Merge tag 'sound-fix-5.13-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai...
[linux-2.6-microblaze.git] / fs / dlm / lowcomms.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /******************************************************************************
3 *******************************************************************************
4 **
5 **  Copyright (C) Sistina Software, Inc.  1997-2003  All rights reserved.
6 **  Copyright (C) 2004-2009 Red Hat, Inc.  All rights reserved.
7 **
8 **
9 *******************************************************************************
10 ******************************************************************************/
11
12 /*
13  * lowcomms.c
14  *
15  * This is the "low-level" comms layer.
16  *
17  * It is responsible for sending/receiving messages
18  * from other nodes in the cluster.
19  *
20  * Cluster nodes are referred to by their nodeids. nodeids are
21  * simply 32 bit numbers to the locking module - if they need to
22  * be expanded for the cluster infrastructure then that is its
23  * responsibility. It is this layer's
24  * responsibility to resolve these into IP address or
25  * whatever it needs for inter-node communication.
26  *
27  * The comms level is two kernel threads that deal mainly with
28  * the receiving of messages from other nodes and passing them
29  * up to the mid-level comms layer (which understands the
30  * message format) for execution by the locking core, and
31  * a send thread which does all the setting up of connections
32  * to remote nodes and the sending of data. Threads are not allowed
33  * to send their own data because it may cause them to wait in times
34  * of high load. Also, this way, the sending thread can collect together
35  * messages bound for one node and send them in one block.
36  *
37  * lowcomms will choose to use either TCP or SCTP as its transport layer
38  * depending on the configuration variable 'protocol'. This should be set
39  * to 0 (default) for TCP or 1 for SCTP. It should be configured using a
40  * cluster-wide mechanism as it must be the same on all nodes of the cluster
41  * for the DLM to function.
42  *
43  */
44
45 #include <asm/ioctls.h>
46 #include <net/sock.h>
47 #include <net/tcp.h>
48 #include <linux/pagemap.h>
49 #include <linux/file.h>
50 #include <linux/mutex.h>
51 #include <linux/sctp.h>
52 #include <linux/slab.h>
53 #include <net/sctp/sctp.h>
54 #include <net/ipv6.h>
55
56 #include "dlm_internal.h"
57 #include "lowcomms.h"
58 #include "midcomms.h"
59 #include "config.h"
60
61 #define NEEDED_RMEM (4*1024*1024)
62 #define CONN_HASH_SIZE 32
63
64 /* Number of messages to send before rescheduling */
65 #define MAX_SEND_MSG_COUNT 25
66 #define DLM_SHUTDOWN_WAIT_TIMEOUT msecs_to_jiffies(10000)
67
68 struct connection {
69         struct socket *sock;    /* NULL if not connected */
70         uint32_t nodeid;        /* So we know who we are in the list */
71         struct mutex sock_mutex;
72         unsigned long flags;
73 #define CF_READ_PENDING 1
74 #define CF_WRITE_PENDING 2
75 #define CF_INIT_PENDING 4
76 #define CF_IS_OTHERCON 5
77 #define CF_CLOSE 6
78 #define CF_APP_LIMITED 7
79 #define CF_CLOSING 8
80 #define CF_SHUTDOWN 9
81 #define CF_CONNECTED 10
82         struct list_head writequeue;  /* List of outgoing writequeue_entries */
83         spinlock_t writequeue_lock;
84         void (*connect_action) (struct connection *);   /* What to do to connect */
85         void (*shutdown_action)(struct connection *con); /* What to do to shutdown */
86         int retries;
87 #define MAX_CONNECT_RETRIES 3
88         struct hlist_node list;
89         struct connection *othercon;
90         struct work_struct rwork; /* Receive workqueue */
91         struct work_struct swork; /* Send workqueue */
92         wait_queue_head_t shutdown_wait; /* wait for graceful shutdown */
93         unsigned char *rx_buf;
94         int rx_buflen;
95         int rx_leftover;
96         struct rcu_head rcu;
97 };
98 #define sock2con(x) ((struct connection *)(x)->sk_user_data)
99
100 struct listen_connection {
101         struct socket *sock;
102         struct work_struct rwork;
103 };
104
105 #define DLM_WQ_REMAIN_BYTES(e) (PAGE_SIZE - e->end)
106 #define DLM_WQ_LENGTH_BYTES(e) (e->end - e->offset)
107
108 /* An entry waiting to be sent */
109 struct writequeue_entry {
110         struct list_head list;
111         struct page *page;
112         int offset;
113         int len;
114         int end;
115         int users;
116         struct connection *con;
117 };
118
119 struct dlm_node_addr {
120         struct list_head list;
121         int nodeid;
122         int mark;
123         int addr_count;
124         int curr_addr_index;
125         struct sockaddr_storage *addr[DLM_MAX_ADDR_COUNT];
126 };
127
128 static struct listen_sock_callbacks {
129         void (*sk_error_report)(struct sock *);
130         void (*sk_data_ready)(struct sock *);
131         void (*sk_state_change)(struct sock *);
132         void (*sk_write_space)(struct sock *);
133 } listen_sock;
134
135 static LIST_HEAD(dlm_node_addrs);
136 static DEFINE_SPINLOCK(dlm_node_addrs_spin);
137
138 static struct listen_connection listen_con;
139 static struct sockaddr_storage *dlm_local_addr[DLM_MAX_ADDR_COUNT];
140 static int dlm_local_count;
141 int dlm_allow_conn;
142
143 /* Work queues */
144 static struct workqueue_struct *recv_workqueue;
145 static struct workqueue_struct *send_workqueue;
146
147 static struct hlist_head connection_hash[CONN_HASH_SIZE];
148 static DEFINE_SPINLOCK(connections_lock);
149 DEFINE_STATIC_SRCU(connections_srcu);
150
151 static void process_recv_sockets(struct work_struct *work);
152 static void process_send_sockets(struct work_struct *work);
153
154 static void sctp_connect_to_sock(struct connection *con);
155 static void tcp_connect_to_sock(struct connection *con);
156 static void dlm_tcp_shutdown(struct connection *con);
157
158 /* This is deliberately very simple because most clusters have simple
159    sequential nodeids, so we should be able to go straight to a connection
160    struct in the array */
161 static inline int nodeid_hash(int nodeid)
162 {
163         return nodeid & (CONN_HASH_SIZE-1);
164 }
165
166 static struct connection *__find_con(int nodeid)
167 {
168         int r, idx;
169         struct connection *con;
170
171         r = nodeid_hash(nodeid);
172
173         idx = srcu_read_lock(&connections_srcu);
174         hlist_for_each_entry_rcu(con, &connection_hash[r], list) {
175                 if (con->nodeid == nodeid) {
176                         srcu_read_unlock(&connections_srcu, idx);
177                         return con;
178                 }
179         }
180         srcu_read_unlock(&connections_srcu, idx);
181
182         return NULL;
183 }
184
185 static int dlm_con_init(struct connection *con, int nodeid)
186 {
187         con->rx_buflen = dlm_config.ci_buffer_size;
188         con->rx_buf = kmalloc(con->rx_buflen, GFP_NOFS);
189         if (!con->rx_buf)
190                 return -ENOMEM;
191
192         con->nodeid = nodeid;
193         mutex_init(&con->sock_mutex);
194         INIT_LIST_HEAD(&con->writequeue);
195         spin_lock_init(&con->writequeue_lock);
196         INIT_WORK(&con->swork, process_send_sockets);
197         INIT_WORK(&con->rwork, process_recv_sockets);
198         init_waitqueue_head(&con->shutdown_wait);
199
200         if (dlm_config.ci_protocol == 0) {
201                 con->connect_action = tcp_connect_to_sock;
202                 con->shutdown_action = dlm_tcp_shutdown;
203         } else {
204                 con->connect_action = sctp_connect_to_sock;
205         }
206
207         return 0;
208 }
209
210 /*
211  * If 'allocation' is zero then we don't attempt to create a new
212  * connection structure for this node.
