Merge existing fixes from spi/for-5.14
[linux-2.6-microblaze.git] / fs / dlm / lowcomms.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /******************************************************************************
3 *******************************************************************************
4 **
5 **  Copyright (C) Sistina Software, Inc.  1997-2003  All rights reserved.
6 **  Copyright (C) 2004-2009 Red Hat, Inc.  All rights reserved.
7 **
8 **
9 *******************************************************************************
10 ******************************************************************************/
11
12 /*
13  * lowcomms.c
14  *
15  * This is the "low-level" comms layer.
16  *
17  * It is responsible for sending/receiving messages
18  * from other nodes in the cluster.
19  *
20  * Cluster nodes are referred to by their nodeids. nodeids are
21  * simply 32 bit numbers to the locking module - if they need to
22  * be expanded for the cluster infrastructure then that is its
23  * responsibility. It is this layer's
24  * responsibility to resolve these into IP address or
25  * whatever it needs for inter-node communication.
26  *
27  * The comms level is two kernel threads that deal mainly with
28  * the receiving of messages from other nodes and passing them
29  * up to the mid-level comms layer (which understands the
30  * message format) for execution by the locking core, and
31  * a send thread which does all the setting up of connections
32  * to remote nodes and the sending of data. Threads are not allowed
33  * to send their own data because it may cause them to wait in times
34  * of high load. Also, this way, the sending thread can collect together
35  * messages bound for one node and send them in one block.
36  *
37  * lowcomms will choose to use either TCP or SCTP as its transport layer
38  * depending on the configuration variable 'protocol'. This should be set
39  * to 0 (default) for TCP or 1 for SCTP. It should be configured using a
40  * cluster-wide mechanism as it must be the same on all nodes of the cluster
41  * for the DLM to function.
42  *
43  */
44
45 #include <asm/ioctls.h>
46 #include <net/sock.h>
47 #include <net/tcp.h>
48 #include <linux/pagemap.h>
49 #include <linux/file.h>
50 #include <linux/mutex.h>
51 #include <linux/sctp.h>
52 #include <linux/slab.h>
53 #include <net/sctp/sctp.h>
54 #include <net/ipv6.h>
55
56 #include "dlm_internal.h"
57 #include "lowcomms.h"
58 #include "midcomms.h"
59 #include "config.h"
60
61 #define NEEDED_RMEM (4*1024*1024)
62
63 /* Number of messages to send before rescheduling */
64 #define MAX_SEND_MSG_COUNT 25
65 #define DLM_SHUTDOWN_WAIT_TIMEOUT msecs_to_jiffies(10000)
66
67 struct connection {
68         struct socket *sock;    /* NULL if not connected */
69         uint32_t nodeid;        /* So we know who we are in the list */
70         struct mutex sock_mutex;
71         unsigned long flags;
72 #define CF_READ_PENDING 1
73 #define CF_WRITE_PENDING 2
74 #define CF_INIT_PENDING 4
75 #define CF_IS_OTHERCON 5
76 #define CF_CLOSE 6
77 #define CF_APP_LIMITED 7
78 #define CF_CLOSING 8
79 #define CF_SHUTDOWN 9
80 #define CF_CONNECTED 10
81 #define CF_RECONNECT 11
82 #define CF_DELAY_CONNECT 12
83 #define CF_EOF 13
84         struct list_head writequeue;  /* List of outgoing writequeue_entries */
85         spinlock_t writequeue_lock;
86         atomic_t writequeue_cnt;
87         void (*connect_action) (struct connection *);   /* What to do to connect */
88         void (*shutdown_action)(struct connection *con); /* What to do to shutdown */
89         bool (*eof_condition)(struct connection *con); /* What to do to eof check */
90         int retries;
91 #define MAX_CONNECT_RETRIES 3
92         struct hlist_node list;
93         struct connection *othercon;
94         struct connection *sendcon;
95         struct work_struct rwork; /* Receive workqueue */
96         struct work_struct swork; /* Send workqueue */
97         wait_queue_head_t shutdown_wait; /* wait for graceful shutdown */
98         unsigned char *rx_buf;
99         int rx_buflen;
100         int rx_leftover;
101         struct rcu_head rcu;
102 };
103 #define sock2con(x) ((struct connection *)(x)->sk_user_data)
104
105 struct listen_connection {
106         struct socket *sock;
107         struct work_struct rwork;
108 };
109
110 #define DLM_WQ_REMAIN_BYTES(e) (PAGE_SIZE - e->end)
111 #define DLM_WQ_LENGTH_BYTES(e) (e->end - e->offset)
112
113 /* An entry waiting to be sent */
114 struct writequeue_entry {
115         struct list_head list;
116         struct page *page;
117         int offset;
118         int len;
119         int end;
120         int users;
121         bool dirty;
122         struct connection *con;
123         struct list_head msgs;
124         struct kref ref;
125 };
126
127 struct dlm_msg {
128         struct writequeue_entry *entry;
129         struct dlm_msg *orig_msg;
130         bool retransmit;
131         void *ppc;
132         int len;
133         int idx; /* new()/commit() idx exchange */
134
135         struct list_head list;
136         struct kref ref;
137 };
138
139 struct dlm_node_addr {
140         struct list_head list;
141         int nodeid;
142         int mark;
143         int addr_count;
144         int curr_addr_index;
145         struct sockaddr_storage *addr[DLM_MAX_ADDR_COUNT];
146 };
147
148 static struct listen_sock_callbacks {
149         void (*sk_error_report)(struct sock *);
150         void (*sk_data_ready)(struct sock *);
151         void (*sk_state_change)(struct sock *);
152         void (*sk_write_space)(struct sock *);
153 } listen_sock;
154
155 static LIST_HEAD(dlm_node_addrs);
156 static DEFINE_SPINLOCK(dlm_node_addrs_spin);
157
158 static struct listen_connection listen_con;
159 static struct sockaddr_storage *dlm_local_addr[DLM_MAX_ADDR_COUNT];
160 static int dlm_local_count;
161 int dlm_allow_conn;
162
163 /* Work queues */
164 static struct workqueue_struct *recv_workqueue;
165 static struct workqueue_struct *send_workqueue;
166
167 static struct hlist_head connection_hash[CONN_HASH_SIZE];
168 static DEFINE_SPINLOCK(connections_lock);
169 DEFINE_STATIC_SRCU(connections_srcu);
170
171 static void process_recv_sockets(struct work_struct *work);
172 static void process_send_sockets(struct work_struct *work);
173
174 static void sctp_connect_to_sock(struct connection *con);
175 static void tcp_connect_to_sock(struct connection *con);
176 static void dlm_tcp_shutdown(struct connection *con);
177
178 static struct connection *__find_con(int nodeid, int r)
179 {
180         struct connection *con;
181
182         hlist_for_each_entry_rcu(con, &connection_hash[r], list) {
183                 if (con->nodeid == nodeid)
184                         return con;
185         }
186
187         return NULL;
188 }
189
190 static bool tcp_eof_condition(struct connection *con)
191 {
192         return atomic_read(&con->writequeue_cnt);
193 }
194
195 static int dlm_con_init(struct connection *con, int nodeid)
196 {
197         con->rx_buflen = dlm_config.ci_buffer_size;
198         con->rx_buf = kmalloc(con->rx_buflen, GFP_NOFS);
199         if (!con->rx_buf)
200                 return -ENOMEM;
201
202         con->nodeid = nodeid;
203         mutex_init(&con->sock_mutex);
204         INIT_LIST_HEAD(&con->writequeue);
205         spin_lock_init(&con->writequeue_lock);
206         atomic_set(&con->writequeue_cnt, 0);
207         INIT_WORK(&con->swork, process_send_sockets);
208         INIT_WORK(&con->rwork, process_recv_sockets);
209         init_waitqueue_head(&con->shutdown_wait);
210
211         switch (dlm_config.ci_protocol) {
212         case DLM_PROTO_TCP:
213                 con->connect_action = tcp_connect_to_sock;
214                 con->shutdown_action = dlm_tcp_shutdown;
215                 con->eof_condition = tcp_eof_condition;
216                 break;
217         case DLM_PROTO_SCTP:
218                 con->connect_action = sctp_connect_to_sock;
219                 break;
220         default:
221                 kfree(con->rx_buf);
222                 return -EINVAL;
223         }
224
225         return 0;
226 }
227
228 /*
229  * If 'allocation' is zero then we don't attempt to create a new
230  * connection structure for this node.
