr;
382                 new_node->addr_count = 1;
383                 list_add(&new_node->list, &dlm_node_addrs);
384                 spin_unlock(&dlm_node_addrs_spin);
385                 return 0;
386         }
387
388         if (na->addr_count >= DLM_MAX_ADDR_COUNT) {
389                 spin_unlock(&dlm_node_addrs_spin);
390                 kfree(new_addr);
391                 kfree(new_node);
392                 return -ENOSPC;
393         }
394
395         na->addr[na->addr_count++] = new_addr;
396         spin_unlock(&dlm_node_addrs_spin);
397         kfree(new_node);
398         return 0;
399 }
400
401 /* Data available on socket or listen socket received a connect */
402 static void lowcomms_data_ready(struct sock *sk)
403 {
404         struct connection *con;
405
406         read_lock_bh(&sk->sk_callback_lock);
407         con = sock2con(sk);
408         if (con && !test_and_set_bit(CF_READ_PENDING, &con->flags))
409                 queue_work(recv_workqueue, &con->rwork);
410         read_unlock_bh(&sk->sk_callback_lock);
411 }
412
413 static void lowcomms_write_space(struct sock *sk)
414 {
415         struct connection *con;
416
417         read_lock_bh(&sk->sk_callback_lock);
418         con = sock2con(sk);
419         if (!con)
420                 goto out;
421
422         clear_bit(SOCK_NOSPACE, &con->sock->flags);
423
424         if (test_and_clear_bit(CF_APP_LIMITED, &con->flags)) {
425                 con->sock->sk->sk_write_pending--;
426                 clear_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags);
427         }
428
429         queue_work(send_workqueue, &con->swork);
430 out:
431         read_unlock_bh(&sk->sk_callback_lock);
432 }
433
434 static inline void lowcomms_connect_sock(struct connection *con)
435 {
436         if (test_bit(CF_CLOSE, &con->flags))
437                 return;
438         queue_work(send_workqueue, &con->swork);
439         cond_resched();
440 }
441
442 static void lowcomms_state_change(struct sock *sk)
443 {
444         /* SCTP layer is not calling sk_data_ready when the connection
445          * is done, so we catch the signal through here. Also, it
446          * doesn't switch socket state when entering shutdown, so we
447          * skip the write in that case.
448          */
449         if (sk->sk_shutdown) {
450                 if (sk->sk_shutdown == RCV_SHUTDOWN)
451                         lowcomms_data_ready(sk);
452         } else if (sk->sk_state == TCP_ESTABLISHED) {
453                 lowcomms_write_space(sk);
454         }
455 }
456
457 int dlm_lowcomms_connect_node(int nodeid)
458 {
459         struct connection *con;
460
461         if (nodeid == dlm_our_nodeid())
462                 return 0;
463
464         con = nodeid2con(nodeid, GFP_NOFS);
465         if (!con)
466                 return -ENOMEM;
467         lowcomms_connect_sock(con);
468         return 0;
469 }
470
471 static void lowcomms_error_report(struct sock *sk)
472 {
473         struct connection *con;
474         struct sockaddr_storage saddr;
475         void (*orig_report)(struct sock *) = NULL;
476
477         read_lock_bh(&sk->sk_callback_lock);
478         con = sock2con(sk);
479         if (con == NULL)
480                 goto out;
481
482         orig_report = listen_sock.sk_error_report;
483         if (con->sock == NULL ||
484             kernel_getpeername(con->sock, (struct sockaddr *)&saddr) < 0) {
485                 printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
486                                    "sending to node %d, port %d, "
487                                    "sk_err=%d/%d\n", dlm_our_nodeid(),
488                                    con->nodeid, dlm_config.ci_tcp_port,
489                                    sk->sk_err, sk->sk_err_soft);
490         } else if (saddr.ss_family == AF_INET) {
491                 struct sockaddr_in *sin4 = (struct sockaddr_in *)&saddr;
492
493                 printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
494                                    "sending to node %d at %pI4, port %d, "
495                                    "sk_err=%d/%d\n", dlm_our_nodeid(),
496                                    con->nodeid, &sin4->sin_addr.s_addr,
497                                    dlm_config.ci_tcp_port, sk->sk_err,
498                                    sk->sk_err_soft);
499         } else {
500                 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&saddr;
501
502                 printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
503                                    "sending to node %d at %u.%u.%u.%u, "
504                                    "port %d, sk_err=%d/%d\n", dlm_our_nodeid(),
505                                    con->nodeid, sin6->sin6_addr.s6_addr32[0],
506                                    sin6->sin6_addr.s6_addr32[1],
507                                    sin6->sin6_addr.s6_addr32[2],
508                                    sin6->sin6_addr.s6_addr32[3],
509                                    dlm_config.ci_tcp_port, sk->sk_err,
510                                    sk->sk_err_soft);
511         }
512 out:
513         read_unlock_bh(&sk->sk_callback_lock);
514         if (orig_report)
515                 orig_report(sk);
516 }
517
518 /* Note: sk_callback_lock must be locked before calling this function. */
519 static void save_listen_callbacks(struct socket *sock)
520 {
521         struct sock *sk = sock->sk;
522
523         listen_sock.sk_data_ready = sk->sk_data_ready;
524         listen_sock.sk_state_change = sk->sk_state_change;
525         listen_sock.sk_write_space = sk->sk_write_space;
526         listen_sock.sk_error_report = sk->sk_error_report;
527 }
528
529 static void restore_callbacks(struct socket *sock)
530 {
531         struct sock *sk = sock->sk;
532
533         write_lock_bh(&sk->sk_callback_lock);
534         sk->sk_user_data = NULL;
535         sk->sk_data_ready = listen_sock.sk_data_ready;
536         sk->sk_state_change = listen_sock.sk_state_change;
537         sk->sk_write_space = listen_sock.sk_write_space;
538         sk->sk_error_report = listen_sock.sk_error_report;
539         write_unlock_bh(&sk->sk_callback_lock);
540 }
541
542 /* Make a socket active */
543 static void add_sock(struct socket *sock, struct connection *con)
544 {
545         struct sock *sk = sock->sk;
546
547         write_lock_bh(&sk->sk_callback_lock);
548         con->sock = sock;
549
550         sk->sk_user_data = con;
551         /* Install a data_ready callback */
552         sk->sk_data_ready = lowcomms_data_ready;
553         sk->sk_write_space = lowcomms_write_space;
