Merge tag 'mfd-next-6.2' of git://git.kernel.org/pub/scm/linux/kernel/git/lee/mfd
[linux-2.6-microblaze.git] / fs / dlm / lowcomms.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /******************************************************************************
3 *******************************************************************************
4 **
5 **  Copyright (C) Sistina Software, Inc.  1997-2003  All rights reserved.
6 **  Copyright (C) 2004-2009 Red Hat, Inc.  All rights reserved.
7 **
8 **
9 *******************************************************************************
10 ******************************************************************************/
11
12 /*
13  * lowcomms.c
14  *
15  * This is the "low-level" comms layer.
16  *
17  * It is responsible for sending/receiving messages
18  * from other nodes in the cluster.
19  *
20  * Cluster nodes are referred to by their nodeids. nodeids are
21  * simply 32 bit numbers to the locking module - if they need to
22  * be expanded for the cluster infrastructure then that is its
23  * responsibility. It is this layer's
24  * responsibility to resolve these into IP address or
25  * whatever it needs for inter-node communication.
26  *
27  * The comms level is two kernel threads that deal mainly with
28  * the receiving of messages from other nodes and passing them
29  * up to the mid-level comms layer (which understands the
30  * message format) for execution by the locking core, and
31  * a send thread which does all the setting up of connections
32  * to remote nodes and the sending of data. Threads are not allowed
33  * to send their own data because it may cause them to wait in times
34  * of high load. Also, this way, the sending thread can collect together
35  * messages bound for one node and send them in one block.
36  *
37  * lowcomms will choose to use either TCP or SCTP as its transport layer
38  * depending on the configuration variable 'protocol'. This should be set
39  * to 0 (default) for TCP or 1 for SCTP. It should be configured using a
40  * cluster-wide mechanism as it must be the same on all nodes of the cluster
41  * for the DLM to function.
42  *
43  */
44
45 #include <asm/ioctls.h>
46 #include <net/sock.h>
47 #include <net/tcp.h>
48 #include <linux/pagemap.h>
49 #include <linux/file.h>
50 #include <linux/mutex.h>
51 #include <linux/sctp.h>
52 #include <linux/slab.h>
53 #include <net/sctp/sctp.h>
54 #include <net/ipv6.h>
55
56 #include <trace/events/dlm.h>
57
58 #include "dlm_internal.h"
59 #include "lowcomms.h"
60 #include "midcomms.h"
61 #include "memory.h"
62 #include "config.h"
63
64 #define NEEDED_RMEM (4*1024*1024)
65
66 struct connection {
67         struct socket *sock;    /* NULL if not connected */
68         uint32_t nodeid;        /* So we know who we are in the list */
69         /* this semaphore is used to allow parallel recv/send in read
70          * lock mode. When we release a sock we need to held the write lock.
71          *
72          * However this is locking code and not nice. When we remove the
73          * othercon handling we can look into other mechanism to synchronize
74          * io handling to call sock_release() at the right time.
75          */
76         struct rw_semaphore sock_lock;
77         unsigned long flags;
78 #define CF_APP_LIMITED 0
79 #define CF_RECV_PENDING 1
80 #define CF_SEND_PENDING 2
81 #define CF_RECV_INTR 3
82 #define CF_IO_STOP 4
83 #define CF_IS_OTHERCON 5
84         struct list_head writequeue;  /* List of outgoing writequeue_entries */
85         spinlock_t writequeue_lock;
86         int retries;
87         struct hlist_node list;
88         /* due some connect()/accept() races we currently have this cross over
89          * connection attempt second connection for one node.
90          *
91          * There is a solution to avoid the race by introducing a connect
92          * rule as e.g. our_nodeid > nodeid_to_connect who is allowed to
93          * connect. Otherside can connect but will only be considered that
94          * the other side wants to have a reconnect.
95          *
96          * However changing to this behaviour will break backwards compatible.
97          * In a DLM protocol major version upgrade we should remove this!
98          */
99         struct connection *othercon;
100         struct work_struct rwork; /* receive worker */
101         struct work_struct swork; /* send worker */
102         unsigned char rx_leftover_buf[DLM_MAX_SOCKET_BUFSIZE];
103         int rx_leftover;
104         int mark;
105         int addr_count;
106         int curr_addr_index;
107         struct sockaddr_storage addr[DLM_MAX_ADDR_COUNT];
108         spinlock_t addrs_lock;
109         struct rcu_head rcu;
110 };
111 #define sock2con(x) ((struct connection *)(x)->sk_user_data)
112
113 struct listen_connection {
114         struct socket *sock;
115         struct work_struct rwork;
116 };
117
118 #define DLM_WQ_REMAIN_BYTES(e) (PAGE_SIZE - e->end)
119 #define DLM_WQ_LENGTH_BYTES(e) (e->end - e->offset)
120
121 /* An entry waiting to be sent */
122 struct writequeue_entry {
123         struct list_head list;
124         struct page *page;
125         int offset;
126         int len;
127         int end;
128         int users;
129         bool dirty;
130         struct connection *con;
131         struct list_head msgs;
132         struct kref ref;
133 };
134
135 struct dlm_msg {
136         struct writequeue_entry *entry;
137         struct dlm_msg *orig_msg;
138         bool retransmit;
139         void *ppc;
140         int len;
141         int idx; /* new()/commit() idx exchange */
142
143         struct list_head list;
144         struct kref ref;
145 };
146
147 struct processqueue_entry {
148         unsigned char *buf;
149         int nodeid;
150         int buflen;
151
152         struct list_head list;
153 };
154
155 struct dlm_proto_ops {
156         bool try_new_addr;
157         const char *name;
158         int proto;
159
160         int (*connect)(struct connection *con, struct socket *sock,
161                        struct sockaddr *addr, int addr_len);
162         void (*sockopts)(struct socket *sock);
163         int (*bind)(struct socket *sock);
164         int (*listen_validate)(void);
165         void (*listen_sockopts)(struct socket *sock);
166         int (*listen_bind)(struct socket *sock);
167 };
168
169 static struct listen_sock_callbacks {
170         void (*sk_error_report)(struct sock *);
171         void (*sk_data_ready)(struct sock *);
172         void (*sk_state_change)(struct sock *);
173         void (*sk_write_space)(struct sock *);
174 } listen_sock;
175
176 static struct listen_connection listen_con;
177 static struct sockaddr_storage dlm_local_addr[DLM_MAX_ADDR_COUNT];
178 static int dlm_local_count;
179
180 /* Work queues */
181 static struct workqueue_struct *io_workqueue;
182 static struct workqueue_struct *process_workqueue;
183
184 static struct hlist_head connection_hash[CONN_HASH_SIZE];
185 static DEFINE_SPINLOCK(connections_lock);
186 DEFINE_STATIC_SRCU(connections_srcu);
187
188 static const struct dlm_proto_ops *dlm_proto_ops;
189
190 #define DLM_IO_SUCCESS 0
191 #define DLM_IO_END 1
192 #define DLM_IO_EOF 2
193 #define DLM_IO_RESCHED 3
194
195 static void process_recv_sockets(struct work_struct *work);
196 static void process_send_sockets(struct work_struct *work);
197 static void process_dlm_messages(struct work_struct *work);
198
199 static DECLARE_WORK(process_work, process_dlm_messages);
200 static DEFINE_SPINLOCK(processqueue_lock);
201 static bool process_dlm_messages_pending;
202 static LIST_HEAD(processqueue);
203
204 bool dlm_lowcomms_is_running(void)
205 {
206         return !!listen_con.sock;
207 }
208
209 static void lowcomms_queue_swork(struct connection *con)
210 {
211         assert_spin_locked(&con->writequeue_lock);
212
213         if (!test_bit(CF_IO_STOP, &con->flags) &&
214             !test_bit(CF_APP_LIMITED, &con->flags) &&
215             !test_and_set_bit(CF_SEND_PENDING, &con->flags))
216                 queue_work(io_workqueue, &con->swork);
217 }
218
219 static void lowcomms_queue_rwork(struct connection *con)
220 {
221 #ifdef CONFIG_LOCKDEP
222         WARN_ON_ONCE(!lockdep_sock_is_held(con->sock->sk));
223 #endif
224
225         if (!test_bit(CF_IO_STOP, &con->flags) &&
226             !test_and_set_bit(CF_RECV_PENDING, &con->flags))
227                 queue_work(io_workqueue, &con->rwork);
228 }
229
230 static void writequeue_entry_ctor(void *data)
231 {
232         struct writequeue_entry *entry = data;
233
234         INIT_LIST_HEAD(&entry->msgs);
235 }
236
237 struct kmem_cache *dlm_lowcomms_writequeue_cache_create(void)
238 {
239         return kmem_cache_create("dlm_writequeue", sizeof(struct writequeue_entry),
240                                  0, 0, writequeue_entry_ctor);
241 }
242
243 struct kmem_cache *dlm_lowcomms_msg_cache_create(void)
244 {
245         return kmem_cache_create("dlm_msg", sizeof(struct dlm_msg), 0, 0, NULL);
246 }
247
248 /* need to held writequeue_lock */
249 static struct writequeue_entry *con_next_wq(struct connection *con)
250 {
251         struct writequeue_entry *e;
252
253         e = list_first_entry_or_null(&con->writequeue, struct writequeue_entry,
254                                      list);
255         /* if len is zero nothing is to send, if there are users filling
256          * buffers we wait until the users are done so we can send more.
