epoll: add syscall epoll_pwait2
[linux-2.6-microblaze.git] / fs / dlm / lowcomms.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /******************************************************************************
3 *******************************************************************************
4 **
5 **  Copyright (C) Sistina Software, Inc.  1997-2003  All rights reserved.
6 **  Copyright (C) 2004-2009 Red Hat, Inc.  All rights reserved.
7 **
8 **
9 *******************************************************************************
10 ******************************************************************************/
11
12 /*
13  * lowcomms.c
14  *
15  * This is the "low-level" comms layer.
16  *
17  * It is responsible for sending/receiving messages
18  * from other nodes in the cluster.
19  *
20  * Cluster nodes are referred to by their nodeids. nodeids are
21  * simply 32 bit numbers to the locking module - if they need to
22  * be expanded for the cluster infrastructure then that is its
23  * responsibility. It is this layer's
24  * responsibility to resolve these into IP address or
25  * whatever it needs for inter-node communication.
26  *
27  * The comms level is two kernel threads that deal mainly with
28  * the receiving of messages from other nodes and passing them
29  * up to the mid-level comms layer (which understands the
30  * message format) for execution by the locking core, and
31  * a send thread which does all the setting up of connections
32  * to remote nodes and the sending of data. Threads are not allowed
33  * to send their own data because it may cause them to wait in times
34  * of high load. Also, this way, the sending thread can collect together
35  * messages bound for one node and send them in one block.
36  *
37  * lowcomms will choose to use either TCP or SCTP as its transport layer
38  * depending on the configuration variable 'protocol'. This should be set
39  * to 0 (default) for TCP or 1 for SCTP. It should be configured using a
40  * cluster-wide mechanism as it must be the same on all nodes of the cluster
41  * for the DLM to function.
42  *
43  */
44
45 #include <asm/ioctls.h>
46 #include <net/sock.h>
47 #include <net/tcp.h>
48 #include <linux/pagemap.h>
49 #include <linux/file.h>
50 #include <linux/mutex.h>
51 #include <linux/sctp.h>
52 #include <linux/slab.h>
53 #include <net/sctp/sctp.h>
54 #include <net/ipv6.h>
55
56 #include "dlm_internal.h"
57 #include "lowcomms.h"
58 #include "midcomms.h"
59 #include "config.h"
60
61 #define NEEDED_RMEM (4*1024*1024)
62 #define CONN_HASH_SIZE 32
63
64 /* Number of messages to send before rescheduling */
65 #define MAX_SEND_MSG_COUNT 25
66 #define DLM_SHUTDOWN_WAIT_TIMEOUT msecs_to_jiffies(10000)
67
68 struct connection {
69         struct socket *sock;    /* NULL if not connected */
70         uint32_t nodeid;        /* So we know who we are in the list */
71         struct mutex sock_mutex;
72         unsigned long flags;
73 #define CF_READ_PENDING 1
74 #define CF_WRITE_PENDING 2
75 #define CF_INIT_PENDING 4
76 #define CF_IS_OTHERCON 5
77 #define CF_CLOSE 6
78 #define CF_APP_LIMITED 7
79 #define CF_CLOSING 8
80 #define CF_SHUTDOWN 9
81 #define CF_CONNECTED 10
82         struct list_head writequeue;  /* List of outgoing writequeue_entries */
83         spinlock_t writequeue_lock;
84         void (*connect_action) (struct connection *);   /* What to do to connect */
85         void (*shutdown_action)(struct connection *con); /* What to do to shutdown */
86         int retries;
87 #define MAX_CONNECT_RETRIES 3
88         struct hlist_node list;
89         struct connection *othercon;
90         struct work_struct rwork; /* Receive workqueue */
91         struct work_struct swork; /* Send workqueue */
92         wait_queue_head_t shutdown_wait; /* wait for graceful shutdown */
93         unsigned char *rx_buf;
94         int rx_buflen;
95         int rx_leftover;
96         struct rcu_head rcu;
97 };
98 #define sock2con(x) ((struct connection *)(x)->sk_user_data)
99
100 struct listen_connection {
101         struct socket *sock;
102         struct work_struct rwork;
103 };
104
105 /* An entry waiting to be sent */
106 struct writequeue_entry {
107         struct list_head list;
108         struct page *page;
109         int offset;
110         int len;
111         int end;
112         int users;
113         struct connection *con;
114 };
115
116 struct dlm_node_addr {
117         struct list_head list;
118         int nodeid;
119         int addr_count;
120         int curr_addr_index;
121         struct sockaddr_storage *addr[DLM_MAX_ADDR_COUNT];
122 };
123
124 static struct listen_sock_callbacks {
125         void (*sk_error_report)(struct sock *);
126         void (*sk_data_ready)(struct sock *);
127         void (*sk_state_change)(struct sock *);
128         void (*sk_write_space)(struct sock *);
129 } listen_sock;
130
131 static LIST_HEAD(dlm_node_addrs);
132 static DEFINE_SPINLOCK(dlm_node_addrs_spin);
133
134 static struct listen_connection listen_con;
135 static struct sockaddr_storage *dlm_local_addr[DLM_MAX_ADDR_COUNT];
136 static int dlm_local_count;
137 static int dlm_allow_conn;
138
139 /* Work queues */
140 static struct workqueue_struct *recv_workqueue;
141 static struct workqueue_struct *send_workqueue;
142
143 static struct hlist_head connection_hash[CONN_HASH_SIZE];
144 static DEFINE_SPINLOCK(connections_lock);
145 DEFINE_STATIC_SRCU(connections_srcu);
146
147 static void process_recv_sockets(struct work_struct *work);
148 static void process_send_sockets(struct work_struct *work);
149
150 static void sctp_connect_to_sock(struct connection *con);
151 static void tcp_connect_to_sock(struct connection *con);
152 static void dlm_tcp_shutdown(struct connection *con);
153
154 /* This is deliberately very simple because most clusters have simple
155    sequential nodeids, so we should be able to go straight to a connection
156    struct in the array */
157 static inline int nodeid_hash(int nodeid)
158 {
159         return nodeid & (CONN_HASH_SIZE-1);
160 }
161
162 static struct connection *__find_con(int nodeid)
163 {
164         int r, idx;
165         struct connection *con;
166
167         r = nodeid_hash(nodeid);
168
169         idx = srcu_read_lock(&connections_srcu);
170         hlist_for_each_entry_rcu(con, &connection_hash[r], list) {
171                 if (con->nodeid == nodeid) {
172                         srcu_read_unlock(&connections_srcu, idx);
173                         return con;
174                 }
175         }
176         srcu_read_unlock(&connections_srcu, idx);
177
178         return NULL;
179 }
180
181 static int dlm_con_init(struct connection *con, int nodeid)
182 {
183         con->rx_buflen = dlm_config.ci_buffer_size;
184         con->rx_buf = kmalloc(con->rx_buflen, GFP_NOFS);
185         if (!con->rx_buf)
186                 return -ENOMEM;
187
188         con->nodeid = nodeid;
189         mutex_init(&con->sock_mutex);
190         INIT_LIST_HEAD(&con->writequeue);
191         spin_lock_init(&con->writequeue_lock);
192         INIT_WORK(&con->swork, process_send_sockets);
193         INIT_WORK(&con->rwork, process_recv_sockets);
194         init_waitqueue_head(&con->shutdown_wait);
195
196         if (dlm_config.ci_protocol == 0) {
197                 con->connect_action = tcp_connect_to_sock;
198                 con->shutdown_action = dlm_tcp_shutdown;
199         } else {
200                 con->connect_action = sctp_connect_to_sock;
201         }
202
203         return 0;
204 }
205
206 /*
207  * If 'allocation' is zero then we don't attempt to create a new
208  * connection structure for this node.