554         sk->sk_state_change = lowcomms_state_change;
555         sk->sk_allocation = GFP_NOFS;
556         sk->sk_error_report = lowcomms_error_report;
557         write_unlock_bh(&sk->sk_callback_lock);
558 }
559
560 /* Add the port number to an IPv6 or 4 sockaddr and return the address
561    length */
562 static void make_sockaddr(struct sockaddr_storage *saddr, uint16_t port,
563                           int *addr_len)
564 {
565         saddr->ss_family =  dlm_local_addr[0]->ss_family;
566         if (saddr->ss_family == AF_INET) {
567                 struct sockaddr_in *in4_addr = (struct sockaddr_in *)saddr;
568                 in4_addr->sin_port = cpu_to_be16(port);
569                 *addr_len = sizeof(struct sockaddr_in);
570                 memset(&in4_addr->sin_zero, 0, sizeof(in4_addr->sin_zero));
571         } else {
572                 struct sockaddr_in6 *in6_addr = (struct sockaddr_in6 *)saddr;
573                 in6_addr->sin6_port = cpu_to_be16(port);
574                 *addr_len = sizeof(struct sockaddr_in6);
575         }
576         memset((char *)saddr + *addr_len, 0, sizeof(struct sockaddr_storage) - *addr_len);
577 }
578
579 /* Close a remote connection and tidy up */
580 static void close_connection(struct connection *con, bool and_other,
581                              bool tx, bool rx)
582 {
583         bool closing = test_and_set_bit(CF_CLOSING, &con->flags);
584
585         if (tx && !closing && cancel_work_sync(&con->swork)) {
586                 log_print("canceled swork for node %d", con->nodeid);
587                 clear_bit(CF_WRITE_PENDING, &con->flags);
588         }
589         if (rx && !closing && cancel_work_sync(&con->rwork)) {
590                 log_print("canceled rwork for node %d", con->nodeid);
591                 clear_bit(CF_READ_PENDING, &con->flags);
592         }
593
594         mutex_lock(&con->sock_mutex);
595         if (con->sock) {
596                 restore_callbacks(con->sock);
597                 sock_release(con->sock);
598                 con->sock = NULL;
599         }
600         if (con->othercon && and_other) {
601                 /* Will only re-enter once. */
602                 close_connection(con->othercon, false, true, true);
603         }
604
605         con->rx_leftover = 0;
606         con->retries = 0;
607         mutex_unlock(&con->sock_mutex);
608         clear_bit(CF_CLOSING, &con->flags);
609 }
610
611 static void shutdown_connection(struct connection *con)
612 {
613         int ret;
614
615         if (cancel_work_sync(&con->swork)) {
616                 log_print("canceled swork for node %d", con->nodeid);
617                 clear_bit(CF_WRITE_PENDING, &con->flags);
618         }
619
620         mutex_lock(&con->sock_mutex);
621         /* nothing to shutdown */
622         if (!con->sock) {
623                 mutex_unlock(&con->sock_mutex);
624                 return;
625         }
626
627         set_bit(CF_SHUTDOWN, &con->flags);
628         ret = kernel_sock_shutdown(con->sock, SHUT_WR);
629         mutex_unlock(&con->sock_mutex);
630         if (ret) {
631                 log_print("Connection %p failed to shutdown: %d will force close",
632                           con, ret);
633                 goto force_close;
634         } else {
635                 ret = wait_event_timeout(con->shutdown_wait,
636                                          !test_bit(CF_SHUTDOWN, &con->flags),
637                                          DLM_SHUTDOWN_WAIT_TIMEOUT);
638                 if (ret == 0) {
639                         log_print("Connection %p shutdown timed out, will force close",
640                                   con);
641                         goto force_close;
642                 }
643         }
644
645         return;
646
647 force_close:
648         clear_bit(CF_SHUTDOWN, &con->flags);
649         close_connection(con, false, true, true);
650 }
651
652 static void dlm_tcp_shutdown(struct connection *con)
653 {
654         if (con->othercon)
655                 shutdown_connection(con->othercon);
656         shutdown_connection(con);
657 }
658
659 static int con_realloc_receive_buf(struct connection *con, int newlen)
660 {
661         unsigned char *newbuf;
662
663         newbuf = kmalloc(newlen, GFP_NOFS);
664         if (!newbuf)
665                 return -ENOMEM;
666
667         /* copy any leftover from last receive */
668         if (con->rx_leftover)
669                 memmove(newbuf, con->rx_buf, con->rx_leftover);
670
671         /* swap to new buffer space */
672         kfree(con->rx_buf);
673         con->rx_buflen = newlen;
674         con->rx_buf = newbuf;
675
676         return 0;
677 }
678
679 /* Data received from remote end */
680 static int receive_from_sock(struct connection *con)
681 {
682         int call_again_soon = 0;
683         struct msghdr msg;
684         struct kvec iov;
685         int ret, buflen;
686
687         mutex_lock(&con->sock_mutex);
688
689         if (con->sock == NULL) {
690                 ret = -EAGAIN;
691                 goto out_close;
692         }
693
694         if (con->nodeid == 0) {
695                 ret = -EINVAL;
696                 goto out_close;
697         }
698
699         /* realloc if we get new buffer size to read out */
700         buflen = dlm_config.ci_buffer_size;
701         if (con->rx_buflen != buflen && con->rx_leftover <= buflen) {
702                 ret = con_realloc_receive_buf(con, buflen);
703                 if (ret < 0)
704                         goto out_resched;
705         }
706
707         /* calculate new buffer parameter regarding last receive and
708          * possible leftover bytes
709          */
710         iov.iov_base = con->rx_buf + con->rx_leftover;
711         iov.iov_len = con->rx_buflen - con->rx_leftover;
712
713         memset(&msg, 0, sizeof(msg));
714         msg.msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
715         ret = kernel_recvmsg(con->sock, &msg, &iov, 1, iov.iov_len,
716                              msg.msg_flags);
717         if (ret <= 0)
718                 goto out_close;
719         else if (ret == iov.iov_len)
720                 call_again_soon = 1;
721
722         /* new buflen according readed bytes and leftover from last receive */
723         buflen = ret + con->rx_leftover;
724         ret = dlm_process_incoming_buffer(con->nodeid, con->rx_buf, buflen);
725         if (ret < 0)
726                 goto out_close;
727
728         /* calculate leftover bytes from process and put it into begin of
729          * the receive buffer, so next receive we have the full message
730          * at the start address of the receive buffer.
