Merge branch 'kvm-basic-exit-reason' into HEAD
[linux-2.6-microblaze.git] / fs / crypto / fname.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This contains functions for filename crypto management
4  *
5  * Copyright (C) 2015, Google, Inc.
6  * Copyright (C) 2015, Motorola Mobility
7  *
8  * Written by Uday Savagaonkar, 2014.
9  * Modified by Jaegeuk Kim, 2015.
10  *
11  * This has not yet undergone a rigorous security audit.
12  */
13
14 #include <linux/namei.h>
15 #include <linux/scatterlist.h>
16 #include <crypto/hash.h>
17 #include <crypto/sha.h>
18 #include <crypto/skcipher.h>
19 #include "fscrypt_private.h"
20
21 /*
22  * struct fscrypt_nokey_name - identifier for directory entry when key is absent
23  *
24  * When userspace lists an encrypted directory without access to the key, the
25  * filesystem must present a unique "no-key name" for each filename that allows
26  * it to find the directory entry again if requested.  Naively, that would just
27  * mean using the ciphertext filenames.  However, since the ciphertext filenames
28  * can contain illegal characters ('\0' and '/'), they must be encoded in some
29  * way.  We use base64.  But that can cause names to exceed NAME_MAX (255
30  * bytes), so we also need to use a strong hash to abbreviate long names.
31  *
32  * The filesystem may also need another kind of hash, the "dirhash", to quickly
33  * find the directory entry.  Since filesystems normally compute the dirhash
34  * over the on-disk filename (i.e. the ciphertext), it's not computable from
35  * no-key names that abbreviate the ciphertext using the strong hash to fit in
36  * NAME_MAX.  It's also not computable if it's a keyed hash taken over the
37  * plaintext (but it may still be available in the on-disk directory entry);
38  * casefolded directories use this type of dirhash.  At least in these cases,
39  * each no-key name must include the name's dirhash too.
40  *
41  * To meet all these requirements, we base64-encode the following
42  * variable-length structure.  It contains the dirhash, or 0's if the filesystem
43  * didn't provide one; up to 149 bytes of the ciphertext name; and for
44  * ciphertexts longer than 149 bytes, also the SHA-256 of the remaining bytes.
45  *
46  * This ensures that each no-key name contains everything needed to find the
47  * directory entry again, contains only legal characters, doesn't exceed
48  * NAME_MAX, is unambiguous unless there's a SHA-256 collision, and that we only
49  * take the performance hit of SHA-256 on very long filenames (which are rare).
50  */
51 struct fscrypt_nokey_name {
52         u32 dirhash[2];
53         u8 bytes[149];
54         u8 sha256[SHA256_DIGEST_SIZE];
55 }; /* 189 bytes => 252 bytes base64-encoded, which is <= NAME_MAX (255) */
56
57 /*
58  * Decoded size of max-size nokey name, i.e. a name that was abbreviated using
59  * the strong hash and thus includes the 'sha256' field.  This isn't simply
60  * sizeof(struct fscrypt_nokey_name), as the padding at the end isn't included.
61  */
62 #define FSCRYPT_NOKEY_NAME_MAX  offsetofend(struct fscrypt_nokey_name, sha256)
63
64 static struct crypto_shash *sha256_hash_tfm;
65
66 static int fscrypt_do_sha256(const u8 *data, unsigned int data_len, u8 *result)
67 {
68         struct crypto_shash *tfm = READ_ONCE(sha256_hash_tfm);
69
70         if (unlikely(!tfm)) {
71                 struct crypto_shash *prev_tfm;
72
73                 tfm = crypto_alloc_shash("sha256", 0, 0);
74                 if (IS_ERR(tfm)) {
75                         fscrypt_err(NULL,
76                                     "Error allocating SHA-256 transform: %ld",
77                                     PTR_ERR(tfm));
78                         return PTR_ERR(tfm);
79                 }
80                 prev_tfm = cmpxchg(&sha256_hash_tfm, NULL, tfm);
81                 if (prev_tfm) {
82                         crypto_free_shash(tfm);
83                         tfm = prev_tfm;
84                 }
85         }
86
87         return crypto_shash_tfm_digest(tfm, data, data_len, result);
88 }
89
90 static inline bool fscrypt_is_dot_dotdot(const struct qstr *str)
91 {
92         if (str->len == 1 && str->name[0] == '.')