231  */
232 static struct connection *nodeid2con(int nodeid, gfp_t alloc)
233 {
234         struct connection *con, *tmp;
235         int r, ret;
236
237         r = nodeid_hash(nodeid);
238         con = __find_con(nodeid, r);
239         if (con || !alloc)
240                 return con;
241
242         con = kzalloc(sizeof(*con), alloc);
243         if (!con)
244                 return NULL;
245
246         ret = dlm_con_init(con, nodeid);
247         if (ret) {
248                 kfree(con);
249                 return NULL;
250         }
251
252         spin_lock(&connections_lock);
253         /* Because multiple workqueues/threads calls this function it can
254          * race on multiple cpu's. Instead of locking hot path __find_con()
255          * we just check in rare cases of recently added nodes again
256          * under protection of connections_lock. If this is the case we
257          * abort our connection creation and return the existing connection.
258          */
259         tmp = __find_con(nodeid, r);
260         if (tmp) {
261                 spin_unlock(&connections_lock);
262                 kfree(con->rx_buf);
263                 kfree(con);
264                 return tmp;
265         }
266
267         hlist_add_head_rcu(&con->list, &connection_hash[r]);
268         spin_unlock(&connections_lock);
269
270         return con;
271 }
272
273 /* Loop round all connections */
274 static void foreach_conn(void (*conn_func)(struct connection *c))
275 {
276         int i;
277         struct connection *con;
278
279         for (i = 0; i < CONN_HASH_SIZE; i++) {
280                 hlist_for_each_entry_rcu(con, &connection_hash[i], list)
281                         conn_func(con);
282         }
283 }
284
285 static struct dlm_node_addr *find_node_addr(int nodeid)
286 {
287         struct dlm_node_addr *na;
288
289         list_for_each_entry(na, &dlm_node_addrs, list) {
290                 if (na->nodeid == nodeid)
291                         return na;
292         }
293         return NULL;
294 }
295
296 static int addr_compare(const struct sockaddr_storage *x,
297                         const struct sockaddr_storage *y)
298 {
299         switch (x->ss_family) {
300         case AF_INET: {
301                 struct sockaddr_in *sinx = (struct sockaddr_in *)x;
302                 struct sockaddr_in *siny = (struct sockaddr_in *)y;
303                 if (sinx->sin_addr.s_addr != siny->sin_addr.s_addr)
304                         return 0;
305                 if (sinx->sin_port != siny->sin_port)
306                         return 0;
307                 break;
308         }
309         case AF_INET6: {
310                 struct sockaddr_in6 *sinx = (struct sockaddr_in6 *)x;
311                 struct sockaddr_in6 *siny = (struct sockaddr_in6 *)y;
312                 if (!ipv6_addr_equal(&sinx->sin6_addr, &siny->sin6_addr))
313                         return 0;
314                 if (sinx->sin6_port != siny->sin6_port)
315                         return 0;
316                 break;
317         }
318         default:
319                 return 0;
320         }
321         return 1;
322 }
323
324 static int nodeid_to_addr(int nodeid, struct sockaddr_storage *sas_out,
325                           struct sockaddr *sa_out, bool try_new_addr,
326                           unsigned int *mark)
327 {
328         struct sockaddr_storage sas;
329         struct dlm_node_addr *na;
330
331         if (!dlm_local_count)
332                 return -1;
333
334         spin_lock(&dlm_node_addrs_spin);
335         na = find_node_addr(nodeid);
336         if (na && na->addr_count) {
337                 memcpy(&sas, na->addr[na->curr_addr_index],
338                        sizeof(struct sockaddr_storage));
339
340                 if (try_new_addr) {
341                         na->curr_addr_index++;
342                         if (na->curr_addr_index == na->addr_count)
343                                 na->curr_addr_index = 0;
344                 }
345         }
346         spin_unlock(&dlm_node_addrs_spin);
347
348         if (!na)
349                 return -EEXIST;
350
351         if (!na->addr_count)
352                 return -ENOENT;
353
354         *mark = na->mark;
355
356         if (sas_out)
357                 memcpy(sas_out, &sas, sizeof(struct sockaddr_storage));
358
359         if (!sa_out)
360                 return 0;
361
362         if (dlm_local_addr[0]->ss_family == AF_INET) {
363                 struct sockaddr_in *in4  = (struct sockaddr_in *) &sas;
364                 struct sockaddr_in *ret4 = (struct sockaddr_in *) sa_out;
365                 ret4->sin_addr.s_addr = in4->sin_addr.s_addr;
366         } else {
367                 struct sockaddr_in6 *in6  = (struct sockaddr_in6 *) &sas;
368                 struct sockaddr_in6 *ret6 = (struct sockaddr_in6 *) sa_out;
369                 ret6->sin6_addr = in6->sin6_addr;
370         }
371
372         return 0;
373 }
374
375 static int addr_to_nodeid(struct sockaddr_storage *addr, int *nodeid,
376                           unsigned int *mark)
377 {
378         struct dlm_node_addr *na;
379         int rv = -EEXIST;
380         int addr_i;
381
382         spin_lock(&dlm_node_addrs_spin);
383         list_for_each_entry(na, &dlm_node_addrs, list) {
384                 if (!na->addr_count)
385                         continue;
386
387                 for (addr_i = 0; addr_i < na->addr_count; addr_i++) {
388                         if (addr_compare(na->addr[addr_i], addr)) {
389                                 *nodeid = na->nodeid;
390                                 *mark = na->mark;
391                                 rv = 0;
392                                 goto unlock;
393                         }
394                 }
395         }
396 unlock:
397         spin_unlock(&dlm_node_addrs_spin);
398         return rv;
399 }
400
401 /* caller need to held dlm_node_addrs_spin lock */
402 static bool dlm_lowcomms_na_has_addr(const struct dlm_node_addr *na,
403                                      const struct sockaddr_storage *addr)
404 {
405         int i;
406
407         for (i = 0; i < na->addr_count; i++) {
408                 if (addr_compare(na->addr[i], addr))
409                         return true;
410         }
411
412         return false;
413 }
414
415 int dlm_lowcomms_addr(int nodeid, struct sockaddr_storage *addr, int len)
416 {
417         struct sockaddr_storage *new_addr;
418         struct dlm_node_addr *new_node, *na;
419         bool ret;
420
421         new_node = kzalloc(sizeof(struct dlm_node_addr), GFP_NOFS);
422         if (!new_node)
423                 return -ENOMEM;
424
425         new_addr = kzalloc(sizeof(struct sockaddr_storage), GFP_NOFS);
426         if (!new_addr) {
427                 kfree(new_node);
428                 return -ENOMEM;
429         }
430
431         memcpy(new_addr, addr, len);
432
433         spin_lock(&dlm_node_addrs_spin);
434         na = find_node_addr(nodeid);
435         if (!na) {
436                 new_node->nodeid = nodeid;
437                 new_node->addr[0] = new_addr;
438                 new_node->addr_count = 1;
439                 new_node->mark = dlm_config.ci_mark;
440                 list_add(&new_node->list, &dlm_node_addrs);
441                 spin_unlock(&dlm_node_addrs_spin);
442                 return 0;
443         }
444
445         ret = dlm_lowcomms_na_has_addr(na, addr);
446         if (ret) {
447                 spin_unlock(&dlm_node_addrs_spin);
448                 kfree(new_addr);
449                 kfree(new_node);
450                 return -EEXIST;
451         }
452
453         if (na->addr_count >= DLM_MAX_ADDR_COUNT) {
454                 spin_unlock(&dlm_node_addrs_spin);
455                 kfree(new_addr);
456                 kfree(new_node);
457                 return -ENOSPC;
458         }
459
460         na->addr[na->addr_count++] = new_addr;
461         spin_unlock(&dlm_node_addrs_spin);
462         kfree(new_node);
463         return 0;
464 }
465
466 /* Data available on socket or listen socket received a connect */
467 static void lowcomms_data_ready(struct sock *sk)
468 {
469         struct connection *con;
470
471         read_lock_bh(&sk->sk_callback_lock);
472         con = sock2con(sk);
473         if (con && !test_and_set_bit(CF_READ_PENDING, &con->flags))
474                 queue_work(recv_workqueue, &con->rwork);
475         read_unlock_bh(&sk->sk_callback_lock);
476 }
477
478 static void lowcomms_listen_data_ready(struct sock *sk)
479 {
480         if (!dlm_allow_conn)
481                 return;
482
483         queue_work(recv_workqueue, &listen_con.rwork);
484 }
485
486 static void lowcomms_write_space(struct sock *sk)
487 {
488         struct connection *con;
489
490         read_lock_bh(&sk->sk_callback_lock);
491         con = sock2con(sk);
492         if (!con)
493                 goto out;
494
495         if (!test_and_set_bit(CF_CONNECTED, &con->flags)) {
496                 log_print("successful connected to node %d", con->nodeid);
497                 queue_work(send_workqueue, &con->swork);
498                 goto out;
499         }
500
501         clear_bit(SOCK_NOSPACE, &con->sock->flags);
502
503         if (test_and_clear_bit(CF_APP_LIMITED, &con->flags)) {
504                 con->sock->sk->sk_write_pending--;
505                 clear_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags);
506         }
507
508         queue_work(send_workqueue, &con->swork);
509 out:
510         read_unlock_bh(&sk->sk_callback_lock);
511 }
512
513 static inline void lowcomms_connect_sock(struct connection *con)
514 {
515         if (test_bit(CF_CLOSE, &con->flags))
516                 return;
517         queue_work(send_workqueue, &con->swork);
518         cond_resched();
519 }
520
521 static void lowcomms_state_change(struct sock *sk)
522 {
523         /* SCTP layer is not calling sk_data_ready when the connection
524          * is done, so we catch the signal through here. Also, it
525          * doesn't switch socket state when entering shutdown, so we
526          * skip the write in that case.