731          */
732         con->rx_leftover = buflen - ret;
733         if (con->rx_leftover) {
734                 memmove(con->rx_buf, con->rx_buf + ret,
735                         con->rx_leftover);
736                 call_again_soon = true;
737         }
738
739         if (call_again_soon)
740                 goto out_resched;
741
742         mutex_unlock(&con->sock_mutex);
743         return 0;
744
745 out_resched:
746         if (!test_and_set_bit(CF_READ_PENDING, &con->flags))
747                 queue_work(recv_workqueue, &con->rwork);
748         mutex_unlock(&con->sock_mutex);
749         return -EAGAIN;
750
751 out_close:
752         mutex_unlock(&con->sock_mutex);
753         if (ret != -EAGAIN) {
754                 /* Reconnect when there is something to send */
755                 close_connection(con, false, true, false);
756                 if (ret == 0) {
757                         log_print("connection %p got EOF from %d",
758                                   con, con->nodeid);
759                         /* handling for tcp shutdown */
760                         clear_bit(CF_SHUTDOWN, &con->flags);
761                         wake_up(&con->shutdown_wait);
762                         /* signal to breaking receive worker */
763                         ret = -1;
764                 }
765         }
766         return ret;
767 }
768
769 /* Listening socket is busy, accept a connection */
770 static int accept_from_sock(struct connection *con)
771 {
772         int result;
773         struct sockaddr_storage peeraddr;
774         struct socket *newsock;
775         int len;
776         int nodeid;
777         struct connection *newcon;
778         struct connection *addcon;
779         unsigned int mark;
780
781         if (!dlm_allow_conn) {
782                 return -1;
783         }
784
785         mutex_lock_nested(&con->sock_mutex, 0);
786
787         if (!con->sock) {
788                 mutex_unlock(&con->sock_mutex);
789                 return -ENOTCONN;
790         }
791
792         result = kernel_accept(con->sock, &newsock, O_NONBLOCK);
793         if (result < 0)
794                 goto accept_err;
795
796         /* Get the connected socket's peer */
797         memset(&peeraddr, 0, sizeof(peeraddr));
798         len = newsock->ops->getname(newsock, (struct sockaddr *)&peeraddr, 2);
799         if (len < 0) {
800                 result = -ECONNABORTED;
801                 goto accept_err;
802         }
803
804         /* Get the new node's NODEID */
805         make_sockaddr(&peeraddr, 0, &len);
806         if (addr_to_nodeid(&peeraddr, &nodeid)) {
807                 unsigned char *b=(unsigned char *)&peeraddr;
808                 log_print("connect from non cluster node");
809                 print_hex_dump_bytes("ss: ", DUMP_PREFIX_NONE, 
810                                      b, sizeof(struct sockaddr_storage));
811                 sock_release(newsock);
812                 mutex_unlock(&con->sock_mutex);
813                 return -1;
814         }
815
816         dlm_comm_mark(nodeid, &mark);
817         sock_set_mark(newsock->sk, mark);
818
819         log_print("got connection from %d", nodeid);
820
821         /*  Check to see if we already have a connection to this node. This
822          *  could happen if the two nodes initiate a connection at roughly
823          *  the same time and the connections cross on the wire.