93                 return true;
94
95         if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
96                 return true;
97
98         return false;
99 }
100
101 /**
102  * fscrypt_fname_encrypt() - encrypt a filename
103  * @inode: inode of the parent directory (for regular filenames)
104  *         or of the symlink (for symlink targets)
105  * @iname: the filename to encrypt
106  * @out: (output) the encrypted filename
107  * @olen: size of the encrypted filename.  It must be at least @iname->len.
108  *        Any extra space is filled with NUL padding before encryption.
109  *
110  * Return: 0 on success, -errno on failure
111  */
112 int fscrypt_fname_encrypt(const struct inode *inode, const struct qstr *iname,
113                           u8 *out, unsigned int olen)
114 {
115         struct skcipher_request *req = NULL;
116         DECLARE_CRYPTO_WAIT(wait);
117         const struct fscrypt_info *ci = inode->i_crypt_info;
118         struct crypto_skcipher *tfm = ci->ci_ctfm;
119         union fscrypt_iv iv;
120         struct scatterlist sg;
121         int res;
122
123         /*
124          * Copy the filename to the output buffer for encrypting in-place and
125          * pad it with the needed number of NUL bytes.
126          */
127         if (WARN_ON(olen < iname->len))
128                 return -ENOBUFS;
129         memcpy(out, iname->name, iname->len);
130         memset(out + iname->len, 0, olen - iname->len);
131
132         /* Initialize the IV */
133         fscrypt_generate_iv(&iv, 0, ci);
134
135         /* Set up the encryption request */
136         req = skcipher_request_alloc(tfm, GFP_NOFS);
137         if (!req)
138                 return -ENOMEM;
139         skcipher_request_set_callback(req,
140                         CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
141                         crypto_req_done, &wait);
142         sg_init_one(&sg, out, olen);
143         skcipher_request_set_crypt(req, &sg, &sg, olen, &iv);
144
145         /* Do the encryption */
146         res = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
147         skcipher_request_free(req);
148         if (res < 0) {
149                 fscrypt_err(inode, "Filename encryption failed: %d", res);
150                 return res;
151         }
152
153         return 0;
154 }
155
156 /**
157  * fname_decrypt() - decrypt a filename
158  * @inode: inode of the parent directory (for regular filenames)
159  *         or of the symlink (for symlink targets)
160  * @iname: the encrypted filename to decrypt
161  * @oname: (output) the decrypted filename.  The caller must have allocated
162  *         enough space for this, e.g. using fscrypt_fname_alloc_buffer().
163  *
164  * Return: 0 on success, -errno on failure
165  */
166 static int fname_decrypt(const struct inode *inode,
167                          const struct fscrypt_str *iname,
168                          struct fscrypt_str *oname)
169 {
170         struct skcipher_request *req = NULL;
171         DECLARE_CRYPTO_WAIT(wait);
172         struct scatterlist src_sg, dst_sg;
173         const struct fscrypt_info *ci = inode->i_crypt_info;
174         struct crypto_skcipher *tfm = ci->ci_ctfm;
175         union fscrypt_iv iv;
176         int res;
177
178         /* Allocate request */
179         req = skcipher_request_alloc(tfm, GFP_NOFS);
180         if (!req)
181                 return -ENOMEM;
182         skcipher_request_set_callback(req,
183                 CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
184                 crypto_req_done, &wait);
185
186         /* Initialize IV */
187         fscrypt_generate_iv(&iv, 0, ci);
188
189         /* Create decryption request */
190         sg_init_one(&src_sg, iname->name, iname->len);
191         sg_init_one(&dst_sg, oname->name, oname->len);
192         skcipher_request_set_crypt(req, &src_sg, &dst_sg, iname->len, &iv);
193         res = crypto_wait_req(crypto_skcipher_decrypt(req), &wait);
194         skcipher_request_free(req);
195         if (res < 0) {
196                 fscrypt_err(inode, "Filename decryption failed: %d", res);
197                 return res;
198         }
199
200         oname->len = strnlen(oname->name, iname->len);
201         return 0;
202 }
203
204 static const char lookup_table[65] =
205         "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+,";
206
207 #define BASE64_CHARS(nbytes)    DIV_ROUND_UP((nbytes) * 4, 3)
208
209 /**
210  * base64_encode() - base64-encode some bytes
211  * @src: the bytes to encode
212  * @len: number of bytes to encode
213  * @dst: (output) the base64-encoded string.  Not NUL-terminated.