213  */
214 static struct connection *nodeid2con(int nodeid, gfp_t alloc)
215 {
216         struct connection *con, *tmp;
217         int r, ret;
218
219         con = __find_con(nodeid);
220         if (con || !alloc)
221                 return con;
222
223         con = kzalloc(sizeof(*con), alloc);
224         if (!con)
225                 return NULL;
226
227         ret = dlm_con_init(con, nodeid);
228         if (ret) {
229                 kfree(con);
230                 return NULL;
231         }
232
233         r = nodeid_hash(nodeid);
234
235         spin_lock(&connections_lock);
236         /* Because multiple workqueues/threads calls this function it can
237          * race on multiple cpu's. Instead of locking hot path __find_con()
238          * we just check in rare cases of recently added nodes again
239          * under protection of connections_lock. If this is the case we
240          * abort our connection creation and return the existing connection.
241          */
242         tmp = __find_con(nodeid);
243         if (tmp) {
244                 spin_unlock(&connections_lock);
245                 kfree(con->rx_buf);
246                 kfree(con);
247                 return tmp;
248         }
249
250         hlist_add_head_rcu(&con->list, &connection_hash[r]);
251         spin_unlock(&connections_lock);
252
253         return con;
254 }
255
256 /* Loop round all connections */
257 static void foreach_conn(void (*conn_func)(struct connection *c))
258 {
259         int i, idx;
260         struct connection *con;
261
262         idx = srcu_read_lock(&connections_srcu);
263         for (i = 0; i < CONN_HASH_SIZE; i++) {
264                 hlist_for_each_entry_rcu(con, &connection_hash[i], list)
265                         conn_func(con);
266         }
267         srcu_read_unlock(&connections_srcu, idx);
268 }
269
270 static struct dlm_node_addr *find_node_addr(int nodeid)
271 {
272         struct dlm_node_addr *na;
273
274         list_for_each_entry(na, &dlm_node_addrs, list) {
275                 if (na->nodeid == nodeid)
276                         return na;
277         }
278         return NULL;
279 }
280
281 static int addr_compare(const struct sockaddr_storage *x,
282                         const struct sockaddr_storage *y)
283 {
284         switch (x->ss_family) {
285         case AF_INET: {
286                 struct sockaddr_in *sinx = (struct sockaddr_in *)x;
287                 struct sockaddr_in *siny = (struct sockaddr_in *)y;
288                 if (sinx->sin_addr.s_addr != siny->sin_addr.s_addr)
289                         return 0;
290                 if (sinx->sin_port != siny->sin_port)
291                         return 0;
292                 break;
293         }
294         case AF_INET6: {
295                 struct sockaddr_in6 *sinx = (struct sockaddr_in6 *)x;
296                 struct sockaddr_in6 *siny = (struct sockaddr_in6 *)y;
297                 if (!ipv6_addr_equal(&sinx->sin6_addr, &siny->sin6_addr))
298                         return 0;
299                 if (sinx->sin6_port != siny->sin6_port)
300                         return 0;
301                 break;
302         }
303         default:
304                 return 0;
305         }
306         return 1;
307 }
308
309 static int nodeid_to_addr(int nodeid, struct sockaddr_storage *sas_out,
310                           struct sockaddr *sa_out, bool try_new_addr,
311                           unsigned int *mark)
312 {
313         struct sockaddr_storage sas;
314         struct dlm_node_addr *na;
315
316         if (!dlm_local_count)
317                 return -1;
318
319         spin_lock(&dlm_node_addrs_spin);
320         na = find_node_addr(nodeid);
321         if (na && na->addr_count) {
322                 memcpy(&sas, na->addr[na->curr_addr_index],
323                        sizeof(struct sockaddr_storage));
324
325                 if (try_new_addr) {
326                         na->curr_addr_index++;
327                         if (na->curr_addr_index == na->addr_count)
328                                 na->curr_addr_index = 0;
329                 }
330         }
331         spin_unlock(&dlm_node_addrs_spin);
332
333         if (!na)
334                 return -EEXIST;
335
336         if (!na->addr_count)
337                 return -ENOENT;
338
339         *mark = na->mark;
340
341         if (sas_out)
342                 memcpy(sas_out, &sas, sizeof(struct sockaddr_storage));
343
344         if (!sa_out)
345                 return 0;
346
347         if (dlm_local_addr[0]->ss_family == AF_INET) {
348                 struct sockaddr_in *in4  = (struct sockaddr_in *) &sas;
349                 struct sockaddr_in *ret4 = (struct sockaddr_in *) sa_out;
350                 ret4->sin_addr.s_addr = in4->sin_addr.s_addr;
351         } else {
352                 struct sockaddr_in6 *in6  = (struct sockaddr_in6 *) &sas;
353                 struct sockaddr_in6 *ret6 = (struct sockaddr_in6 *) sa_out;
354                 ret6->sin6_addr = in6->sin6_addr;
355         }
356
357         return 0;
358 }
359
360 static int addr_to_nodeid(struct sockaddr_storage *addr, int *nodeid,
361                           unsigned int *mark)
362 {
363         struct dlm_node_addr *na;
364         int rv = -EEXIST;
365         int addr_i;
366
367         spin_lock(&dlm_node_addrs_spin);
368         list_for_each_entry(na, &dlm_node_addrs, list) {
369                 if (!na->addr_count)
370                         continue;
371
372                 for (addr_i = 0; addr_i < na->addr_count; addr_i++) {
373                         if (addr_compare(na->addr[addr_i], addr)) {
374                                 *nodeid = na->nodeid;
375                                 *mark = na->mark;
376                                 rv = 0;
377                                 goto unlock;
378                         }
379                 }
380         }
381 unlock:
382         spin_unlock(&dlm_node_addrs_spin);
383         return rv;
384 }
385
386 /* caller need to held dlm_node_addrs_spin lock */
387 static bool dlm_lowcomms_na_has_addr(const struct dlm_node_addr *na,
388                                      const struct sockaddr_storage *addr)
389 {
390         int i;
391
392         for (i = 0; i < na->addr_count; i++) {
393                 if (addr_compare(na->addr[i], addr))
394                         return true;
395         }
396
397         return false;
398 }
399
400 int dlm_lowcomms_addr(int nodeid, struct sockaddr_storage *addr, int len)
401 {
402         struct sockaddr_storage *new_addr;
403         struct dlm_node_addr *new_node, *na;
404         bool ret;
405
406         new_node = kzalloc(sizeof(struct dlm_node_addr), GFP_NOFS);
407         if (!new_node)
408                 return -ENOMEM;
409
410         new_addr = kzalloc(sizeof(struct sockaddr_storage), GFP_NOFS);
411         if (!new_addr) {
412                 kfree(new_node);
413                 return -ENOMEM;
414         }
415
416         memcpy(new_addr, addr, len);
417
418         spin_lock(&dlm_node_addrs_spin);
419         na = find_node_addr(nodeid);
420         if (!na) {
421                 new_node->nodeid = nodeid;
422                 new_node->addr[0] = new_addr;
423                 new_node->addr_count = 1;
424                 new_node->mark = dlm_config.ci_mark;