824          *  In this case we store the incoming one in "othercon"
825          */
826         newcon = nodeid2con(nodeid, GFP_NOFS);
827         if (!newcon) {
828                 result = -ENOMEM;
829                 goto accept_err;
830         }
831         mutex_lock_nested(&newcon->sock_mutex, 1);
832         if (newcon->sock) {
833                 struct connection *othercon = newcon->othercon;
834
835                 if (!othercon) {
836                         othercon = kzalloc(sizeof(*othercon), GFP_NOFS);
837                         if (!othercon) {
838                                 log_print("failed to allocate incoming socket");
839                                 mutex_unlock(&newcon->sock_mutex);
840                                 result = -ENOMEM;
841                                 goto accept_err;
842                         }
843
844                         othercon->rx_buflen = dlm_config.ci_buffer_size;
845                         othercon->rx_buf = kmalloc(othercon->rx_buflen, GFP_NOFS);
846                         if (!othercon->rx_buf) {
847                                 mutex_unlock(&newcon->sock_mutex);
848                                 kfree(othercon);
849                                 log_print("failed to allocate incoming socket receive buffer");
850                                 result = -ENOMEM;
851                                 goto accept_err;
852                         }
853
854                         othercon->nodeid = nodeid;
855                         othercon->rx_action = receive_from_sock;
856                         mutex_init(&othercon->sock_mutex);
857                         INIT_LIST_HEAD(&othercon->writequeue);
858                         spin_lock_init(&othercon->writequeue_lock);
859                         INIT_WORK(&othercon->swork, process_send_sockets);
860                         INIT_WORK(&othercon->rwork, process_recv_sockets);
861                         init_waitqueue_head(&othercon->shutdown_wait);
862                         set_bit(CF_IS_OTHERCON, &othercon->flags);
863                 } else {
864                         /* close other sock con if we have something new */
865                         close_connection(othercon, false, true, false);
866                 }
867
868                 mutex_lock_nested(&othercon->sock_mutex, 2);
869                 newcon->othercon = othercon;
870                 add_sock(newsock, othercon);
871                 addcon = othercon;
872                 mutex_unlock(&othercon->sock_mutex);
873         }
874         else {
875                 newcon->rx_action = receive_from_sock;
876                 /* accept copies the sk after we've saved the callbacks, so we
877                    don't want to save them a second time or comm errors will
878                    result in calling sk_error_report recursively. */
879                 add_sock(newsock, newcon);
880                 addcon = newcon;
881         }
882
883         mutex_unlock(&newcon->sock_mutex);
884
885         /*
886          * Add it to the active queue in case we got data
887          * between processing the accept adding the socket
888          * to the read_sockets list
889          */
890         if (!test_and_set_bit(CF_READ_PENDING, &addcon->flags))
891                 queue_work(recv_workqueue, &addcon->rwork);
892         mutex_unlock(&con->sock_mutex);
893
894         return 0;
895
896 accept_err:
897         mutex_unlock(&con->sock_mutex);
898         if (newsock)
899                 sock_release(newsock);
900
901         if (result != -EAGAIN)
902                 log_print("error accepting connection from node: %d", result);
903         return result;
904 }
905
906 static void free_entry(struct writequeue_entry *e)
907 {
908         __free_page(e->page);
909         kfree(e);
910 }
911
912 /*
913  * writequeue_entry_complete - try to delete and free write queue entry
914  * @e: write queue entry to try to delete
915  * @completed: bytes completed
916  *
917  * writequeue_lock must be held.
918  */
919 static void writequeue_entry_complete(struct writequeue_entry *e, int completed)
920 {
921         e->offset += completed;
922         e->len -= completed;
923
924         if (e->len == 0 && e->users == 0) {
925                 list_del(&e->list);
926                 free_entry(e);
927         }
928 }
929
930 /*
931  * sctp_bind_addrs - bind a SCTP socket to all our addresses
932  */
933 static int sctp_bind_addrs(struct connection *con, uint16_t port)
934 {
935         struct sockaddr_storage localaddr;
936         struct sockaddr *addr = (struct sockaddr *)&localaddr;
937         int i, addr_len, result = 0;
938
939         for (i = 0; i < dlm_local_count; i++) {
940                 memcpy(&localaddr, dlm_local_addr[i], sizeof(localaddr));
941                 make_sockaddr(&localaddr, port, &addr_len);
942
943                 if (!i)
944                         result = kernel_bind(con->sock, addr, addr_len);
945                 else
946                         result = sock_bind_add(con->sock->sk, addr, addr_len);
947
948                 if (result < 0) {
949                         log_print("Can't bind to %d addr number %d, %d.\n",
950                                   port, i + 1, result);
951                         break;
952                 }
953         }
954         return result;
955 }
956
957 /* Initiate an SCTP association.
958    This is a special case of send_to_sock() in that we don't yet have a
959    peeled-off socket for this association, so we use the listening socket
960    and add the primary IP address of the remote node.
961  */
962 static void sctp_connect_to_sock(struct connection *con)
963 {
964         struct sockaddr_storage daddr;
965         int result;
966         int addr_len;
967         struct socket *sock;
968         unsigned int mark;
969
970         if (con->nodeid == 0) {
971                 log_print("attempt to connect sock 0 foiled");
972                 return;
973         }
974
975         dlm_comm_mark(con->nodeid, &mark);
976
977         mutex_lock(&con->sock_mutex);
978
979         /* Some odd races can cause double-connects, ignore them */
980         if (con->retries++ > MAX_CONNECT_RETRIES)
981                 goto out;
982
983         if (con->sock) {
984                 log_print("node %d already connected.", con->nodeid);
985                 goto out;
986         }
987
988         memset(&daddr, 0, sizeof(daddr));
989         result = nodeid_to_addr(con->nodeid, &daddr, NULL, true);
990         if (result < 0) {
991                 log_print("no address for nodeid %d", con->nodeid);
992                 goto out;
993         }
994
995         /* Create a socket to communicate with */
996         result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
997                                   SOCK_STREAM, IPPROTO_SCTP, &sock);
998         if (result < 0)
999                 goto socket_err;
1000
1001         sock_set_mark(sock->sk, mark);
1002
1003         con->rx_action = receive_from_sock;
1004         con->connect_action = sctp_connect_to_sock;
1005         add_sock(sock, con);
1006
1007         /* Bind to all addresses. */
1008         if (sctp_bind_addrs(con, 0))
1009                 goto bind_err;
1010
1011         make_sockaddr(&daddr, dlm_config.ci_tcp_port, &addr_len);
1012
1013         log_print("connecting to %d", con->nodeid);
1014
1015         /* Turn off Nagle's algorithm */
1016         sctp_sock_set_nodelay(sock->sk);
1017
1018         /*
1019          * Make sock->ops->connect() function return in specified time,
1020          * since O_NONBLOCK argument in connect() function does not work here,
1021          * then, we should restore the default value of this attribute.
1022          */
1023         sock_set_sndtimeo(sock->sk, 5);
1024         result = sock->ops->connect(sock, (struct sockaddr *)&daddr, addr_len,
1025                                    0);
1026         sock_set_sndtimeo(sock->sk, 0);
1027
1028         if (result == -EINPROGRESS)
1029                 result = 0;
1030         if (result == 0)
1031                 goto out;
1032
1033 bind_err:
1034         con->sock = NULL;
1035         sock_release(sock);
1036
1037 socket_err:
1038         /*
1039          * Some errors are fatal and this list might need adjusting. For other
1040          * errors we try again until the max number of retries is reached.