214  *
215  * Encodes the input string using characters from the set [A-Za-z0-9+,].
216  * The encoded string is roughly 4/3 times the size of the input string.
217  *
218  * Return: length of the encoded string
219  */
220 static int base64_encode(const u8 *src, int len, char *dst)
221 {
222         int i, bits = 0, ac = 0;
223         char *cp = dst;
224
225         for (i = 0; i < len; i++) {
226                 ac += src[i] << bits;
227                 bits += 8;
228                 do {
229                         *cp++ = lookup_table[ac & 0x3f];
230                         ac >>= 6;
231                         bits -= 6;
232                 } while (bits >= 6);
233         }
234         if (bits)
235                 *cp++ = lookup_table[ac & 0x3f];
236         return cp - dst;
237 }
238
239 static int base64_decode(const char *src, int len, u8 *dst)
240 {
241         int i, bits = 0, ac = 0;
242         const char *p;
243         u8 *cp = dst;
244
245         for (i = 0; i < len; i++) {
246                 p = strchr(lookup_table, src[i]);
247                 if (p == NULL || src[i] == 0)
248                         return -2;
249                 ac += (p - lookup_table) << bits;
250                 bits += 6;
251                 if (bits >= 8) {
252                         *cp++ = ac & 0xff;
253                         ac >>= 8;
254                         bits -= 8;
255                 }
256         }
257         if (ac)
258                 return -1;
259         return cp - dst;
260 }
261
262 bool fscrypt_fname_encrypted_size(const struct inode *inode, u32 orig_len,
263                                   u32 max_len, u32 *encrypted_len_ret)
264 {
265         const struct fscrypt_info *ci = inode->i_crypt_info;
266         int padding = 4 << (fscrypt_policy_flags(&ci->ci_policy) &
267                             FSCRYPT_POLICY_FLAGS_PAD_MASK);
268         u32 encrypted_len;
269
270         if (orig_len > max_len)
271                 return false;
272         encrypted_len = max(orig_len, (u32)FS_CRYPTO_BLOCK_SIZE);
273         encrypted_len = round_up(encrypted_len, padding);
274         *encrypted_len_ret = min(encrypted_len, max_len);
275         return true;
276 }
277
278 /**
279  * fscrypt_fname_alloc_buffer() - allocate a buffer for presented filenames
280  * @inode: inode of the parent directory (for regular filenames)
281  *         or of the symlink (for symlink targets)
282  * @max_encrypted_len: maximum length of encrypted filenames the buffer will be
283  *                     used to present
284  * @crypto_str: (output) buffer to allocate
285  *
286  * Allocate a buffer that is large enough to hold any decrypted or encoded
287  * filename (null-terminated), for the given maximum encrypted filename length.
288  *
289  * Return: 0 on success, -errno on failure
290  */
291 int fscrypt_fname_alloc_buffer(const struct inode *inode,
292                                u32 max_encrypted_len,
293                                struct fscrypt_str *crypto_str)
294 {
295         const u32 max_encoded_len = BASE64_CHARS(FSCRYPT_NOKEY_NAME_MAX);
296         u32 max_presented_len;
297
298         max_presented_len = max(max_encoded_len, max_encrypted_len);
299
300         crypto_str->name = kmalloc(max_presented_len + 1, GFP_NOFS);
301         if (!crypto_str->name)
302                 return -ENOMEM;
303         crypto_str->len = max_presented_len;
304         return 0;
305 }
306 EXPORT_SYMBOL(fscrypt_fname_alloc_buffer);
307
308 /**
309  * fscrypt_fname_free_buffer() - free a buffer for presented filenames
310  * @crypto_str: the buffer to free
311  *
312  * Free a buffer that was allocated by fscrypt_fname_alloc_buffer().