425                 list_add(&new_node->list, &dlm_node_addrs);
426                 spin_unlock(&dlm_node_addrs_spin);
427                 return 0;
428         }
429
430         ret = dlm_lowcomms_na_has_addr(na, addr);
431         if (ret) {
432                 spin_unlock(&dlm_node_addrs_spin);
433                 kfree(new_addr);
434                 kfree(new_node);
435                 return -EEXIST;
436         }
437
438         if (na->addr_count >= DLM_MAX_ADDR_COUNT) {
439                 spin_unlock(&dlm_node_addrs_spin);
440                 kfree(new_addr);
441                 kfree(new_node);
442                 return -ENOSPC;
443         }
444
445         na->addr[na->addr_count++] = new_addr;
446         spin_unlock(&dlm_node_addrs_spin);
447         kfree(new_node);
448         return 0;
449 }
450
451 /* Data available on socket or listen socket received a connect */
452 static void lowcomms_data_ready(struct sock *sk)
453 {
454         struct connection *con;
455
456         read_lock_bh(&sk->sk_callback_lock);
457         con = sock2con(sk);
458         if (con && !test_and_set_bit(CF_READ_PENDING, &con->flags))
459                 queue_work(recv_workqueue, &con->rwork);
460         read_unlock_bh(&sk->sk_callback_lock);
461 }
462
463 static void lowcomms_listen_data_ready(struct sock *sk)
464 {
465         queue_work(recv_workqueue, &listen_con.rwork);
466 }
467
468 static void lowcomms_write_space(struct sock *sk)
469 {
470         struct connection *con;
471
472         read_lock_bh(&sk->sk_callback_lock);
473         con = sock2con(sk);
474         if (!con)
475                 goto out;
476
477         if (!test_and_set_bit(CF_CONNECTED, &con->flags)) {
478                 log_print("successful connected to node %d", con->nodeid);
479                 queue_work(send_workqueue, &con->swork);
480                 goto out;
481         }
482
483         clear_bit(SOCK_NOSPACE, &con->sock->flags);
484
485         if (test_and_clear_bit(CF_APP_LIMITED, &con->flags)) {
486                 con->sock->sk->sk_write_pending--;
487                 clear_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags);
488         }
489
490         queue_work(send_workqueue, &con->swork);
491 out:
492         read_unlock_bh(&sk->sk_callback_lock);
493 }
494
495 static inline void lowcomms_connect_sock(struct connection *con)
496 {
497         if (test_bit(CF_CLOSE, &con->flags))
498                 return;
499         queue_work(send_workqueue, &con->swork);
500         cond_resched();
501 }
502
503 static void lowcomms_state_change(struct sock *sk)
504 {
505         /* SCTP layer is not calling sk_data_ready when the connection
506          * is done, so we catch the signal through here. Also, it
507          * doesn't switch socket state when entering shutdown, so we
508          * skip the write in that case.
509          */
510         if (sk->sk_shutdown) {
511                 if (sk->sk_shutdown == RCV_SHUTDOWN)
512                         lowcomms_data_ready(sk);
513         } else if (sk->sk_state == TCP_ESTABLISHED) {
514                 lowcomms_write_space(sk);
515         }
516 }
517
518 int dlm_lowcomms_connect_node(int nodeid)
519 {
520         struct connection *con;
521
522         if (nodeid == dlm_our_nodeid())
523                 return 0;
524
525         con = nodeid2con(nodeid, GFP_NOFS);
526         if (!con)
527                 return -ENOMEM;
528         lowcomms_connect_sock(con);
529         return 0;
530 }
531
532 int dlm_lowcomms_nodes_set_mark(int nodeid, unsigned int mark)
533 {
534         struct dlm_node_addr *na;
535
536         spin_lock(&dlm_node_addrs_spin);
537         na = find_node_addr(nodeid);
538         if (!na) {
539                 spin_unlock(&dlm_node_addrs_spin);
540                 return -ENOENT;
541         }
542
543         na->mark = mark;
544         spin_unlock(&dlm_node_addrs_spin);
545
546         return 0;
547 }
548
549 static void lowcomms_error_report(struct sock *sk)
550 {
551         struct connection *con;
552         struct sockaddr_storage saddr;
553         void (*orig_report)(struct sock *) = NULL;
554
555         read_lock_bh(&sk->sk_callback_lock);
556         con = sock2con(sk);
557         if (con == NULL)
558                 goto out;
559
560         orig_report = listen_sock.sk_error_report;
561         if (con->sock == NULL ||
562             kernel_getpeername(con->sock, (struct sockaddr *)&saddr) < 0) {
563                 printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
564                                    "sending to node %d, port %d, "
565                                    "sk_err=%d/%d\n", dlm_our_nodeid(),
566                                    con->nodeid, dlm_config.ci_tcp_port,
567                                    sk->sk_err, sk->sk_err_soft);
568         } else if (saddr.ss_family == AF_INET) {
569                 struct sockaddr_in *sin4 = (struct sockaddr_in *)&saddr;
570
571                 printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
572                                    "sending to node %d at %pI4, port %d, "
573                                    "sk_err=%d/%d\n", dlm_our_nodeid(),
574                                    con->nodeid, &sin4->sin_addr.s_addr,
575                                    dlm_config.ci_tcp_port, sk->sk_err,
576                                    sk->sk_err_soft);
577         } else {
578                 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&saddr;
579
580                 printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
581                                    "sending to node %d at %u.%u.%u.%u, "
582                                    "port %d, sk_err=%d/%d\n", dlm_our_nodeid(),
583                                    con->nodeid, sin6->sin6_addr.s6_addr32[0],
584                                    sin6->sin6_addr.s6_addr32[1],
585                                    sin6->sin6_addr.s6_addr32[2],
586                                    sin6->sin6_addr.s6_addr32[3],
587                                    dlm_config.ci_tcp_port, sk->sk_err,
588                                    sk->sk_err_soft);
589         }
590 out:
591         read_unlock_bh(&sk->sk_callback_lock);
592         if (orig_report)
593                 orig_report(sk);
594 }
595
596 /* Note: sk_callback_lock must be locked before calling this function. */
597 static void save_listen_callbacks(struct socket *sock)
598 {
599         struct sock *sk = sock->sk;
600
601         listen_sock.sk_data_ready = sk->sk_data_ready;
602         listen_sock.sk_state_change = sk->sk_state_change;
603         listen_sock.sk_write_space = sk->sk_write_space;
604         listen_sock.sk_error_report = sk->sk_error_report;
605 }
606
607 static void restore_callbacks(struct socket *sock)
608 {
609         struct sock *sk = sock->sk;
610
611         write_lock_bh(&sk->sk_callback_lock);
612         sk->sk_user_data = NULL;
613         sk->sk_data_ready = listen_sock.sk_data_ready;
614         sk->sk_state_change = listen_sock.sk_state_change;
615         sk->sk_write_space = listen_sock.sk_write_space;
616         sk->sk_error_report = listen_sock.sk_error_report;
617         write_unlock_bh(&sk->sk_callback_lock);
618 }
619
620 static void add_listen_sock(struct socket *sock, struct listen_connection *con)
621 {
622         struct sock *sk = sock->sk;