257          */
258         if (!e || e->users || e->len == 0)
259                 return NULL;
260
261         return e;
262 }
263
264 static struct connection *__find_con(int nodeid, int r)
265 {
266         struct connection *con;
267
268         hlist_for_each_entry_rcu(con, &connection_hash[r], list) {
269                 if (con->nodeid == nodeid)
270                         return con;
271         }
272
273         return NULL;
274 }
275
276 static void dlm_con_init(struct connection *con, int nodeid)
277 {
278         con->nodeid = nodeid;
279         init_rwsem(&con->sock_lock);
280         INIT_LIST_HEAD(&con->writequeue);
281         spin_lock_init(&con->writequeue_lock);
282         INIT_WORK(&con->swork, process_send_sockets);
283         INIT_WORK(&con->rwork, process_recv_sockets);
284         spin_lock_init(&con->addrs_lock);
285 }
286
287 /*
288  * If 'allocation' is zero then we don't attempt to create a new
289  * connection structure for this node.
290  */
291 static struct connection *nodeid2con(int nodeid, gfp_t alloc)
292 {
293         struct connection *con, *tmp;
294         int r;
295
296         r = nodeid_hash(nodeid);
297         con = __find_con(nodeid, r);
298         if (con || !alloc)
299                 return con;
300
301         con = kzalloc(sizeof(*con), alloc);
302         if (!con)
303                 return NULL;
304
305         dlm_con_init(con, nodeid);
306
307         spin_lock(&connections_lock);
308         /* Because multiple workqueues/threads calls this function it can
309          * race on multiple cpu's. Instead of locking hot path __find_con()
310          * we just check in rare cases of recently added nodes again
311          * under protection of connections_lock. If this is the case we
312          * abort our connection creation and return the existing connection.
313          */
314         tmp = __find_con(nodeid, r);
315         if (tmp) {
316                 spin_unlock(&connections_lock);
317                 kfree(con);
318                 return tmp;
319         }
320
321         hlist_add_head_rcu(&con->list, &connection_hash[r]);
322         spin_unlock(&connections_lock);
323
324         return con;
325 }
326
327 static int addr_compare(const struct sockaddr_storage *x,
328                         const struct sockaddr_storage *y)
329 {
330         switch (x->ss_family) {
331         case AF_INET: {
332                 struct sockaddr_in *sinx = (struct sockaddr_in *)x;
333                 struct sockaddr_in *siny = (struct sockaddr_in *)y;
334                 if (sinx->sin_addr.s_addr != siny->sin_addr.s_addr)
335                         return 0;
336                 if (sinx->sin_port != siny->sin_port)
337                         return 0;
338                 break;
339         }
340         case AF_INET6: {
341                 struct sockaddr_in6 *sinx = (struct sockaddr_in6 *)x;
342                 struct sockaddr_in6 *siny = (struct sockaddr_in6 *)y;
343                 if (!ipv6_addr_equal(&sinx->sin6_addr, &siny->sin6_addr))
344                         return 0;
345                 if (sinx->sin6_port != siny->sin6_port)
346                         return 0;
347                 break;
348         }
349         default:
350                 return 0;
351         }
352         return 1;
353 }
354
355 static int nodeid_to_addr(int nodeid, struct sockaddr_storage *sas_out,
356                           struct sockaddr *sa_out, bool try_new_addr,
357                           unsigned int *mark)
358 {
359         struct sockaddr_storage sas;
360         struct connection *con;
361         int idx;
362
363         if (!dlm_local_count)
364                 return -1;
365
366         idx = srcu_read_lock(&connections_srcu);
367         con = nodeid2con(nodeid, 0);
368         if (!con) {
369                 srcu_read_unlock(&connections_srcu, idx);
370                 return -ENOENT;
371         }
372
373         spin_lock(&con->addrs_lock);
374         if (!con->addr_count) {
375                 spin_unlock(&con->addrs_lock);
376                 srcu_read_unlock(&connections_srcu, idx);
377                 return -ENOENT;
378         }
379
380         memcpy(&sas, &con->addr[con->curr_addr_index],
381                sizeof(struct sockaddr_storage));
382
383         if (try_new_addr) {
384                 con->curr_addr_index++;
385                 if (con->curr_addr_index == con->addr_count)
386                         con->curr_addr_index = 0;
387         }
388
389         *mark = con->mark;
390         spin_unlock(&con->addrs_lock);
391
392         if (sas_out)
393                 memcpy(sas_out, &sas, sizeof(struct sockaddr_storage));
394
395         if (!sa_out) {
396                 srcu_read_unlock(&connections_srcu, idx);
397                 return 0;
398         }
399
400         if (dlm_local_addr[0].ss_family == AF_INET) {
401                 struct sockaddr_in *in4  = (struct sockaddr_in *) &sas;
402                 struct sockaddr_in *ret4 = (struct sockaddr_in *) sa_out;
403                 ret4->sin_addr.s_addr = in4->sin_addr.s_addr;
404         } else {
405                 struct sockaddr_in6 *in6  = (struct sockaddr_in6 *) &sas;
406                 struct sockaddr_in6 *ret6 = (struct sockaddr_in6 *) sa_out;
407                 ret6->sin6_addr = in6->sin6_addr;
408         }
409
410         srcu_read_unlock(&connections_srcu, idx);
411         return 0;
412 }
413
414 static int addr_to_nodeid(struct sockaddr_storage *addr, int *nodeid,
415                           unsigned int *mark)
416 {
417         struct connection *con;
418         int i, idx, addr_i;
419
420         idx = srcu_read_lock(&connections_srcu);
421         for (i = 0; i < CONN_HASH_SIZE; i++) {
422                 hlist_for_each_entry_rcu(con, &connection_hash[i], list) {
423                         WARN_ON_ONCE(!con->addr_count);
424
425                         spin_lock(&con->addrs_lock);
426                         for (addr_i = 0; addr_i < con->addr_count; addr_i++) {
427                                 if (addr_compare(&con->addr[addr_i], addr)) {
428                                         *nodeid = con->nodeid;
429                                         *mark = con->mark;
430                                         spin_unlock(&con->addrs_lock);
431                                         srcu_read_unlock(&connections_srcu, idx);
432                                         return 0;
433                                 }
434                         }
435                         spin_unlock(&con->addrs_lock);
436                 }
437         }
438         srcu_read_unlock(&connections_srcu, idx);
439
440         return -ENOENT;
441 }
442
443 static bool dlm_lowcomms_con_has_addr(const struct connection *con,
444                                       const struct sockaddr_storage *addr)
445 {
446         int i;
447
448         for (i = 0; i < con->addr_count; i++) {
449                 if (addr_compare(&con->addr[i], addr))
450                         return true;
451         }
452
453         return false;
454 }
455
456 int dlm_lowcomms_addr(int nodeid, struct sockaddr_storage *addr, int len)
457 {
458         struct connection *con;
459         bool ret, idx;
460
461         idx = srcu_read_lock(&connections_srcu);
462         con = nodeid2con(nodeid, GFP_NOFS);
463         if (!con) {
464                 srcu_read_unlock(&connections_srcu, idx);
465                 return -ENOMEM;
466         }
467
468         spin_lock(&con->addrs_lock);
469         if (!con->addr_count) {
470                 memcpy(&con->addr[0], addr, sizeof(*addr));
471                 con->addr_count = 1;
472                 con->mark = dlm_config.ci_mark;
473                 spin_unlock(&con->addrs_lock);
474                 srcu_read_unlock(&connections_srcu, idx);
475                 return 0;
476         }
477
478         ret = dlm_lowcomms_con_has_addr(con, addr);
479         if (ret) {
480                 spin_unlock(&con->addrs_lock);
481                 srcu_read_unlock(&connections_srcu, idx);
482                 return -EEXIST;
483         }
484
485         if (con->addr_count >= DLM_MAX_ADDR_COUNT) {
486                 spin_unlock(&con->addrs_lock);
487                 srcu_read_unlock(&connections_srcu, idx);
488                 return -ENOSPC;
489         }
490
491         memcpy(&con->addr[con->addr_count++], addr, sizeof(*addr));
492         srcu_read_unlock(&connections_srcu, idx);
493         spin_unlock(&con->addrs_lock);
494         return 0;
495 }
496
497 /* Data available on socket or listen socket received a connect */
498 static void lowcomms_data_ready(struct sock *sk)
499 {
500         struct connection *con = sock2con(sk);
501
502         set_bit(CF_RECV_INTR, &con->flags);
503         lowcomms_queue_rwork(con);
504 }
505
506 static void lowcomms_write_space(struct sock *sk)
507 {
508         struct connection *con = sock2con(sk);
509
510         clear_bit(SOCK_NOSPACE, &con->sock->flags);
511
512         spin_lock_bh(&con->writequeue_lock);
513         if (test_and_clear_bit(CF_APP_LIMITED, &con->flags)) {
514                 con->sock->sk->sk_write_pending--;
515                 clear_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags);
516         }
517
518         lowcomms_queue_swork(con);
519         spin_unlock_bh(&con->writequeue_lock);
520 }
521
522 static void lowcomms_state_change(struct sock *sk)
523 {
524         /* SCTP layer is not calling sk_data_ready when the connection
525          * is done, so we catch the signal through here.