313  */
314 void fscrypt_fname_free_buffer(struct fscrypt_str *crypto_str)
315 {
316         if (!crypto_str)
317                 return;
318         kfree(crypto_str->name);
319         crypto_str->name = NULL;
320 }
321 EXPORT_SYMBOL(fscrypt_fname_free_buffer);
322
323 /**
324  * fscrypt_fname_disk_to_usr() - convert an encrypted filename to
325  *                               user-presentable form
326  * @inode: inode of the parent directory (for regular filenames)
327  *         or of the symlink (for symlink targets)
328  * @hash: first part of the name's dirhash, if applicable.  This only needs to
329  *        be provided if the filename is located in an indexed directory whose
330  *        encryption key may be unavailable.  Not needed for symlink targets.
331  * @minor_hash: second part of the name's dirhash, if applicable
332  * @iname: encrypted filename to convert.  May also be "." or "..", which
333  *         aren't actually encrypted.
334  * @oname: output buffer for the user-presentable filename.  The caller must
335  *         have allocated enough space for this, e.g. using
336  *         fscrypt_fname_alloc_buffer().
337  *
338  * If the key is available, we'll decrypt the disk name.  Otherwise, we'll
339  * encode it for presentation in fscrypt_nokey_name format.
340  * See struct fscrypt_nokey_name for details.
341  *
342  * Return: 0 on success, -errno on failure
343  */
344 int fscrypt_fname_disk_to_usr(const struct inode *inode,
345                               u32 hash, u32 minor_hash,
346                               const struct fscrypt_str *iname,
347                               struct fscrypt_str *oname)
348 {
349         const struct qstr qname = FSTR_TO_QSTR(iname);
350         struct fscrypt_nokey_name nokey_name;
351         u32 size; /* size of the unencoded no-key name */
352         int err;
353
354         if (fscrypt_is_dot_dotdot(&qname)) {
355                 oname->name[0] = '.';
356                 oname->name[iname->len - 1] = '.';
357                 oname->len = iname->len;
358                 return 0;
359         }
360
361         if (iname->len < FS_CRYPTO_BLOCK_SIZE)
362                 return -EUCLEAN;
363
364         if (fscrypt_has_encryption_key(inode))
365                 return fname_decrypt(inode, iname, oname);
366
367         /*
368          * Sanity check that struct fscrypt_nokey_name doesn't have padding
369          * between fields and that its encoded size never exceeds NAME_MAX.
370          */
371         BUILD_BUG_ON(offsetofend(struct fscrypt_nokey_name, dirhash) !=
372                      offsetof(struct fscrypt_nokey_name, bytes));
373         BUILD_BUG_ON(offsetofend(struct fscrypt_nokey_name, bytes) !=
374                      offsetof(struct fscrypt_nokey_name, sha256));
375         BUILD_BUG_ON(BASE64_CHARS(FSCRYPT_NOKEY_NAME_MAX) > NAME_MAX);
376
377         if (hash) {
378                 nokey_name.dirhash[0] = hash;
379                 nokey_name.dirhash[1] = minor_hash;
380         } else {
381                 nokey_name.dirhash[0] = 0;
382                 nokey_name.dirhash[1] = 0;
383         }
384         if (iname->len <= sizeof(nokey_name.bytes)) {
385                 memcpy(nokey_name.bytes, iname->name, iname->len);
386                 size = offsetof(struct fscrypt_nokey_name, bytes[iname->len]);
387         } else {
388                 memcpy(nokey_name.bytes, iname->name, sizeof(nokey_name.bytes));
389                 /* Compute strong hash of remaining part of name. */
390                 err = fscrypt_do_sha256(&iname->name[sizeof(nokey_name.bytes)],
391                                         iname->len - sizeof(nokey_name.bytes),
392                                         nokey_name.sha256);
393                 if (err)
394                         return err;
395                 size = FSCRYPT_NOKEY_NAME_MAX;
396         }
397         oname->len = base64_encode((const u8 *)&nokey_name, size, oname->name);
398         return 0;
399 }
400 EXPORT_SYMBOL(fscrypt_fname_disk_to_usr);
401
402 /**
403  * fscrypt_setup_filename() - prepare to search a possibly encrypted directory
404  * @dir: the directory that will be searched
405  * @iname: the user-provided filename being searched for
406  * @lookup: 1 if we're allowed to proceed without the key because it's
407  *      ->lookup() or we're finding the dir_entry for deletion; 0 if we cannot
408  *      proceed without the key because we're going to create the dir_entry.
