fs: move locking sysctls where they are used
[linux-2.6-microblaze.git] / fs / coredump.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/slab.h>
3 #include <linux/file.h>
4 #include <linux/fdtable.h>
5 #include <linux/freezer.h>
6 #include <linux/mm.h>
7 #include <linux/stat.h>
8 #include <linux/fcntl.h>
9 #include <linux/swap.h>
10 #include <linux/ctype.h>
11 #include <linux/string.h>
12 #include <linux/init.h>
13 #include <linux/pagemap.h>
14 #include <linux/perf_event.h>
15 #include <linux/highmem.h>
16 #include <linux/spinlock.h>
17 #include <linux/key.h>
18 #include <linux/personality.h>
19 #include <linux/binfmts.h>
20 #include <linux/coredump.h>
21 #include <linux/sched/coredump.h>
22 #include <linux/sched/signal.h>
23 #include <linux/sched/task_stack.h>
24 #include <linux/utsname.h>
25 #include <linux/pid_namespace.h>
26 #include <linux/module.h>
27 #include <linux/namei.h>
28 #include <linux/mount.h>
29 #include <linux/security.h>
30 #include <linux/syscalls.h>
31 #include <linux/tsacct_kern.h>
32 #include <linux/cn_proc.h>
33 #include <linux/audit.h>
34 #include <linux/tracehook.h>
35 #include <linux/kmod.h>
36 #include <linux/fsnotify.h>
37 #include <linux/fs_struct.h>
38 #include <linux/pipe_fs_i.h>
39 #include <linux/oom.h>
40 #include <linux/compat.h>
41 #include <linux/fs.h>
42 #include <linux/path.h>
43 #include <linux/timekeeping.h>
44
45 #include <linux/uaccess.h>
46 #include <asm/mmu_context.h>
47 #include <asm/tlb.h>
48 #include <asm/exec.h>
49
50 #include <trace/events/task.h>
51 #include "internal.h"
52
53 #include <trace/events/sched.h>
54
55 int core_uses_pid;
56 unsigned int core_pipe_limit;
57 char core_pattern[CORENAME_MAX_SIZE] = "core";
58 static int core_name_size = CORENAME_MAX_SIZE;
59
60 struct core_name {
61         char *corename;
62         int used, size;
63 };
64
65 /* The maximal length of core_pattern is also specified in sysctl.c */
66
67 static int expand_corename(struct core_name *cn, int size)
68 {
69         char *corename = krealloc(cn->corename, size, GFP_KERNEL);
70
71         if (!corename)
72                 return -ENOMEM;
73
74         if (size > core_name_size) /* racy but harmless */
75                 core_name_size = size;
76
77         cn->size = ksize(corename);
78         cn->corename = corename;
79         return 0;
80 }
81
82 static __printf(2, 0) int cn_vprintf(struct core_name *cn, const char *fmt,
83                                      va_list arg)
84 {
85         int free, need;
86         va_list arg_copy;
87
88 again:
89         free = cn->size - cn->used;
90
91         va_copy(arg_copy, arg);
92         need = vsnprintf(cn->corename + cn->used, free, fmt, arg_copy);
93         va_end(arg_copy);
94
95         if (need < free) {
96                 cn->used += need;
97                 return 0;
98         }
99
100         if (!expand_corename(cn, cn->size + need - free + 1))
101                 goto again;
102
103         return -ENOMEM;
104 }
105
106 static __printf(2, 3) int cn_printf(struct core_name *cn, const char *fmt, ...)
107 {
108         va_list arg;
109         int ret;
110
111         va_start(arg, fmt);
112         ret = cn_vprintf(cn, fmt, arg);
113         va_end(arg);
114
115         return ret;
116 }
117
118 static __printf(2, 3)
119 int cn_esc_printf(struct core_name *cn, const char *fmt, ...)
