Merge tag 'v5.19-rockchip-dts32-2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / fs / crypto / fname.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This contains functions for filename crypto management
4  *
5  * Copyright (C) 2015, Google, Inc.
6  * Copyright (C) 2015, Motorola Mobility
7  *
8  * Written by Uday Savagaonkar, 2014.
9  * Modified by Jaegeuk Kim, 2015.
10  *
11  * This has not yet undergone a rigorous security audit.
12  */
13
14 #include <linux/namei.h>
15 #include <linux/scatterlist.h>
16 #include <crypto/hash.h>
17 #include <crypto/sha2.h>
18 #include <crypto/skcipher.h>
19 #include "fscrypt_private.h"
20
21 /*
22  * The minimum message length (input and output length), in bytes, for all
23  * filenames encryption modes.  Filenames shorter than this will be zero-padded
24  * before being encrypted.
25  */
26 #define FSCRYPT_FNAME_MIN_MSG_LEN 16
27
28 /*
29  * struct fscrypt_nokey_name - identifier for directory entry when key is absent
30  *
31  * When userspace lists an encrypted directory without access to the key, the
32  * filesystem must present a unique "no-key name" for each filename that allows
33  * it to find the directory entry again if requested.  Naively, that would just
34  * mean using the ciphertext filenames.  However, since the ciphertext filenames
35  * can contain illegal characters ('\0' and '/'), they must be encoded in some
36  * way.  We use base64url.  But that can cause names to exceed NAME_MAX (255
37  * bytes), so we also need to use a strong hash to abbreviate long names.
38  *
39  * The filesystem may also need another kind of hash, the "dirhash", to quickly
40  * find the directory entry.  Since filesystems normally compute the dirhash
41  * over the on-disk filename (i.e. the ciphertext), it's not computable from
42  * no-key names that abbreviate the ciphertext using the strong hash to fit in
43  * NAME_MAX.  It's also not computable if it's a keyed hash taken over the
44  * plaintext (but it may still be available in the on-disk directory entry);
45  * casefolded directories use this type of dirhash.  At least in these cases,
46  * each no-key name must include the name's dirhash too.
47  *
48  * To meet all these requirements, we base64url-encode the following
49  * variable-length structure.  It contains the dirhash, or 0's if the filesystem
50  * didn't provide one; up to 149 bytes of the ciphertext name; and for
51  * ciphertexts longer than 149 bytes, also the SHA-256 of the remaining bytes.
52  *
53  * This ensures that each no-key name contains everything needed to find the
54  * directory entry again, contains only legal characters, doesn't exceed
55  * NAME_MAX, is unambiguous unless there's a SHA-256 collision, and that we only
56  * take the performance hit of SHA-256 on very long filenames (which are rare).
57  */
58 struct fscrypt_nokey_name {
59         u32 dirhash[2];
60         u8 bytes[149];
61         u8 sha256[SHA256_DIGEST_SIZE];
62 }; /* 189 bytes => 252 bytes base64url-encoded, which is <= NAME_MAX (255) */
63
64 /*
65  * Decoded size of max-size no-key name, i.e. a name that was abbreviated using
66  * the strong hash and thus includes the 'sha256' field.  This isn't simply
67  * sizeof(struct fscrypt_nokey_name), as the padding at the end isn't included.
68  */
69 #define FSCRYPT_NOKEY_NAME_MAX  offsetofend(struct fscrypt_nokey_name, sha256)
70
71 /* Encoded size of max-size no-key name */
72 #define FSCRYPT_NOKEY_NAME_MAX_ENCODED \
73                 FSCRYPT_BASE64URL_CHARS(FSCRYPT_NOKEY_NAME_MAX)
74
75 static inline bool fscrypt_is_dot_dotdot(const struct qstr *str)
76 {
77         if (str->len == 1 && str->name[0] == '.')
78                 return true;
79
80         if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
81                 return true;
82
83         return false;
84 }
85
86 /**
87  * fscrypt_fname_encrypt() - encrypt a filename
88  * @inode: inode of the parent directory (for regular filenames)
89  *         or of the symlink (for symlink targets)
90  * @iname: the filename to encrypt
91  * @out: (output) the encrypted filename
92  * @olen: size of the encrypted filename.  It must be at least @iname->len.