526          */
527         if (sk->sk_shutdown == RCV_SHUTDOWN)
528                 lowcomms_data_ready(sk);
529 }
530
531 static void lowcomms_listen_data_ready(struct sock *sk)
532 {
533         queue_work(io_workqueue, &listen_con.rwork);
534 }
535
536 int dlm_lowcomms_connect_node(int nodeid)
537 {
538         struct connection *con;
539         int idx;
540
541         if (nodeid == dlm_our_nodeid())
542                 return 0;
543
544         idx = srcu_read_lock(&connections_srcu);
545         con = nodeid2con(nodeid, 0);
546         if (WARN_ON_ONCE(!con)) {
547                 srcu_read_unlock(&connections_srcu, idx);
548                 return -ENOENT;
549         }
550
551         down_read(&con->sock_lock);
552         if (!con->sock) {
553                 spin_lock_bh(&con->writequeue_lock);
554                 lowcomms_queue_swork(con);
555                 spin_unlock_bh(&con->writequeue_lock);
556         }
557         up_read(&con->sock_lock);
558         srcu_read_unlock(&connections_srcu, idx);
559
560         cond_resched();
561         return 0;
562 }
563
564 int dlm_lowcomms_nodes_set_mark(int nodeid, unsigned int mark)
565 {
566         struct connection *con;
567         int idx;
568
569         idx = srcu_read_lock(&connections_srcu);
570         con = nodeid2con(nodeid, 0);
571         if (!con) {
572                 srcu_read_unlock(&connections_srcu, idx);
573                 return -ENOENT;
574         }
575
576         spin_lock(&con->addrs_lock);
577         con->mark = mark;
578         spin_unlock(&con->addrs_lock);
579         srcu_read_unlock(&connections_srcu, idx);
580         return 0;
581 }
582
583 static void lowcomms_error_report(struct sock *sk)
584 {
585         struct connection *con = sock2con(sk);
586         struct inet_sock *inet;
587
588         inet = inet_sk(sk);
589         switch (sk->sk_family) {
590         case AF_INET:
591                 printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
592                                    "sending to node %d at %pI4, dport %d, "
593                                    "sk_err=%d/%d\n", dlm_our_nodeid(),
594                                    con->nodeid, &inet->inet_daddr,
595                                    ntohs(inet->inet_dport), sk->sk_err,
596                                    sk->sk_err_soft);
597                 break;
598 #if IS_ENABLED(CONFIG_IPV6)
599         case AF_INET6:
600                 printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
601                                    "sending to node %d at %pI6c, "
602                                    "dport %d, sk_err=%d/%d\n", dlm_our_nodeid(),
603                                    con->nodeid, &sk->sk_v6_daddr,
604                                    ntohs(inet->inet_dport), sk->sk_err,
605                                    sk->sk_err_soft);
606                 break;
607 #endif
608         default:
609                 printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
610                                    "invalid socket family %d set, "
611                                    "sk_err=%d/%d\n", dlm_our_nodeid(),
612                                    sk->sk_family, sk->sk_err, sk->sk_err_soft);
613                 break;
614         }
615
616         dlm_midcomms_unack_msg_resend(con->nodeid);
617
618         listen_sock.sk_error_report(sk);
619 }
620
621 static void restore_callbacks(struct sock *sk)
622 {
623 #ifdef CONFIG_LOCKDEP
624         WARN_ON_ONCE(!lockdep_sock_is_held(sk));
625 #endif
626
627         sk->sk_user_data = NULL;
628         sk->sk_data_ready = listen_sock.sk_data_ready;
629         sk->sk_state_change = listen_sock.sk_state_change;
630         sk->sk_write_space = listen_sock.sk_write_space;
631         sk->sk_error_report = listen_sock.sk_error_report;
632 }
633
634 /* Make a socket active */
635 static void add_sock(struct socket *sock, struct connection *con)
636 {
637         struct sock *sk = sock->sk;
638
639         lock_sock(sk);
640         con->sock = sock;
641
642         sk->sk_user_data = con;
643         sk->sk_data_ready = lowcomms_data_ready;
644         sk->sk_write_space = lowcomms_write_space;
645         if (dlm_config.ci_protocol == DLM_PROTO_SCTP)
646                 sk->sk_state_change = lowcomms_state_change;
647         sk->sk_allocation = GFP_NOFS;
648         sk->sk_use_task_frag = false;
649         sk->sk_error_report = lowcomms_error_report;
650         release_sock(sk);
651 }
652
653 /* Add the port number to an IPv6 or 4 sockaddr and return the address
654    length */
655 static void make_sockaddr(struct sockaddr_storage *saddr, uint16_t port,
656                           int *addr_len)
657 {
658         saddr->ss_family =  dlm_local_addr[0].ss_family;
659         if (saddr->ss_family == AF_INET) {
660                 struct sockaddr_in *in4_addr = (struct sockaddr_in *)saddr;
661                 in4_addr->sin_port = cpu_to_be16(port);
662                 *addr_len = sizeof(struct sockaddr_in);
663                 memset(&in4_addr->sin_zero, 0, sizeof(in4_addr->sin_zero));
664         } else {
665                 struct sockaddr_in6 *in6_addr = (struct sockaddr_in6 *)saddr;
666                 in6_addr->sin6_port = cpu_to_be16(port);
667                 *addr_len = sizeof(struct sockaddr_in6);
668         }
669         memset((char *)saddr + *addr_len, 0, sizeof(struct sockaddr_storage) - *addr_len);
670 }
671
672 static void dlm_page_release(struct kref *kref)
673 {
674         struct writequeue_entry *e = container_of(kref, struct writequeue_entry,
675                                                   ref);
676
677         __free_page(e->page);
678         dlm_free_writequeue(e);
679 }
680
681 static void dlm_msg_release(struct kref *kref)
682 {
683         struct dlm_msg *msg = container_of(kref, struct dlm_msg, ref);
684
685         kref_put(&msg->entry->ref, dlm_page_release);
686         dlm_free_msg(msg);
687 }
688
689 static void free_entry(struct writequeue_entry *e)
690 {
691         struct dlm_msg *msg, *tmp;
692
693         list_for_each_entry_safe(msg, tmp, &e->msgs, list) {
694                 if (msg->orig_msg) {
695                         msg->orig_msg->retransmit = false;
696                         kref_put(&msg->orig_msg->ref, dlm_msg_release);
697                 }
698
699                 list_del(&msg->list);
700                 kref_put(&msg->ref, dlm_msg_release);
701         }
702
703         list_del(&e->list);
704         kref_put(&e->ref, dlm_page_release);
705 }
706
707 static void dlm_close_sock(struct socket **sock)
708 {
709         lock_sock((*sock)->sk);
710         restore_callbacks((*sock)->sk);
711         release_sock((*sock)->sk);
712
713         sock_release(*sock);
714         *sock = NULL;
715 }
716
717 static void allow_connection_io(struct connection *con)
718 {
719         if (con->othercon)
720                 clear_bit(CF_IO_STOP, &con->othercon->flags);
721         clear_bit(CF_IO_STOP, &con->flags);
722 }
723
724 static void stop_connection_io(struct connection *con)
725 {
726         if (con->othercon)
727                 stop_connection_io(con->othercon);
728
729         down_write(&con->sock_lock);
730         if (con->sock) {
731                 lock_sock(con->sock->sk);
732                 restore_callbacks(con->sock->sk);
733
734                 spin_lock_bh(&con->writequeue_lock);
735                 set_bit(CF_IO_STOP, &con->flags);
736                 spin_unlock_bh(&con->writequeue_lock);
737                 release_sock(con->sock->sk);
738         } else {
739                 spin_lock_bh(&con->writequeue_lock);
740                 set_bit(CF_IO_STOP, &con->flags);
741                 spin_unlock_bh(&con->writequeue_lock);
742         }
743         up_write(&con->sock_lock);
744
745         cancel_work_sync(&con->swork);
746         cancel_work_sync(&con->rwork);
747 }
748
749 /* Close a remote connection and tidy up */
750 static void close_connection(struct connection *con, bool and_other)
751 {
752         struct writequeue_entry *e;
753
754         if (con->othercon && and_other)
755                 close_connection(con->othercon, false);
756
757         down_write(&con->sock_lock);
758         if (!con->sock) {
759                 up_write(&con->sock_lock);
760                 return;
761         }
762
763         dlm_close_sock(&con->sock);
764
765         /* if we send a writequeue entry only a half way, we drop the
766          * whole entry because reconnection and that we not start of the
767          * middle of a msg which will confuse the other end.