120 {
121         int cur = cn->used;
122         va_list arg;
123         int ret;
124
125         va_start(arg, fmt);
126         ret = cn_vprintf(cn, fmt, arg);
127         va_end(arg);
128
129         if (ret == 0) {
130                 /*
131                  * Ensure that this coredump name component can't cause the
132                  * resulting corefile path to consist of a ".." or ".".
133                  */
134                 if ((cn->used - cur == 1 && cn->corename[cur] == '.') ||
135                                 (cn->used - cur == 2 && cn->corename[cur] == '.'
136                                 && cn->corename[cur+1] == '.'))
137                         cn->corename[cur] = '!';
138
139                 /*
140                  * Empty names are fishy and could be used to create a "//" in a
141                  * corefile name, causing the coredump to happen one directory
142                  * level too high. Enforce that all components of the core
143                  * pattern are at least one character long.
144                  */
145                 if (cn->used == cur)
146                         ret = cn_printf(cn, "!");
147         }
148
149         for (; cur < cn->used; ++cur) {
150                 if (cn->corename[cur] == '/')
151                         cn->corename[cur] = '!';
152         }
153         return ret;
154 }
155
156 static int cn_print_exe_file(struct core_name *cn, bool name_only)
157 {
158         struct file *exe_file;
159         char *pathbuf, *path, *ptr;
160         int ret;
161
162         exe_file = get_mm_exe_file(current->mm);
163         if (!exe_file)
164                 return cn_esc_printf(cn, "%s (path unknown)", current->comm);
165
166         pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
167         if (!pathbuf) {
168                 ret = -ENOMEM;
169                 goto put_exe_file;
170         }
171
172         path = file_path(exe_file, pathbuf, PATH_MAX);
173         if (IS_ERR(path)) {
174                 ret = PTR_ERR(path);
175                 goto free_buf;
176         }
177
178         if (name_only) {
179                 ptr = strrchr(path, '/');
180                 if (ptr)
181                         path = ptr + 1;
182         }
183         ret = cn_esc_printf(cn, "%s", path);
184
185 free_buf:
186         kfree(pathbuf);
187 put_exe_file:
188         fput(exe_file);
189         return ret;
190 }
191
192 /* format_corename will inspect the pattern parameter, and output a
193  * name into corename, which must have space for at least
194  * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
195  */
196 static int format_corename(struct core_name *cn, struct coredump_params *cprm,
197                            size_t **argv, int *argc)
198 {
199         const struct cred *cred = current_cred();
200         const char *pat_ptr = core_pattern;
201         int ispipe = (*pat_ptr == '|');
202         bool was_space = false;
203         int pid_in_pattern = 0;
204         int err = 0;
205
206         cn->used = 0;
207         cn->corename = NULL;
208         if (expand_corename(cn, core_name_size))
209                 return -ENOMEM;
210         cn->corename[0] = '\0';
211
212         if (ispipe) {
213                 int argvs = sizeof(core_pattern) / 2;
214                 (*argv) = kmalloc_array(argvs, sizeof(**argv), GFP_KERNEL);
215                 if (!(*argv))
216                         return -ENOMEM;
217                 (*argv)[(*argc)++] = 0;
218                 ++pat_ptr;
219                 if (!(*pat_ptr))
220                         return -ENOMEM;
221         }
222
223         /* Repeat as long as we have more pattern to process and more output
224            space */
225         while (*pat_ptr) {
226                 /*
227                  * Split on spaces before doing template expansion so that
228                  * %e and %E don't get split if they have spaces in them
229                  */
230                 if (ispipe) {
231                         if (isspace(*pat_ptr)) {
232                                 if (cn->used != 0)
233                                         was_space = true;
234                                 pat_ptr++;
235                                 continue;
236                         } else if (was_space) {
237                                 was_space = false;
238                                 err = cn_printf(cn, "%c", '\0');
239                                 if (err)
240                                         return err;
241                                 (*argv)[(*argc)++] = cn->used;
242                         }
243                 }
244                 if (*pat_ptr != '%') {
245                         err = cn_printf(cn, "%c", *pat_ptr++);
246                 } else {
247                         switch (*++pat_ptr) {
248                         /* single % at the end, drop that */
249                         case 0:
250                                 goto out;
251                         /* Double percent, output one percent */
252                         case '%':
253                                 err = cn_printf(cn, "%c", '%');
254                                 break;
255                         /* pid */
256                         case 'p':
257                                 pid_in_pattern = 1;
258                                 err = cn_printf(cn, "%d",
259                                               task_tgid_vnr(current));
260                                 break;
261                         /* global pid */
262                         case 'P':
263                                 err = cn_printf(cn, "%d",
264                                               task_tgid_nr(current));
265                                 break;
266                         case 'i':
267                                 err = cn_printf(cn, "%d",
268                                               task_pid_vnr(current));
269                                 break;
270                         case 'I':
271                                 err = cn_printf(cn, "%d",
272                                               task_pid_nr(current));
273                                 break;
274                         /* uid */
275                         case 'u':
276                                 err = cn_printf(cn, "%u",
277                                                 from_kuid(&init_user_ns,
278                                                           cred->uid));
279                                 break;
280                         /* gid */
281                         case 'g':
282                                 err = cn_printf(cn, "%u",
283                                                 from_kgid(&init_user_ns,
284                                                           cred->gid));
285                                 break;
286                         case 'd':
287                                 err = cn_printf(cn, "%d",
288                                         __get_dumpable(cprm->mm_flags));
289                                 break;
290                         /* signal that caused the coredump */
291                         case 's':
292                                 err = cn_printf(cn, "%d",
293                                                 cprm->siginfo->si_signo);
294                                 break;
295                         /* UNIX time of coredump */
296                         case 't': {
297                                 time64_t time;
298
299                                 time = ktime_get_real_seconds();
300                                 err = cn_printf(cn, "%lld", time);
301                                 break;
302                         }
303                         /* hostname */
304                         case 'h':
305                                 down_read(&uts_sem);
306                                 err = cn_esc_printf(cn, "%s",
307                                               utsname()->nodename);
308                                 up_read(&uts_sem);
309                                 break;
310                         /* executable, could be changed by prctl PR_SET_NAME etc */
311                         case 'e':
312                                 err = cn_esc_printf(cn, "%s", current->comm);
313                                 break;
314                         /* file name of executable */
315                         case 'f':
316                                 err = cn_print_exe_file(cn, true);
317                                 break;
318                         case 'E':
319                                 err = cn_print_exe_file(cn, false);
320                                 break;
321                         /* core limit size */
322                         case 'c':
323                                 err = cn_printf(cn, "%lu",
324                                               rlimit(RLIMIT_CORE));
325                                 break;
326                         default:
327                                 break;
328                         }
329                         ++pat_ptr;
330                 }
331
332                 if (err)
333                         return err;
334         }
335
336 out:
337         /* Backward compatibility with core_uses_pid:
338          *
339          * If core_pattern does not include a %p (as is the default)
340          * and core_uses_pid is set, then .%pid will be appended to
341          * the filename. Do not do this for piped commands. */
342         if (!ispipe && !pid_in_pattern && core_uses_pid) {
343                 err = cn_printf(cn, ".%d", task_tgid_vnr(current));
344                 if (err)
345                         return err;
346         }
347         return ispipe;
348 }
349
350 static int zap_process(struct task_struct *start, int exit_code)
351 {
352         struct task_struct *t;