527          */
528         if (sk->sk_shutdown) {
529                 if (sk->sk_shutdown == RCV_SHUTDOWN)
530                         lowcomms_data_ready(sk);
531         } else if (sk->sk_state == TCP_ESTABLISHED) {
532                 lowcomms_write_space(sk);
533         }
534 }
535
536 int dlm_lowcomms_connect_node(int nodeid)
537 {
538         struct connection *con;
539         int idx;
540
541         if (nodeid == dlm_our_nodeid())
542                 return 0;
543
544         idx = srcu_read_lock(&connections_srcu);
545         con = nodeid2con(nodeid, GFP_NOFS);
546         if (!con) {
547                 srcu_read_unlock(&connections_srcu, idx);
548                 return -ENOMEM;
549         }
550
551         lowcomms_connect_sock(con);
552         srcu_read_unlock(&connections_srcu, idx);
553
554         return 0;
555 }
556
557 int dlm_lowcomms_nodes_set_mark(int nodeid, unsigned int mark)
558 {
559         struct dlm_node_addr *na;
560
561         spin_lock(&dlm_node_addrs_spin);
562         na = find_node_addr(nodeid);
563         if (!na) {
564                 spin_unlock(&dlm_node_addrs_spin);
565                 return -ENOENT;
566         }
567
568         na->mark = mark;
569         spin_unlock(&dlm_node_addrs_spin);
570
571         return 0;
572 }
573
574 static void lowcomms_error_report(struct sock *sk)
575 {
576         struct connection *con;
577         struct sockaddr_storage saddr;
578         void (*orig_report)(struct sock *) = NULL;
579
580         read_lock_bh(&sk->sk_callback_lock);
581         con = sock2con(sk);
582         if (con == NULL)
583                 goto out;
584
585         orig_report = listen_sock.sk_error_report;
586         if (con->sock == NULL ||
587             kernel_getpeername(con->sock, (struct sockaddr *)&saddr) < 0) {
588                 printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
589                                    "sending to node %d, port %d, "
590                                    "sk_err=%d/%d\n", dlm_our_nodeid(),
591                                    con->nodeid, dlm_config.ci_tcp_port,
592                                    sk->sk_err, sk->sk_err_soft);
593         } else if (saddr.ss_family == AF_INET) {
594                 struct sockaddr_in *sin4 = (struct sockaddr_in *)&saddr;
595
596                 printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
597                                    "sending to node %d at %pI4, port %d, "
598                                    "sk_err=%d/%d\n", dlm_our_nodeid(),
599                                    con->nodeid, &sin4->sin_addr.s_addr,
600                                    dlm_config.ci_tcp_port, sk->sk_err,
601                                    sk->sk_err_soft);
602         } else {
603                 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&saddr;
604
605                 printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
606                                    "sending to node %d at %u.%u.%u.%u, "
607                                    "port %d, sk_err=%d/%d\n", dlm_our_nodeid(),
608                                    con->nodeid, sin6->sin6_addr.s6_addr32[0],
609                                    sin6->sin6_addr.s6_addr32[1],
610                                    sin6->sin6_addr.s6_addr32[2],
611                                    sin6->sin6_addr.s6_addr32[3],
612                                    dlm_config.ci_tcp_port, sk->sk_err,
613                                    sk->sk_err_soft);
614         }
615
616         /* below sendcon only handling */
617         if (test_bit(CF_IS_OTHERCON, &con->flags))
618                 con = con->sendcon;
619
620         switch (sk->sk_err) {
621         case ECONNREFUSED:
622                 set_bit(CF_DELAY_CONNECT, &con->flags);
623                 break;
624         default:
625                 break;
626         }
627
628         if (!test_and_set_bit(CF_RECONNECT, &con->flags))
629                 queue_work(send_workqueue, &con->swork);
630
631 out:
632         read_unlock_bh(&sk->sk_callback_lock);
633         if (orig_report)
634                 orig_report(sk);
635 }
636
637 /* Note: sk_callback_lock must be locked before calling this function. */
638 static void save_listen_callbacks(struct socket *sock)
639 {
640         struct sock *sk = sock->sk;
641
642         listen_sock.sk_data_ready = sk->sk_data_ready;
643         listen_sock.sk_state_change = sk->sk_state_change;
644         listen_sock.sk_write_space = sk->sk_write_space;
645         listen_sock.sk_error_report = sk->sk_error_report;
646 }
647
648 static void restore_callbacks(struct socket *sock)
649 {
650         struct sock *sk = sock->sk;
651
652         write_lock_bh(&sk->sk_callback_lock);
653         sk->sk_user_data = NULL;
654         sk->sk_data_ready = listen_sock.sk_data_ready;
655         sk->sk_state_change = listen_sock.sk_state_change;
656         sk->sk_write_space = listen_sock.sk_write_space;
657         sk->sk_error_report = listen_sock.sk_error_report;
658         write_unlock_bh(&sk->sk_callback_lock);
659 }
660
661 static void add_listen_sock(struct socket *sock, struct listen_connection *con)
662 {
663         struct sock *sk = sock->sk;
664
665         write_lock_bh(&sk->sk_callback_lock);
666         save_listen_callbacks(sock);
667         con->sock = sock;
668
669         sk->sk_user_data = con;
670         sk->sk_allocation = GFP_NOFS;
671         /* Install a data_ready callback */
672         sk->sk_data_ready = lowcomms_listen_data_ready;
673         write_unlock_bh(&sk->sk_callback_lock);
674 }
675
676 /* Make a socket active */
677 static void add_sock(struct socket *sock, struct connection *con)
678 {
679         struct sock *sk = sock->sk;
680
681         write_lock_bh(&sk->sk_callback_lock);
682         con->sock = sock;
683
684         sk->sk_user_data = con;
685         /* Install a data_ready callback */
686         sk->sk_data_ready = lowcomms_data_ready;
687         sk->sk_write_space = lowcomms_write_space;
688         sk->sk_state_change = lowcomms_state_change;
689         sk->sk_allocation = GFP_NOFS;
690         sk->sk_error_report = lowcomms_error_report;
691         write_unlock_bh(&sk->sk_callback_lock);
692 }
693
694 /* Add the port number to an IPv6 or 4 sockaddr and return the address
695    length */
696 static void make_sockaddr(struct sockaddr_storage *saddr, uint16_t port,
697                           int *addr_len)
698 {
699         saddr->ss_family =  dlm_local_addr[0]->ss_family;
700         if (saddr->ss_family == AF_INET) {
701                 struct sockaddr_in *in4_addr = (struct sockaddr_in *)saddr;
702                 in4_addr->sin_port = cpu_to_be16(port);
703                 *addr_len = sizeof(struct sockaddr_in);
704                 memset(&in4_addr->sin_zero, 0, sizeof(in4_addr->sin_zero));
705         } else {
706                 struct sockaddr_in6 *in6_addr = (struct sockaddr_in6 *)saddr;
707                 in6_addr->sin6_port = cpu_to_be16(port);
708                 *addr_len = sizeof(struct sockaddr_in6);
709         }
710         memset((char *)saddr + *addr_len, 0, sizeof(struct sockaddr_storage) - *addr_len);
711 }
712
713 static void dlm_page_release(struct kref *kref)
714 {
715         struct writequeue_entry *e = container_of(kref, struct writequeue_entry,
716                                                   ref);
717
718         __free_page(e->page);
719         kfree(e);
720 }
721
722 static void dlm_msg_release(struct kref *kref)
723 {
724         struct dlm_msg *msg = container_of(kref, struct dlm_msg, ref);
725
726         kref_put(&msg->entry->ref, dlm_page_release);
727         kfree(msg);
728 }
729
730 static void free_entry(struct writequeue_entry *e)
731 {
732         struct dlm_msg *msg, *tmp;
733
734         list_for_each_entry_safe(msg, tmp, &e->msgs, list) {
735                 if (msg->orig_msg) {
736                         msg->orig_msg->retransmit = false;
737                         kref_put(&msg->orig_msg->ref, dlm_msg_release);
738                 }
739
740                 list_del(&msg->list);
741                 kref_put(&msg->ref, dlm_msg_release);
742         }
743
744         list_del(&e->list);
745         atomic_dec(&e->con->writequeue_cnt);
746         kref_put(&e->ref, dlm_page_release);
747 }
748
749 static void dlm_close_sock(struct socket **sock)
750 {
751         if (*sock) {
752                 restore_callbacks(*sock);
753                 sock_release(*sock);
754                 *sock = NULL;
755         }
756 }
757
758 /* Close a remote connection and tidy up */
759 static void close_connection(struct connection *con, bool and_other,
760                              bool tx, bool rx)
761 {
762         bool closing = test_and_set_bit(CF_CLOSING, &con->flags);
763         struct writequeue_entry *e;
764
765         if (tx && !closing && cancel_work_sync(&con->swork)) {
766                 log_print("canceled swork for node %d", con->nodeid);
767                 clear_bit(CF_WRITE_PENDING, &con->flags);
768         }
769         if (rx && !closing && cancel_work_sync(&con->rwork)) {
770                 log_print("canceled rwork for node %d", con->nodeid);
771                 clear_bit(CF_READ_PENDING, &con->flags);
772         }
773
774         mutex_lock(&con->sock_mutex);
775         dlm_close_sock(&con->sock);
776
777         if (con->othercon && and_other) {
778                 /* Will only re-enter once. */
779                 close_connection(con->othercon, false, tx, rx);
780         }
781
782         /* if we send a writequeue entry only a half way, we drop the
783          * whole entry because reconnection and that we not start of the
784          * middle of a msg which will confuse the other end.