209  */
210 static struct connection *nodeid2con(int nodeid, gfp_t alloc)
211 {
212         struct connection *con, *tmp;
213         int r, ret;
214
215         con = __find_con(nodeid);
216         if (con || !alloc)
217                 return con;
218
219         con = kzalloc(sizeof(*con), alloc);
220         if (!con)
221                 return NULL;
222
223         ret = dlm_con_init(con, nodeid);
224         if (ret) {
225                 kfree(con);
226                 return NULL;
227         }
228
229         r = nodeid_hash(nodeid);
230
231         spin_lock(&connections_lock);
232         /* Because multiple workqueues/threads calls this function it can
233          * race on multiple cpu's. Instead of locking hot path __find_con()
234          * we just check in rare cases of recently added nodes again
235          * under protection of connections_lock. If this is the case we
236          * abort our connection creation and return the existing connection.
237          */
238         tmp = __find_con(nodeid);
239         if (tmp) {
240                 spin_unlock(&connections_lock);
241                 kfree(con->rx_buf);
242                 kfree(con);
243                 return tmp;
244         }
245
246         hlist_add_head_rcu(&con->list, &connection_hash[r]);
247         spin_unlock(&connections_lock);
248
249         return con;
250 }
251
252 /* Loop round all connections */
253 static void foreach_conn(void (*conn_func)(struct connection *c))
254 {
255         int i, idx;
256         struct connection *con;
257
258         idx = srcu_read_lock(&connections_srcu);
259         for (i = 0; i < CONN_HASH_SIZE; i++) {
260                 hlist_for_each_entry_rcu(con, &connection_hash[i], list)
261                         conn_func(con);
262         }
263         srcu_read_unlock(&connections_srcu, idx);
264 }
265
266 static struct dlm_node_addr *find_node_addr(int nodeid)
267 {
268         struct dlm_node_addr *na;
269
270         list_for_each_entry(na, &dlm_node_addrs, list) {
271                 if (na->nodeid == nodeid)
272                         return na;
273         }
274         return NULL;
275 }
276
277 static int addr_compare(const struct sockaddr_storage *x,
278                         const struct sockaddr_storage *y)
279 {
280         switch (x->ss_family) {
281         case AF_INET: {
282                 struct sockaddr_in *sinx = (struct sockaddr_in *)x;
283                 struct sockaddr_in *siny = (struct sockaddr_in *)y;
284                 if (sinx->sin_addr.s_addr != siny->sin_addr.s_addr)
285                         return 0;
286                 if (sinx->sin_port != siny->sin_port)
287                         return 0;
288                 break;
289         }
290         case AF_INET6: {
291                 struct sockaddr_in6 *sinx = (struct sockaddr_in6 *)x;
292                 struct sockaddr_in6 *siny = (struct sockaddr_in6 *)y;
293                 if (!ipv6_addr_equal(&sinx->sin6_addr, &siny->sin6_addr))
294                         return 0;
295                 if (sinx->sin6_port != siny->sin6_port)
296                         return 0;
297                 break;
298         }
299         default:
300                 return 0;
301         }
302         return 1;
303 }
304
305 static int nodeid_to_addr(int nodeid, struct sockaddr_storage *sas_out,
306                           struct sockaddr *sa_out, bool try_new_addr)
307 {
308         struct sockaddr_storage sas;
309         struct dlm_node_addr *na;
310
311         if (!dlm_local_count)
312                 return -1;
313
314         spin_lock(&dlm_node_addrs_spin);
315         na = find_node_addr(nodeid);
316         if (na && na->addr_count) {
317                 memcpy(&sas, na->addr[na->curr_addr_index],
318                        sizeof(struct sockaddr_storage));
319
320                 if (try_new_addr) {
321                         na->curr_addr_index++;
322                         if (na->curr_addr_index == na->addr_count)
323                                 na->curr_addr_index = 0;
324                 }
325         }
326         spin_unlock(&dlm_node_addrs_spin);
327
328         if (!na)
329                 return -EEXIST;
330
331         if (!na->addr_count)
332                 return -ENOENT;
333
334         if (sas_out)
335                 memcpy(sas_out, &sas, sizeof(struct sockaddr_storage));
336
337         if (!sa_out)
338                 return 0;
339
340         if (dlm_local_addr[0]->ss_family == AF_INET) {
341                 struct sockaddr_in *in4  = (struct sockaddr_in *) &sas;
342                 struct sockaddr_in *ret4 = (struct sockaddr_in *) sa_out;
343                 ret4->sin_addr.s_addr = in4->sin_addr.s_addr;
344         } else {
345                 struct sockaddr_in6 *in6  = (struct sockaddr_in6 *) &sas;
346                 struct sockaddr_in6 *ret6 = (struct sockaddr_in6 *) sa_out;
347                 ret6->sin6_addr = in6->sin6_addr;
348         }
349
350         return 0;
351 }
352
353 static int addr_to_nodeid(struct sockaddr_storage *addr, int *nodeid)
354 {
355         struct dlm_node_addr *na;
356         int rv = -EEXIST;
357         int addr_i;
358
359         spin_lock(&dlm_node_addrs_spin);
360         list_for_each_entry(na, &dlm_node_addrs, list) {
361                 if (!na->addr_count)
362                         continue;
363
364                 for (addr_i = 0; addr_i < na->addr_count; addr_i++) {
365                         if (addr_compare(na->addr[addr_i], addr)) {
366                                 *nodeid = na->nodeid;
367                                 rv = 0;
368                                 goto unlock;
369                         }
370                 }
371         }
372 unlock:
373         spin_unlock(&dlm_node_addrs_spin);
374         return rv;
375 }
376
377 /* caller need to held dlm_node_addrs_spin lock */
378 static bool dlm_lowcomms_na_has_addr(const struct dlm_node_addr *na,
379                                      const struct sockaddr_storage *addr)
380 {
381         int i;
382
383         for (i = 0; i < na->addr_count; i++) {
384                 if (addr_compare(na->addr[i], addr))
385                         return true;
386         }
387
388         return false;
389 }
390
391 int dlm_lowcomms_addr(int nodeid, struct sockaddr_storage *addr, int len)
392 {
393         struct sockaddr_storage *new_addr;
394         struct dlm_node_addr *new_node, *na;
395         bool ret;
396
397         new_node = kzalloc(sizeof(struct dlm_node_addr), GFP_NOFS);
398         if (!new_node)
399                 return -ENOMEM;
400
401         new_addr = kzalloc(sizeof(struct sockaddr_storage), GFP_NOFS);
402         if (!new_addr) {
403                 kfree(new_node);
404                 return -ENOMEM;
405         }
406
407         memcpy(new_addr, addr, len);
408
409         spin_lock(&dlm_node_addrs_spin);
410         na = find_node_addr(nodeid);
411         if (!na) {
412                 new_node->nodeid = nodeid;
413                 new_node->addr[0] = new_addr;
414                 new_node->addr_count = 1;
415                 list_add(&new_node->list, &dlm_node_addrs);
416                 spin_unlock(&dlm_node_addrs_spin);
417                 return 0;
418         }
419
420         ret = dlm_lowcomms_na_has_addr(na, addr);
421         if (ret) {
422                 spin_unlock(&dlm_node_addrs_spin);
423                 kfree(new_addr);
424                 kfree(new_node);
425                 return -EEXIST;
426         }
427
428         if (na->addr_count >= DLM_MAX_ADDR_COUNT) {
429                 spin_unlock(&dlm_node_addrs_spin);
430                 kfree(new_addr);
431                 kfree(new_node);
432                 return -ENOSPC;
433         }
434
435         na->addr[na->addr_count++] = new_addr;
436         spin_unlock(&dlm_node_addrs_spin);
437         kfree(new_node);
438         return 0;
439 }
440
441 /* Data available on socket or listen socket received a connect */
442 static void lowcomms_data_ready(struct sock *sk)
443 {
444         struct connection *con;
445
446         read_lock_bh(&sk->sk_callback_lock);
447         con = sock2con(sk);
448         if (con && !test_and_set_bit(CF_READ_PENDING, &con->flags))