623
624         write_lock_bh(&sk->sk_callback_lock);
625         save_listen_callbacks(sock);
626         con->sock = sock;
627
628         sk->sk_user_data = con;
629         sk->sk_allocation = GFP_NOFS;
630         /* Install a data_ready callback */
631         sk->sk_data_ready = lowcomms_listen_data_ready;
632         write_unlock_bh(&sk->sk_callback_lock);
633 }
634
635 /* Make a socket active */
636 static void add_sock(struct socket *sock, struct connection *con)
637 {
638         struct sock *sk = sock->sk;
639
640         write_lock_bh(&sk->sk_callback_lock);
641         con->sock = sock;
642
643         sk->sk_user_data = con;
644         /* Install a data_ready callback */
645         sk->sk_data_ready = lowcomms_data_ready;
646         sk->sk_write_space = lowcomms_write_space;
647         sk->sk_state_change = lowcomms_state_change;
648         sk->sk_allocation = GFP_NOFS;
649         sk->sk_error_report = lowcomms_error_report;
650         write_unlock_bh(&sk->sk_callback_lock);
651 }
652
653 /* Add the port number to an IPv6 or 4 sockaddr and return the address
654    length */
655 static void make_sockaddr(struct sockaddr_storage *saddr, uint16_t port,
656                           int *addr_len)
657 {
658         saddr->ss_family =  dlm_local_addr[0]->ss_family;
659         if (saddr->ss_family == AF_INET) {
660                 struct sockaddr_in *in4_addr = (struct sockaddr_in *)saddr;
661                 in4_addr->sin_port = cpu_to_be16(port);
662                 *addr_len = sizeof(struct sockaddr_in);
663                 memset(&in4_addr->sin_zero, 0, sizeof(in4_addr->sin_zero));
664         } else {
665                 struct sockaddr_in6 *in6_addr = (struct sockaddr_in6 *)saddr;
666                 in6_addr->sin6_port = cpu_to_be16(port);
667                 *addr_len = sizeof(struct sockaddr_in6);
668         }
669         memset((char *)saddr + *addr_len, 0, sizeof(struct sockaddr_storage) - *addr_len);
670 }
671
672 static void dlm_close_sock(struct socket **sock)
673 {
674         if (*sock) {
675                 restore_callbacks(*sock);
676                 sock_release(*sock);
677                 *sock = NULL;
678         }
679 }
680
681 /* Close a remote connection and tidy up */
682 static void close_connection(struct connection *con, bool and_other,
683                              bool tx, bool rx)
684 {
685         bool closing = test_and_set_bit(CF_CLOSING, &con->flags);
686
687         if (tx && !closing && cancel_work_sync(&con->swork)) {
688                 log_print("canceled swork for node %d", con->nodeid);
689                 clear_bit(CF_WRITE_PENDING, &con->flags);
690         }
691         if (rx && !closing && cancel_work_sync(&con->rwork)) {
692                 log_print("canceled rwork for node %d", con->nodeid);
693                 clear_bit(CF_READ_PENDING, &con->flags);
694         }
695
696         mutex_lock(&con->sock_mutex);
697         dlm_close_sock(&con->sock);
698
699         if (con->othercon && and_other) {
700                 /* Will only re-enter once. */
701                 close_connection(con->othercon, false, true, true);
702         }
703
704         con->rx_leftover = 0;
705         con->retries = 0;
706         clear_bit(CF_CONNECTED, &con->flags);
707         mutex_unlock(&con->sock_mutex);
708         clear_bit(CF_CLOSING, &con->flags);
709 }
710
711 static void shutdown_connection(struct connection *con)
712 {
713         int ret;
714
715         flush_work(&con->swork);
716
717         mutex_lock(&con->sock_mutex);
718         /* nothing to shutdown */
719         if (!con->sock) {
720                 mutex_unlock(&con->sock_mutex);
721                 return;
722         }
723
724         set_bit(CF_SHUTDOWN, &con->flags);
725         ret = kernel_sock_shutdown(con->sock, SHUT_WR);
726         mutex_unlock(&con->sock_mutex);
727         if (ret) {
728                 log_print("Connection %p failed to shutdown: %d will force close",
729                           con, ret);
730                 goto force_close;
731         } else {
732                 ret = wait_event_timeout(con->shutdown_wait,
733                                          !test_bit(CF_SHUTDOWN, &con->flags),
734                                          DLM_SHUTDOWN_WAIT_TIMEOUT);
735                 if (ret == 0) {
736                         log_print("Connection %p shutdown timed out, will force close",
737                                   con);
738                         goto force_close;
739                 }
740         }
741
742         return;
743
744 force_close:
745         clear_bit(CF_SHUTDOWN, &con->flags);
746         close_connection(con, false, true, true);
747 }
748
749 static void dlm_tcp_shutdown(struct connection *con)
750 {
751         if (con->othercon)
752                 shutdown_connection(con->othercon);
753         shutdown_connection(con);
754 }
755
756 static int con_realloc_receive_buf(struct connection *con, int newlen)
757 {
758         unsigned char *newbuf;
759
760         newbuf = kmalloc(newlen, GFP_NOFS);
761         if (!newbuf)
762                 return -ENOMEM;
763
764         /* copy any leftover from last receive */
765         if (con->rx_leftover)
766                 memmove(newbuf, con->rx_buf, con->rx_leftover);
767
768         /* swap to new buffer space */
769         kfree(con->rx_buf);
770         con->rx_buflen = newlen;
771         con->rx_buf = newbuf;
772
773         return 0;
774 }
775
776 /* Data received from remote end */
777 static int receive_from_sock(struct connection *con)
778 {
779         int call_again_soon = 0;
780         struct msghdr msg;
781         struct kvec iov;
782         int ret, buflen;
783
784         mutex_lock(&con->sock_mutex);
785
786         if (con->sock == NULL) {
787                 ret = -EAGAIN;
788                 goto out_close;
789         }
790
791         /* realloc if we get new buffer size to read out */
792         buflen = dlm_config.ci_buffer_size;
793         if (con->rx_buflen != buflen && con->rx_leftover <= buflen) {
794                 ret = con_realloc_receive_buf(con, buflen);
795                 if (ret < 0)
796                         goto out_resched;
797         }
798
799         /* calculate new buffer parameter regarding last receive and
800          * possible leftover bytes
801          */
802         iov.iov_base = con->rx_buf + con->rx_leftover;
803         iov.iov_len = con->rx_buflen - con->rx_leftover;
804
805         memset(&msg, 0, sizeof(msg));
806         msg.msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
807         ret = kernel_recvmsg(con->sock, &msg, &iov, 1, iov.iov_len,
808                              msg.msg_flags);
809         if (ret <= 0)
810                 goto out_close;
811         else if (ret == iov.iov_len)
812                 call_again_soon = 1;
813
814         /* new buflen according readed bytes and leftover from last receive */
815         buflen = ret + con->rx_leftover;
816         ret = dlm_process_incoming_buffer(con->nodeid, con->rx_buf, buflen);
817         if (ret < 0)
818                 goto out_close;
819
820         /* calculate leftover bytes from process and put it into begin of
821          * the receive buffer, so next receive we have the full message
822          * at the start address of the receive buffer.