353         int nr = 0;
354
355         /* ignore all signals except SIGKILL, see prepare_signal() */
356         start->signal->flags = SIGNAL_GROUP_EXIT;
357         start->signal->group_exit_code = exit_code;
358         start->signal->group_stop_count = 0;
359
360         for_each_thread(start, t) {
361                 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
362                 if (t != current && !(t->flags & PF_POSTCOREDUMP)) {
363                         sigaddset(&t->pending.signal, SIGKILL);
364                         signal_wake_up(t, 1);
365                         nr++;
366                 }
367         }
368
369         return nr;
370 }
371
372 static int zap_threads(struct task_struct *tsk,
373                         struct core_state *core_state, int exit_code)
374 {
375         struct signal_struct *signal = tsk->signal;
376         int nr = -EAGAIN;
377
378         spin_lock_irq(&tsk->sighand->siglock);
379         if (!(signal->flags & SIGNAL_GROUP_EXIT) && !signal->group_exec_task) {
380                 signal->core_state = core_state;
381                 nr = zap_process(tsk, exit_code);
382                 clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
383                 tsk->flags |= PF_DUMPCORE;
384                 atomic_set(&core_state->nr_threads, nr);
385         }
386         spin_unlock_irq(&tsk->sighand->siglock);
387         return nr;
388 }
389
390 static int coredump_wait(int exit_code, struct core_state *core_state)
391 {
392         struct task_struct *tsk = current;
393         int core_waiters = -EBUSY;
394
395         init_completion(&core_state->startup);
396         core_state->dumper.task = tsk;
397         core_state->dumper.next = NULL;
398
399         core_waiters = zap_threads(tsk, core_state, exit_code);
400         if (core_waiters > 0) {
401                 struct core_thread *ptr;
402
403                 freezer_do_not_count();
404                 wait_for_completion(&core_state->startup);
405                 freezer_count();
406                 /*
407                  * Wait for all the threads to become inactive, so that
408                  * all the thread context (extended register state, like
409                  * fpu etc) gets copied to the memory.
410                  */
411                 ptr = core_state->dumper.next;
412                 while (ptr != NULL) {
413                         wait_task_inactive(ptr->task, 0);
414                         ptr = ptr->next;
415                 }
416         }
417
418         return core_waiters;
419 }
420
421 static void coredump_finish(bool core_dumped)
422 {
423         struct core_thread *curr, *next;
424         struct task_struct *task;
425
426         spin_lock_irq(&current->sighand->siglock);
427         if (core_dumped && !__fatal_signal_pending(current))
428                 current->signal->group_exit_code |= 0x80;
429         next = current->signal->core_state->dumper.next;
430         current->signal->core_state = NULL;
431         spin_unlock_irq(&current->sighand->siglock);
432
433         while ((curr = next) != NULL) {
434                 next = curr->next;
435                 task = curr->task;
436                 /*
437                  * see coredump_task_exit(), curr->task must not see
438                  * ->task == NULL before we read ->next.
439                  */
440                 smp_mb();
441                 curr->task = NULL;
442                 wake_up_process(task);
443         }
444 }
445
446 static bool dump_interrupted(void)
447 {
448         /*
449          * SIGKILL or freezing() interrupt the coredumping. Perhaps we
450          * can do try_to_freeze() and check __fatal_signal_pending(),
451          * but then we need to teach dump_write() to restart and clear
452          * TIF_SIGPENDING.
453          */
454         return fatal_signal_pending(current) || freezing(current);
455 }
456
457 static void wait_for_dump_helpers(struct file *file)
458 {
459         struct pipe_inode_info *pipe = file->private_data;
460
461         pipe_lock(pipe);
462         pipe->readers++;
463         pipe->writers--;
464         wake_up_interruptible_sync(&pipe->rd_wait);
465         kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
466         pipe_unlock(pipe);
467
468         /*
469          * We actually want wait_event_freezable() but then we need
470          * to clear TIF_SIGPENDING and improve dump_interrupted().
471          */
472         wait_event_interruptible(pipe->rd_wait, pipe->readers == 1);
473
474         pipe_lock(pipe);
475         pipe->readers--;
476         pipe->writers++;
477         pipe_unlock(pipe);
478 }
479
480 /*
481  * umh_pipe_setup
482  * helper function to customize the process used
483  * to collect the core in userspace.  Specifically
484  * it sets up a pipe and installs it as fd 0 (stdin)
485  * for the process.  Returns 0 on success, or
486  * PTR_ERR on failure.