449                 queue_work(recv_workqueue, &con->rwork);
450         read_unlock_bh(&sk->sk_callback_lock);
451 }
452
453 static void lowcomms_listen_data_ready(struct sock *sk)
454 {
455         queue_work(recv_workqueue, &listen_con.rwork);
456 }
457
458 static void lowcomms_write_space(struct sock *sk)
459 {
460         struct connection *con;
461
462         read_lock_bh(&sk->sk_callback_lock);
463         con = sock2con(sk);
464         if (!con)
465                 goto out;
466
467         if (!test_and_set_bit(CF_CONNECTED, &con->flags)) {
468                 log_print("successful connected to node %d", con->nodeid);
469                 queue_work(send_workqueue, &con->swork);
470                 goto out;
471         }
472
473         clear_bit(SOCK_NOSPACE, &con->sock->flags);
474
475         if (test_and_clear_bit(CF_APP_LIMITED, &con->flags)) {
476                 con->sock->sk->sk_write_pending--;
477                 clear_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags);
478         }
479
480         queue_work(send_workqueue, &con->swork);
481 out:
482         read_unlock_bh(&sk->sk_callback_lock);
483 }
484
485 static inline void lowcomms_connect_sock(struct connection *con)
486 {
487         if (test_bit(CF_CLOSE, &con->flags))
488                 return;
489         queue_work(send_workqueue, &con->swork);
490         cond_resched();
491 }
492
493 static void lowcomms_state_change(struct sock *sk)
494 {
495         /* SCTP layer is not calling sk_data_ready when the connection
496          * is done, so we catch the signal through here. Also, it
497          * doesn't switch socket state when entering shutdown, so we
498          * skip the write in that case.
499          */
500         if (sk->sk_shutdown) {
501                 if (sk->sk_shutdown == RCV_SHUTDOWN)
502                         lowcomms_data_ready(sk);
503         } else if (sk->sk_state == TCP_ESTABLISHED) {
504                 lowcomms_write_space(sk);
505         }
506 }
507
508 int dlm_lowcomms_connect_node(int nodeid)
509 {
510         struct connection *con;
511
512         if (nodeid == dlm_our_nodeid())
513                 return 0;
514
515         con = nodeid2con(nodeid, GFP_NOFS);
516         if (!con)
517                 return -ENOMEM;
518         lowcomms_connect_sock(con);
519         return 0;
520 }
521
522 static void lowcomms_error_report(struct sock *sk)
523 {
524         struct connection *con;
525         struct sockaddr_storage saddr;
526         void (*orig_report)(struct sock *) = NULL;
527
528         read_lock_bh(&sk->sk_callback_lock);
529         con = sock2con(sk);
530         if (con == NULL)
531                 goto out;
532
533         orig_report = listen_sock.sk_error_report;
534         if (con->sock == NULL ||
535             kernel_getpeername(con->sock, (struct sockaddr *)&saddr) < 0) {
536                 printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
537                                    "sending to node %d, port %d, "
538                                    "sk_err=%d/%d\n", dlm_our_nodeid(),
539                                    con->nodeid, dlm_config.ci_tcp_port,
540                                    sk->sk_err, sk->sk_err_soft);
541         } else if (saddr.ss_family == AF_INET) {
542                 struct sockaddr_in *sin4 = (struct sockaddr_in *)&saddr;
543
544                 printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
545                                    "sending to node %d at %pI4, port %d, "
546                                    "sk_err=%d/%d\n", dlm_our_nodeid(),
547                                    con->nodeid, &sin4->sin_addr.s_addr,
548                                    dlm_config.ci_tcp_port, sk->sk_err,
549                                    sk->sk_err_soft);
550         } else {
551                 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&saddr;
552
553                 printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
554                                    "sending to node %d at %u.%u.%u.%u, "
555                                    "port %d, sk_err=%d/%d\n", dlm_our_nodeid(),
556                                    con->nodeid, sin6->sin6_addr.s6_addr32[0],
557                                    sin6->sin6_addr.s6_addr32[1],
558                                    sin6->sin6_addr.s6_addr32[2],
559                                    sin6->sin6_addr.s6_addr32[3],
560                                    dlm_config.ci_tcp_port, sk->sk_err,
561                                    sk->sk_err_soft);
562         }
563 out:
564         read_unlock_bh(&sk->sk_callback_lock);
565         if (orig_report)
566                 orig_report(sk);
567 }
568
569 /* Note: sk_callback_lock must be locked before calling this function. */
570 static void save_listen_callbacks(struct socket *sock)
571 {
572         struct sock *sk = sock->sk;
573
574         listen_sock.sk_data_ready = sk->sk_data_ready;
575         listen_sock.sk_state_change = sk->sk_state_change;
576         listen_sock.sk_write_space = sk->sk_write_space;
577         listen_sock.sk_error_report = sk->sk_error_report;
578 }
579
580 static void restore_callbacks(struct socket *sock)
581 {
582         struct sock *sk = sock->sk;
583
584         write_lock_bh(&sk->sk_callback_lock);
585         sk->sk_user_data = NULL;
586         sk->sk_data_ready = listen_sock.sk_data_ready;
587         sk->sk_state_change = listen_sock.sk_state_change;
588         sk->sk_write_space = listen_sock.sk_write_space;
589         sk->sk_error_report = listen_sock.sk_error_report;
590         write_unlock_bh(&sk->sk_callback_lock);
591 }
592
593 static void add_listen_sock(struct socket *sock, struct listen_connection *con)
594 {
595         struct sock *sk = sock->sk;
596
597         write_lock_bh(&sk->sk_callback_lock);
598         save_listen_callbacks(sock);
599         con->sock = sock;
600
601         sk->sk_user_data = con;
602         sk->sk_allocation = GFP_NOFS;
603         /* Install a data_ready callback */
604         sk->sk_data_ready = lowcomms_listen_data_ready;
605         write_unlock_bh(&sk->sk_callback_lock);
606 }
607
608 /* Make a socket active */
609 static void add_sock(struct socket *sock, struct connection *con)
610 {
611         struct sock *sk = sock->sk;
612
613         write_lock_bh(&sk->sk_callback_lock);
614         con->sock = sock;
615
616         sk->sk_user_data = con;
617         /* Install a data_ready callback */
618         sk->sk_data_ready = lowcomms_data_ready;
619         sk->sk_write_space = lowcomms_write_space;
620         sk->sk_state_change = lowcomms_state_change;
621         sk->sk_allocation = GFP_NOFS;
622         sk->sk_error_report = lowcomms_error_report;
623         write_unlock_bh(&sk->sk_callback_lock);
624 }
625
626 /* Add the port number to an IPv6 or 4 sockaddr and return the address
627    length */
628 static void make_sockaddr(struct sockaddr_storage *saddr, uint16_t port,
629                           int *addr_len)
630 {
631         saddr->ss_family =  dlm_local_addr[0]->ss_family;
632         if (saddr->ss_family == AF_INET) {
633                 struct sockaddr_in *in4_addr = (struct sockaddr_in *)saddr;
634                 in4_addr->sin_port = cpu_to_be16(port);
635                 *addr_len = sizeof(struct sockaddr_in);
636                 memset(&in4_addr->sin_zero, 0, sizeof(in4_addr->sin_zero));
637         } else {
638                 struct sockaddr_in6 *in6_addr = (struct sockaddr_in6 *)saddr;
639                 in6_addr->sin6_port = cpu_to_be16(port);
640                 *addr_len = sizeof(struct sockaddr_in6);
641         }
642         memset((char *)saddr + *addr_len, 0, sizeof(struct sockaddr_storage) - *addr_len);
643 }
644
645 static void dlm_close_sock(struct socket **sock)
646 {
647         if (*sock) {
648                 restore_callbacks(*sock);
649                 sock_release(*sock);
650                 *sock = NULL;
651         }
652 }
653
654 /* Close a remote connection and tidy up */
655 static void close_connection(struct connection *con, bool and_other,
656                              bool tx, bool rx)
657 {
658         bool closing = test_and_set_bit(CF_CLOSING, &con->flags);
659
660         if (tx && !closing && cancel_work_sync(&con->swork)) {