785          *
786          * we can always drop messages because retransmits, but what we
787          * cannot allow is to transmit half messages which may be processed
788          * at the other side.
789          *
790          * our policy is to start on a clean state when disconnects, we don't
791          * know what's send/received on transport layer in this case.
792          */
793         spin_lock(&con->writequeue_lock);
794         if (!list_empty(&con->writequeue)) {
795                 e = list_first_entry(&con->writequeue, struct writequeue_entry,
796                                      list);
797                 if (e->dirty)
798                         free_entry(e);
799         }
800         spin_unlock(&con->writequeue_lock);
801
802         con->rx_leftover = 0;
803         con->retries = 0;
804         clear_bit(CF_CONNECTED, &con->flags);
805         clear_bit(CF_DELAY_CONNECT, &con->flags);
806         clear_bit(CF_RECONNECT, &con->flags);
807         clear_bit(CF_EOF, &con->flags);
808         mutex_unlock(&con->sock_mutex);
809         clear_bit(CF_CLOSING, &con->flags);
810 }
811
812 static void shutdown_connection(struct connection *con)
813 {
814         int ret;
815
816         flush_work(&con->swork);
817
818         mutex_lock(&con->sock_mutex);
819         /* nothing to shutdown */
820         if (!con->sock) {
821                 mutex_unlock(&con->sock_mutex);
822                 return;
823         }
824
825         set_bit(CF_SHUTDOWN, &con->flags);
826         ret = kernel_sock_shutdown(con->sock, SHUT_WR);
827         mutex_unlock(&con->sock_mutex);
828         if (ret) {
829                 log_print("Connection %p failed to shutdown: %d will force close",
830                           con, ret);
831                 goto force_close;
832         } else {
833                 ret = wait_event_timeout(con->shutdown_wait,
834                                          !test_bit(CF_SHUTDOWN, &con->flags),
835                                          DLM_SHUTDOWN_WAIT_TIMEOUT);
836                 if (ret == 0) {
837                         log_print("Connection %p shutdown timed out, will force close",
838                                   con);
839                         goto force_close;
840                 }
841         }
842
843         return;
844
845 force_close:
846         clear_bit(CF_SHUTDOWN, &con->flags);
847         close_connection(con, false, true, true);
848 }
849
850 static void dlm_tcp_shutdown(struct connection *con)
851 {
852         if (con->othercon)
853                 shutdown_connection(con->othercon);
854         shutdown_connection(con);
855 }
856
857 static int con_realloc_receive_buf(struct connection *con, int newlen)
858 {
859         unsigned char *newbuf;
860
861         newbuf = kmalloc(newlen, GFP_NOFS);
862         if (!newbuf)
863                 return -ENOMEM;
864
865         /* copy any leftover from last receive */
866         if (con->rx_leftover)
867                 memmove(newbuf, con->rx_buf, con->rx_leftover);
868
869         /* swap to new buffer space */
870         kfree(con->rx_buf);
871         con->rx_buflen = newlen;
872         con->rx_buf = newbuf;
873
874         return 0;
875 }
876
877 /* Data received from remote end */
878 static int receive_from_sock(struct connection *con)
879 {
880         int call_again_soon = 0;
881         struct msghdr msg;
882         struct kvec iov;
883         int ret, buflen;
884
885         mutex_lock(&con->sock_mutex);
886
887         if (con->sock == NULL) {
888                 ret = -EAGAIN;
889                 goto out_close;
890         }
891
892         /* realloc if we get new buffer size to read out */
893         buflen = dlm_config.ci_buffer_size;
894         if (con->rx_buflen != buflen && con->rx_leftover <= buflen) {
895                 ret = con_realloc_receive_buf(con, buflen);
896                 if (ret < 0)
897                         goto out_resched;
898         }
899
900         /* calculate new buffer parameter regarding last receive and
901          * possible leftover bytes
902          */
903         iov.iov_base = con->rx_buf + con->rx_leftover;
904         iov.iov_len = con->rx_buflen - con->rx_leftover;
905
906         memset(&msg, 0, sizeof(msg));
907         msg.msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
908         ret = kernel_recvmsg(con->sock, &msg, &iov, 1, iov.iov_len,
909                              msg.msg_flags);
910         if (ret <= 0)
911                 goto out_close;
912         else if (ret == iov.iov_len)
913                 call_again_soon = 1;
914
915         /* new buflen according readed bytes and leftover from last receive */
916         buflen = ret + con->rx_leftover;
917         ret = dlm_process_incoming_buffer(con->nodeid, con->rx_buf, buflen);
918         if (ret < 0)
919                 goto out_close;
920
921         /* calculate leftover bytes from process and put it into begin of
922          * the receive buffer, so next receive we have the full message
923          * at the start address of the receive buffer.
924          */
925         con->rx_leftover = buflen - ret;
926         if (con->rx_leftover) {
927                 memmove(con->rx_buf, con->rx_buf + ret,
928                         con->rx_leftover);
929                 call_again_soon = true;
930         }
931
932         if (call_again_soon)
933                 goto out_resched;
934
935         mutex_unlock(&con->sock_mutex);
936         return 0;
937
938 out_resched:
939         if (!test_and_set_bit(CF_READ_PENDING, &con->flags))
940                 queue_work(recv_workqueue, &con->rwork);
941         mutex_unlock(&con->sock_mutex);
942         return -EAGAIN;
943
944 out_close:
945         if (ret == 0) {
946                 log_print("connection %p got EOF from %d",
947                           con, con->nodeid);
948
949                 if (con->eof_condition && con->eof_condition(con)) {
950                         set_bit(CF_EOF, &con->flags);
951                         mutex_unlock(&con->sock_mutex);
952                 } else {
953                         mutex_unlock(&con->sock_mutex);
954                         close_connection(con, false, true, false);
955
956                         /* handling for tcp shutdown */
957                         clear_bit(CF_SHUTDOWN, &con->flags);
958                         wake_up(&con->shutdown_wait);
959                 }
960
961                 /* signal to breaking receive worker */
962                 ret = -1;
963         } else {
964                 mutex_unlock(&con->sock_mutex);
965         }
966         return ret;
967 }
968
969 /* Listening socket is busy, accept a connection */
970 static int accept_from_sock(struct listen_connection *con)
971 {
972         int result;
973         struct sockaddr_storage peeraddr;
974         struct socket *newsock;
975         int len, idx;
976         int nodeid;
977         struct connection *newcon;
978         struct connection *addcon;
979         unsigned int mark;
980
981         if (!con->sock)
982                 return -ENOTCONN;
983
984         result = kernel_accept(con->sock, &newsock, O_NONBLOCK);
985         if (result < 0)
986                 goto accept_err;
987
988         /* Get the connected socket's peer */
989         memset(&peeraddr, 0, sizeof(peeraddr));
990         len = newsock->ops->getname(newsock, (struct sockaddr *)&peeraddr, 2);
991         if (len < 0) {
992                 result = -ECONNABORTED;
993                 goto accept_err;
994         }
995
996         /* Get the new node's NODEID */
997         make_sockaddr(&peeraddr, 0, &len);
998         if (addr_to_nodeid(&peeraddr, &nodeid, &mark)) {
999                 unsigned char *b=(unsigned char *)&peeraddr;
1000                 log_print("connect from non cluster node");
1001                 print_hex_dump_bytes("ss: ", DUMP_PREFIX_NONE, 
1002                                      b, sizeof(struct sockaddr_storage));
1003                 sock_release(newsock);
1004                 return -1;
1005         }
1006
1007         log_print("got connection from %d", nodeid);
1008
1009         /*  Check to see if we already have a connection to this node. This
1010          *  could happen if the two nodes initiate a connection at roughly
1011          *  the same time and the connections cross on the wire.