93  *        Any extra space is filled with NUL padding before encryption.
94  *
95  * Return: 0 on success, -errno on failure
96  */
97 int fscrypt_fname_encrypt(const struct inode *inode, const struct qstr *iname,
98                           u8 *out, unsigned int olen)
99 {
100         struct skcipher_request *req = NULL;
101         DECLARE_CRYPTO_WAIT(wait);
102         const struct fscrypt_info *ci = inode->i_crypt_info;
103         struct crypto_skcipher *tfm = ci->ci_enc_key.tfm;
104         union fscrypt_iv iv;
105         struct scatterlist sg;
106         int res;
107
108         /*
109          * Copy the filename to the output buffer for encrypting in-place and
110          * pad it with the needed number of NUL bytes.
111          */
112         if (WARN_ON(olen < iname->len))
113                 return -ENOBUFS;
114         memcpy(out, iname->name, iname->len);
115         memset(out + iname->len, 0, olen - iname->len);
116
117         /* Initialize the IV */
118         fscrypt_generate_iv(&iv, 0, ci);
119
120         /* Set up the encryption request */
121         req = skcipher_request_alloc(tfm, GFP_NOFS);
122         if (!req)
123                 return -ENOMEM;
124         skcipher_request_set_callback(req,
125                         CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
126                         crypto_req_done, &wait);
127         sg_init_one(&sg, out, olen);
128         skcipher_request_set_crypt(req, &sg, &sg, olen, &iv);
129
130         /* Do the encryption */
131         res = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
132         skcipher_request_free(req);
133         if (res < 0) {
134                 fscrypt_err(inode, "Filename encryption failed: %d", res);
135                 return res;
136         }
137
138         return 0;
139 }
140
141 /**
142  * fname_decrypt() - decrypt a filename
143  * @inode: inode of the parent directory (for regular filenames)
144  *         or of the symlink (for symlink targets)
145  * @iname: the encrypted filename to decrypt
146  * @oname: (output) the decrypted filename.  The caller must have allocated
147  *         enough space for this, e.g. using fscrypt_fname_alloc_buffer().
148  *
149  * Return: 0 on success, -errno on failure
150  */
151 static int fname_decrypt(const struct inode *inode,
152                          const struct fscrypt_str *iname,
153                          struct fscrypt_str *oname)
154 {
155         struct skcipher_request *req = NULL;
156         DECLARE_CRYPTO_WAIT(wait);
157         struct scatterlist src_sg, dst_sg;
158         const struct fscrypt_info *ci = inode->i_crypt_info;
159         struct crypto_skcipher *tfm = ci->ci_enc_key.tfm;
160         union fscrypt_iv iv;
161         int res;
162
163         /* Allocate request */
164         req = skcipher_request_alloc(tfm, GFP_NOFS);
165         if (!req)
166                 return -ENOMEM;
167         skcipher_request_set_callback(req,
168                 CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
169                 crypto_req_done, &wait);
170
171         /* Initialize IV */
172         fscrypt_generate_iv(&iv, 0, ci);
173
174         /* Create decryption request */
175         sg_init_one(&src_sg, iname->name, iname->len);
176         sg_init_one(&dst_sg, oname->name, oname->len);
177         skcipher_request_set_crypt(req, &src_sg, &dst_sg, iname->len, &iv);
178         res = crypto_wait_req(crypto_skcipher_decrypt(req), &wait);
179         skcipher_request_free(req);
180         if (res < 0) {
181                 fscrypt_err(inode, "Filename decryption failed: %d", res);
182                 return res;
183         }
184
185         oname->len = strnlen(oname->name, iname->len);
186         return 0;
187 }
188
189 static const char base64url_table[65] =
190         "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789-_";
191
192 #define FSCRYPT_BASE64URL_CHARS(nbytes) DIV_ROUND_UP((nbytes) * 4, 3)
193
194 /**
195  * fscrypt_base64url_encode() - base64url-encode some binary data
196  * @src: the binary data to encode
197  * @srclen: the length of @src in bytes
198  * @dst: (output) the base64url-encoded string.  Not NUL-terminated.
199  *
200  * Encodes data using base64url encoding, i.e. the "Base 64 Encoding with URL
201  * and Filename Safe Alphabet" specified by RFC 4648.  '='-padding isn't used,
202  * as it's unneeded and not required by the RFC.  base64url is used instead of
203  * base64 to avoid the '/' character, which isn't allowed in filenames.