661                 log_print("canceled swork for node %d", con->nodeid);
662                 clear_bit(CF_WRITE_PENDING, &con->flags);
663         }
664         if (rx && !closing && cancel_work_sync(&con->rwork)) {
665                 log_print("canceled rwork for node %d", con->nodeid);
666                 clear_bit(CF_READ_PENDING, &con->flags);
667         }
668
669         mutex_lock(&con->sock_mutex);
670         dlm_close_sock(&con->sock);
671
672         if (con->othercon && and_other) {
673                 /* Will only re-enter once. */
674                 close_connection(con->othercon, false, true, true);
675         }
676
677         con->rx_leftover = 0;
678         con->retries = 0;
679         clear_bit(CF_CONNECTED, &con->flags);
680         mutex_unlock(&con->sock_mutex);
681         clear_bit(CF_CLOSING, &con->flags);
682 }
683
684 static void shutdown_connection(struct connection *con)
685 {
686         int ret;
687
688         if (cancel_work_sync(&con->swork)) {
689                 log_print("canceled swork for node %d", con->nodeid);
690                 clear_bit(CF_WRITE_PENDING, &con->flags);
691         }
692
693         mutex_lock(&con->sock_mutex);
694         /* nothing to shutdown */
695         if (!con->sock) {
696                 mutex_unlock(&con->sock_mutex);
697                 return;
698         }
699
700         set_bit(CF_SHUTDOWN, &con->flags);
701         ret = kernel_sock_shutdown(con->sock, SHUT_WR);
702         mutex_unlock(&con->sock_mutex);
703         if (ret) {
704                 log_print("Connection %p failed to shutdown: %d will force close",
705                           con, ret);
706                 goto force_close;
707         } else {
708                 ret = wait_event_timeout(con->shutdown_wait,
709                                          !test_bit(CF_SHUTDOWN, &con->flags),
710                                          DLM_SHUTDOWN_WAIT_TIMEOUT);
711                 if (ret == 0) {
712                         log_print("Connection %p shutdown timed out, will force close",
713                                   con);
714                         goto force_close;
715                 }
716         }
717
718         return;
719
720 force_close:
721         clear_bit(CF_SHUTDOWN, &con->flags);
722         close_connection(con, false, true, true);
723 }
724
725 static void dlm_tcp_shutdown(struct connection *con)
726 {
727         if (con->othercon)
728                 shutdown_connection(con->othercon);
729         shutdown_connection(con);
730 }
731
732 static int con_realloc_receive_buf(struct connection *con, int newlen)
733 {
734         unsigned char *newbuf;
735
736         newbuf = kmalloc(newlen, GFP_NOFS);
737         if (!newbuf)
738                 return -ENOMEM;
739
740         /* copy any leftover from last receive */
741         if (con->rx_leftover)
742                 memmove(newbuf, con->rx_buf, con->rx_leftover);
743
744         /* swap to new buffer space */
745         kfree(con->rx_buf);
746         con->rx_buflen = newlen;
747         con->rx_buf = newbuf;
748
749         return 0;
750 }
751
752 /* Data received from remote end */
753 static int receive_from_sock(struct connection *con)
754 {
755         int call_again_soon = 0;
756         struct msghdr msg;
757         struct kvec iov;
758         int ret, buflen;
759
760         mutex_lock(&con->sock_mutex);
761
762         if (con->sock == NULL) {
763                 ret = -EAGAIN;
764                 goto out_close;
765         }
766
767         /* realloc if we get new buffer size to read out */
768         buflen = dlm_config.ci_buffer_size;
769         if (con->rx_buflen != buflen && con->rx_leftover <= buflen) {
770                 ret = con_realloc_receive_buf(con, buflen);
771                 if (ret < 0)
772                         goto out_resched;
773         }
774
775         /* calculate new buffer parameter regarding last receive and
776          * possible leftover bytes
777          */
778         iov.iov_base = con->rx_buf + con->rx_leftover;
779         iov.iov_len = con->rx_buflen - con->rx_leftover;
780
781         memset(&msg, 0, sizeof(msg));
782         msg.msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
783         ret = kernel_recvmsg(con->sock, &msg, &iov, 1, iov.iov_len,
784                              msg.msg_flags);
785         if (ret <= 0)
786                 goto out_close;
787         else if (ret == iov.iov_len)
788                 call_again_soon = 1;
789
790         /* new buflen according readed bytes and leftover from last receive */
791         buflen = ret + con->rx_leftover;
792         ret = dlm_process_incoming_buffer(con->nodeid, con->rx_buf, buflen);
793         if (ret < 0)
794                 goto out_close;
795
796         /* calculate leftover bytes from process and put it into begin of
797          * the receive buffer, so next receive we have the full message
798          * at the start address of the receive buffer.
799          */
800         con->rx_leftover = buflen - ret;
801         if (con->rx_leftover) {
802                 memmove(con->rx_buf, con->rx_buf + ret,
803                         con->rx_leftover);
804                 call_again_soon = true;
805         }
806
807         if (call_again_soon)
808                 goto out_resched;
809
810         mutex_unlock(&con->sock_mutex);
811         return 0;
812
813 out_resched:
814         if (!test_and_set_bit(CF_READ_PENDING, &con->flags))
815                 queue_work(recv_workqueue, &con->rwork);
816         mutex_unlock(&con->sock_mutex);
817         return -EAGAIN;
818
819 out_close:
820         mutex_unlock(&con->sock_mutex);
821         if (ret != -EAGAIN) {
822                 /* Reconnect when there is something to send */
823                 close_connection(con, false, true, false);
824                 if (ret == 0) {
825                         log_print("connection %p got EOF from %d",
826                                   con, con->nodeid);
827                         /* handling for tcp shutdown */
828                         clear_bit(CF_SHUTDOWN, &con->flags);
829                         wake_up(&con->shutdown_wait);
830                         /* signal to breaking receive worker */
831                         ret = -1;
832                 }
833         }
834         return ret;
835 }
836
837 /* Listening socket is busy, accept a connection */
838 static int accept_from_sock(struct listen_connection *con)
839 {
840         int result;
841         struct sockaddr_storage peeraddr;
842         struct socket *newsock;
843         int len;
844         int nodeid;
845         struct connection *newcon;
846         struct connection *addcon;
847         unsigned int mark;
848
849         if (!dlm_allow_conn) {
850                 return -1;
851         }
852
853         if (!con->sock)
854                 return -ENOTCONN;
855
856         result = kernel_accept(con->sock, &newsock, O_NONBLOCK);
857         if (result < 0)
858                 goto accept_err;
859
860         /* Get the connected socket's peer */
861         memset(&peeraddr, 0, sizeof(peeraddr));
862         len = newsock->ops->getname(newsock, (struct sockaddr *)&peeraddr, 2);
863         if (len < 0) {
864                 result = -ECONNABORTED;
865                 goto accept_err;
866         }
867
868         /* Get the new node's NODEID */
869         make_sockaddr(&peeraddr, 0, &len);
870         if (addr_to_nodeid(&peeraddr, &nodeid)) {
871                 unsigned char *b=(unsigned char *)&peeraddr;
872                 log_print("connect from non cluster node");
873                 print_hex_dump_bytes("ss: ", DUMP_PREFIX_NONE, 
874                                      b, sizeof(struct sockaddr_storage));
875                 sock_release(newsock);
876                 return -1;
877         }
878
879         dlm_comm_mark(nodeid, &mark);
880         sock_set_mark(newsock->sk, mark);
881
882         log_print("got connection from %d", nodeid);
883
884         /*  Check to see if we already have a connection to this node. This
885          *  could happen if the two nodes initiate a connection at roughly
886          *  the same time and the connections cross on the wire.