1012          *  In this case we store the incoming one in "othercon"
1013          */
1014         idx = srcu_read_lock(&connections_srcu);
1015         newcon = nodeid2con(nodeid, GFP_NOFS);
1016         if (!newcon) {
1017                 srcu_read_unlock(&connections_srcu, idx);
1018                 result = -ENOMEM;
1019                 goto accept_err;
1020         }
1021
1022         sock_set_mark(newsock->sk, mark);
1023
1024         mutex_lock(&newcon->sock_mutex);
1025         if (newcon->sock) {
1026                 struct connection *othercon = newcon->othercon;
1027
1028                 if (!othercon) {
1029                         othercon = kzalloc(sizeof(*othercon), GFP_NOFS);
1030                         if (!othercon) {
1031                                 log_print("failed to allocate incoming socket");
1032                                 mutex_unlock(&newcon->sock_mutex);
1033                                 srcu_read_unlock(&connections_srcu, idx);
1034                                 result = -ENOMEM;
1035                                 goto accept_err;
1036                         }
1037
1038                         result = dlm_con_init(othercon, nodeid);
1039                         if (result < 0) {
1040                                 kfree(othercon);
1041                                 mutex_unlock(&newcon->sock_mutex);
1042                                 srcu_read_unlock(&connections_srcu, idx);
1043                                 goto accept_err;
1044                         }
1045
1046                         lockdep_set_subclass(&othercon->sock_mutex, 1);
1047                         set_bit(CF_IS_OTHERCON, &othercon->flags);
1048                         newcon->othercon = othercon;
1049                         othercon->sendcon = newcon;
1050                 } else {
1051                         /* close other sock con if we have something new */
1052                         close_connection(othercon, false, true, false);
1053                 }
1054
1055                 mutex_lock(&othercon->sock_mutex);
1056                 add_sock(newsock, othercon);
1057                 addcon = othercon;
1058                 mutex_unlock(&othercon->sock_mutex);
1059         }
1060         else {
1061                 /* accept copies the sk after we've saved the callbacks, so we
1062                    don't want to save them a second time or comm errors will
1063                    result in calling sk_error_report recursively. */
1064                 add_sock(newsock, newcon);
1065                 addcon = newcon;
1066         }
1067
1068         set_bit(CF_CONNECTED, &addcon->flags);
1069         mutex_unlock(&newcon->sock_mutex);
1070
1071         /*
1072          * Add it to the active queue in case we got data
1073          * between processing the accept adding the socket
1074          * to the read_sockets list
1075          */
1076         if (!test_and_set_bit(CF_READ_PENDING, &addcon->flags))
1077                 queue_work(recv_workqueue, &addcon->rwork);
1078
1079         srcu_read_unlock(&connections_srcu, idx);
1080
1081         return 0;
1082
1083 accept_err:
1084         if (newsock)
1085                 sock_release(newsock);
1086
1087         if (result != -EAGAIN)
1088                 log_print("error accepting connection from node: %d", result);
1089         return result;
1090 }
1091
1092 /*
1093  * writequeue_entry_complete - try to delete and free write queue entry
1094  * @e: write queue entry to try to delete
1095  * @completed: bytes completed
1096  *
1097  * writequeue_lock must be held.
1098  */
1099 static void writequeue_entry_complete(struct writequeue_entry *e, int completed)
1100 {
1101         e->offset += completed;
1102         e->len -= completed;
1103         /* signal that page was half way transmitted */
1104         e->dirty = true;
1105
1106         if (e->len == 0 && e->users == 0)
1107                 free_entry(e);
1108 }
1109
1110 /*
1111  * sctp_bind_addrs - bind a SCTP socket to all our addresses
1112  */
1113 static int sctp_bind_addrs(struct socket *sock, uint16_t port)
1114 {
1115         struct sockaddr_storage localaddr;
1116         struct sockaddr *addr = (struct sockaddr *)&localaddr;
1117         int i, addr_len, result = 0;
1118
1119         for (i = 0; i < dlm_local_count; i++) {
1120                 memcpy(&localaddr, dlm_local_addr[i], sizeof(localaddr));
1121                 make_sockaddr(&localaddr, port, &addr_len);
1122
1123                 if (!i)
1124                         result = kernel_bind(sock, addr, addr_len);
1125                 else
1126                         result = sock_bind_add(sock->sk, addr, addr_len);
1127
1128                 if (result < 0) {
1129                         log_print("Can't bind to %d addr number %d, %d.\n",
1130                                   port, i + 1, result);
1131                         break;
1132                 }
1133         }
1134         return result;
1135 }
1136
1137 /* Initiate an SCTP association.
1138    This is a special case of send_to_sock() in that we don't yet have a
1139    peeled-off socket for this association, so we use the listening socket
1140    and add the primary IP address of the remote node.
1141  */
1142 static void sctp_connect_to_sock(struct connection *con)
1143 {
1144         struct sockaddr_storage daddr;
1145         int result;
1146         int addr_len;
1147         struct socket *sock;
1148         unsigned int mark;
1149
1150         mutex_lock(&con->sock_mutex);
1151
1152         /* Some odd races can cause double-connects, ignore them */
1153         if (con->retries++ > MAX_CONNECT_RETRIES)
1154                 goto out;
1155
1156         if (con->sock) {
1157                 log_print("node %d already connected.", con->nodeid);
1158                 goto out;
1159         }
1160
1161         memset(&daddr, 0, sizeof(daddr));
1162         result = nodeid_to_addr(con->nodeid, &daddr, NULL, true, &mark);
1163         if (result < 0) {
1164                 log_print("no address for nodeid %d", con->nodeid);
1165                 goto out;
1166         }
1167
1168         /* Create a socket to communicate with */
1169         result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
1170                                   SOCK_STREAM, IPPROTO_SCTP, &sock);
1171         if (result < 0)
1172                 goto socket_err;
1173
1174         sock_set_mark(sock->sk, mark);
1175
1176         add_sock(sock, con);
1177
1178         /* Bind to all addresses. */
1179         if (sctp_bind_addrs(con->sock, 0))
1180                 goto bind_err;
1181
1182         make_sockaddr(&daddr, dlm_config.ci_tcp_port, &addr_len);
1183
1184         log_print_ratelimited("connecting to %d", con->nodeid);
1185
1186         /* Turn off Nagle's algorithm */
1187         sctp_sock_set_nodelay(sock->sk);
1188
1189         /*
1190          * Make sock->ops->connect() function return in specified time,
1191          * since O_NONBLOCK argument in connect() function does not work here,
1192          * then, we should restore the default value of this attribute.
1193          */
1194         sock_set_sndtimeo(sock->sk, 5);
1195         result = sock->ops->connect(sock, (struct sockaddr *)&daddr, addr_len,
1196                                    0);
1197         sock_set_sndtimeo(sock->sk, 0);
1198
1199         if (result == -EINPROGRESS)
1200                 result = 0;
1201         if (result == 0) {
1202                 if (!test_and_set_bit(CF_CONNECTED, &con->flags))
1203                         log_print("successful connected to node %d", con->nodeid);
1204                 goto out;
1205         }
1206
1207 bind_err:
1208         con->sock = NULL;
1209         sock_release(sock);
1210
1211 socket_err:
1212         /*
1213          * Some errors are fatal and this list might need adjusting. For other
1214          * errors we try again until the max number of retries is reached.