204  *
205  * Return: the length of the resulting base64url-encoded string in bytes.
206  *         This will be equal to FSCRYPT_BASE64URL_CHARS(srclen).
207  */
208 static int fscrypt_base64url_encode(const u8 *src, int srclen, char *dst)
209 {
210         u32 ac = 0;
211         int bits = 0;
212         int i;
213         char *cp = dst;
214
215         for (i = 0; i < srclen; i++) {
216                 ac = (ac << 8) | src[i];
217                 bits += 8;
218                 do {
219                         bits -= 6;
220                         *cp++ = base64url_table[(ac >> bits) & 0x3f];
221                 } while (bits >= 6);
222         }
223         if (bits)
224                 *cp++ = base64url_table[(ac << (6 - bits)) & 0x3f];
225         return cp - dst;
226 }
227
228 /**
229  * fscrypt_base64url_decode() - base64url-decode a string
230  * @src: the string to decode.  Doesn't need to be NUL-terminated.
231  * @srclen: the length of @src in bytes
232  * @dst: (output) the decoded binary data
233  *
234  * Decodes a string using base64url encoding, i.e. the "Base 64 Encoding with
235  * URL and Filename Safe Alphabet" specified by RFC 4648.  '='-padding isn't
236  * accepted, nor are non-encoding characters such as whitespace.
237  *
238  * This implementation hasn't been optimized for performance.
239  *
240  * Return: the length of the resulting decoded binary data in bytes,
241  *         or -1 if the string isn't a valid base64url string.
242  */
243 static int fscrypt_base64url_decode(const char *src, int srclen, u8 *dst)
244 {
245         u32 ac = 0;
246         int bits = 0;
247         int i;
248         u8 *bp = dst;
249
250         for (i = 0; i < srclen; i++) {
251                 const char *p = strchr(base64url_table, src[i]);
252
253                 if (p == NULL || src[i] == 0)
254                         return -1;
255                 ac = (ac << 6) | (p - base64url_table);
256                 bits += 6;
257                 if (bits >= 8) {
258                         bits -= 8;
259                         *bp++ = (u8)(ac >> bits);
260                 }
261         }
262         if (ac & ((1 << bits) - 1))
263                 return -1;
264         return bp - dst;
265 }
266
267 bool fscrypt_fname_encrypted_size(const union fscrypt_policy *policy,
268                                   u32 orig_len, u32 max_len,
269                                   u32 *encrypted_len_ret)
270 {
271         int padding = 4 << (fscrypt_policy_flags(policy) &
272                             FSCRYPT_POLICY_FLAGS_PAD_MASK);
273         u32 encrypted_len;
274
275         if (orig_len > max_len)
276                 return false;
277         encrypted_len = max_t(u32, orig_len, FSCRYPT_FNAME_MIN_MSG_LEN);
278         encrypted_len = round_up(encrypted_len, padding);
279         *encrypted_len_ret = min(encrypted_len, max_len);
280         return true;
281 }
282
283 /**
284  * fscrypt_fname_alloc_buffer() - allocate a buffer for presented filenames
285  * @max_encrypted_len: maximum length of encrypted filenames the buffer will be
286  *                     used to present
287  * @crypto_str: (output) buffer to allocate
288  *
289  * Allocate a buffer that is large enough to hold any decrypted or encoded
290  * filename (null-terminated), for the given maximum encrypted filename length.
291  *
292  * Return: 0 on success, -errno on failure
293  */
294 int fscrypt_fname_alloc_buffer(u32 max_encrypted_len,
295                                struct fscrypt_str *crypto_str)
296 {
297         u32 max_presented_len = max_t(u32, FSCRYPT_NOKEY_NAME_MAX_ENCODED,
298                                       max_encrypted_len);
299
300         crypto_str->name = kmalloc(max_presented_len + 1, GFP_NOFS);
301         if (!crypto_str->name)
302                 return -ENOMEM;
303         crypto_str->len = max_presented_len;
304         return 0;
305 }
306 EXPORT_SYMBOL(fscrypt_fname_alloc_buffer);
307
308 /**
309  * fscrypt_fname_free_buffer() - free a buffer for presented filenames
310  * @crypto_str: the buffer to free
311  *
312  * Free a buffer that was allocated by fscrypt_fname_alloc_buffer().