823          */
824         con->rx_leftover = buflen - ret;
825         if (con->rx_leftover) {
826                 memmove(con->rx_buf, con->rx_buf + ret,
827                         con->rx_leftover);
828                 call_again_soon = true;
829         }
830
831         if (call_again_soon)
832                 goto out_resched;
833
834         mutex_unlock(&con->sock_mutex);
835         return 0;
836
837 out_resched:
838         if (!test_and_set_bit(CF_READ_PENDING, &con->flags))
839                 queue_work(recv_workqueue, &con->rwork);
840         mutex_unlock(&con->sock_mutex);
841         return -EAGAIN;
842
843 out_close:
844         mutex_unlock(&con->sock_mutex);
845         if (ret != -EAGAIN) {
846                 /* Reconnect when there is something to send */
847                 close_connection(con, false, true, false);
848                 if (ret == 0) {
849                         log_print("connection %p got EOF from %d",
850                                   con, con->nodeid);
851                         /* handling for tcp shutdown */
852                         clear_bit(CF_SHUTDOWN, &con->flags);
853                         wake_up(&con->shutdown_wait);
854                         /* signal to breaking receive worker */
855                         ret = -1;
856                 }
857         }
858         return ret;
859 }
860
861 /* Listening socket is busy, accept a connection */
862 static int accept_from_sock(struct listen_connection *con)
863 {
864         int result;
865         struct sockaddr_storage peeraddr;
866         struct socket *newsock;
867         int len;
868         int nodeid;
869         struct connection *newcon;
870         struct connection *addcon;
871         unsigned int mark;
872
873         if (!dlm_allow_conn) {
874                 return -1;
875         }
876
877         if (!con->sock)
878                 return -ENOTCONN;
879
880         result = kernel_accept(con->sock, &newsock, O_NONBLOCK);
881         if (result < 0)
882                 goto accept_err;
883
884         /* Get the connected socket's peer */
885         memset(&peeraddr, 0, sizeof(peeraddr));
886         len = newsock->ops->getname(newsock, (struct sockaddr *)&peeraddr, 2);
887         if (len < 0) {
888                 result = -ECONNABORTED;
889                 goto accept_err;
890         }
891
892         /* Get the new node's NODEID */
893         make_sockaddr(&peeraddr, 0, &len);
894         if (addr_to_nodeid(&peeraddr, &nodeid, &mark)) {
895                 unsigned char *b=(unsigned char *)&peeraddr;
896                 log_print("connect from non cluster node");
897                 print_hex_dump_bytes("ss: ", DUMP_PREFIX_NONE, 
898                                      b, sizeof(struct sockaddr_storage));
899                 sock_release(newsock);
900                 return -1;
901         }
902
903         log_print("got connection from %d", nodeid);
904
905         /*  Check to see if we already have a connection to this node. This
906          *  could happen if the two nodes initiate a connection at roughly
907          *  the same time and the connections cross on the wire.
908          *  In this case we store the incoming one in "othercon"
909          */
910         newcon = nodeid2con(nodeid, GFP_NOFS);
911         if (!newcon) {
912                 result = -ENOMEM;
913                 goto accept_err;
914         }
915
916         sock_set_mark(newsock->sk, mark);
917
918         mutex_lock(&newcon->sock_mutex);
919         if (newcon->sock) {
920                 struct connection *othercon = newcon->othercon;
921
922                 if (!othercon) {
923                         othercon = kzalloc(sizeof(*othercon), GFP_NOFS);
924                         if (!othercon) {
925                                 log_print("failed to allocate incoming socket");
926                                 mutex_unlock(&newcon->sock_mutex);
927                                 result = -ENOMEM;
928                                 goto accept_err;
929                         }
930
931                         result = dlm_con_init(othercon, nodeid);
932                         if (result < 0) {
933                                 kfree(othercon);
934                                 mutex_unlock(&newcon->sock_mutex);
935                                 goto accept_err;
936                         }
937
938                         lockdep_set_subclass(&othercon->sock_mutex, 1);
939                         newcon->othercon = othercon;
940                 } else {
941                         /* close other sock con if we have something new */
942                         close_connection(othercon, false, true, false);
943                 }
944
945                 mutex_lock(&othercon->sock_mutex);
946                 add_sock(newsock, othercon);
947                 addcon = othercon;
948                 mutex_unlock(&othercon->sock_mutex);
949         }
950         else {
951                 /* accept copies the sk after we've saved the callbacks, so we
952                    don't want to save them a second time or comm errors will
953                    result in calling sk_error_report recursively. */
954                 add_sock(newsock, newcon);
955                 addcon = newcon;
956         }
957
958         set_bit(CF_CONNECTED, &addcon->flags);
959         mutex_unlock(&newcon->sock_mutex);
960
961         /*
962          * Add it to the active queue in case we got data
963          * between processing the accept adding the socket
964          * to the read_sockets list
965          */
966         if (!test_and_set_bit(CF_READ_PENDING, &addcon->flags))
967                 queue_work(recv_workqueue, &addcon->rwork);
968
969         return 0;
970
971 accept_err:
972         if (newsock)
973                 sock_release(newsock);
974
975         if (result != -EAGAIN)
976                 log_print("error accepting connection from node: %d", result);
977         return result;
978 }
979
980 static void free_entry(struct writequeue_entry *e)
981 {
982         __free_page(e->page);
983         kfree(e);
984 }
985
986 /*
987  * writequeue_entry_complete - try to delete and free write queue entry
988  * @e: write queue entry to try to delete
989  * @completed: bytes completed
990  *
991  * writequeue_lock must be held.
992  */
993 static void writequeue_entry_complete(struct writequeue_entry *e, int completed)
994 {
995         e->offset += completed;
996         e->len -= completed;
997
998         if (e->len == 0 && e->users == 0) {
999                 list_del(&e->list);
1000                 free_entry(e);
1001         }
1002 }
1003
1004 /*
1005  * sctp_bind_addrs - bind a SCTP socket to all our addresses
1006  */
1007 static int sctp_bind_addrs(struct socket *sock, uint16_t port)
1008 {
1009         struct sockaddr_storage localaddr;
1010         struct sockaddr *addr = (struct sockaddr *)&localaddr;
1011         int i, addr_len, result = 0;
1012
1013         for (i = 0; i < dlm_local_count; i++) {
1014                 memcpy(&localaddr, dlm_local_addr[i], sizeof(localaddr));
1015                 make_sockaddr(&localaddr, port, &addr_len);
1016
1017                 if (!i)
1018                         result = kernel_bind(sock, addr, addr_len);
1019                 else
1020                         result = sock_bind_add(sock->sk, addr, addr_len);
1021
1022                 if (result < 0) {
1023                         log_print("Can't bind to %d addr number %d, %d.\n",
1024                                   port, i + 1, result);
1025                         break;
1026                 }
1027         }
1028         return result;
1029 }
1030
1031 /* Initiate an SCTP association.
1032    This is a special case of send_to_sock() in that we don't yet have a
1033    peeled-off socket for this association, so we use the listening socket
1034    and add the primary IP address of the remote node.
1035  */
1036 static void sctp_connect_to_sock(struct connection *con)
1037 {
1038         struct sockaddr_storage daddr;
1039         int result;
1040         int addr_len;
1041         struct socket *sock;
1042         unsigned int mark;
1043
1044         mutex_lock(&con->sock_mutex);
1045
1046         /* Some odd races can cause double-connects, ignore them */
1047         if (con->retries++ > MAX_CONNECT_RETRIES)
1048                 goto out;
1049
1050         if (con->sock) {
1051                 log_print("node %d already connected.", con->nodeid);
1052                 goto out;
1053         }
1054
1055         memset(&daddr, 0, sizeof(daddr));
1056         result = nodeid_to_addr(con->nodeid, &daddr, NULL, true, &mark);
1057         if (result < 0) {
1058                 log_print("no address for nodeid %d", con->nodeid);
1059                 goto out;
1060         }
1061
1062         /* Create a socket to communicate with */
1063         result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
1064                                   SOCK_STREAM, IPPROTO_SCTP, &sock);
1065         if (result < 0)
1066                 goto socket_err;
1067
1068         sock_set_mark(sock->sk, mark);
1069
1070         add_sock(sock, con);
1071
1072         /* Bind to all addresses. */
1073         if (sctp_bind_addrs(con->sock, 0))
1074                 goto bind_err;
1075
1076         make_sockaddr(&daddr, dlm_config.ci_tcp_port, &addr_len);
1077
1078         log_print("connecting to %d", con->nodeid);
1079
1080         /* Turn off Nagle's algorithm */
1081         sctp_sock_set_nodelay(sock->sk);
1082
1083         /*
1084          * Make sock->ops->connect() function return in specified time,
1085          * since O_NONBLOCK argument in connect() function does not work here,
1086          * then, we should restore the default value of this attribute.