409  * @fname: the filename information to be filled in
410  *
411  * Given a user-provided filename @iname, this function sets @fname->disk_name
412  * to the name that would be stored in the on-disk directory entry, if possible.
413  * If the directory is unencrypted this is simply @iname.  Else, if we have the
414  * directory's encryption key, then @iname is the plaintext, so we encrypt it to
415  * get the disk_name.
416  *
417  * Else, for keyless @lookup operations, @iname is the presented ciphertext, so
418  * we decode it to get the fscrypt_nokey_name.  Non-@lookup operations will be
419  * impossible in this case, so we fail them with ENOKEY.
420  *
421  * If successful, fscrypt_free_filename() must be called later to clean up.
422  *
423  * Return: 0 on success, -errno on failure
424  */
425 int fscrypt_setup_filename(struct inode *dir, const struct qstr *iname,
426                               int lookup, struct fscrypt_name *fname)
427 {
428         struct fscrypt_nokey_name *nokey_name;
429         int ret;
430
431         memset(fname, 0, sizeof(struct fscrypt_name));
432         fname->usr_fname = iname;
433
434         if (!IS_ENCRYPTED(dir) || fscrypt_is_dot_dotdot(iname)) {
435                 fname->disk_name.name = (unsigned char *)iname->name;
436                 fname->disk_name.len = iname->len;
437                 return 0;
438         }
439         ret = fscrypt_get_encryption_info(dir);
440         if (ret)
441                 return ret;
442
443         if (fscrypt_has_encryption_key(dir)) {
444                 if (!fscrypt_fname_encrypted_size(dir, iname->len,
445                                                   dir->i_sb->s_cop->max_namelen,
446                                                   &fname->crypto_buf.len))
447                         return -ENAMETOOLONG;
448                 fname->crypto_buf.name = kmalloc(fname->crypto_buf.len,
449                                                  GFP_NOFS);
450                 if (!fname->crypto_buf.name)
451                         return -ENOMEM;
452
453                 ret = fscrypt_fname_encrypt(dir, iname, fname->crypto_buf.name,
454                                             fname->crypto_buf.len);
455                 if (ret)
456                         goto errout;
457                 fname->disk_name.name = fname->crypto_buf.name;
458                 fname->disk_name.len = fname->crypto_buf.len;
459                 return 0;
460         }
461         if (!lookup)
462                 return -ENOKEY;
463         fname->is_ciphertext_name = true;
464
465         /*
466          * We don't have the key and we are doing a lookup; decode the
467          * user-supplied name
468          */
469
470         if (iname->len > BASE64_CHARS(FSCRYPT_NOKEY_NAME_MAX))
471                 return -ENOENT;
472
473         fname->crypto_buf.name = kmalloc(FSCRYPT_NOKEY_NAME_MAX, GFP_KERNEL);
474         if (fname->crypto_buf.name == NULL)
475                 return -ENOMEM;
476
477         ret = base64_decode(iname->name, iname->len, fname->crypto_buf.name);
478         if (ret < (int)offsetof(struct fscrypt_nokey_name, bytes[1]) ||
479             (ret > offsetof(struct fscrypt_nokey_name, sha256) &&
480              ret != FSCRYPT_NOKEY_NAME_MAX)) {
481                 ret = -ENOENT;
482                 goto errout;
483         }
484         fname->crypto_buf.len = ret;
485
486         nokey_name = (void *)fname->crypto_buf.name;
487         fname->hash = nokey_name->dirhash[0];
488         fname->minor_hash = nokey_name->dirhash[1];
489         if (ret != FSCRYPT_NOKEY_NAME_MAX) {
490                 /* The full ciphertext filename is available. */
491                 fname->disk_name.name = nokey_name->bytes;
492                 fname->disk_name.len =
493                         ret - offsetof(struct fscrypt_nokey_name, bytes);
494         }
495         return 0;
496
497 errout:
498         kfree(fname->crypto_buf.name);
499         return ret;
500 }
501 EXPORT_SYMBOL(fscrypt_setup_filename);
502
503 /**
504  * fscrypt_match_name() - test whether the given name matches a directory entry
505  * @fname: the name being searched for
506  * @de_name: the name from the directory entry
507  * @de_name_len: the length of @de_name in bytes
508  *
509  * Normally @fname->disk_name will be set, and in that case we simply compare
510  * that to the name stored in the directory entry.  The only exception is that
511  * if we don't have the key for an encrypted directory and the name we're
512  * looking for is very long, then we won't have the full disk_name and instead
513  * we'll need to match against a fscrypt_nokey_name that includes a strong hash.