1041          */
1042         if (result != -EHOSTUNREACH &&
1043             result != -ENETUNREACH &&
1044             result != -ENETDOWN &&
1045             result != -EINVAL &&
1046             result != -EPROTONOSUPPORT) {
1047                 log_print("connect %d try %d error %d", con->nodeid,
1048                           con->retries, result);
1049                 mutex_unlock(&con->sock_mutex);
1050                 msleep(1000);
1051                 lowcomms_connect_sock(con);
1052                 return;
1053         }
1054
1055 out:
1056         mutex_unlock(&con->sock_mutex);
1057 }
1058
1059 /* Connect a new socket to its peer */
1060 static void tcp_connect_to_sock(struct connection *con)
1061 {
1062         struct sockaddr_storage saddr, src_addr;
1063         int addr_len;
1064         struct socket *sock = NULL;
1065         unsigned int mark;
1066         int result;
1067
1068         if (con->nodeid == 0) {
1069                 log_print("attempt to connect sock 0 foiled");
1070                 return;
1071         }
1072
1073         dlm_comm_mark(con->nodeid, &mark);
1074
1075         mutex_lock(&con->sock_mutex);
1076         if (con->retries++ > MAX_CONNECT_RETRIES)
1077                 goto out;
1078
1079         /* Some odd races can cause double-connects, ignore them */
1080         if (con->sock)
1081                 goto out;
1082
1083         /* Create a socket to communicate with */
1084         result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
1085                                   SOCK_STREAM, IPPROTO_TCP, &sock);
1086         if (result < 0)
1087                 goto out_err;
1088
1089         sock_set_mark(sock->sk, mark);
1090
1091         memset(&saddr, 0, sizeof(saddr));
1092         result = nodeid_to_addr(con->nodeid, &saddr, NULL, false);
1093         if (result < 0) {
1094                 log_print("no address for nodeid %d", con->nodeid);
1095                 goto out_err;
1096         }
1097
1098         con->rx_action = receive_from_sock;
1099         con->connect_action = tcp_connect_to_sock;
1100         con->shutdown_action = dlm_tcp_shutdown;
1101         add_sock(sock, con);
1102
1103         /* Bind to our cluster-known address connecting to avoid
1104            routing problems */
1105         memcpy(&src_addr, dlm_local_addr[0], sizeof(src_addr));
1106         make_sockaddr(&src_addr, 0, &addr_len);
1107         result = sock->ops->bind(sock, (struct sockaddr *) &src_addr,
1108                                  addr_len);
1109         if (result < 0) {
1110                 log_print("could not bind for connect: %d", result);
1111                 /* This *may* not indicate a critical error */
1112         }
1113
1114         make_sockaddr(&saddr, dlm_config.ci_tcp_port, &addr_len);
1115
1116         log_print("connecting to %d", con->nodeid);
1117
1118         /* Turn off Nagle's algorithm */
1119         tcp_sock_set_nodelay(sock->sk);
1120
1121         result = sock->ops->connect(sock, (struct sockaddr *)&saddr, addr_len,
1122                                    O_NONBLOCK);
1123         if (result == -EINPROGRESS)
1124                 result = 0;
1125         if (result == 0)
1126                 goto out;
1127
1128 out_err:
1129         if (con->sock) {
1130                 sock_release(con->sock);
1131                 con->sock = NULL;
1132         } else if (sock) {
1133                 sock_release(sock);
1134         }
1135         /*
1136          * Some errors are fatal and this list might need adjusting. For other
1137          * errors we try again until the max number of retries is reached.
1138          */
1139         if (result != -EHOSTUNREACH &&
1140             result != -ENETUNREACH &&
1141             result != -ENETDOWN && 
1142             result != -EINVAL &&
1143             result != -EPROTONOSUPPORT) {
1144                 log_print("connect %d try %d error %d", con->nodeid,
1145                           con->retries, result);
1146                 mutex_unlock(&con->sock_mutex);
1147                 msleep(1000);
1148                 lowcomms_connect_sock(con);
1149                 return;
1150         }
1151 out:
1152         mutex_unlock(&con->sock_mutex);
1153         return;
1154 }
1155
1156 static struct socket *tcp_create_listen_sock(struct connection *con,
1157                                              struct sockaddr_storage *saddr)
1158 {
1159         struct socket *sock = NULL;
1160         int result = 0;
1161         int addr_len;
1162
1163         if (dlm_local_addr[0]->ss_family == AF_INET)
1164                 addr_len = sizeof(struct sockaddr_in);
1165         else
1166                 addr_len = sizeof(struct sockaddr_in6);
1167
1168         /* Create a socket to communicate with */
1169         result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
1170                                   SOCK_STREAM, IPPROTO_TCP, &sock);
1171         if (result < 0) {
1172                 log_print("Can't create listening comms socket");
1173                 goto create_out;
1174         }
1175
1176         sock_set_mark(sock->sk, dlm_config.ci_mark);
1177
1178         /* Turn off Nagle's algorithm */
1179         tcp_sock_set_nodelay(sock->sk);
1180
1181         sock_set_reuseaddr(sock->sk);
1182
1183         write_lock_bh(&sock->sk->sk_callback_lock);
1184         sock->sk->sk_user_data = con;
1185         save_listen_callbacks(sock);
1186         con->rx_action = accept_from_sock;
1187         con->connect_action = tcp_connect_to_sock;
1188         write_unlock_bh(&sock->sk->sk_callback_lock);
1189
1190         /* Bind to our port */
1191         make_sockaddr(saddr, dlm_config.ci_tcp_port, &addr_len);
1192         result = sock->ops->bind(sock, (struct sockaddr *) saddr, addr_len);
1193         if (result < 0) {
1194                 log_print("Can't bind to port %d", dlm_config.ci_tcp_port);
1195                 sock_release(sock);
1196                 sock = NULL;
1197                 con->sock = NULL;