487  * Note that it also sets the core limit to 1.  This
488  * is a special value that we use to trap recursive
489  * core dumps
490  */
491 static int umh_pipe_setup(struct subprocess_info *info, struct cred *new)
492 {
493         struct file *files[2];
494         struct coredump_params *cp = (struct coredump_params *)info->data;
495         int err = create_pipe_files(files, 0);
496         if (err)
497                 return err;
498
499         cp->file = files[1];
500
501         err = replace_fd(0, files[0], 0);
502         fput(files[0]);
503         /* and disallow core files too */
504         current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1};
505
506         return err;
507 }
508
509 void do_coredump(const kernel_siginfo_t *siginfo)
510 {
511         struct core_state core_state;
512         struct core_name cn;
513         struct mm_struct *mm = current->mm;
514         struct linux_binfmt * binfmt;
515         const struct cred *old_cred;
516         struct cred *cred;
517         int retval = 0;
518         int ispipe;
519         size_t *argv = NULL;
520         int argc = 0;
521         /* require nonrelative corefile path and be extra careful */
522         bool need_suid_safe = false;
523         bool core_dumped = false;
524         static atomic_t core_dump_count = ATOMIC_INIT(0);
525         struct coredump_params cprm = {
526                 .siginfo = siginfo,
527                 .regs = signal_pt_regs(),
528                 .limit = rlimit(RLIMIT_CORE),
529                 /*
530                  * We must use the same mm->flags while dumping core to avoid
531                  * inconsistency of bit flags, since this flag is not protected
532                  * by any locks.
533                  */
534                 .mm_flags = mm->flags,
535         };
536
537         audit_core_dumps(siginfo->si_signo);
538
539         binfmt = mm->binfmt;
540         if (!binfmt || !binfmt->core_dump)
541                 goto fail;
542         if (!__get_dumpable(cprm.mm_flags))
543                 goto fail;
544
545         cred = prepare_creds();
546         if (!cred)
547                 goto fail;
548         /*
549          * We cannot trust fsuid as being the "true" uid of the process
550          * nor do we know its entire history. We only know it was tainted
551          * so we dump it as root in mode 2, and only into a controlled
552          * environment (pipe handler or fully qualified path).
553          */
554         if (__get_dumpable(cprm.mm_flags) == SUID_DUMP_ROOT) {
555                 /* Setuid core dump mode */
556                 cred->fsuid = GLOBAL_ROOT_UID;  /* Dump root private */
557                 need_suid_safe = true;
558         }
559
560         retval = coredump_wait(siginfo->si_signo, &core_state);
561         if (retval < 0)
562                 goto fail_creds;
563
564         old_cred = override_creds(cred);
565
566         ispipe = format_corename(&cn, &cprm, &argv, &argc);
567
568         if (ispipe) {
569                 int argi;
570                 int dump_count;
571                 char **helper_argv;
572                 struct subprocess_info *sub_info;
573
574                 if (ispipe < 0) {
575                         printk(KERN_WARNING "format_corename failed\n");
576                         printk(KERN_WARNING "Aborting core\n");
577                         goto fail_unlock;
578                 }
579
580                 if (cprm.limit == 1) {
581                         /* See umh_pipe_setup() which sets RLIMIT_CORE = 1.
582                          *
583                          * Normally core limits are irrelevant to pipes, since
584                          * we're not writing to the file system, but we use
585                          * cprm.limit of 1 here as a special value, this is a
586                          * consistent way to catch recursive crashes.
587                          * We can still crash if the core_pattern binary sets
588                          * RLIM_CORE = !1, but it runs as root, and can do
589                          * lots of stupid things.
590                          *
591                          * Note that we use task_tgid_vnr here to grab the pid
592                          * of the process group leader.  That way we get the
593                          * right pid if a thread in a multi-threaded
594                          * core_pattern process dies.