1215          */
1216         if (result != -EHOSTUNREACH &&
1217             result != -ENETUNREACH &&
1218             result != -ENETDOWN &&
1219             result != -EINVAL &&
1220             result != -EPROTONOSUPPORT) {
1221                 log_print("connect %d try %d error %d", con->nodeid,
1222                           con->retries, result);
1223                 mutex_unlock(&con->sock_mutex);
1224                 msleep(1000);
1225                 lowcomms_connect_sock(con);
1226                 return;
1227         }
1228
1229 out:
1230         mutex_unlock(&con->sock_mutex);
1231 }
1232
1233 /* Connect a new socket to its peer */
1234 static void tcp_connect_to_sock(struct connection *con)
1235 {
1236         struct sockaddr_storage saddr, src_addr;
1237         unsigned int mark;
1238         int addr_len;
1239         struct socket *sock = NULL;
1240         int result;
1241
1242         mutex_lock(&con->sock_mutex);
1243         if (con->retries++ > MAX_CONNECT_RETRIES)
1244                 goto out;
1245
1246         /* Some odd races can cause double-connects, ignore them */
1247         if (con->sock)
1248                 goto out;
1249
1250         /* Create a socket to communicate with */
1251         result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
1252                                   SOCK_STREAM, IPPROTO_TCP, &sock);
1253         if (result < 0)
1254                 goto out_err;
1255
1256         memset(&saddr, 0, sizeof(saddr));
1257         result = nodeid_to_addr(con->nodeid, &saddr, NULL, false, &mark);
1258         if (result < 0) {
1259                 log_print("no address for nodeid %d", con->nodeid);
1260                 goto out_err;
1261         }
1262
1263         sock_set_mark(sock->sk, mark);
1264
1265         add_sock(sock, con);
1266
1267         /* Bind to our cluster-known address connecting to avoid
1268            routing problems */
1269         memcpy(&src_addr, dlm_local_addr[0], sizeof(src_addr));
1270         make_sockaddr(&src_addr, 0, &addr_len);
1271         result = sock->ops->bind(sock, (struct sockaddr *) &src_addr,
1272                                  addr_len);
1273         if (result < 0) {
1274                 log_print("could not bind for connect: %d", result);
1275                 /* This *may* not indicate a critical error */
1276         }
1277
1278         make_sockaddr(&saddr, dlm_config.ci_tcp_port, &addr_len);
1279
1280         log_print_ratelimited("connecting to %d", con->nodeid);
1281
1282         /* Turn off Nagle's algorithm */
1283         tcp_sock_set_nodelay(sock->sk);
1284
1285         result = sock->ops->connect(sock, (struct sockaddr *)&saddr, addr_len,
1286                                    O_NONBLOCK);
1287         if (result == -EINPROGRESS)
1288                 result = 0;
1289         if (result == 0)
1290                 goto out;
1291
1292 out_err:
1293         if (con->sock) {
1294                 sock_release(con->sock);
1295                 con->sock = NULL;
1296         } else if (sock) {
1297                 sock_release(sock);
1298         }
1299         /*
1300          * Some errors are fatal and this list might need adjusting. For other
1301          * errors we try again until the max number of retries is reached.
1302          */
1303         if (result != -EHOSTUNREACH &&
1304             result != -ENETUNREACH &&
1305             result != -ENETDOWN && 
1306             result != -EINVAL &&
1307             result != -EPROTONOSUPPORT) {
1308                 log_print("connect %d try %d error %d", con->nodeid,
1309                           con->retries, result);
1310                 mutex_unlock(&con->sock_mutex);
1311                 msleep(1000);
1312                 lowcomms_connect_sock(con);
1313                 return;
1314         }
1315 out:
1316         mutex_unlock(&con->sock_mutex);
1317         return;
1318 }
1319
1320 /* On error caller must run dlm_close_sock() for the
1321  * listen connection socket.
1322  */
1323 static int tcp_create_listen_sock(struct listen_connection *con,
1324                                   struct sockaddr_storage *saddr)
1325 {
1326         struct socket *sock = NULL;
1327         int result = 0;
1328         int addr_len;
1329
1330         if (dlm_local_addr[0]->ss_family == AF_INET)
1331                 addr_len = sizeof(struct sockaddr_in);
1332         else
1333                 addr_len = sizeof(struct sockaddr_in6);
1334
1335         /* Create a socket to communicate with */
1336         result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
1337                                   SOCK_STREAM, IPPROTO_TCP, &sock);
1338         if (result < 0) {
1339                 log_print("Can't create listening comms socket");
1340                 goto create_out;
1341         }
1342
1343         sock_set_mark(sock->sk, dlm_config.ci_mark);
1344
1345         /* Turn off Nagle's algorithm */
1346         tcp_sock_set_nodelay(sock->sk);
1347
1348         sock_set_reuseaddr(sock->sk);
1349
1350         add_listen_sock(sock, con);
1351
1352         /* Bind to our port */
1353         make_sockaddr(saddr, dlm_config.ci_tcp_port, &addr_len);
1354         result = sock->ops->bind(sock, (struct sockaddr *) saddr, addr_len);
1355         if (result < 0) {
1356                 log_print("Can't bind to port %d", dlm_config.ci_tcp_port);
1357                 goto create_out;
1358         }
1359         sock_set_keepalive(sock->sk);
1360
1361         result = sock->ops->listen(sock, 5);
1362         if (result < 0) {
1363                 log_print("Can't listen on port %d", dlm_config.ci_tcp_port);
1364                 goto create_out;
1365         }
1366
1367         return 0;
1368
1369 create_out:
1370         return result;
1371 }
1372
1373 /* Get local addresses */
1374 static void init_local(void)
1375 {
1376         struct sockaddr_storage sas, *addr;
1377         int i;
1378
1379         dlm_local_count = 0;
1380         for (i = 0; i < DLM_MAX_ADDR_COUNT; i++) {
1381                 if (dlm_our_addr(&sas, i))
1382                         break;
1383
1384                 addr = kmemdup(&sas, sizeof(*addr), GFP_NOFS);
1385                 if (!addr)
1386                         break;
1387                 dlm_local_addr[dlm_local_count++] = addr;
1388         }
1389 }
1390
1391 static void deinit_local(void)
1392 {
1393         int i;
1394
1395         for (i = 0; i < dlm_local_count; i++)
1396                 kfree(dlm_local_addr[i]);
1397 }
1398
1399 /* Initialise SCTP socket and bind to all interfaces
1400  * On error caller must run dlm_close_sock() for the
1401  * listen connection socket.
1402  */
1403 static int sctp_listen_for_all(struct listen_connection *con)
1404 {
1405         struct socket *sock = NULL;
1406         int result = -EINVAL;
1407
1408         log_print("Using SCTP for communications");
1409
1410         result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
1411                                   SOCK_STREAM, IPPROTO_SCTP, &sock);
1412         if (result < 0) {
1413                 log_print("Can't create comms socket, check SCTP is loaded");
1414                 goto out;
1415         }
1416
1417         sock_set_rcvbuf(sock->sk, NEEDED_RMEM);
1418         sock_set_mark(sock->sk, dlm_config.ci_mark);
1419         sctp_sock_set_nodelay(sock->sk);
1420
1421         add_listen_sock(sock, con);
1422
1423         /* Bind to all addresses. */
1424         result = sctp_bind_addrs(con->sock, dlm_config.ci_tcp_port);
1425         if (result < 0)
1426                 goto out;
1427
1428         result = sock->ops->listen(sock, 5);
1429         if (result < 0) {
1430                 log_print("Can't set socket listening");
1431                 goto out;
1432         }
1433
1434         return 0;
1435
1436 out:
1437         return result;
1438 }
1439
1440 static int tcp_listen_for_all(void)
1441 {
1442         /* We don't support multi-homed hosts */
1443         if (dlm_local_count > 1) {
1444                 log_print("TCP protocol can't handle multi-homed hosts, "