1198                 goto create_out;
1199         }
1200         sock_set_keepalive(sock->sk);
1201
1202         result = sock->ops->listen(sock, 5);
1203         if (result < 0) {
1204                 log_print("Can't listen on port %d", dlm_config.ci_tcp_port);
1205                 sock_release(sock);
1206                 sock = NULL;
1207                 goto create_out;
1208         }
1209
1210 create_out:
1211         return sock;
1212 }
1213
1214 /* Get local addresses */
1215 static void init_local(void)
1216 {
1217         struct sockaddr_storage sas, *addr;
1218         int i;
1219
1220         dlm_local_count = 0;
1221         for (i = 0; i < DLM_MAX_ADDR_COUNT; i++) {
1222                 if (dlm_our_addr(&sas, i))
1223                         break;
1224
1225                 addr = kmemdup(&sas, sizeof(*addr), GFP_NOFS);
1226                 if (!addr)
1227                         break;
1228                 dlm_local_addr[dlm_local_count++] = addr;
1229         }
1230 }
1231
1232 static void deinit_local(void)
1233 {
1234         int i;
1235
1236         for (i = 0; i < dlm_local_count; i++)
1237                 kfree(dlm_local_addr[i]);
1238 }
1239
1240 /* Initialise SCTP socket and bind to all interfaces */
1241 static int sctp_listen_for_all(void)
1242 {
1243         struct socket *sock = NULL;
1244         int result = -EINVAL;
1245         struct connection *con = nodeid2con(0, GFP_NOFS);
1246
1247         if (!con)
1248                 return -ENOMEM;
1249
1250         log_print("Using SCTP for communications");
1251
1252         result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
1253                                   SOCK_STREAM, IPPROTO_SCTP, &sock);
1254         if (result < 0) {
1255                 log_print("Can't create comms socket, check SCTP is loaded");
1256                 goto out;
1257         }
1258
1259         sock_set_rcvbuf(sock->sk, NEEDED_RMEM);
1260         sock_set_mark(sock->sk, dlm_config.ci_mark);
1261         sctp_sock_set_nodelay(sock->sk);
1262
1263         write_lock_bh(&sock->sk->sk_callback_lock);
1264         /* Init con struct */
1265         sock->sk->sk_user_data = con;
1266         save_listen_callbacks(sock);
1267         con->sock = sock;
1268         con->sock->sk->sk_data_ready = lowcomms_data_ready;
1269         con->rx_action = accept_from_sock;
1270         con->connect_action = sctp_connect_to_sock;
1271
1272         write_unlock_bh(&sock->sk->sk_callback_lock);
1273
1274         /* Bind to all addresses. */
1275         if (sctp_bind_addrs(con, dlm_config.ci_tcp_port))
1276                 goto create_delsock;
1277
1278         result = sock->ops->listen(sock, 5);
1279         if (result < 0) {
1280                 log_print("Can't set socket listening");
1281                 goto create_delsock;
1282         }
1283
1284         return 0;
1285
1286 create_delsock:
1287         sock_release(sock);
1288         con->sock = NULL;
1289 out:
1290         return result;
1291 }
1292
1293 static int tcp_listen_for_all(void)
1294 {
1295         struct socket *sock = NULL;
1296         struct connection *con = nodeid2con(0, GFP_NOFS);
1297         int result = -EINVAL;
1298
1299         if (!con)
1300                 return -ENOMEM;
1301
1302         /* We don't support multi-homed hosts */
1303         if (dlm_local_addr[1] != NULL) {
1304                 log_print("TCP protocol can't handle multi-homed hosts, "
1305                           "try SCTP");
1306                 return -EINVAL;
1307         }
1308
1309         log_print("Using TCP for communications");
1310
1311         sock = tcp_create_listen_sock(con, dlm_local_addr[0]);
1312         if (sock) {
1313                 add_sock(sock, con);
1314                 result = 0;
1315         }
1316         else {
1317                 result = -EADDRINUSE;
1318         }
1319
1320         return result;
1321 }
1322
1323
1324
1325 static struct writequeue_entry *new_writequeue_entry(struct connection *con,
1326                                                      gfp_t allocation)
1327 {
1328         struct writequeue_entry *entry;
1329
1330         entry = kmalloc(sizeof(struct writequeue_entry), allocation);
1331         if (!entry)
1332                 return NULL;
1333
1334         entry->page = alloc_page(allocation);
1335         if (!entry->page) {
1336                 kfree(entry);
1337                 return NULL;
1338         }
1339
1340         entry->offset = 0;
1341         entry->len = 0;
1342         entry->end = 0;
1343         entry->users = 0;
1344         entry->con = con;
1345
1346         return entry;
1347 }
1348
1349 void *dlm_lowcomms_get_buffer(int nodeid, int len, gfp_t allocation, char **ppc)
1350 {
1351         struct connection *con;
1352         struct writequeue_entry *e;
1353         int offset = 0;
1354
1355         con = nodeid2con(nodeid, allocation);
1356         if (!con)
1357                 return NULL;
1358
1359         spin_lock(&con->writequeue_lock);
1360         e = list_entry(con->writequeue.prev, struct writequeue_entry, list);
1361         if ((&e->list == &con->writequeue) ||
1362             (PAGE_SIZE - e->end < len)) {
1363                 e = NULL;
1364         } else {
1365                 offset = e->end;
1366                 e->end += len;
1367                 e->users++;
1368         }
1369         spin_unlock(&con->writequeue_lock);
1370
1371         if (e) {
1372         got_one:
1373                 *ppc = page_address(e->page) + offset;
1374                 return e;
1375         }
1376
1377         e = new_writequeue_entry(con, allocation);
1378         if (e) {
1379                 spin_lock(&con->writequeue_lock);
1380                 offset = e->end;
1381                 e->end += len;
1382                 e->users++;
1383                 list_add_tail(&e->list, &con->writequeue);
1384                 spin_unlock(&con->writequeue_lock);
1385                 goto got_one;
1386         }
1387         return NULL;
1388 }
1389