313  */
314 void fscrypt_fname_free_buffer(struct fscrypt_str *crypto_str)
315 {
316         if (!crypto_str)
317                 return;
318         kfree(crypto_str->name);
319         crypto_str->name = NULL;
320 }
321 EXPORT_SYMBOL(fscrypt_fname_free_buffer);
322
323 /**
324  * fscrypt_fname_disk_to_usr() - convert an encrypted filename to
325  *                               user-presentable form
326  * @inode: inode of the parent directory (for regular filenames)
327  *         or of the symlink (for symlink targets)
328  * @hash: first part of the name's dirhash, if applicable.  This only needs to
329  *        be provided if the filename is located in an indexed directory whose
330  *        encryption key may be unavailable.  Not needed for symlink targets.
331  * @minor_hash: second part of the name's dirhash, if applicable
332  * @iname: encrypted filename to convert.  May also be "." or "..", which
333  *         aren't actually encrypted.
334  * @oname: output buffer for the user-presentable filename.  The caller must
335  *         have allocated enough space for this, e.g. using
336  *         fscrypt_fname_alloc_buffer().
337  *
338  * If the key is available, we'll decrypt the disk name.  Otherwise, we'll
339  * encode it for presentation in fscrypt_nokey_name format.
340  * See struct fscrypt_nokey_name for details.
341  *
342  * Return: 0 on success, -errno on failure
343  */
344 int fscrypt_fname_disk_to_usr(const struct inode *inode,
345                               u32 hash, u32 minor_hash,
346                               const struct fscrypt_str *iname,
347                               struct fscrypt_str *oname)
348 {
349         const struct qstr qname = FSTR_TO_QSTR(iname);
350         struct fscrypt_nokey_name nokey_name;
351         u32 size; /* size of the unencoded no-key name */
352
353         if (fscrypt_is_dot_dotdot(&qname)) {
354                 oname->name[0] = '.';
355                 oname->name[iname->len - 1] = '.';
356                 oname->len = iname->len;
357                 return 0;
358         }
359
360         if (iname->len < FSCRYPT_FNAME_MIN_MSG_LEN)
361                 return -EUCLEAN;
362
363         if (fscrypt_has_encryption_key(inode))
364                 return fname_decrypt(inode, iname, oname);
365
366         /*
367          * Sanity check that struct fscrypt_nokey_name doesn't have padding
368          * between fields and that its encoded size never exceeds NAME_MAX.
369          */
370         BUILD_BUG_ON(offsetofend(struct fscrypt_nokey_name, dirhash) !=
371                      offsetof(struct fscrypt_nokey_name, bytes));
372         BUILD_BUG_ON(offsetofend(struct fscrypt_nokey_name, bytes) !=
373                      offsetof(struct fscrypt_nokey_name, sha256));
374         BUILD_BUG_ON(FSCRYPT_NOKEY_NAME_MAX_ENCODED > NAME_MAX);
375
376         nokey_name.dirhash[0] = hash;
377         nokey_name.dirhash[1] = minor_hash;
378
379         if (iname->len <= sizeof(nokey_name.bytes)) {
380                 memcpy(nokey_name.bytes, iname->name, iname->len);
381                 size = offsetof(struct fscrypt_nokey_name, bytes[iname->len]);
382         } else {
383                 memcpy(nokey_name.bytes, iname->name, sizeof(nokey_name.bytes));
384                 /* Compute strong hash of remaining part of name. */
385                 sha256(&iname->name[sizeof(nokey_name.bytes)],
386                        iname->len - sizeof(nokey_name.bytes),
387                        nokey_name.sha256);
388                 size = FSCRYPT_NOKEY_NAME_MAX;
389         }
390         oname->len = fscrypt_base64url_encode((const u8 *)&nokey_name, size,
391                                               oname->name);
392         return 0;
393 }
394 EXPORT_SYMBOL(fscrypt_fname_disk_to_usr);
395
396 /**
397  * fscrypt_setup_filename() - prepare to search a possibly encrypted directory
398  * @dir: the directory that will be searched
399  * @iname: the user-provided filename being searched for
400  * @lookup: 1 if we're allowed to proceed without the key because it's
401  *      ->lookup() or we're finding the dir_entry for deletion; 0 if we cannot
402  *      proceed without the key because we're going to create the dir_entry.