768          *
769          * we can always drop messages because retransmits, but what we
770          * cannot allow is to transmit half messages which may be processed
771          * at the other side.
772          *
773          * our policy is to start on a clean state when disconnects, we don't
774          * know what's send/received on transport layer in this case.
775          */
776         spin_lock_bh(&con->writequeue_lock);
777         if (!list_empty(&con->writequeue)) {
778                 e = list_first_entry(&con->writequeue, struct writequeue_entry,
779                                      list);
780                 if (e->dirty)
781                         free_entry(e);
782         }
783         spin_unlock_bh(&con->writequeue_lock);
784
785         con->rx_leftover = 0;
786         con->retries = 0;
787         clear_bit(CF_APP_LIMITED, &con->flags);
788         clear_bit(CF_RECV_PENDING, &con->flags);
789         clear_bit(CF_SEND_PENDING, &con->flags);
790         up_write(&con->sock_lock);
791 }
792
793 static struct processqueue_entry *new_processqueue_entry(int nodeid,
794                                                          int buflen)
795 {
796         struct processqueue_entry *pentry;
797
798         pentry = kmalloc(sizeof(*pentry), GFP_NOFS);
799         if (!pentry)
800                 return NULL;
801
802         pentry->buf = kmalloc(buflen, GFP_NOFS);
803         if (!pentry->buf) {
804                 kfree(pentry);
805                 return NULL;
806         }
807
808         pentry->nodeid = nodeid;
809         return pentry;
810 }
811
812 static void free_processqueue_entry(struct processqueue_entry *pentry)
813 {
814         kfree(pentry->buf);
815         kfree(pentry);
816 }
817
818 struct dlm_processed_nodes {
819         int nodeid;
820
821         struct list_head list;
822 };
823
824 static void add_processed_node(int nodeid, struct list_head *processed_nodes)
825 {
826         struct dlm_processed_nodes *n;
827
828         list_for_each_entry(n, processed_nodes, list) {
829                 /* we already remembered this node */
830                 if (n->nodeid == nodeid)
831                         return;
832         }
833
834         /* if it's fails in worst case we simple don't send an ack back.
835          * We try it next time.
836          */
837         n = kmalloc(sizeof(*n), GFP_NOFS);
838         if (!n)
839                 return;
840
841         n->nodeid = nodeid;
842         list_add(&n->list, processed_nodes);
843 }
844
845 static void process_dlm_messages(struct work_struct *work)
846 {
847         struct dlm_processed_nodes *n, *n_tmp;
848         struct processqueue_entry *pentry;
849         LIST_HEAD(processed_nodes);
850
851         spin_lock(&processqueue_lock);
852         pentry = list_first_entry_or_null(&processqueue,
853                                           struct processqueue_entry, list);
854         if (WARN_ON_ONCE(!pentry)) {
855                 spin_unlock(&processqueue_lock);
856                 return;
857         }
858
859         list_del(&pentry->list);
860         spin_unlock(&processqueue_lock);
861
862         for (;;) {
863                 dlm_process_incoming_buffer(pentry->nodeid, pentry->buf,
864                                             pentry->buflen);
865                 add_processed_node(pentry->nodeid, &processed_nodes);
866                 free_processqueue_entry(pentry);
867
868                 spin_lock(&processqueue_lock);
869                 pentry = list_first_entry_or_null(&processqueue,
870                                                   struct processqueue_entry, list);
871                 if (!pentry) {
872                         process_dlm_messages_pending = false;
873                         spin_unlock(&processqueue_lock);
874                         break;
875                 }
876
877                 list_del(&pentry->list);
878                 spin_unlock(&processqueue_lock);
879         }
880
881         /* send ack back after we processed couple of messages */
882         list_for_each_entry_safe(n, n_tmp, &processed_nodes, list) {
883                 list_del(&n->list);
884                 dlm_midcomms_receive_done(n->nodeid);
885                 kfree(n);
886         }
887 }
888
889 /* Data received from remote end */
890 static int receive_from_sock(struct connection *con, int buflen)
891 {
892         struct processqueue_entry *pentry;
893         int ret, buflen_real;
894         struct msghdr msg;
895         struct kvec iov;
896
897         pentry = new_processqueue_entry(con->nodeid, buflen);
898         if (!pentry)
899                 return DLM_IO_RESCHED;
900
901         memcpy(pentry->buf, con->rx_leftover_buf, con->rx_leftover);
902
903         /* calculate new buffer parameter regarding last receive and
904          * possible leftover bytes
905          */
906         iov.iov_base = pentry->buf + con->rx_leftover;
907         iov.iov_len = buflen - con->rx_leftover;
908
909         memset(&msg, 0, sizeof(msg));
910         msg.msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
911         clear_bit(CF_RECV_INTR, &con->flags);
912 again:
913         ret = kernel_recvmsg(con->sock, &msg, &iov, 1, iov.iov_len,
914                              msg.msg_flags);
915         trace_dlm_recv(con->nodeid, ret);
916         if (ret == -EAGAIN) {
917                 lock_sock(con->sock->sk);
918                 if (test_and_clear_bit(CF_RECV_INTR, &con->flags)) {
919                         release_sock(con->sock->sk);
920                         goto again;
921                 }
922
923                 clear_bit(CF_RECV_PENDING, &con->flags);
924                 release_sock(con->sock->sk);
925                 free_processqueue_entry(pentry);
926                 return DLM_IO_END;
927         } else if (ret == 0) {
928                 /* close will clear CF_RECV_PENDING */
929                 free_processqueue_entry(pentry);
930                 return DLM_IO_EOF;
931         } else if (ret < 0) {
932                 free_processqueue_entry(pentry);
933                 return ret;
934         }
935
936         /* new buflen according readed bytes and leftover from last receive */
937         buflen_real = ret + con->rx_leftover;
938         ret = dlm_validate_incoming_buffer(con->nodeid, pentry->buf,
939                                            buflen_real);
940         if (ret < 0) {
941                 free_processqueue_entry(pentry);
942                 return ret;
943         }
944
945         pentry->buflen = ret;
946
947         /* calculate leftover bytes from process and put it into begin of
948          * the receive buffer, so next receive we have the full message
949          * at the start address of the receive buffer.
950          */
951         con->rx_leftover = buflen_real - ret;
952         memmove(con->rx_leftover_buf, pentry->buf + ret,
953                 con->rx_leftover);
954
955         spin_lock(&processqueue_lock);
956         list_add_tail(&pentry->list, &processqueue);
957         if (!process_dlm_messages_pending) {
958                 process_dlm_messages_pending = true;
959                 queue_work(process_workqueue, &process_work);
960         }
961         spin_unlock(&processqueue_lock);
962
963         return DLM_IO_SUCCESS;
964 }
965
966 /* Listening socket is busy, accept a connection */
967 static int accept_from_sock(void)
968 {
969         struct sockaddr_storage peeraddr;
970         int len, idx, result, nodeid;
971         struct connection *newcon;
972         struct socket *newsock;
973         unsigned int mark;
974
975         result = kernel_accept(listen_con.sock, &newsock, O_NONBLOCK);
976         if (result == -EAGAIN)
977                 return DLM_IO_END;
978         else if (result < 0)
979                 goto accept_err;
980
981         /* Get the connected socket's peer */
982         memset(&peeraddr, 0, sizeof(peeraddr));
983         len = newsock->ops->getname(newsock, (struct sockaddr *)&peeraddr, 2);
984         if (len < 0) {
985                 result = -ECONNABORTED;
986                 goto accept_err;
987         }
988
989         /* Get the new node's NODEID */
990         make_sockaddr(&peeraddr, 0, &len);
991         if (addr_to_nodeid(&peeraddr, &nodeid, &mark)) {
992                 switch (peeraddr.ss_family) {
993                 case AF_INET: {
994                         struct sockaddr_in *sin = (struct sockaddr_in *)&peeraddr;
995
996                         log_print("connect from non cluster IPv4 node %pI4",
997                                   &sin->sin_addr);
998                         break;
999                 }
1000 #if IS_ENABLED(CONFIG_IPV6)
1001                 case AF_INET6: {
1002                         struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&peeraddr;
1003
1004                         log_print("connect from non cluster IPv6 node %pI6c",
1005                                   &sin6->sin6_addr);
1006                         break;
1007                 }
1008 #endif
1009                 default:
1010                         log_print("invalid family from non cluster node");
1011                         break;
1012                 }
1013
1014                 sock_release(newsock);
1015                 return -1;
1016         }
1017
1018         log_print("got connection from %d", nodeid);
1019
1020         /*  Check to see if we already have a connection to this node. This
1021          *  could happen if the two nodes initiate a connection at roughly
1022          *  the same time and the connections cross on the wire.