1390 void dlm_lowcomms_commit_buffer(void *mh)
1391 {
1392         struct writequeue_entry *e = (struct writequeue_entry *)mh;
1393         struct connection *con = e->con;
1394         int users;
1395
1396         spin_lock(&con->writequeue_lock);
1397         users = --e->users;
1398         if (users)
1399                 goto out;
1400         e->len = e->end - e->offset;
1401         spin_unlock(&con->writequeue_lock);
1402
1403         queue_work(send_workqueue, &con->swork);
1404         return;
1405
1406 out:
1407         spin_unlock(&con->writequeue_lock);
1408         return;
1409 }
1410
1411 /* Send a message */
1412 static void send_to_sock(struct connection *con)
1413 {
1414         int ret = 0;
1415         const int msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
1416         struct writequeue_entry *e;
1417         int len, offset;
1418         int count = 0;
1419
1420         mutex_lock(&con->sock_mutex);
1421         if (con->sock == NULL)
1422                 goto out_connect;
1423
1424         spin_lock(&con->writequeue_lock);
1425         for (;;) {
1426                 e = list_entry(con->writequeue.next, struct writequeue_entry,
1427                                list);
1428                 if ((struct list_head *) e == &con->writequeue)
1429                         break;
1430
1431                 len = e->len;
1432                 offset = e->offset;
1433                 BUG_ON(len == 0 && e->users == 0);
1434                 spin_unlock(&con->writequeue_lock);
1435
1436                 ret = 0;
1437                 if (len) {
1438                         ret = kernel_sendpage(con->sock, e->page, offset, len,
1439                                               msg_flags);
1440                         if (ret == -EAGAIN || ret == 0) {
1441                                 if (ret == -EAGAIN &&
1442                                     test_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags) &&
1443                                     !test_and_set_bit(CF_APP_LIMITED, &con->flags)) {
1444                                         /* Notify TCP that we're limited by the
1445                                          * application window size.
1446                                          */
1447                                         set_bit(SOCK_NOSPACE, &con->sock->flags);
1448                                         con->sock->sk->sk_write_pending++;
1449                                 }
1450                                 cond_resched();
1451                                 goto out;
1452                         } else if (ret < 0)
1453                                 goto send_error;
1454                 }
1455
1456                 /* Don't starve people filling buffers */
1457                 if (++count >= MAX_SEND_MSG_COUNT) {
1458                         cond_resched();
1459                         count = 0;
1460                 }
1461
1462                 spin_lock(&con->writequeue_lock);
1463                 writequeue_entry_complete(e, ret);
1464         }
1465         spin_unlock(&con->writequeue_lock);
1466 out:
1467         mutex_unlock(&con->sock_mutex);
1468         return;
1469
1470 send_error:
1471         mutex_unlock(&con->sock_mutex);
1472         close_connection(con, false, false, true);
1473         /* Requeue the send work. When the work daemon runs again, it will try
1474            a new connection, then call this function again. */
1475         queue_work(send_workqueue, &con->swork);
1476         return;
1477
1478 out_connect:
1479         mutex_unlock(&con->sock_mutex);
1480         queue_work(send_workqueue, &con->swork);
1481         cond_resched();
1482 }
1483
1484 static void clean_one_writequeue(struct connection *con)
1485 {
1486         struct writequeue_entry *e, *safe;
1487
1488         spin_lock(&con->writequeue_lock);
1489         list_for_each_entry_safe(e, safe, &con->writequeue, list) {
1490                 list_del(&e->list);
1491                 free_entry(e);
1492         }
1493         spin_unlock(&con->writequeue_lock);
1494 }
1495
1496 /* Called from recovery when it knows that a node has
1497    left the cluster */
1498 int dlm_lowcomms_close(int nodeid)
1499 {
1500         struct connection *con;
1501         struct dlm_node_addr *na;
1502
1503         log_print("closing connection to node %d", nodeid);
1504         con = nodeid2con(nodeid, 0);
1505         if (con) {
1506                 set_bit(CF_CLOSE, &con->flags);
1507                 close_connection(con, true, true, true);
1508                 clean_one_writequeue(con);
1509         }
1510
1511         spin_lock(&dlm_node_addrs_spin);
1512         na = find_node_addr(nodeid);
1513         if (na) {
1514                 list_del(&na->list);
1515                 while (na->addr_count--)
1516                         kfree(na->addr[na->addr_count]);
1517                 kfree(na);
1518         }
1519         spin_unlock(&dlm_node_addrs_spin);
1520
1521         return 0;
1522 }
1523
1524 /* Receive workqueue function */
1525 static void process_recv_sockets(struct work_struct *work)
1526 {
1527         struct connection *con = container_of(work, struct connection, rwork);
1528         int err;
1529
1530         clear_bit(CF_READ_PENDING, &con->flags);
1531         do {
1532                 err = con->rx_action(con);
1533         } while (!err);
1534 }
1535
1536 /* Send workqueue function */
1537 static void process_send_sockets(struct work_struct *work)
1538 {
1539         struct connection *con = container_of(work, struct connection, swork);
1540
1541         clear_bit(CF_WRITE_PENDING, &con->flags);
1542         if (con->sock == NULL) /* not mutex protected so check it inside too */
1543                 con->connect_action(con);
1544         if (!list_empty(&con->writequeue))
1545                 send_to_sock(con);
1546 }
1547
1548 static void work_stop(void)
1549 {
1550         if (recv_workqueue)
1551                 destroy_workqueue(recv_workqueue);
1552         if (send_workqueue)