1087          */
1088         sock_set_sndtimeo(sock->sk, 5);
1089         result = sock->ops->connect(sock, (struct sockaddr *)&daddr, addr_len,
1090                                    0);
1091         sock_set_sndtimeo(sock->sk, 0);
1092
1093         if (result == -EINPROGRESS)
1094                 result = 0;
1095         if (result == 0) {
1096                 if (!test_and_set_bit(CF_CONNECTED, &con->flags))
1097                         log_print("successful connected to node %d", con->nodeid);
1098                 goto out;
1099         }
1100
1101 bind_err:
1102         con->sock = NULL;
1103         sock_release(sock);
1104
1105 socket_err:
1106         /*
1107          * Some errors are fatal and this list might need adjusting. For other
1108          * errors we try again until the max number of retries is reached.
1109          */
1110         if (result != -EHOSTUNREACH &&
1111             result != -ENETUNREACH &&
1112             result != -ENETDOWN &&
1113             result != -EINVAL &&
1114             result != -EPROTONOSUPPORT) {
1115                 log_print("connect %d try %d error %d", con->nodeid,
1116                           con->retries, result);
1117                 mutex_unlock(&con->sock_mutex);
1118                 msleep(1000);
1119                 lowcomms_connect_sock(con);
1120                 return;
1121         }
1122
1123 out:
1124         mutex_unlock(&con->sock_mutex);
1125 }
1126
1127 /* Connect a new socket to its peer */
1128 static void tcp_connect_to_sock(struct connection *con)
1129 {
1130         struct sockaddr_storage saddr, src_addr;
1131         unsigned int mark;
1132         int addr_len;
1133         struct socket *sock = NULL;
1134         int result;
1135
1136         mutex_lock(&con->sock_mutex);
1137         if (con->retries++ > MAX_CONNECT_RETRIES)
1138                 goto out;
1139
1140         /* Some odd races can cause double-connects, ignore them */
1141         if (con->sock)
1142                 goto out;
1143
1144         /* Create a socket to communicate with */
1145         result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
1146                                   SOCK_STREAM, IPPROTO_TCP, &sock);
1147         if (result < 0)
1148                 goto out_err;
1149
1150         memset(&saddr, 0, sizeof(saddr));
1151         result = nodeid_to_addr(con->nodeid, &saddr, NULL, false, &mark);
1152         if (result < 0) {
1153                 log_print("no address for nodeid %d", con->nodeid);
1154                 goto out_err;
1155         }
1156
1157         sock_set_mark(sock->sk, mark);
1158
1159         add_sock(sock, con);
1160
1161         /* Bind to our cluster-known address connecting to avoid
1162            routing problems */
1163         memcpy(&src_addr, dlm_local_addr[0], sizeof(src_addr));
1164         make_sockaddr(&src_addr, 0, &addr_len);
1165         result = sock->ops->bind(sock, (struct sockaddr *) &src_addr,
1166                                  addr_len);
1167         if (result < 0) {
1168                 log_print("could not bind for connect: %d", result);
1169                 /* This *may* not indicate a critical error */
1170         }
1171
1172         make_sockaddr(&saddr, dlm_config.ci_tcp_port, &addr_len);
1173
1174         log_print("connecting to %d", con->nodeid);
1175
1176         /* Turn off Nagle's algorithm */
1177         tcp_sock_set_nodelay(sock->sk);
1178
1179         result = sock->ops->connect(sock, (struct sockaddr *)&saddr, addr_len,
1180                                    O_NONBLOCK);
1181         if (result == -EINPROGRESS)
1182                 result = 0;
1183         if (result == 0)
1184                 goto out;
1185
1186 out_err:
1187         if (con->sock) {
1188                 sock_release(con->sock);
1189                 con->sock = NULL;
1190         } else if (sock) {
1191                 sock_release(sock);
1192         }
1193         /*
1194          * Some errors are fatal and this list might need adjusting. For other
1195          * errors we try again until the max number of retries is reached.
1196          */
1197         if (result != -EHOSTUNREACH &&
1198             result != -ENETUNREACH &&
1199             result != -ENETDOWN && 
1200             result != -EINVAL &&
1201             result != -EPROTONOSUPPORT) {
1202                 log_print("connect %d try %d error %d", con->nodeid,
1203                           con->retries, result);
1204                 mutex_unlock(&con->sock_mutex);
1205                 msleep(1000);
1206                 lowcomms_connect_sock(con);
1207                 return;
1208         }
1209 out:
1210         mutex_unlock(&con->sock_mutex);
1211         return;
1212 }
1213
1214 /* On error caller must run dlm_close_sock() for the
1215  * listen connection socket.
1216  */
1217 static int tcp_create_listen_sock(struct listen_connection *con,
1218                                   struct sockaddr_storage *saddr)
1219 {
1220         struct socket *sock = NULL;
1221         int result = 0;
1222         int addr_len;
1223
1224         if (dlm_local_addr[0]->ss_family == AF_INET)
1225                 addr_len = sizeof(struct sockaddr_in);
1226         else
1227                 addr_len = sizeof(struct sockaddr_in6);
1228
1229         /* Create a socket to communicate with */
1230         result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
1231                                   SOCK_STREAM, IPPROTO_TCP, &sock);
1232         if (result < 0) {
1233                 log_print("Can't create listening comms socket");
1234                 goto create_out;
1235         }
1236
1237         sock_set_mark(sock->sk, dlm_config.ci_mark);
1238
1239         /* Turn off Nagle's algorithm */
1240         tcp_sock_set_nodelay(sock->sk);
1241
1242         sock_set_reuseaddr(sock->sk);
1243
1244         add_listen_sock(sock, con);
1245
1246         /* Bind to our port */
1247         make_sockaddr(saddr, dlm_config.ci_tcp_port, &addr_len);
1248         result = sock->ops->bind(sock, (struct sockaddr *) saddr, addr_len);
1249         if (result < 0) {
1250                 log_print("Can't bind to port %d", dlm_config.ci_tcp_port);
1251                 goto create_out;
1252         }
1253         sock_set_keepalive(sock->sk);
1254
1255         result = sock->ops->listen(sock, 5);
1256         if (result < 0) {
1257                 log_print("Can't listen on port %d", dlm_config.ci_tcp_port);
1258                 goto create_out;
1259         }
1260
1261         return 0;
1262
1263 create_out:
1264         return result;
1265 }
1266
1267 /* Get local addresses */
1268 static void init_local(void)
1269 {
1270         struct sockaddr_storage sas, *addr;
1271         int i;
1272
1273         dlm_local_count = 0;
1274         for (i = 0; i < DLM_MAX_ADDR_COUNT; i++) {
1275                 if (dlm_our_addr(&sas, i))
1276                         break;
1277
1278                 addr = kmemdup(&sas, sizeof(*addr), GFP_NOFS);
1279                 if (!addr)
1280                         break;
1281                 dlm_local_addr[dlm_local_count++] = addr;
1282         }
1283 }
1284
1285 static void deinit_local(void)
1286 {
1287         int i;
1288
1289         for (i = 0; i < dlm_local_count; i++)
1290                 kfree(dlm_local_addr[i]);
1291 }
1292
1293 /* Initialise SCTP socket and bind to all interfaces
1294  * On error caller must run dlm_close_sock() for the
1295  * listen connection socket.