887          *  In this case we store the incoming one in "othercon"
888          */
889         newcon = nodeid2con(nodeid, GFP_NOFS);
890         if (!newcon) {
891                 result = -ENOMEM;
892                 goto accept_err;
893         }
894
895         mutex_lock(&newcon->sock_mutex);
896         if (newcon->sock) {
897                 struct connection *othercon = newcon->othercon;
898
899                 if (!othercon) {
900                         othercon = kzalloc(sizeof(*othercon), GFP_NOFS);
901                         if (!othercon) {
902                                 log_print("failed to allocate incoming socket");
903                                 mutex_unlock(&newcon->sock_mutex);
904                                 result = -ENOMEM;
905                                 goto accept_err;
906                         }
907
908                         result = dlm_con_init(othercon, nodeid);
909                         if (result < 0) {
910                                 kfree(othercon);
911                                 goto accept_err;
912                         }
913
914                         newcon->othercon = othercon;
915                 } else {
916                         /* close other sock con if we have something new */
917                         close_connection(othercon, false, true, false);
918                 }
919
920                 mutex_lock_nested(&othercon->sock_mutex, 1);
921                 add_sock(newsock, othercon);
922                 addcon = othercon;
923                 mutex_unlock(&othercon->sock_mutex);
924         }
925         else {
926                 /* accept copies the sk after we've saved the callbacks, so we
927                    don't want to save them a second time or comm errors will
928                    result in calling sk_error_report recursively. */
929                 add_sock(newsock, newcon);
930                 addcon = newcon;
931         }
932
933         mutex_unlock(&newcon->sock_mutex);
934
935         /*
936          * Add it to the active queue in case we got data
937          * between processing the accept adding the socket
938          * to the read_sockets list
939          */
940         if (!test_and_set_bit(CF_READ_PENDING, &addcon->flags))
941                 queue_work(recv_workqueue, &addcon->rwork);
942
943         return 0;
944
945 accept_err:
946         if (newsock)
947                 sock_release(newsock);
948
949         if (result != -EAGAIN)
950                 log_print("error accepting connection from node: %d", result);
951         return result;
952 }
953
954 static void free_entry(struct writequeue_entry *e)
955 {
956         __free_page(e->page);
957         kfree(e);
958 }
959
960 /*
961  * writequeue_entry_complete - try to delete and free write queue entry
962  * @e: write queue entry to try to delete
963  * @completed: bytes completed
964  *
965  * writequeue_lock must be held.
966  */
967 static void writequeue_entry_complete(struct writequeue_entry *e, int completed)
968 {
969         e->offset += completed;
970         e->len -= completed;
971
972         if (e->len == 0 && e->users == 0) {
973                 list_del(&e->list);
974                 free_entry(e);
975         }
976 }
977
978 /*
979  * sctp_bind_addrs - bind a SCTP socket to all our addresses
980  */
981 static int sctp_bind_addrs(struct socket *sock, uint16_t port)
982 {
983         struct sockaddr_storage localaddr;
984         struct sockaddr *addr = (struct sockaddr *)&localaddr;
985         int i, addr_len, result = 0;
986
987         for (i = 0; i < dlm_local_count; i++) {
988                 memcpy(&localaddr, dlm_local_addr[i], sizeof(localaddr));
989                 make_sockaddr(&localaddr, port, &addr_len);
990
991                 if (!i)
992                         result = kernel_bind(sock, addr, addr_len);
993                 else
994                         result = sock_bind_add(sock->sk, addr, addr_len);
995
996                 if (result < 0) {
997                         log_print("Can't bind to %d addr number %d, %d.\n",
998                                   port, i + 1, result);
999                         break;
1000                 }
1001         }
1002         return result;
1003 }
1004
1005 /* Initiate an SCTP association.
1006    This is a special case of send_to_sock() in that we don't yet have a
1007    peeled-off socket for this association, so we use the listening socket
1008    and add the primary IP address of the remote node.
1009  */
1010 static void sctp_connect_to_sock(struct connection *con)
1011 {
1012         struct sockaddr_storage daddr;
1013         int result;
1014         int addr_len;
1015         struct socket *sock;
1016         unsigned int mark;
1017
1018         dlm_comm_mark(con->nodeid, &mark);
1019
1020         mutex_lock(&con->sock_mutex);
1021
1022         /* Some odd races can cause double-connects, ignore them */
1023         if (con->retries++ > MAX_CONNECT_RETRIES)
1024                 goto out;
1025
1026         if (con->sock) {
1027                 log_print("node %d already connected.", con->nodeid);
1028                 goto out;
1029         }
1030
1031         memset(&daddr, 0, sizeof(daddr));
1032         result = nodeid_to_addr(con->nodeid, &daddr, NULL, true);
1033         if (result < 0) {
1034                 log_print("no address for nodeid %d", con->nodeid);
1035                 goto out;
1036         }
1037
1038         /* Create a socket to communicate with */
1039         result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
1040                                   SOCK_STREAM, IPPROTO_SCTP, &sock);
1041         if (result < 0)
1042                 goto socket_err;
1043
1044         sock_set_mark(sock->sk, mark);
1045
1046         add_sock(sock, con);
1047
1048         /* Bind to all addresses. */
1049         if (sctp_bind_addrs(con->sock, 0))
1050                 goto bind_err;
1051
1052         make_sockaddr(&daddr, dlm_config.ci_tcp_port, &addr_len);
1053
1054         log_print("connecting to %d", con->nodeid);
1055
1056         /* Turn off Nagle's algorithm */
1057         sctp_sock_set_nodelay(sock->sk);
1058
1059         /*
1060          * Make sock->ops->connect() function return in specified time,
1061          * since O_NONBLOCK argument in connect() function does not work here,
1062          * then, we should restore the default value of this attribute.
1063          */
1064         sock_set_sndtimeo(sock->sk, 5);
1065         result = sock->ops->connect(sock, (struct sockaddr *)&daddr, addr_len,
1066                                    0);
1067         sock_set_sndtimeo(sock->sk, 0);
1068
1069         if (result == -EINPROGRESS)
1070                 result = 0;
1071         if (result == 0) {
1072                 if (!test_and_set_bit(CF_CONNECTED, &con->flags))
1073                         log_print("successful connected to node %d", con->nodeid);
1074                 goto out;
1075         }
1076
1077 bind_err:
1078         con->sock = NULL;
1079         sock_release(sock);
1080
1081 socket_err:
1082         /*
1083          * Some errors are fatal and this list might need adjusting. For other
1084          * errors we try again until the max number of retries is reached.