1023          *  In this case we store the incoming one in "othercon"
1024          */
1025         idx = srcu_read_lock(&connections_srcu);
1026         newcon = nodeid2con(nodeid, 0);
1027         if (WARN_ON_ONCE(!newcon)) {
1028                 srcu_read_unlock(&connections_srcu, idx);
1029                 result = -ENOENT;
1030                 goto accept_err;
1031         }
1032
1033         sock_set_mark(newsock->sk, mark);
1034
1035         down_write(&newcon->sock_lock);
1036         if (newcon->sock) {
1037                 struct connection *othercon = newcon->othercon;
1038
1039                 if (!othercon) {
1040                         othercon = kzalloc(sizeof(*othercon), GFP_NOFS);
1041                         if (!othercon) {
1042                                 log_print("failed to allocate incoming socket");
1043                                 up_write(&newcon->sock_lock);
1044                                 srcu_read_unlock(&connections_srcu, idx);
1045                                 result = -ENOMEM;
1046                                 goto accept_err;
1047                         }
1048
1049                         dlm_con_init(othercon, nodeid);
1050                         lockdep_set_subclass(&othercon->sock_lock, 1);
1051                         newcon->othercon = othercon;
1052                         set_bit(CF_IS_OTHERCON, &othercon->flags);
1053                 } else {
1054                         /* close other sock con if we have something new */
1055                         close_connection(othercon, false);
1056                 }
1057
1058                 down_write(&othercon->sock_lock);
1059                 add_sock(newsock, othercon);
1060
1061                 /* check if we receved something while adding */
1062                 lock_sock(othercon->sock->sk);
1063                 lowcomms_queue_rwork(othercon);
1064                 release_sock(othercon->sock->sk);
1065                 up_write(&othercon->sock_lock);
1066         }
1067         else {
1068                 /* accept copies the sk after we've saved the callbacks, so we
1069                    don't want to save them a second time or comm errors will
1070                    result in calling sk_error_report recursively. */
1071                 add_sock(newsock, newcon);
1072
1073                 /* check if we receved something while adding */
1074                 lock_sock(newcon->sock->sk);
1075                 lowcomms_queue_rwork(newcon);
1076                 release_sock(newcon->sock->sk);
1077         }
1078         up_write(&newcon->sock_lock);
1079         srcu_read_unlock(&connections_srcu, idx);
1080
1081         return DLM_IO_SUCCESS;
1082
1083 accept_err:
1084         if (newsock)
1085                 sock_release(newsock);
1086
1087         return result;
1088 }
1089
1090 /*
1091  * writequeue_entry_complete - try to delete and free write queue entry
1092  * @e: write queue entry to try to delete
1093  * @completed: bytes completed
1094  *
1095  * writequeue_lock must be held.
1096  */
1097 static void writequeue_entry_complete(struct writequeue_entry *e, int completed)
1098 {
1099         e->offset += completed;
1100         e->len -= completed;
1101         /* signal that page was half way transmitted */
1102         e->dirty = true;
1103
1104         if (e->len == 0 && e->users == 0)
1105                 free_entry(e);
1106 }
1107
1108 /*
1109  * sctp_bind_addrs - bind a SCTP socket to all our addresses
1110  */
1111 static int sctp_bind_addrs(struct socket *sock, uint16_t port)
1112 {
1113         struct sockaddr_storage localaddr;
1114         struct sockaddr *addr = (struct sockaddr *)&localaddr;
1115         int i, addr_len, result = 0;
1116
1117         for (i = 0; i < dlm_local_count; i++) {
1118                 memcpy(&localaddr, &dlm_local_addr[i], sizeof(localaddr));
1119                 make_sockaddr(&localaddr, port, &addr_len);
1120
1121                 if (!i)
1122                         result = kernel_bind(sock, addr, addr_len);
1123                 else
1124                         result = sock_bind_add(sock->sk, addr, addr_len);
1125
1126                 if (result < 0) {
1127                         log_print("Can't bind to %d addr number %d, %d.\n",
1128                                   port, i + 1, result);
1129                         break;
1130                 }
1131         }
1132         return result;
1133 }
1134
1135 /* Get local addresses */
1136 static void init_local(void)
1137 {
1138         struct sockaddr_storage sas;
1139         int i;
1140
1141         dlm_local_count = 0;
1142         for (i = 0; i < DLM_MAX_ADDR_COUNT; i++) {
1143                 if (dlm_our_addr(&sas, i))
1144                         break;
1145
1146                 memcpy(&dlm_local_addr[dlm_local_count++], &sas, sizeof(sas));
1147         }
1148 }
1149
1150 static struct writequeue_entry *new_writequeue_entry(struct connection *con)
1151 {
1152         struct writequeue_entry *entry;
1153
1154         entry = dlm_allocate_writequeue();
1155         if (!entry)
1156                 return NULL;
1157
1158         entry->page = alloc_page(GFP_ATOMIC | __GFP_ZERO);
1159         if (!entry->page) {
1160                 dlm_free_writequeue(entry);
1161                 return NULL;
1162         }
1163
1164         entry->offset = 0;
1165         entry->len = 0;
1166         entry->end = 0;
1167         entry->dirty = false;
1168         entry->con = con;
1169         entry->users = 1;
1170         kref_init(&entry->ref);
1171         return entry;
1172 }
1173
1174 static struct writequeue_entry *new_wq_entry(struct connection *con, int len,
1175                                              char **ppc, void (*cb)(void *data),
1176                                              void *data)
1177 {
1178         struct writequeue_entry *e;
1179
1180         spin_lock_bh(&con->writequeue_lock);
1181         if (!list_empty(&con->writequeue)) {
1182                 e = list_last_entry(&con->writequeue, struct writequeue_entry, list);
1183                 if (DLM_WQ_REMAIN_BYTES(e) >= len) {
1184                         kref_get(&e->ref);
1185
1186                         *ppc = page_address(e->page) + e->end;
1187                         if (cb)
1188                                 cb(data);
1189
1190                         e->end += len;
1191                         e->users++;
1192                         goto out;
1193                 }
1194         }
1195
1196         e = new_writequeue_entry(con);
1197         if (!e)
1198                 goto out;
1199
1200         kref_get(&e->ref);
1201         *ppc = page_address(e->page);
1202         e->end += len;
1203         if (cb)
1204                 cb(data);
1205
1206         list_add_tail(&e->list, &con->writequeue);
1207
1208 out:
1209         spin_unlock_bh(&con->writequeue_lock);
1210         return e;
1211 };
1212
1213 static struct dlm_msg *dlm_lowcomms_new_msg_con(struct connection *con, int len,
1214                                                 gfp_t allocation, char **ppc,
1215                                                 void (*cb)(void *data),
1216                                                 void *data)
1217 {
1218         struct writequeue_entry *e;
1219         struct dlm_msg *msg;
1220
1221         msg = dlm_allocate_msg(allocation);
1222         if (!msg)
1223                 return NULL;
1224
1225         kref_init(&msg->ref);
1226
1227         e = new_wq_entry(con, len, ppc, cb, data);
1228         if (!e) {
1229                 dlm_free_msg(msg);
1230                 return NULL;
1231         }
1232
1233         msg->retransmit = false;
1234         msg->orig_msg = NULL;
1235         msg->ppc = *ppc;
1236         msg->len = len;
1237         msg->entry = e;
1238
1239         return msg;
1240 }
1241
1242 /* avoid false positive for nodes_srcu, unlock happens in
1243  * dlm_lowcomms_commit_msg which is a must call if success
1244  */
1245 #ifndef __CHECKER__
1246 struct dlm_msg *dlm_lowcomms_new_msg(int nodeid, int len, gfp_t allocation,
1247                                      char **ppc, void (*cb)(void *data),
1248                                      void *data)
1249 {
1250         struct connection *con;
1251         struct dlm_msg *msg;
1252         int idx;
1253
1254         if (len > DLM_MAX_SOCKET_BUFSIZE ||
1255             len < sizeof(struct dlm_header)) {
1256                 BUILD_BUG_ON(PAGE_SIZE < DLM_MAX_SOCKET_BUFSIZE);
1257                 log_print("failed to allocate a buffer of size %d", len);
1258                 WARN_ON_ONCE(1);
1259                 return NULL;
1260         }
1261
1262         idx = srcu_read_lock(&connections_srcu);
1263         con = nodeid2con(nodeid, 0);
1264         if (WARN_ON_ONCE(!con)) {
1265                 srcu_read_unlock(&connections_srcu, idx);
1266                 return NULL;
1267         }
1268
1269         msg = dlm_lowcomms_new_msg_con(con, len, allocation, ppc, cb, data);
1270         if (!msg) {
1271                 srcu_read_unlock(&connections_srcu, idx);
1272                 return NULL;
1273         }
1274
1275         /* for dlm_lowcomms_commit_msg() */
1276         kref_get(&msg->ref);
1277         /* we assume if successful commit must called */