403  * @fname: the filename information to be filled in
404  *
405  * Given a user-provided filename @iname, this function sets @fname->disk_name
406  * to the name that would be stored in the on-disk directory entry, if possible.
407  * If the directory is unencrypted this is simply @iname.  Else, if we have the
408  * directory's encryption key, then @iname is the plaintext, so we encrypt it to
409  * get the disk_name.
410  *
411  * Else, for keyless @lookup operations, @iname should be a no-key name, so we
412  * decode it to get the struct fscrypt_nokey_name.  Non-@lookup operations will
413  * be impossible in this case, so we fail them with ENOKEY.
414  *
415  * If successful, fscrypt_free_filename() must be called later to clean up.
416  *
417  * Return: 0 on success, -errno on failure
418  */
419 int fscrypt_setup_filename(struct inode *dir, const struct qstr *iname,
420                               int lookup, struct fscrypt_name *fname)
421 {
422         struct fscrypt_nokey_name *nokey_name;
423         int ret;
424
425         memset(fname, 0, sizeof(struct fscrypt_name));
426         fname->usr_fname = iname;
427
428         if (!IS_ENCRYPTED(dir) || fscrypt_is_dot_dotdot(iname)) {
429                 fname->disk_name.name = (unsigned char *)iname->name;
430                 fname->disk_name.len = iname->len;
431                 return 0;
432         }
433         ret = fscrypt_get_encryption_info(dir, lookup);
434         if (ret)
435                 return ret;
436
437         if (fscrypt_has_encryption_key(dir)) {
438                 if (!fscrypt_fname_encrypted_size(&dir->i_crypt_info->ci_policy,
439                                                   iname->len, NAME_MAX,
440                                                   &fname->crypto_buf.len))
441                         return -ENAMETOOLONG;
442                 fname->crypto_buf.name = kmalloc(fname->crypto_buf.len,
443                                                  GFP_NOFS);
444                 if (!fname->crypto_buf.name)
445                         return -ENOMEM;
446
447                 ret = fscrypt_fname_encrypt(dir, iname, fname->crypto_buf.name,
448                                             fname->crypto_buf.len);
449                 if (ret)
450                         goto errout;
451                 fname->disk_name.name = fname->crypto_buf.name;
452                 fname->disk_name.len = fname->crypto_buf.len;
453                 return 0;
454         }
455         if (!lookup)
456                 return -ENOKEY;
457         fname->is_nokey_name = true;
458
459         /*
460          * We don't have the key and we are doing a lookup; decode the
461          * user-supplied name
462          */
463
464         if (iname->len > FSCRYPT_NOKEY_NAME_MAX_ENCODED)
465                 return -ENOENT;
466
467         fname->crypto_buf.name = kmalloc(FSCRYPT_NOKEY_NAME_MAX, GFP_KERNEL);
468         if (fname->crypto_buf.name == NULL)
469                 return -ENOMEM;
470
471         ret = fscrypt_base64url_decode(iname->name, iname->len,
472                                        fname->crypto_buf.name);
473         if (ret < (int)offsetof(struct fscrypt_nokey_name, bytes[1]) ||
474             (ret > offsetof(struct fscrypt_nokey_name, sha256) &&
475              ret != FSCRYPT_NOKEY_NAME_MAX)) {
476                 ret = -ENOENT;
477                 goto errout;
478         }
479         fname->crypto_buf.len = ret;
480
481         nokey_name = (void *)fname->crypto_buf.name;
482         fname->hash = nokey_name->dirhash[0];
483         fname->minor_hash = nokey_name->dirhash[1];
484         if (ret != FSCRYPT_NOKEY_NAME_MAX) {
485                 /* The full ciphertext filename is available. */
486                 fname->disk_name.name = nokey_name->bytes;
487                 fname->disk_name.len =
488                         ret - offsetof(struct fscrypt_nokey_name, bytes);
489         }
490         return 0;
491
492 errout:
493         kfree(fname->crypto_buf.name);
494         return ret;
495 }
496 EXPORT_SYMBOL(fscrypt_setup_filename);
497
498 /**
499  * fscrypt_match_name() - test whether the given name matches a directory entry
500  * @fname: the name being searched for
501  * @de_name: the name from the directory entry
502  * @de_name_len: the length of @de_name in bytes
503  *
504  * Normally @fname->disk_name will be set, and in that case we simply compare
505  * that to the name stored in the directory entry.  The only exception is that
506  * if we don't have the key for an encrypted directory and the name we're
507  * looking for is very long, then we won't have the full disk_name and instead
508  * we'll need to match against a fscrypt_nokey_name that includes a strong hash.