1085          */
1086         if (result != -EHOSTUNREACH &&
1087             result != -ENETUNREACH &&
1088             result != -ENETDOWN &&
1089             result != -EINVAL &&
1090             result != -EPROTONOSUPPORT) {
1091                 log_print("connect %d try %d error %d", con->nodeid,
1092                           con->retries, result);
1093                 mutex_unlock(&con->sock_mutex);
1094                 msleep(1000);
1095                 lowcomms_connect_sock(con);
1096                 return;
1097         }
1098
1099 out:
1100         mutex_unlock(&con->sock_mutex);
1101 }
1102
1103 /* Connect a new socket to its peer */
1104 static void tcp_connect_to_sock(struct connection *con)
1105 {
1106         struct sockaddr_storage saddr, src_addr;
1107         int addr_len;
1108         struct socket *sock = NULL;
1109         unsigned int mark;
1110         int result;
1111
1112         dlm_comm_mark(con->nodeid, &mark);
1113
1114         mutex_lock(&con->sock_mutex);
1115         if (con->retries++ > MAX_CONNECT_RETRIES)
1116                 goto out;
1117
1118         /* Some odd races can cause double-connects, ignore them */
1119         if (con->sock)
1120                 goto out;
1121
1122         /* Create a socket to communicate with */
1123         result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
1124                                   SOCK_STREAM, IPPROTO_TCP, &sock);
1125         if (result < 0)
1126                 goto out_err;
1127
1128         sock_set_mark(sock->sk, mark);
1129
1130         memset(&saddr, 0, sizeof(saddr));
1131         result = nodeid_to_addr(con->nodeid, &saddr, NULL, false);
1132         if (result < 0) {
1133                 log_print("no address for nodeid %d", con->nodeid);
1134                 goto out_err;
1135         }
1136
1137         add_sock(sock, con);
1138
1139         /* Bind to our cluster-known address connecting to avoid
1140            routing problems */
1141         memcpy(&src_addr, dlm_local_addr[0], sizeof(src_addr));
1142         make_sockaddr(&src_addr, 0, &addr_len);
1143         result = sock->ops->bind(sock, (struct sockaddr *) &src_addr,
1144                                  addr_len);
1145         if (result < 0) {
1146                 log_print("could not bind for connect: %d", result);
1147                 /* This *may* not indicate a critical error */
1148         }
1149
1150         make_sockaddr(&saddr, dlm_config.ci_tcp_port, &addr_len);
1151
1152         log_print("connecting to %d", con->nodeid);
1153
1154         /* Turn off Nagle's algorithm */
1155         tcp_sock_set_nodelay(sock->sk);
1156
1157         result = sock->ops->connect(sock, (struct sockaddr *)&saddr, addr_len,
1158                                    O_NONBLOCK);
1159         if (result == -EINPROGRESS)
1160                 result = 0;
1161         if (result == 0)
1162                 goto out;
1163
1164 out_err:
1165         if (con->sock) {
1166                 sock_release(con->sock);
1167                 con->sock = NULL;
1168         } else if (sock) {
1169                 sock_release(sock);
1170         }
1171         /*
1172          * Some errors are fatal and this list might need adjusting. For other
1173          * errors we try again until the max number of retries is reached.
1174          */
1175         if (result != -EHOSTUNREACH &&
1176             result != -ENETUNREACH &&
1177             result != -ENETDOWN && 
1178             result != -EINVAL &&
1179             result != -EPROTONOSUPPORT) {
1180                 log_print("connect %d try %d error %d", con->nodeid,
1181                           con->retries, result);
1182                 mutex_unlock(&con->sock_mutex);
1183                 msleep(1000);
1184                 lowcomms_connect_sock(con);
1185                 return;
1186         }
1187 out:
1188         mutex_unlock(&con->sock_mutex);
1189         return;
1190 }
1191
1192 /* On error caller must run dlm_close_sock() for the
1193  * listen connection socket.
1194  */
1195 static int tcp_create_listen_sock(struct listen_connection *con,
1196                                   struct sockaddr_storage *saddr)
1197 {
1198         struct socket *sock = NULL;
1199         int result = 0;
1200         int addr_len;
1201
1202         if (dlm_local_addr[0]->ss_family == AF_INET)
1203                 addr_len = sizeof(struct sockaddr_in);
1204         else
1205                 addr_len = sizeof(struct sockaddr_in6);
1206
1207         /* Create a socket to communicate with */
1208         result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
1209                                   SOCK_STREAM, IPPROTO_TCP, &sock);
1210         if (result < 0) {
1211                 log_print("Can't create listening comms socket");
1212                 goto create_out;
1213         }
1214
1215         sock_set_mark(sock->sk, dlm_config.ci_mark);
1216
1217         /* Turn off Nagle's algorithm */
1218         tcp_sock_set_nodelay(sock->sk);
1219
1220         sock_set_reuseaddr(sock->sk);
1221
1222         add_listen_sock(sock, con);
1223
1224         /* Bind to our port */
1225         make_sockaddr(saddr, dlm_config.ci_tcp_port, &addr_len);
1226         result = sock->ops->bind(sock, (struct sockaddr *) saddr, addr_len);
1227         if (result < 0) {
1228                 log_print("Can't bind to port %d", dlm_config.ci_tcp_port);
1229                 goto create_out;
1230         }
1231         sock_set_keepalive(sock->sk);
1232
1233         result = sock->ops->listen(sock, 5);
1234         if (result < 0) {
1235                 log_print("Can't listen on port %d", dlm_config.ci_tcp_port);
1236                 goto create_out;
1237         }
1238
1239         return 0;
1240
1241 create_out:
1242         return result;
1243 }
1244
1245 /* Get local addresses */
1246 static void init_local(void)
1247 {
1248         struct sockaddr_storage sas, *addr;
1249         int i;
1250
1251         dlm_local_count = 0;
1252         for (i = 0; i < DLM_MAX_ADDR_COUNT; i++) {
1253                 if (dlm_our_addr(&sas, i))
1254                         break;
1255
1256                 addr = kmemdup(&sas, sizeof(*addr), GFP_NOFS);
1257                 if (!addr)
1258                         break;
1259                 dlm_local_addr[dlm_local_count++] = addr;
1260         }
1261 }
1262
1263 static void deinit_local(void)
1264 {
1265         int i;
1266
1267         for (i = 0; i < dlm_local_count; i++)
1268                 kfree(dlm_local_addr[i]);
1269 }
1270
1271 /* Initialise SCTP socket and bind to all interfaces
1272  * On error caller must run dlm_close_sock() for the
1273  * listen connection socket.