1278         msg->idx = idx;
1279         return msg;
1280 }
1281 #endif
1282
1283 static void _dlm_lowcomms_commit_msg(struct dlm_msg *msg)
1284 {
1285         struct writequeue_entry *e = msg->entry;
1286         struct connection *con = e->con;
1287         int users;
1288
1289         spin_lock_bh(&con->writequeue_lock);
1290         kref_get(&msg->ref);
1291         list_add(&msg->list, &e->msgs);
1292
1293         users = --e->users;
1294         if (users)
1295                 goto out;
1296
1297         e->len = DLM_WQ_LENGTH_BYTES(e);
1298
1299         lowcomms_queue_swork(con);
1300
1301 out:
1302         spin_unlock_bh(&con->writequeue_lock);
1303         return;
1304 }
1305
1306 /* avoid false positive for nodes_srcu, lock was happen in
1307  * dlm_lowcomms_new_msg
1308  */
1309 #ifndef __CHECKER__
1310 void dlm_lowcomms_commit_msg(struct dlm_msg *msg)
1311 {
1312         _dlm_lowcomms_commit_msg(msg);
1313         srcu_read_unlock(&connections_srcu, msg->idx);
1314         /* because dlm_lowcomms_new_msg() */
1315         kref_put(&msg->ref, dlm_msg_release);
1316 }
1317 #endif
1318
1319 void dlm_lowcomms_put_msg(struct dlm_msg *msg)
1320 {
1321         kref_put(&msg->ref, dlm_msg_release);
1322 }
1323
1324 /* does not held connections_srcu, usage lowcomms_error_report only */
1325 int dlm_lowcomms_resend_msg(struct dlm_msg *msg)
1326 {
1327         struct dlm_msg *msg_resend;
1328         char *ppc;
1329
1330         if (msg->retransmit)
1331                 return 1;
1332
1333         msg_resend = dlm_lowcomms_new_msg_con(msg->entry->con, msg->len,
1334                                               GFP_ATOMIC, &ppc, NULL, NULL);
1335         if (!msg_resend)
1336                 return -ENOMEM;
1337
1338         msg->retransmit = true;
1339         kref_get(&msg->ref);
1340         msg_resend->orig_msg = msg;
1341
1342         memcpy(ppc, msg->ppc, msg->len);
1343         _dlm_lowcomms_commit_msg(msg_resend);
1344         dlm_lowcomms_put_msg(msg_resend);
1345
1346         return 0;
1347 }
1348
1349 /* Send a message */
1350 static int send_to_sock(struct connection *con)
1351 {
1352         const int msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
1353         struct writequeue_entry *e;
1354         int len, offset, ret;
1355
1356         spin_lock_bh(&con->writequeue_lock);
1357         e = con_next_wq(con);
1358         if (!e) {
1359                 clear_bit(CF_SEND_PENDING, &con->flags);
1360                 spin_unlock_bh(&con->writequeue_lock);
1361                 return DLM_IO_END;
1362         }
1363
1364         len = e->len;
1365         offset = e->offset;
1366         WARN_ON_ONCE(len == 0 && e->users == 0);
1367         spin_unlock_bh(&con->writequeue_lock);
1368
1369         ret = kernel_sendpage(con->sock, e->page, offset, len,
1370                               msg_flags);
1371         trace_dlm_send(con->nodeid, ret);
1372         if (ret == -EAGAIN || ret == 0) {
1373                 lock_sock(con->sock->sk);
1374                 spin_lock_bh(&con->writequeue_lock);
1375                 if (test_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags) &&
1376                     !test_and_set_bit(CF_APP_LIMITED, &con->flags)) {
1377                         /* Notify TCP that we're limited by the
1378                          * application window size.
1379                          */
1380                         set_bit(SOCK_NOSPACE, &con->sock->sk->sk_socket->flags);
1381                         con->sock->sk->sk_write_pending++;
1382
1383                         clear_bit(CF_SEND_PENDING, &con->flags);
1384                         spin_unlock_bh(&con->writequeue_lock);
1385                         release_sock(con->sock->sk);
1386
1387                         /* wait for write_space() event */
1388                         return DLM_IO_END;
1389                 }
1390                 spin_unlock_bh(&con->writequeue_lock);
1391                 release_sock(con->sock->sk);
1392
1393                 return DLM_IO_RESCHED;
1394         } else if (ret < 0) {
1395                 return ret;
1396         }
1397
1398         spin_lock_bh(&con->writequeue_lock);
1399         writequeue_entry_complete(e, ret);
1400         spin_unlock_bh(&con->writequeue_lock);
1401
1402         return DLM_IO_SUCCESS;
1403 }
1404
1405 static void clean_one_writequeue(struct connection *con)
1406 {
1407         struct writequeue_entry *e, *safe;
1408
1409         spin_lock_bh(&con->writequeue_lock);
1410         list_for_each_entry_safe(e, safe, &con->writequeue, list) {
1411                 free_entry(e);
1412         }
1413         spin_unlock_bh(&con->writequeue_lock);
1414 }
1415
1416 static void connection_release(struct rcu_head *rcu)
1417 {
1418         struct connection *con = container_of(rcu, struct connection, rcu);
1419
1420         WARN_ON_ONCE(!list_empty(&con->writequeue));
1421         WARN_ON_ONCE(con->sock);
1422         kfree(con);
1423 }
1424
1425 /* Called from recovery when it knows that a node has
1426    left the cluster */
1427 int dlm_lowcomms_close(int nodeid)
1428 {
1429         struct connection *con;
1430         int idx;
1431
1432         log_print("closing connection to node %d", nodeid);
1433
1434         idx = srcu_read_lock(&connections_srcu);
1435         con = nodeid2con(nodeid, 0);
1436         if (WARN_ON_ONCE(!con)) {
1437                 srcu_read_unlock(&connections_srcu, idx);
1438                 return -ENOENT;
1439         }
1440
1441         stop_connection_io(con);
1442         log_print("io handling for node: %d stopped", nodeid);
1443         close_connection(con, true);
1444
1445         spin_lock(&connections_lock);
1446         hlist_del_rcu(&con->list);
1447         spin_unlock(&connections_lock);
1448
1449         clean_one_writequeue(con);
1450         call_srcu(&connections_srcu, &con->rcu, connection_release);
1451         if (con->othercon) {
1452                 clean_one_writequeue(con->othercon);
1453                 if (con->othercon)
1454                         call_srcu(&connections_srcu, &con->othercon->rcu, connection_release);
1455         }
1456         srcu_read_unlock(&connections_srcu, idx);
1457
1458         /* for debugging we print when we are done to compare with other
1459          * messages in between. This function need to be correctly synchronized
1460          * with io handling
1461          */
1462         log_print("closing connection to node %d done", nodeid);
1463
1464         return 0;
1465 }
1466
1467 /* Receive worker function */
1468 static void process_recv_sockets(struct work_struct *work)
1469 {
1470         struct connection *con = container_of(work, struct connection, rwork);
1471         int ret, buflen;
1472
1473         down_read(&con->sock_lock);
1474         if (!con->sock) {
1475                 up_read(&con->sock_lock);
1476                 return;
1477         }
1478
1479         buflen = READ_ONCE(dlm_config.ci_buffer_size);
1480         do {
1481                 ret = receive_from_sock(con, buflen);
1482         } while (ret == DLM_IO_SUCCESS);
1483         up_read(&con->sock_lock);
1484
1485         switch (ret) {
1486         case DLM_IO_END:
1487                 /* CF_RECV_PENDING cleared */
1488                 break;
1489         case DLM_IO_EOF:
1490                 close_connection(con, false);
1491                 /* CF_RECV_PENDING cleared */
1492                 break;
1493         case DLM_IO_RESCHED:
1494                 cond_resched();
1495                 queue_work(io_workqueue, &con->rwork);
1496                 /* CF_RECV_PENDING not cleared */
1497                 break;
1498         default:
1499                 if (ret < 0) {
1500                         if (test_bit(CF_IS_OTHERCON, &con->flags)) {
1501                                 close_connection(con, false);
1502                         } else {
1503                                 spin_lock_bh(&con->writequeue_lock);
1504                                 lowcomms_queue_swork(con);
1505                                 spin_unlock_bh(&con->writequeue_lock);
1506                         }
1507
1508                         /* CF_RECV_PENDING cleared for othercon
1509                          * we trigger send queue if not already done
1510                          * and process_send_sockets will handle it
1511                          */
1512                         break;
1513                 }
1514
1515                 WARN_ON_ONCE(1);
1516                 break;
1517         }
1518 }
1519
1520 static void process_listen_recv_socket(struct work_struct *work)
1521 {
1522         int ret;
1523
1524         if (WARN_ON_ONCE(!listen_con.sock))
1525                 return;
1526
1527         do {
1528                 ret = accept_from_sock();
1529         } while (ret == DLM_IO_SUCCESS);
1530
1531         if (ret < 0)
1532                 log_print("critical error accepting connection: %d", ret);
1533 }
1534
1535 static int dlm_connect(struct connection *con)
1536 {
1537         struct sockaddr_storage addr;
1538         int result, addr_len;
1539         struct socket *sock;
1540         unsigned int mark;
1541
1542         memset(&addr, 0, sizeof(addr));