1445                           "try SCTP");
1446                 return -EINVAL;
1447         }
1448
1449         log_print("Using TCP for communications");
1450
1451         return tcp_create_listen_sock(&listen_con, dlm_local_addr[0]);
1452 }
1453
1454
1455
1456 static struct writequeue_entry *new_writequeue_entry(struct connection *con,
1457                                                      gfp_t allocation)
1458 {
1459         struct writequeue_entry *entry;
1460
1461         entry = kzalloc(sizeof(*entry), allocation);
1462         if (!entry)
1463                 return NULL;
1464
1465         entry->page = alloc_page(allocation | __GFP_ZERO);
1466         if (!entry->page) {
1467                 kfree(entry);
1468                 return NULL;
1469         }
1470
1471         entry->con = con;
1472         entry->users = 1;
1473         kref_init(&entry->ref);
1474         INIT_LIST_HEAD(&entry->msgs);
1475
1476         return entry;
1477 }
1478
1479 static struct writequeue_entry *new_wq_entry(struct connection *con, int len,
1480                                              gfp_t allocation, char **ppc,
1481                                              void (*cb)(struct dlm_mhandle *mh),
1482                                              struct dlm_mhandle *mh)
1483 {
1484         struct writequeue_entry *e;
1485
1486         spin_lock(&con->writequeue_lock);
1487         if (!list_empty(&con->writequeue)) {
1488                 e = list_last_entry(&con->writequeue, struct writequeue_entry, list);
1489                 if (DLM_WQ_REMAIN_BYTES(e) >= len) {
1490                         kref_get(&e->ref);
1491
1492                         *ppc = page_address(e->page) + e->end;
1493                         if (cb)
1494                                 cb(mh);
1495
1496                         e->end += len;
1497                         e->users++;
1498                         spin_unlock(&con->writequeue_lock);
1499
1500                         return e;
1501                 }
1502         }
1503         spin_unlock(&con->writequeue_lock);
1504
1505         e = new_writequeue_entry(con, allocation);
1506         if (!e)
1507                 return NULL;
1508
1509         kref_get(&e->ref);
1510         *ppc = page_address(e->page);
1511         e->end += len;
1512         atomic_inc(&con->writequeue_cnt);
1513
1514         spin_lock(&con->writequeue_lock);
1515         if (cb)
1516                 cb(mh);
1517
1518         list_add_tail(&e->list, &con->writequeue);
1519         spin_unlock(&con->writequeue_lock);
1520
1521         return e;
1522 };
1523
1524 static struct dlm_msg *dlm_lowcomms_new_msg_con(struct connection *con, int len,
1525                                                 gfp_t allocation, char **ppc,
1526                                                 void (*cb)(struct dlm_mhandle *mh),
1527                                                 struct dlm_mhandle *mh)
1528 {
1529         struct writequeue_entry *e;
1530         struct dlm_msg *msg;
1531
1532         msg = kzalloc(sizeof(*msg), allocation);
1533         if (!msg)
1534                 return NULL;
1535
1536         kref_init(&msg->ref);
1537
1538         e = new_wq_entry(con, len, allocation, ppc, cb, mh);
1539         if (!e) {
1540                 kfree(msg);
1541                 return NULL;
1542         }
1543
1544         msg->ppc = *ppc;
1545         msg->len = len;
1546         msg->entry = e;
1547
1548         return msg;
1549 }
1550
1551 struct dlm_msg *dlm_lowcomms_new_msg(int nodeid, int len, gfp_t allocation,
1552                                      char **ppc, void (*cb)(struct dlm_mhandle *mh),
1553                                      struct dlm_mhandle *mh)
1554 {
1555         struct connection *con;
1556         struct dlm_msg *msg;
1557         int idx;
1558
1559         if (len > DLM_MAX_SOCKET_BUFSIZE ||
1560             len < sizeof(struct dlm_header)) {
1561                 BUILD_BUG_ON(PAGE_SIZE < DLM_MAX_SOCKET_BUFSIZE);
1562                 log_print("failed to allocate a buffer of size %d", len);
1563                 WARN_ON(1);
1564                 return NULL;
1565         }
1566
1567         idx = srcu_read_lock(&connections_srcu);
1568         con = nodeid2con(nodeid, allocation);
1569         if (!con) {
1570                 srcu_read_unlock(&connections_srcu, idx);
1571                 return NULL;
1572         }
1573
1574         msg = dlm_lowcomms_new_msg_con(con, len, allocation, ppc, cb, mh);
1575         if (!msg) {
1576                 srcu_read_unlock(&connections_srcu, idx);
1577                 return NULL;
1578         }
1579
1580         /* we assume if successful commit must called */
1581         msg->idx = idx;
1582         return msg;
1583 }
1584
1585 static void _dlm_lowcomms_commit_msg(struct dlm_msg *msg)
1586 {
1587         struct writequeue_entry *e = msg->entry;
1588         struct connection *con = e->con;
1589         int users;
1590
1591         spin_lock(&con->writequeue_lock);
1592         kref_get(&msg->ref);
1593         list_add(&msg->list, &e->msgs);
1594
1595         users = --e->users;
1596         if (users)
1597                 goto out;
1598
1599         e->len = DLM_WQ_LENGTH_BYTES(e);
1600         spin_unlock(&con->writequeue_lock);
1601
1602         queue_work(send_workqueue, &con->swork);
1603         return;
1604
1605 out:
1606         spin_unlock(&con->writequeue_lock);
1607         return;
1608 }
1609
1610 void dlm_lowcomms_commit_msg(struct dlm_msg *msg)
1611 {
1612         _dlm_lowcomms_commit_msg(msg);
1613         srcu_read_unlock(&connections_srcu, msg->idx);
1614 }
1615
1616 void dlm_lowcomms_put_msg(struct dlm_msg *msg)
1617 {
1618         kref_put(&msg->ref, dlm_msg_release);
1619 }
1620
1621 /* does not held connections_srcu, usage workqueue only */
1622 int dlm_lowcomms_resend_msg(struct dlm_msg *msg)
1623 {
1624         struct dlm_msg *msg_resend;
1625         char *ppc;
1626
1627         if (msg->retransmit)
1628                 return 1;
1629
1630         msg_resend = dlm_lowcomms_new_msg_con(msg->entry->con, msg->len,
1631                                               GFP_ATOMIC, &ppc, NULL, NULL);
1632         if (!msg_resend)
1633                 return -ENOMEM;
1634
1635         msg->retransmit = true;
1636         kref_get(&msg->ref);
1637         msg_resend->orig_msg = msg;
1638
1639         memcpy(ppc, msg->ppc, msg->len);
1640         _dlm_lowcomms_commit_msg(msg_resend);
1641         dlm_lowcomms_put_msg(msg_resend);
1642
1643         return 0;
1644 }
1645
1646 /* Send a message */
1647 static void send_to_sock(struct connection *con)
1648 {
1649         int ret = 0;
1650         const int msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
1651         struct writequeue_entry *e;
1652         int len, offset;
1653         int count = 0;
1654
1655         mutex_lock(&con->sock_mutex);
1656         if (con->sock == NULL)
1657                 goto out_connect;
1658
1659         spin_lock(&con->writequeue_lock);
1660         for (;;) {
1661                 if (list_empty(&con->writequeue))
1662                         break;
1663
1664                 e = list_first_entry(&con->writequeue, struct writequeue_entry, list);
1665                 len = e->len;
1666                 offset = e->offset;
1667                 BUG_ON(len == 0 && e->users == 0);
1668                 spin_unlock(&con->writequeue_lock);
1669
1670                 ret = 0;
1671                 if (len) {
1672                         ret = kernel_sendpage(con->sock, e->page, offset, len,
1673                                               msg_flags);
1674                         if (ret == -EAGAIN || ret == 0) {
1675                                 if (ret == -EAGAIN &&
1676                                     test_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags) &&
1677                                     !test_and_set_bit(CF_APP_LIMITED, &con->flags)) {
1678                                         /* Notify TCP that we're limited by the
1679                                          * application window size.