509  *
510  * Return: %true if the name matches, otherwise %false.
511  */
512 bool fscrypt_match_name(const struct fscrypt_name *fname,
513                         const u8 *de_name, u32 de_name_len)
514 {
515         const struct fscrypt_nokey_name *nokey_name =
516                 (const void *)fname->crypto_buf.name;
517         u8 digest[SHA256_DIGEST_SIZE];
518
519         if (likely(fname->disk_name.name)) {
520                 if (de_name_len != fname->disk_name.len)
521                         return false;
522                 return !memcmp(de_name, fname->disk_name.name, de_name_len);
523         }
524         if (de_name_len <= sizeof(nokey_name->bytes))
525                 return false;
526         if (memcmp(de_name, nokey_name->bytes, sizeof(nokey_name->bytes)))
527                 return false;
528         sha256(&de_name[sizeof(nokey_name->bytes)],
529                de_name_len - sizeof(nokey_name->bytes), digest);
530         return !memcmp(digest, nokey_name->sha256, sizeof(digest));
531 }
532 EXPORT_SYMBOL_GPL(fscrypt_match_name);
533
534 /**
535  * fscrypt_fname_siphash() - calculate the SipHash of a filename
536  * @dir: the parent directory
537  * @name: the filename to calculate the SipHash of
538  *
539  * Given a plaintext filename @name and a directory @dir which uses SipHash as
540  * its dirhash method and has had its fscrypt key set up, this function
541  * calculates the SipHash of that name using the directory's secret dirhash key.
542  *
543  * Return: the SipHash of @name using the hash key of @dir
544  */
545 u64 fscrypt_fname_siphash(const struct inode *dir, const struct qstr *name)
546 {
547         const struct fscrypt_info *ci = dir->i_crypt_info;
548
549         WARN_ON(!ci->ci_dirhash_key_initialized);
550
551         return siphash(name->name, name->len, &ci->ci_dirhash_key);
552 }
553 EXPORT_SYMBOL_GPL(fscrypt_fname_siphash);
554
555 /*
556  * Validate dentries in encrypted directories to make sure we aren't potentially
557  * caching stale dentries after a key has been added.
558  */
559 int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags)
560 {
561         struct dentry *dir;
562         int err;
563         int valid;
564
565         /*
566          * Plaintext names are always valid, since fscrypt doesn't support
567          * reverting to no-key names without evicting the directory's inode
568          * -- which implies eviction of the dentries in the directory.
569          */
570         if (!(dentry->d_flags & DCACHE_NOKEY_NAME))
571                 return 1;
572
573         /*
574          * No-key name; valid if the directory's key is still unavailable.
575          *
576          * Although fscrypt forbids rename() on no-key names, we still must use
577          * dget_parent() here rather than use ->d_parent directly.  That's
578          * because a corrupted fs image may contain directory hard links, which
579          * the VFS handles by moving the directory's dentry tree in the dcache
580          * each time ->lookup() finds the directory and it already has a dentry
581          * elsewhere.  Thus ->d_parent can be changing, and we must safely grab
582          * a reference to some ->d_parent to prevent it from being freed.
583          */
584
585         if (flags & LOOKUP_RCU)
586                 return -ECHILD;
587
588         dir = dget_parent(dentry);
589         /*
590          * Pass allow_unsupported=true, so that files with an unsupported
591          * encryption policy can be deleted.
592          */
593         err = fscrypt_get_encryption_info(d_inode(dir), true);
594         valid = !fscrypt_has_encryption_key(d_inode(dir));
595         dput(dir);
596
597         if (err < 0)
598                 return err;
599
600         return valid;
601 }
602 EXPORT_SYMBOL_GPL(fscrypt_d_revalidate);