514  *
515  * Return: %true if the name matches, otherwise %false.
516  */
517 bool fscrypt_match_name(const struct fscrypt_name *fname,
518                         const u8 *de_name, u32 de_name_len)
519 {
520         const struct fscrypt_nokey_name *nokey_name =
521                 (const void *)fname->crypto_buf.name;
522         u8 sha256[SHA256_DIGEST_SIZE];
523
524         if (likely(fname->disk_name.name)) {
525                 if (de_name_len != fname->disk_name.len)
526                         return false;
527                 return !memcmp(de_name, fname->disk_name.name, de_name_len);
528         }
529         if (de_name_len <= sizeof(nokey_name->bytes))
530                 return false;
531         if (memcmp(de_name, nokey_name->bytes, sizeof(nokey_name->bytes)))
532                 return false;
533         if (fscrypt_do_sha256(&de_name[sizeof(nokey_name->bytes)],
534                               de_name_len - sizeof(nokey_name->bytes), sha256))
535                 return false;
536         return !memcmp(sha256, nokey_name->sha256, sizeof(sha256));
537 }
538 EXPORT_SYMBOL_GPL(fscrypt_match_name);
539
540 /**
541  * fscrypt_fname_siphash() - calculate the SipHash of a filename
542  * @dir: the parent directory
543  * @name: the filename to calculate the SipHash of
544  *
545  * Given a plaintext filename @name and a directory @dir which uses SipHash as
546  * its dirhash method and has had its fscrypt key set up, this function
547  * calculates the SipHash of that name using the directory's secret dirhash key.
548  *
549  * Return: the SipHash of @name using the hash key of @dir
550  */
551 u64 fscrypt_fname_siphash(const struct inode *dir, const struct qstr *name)
552 {
553         const struct fscrypt_info *ci = dir->i_crypt_info;
554
555         WARN_ON(!ci->ci_dirhash_key_initialized);
556
557         return siphash(name->name, name->len, &ci->ci_dirhash_key);
558 }
559 EXPORT_SYMBOL_GPL(fscrypt_fname_siphash);
560
561 /*
562  * Validate dentries in encrypted directories to make sure we aren't potentially
563  * caching stale dentries after a key has been added.
564  */
565 static int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags)
566 {
567         struct dentry *dir;
568         int err;
569         int valid;
570
571         /*
572          * Plaintext names are always valid, since fscrypt doesn't support
573          * reverting to ciphertext names without evicting the directory's inode
574          * -- which implies eviction of the dentries in the directory.
575          */
576         if (!(dentry->d_flags & DCACHE_ENCRYPTED_NAME))
577                 return 1;
578
579         /*
580          * Ciphertext name; valid if the directory's key is still unavailable.
581          *
582          * Although fscrypt forbids rename() on ciphertext names, we still must
583          * use dget_parent() here rather than use ->d_parent directly.  That's
584          * because a corrupted fs image may contain directory hard links, which
585          * the VFS handles by moving the directory's dentry tree in the dcache
586          * each time ->lookup() finds the directory and it already has a dentry
587          * elsewhere.  Thus ->d_parent can be changing, and we must safely grab
588          * a reference to some ->d_parent to prevent it from being freed.
589          */
590
591         if (flags & LOOKUP_RCU)
592                 return -ECHILD;
593
594         dir = dget_parent(dentry);
595         err = fscrypt_get_encryption_info(d_inode(dir));
596         valid = !fscrypt_has_encryption_key(d_inode(dir));
597         dput(dir);
598
599         if (err < 0)
600                 return err;
601
602         return valid;
603 }
604
605 const struct dentry_operations fscrypt_d_ops = {
606         .d_revalidate = fscrypt_d_revalidate,
607 };