1680                                          */
1681                                         set_bit(SOCK_NOSPACE, &con->sock->flags);
1682                                         con->sock->sk->sk_write_pending++;
1683                                 }
1684                                 cond_resched();
1685                                 goto out;
1686                         } else if (ret < 0)
1687                                 goto out;
1688                 }
1689
1690                 /* Don't starve people filling buffers */
1691                 if (++count >= MAX_SEND_MSG_COUNT) {
1692                         cond_resched();
1693                         count = 0;
1694                 }
1695
1696                 spin_lock(&con->writequeue_lock);
1697                 writequeue_entry_complete(e, ret);
1698         }
1699         spin_unlock(&con->writequeue_lock);
1700
1701         /* close if we got EOF */
1702         if (test_and_clear_bit(CF_EOF, &con->flags)) {
1703                 mutex_unlock(&con->sock_mutex);
1704                 close_connection(con, false, false, true);
1705
1706                 /* handling for tcp shutdown */
1707                 clear_bit(CF_SHUTDOWN, &con->flags);
1708                 wake_up(&con->shutdown_wait);
1709         } else {
1710                 mutex_unlock(&con->sock_mutex);
1711         }
1712
1713         return;
1714
1715 out:
1716         mutex_unlock(&con->sock_mutex);
1717         return;
1718
1719 out_connect:
1720         mutex_unlock(&con->sock_mutex);
1721         queue_work(send_workqueue, &con->swork);
1722         cond_resched();
1723 }
1724
1725 static void clean_one_writequeue(struct connection *con)
1726 {
1727         struct writequeue_entry *e, *safe;
1728
1729         spin_lock(&con->writequeue_lock);
1730         list_for_each_entry_safe(e, safe, &con->writequeue, list) {
1731                 free_entry(e);
1732         }
1733         spin_unlock(&con->writequeue_lock);
1734 }
1735
1736 /* Called from recovery when it knows that a node has
1737    left the cluster */
1738 int dlm_lowcomms_close(int nodeid)
1739 {
1740         struct connection *con;
1741         struct dlm_node_addr *na;
1742         int idx;
1743
1744         log_print("closing connection to node %d", nodeid);
1745         idx = srcu_read_lock(&connections_srcu);
1746         con = nodeid2con(nodeid, 0);
1747         if (con) {
1748                 set_bit(CF_CLOSE, &con->flags);
1749                 close_connection(con, true, true, true);
1750                 clean_one_writequeue(con);
1751                 if (con->othercon)
1752                         clean_one_writequeue(con->othercon);
1753         }
1754         srcu_read_unlock(&connections_srcu, idx);
1755
1756         spin_lock(&dlm_node_addrs_spin);
1757         na = find_node_addr(nodeid);
1758         if (na) {
1759                 list_del(&na->list);
1760                 while (na->addr_count--)
1761                         kfree(na->addr[na->addr_count]);
1762                 kfree(na);
1763         }
1764         spin_unlock(&dlm_node_addrs_spin);
1765
1766         return 0;
1767 }
1768
1769 /* Receive workqueue function */
1770 static void process_recv_sockets(struct work_struct *work)
1771 {
1772         struct connection *con = container_of(work, struct connection, rwork);
1773         int err;
1774
1775         clear_bit(CF_READ_PENDING, &con->flags);
1776         do {
1777                 err = receive_from_sock(con);
1778         } while (!err);
1779 }
1780
1781 static void process_listen_recv_socket(struct work_struct *work)
1782 {
1783         accept_from_sock(&listen_con);
1784 }
1785
1786 /* Send workqueue function */
1787 static void process_send_sockets(struct work_struct *work)
1788 {
1789         struct connection *con = container_of(work, struct connection, swork);
1790
1791         WARN_ON(test_bit(CF_IS_OTHERCON, &con->flags));
1792
1793         clear_bit(CF_WRITE_PENDING, &con->flags);
1794
1795         if (test_and_clear_bit(CF_RECONNECT, &con->flags)) {
1796                 close_connection(con, false, false, true);
1797                 dlm_midcomms_unack_msg_resend(con->nodeid);
1798         }
1799
1800         if (con->sock == NULL) { /* not mutex protected so check it inside too */
1801                 if (test_and_clear_bit(CF_DELAY_CONNECT, &con->flags))
1802                         msleep(1000);
1803                 con->connect_action(con);
1804         }
1805         if (!list_empty(&con->writequeue))
1806                 send_to_sock(con);
1807 }
1808
1809 static void work_stop(void)
1810 {
1811         if (recv_workqueue) {
1812                 destroy_workqueue(recv_workqueue);
1813                 recv_workqueue = NULL;
1814         }
1815
1816         if (send_workqueue) {
1817                 destroy_workqueue(send_workqueue);
1818                 send_workqueue = NULL;
1819         }
1820 }
1821
1822 static int work_start(void)
1823 {
1824         recv_workqueue = alloc_ordered_workqueue("dlm_recv", WQ_MEM_RECLAIM);
1825         if (!recv_workqueue) {
1826                 log_print("can't start dlm_recv");
1827                 return -ENOMEM;
1828         }
1829
1830         send_workqueue = alloc_ordered_workqueue("dlm_send", WQ_MEM_RECLAIM);
1831         if (!send_workqueue) {
1832                 log_print("can't start dlm_send");
1833                 destroy_workqueue(recv_workqueue);
1834                 recv_workqueue = NULL;
1835                 return -ENOMEM;
1836         }
1837
1838         return 0;
1839 }
1840
1841 static void shutdown_conn(struct connection *con)
1842 {
1843         if (con->shutdown_action)
1844                 con->shutdown_action(con);
1845 }
1846
1847 void dlm_lowcomms_shutdown(void)
1848 {
1849         int idx;
1850
1851         /* Set all the flags to prevent any
1852          * socket activity.
1853          */
1854         dlm_allow_conn = 0;
1855
1856         if (recv_workqueue)
1857                 flush_workqueue(recv_workqueue);
1858         if (send_workqueue)
1859                 flush_workqueue(send_workqueue);
1860
1861         dlm_close_sock(&listen_con.sock);
1862
1863         idx = srcu_read_lock(&connections_srcu);
1864         foreach_conn(shutdown_conn);
1865         srcu_read_unlock(&connections_srcu, idx);
1866 }
1867
1868 static void _stop_conn(struct connection *con, bool and_other)
1869 {
1870         mutex_lock(&con->sock_mutex);
1871         set_bit(CF_CLOSE, &con->flags);
1872         set_bit(CF_READ_PENDING, &con->flags);
1873         set_bit(CF_WRITE_PENDING, &con->flags);
1874         if (con->sock && con->sock->sk) {
1875                 write_lock_bh(&con->sock->sk->sk_callback_lock);
1876                 con->sock->sk->sk_user_data = NULL;
1877                 write_unlock_bh(&con->sock->sk->sk_callback_lock);
1878         }
1879         if (con->othercon && and_other)
1880                 _stop_conn(con->othercon, false);
1881         mutex_unlock(&con->sock_mutex);
1882 }
1883
1884 static void stop_conn(struct connection *con)
1885 {
1886         _stop_conn(con, true);
1887 }
1888
1889 static void connection_release(struct rcu_head *rcu)
1890 {
1891         struct connection *con = container_of(rcu, struct connection, rcu);
1892
1893         kfree(con->rx_buf);
1894         kfree(con);
1895 }
1896
1897 static void free_conn(struct connection *con)
1898 {
1899         close_connection(con, true, true, true);
1900         spin_lock(&connections_lock);
1901         hlist_del_rcu(&con->list);
1902         spin_unlock(&connections_lock);
1903         if (con->othercon) {
1904                 clean_one_writequeue(con->othercon);
1905                 call_srcu(&connections_srcu, &con->othercon->rcu,
1906                           connection_release);
1907         }
1908         clean_one_writequeue(con);
1909         call_srcu(&connections_srcu, &con->rcu, connection_release);
1910 }
1911
1912 static void work_flush(void)
1913 {
1914         int ok;
1915         int i;
1916         struct connection *con;
1917
1918         do {
1919                 ok = 1;
1920                 foreach_conn(stop_conn);
1921                 if (recv_workqueue)
1922                         flush_workqueue(recv_workqueue);
1923                 if (send_workqueue)
1924                         flush_workqueue(send_workqueue);
1925                 for (i = 0; i < CONN_HASH_SIZE && ok; i++) {
1926                         hlist_for_each_entry_rcu(con, &connection_hash[i],
1927                                                  list) {
1928                                 ok &= test_bit(CF_READ_PENDING, &con->flags);
1929                                 ok &= test_bit(CF_WRITE_PENDING, &con->flags);
1930                                 if (con->othercon) {
1931                                         ok &= test_bit(CF_READ_PENDING,
1932                                                        &con->othercon->flags);
1933                                         ok &= test_bit(CF_WRITE_PENDING,
1934                                                        &con->othercon->flags);
1935                                 }
1936                         }
1937                 }
1938         } while (!ok);
1939 }
1940
1941 void dlm_lowcomms_stop(void)
1942 {
1943         int idx;
1944
1945         idx = srcu_read_lock(&connections_srcu);
1946         work_flush();
1947         foreach_conn(free_conn);
1948         srcu_read_unlock(&connections_srcu, idx);
1949         work_stop();
1950         deinit_local();
1951 }
1952
1953 int dlm_lowcomms_start(void)
1954 {
1955         int error = -EINVAL;
1956         int i;
1957
1958         for (i = 0; i < CONN_HASH_SIZE; i++)
1959                 INIT_HLIST_HEAD(&connection_hash[i]);
1960
1961         init_local();
1962         if (!dlm_local_count) {
1963                 error = -ENOTCONN;
1964                 log_print("no local IP address has been set");
1965                 goto fail;
1966         }
1967
1968         INIT_WORK(&listen_con.rwork, process_listen_recv_socket);
1969
1970         error = work_start();
1971         if (error)
1972                 goto fail_local;
1973
1974         dlm_allow_conn = 1;
1975
1976         /* Start listening */
1977         switch (dlm_config.ci_protocol) {
1978         case DLM_PROTO_TCP:
1979                 error = tcp_listen_for_all();
1980                 break;
1981         case DLM_PROTO_SCTP:
1982                 error = sctp_listen_for_all(&listen_con);
1983                 break;
1984         default:
1985                 log_print("Invalid protocol identifier %d set",
1986                           dlm_config.ci_protocol);
1987                 error = -EINVAL;
1988                 break;
1989         }
1990         if (error)
1991                 goto fail_unlisten;
1992
1993         return 0;
1994
1995 fail_unlisten:
1996         dlm_allow_conn = 0;
1997         dlm_close_sock(&listen_con.sock);
1998         work_stop();
1999 fail_local:
2000         deinit_local();
2001 fail:
2002         return error;
2003 }
2004
2005 void dlm_lowcomms_exit(void)
2006 {
2007         struct dlm_node_addr *na, *safe;
2008
2009         spin_lock(&dlm_node_addrs_spin);
2010         list_for_each_entry_safe(na, safe, &dlm_node_addrs, list) {
2011                 list_del(&na->list);
2012                 while (na->addr_count--)
2013                         kfree(na->addr[na->addr_count]);
2014                 kfree(na);
2015         }
2016         spin_unlock(&dlm_node_addrs_spin);
2017 }