1553                 destroy_workqueue(send_workqueue);
1554 }
1555
1556 static int work_start(void)
1557 {
1558         recv_workqueue = alloc_workqueue("dlm_recv",
1559                                          WQ_UNBOUND | WQ_MEM_RECLAIM, 1);
1560         if (!recv_workqueue) {
1561                 log_print("can't start dlm_recv");
1562                 return -ENOMEM;
1563         }
1564
1565         send_workqueue = alloc_workqueue("dlm_send",
1566                                          WQ_UNBOUND | WQ_MEM_RECLAIM, 1);
1567         if (!send_workqueue) {
1568                 log_print("can't start dlm_send");
1569                 destroy_workqueue(recv_workqueue);
1570                 return -ENOMEM;
1571         }
1572
1573         return 0;
1574 }
1575
1576 static void _stop_conn(struct connection *con, bool and_other)
1577 {
1578         mutex_lock(&con->sock_mutex);
1579         set_bit(CF_CLOSE, &con->flags);
1580         set_bit(CF_READ_PENDING, &con->flags);
1581         set_bit(CF_WRITE_PENDING, &con->flags);
1582         if (con->sock && con->sock->sk) {
1583                 write_lock_bh(&con->sock->sk->sk_callback_lock);
1584                 con->sock->sk->sk_user_data = NULL;
1585                 write_unlock_bh(&con->sock->sk->sk_callback_lock);
1586         }
1587         if (con->othercon && and_other)
1588                 _stop_conn(con->othercon, false);
1589         mutex_unlock(&con->sock_mutex);
1590 }
1591
1592 static void stop_conn(struct connection *con)
1593 {
1594         _stop_conn(con, true);
1595 }
1596
1597 static void shutdown_conn(struct connection *con)
1598 {
1599         if (con->shutdown_action)
1600                 con->shutdown_action(con);
1601 }
1602
1603 static void connection_release(struct rcu_head *rcu)
1604 {
1605         struct connection *con = container_of(rcu, struct connection, rcu);
1606
1607         kfree(con->rx_buf);
1608         kfree(con);
1609 }
1610
1611 static void free_conn(struct connection *con)
1612 {
1613         close_connection(con, true, true, true);
1614         spin_lock(&connections_lock);
1615         hlist_del_rcu(&con->list);
1616         spin_unlock(&connections_lock);
1617         if (con->othercon) {
1618                 clean_one_writequeue(con->othercon);
1619                 call_rcu(&con->othercon->rcu, connection_release);
1620         }
1621         clean_one_writequeue(con);
1622         call_rcu(&con->rcu, connection_release);
1623 }
1624
1625 static void work_flush(void)
1626 {
1627         int ok, idx;
1628         int i;
1629         struct connection *con;
1630
1631         do {
1632                 ok = 1;
1633                 foreach_conn(stop_conn);
1634                 if (recv_workqueue)
1635                         flush_workqueue(recv_workqueue);
1636                 if (send_workqueue)
1637                         flush_workqueue(send_workqueue);
1638                 idx = srcu_read_lock(&connections_srcu);
1639                 for (i = 0; i < CONN_HASH_SIZE && ok; i++) {
1640                         hlist_for_each_entry_rcu(con, &connection_hash[i],
1641                                                  list) {
1642                                 ok &= test_bit(CF_READ_PENDING, &con->flags);
1643                                 ok &= test_bit(CF_WRITE_PENDING, &con->flags);
1644                                 if (con->othercon) {
1645                                         ok &= test_bit(CF_READ_PENDING,
1646                                                        &con->othercon->flags);
1647                                         ok &= test_bit(CF_WRITE_PENDING,
1648                                                        &con->othercon->flags);
1649                                 }
1650                         }
1651                 }
1652                 srcu_read_unlock(&connections_srcu, idx);
1653         } while (!ok);
1654 }
1655
1656 void dlm_lowcomms_stop(void)
1657 {
1658         /* Set all the flags to prevent any
1659            socket activity.
1660         */
1661         dlm_allow_conn = 0;
1662
1663         if (recv_workqueue)
1664                 flush_workqueue(recv_workqueue);
1665         if (send_workqueue)
1666                 flush_workqueue(send_workqueue);
1667
1668         foreach_conn(shutdown_conn);
1669         work_flush();
1670         foreach_conn(free_conn);
1671         work_stop();
1672         deinit_local();
1673 }
1674
1675 int dlm_lowcomms_start(void)
1676 {
1677         int error = -EINVAL;
1678         struct connection *con;
1679         int i;
1680
1681         for (i = 0; i < CONN_HASH_SIZE; i++)
1682                 INIT_HLIST_HEAD(&connection_hash[i]);
1683
1684         init_local();
1685         if (!dlm_local_count) {
1686                 error = -ENOTCONN;
1687                 log_print("no local IP address has been set");
1688                 goto fail;
1689         }
1690
1691         error = work_start();
1692         if (error)
1693                 goto fail;
1694
1695         dlm_allow_conn = 1;
1696
1697         /* Start listening */
1698         if (dlm_config.ci_protocol == 0)
1699                 error = tcp_listen_for_all();
1700         else
1701                 error = sctp_listen_for_all();
1702         if (error)
1703                 goto fail_unlisten;
1704
1705         return 0;
1706
1707 fail_unlisten:
1708         dlm_allow_conn = 0;
1709         con = nodeid2con(0,0);
1710         if (con)
1711                 free_conn(con);
1712 fail:
1713         return error;
1714 }
1715
1716 void dlm_lowcomms_exit(void)
1717 {
1718         struct dlm_node_addr *na, *safe;
1719
1720         spin_lock(&dlm_node_addrs_spin);
1721         list_for_each_entry_safe(na, safe, &dlm_node_addrs, list) {
1722                 list_del(&na->list);
1723                 while (na->addr_count--)
1724                         kfree(na->addr[na->addr_count]);
1725                 kfree(na);
1726         }
1727         spin_unlock(&dlm_node_addrs_spin);
1728 }