595                          */
596                         printk(KERN_WARNING
597                                 "Process %d(%s) has RLIMIT_CORE set to 1\n",
598                                 task_tgid_vnr(current), current->comm);
599                         printk(KERN_WARNING "Aborting core\n");
600                         goto fail_unlock;
601                 }
602                 cprm.limit = RLIM_INFINITY;
603
604                 dump_count = atomic_inc_return(&core_dump_count);
605                 if (core_pipe_limit && (core_pipe_limit < dump_count)) {
606                         printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
607                                task_tgid_vnr(current), current->comm);
608                         printk(KERN_WARNING "Skipping core dump\n");
609                         goto fail_dropcount;
610                 }
611
612                 helper_argv = kmalloc_array(argc + 1, sizeof(*helper_argv),
613                                             GFP_KERNEL);
614                 if (!helper_argv) {
615                         printk(KERN_WARNING "%s failed to allocate memory\n",
616                                __func__);
617                         goto fail_dropcount;
618                 }
619                 for (argi = 0; argi < argc; argi++)
620                         helper_argv[argi] = cn.corename + argv[argi];
621                 helper_argv[argi] = NULL;
622
623                 retval = -ENOMEM;
624                 sub_info = call_usermodehelper_setup(helper_argv[0],
625                                                 helper_argv, NULL, GFP_KERNEL,
626                                                 umh_pipe_setup, NULL, &cprm);
627                 if (sub_info)
628                         retval = call_usermodehelper_exec(sub_info,
629                                                           UMH_WAIT_EXEC);
630
631                 kfree(helper_argv);
632                 if (retval) {
633                         printk(KERN_INFO "Core dump to |%s pipe failed\n",
634                                cn.corename);
635                         goto close_fail;
636                 }
637         } else {
638                 struct user_namespace *mnt_userns;
639                 struct inode *inode;
640                 int open_flags = O_CREAT | O_RDWR | O_NOFOLLOW |
641                                  O_LARGEFILE | O_EXCL;
642
643                 if (cprm.limit < binfmt->min_coredump)
644                         goto fail_unlock;
645
646                 if (need_suid_safe && cn.corename[0] != '/') {
647                         printk(KERN_WARNING "Pid %d(%s) can only dump core "\
648                                 "to fully qualified path!\n",
649                                 task_tgid_vnr(current), current->comm);
650                         printk(KERN_WARNING "Skipping core dump\n");
651                         goto fail_unlock;
652                 }
653
654                 /*
655                  * Unlink the file if it exists unless this is a SUID
656                  * binary - in that case, we're running around with root
657                  * privs and don't want to unlink another user's coredump.
658                  */
659                 if (!need_suid_safe) {
660                         /*
661                          * If it doesn't exist, that's fine. If there's some
662                          * other problem, we'll catch it at the filp_open().
663                          */
664                         do_unlinkat(AT_FDCWD, getname_kernel(cn.corename));
665                 }
666
667                 /*
668                  * There is a race between unlinking and creating the
669                  * file, but if that causes an EEXIST here, that's
670                  * fine - another process raced with us while creating
671                  * the corefile, and the other process won. To userspace,
672                  * what matters is that at least one of the two processes
673                  * writes its coredump successfully, not which one.
674                  */
675                 if (need_suid_safe) {
676                         /*
677                          * Using user namespaces, normal user tasks can change
678                          * their current->fs->root to point to arbitrary
679                          * directories. Since the intention of the "only dump
680                          * with a fully qualified path" rule is to control where
681                          * coredumps may be placed using root privileges,
682                          * current->fs->root must not be used. Instead, use the
683                          * root directory of init_task.