1543         result = nodeid_to_addr(con->nodeid, &addr, NULL,
1544                                 dlm_proto_ops->try_new_addr, &mark);
1545         if (result < 0) {
1546                 log_print("no address for nodeid %d", con->nodeid);
1547                 return result;
1548         }
1549
1550         /* Create a socket to communicate with */
1551         result = sock_create_kern(&init_net, dlm_local_addr[0].ss_family,
1552                                   SOCK_STREAM, dlm_proto_ops->proto, &sock);
1553         if (result < 0)
1554                 return result;
1555
1556         sock_set_mark(sock->sk, mark);
1557         dlm_proto_ops->sockopts(sock);
1558
1559         result = dlm_proto_ops->bind(sock);
1560         if (result < 0) {
1561                 sock_release(sock);
1562                 return result;
1563         }
1564
1565         add_sock(sock, con);
1566
1567         log_print_ratelimited("connecting to %d", con->nodeid);
1568         make_sockaddr(&addr, dlm_config.ci_tcp_port, &addr_len);
1569         result = dlm_proto_ops->connect(con, sock, (struct sockaddr *)&addr,
1570                                         addr_len);
1571         switch (result) {
1572         case -EINPROGRESS:
1573                 /* not an error */
1574                 fallthrough;
1575         case 0:
1576                 break;
1577         default:
1578                 if (result < 0)
1579                         dlm_close_sock(&con->sock);
1580
1581                 break;
1582         }
1583
1584         return result;
1585 }
1586
1587 /* Send worker function */
1588 static void process_send_sockets(struct work_struct *work)
1589 {
1590         struct connection *con = container_of(work, struct connection, swork);
1591         int ret;
1592
1593         WARN_ON_ONCE(test_bit(CF_IS_OTHERCON, &con->flags));
1594
1595         down_read(&con->sock_lock);
1596         if (!con->sock) {
1597                 up_read(&con->sock_lock);
1598                 down_write(&con->sock_lock);
1599                 if (!con->sock) {
1600                         ret = dlm_connect(con);
1601                         switch (ret) {
1602                         case 0:
1603                                 break;
1604                         case -EINPROGRESS:
1605                                 /* avoid spamming resched on connection
1606                                  * we might can switch to a state_change
1607                                  * event based mechanism if established
1608                                  */
1609                                 msleep(100);
1610                                 break;
1611                         default:
1612                                 /* CF_SEND_PENDING not cleared */
1613                                 up_write(&con->sock_lock);
1614                                 log_print("connect to node %d try %d error %d",
1615                                           con->nodeid, con->retries++, ret);
1616                                 msleep(1000);
1617                                 /* For now we try forever to reconnect. In
1618                                  * future we should send a event to cluster
1619                                  * manager to fence itself after certain amount
1620                                  * of retries.
1621                                  */
1622                                 queue_work(io_workqueue, &con->swork);
1623                                 return;
1624                         }
1625                 }
1626                 downgrade_write(&con->sock_lock);
1627         }
1628
1629         do {
1630                 ret = send_to_sock(con);
1631         } while (ret == DLM_IO_SUCCESS);
1632         up_read(&con->sock_lock);
1633
1634         switch (ret) {
1635         case DLM_IO_END:
1636                 /* CF_SEND_PENDING cleared */
1637                 break;
1638         case DLM_IO_RESCHED:
1639                 /* CF_SEND_PENDING not cleared */
1640                 cond_resched();
1641                 queue_work(io_workqueue, &con->swork);
1642                 break;
1643         default:
1644                 if (ret < 0) {
1645                         close_connection(con, false);
1646
1647                         /* CF_SEND_PENDING cleared */
1648                         spin_lock_bh(&con->writequeue_lock);
1649                         lowcomms_queue_swork(con);
1650                         spin_unlock_bh(&con->writequeue_lock);
1651                         break;
1652                 }
1653
1654                 WARN_ON_ONCE(1);
1655                 break;
1656         }
1657 }
1658
1659 static void work_stop(void)
1660 {
1661         if (io_workqueue) {
1662                 destroy_workqueue(io_workqueue);
1663                 io_workqueue = NULL;
1664         }
1665
1666         if (process_workqueue) {
1667                 destroy_workqueue(process_workqueue);
1668                 process_workqueue = NULL;
1669         }
1670 }
1671
1672 static int work_start(void)
1673 {
1674         io_workqueue = alloc_workqueue("dlm_io", WQ_HIGHPRI | WQ_MEM_RECLAIM,
1675                                        0);
1676         if (!io_workqueue) {
1677                 log_print("can't start dlm_io");
1678                 return -ENOMEM;
1679         }
1680
1681         /* ordered dlm message process queue,
1682          * should be converted to a tasklet
1683          */
1684         process_workqueue = alloc_ordered_workqueue("dlm_process",
1685                                                     WQ_HIGHPRI | WQ_MEM_RECLAIM);
1686         if (!process_workqueue) {
1687                 log_print("can't start dlm_process");
1688                 destroy_workqueue(io_workqueue);
1689                 io_workqueue = NULL;
1690                 return -ENOMEM;
1691         }
1692
1693         return 0;
1694 }
1695
1696 void dlm_lowcomms_shutdown(void)
1697 {
1698         /* stop lowcomms_listen_data_ready calls */
1699         lock_sock(listen_con.sock->sk);
1700         listen_con.sock->sk->sk_data_ready = listen_sock.sk_data_ready;
1701         release_sock(listen_con.sock->sk);
1702
1703         cancel_work_sync(&listen_con.rwork);
1704         dlm_close_sock(&listen_con.sock);
1705
1706         flush_workqueue(process_workqueue);
1707 }
1708
1709 void dlm_lowcomms_shutdown_node(int nodeid, bool force)
1710 {
1711         struct connection *con;
1712         int idx;
1713
1714         idx = srcu_read_lock(&connections_srcu);
1715         con = nodeid2con(nodeid, 0);
1716         if (WARN_ON_ONCE(!con)) {
1717                 srcu_read_unlock(&connections_srcu, idx);
1718                 return;
1719         }
1720
1721         flush_work(&con->swork);
1722         stop_connection_io(con);
1723         WARN_ON_ONCE(!force && !list_empty(&con->writequeue));
1724         close_connection(con, true);
1725         clean_one_writequeue(con);
1726         if (con->othercon)
1727                 clean_one_writequeue(con->othercon);
1728         allow_connection_io(con);
1729         srcu_read_unlock(&connections_srcu, idx);
1730 }
1731
1732 void dlm_lowcomms_stop(void)
1733 {
1734         work_stop();
1735         dlm_proto_ops = NULL;
1736 }
1737
1738 static int dlm_listen_for_all(void)
1739 {
1740         struct socket *sock;
1741         int result;
1742
1743         log_print("Using %s for communications",
1744                   dlm_proto_ops->name);
1745
1746         result = dlm_proto_ops->listen_validate();
1747         if (result < 0)
1748                 return result;
1749
1750         result = sock_create_kern(&init_net, dlm_local_addr[0].ss_family,
1751                                   SOCK_STREAM, dlm_proto_ops->proto, &sock);
1752         if (result < 0) {
1753                 log_print("Can't create comms socket: %d", result);
1754                 return result;
1755         }
1756
1757         sock_set_mark(sock->sk, dlm_config.ci_mark);
1758         dlm_proto_ops->listen_sockopts(sock);
1759
1760         result = dlm_proto_ops->listen_bind(sock);
1761         if (result < 0)
1762                 goto out;
1763
1764         lock_sock(sock->sk);
1765         listen_sock.sk_data_ready = sock->sk->sk_data_ready;
1766         listen_sock.sk_write_space = sock->sk->sk_write_space;
1767         listen_sock.sk_error_report = sock->sk->sk_error_report;
1768         listen_sock.sk_state_change = sock->sk->sk_state_change;
1769
1770         listen_con.sock = sock;
1771
1772         sock->sk->sk_allocation = GFP_NOFS;
1773         sock->sk->sk_use_task_frag = false;
1774         sock->sk->sk_data_ready = lowcomms_listen_data_ready;
1775         release_sock(sock->sk);
1776
1777         result = sock->ops->listen(sock, 5);
1778         if (result < 0) {
1779                 dlm_close_sock(&listen_con.sock);
1780                 return result;
1781         }
1782
1783         return 0;
1784
1785 out:
1786         sock_release(sock);
1787         return result;
1788 }
1789
1790 static int dlm_tcp_bind(struct socket *sock)
1791 {
1792         struct sockaddr_storage src_addr;
1793         int result, addr_len;
1794
1795         /* Bind to our cluster-known address connecting to avoid
1796          * routing problems.