1296  */
1297 static int sctp_listen_for_all(struct listen_connection *con)
1298 {
1299         struct socket *sock = NULL;
1300         int result = -EINVAL;
1301
1302         log_print("Using SCTP for communications");
1303
1304         result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
1305                                   SOCK_STREAM, IPPROTO_SCTP, &sock);
1306         if (result < 0) {
1307                 log_print("Can't create comms socket, check SCTP is loaded");
1308                 goto out;
1309         }
1310
1311         sock_set_rcvbuf(sock->sk, NEEDED_RMEM);
1312         sock_set_mark(sock->sk, dlm_config.ci_mark);
1313         sctp_sock_set_nodelay(sock->sk);
1314
1315         add_listen_sock(sock, con);
1316
1317         /* Bind to all addresses. */
1318         result = sctp_bind_addrs(con->sock, dlm_config.ci_tcp_port);
1319         if (result < 0)
1320                 goto out;
1321
1322         result = sock->ops->listen(sock, 5);
1323         if (result < 0) {
1324                 log_print("Can't set socket listening");
1325                 goto out;
1326         }
1327
1328         return 0;
1329
1330 out:
1331         return result;
1332 }
1333
1334 static int tcp_listen_for_all(void)
1335 {
1336         /* We don't support multi-homed hosts */
1337         if (dlm_local_count > 1) {
1338                 log_print("TCP protocol can't handle multi-homed hosts, "
1339                           "try SCTP");
1340                 return -EINVAL;
1341         }
1342
1343         log_print("Using TCP for communications");
1344
1345         return tcp_create_listen_sock(&listen_con, dlm_local_addr[0]);
1346 }
1347
1348
1349
1350 static struct writequeue_entry *new_writequeue_entry(struct connection *con,
1351                                                      gfp_t allocation)
1352 {
1353         struct writequeue_entry *entry;
1354
1355         entry = kzalloc(sizeof(*entry), allocation);
1356         if (!entry)
1357                 return NULL;
1358
1359         entry->page = alloc_page(allocation | __GFP_ZERO);
1360         if (!entry->page) {
1361                 kfree(entry);
1362                 return NULL;
1363         }
1364
1365         entry->con = con;
1366         entry->users = 1;
1367
1368         return entry;
1369 }
1370
1371 static struct writequeue_entry *new_wq_entry(struct connection *con, int len,
1372                                              gfp_t allocation, char **ppc)
1373 {
1374         struct writequeue_entry *e;
1375
1376         spin_lock(&con->writequeue_lock);
1377         if (!list_empty(&con->writequeue)) {
1378                 e = list_last_entry(&con->writequeue, struct writequeue_entry, list);
1379                 if (DLM_WQ_REMAIN_BYTES(e) >= len) {
1380                         *ppc = page_address(e->page) + e->end;
1381                         e->end += len;
1382                         e->users++;
1383                         spin_unlock(&con->writequeue_lock);
1384
1385                         return e;
1386                 }
1387         }
1388         spin_unlock(&con->writequeue_lock);
1389
1390         e = new_writequeue_entry(con, allocation);
1391         if (!e)
1392                 return NULL;
1393
1394         *ppc = page_address(e->page);
1395         e->end += len;
1396
1397         spin_lock(&con->writequeue_lock);
1398         list_add_tail(&e->list, &con->writequeue);
1399         spin_unlock(&con->writequeue_lock);
1400
1401         return e;
1402 };
1403
1404 void *dlm_lowcomms_get_buffer(int nodeid, int len, gfp_t allocation, char **ppc)
1405 {
1406         struct connection *con;
1407
1408         if (len > DEFAULT_BUFFER_SIZE ||
1409             len < sizeof(struct dlm_header)) {
1410                 BUILD_BUG_ON(PAGE_SIZE < DEFAULT_BUFFER_SIZE);
1411                 log_print("failed to allocate a buffer of size %d", len);
1412                 WARN_ON(1);
1413                 return NULL;
1414         }
1415
1416         con = nodeid2con(nodeid, allocation);
1417         if (!con)
1418                 return NULL;
1419
1420         return new_wq_entry(con, len, allocation, ppc);
1421 }
1422
1423 void dlm_lowcomms_commit_buffer(void *mh)
1424 {
1425         struct writequeue_entry *e = (struct writequeue_entry *)mh;
1426         struct connection *con = e->con;
1427         int users;
1428
1429         spin_lock(&con->writequeue_lock);
1430         users = --e->users;
1431         if (users)
1432                 goto out;
1433
1434         e->len = DLM_WQ_LENGTH_BYTES(e);
1435         spin_unlock(&con->writequeue_lock);
1436
1437         queue_work(send_workqueue, &con->swork);
1438         return;
1439
1440 out:
1441         spin_unlock(&con->writequeue_lock);
1442         return;
1443 }
1444
1445 /* Send a message */
1446 static void send_to_sock(struct connection *con)
1447 {
1448         int ret = 0;
1449         const int msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
1450         struct writequeue_entry *e;
1451         int len, offset;
1452         int count = 0;
1453
1454         mutex_lock(&con->sock_mutex);
1455         if (con->sock == NULL)
1456                 goto out_connect;
1457
1458         spin_lock(&con->writequeue_lock);
1459         for (;;) {
1460                 if (list_empty(&con->writequeue))
1461                         break;
1462
1463                 e = list_first_entry(&con->writequeue, struct writequeue_entry, list);
1464                 len = e->len;
1465                 offset = e->offset;
1466                 BUG_ON(len == 0 && e->users == 0);
1467                 spin_unlock(&con->writequeue_lock);
1468
1469                 ret = 0;
1470                 if (len) {
1471                         ret = kernel_sendpage(con->sock, e->page, offset, len,
1472                                               msg_flags);
1473                         if (ret == -EAGAIN || ret == 0) {
1474                                 if (ret == -EAGAIN &&
1475                                     test_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags) &&
1476                                     !test_and_set_bit(CF_APP_LIMITED, &con->flags)) {
1477                                         /* Notify TCP that we're limited by the
1478                                          * application window size.