1274  */
1275 static int sctp_listen_for_all(struct listen_connection *con)
1276 {
1277         struct socket *sock = NULL;
1278         int result = -EINVAL;
1279
1280         log_print("Using SCTP for communications");
1281
1282         result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
1283                                   SOCK_STREAM, IPPROTO_SCTP, &sock);
1284         if (result < 0) {
1285                 log_print("Can't create comms socket, check SCTP is loaded");
1286                 goto out;
1287         }
1288
1289         sock_set_rcvbuf(sock->sk, NEEDED_RMEM);
1290         sock_set_mark(sock->sk, dlm_config.ci_mark);
1291         sctp_sock_set_nodelay(sock->sk);
1292
1293         add_listen_sock(sock, con);
1294
1295         /* Bind to all addresses. */
1296         result = sctp_bind_addrs(con->sock, dlm_config.ci_tcp_port);
1297         if (result < 0)
1298                 goto out;
1299
1300         result = sock->ops->listen(sock, 5);
1301         if (result < 0) {
1302                 log_print("Can't set socket listening");
1303                 goto out;
1304         }
1305
1306         return 0;
1307
1308 out:
1309         return result;
1310 }
1311
1312 static int tcp_listen_for_all(void)
1313 {
1314         /* We don't support multi-homed hosts */
1315         if (dlm_local_count > 1) {
1316                 log_print("TCP protocol can't handle multi-homed hosts, "
1317                           "try SCTP");
1318                 return -EINVAL;
1319         }
1320
1321         log_print("Using TCP for communications");
1322
1323         return tcp_create_listen_sock(&listen_con, dlm_local_addr[0]);
1324 }
1325
1326
1327
1328 static struct writequeue_entry *new_writequeue_entry(struct connection *con,
1329                                                      gfp_t allocation)
1330 {
1331         struct writequeue_entry *entry;
1332
1333         entry = kmalloc(sizeof(struct writequeue_entry), allocation);
1334         if (!entry)
1335                 return NULL;
1336
1337         entry->page = alloc_page(allocation);
1338         if (!entry->page) {
1339                 kfree(entry);
1340                 return NULL;
1341         }
1342
1343         entry->offset = 0;
1344         entry->len = 0;
1345         entry->end = 0;
1346         entry->users = 0;
1347         entry->con = con;
1348
1349         return entry;
1350 }
1351
1352 void *dlm_lowcomms_get_buffer(int nodeid, int len, gfp_t allocation, char **ppc)
1353 {
1354         struct connection *con;
1355         struct writequeue_entry *e;
1356         int offset = 0;
1357
1358         if (len > LOWCOMMS_MAX_TX_BUFFER_LEN) {
1359                 BUILD_BUG_ON(PAGE_SIZE < LOWCOMMS_MAX_TX_BUFFER_LEN);
1360                 log_print("failed to allocate a buffer of size %d", len);
1361                 return NULL;
1362         }
1363
1364         con = nodeid2con(nodeid, allocation);
1365         if (!con)
1366                 return NULL;
1367
1368         spin_lock(&con->writequeue_lock);
1369         e = list_entry(con->writequeue.prev, struct writequeue_entry, list);
1370         if ((&e->list == &con->writequeue) ||
1371             (PAGE_SIZE - e->end < len)) {
1372                 e = NULL;
1373         } else {
1374                 offset = e->end;
1375                 e->end += len;
1376                 e->users++;
1377         }
1378         spin_unlock(&con->writequeue_lock);
1379
1380         if (e) {
1381         got_one:
1382                 *ppc = page_address(e->page) + offset;
1383                 return e;
1384         }
1385
1386         e = new_writequeue_entry(con, allocation);
1387         if (e) {
1388                 spin_lock(&con->writequeue_lock);
1389                 offset = e->end;
1390                 e->end += len;
1391                 e->users++;
1392                 list_add_tail(&e->list, &con->writequeue);
1393                 spin_unlock(&con->writequeue_lock);
1394                 goto got_one;
1395         }
1396         return NULL;
1397 }
1398
1399 void dlm_lowcomms_commit_buffer(void *mh)
1400 {
1401         struct writequeue_entry *e = (struct writequeue_entry *)mh;
1402         struct connection *con = e->con;
1403         int users;
1404
1405         spin_lock(&con->writequeue_lock);
1406         users = --e->users;
1407         if (users)
1408                 goto out;
1409         e->len = e->end - e->offset;
1410         spin_unlock(&con->writequeue_lock);
1411
1412         queue_work(send_workqueue, &con->swork);
1413         return;
1414
1415 out:
1416         spin_unlock(&con->writequeue_lock);
1417         return;
1418 }
1419
1420 /* Send a message */
1421 static void send_to_sock(struct connection *con)
1422 {
1423         int ret = 0;
1424         const int msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
1425         struct writequeue_entry *e;
1426         int len, offset;
1427         int count = 0;
1428
1429         mutex_lock(&con->sock_mutex);
1430         if (con->sock == NULL)
1431                 goto out_connect;
1432
1433         spin_lock(&con->writequeue_lock);
1434         for (;;) {
1435                 e = list_entry(con->writequeue.next, struct writequeue_entry,
1436                                list);
1437                 if ((struct list_head *) e == &con->writequeue)
1438                         break;
1439
1440                 len = e->len;
1441                 offset = e->offset;
1442                 BUG_ON(len == 0 && e->users == 0);
1443                 spin_unlock(&con->writequeue_lock);
1444
1445                 ret = 0;
1446                 if (len) {
1447                         ret = kernel_sendpage(con->sock, e->page, offset, len,
1448                                               msg_flags);
1449                         if (ret == -EAGAIN || ret == 0) {
1450                                 if (ret == -EAGAIN &&
1451                                     test_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags) &&
1452                                     !test_and_set_bit(CF_APP_LIMITED, &con->flags)) {
1453                                         /* Notify TCP that we're limited by the
1454                                          * application window size.
1455                                          */
1456                                         set_bit(SOCK_NOSPACE, &con->sock->flags);
1457                                         con->sock->sk->sk_write_pending++;
1458                                 }
1459                                 cond_resched();
1460                                 goto out;
1461                         } else if (ret < 0)
1462                                 goto send_error;
1463                 }
1464
1465                 /* Don't starve people filling buffers */
1466                 if (++count >= MAX_SEND_MSG_COUNT) {
1467                         cond_resched();
1468                         count = 0;
1469                 }
1470
1471                 spin_lock(&con->writequeue_lock);
1472                 writequeue_entry_complete(e, ret);
1473         }
1474         spin_unlock(&con->writequeue_lock);
1475 out:
1476         mutex_unlock(&con->sock_mutex);
1477         return;
1478
1479 send_error:
1480         mutex_unlock(&con->sock_mutex);
1481         close_connection(con, false, false, true);
1482         /* Requeue the send work. When the work daemon runs again, it will try
1483            a new connection, then call this function again. */
1484         queue_work(send_workqueue, &con->swork);
1485         return;
1486
1487 out_connect:
1488         mutex_unlock(&con->sock_mutex);
1489         queue_work(send_workqueue, &con->swork);
1490         cond_resched();
1491 }
1492
1493 static void clean_one_writequeue(struct connection *con)
1494 {
1495         struct writequeue_entry *e, *safe;
1496
1497         spin_lock(&con->writequeue_lock);
1498         list_for_each_entry_safe(e, safe, &con->writequeue, list) {
1499                 list_del(&e->list);
1500                 free_entry(e);
1501         }
1502         spin_unlock(&con->writequeue_lock);
1503 }
1504
1505 /* Called from recovery when it knows that a node has
1506    left the cluster */