1797          */
1798         memcpy(&src_addr, &dlm_local_addr[0], sizeof(src_addr));
1799         make_sockaddr(&src_addr, 0, &addr_len);
1800
1801         result = sock->ops->bind(sock, (struct sockaddr *)&src_addr,
1802                                  addr_len);
1803         if (result < 0) {
1804                 /* This *may* not indicate a critical error */
1805                 log_print("could not bind for connect: %d", result);
1806         }
1807
1808         return 0;
1809 }
1810
1811 static int dlm_tcp_connect(struct connection *con, struct socket *sock,
1812                            struct sockaddr *addr, int addr_len)
1813 {
1814         return sock->ops->connect(sock, addr, addr_len, O_NONBLOCK);
1815 }
1816
1817 static int dlm_tcp_listen_validate(void)
1818 {
1819         /* We don't support multi-homed hosts */
1820         if (dlm_local_count > 1) {
1821                 log_print("TCP protocol can't handle multi-homed hosts, try SCTP");
1822                 return -EINVAL;
1823         }
1824
1825         return 0;
1826 }
1827
1828 static void dlm_tcp_sockopts(struct socket *sock)
1829 {
1830         /* Turn off Nagle's algorithm */
1831         tcp_sock_set_nodelay(sock->sk);
1832 }
1833
1834 static void dlm_tcp_listen_sockopts(struct socket *sock)
1835 {
1836         dlm_tcp_sockopts(sock);
1837         sock_set_reuseaddr(sock->sk);
1838 }
1839
1840 static int dlm_tcp_listen_bind(struct socket *sock)
1841 {
1842         int addr_len;
1843
1844         /* Bind to our port */
1845         make_sockaddr(&dlm_local_addr[0], dlm_config.ci_tcp_port, &addr_len);
1846         return sock->ops->bind(sock, (struct sockaddr *)&dlm_local_addr[0],
1847                                addr_len);
1848 }
1849
1850 static const struct dlm_proto_ops dlm_tcp_ops = {
1851         .name = "TCP",
1852         .proto = IPPROTO_TCP,
1853         .connect = dlm_tcp_connect,
1854         .sockopts = dlm_tcp_sockopts,
1855         .bind = dlm_tcp_bind,
1856         .listen_validate = dlm_tcp_listen_validate,
1857         .listen_sockopts = dlm_tcp_listen_sockopts,
1858         .listen_bind = dlm_tcp_listen_bind,
1859 };
1860
1861 static int dlm_sctp_bind(struct socket *sock)
1862 {
1863         return sctp_bind_addrs(sock, 0);
1864 }
1865
1866 static int dlm_sctp_connect(struct connection *con, struct socket *sock,
1867                             struct sockaddr *addr, int addr_len)
1868 {
1869         int ret;
1870
1871         /*
1872          * Make sock->ops->connect() function return in specified time,
1873          * since O_NONBLOCK argument in connect() function does not work here,
1874          * then, we should restore the default value of this attribute.
1875          */
1876         sock_set_sndtimeo(sock->sk, 5);
1877         ret = sock->ops->connect(sock, addr, addr_len, 0);
1878         sock_set_sndtimeo(sock->sk, 0);
1879         return ret;
1880 }
1881
1882 static int dlm_sctp_listen_validate(void)
1883 {
1884         if (!IS_ENABLED(CONFIG_IP_SCTP)) {
1885                 log_print("SCTP is not enabled by this kernel");
1886                 return -EOPNOTSUPP;
1887         }
1888
1889         request_module("sctp");
1890         return 0;
1891 }
1892
1893 static int dlm_sctp_bind_listen(struct socket *sock)
1894 {
1895         return sctp_bind_addrs(sock, dlm_config.ci_tcp_port);
1896 }
1897
1898 static void dlm_sctp_sockopts(struct socket *sock)
1899 {
1900         /* Turn off Nagle's algorithm */
1901         sctp_sock_set_nodelay(sock->sk);
1902         sock_set_rcvbuf(sock->sk, NEEDED_RMEM);
1903 }
1904
1905 static const struct dlm_proto_ops dlm_sctp_ops = {
1906         .name = "SCTP",
1907         .proto = IPPROTO_SCTP,
1908         .try_new_addr = true,
1909         .connect = dlm_sctp_connect,
1910         .sockopts = dlm_sctp_sockopts,
1911         .bind = dlm_sctp_bind,
1912         .listen_validate = dlm_sctp_listen_validate,
1913         .listen_sockopts = dlm_sctp_sockopts,
1914         .listen_bind = dlm_sctp_bind_listen,
1915 };
1916
1917 int dlm_lowcomms_start(void)
1918 {
1919         int error;
1920
1921         init_local();
1922         if (!dlm_local_count) {
1923                 error = -ENOTCONN;
1924                 log_print("no local IP address has been set");
1925                 goto fail;
1926         }
1927
1928         error = work_start();
1929         if (error)
1930                 goto fail;
1931
1932         /* Start listening */
1933         switch (dlm_config.ci_protocol) {
1934         case DLM_PROTO_TCP:
1935                 dlm_proto_ops = &dlm_tcp_ops;
1936                 break;
1937         case DLM_PROTO_SCTP:
1938                 dlm_proto_ops = &dlm_sctp_ops;
1939                 break;
1940         default:
1941                 log_print("Invalid protocol identifier %d set",
1942                           dlm_config.ci_protocol);
1943                 error = -EINVAL;
1944                 goto fail_proto_ops;
1945         }
1946
1947         error = dlm_listen_for_all();
1948         if (error)
1949                 goto fail_listen;
1950
1951         return 0;
1952
1953 fail_listen:
1954         dlm_proto_ops = NULL;
1955 fail_proto_ops:
1956         work_stop();
1957 fail:
1958         return error;
1959 }
1960
1961 void dlm_lowcomms_init(void)
1962 {
1963         int i;
1964
1965         for (i = 0; i < CONN_HASH_SIZE; i++)
1966                 INIT_HLIST_HEAD(&connection_hash[i]);
1967
1968         INIT_WORK(&listen_con.rwork, process_listen_recv_socket);
1969 }
1970
1971 void dlm_lowcomms_exit(void)
1972 {
1973         struct connection *con;
1974         int i, idx;
1975
1976         idx = srcu_read_lock(&connections_srcu);
1977         for (i = 0; i < CONN_HASH_SIZE; i++) {
1978                 hlist_for_each_entry_rcu(con, &connection_hash[i], list) {
1979                         spin_lock(&connections_lock);
1980                         hlist_del_rcu(&con->list);
1981                         spin_unlock(&connections_lock);
1982
1983                         if (con->othercon)
1984                                 call_srcu(&connections_srcu, &con->othercon->rcu,
1985                                           connection_release);
1986                         call_srcu(&connections_srcu, &con->rcu, connection_release);
1987                 }
1988         }
1989         srcu_read_unlock(&connections_srcu, idx);
1990 }