1479                                          */
1480                                         set_bit(SOCK_NOSPACE, &con->sock->flags);
1481                                         con->sock->sk->sk_write_pending++;
1482                                 }
1483                                 cond_resched();
1484                                 goto out;
1485                         } else if (ret < 0)
1486                                 goto send_error;
1487                 }
1488
1489                 /* Don't starve people filling buffers */
1490                 if (++count >= MAX_SEND_MSG_COUNT) {
1491                         cond_resched();
1492                         count = 0;
1493                 }
1494
1495                 spin_lock(&con->writequeue_lock);
1496                 writequeue_entry_complete(e, ret);
1497         }
1498         spin_unlock(&con->writequeue_lock);
1499 out:
1500         mutex_unlock(&con->sock_mutex);
1501         return;
1502
1503 send_error:
1504         mutex_unlock(&con->sock_mutex);
1505         close_connection(con, false, false, true);
1506         /* Requeue the send work. When the work daemon runs again, it will try
1507            a new connection, then call this function again. */
1508         queue_work(send_workqueue, &con->swork);
1509         return;
1510
1511 out_connect:
1512         mutex_unlock(&con->sock_mutex);
1513         queue_work(send_workqueue, &con->swork);
1514         cond_resched();
1515 }
1516
1517 static void clean_one_writequeue(struct connection *con)
1518 {
1519         struct writequeue_entry *e, *safe;
1520
1521         spin_lock(&con->writequeue_lock);
1522         list_for_each_entry_safe(e, safe, &con->writequeue, list) {
1523                 list_del(&e->list);
1524                 free_entry(e);
1525         }
1526         spin_unlock(&con->writequeue_lock);
1527 }
1528
1529 /* Called from recovery when it knows that a node has
1530    left the cluster */
1531 int dlm_lowcomms_close(int nodeid)
1532 {
1533         struct connection *con;
1534         struct dlm_node_addr *na;
1535
1536         log_print("closing connection to node %d", nodeid);
1537         con = nodeid2con(nodeid, 0);
1538         if (con) {
1539                 set_bit(CF_CLOSE, &con->flags);
1540                 close_connection(con, true, true, true);
1541                 clean_one_writequeue(con);
1542                 if (con->othercon)
1543                         clean_one_writequeue(con->othercon);
1544         }
1545
1546         spin_lock(&dlm_node_addrs_spin);
1547         na = find_node_addr(nodeid);
1548         if (na) {
1549                 list_del(&na->list);
1550                 while (na->addr_count--)
1551                         kfree(na->addr[na->addr_count]);
1552                 kfree(na);
1553         }
1554         spin_unlock(&dlm_node_addrs_spin);
1555
1556         return 0;
1557 }
1558
1559 /* Receive workqueue function */
1560 static void process_recv_sockets(struct work_struct *work)
1561 {
1562         struct connection *con = container_of(work, struct connection, rwork);
1563         int err;
1564
1565         clear_bit(CF_READ_PENDING, &con->flags);
1566         do {
1567                 err = receive_from_sock(con);
1568         } while (!err);
1569 }
1570
1571 static void process_listen_recv_socket(struct work_struct *work)
1572 {
1573         accept_from_sock(&listen_con);
1574 }
1575
1576 /* Send workqueue function */
1577 static void process_send_sockets(struct work_struct *work)
1578 {
1579         struct connection *con = container_of(work, struct connection, swork);
1580
1581         clear_bit(CF_WRITE_PENDING, &con->flags);
1582         if (con->sock == NULL) /* not mutex protected so check it inside too */
1583                 con->connect_action(con);
1584         if (!list_empty(&con->writequeue))
1585                 send_to_sock(con);
1586 }
1587
1588 static void work_stop(void)
1589 {
1590         if (recv_workqueue)
1591                 destroy_workqueue(recv_workqueue);
1592         if (send_workqueue)
1593                 destroy_workqueue(send_workqueue);
1594 }
1595
1596 static int work_start(void)
1597 {
1598         recv_workqueue = alloc_workqueue("dlm_recv",
1599                                          WQ_UNBOUND | WQ_MEM_RECLAIM, 1);
1600         if (!recv_workqueue) {
1601                 log_print("can't start dlm_recv");
1602                 return -ENOMEM;
1603         }
1604
1605         send_workqueue = alloc_workqueue("dlm_send",
1606                                          WQ_UNBOUND | WQ_MEM_RECLAIM, 1);
1607         if (!send_workqueue) {
1608                 log_print("can't start dlm_send");
1609                 destroy_workqueue(recv_workqueue);
1610                 return -ENOMEM;
1611         }
1612
1613         return 0;
1614 }
1615
1616 static void shutdown_conn(struct connection *con)
1617 {
1618         if (con->shutdown_action)
1619                 con->shutdown_action(con);
1620 }
1621
1622 void dlm_lowcomms_shutdown(void)
1623 {
1624         /* Set all the flags to prevent any
1625          * socket activity.
1626          */
1627         dlm_allow_conn = 0;
1628
1629         if (recv_workqueue)
1630                 flush_workqueue(recv_workqueue);
1631         if (send_workqueue)
1632                 flush_workqueue(send_workqueue);
1633
1634         dlm_close_sock(&listen_con.sock);
1635
1636         foreach_conn(shutdown_conn);
1637 }
1638
1639 static void _stop_conn(struct connection *con, bool and_other)
1640 {
1641         mutex_lock(&con->sock_mutex);
1642         set_bit(CF_CLOSE, &con->flags);
1643         set_bit(CF_READ_PENDING, &con->flags);
1644         set_bit(CF_WRITE_PENDING, &con->flags);
1645         if (con->sock && con->sock->sk) {
1646                 write_lock_bh(&con->sock->sk->sk_callback_lock);
1647                 con->sock->sk->sk_user_data = NULL;
1648                 write_unlock_bh(&con->sock->sk->sk_callback_lock);
1649         }
1650         if (con->othercon && and_other)
1651                 _stop_conn(con->othercon, false);
1652         mutex_unlock(&con->sock_mutex);
1653 }
1654
1655 static void stop_conn(struct connection *con)
1656 {
1657         _stop_conn(con, true);
1658 }
1659
1660 static void connection_release(struct rcu_head *rcu)
1661 {
1662         struct connection *con = container_of(rcu, struct connection, rcu);
1663
1664         kfree(con->rx_buf);
1665         kfree(con);
1666 }
1667
1668 static void free_conn(struct connection *con)
1669 {
1670         close_connection(con, true, true, true);
1671         spin_lock(&connections_lock);
1672         hlist_del_rcu(&con->list);
1673         spin_unlock(&connections_lock);
1674         if (con->othercon) {
1675                 clean_one_writequeue(con->othercon);
1676                 call_srcu(&connections_srcu, &con->othercon->rcu,
1677                           connection_release);
1678         }
1679         clean_one_writequeue(con);
1680         call_srcu(&connections_srcu, &con->rcu, connection_release);
1681 }
1682
1683 static void work_flush(void)
1684 {
1685         int ok, idx;
1686         int i;
1687         struct connection *con;
1688
1689         do {
1690                 ok = 1;
1691                 foreach_conn(stop_conn);
1692                 if (recv_workqueue)
1693                         flush_workqueue(recv_workqueue);
1694                 if (send_workqueue)
1695                         flush_workqueue(send_workqueue);
1696                 idx = srcu_read_lock(&connections_srcu);
1697                 for (i = 0; i < CONN_HASH_SIZE && ok; i++) {
1698                         hlist_for_each_entry_rcu(con, &connection_hash[i],
1699                                                  list) {
1700                                 ok &= test_bit(CF_READ_PENDING, &con->flags);
1701                                 ok &= test_bit(CF_WRITE_PENDING, &con->flags);
1702                                 if (con->othercon) {
1703                                         ok &= test_bit(CF_READ_PENDING,
1704                                                        &con->othercon->flags);
1705                                         ok &= test_bit(CF_WRITE_PENDING,
1706                                                        &con->othercon->flags);
1707                                 }
1708                         }
1709                 }
1710                 srcu_read_unlock(&connections_srcu, idx);
1711         } while (!ok);
1712 }
1713
1714 void dlm_lowcomms_stop(void)
1715 {
1716         work_flush();
1717         foreach_conn(free_conn);
1718         work_stop();
1719         deinit_local();
1720 }
1721
1722 int dlm_lowcomms_start(void)
1723 {
1724         int error = -EINVAL;
1725         int i;
1726
1727         for (i = 0; i < CONN_HASH_SIZE; i++)
1728                 INIT_HLIST_HEAD(&connection_hash[i]);
1729
1730         init_local();
1731         if (!dlm_local_count) {
1732                 error = -ENOTCONN;
1733                 log_print("no local IP address has been set");
1734                 goto fail;
1735         }
1736
1737         INIT_WORK(&listen_con.rwork, process_listen_recv_socket);
1738
1739         error = work_start();
1740         if (error)
1741                 goto fail;
1742
1743         dlm_allow_conn = 1;
1744
1745         /* Start listening */
1746         if (dlm_config.ci_protocol == 0)
1747                 error = tcp_listen_for_all();
1748         else
1749                 error = sctp_listen_for_all(&listen_con);
1750         if (error)
1751                 goto fail_unlisten;
1752
1753         return 0;
1754
1755 fail_unlisten:
1756         dlm_allow_conn = 0;
1757         dlm_close_sock(&listen_con.sock);
1758 fail:
1759         return error;
1760 }
1761
1762 void dlm_lowcomms_exit(void)
1763 {
1764         struct dlm_node_addr *na, *safe;
1765
1766         spin_lock(&dlm_node_addrs_spin);
1767         list_for_each_entry_safe(na, safe, &dlm_node_addrs, list) {
1768                 list_del(&na->list);
1769                 while (na->addr_count--)
1770                         kfree(na->addr[na->addr_count]);
1771                 kfree(na);
1772         }
1773         spin_unlock(&dlm_node_addrs_spin);
1774 }