1507 int dlm_lowcomms_close(int nodeid)
1508 {
1509         struct connection *con;
1510         struct dlm_node_addr *na;
1511
1512         log_print("closing connection to node %d", nodeid);
1513         con = nodeid2con(nodeid, 0);
1514         if (con) {
1515                 set_bit(CF_CLOSE, &con->flags);
1516                 close_connection(con, true, true, true);
1517                 clean_one_writequeue(con);
1518                 if (con->othercon)
1519                         clean_one_writequeue(con->othercon);
1520         }
1521
1522         spin_lock(&dlm_node_addrs_spin);
1523         na = find_node_addr(nodeid);
1524         if (na) {
1525                 list_del(&na->list);
1526                 while (na->addr_count--)
1527                         kfree(na->addr[na->addr_count]);
1528                 kfree(na);
1529         }
1530         spin_unlock(&dlm_node_addrs_spin);
1531
1532         return 0;
1533 }
1534
1535 /* Receive workqueue function */
1536 static void process_recv_sockets(struct work_struct *work)
1537 {
1538         struct connection *con = container_of(work, struct connection, rwork);
1539         int err;
1540
1541         clear_bit(CF_READ_PENDING, &con->flags);
1542         do {
1543                 err = receive_from_sock(con);
1544         } while (!err);
1545 }
1546
1547 static void process_listen_recv_socket(struct work_struct *work)
1548 {
1549         accept_from_sock(&listen_con);
1550 }
1551
1552 /* Send workqueue function */
1553 static void process_send_sockets(struct work_struct *work)
1554 {
1555         struct connection *con = container_of(work, struct connection, swork);
1556
1557         clear_bit(CF_WRITE_PENDING, &con->flags);
1558         if (con->sock == NULL) /* not mutex protected so check it inside too */
1559                 con->connect_action(con);
1560         if (!list_empty(&con->writequeue))
1561                 send_to_sock(con);
1562 }
1563
1564 static void work_stop(void)
1565 {
1566         if (recv_workqueue)
1567                 destroy_workqueue(recv_workqueue);
1568         if (send_workqueue)
1569                 destroy_workqueue(send_workqueue);
1570 }
1571
1572 static int work_start(void)
1573 {
1574         recv_workqueue = alloc_workqueue("dlm_recv",
1575                                          WQ_UNBOUND | WQ_MEM_RECLAIM, 1);
1576         if (!recv_workqueue) {
1577                 log_print("can't start dlm_recv");
1578                 return -ENOMEM;
1579         }
1580
1581         send_workqueue = alloc_workqueue("dlm_send",
1582                                          WQ_UNBOUND | WQ_MEM_RECLAIM, 1);
1583         if (!send_workqueue) {
1584                 log_print("can't start dlm_send");
1585                 destroy_workqueue(recv_workqueue);
1586                 return -ENOMEM;
1587         }
1588
1589         return 0;
1590 }
1591
1592 static void _stop_conn(struct connection *con, bool and_other)
1593 {
1594         mutex_lock(&con->sock_mutex);
1595         set_bit(CF_CLOSE, &con->flags);
1596         set_bit(CF_READ_PENDING, &con->flags);
1597         set_bit(CF_WRITE_PENDING, &con->flags);
1598         if (con->sock && con->sock->sk) {
1599                 write_lock_bh(&con->sock->sk->sk_callback_lock);
1600                 con->sock->sk->sk_user_data = NULL;
1601                 write_unlock_bh(&con->sock->sk->sk_callback_lock);
1602         }
1603         if (con->othercon && and_other)
1604                 _stop_conn(con->othercon, false);
1605         mutex_unlock(&con->sock_mutex);
1606 }
1607
1608 static void stop_conn(struct connection *con)
1609 {
1610         _stop_conn(con, true);
1611 }
1612
1613 static void shutdown_conn(struct connection *con)
1614 {
1615         if (con->shutdown_action)
1616                 con->shutdown_action(con);
1617 }
1618
1619 static void connection_release(struct rcu_head *rcu)
1620 {
1621         struct connection *con = container_of(rcu, struct connection, rcu);
1622
1623         kfree(con->rx_buf);
1624         kfree(con);
1625 }
1626
1627 static void free_conn(struct connection *con)
1628 {
1629         close_connection(con, true, true, true);
1630         spin_lock(&connections_lock);
1631         hlist_del_rcu(&con->list);
1632         spin_unlock(&connections_lock);
1633         if (con->othercon) {
1634                 clean_one_writequeue(con->othercon);
1635                 call_srcu(&connections_srcu, &con->othercon->rcu,
1636                           connection_release);
1637         }
1638         clean_one_writequeue(con);
1639         call_srcu(&connections_srcu, &con->rcu, connection_release);
1640 }
1641
1642 static void work_flush(void)
1643 {
1644         int ok, idx;
1645         int i;
1646         struct connection *con;
1647
1648         do {
1649                 ok = 1;
1650                 foreach_conn(stop_conn);
1651                 if (recv_workqueue)
1652                         flush_workqueue(recv_workqueue);
1653                 if (send_workqueue)
1654                         flush_workqueue(send_workqueue);
1655                 idx = srcu_read_lock(&connections_srcu);
1656                 for (i = 0; i < CONN_HASH_SIZE && ok; i++) {
1657                         hlist_for_each_entry_rcu(con, &connection_hash[i],
1658                                                  list) {
1659                                 ok &= test_bit(CF_READ_PENDING, &con->flags);
1660                                 ok &= test_bit(CF_WRITE_PENDING, &con->flags);
1661                                 if (con->othercon) {
1662                                         ok &= test_bit(CF_READ_PENDING,
1663                                                        &con->othercon->flags);
1664                                         ok &= test_bit(CF_WRITE_PENDING,
1665                                                        &con->othercon->flags);
1666                                 }
1667                         }
1668                 }
1669                 srcu_read_unlock(&connections_srcu, idx);
1670         } while (!ok);
1671 }
1672
1673 void dlm_lowcomms_stop(void)
1674 {
1675         /* Set all the flags to prevent any
1676            socket activity.
1677         */
1678         dlm_allow_conn = 0;
1679
1680         if (recv_workqueue)
1681                 flush_workqueue(recv_workqueue);
1682         if (send_workqueue)
1683                 flush_workqueue(send_workqueue);
1684
1685         dlm_close_sock(&listen_con.sock);
1686
1687         foreach_conn(shutdown_conn);
1688         work_flush();
1689         foreach_conn(free_conn);
1690         work_stop();
1691         deinit_local();
1692 }
1693
1694 int dlm_lowcomms_start(void)
1695 {
1696         int error = -EINVAL;
1697         int i;
1698
1699         for (i = 0; i < CONN_HASH_SIZE; i++)
1700                 INIT_HLIST_HEAD(&connection_hash[i]);
1701
1702         init_local();
1703         if (!dlm_local_count) {
1704                 error = -ENOTCONN;
1705                 log_print("no local IP address has been set");
1706                 goto fail;
1707         }
1708
1709         INIT_WORK(&listen_con.rwork, process_listen_recv_socket);
1710
1711         error = work_start();
1712         if (error)
1713                 goto fail;
1714
1715         dlm_allow_conn = 1;
1716
1717         /* Start listening */
1718         if (dlm_config.ci_protocol == 0)
1719                 error = tcp_listen_for_all();
1720         else
1721                 error = sctp_listen_for_all(&listen_con);
1722         if (error)
1723                 goto fail_unlisten;
1724
1725         return 0;
1726
1727 fail_unlisten:
1728         dlm_allow_conn = 0;
1729         dlm_close_sock(&listen_con.sock);
1730 fail:
1731         return error;
1732 }
1733
1734 void dlm_lowcomms_exit(void)
1735 {
1736         struct dlm_node_addr *na, *safe;
1737
1738         spin_lock(&dlm_node_addrs_spin);
1739         list_for_each_entry_safe(na, safe, &dlm_node_addrs, list) {
1740                 list_del(&na->list);
1741                 while (na->addr_count--)
1742                         kfree(na->addr[na->addr_count]);
1743                 kfree(na);
1744         }
1745         spin_unlock(&dlm_node_addrs_spin);
1746 }