684                          */
685                         struct path root;
686
687                         task_lock(&init_task);
688                         get_fs_root(init_task.fs, &root);
689                         task_unlock(&init_task);
690                         cprm.file = file_open_root(&root, cn.corename,
691                                                    open_flags, 0600);
692                         path_put(&root);
693                 } else {
694                         cprm.file = filp_open(cn.corename, open_flags, 0600);
695                 }
696                 if (IS_ERR(cprm.file))
697                         goto fail_unlock;
698
699                 inode = file_inode(cprm.file);
700                 if (inode->i_nlink > 1)
701                         goto close_fail;
702                 if (d_unhashed(cprm.file->f_path.dentry))
703                         goto close_fail;
704                 /*
705                  * AK: actually i see no reason to not allow this for named
706                  * pipes etc, but keep the previous behaviour for now.
707                  */
708                 if (!S_ISREG(inode->i_mode))
709                         goto close_fail;
710                 /*
711                  * Don't dump core if the filesystem changed owner or mode
712                  * of the file during file creation. This is an issue when
713                  * a process dumps core while its cwd is e.g. on a vfat
714                  * filesystem.
715                  */
716                 mnt_userns = file_mnt_user_ns(cprm.file);
717                 if (!uid_eq(i_uid_into_mnt(mnt_userns, inode),
718                             current_fsuid())) {
719                         pr_info_ratelimited("Core dump to %s aborted: cannot preserve file owner\n",
720                                             cn.corename);
721                         goto close_fail;
722                 }
723                 if ((inode->i_mode & 0677) != 0600) {
724                         pr_info_ratelimited("Core dump to %s aborted: cannot preserve file permissions\n",
725                                             cn.corename);
726                         goto close_fail;
727                 }
728                 if (!(cprm.file->f_mode & FMODE_CAN_WRITE))
729                         goto close_fail;
730                 if (do_truncate(mnt_userns, cprm.file->f_path.dentry,
731                                 0, 0, cprm.file))
732                         goto close_fail;
733         }
734
735         /* get us an unshared descriptor table; almost always a no-op */
736         /* The cell spufs coredump code reads the file descriptor tables */
737         retval = unshare_files();
738         if (retval)
739                 goto close_fail;
740         if (!dump_interrupted()) {
741                 /*
742                  * umh disabled with CONFIG_STATIC_USERMODEHELPER_PATH="" would
743                  * have this set to NULL.
744                  */
745                 if (!cprm.file) {
746                         pr_info("Core dump to |%s disabled\n", cn.corename);
747                         goto close_fail;
748                 }
749                 file_start_write(cprm.file);
750                 core_dumped = binfmt->core_dump(&cprm);
751                 /*
752                  * Ensures that file size is big enough to contain the current
753                  * file postion. This prevents gdb from complaining about
754                  * a truncated file if the last "write" to the file was
755                  * dump_skip.
756                  */
757                 if (cprm.to_skip) {
758                         cprm.to_skip--;
759                         dump_emit(&cprm, "", 1);
760                 }
761                 file_end_write(cprm.file);
762         }
763         if (ispipe && core_pipe_limit)
764                 wait_for_dump_helpers(cprm.file);
765 close_fail:
766         if (cprm.file)
767                 filp_close(cprm.file, NULL);
768 fail_dropcount:
769         if (ispipe)
770                 atomic_dec(&core_dump_count);
771 fail_unlock:
772         kfree(argv);
773         kfree(cn.corename);
774         coredump_finish(core_dumped);
775         revert_creds(old_cred);
776 fail_creds:
777         put_cred(cred);
778 fail:
779         return;
780 }
781
782 /*
783  * Core dumping helper functions.  These are the only things you should
784  * do on a core-file: use only these functions to write out all the
785  * necessary info.
786  */
787 static int __dump_emit(struct coredump_params *cprm, const void *addr, int nr)
788 {
789         struct file *file = cprm->file;
790         loff_t pos = file->f_pos;
791         ssize_t n;
792         if (cprm->written + nr > cprm->limit)
793                 return 0;
794
795
796         if (dump_interrupted())
797                 return 0;
798         n = __kernel_write(file, addr, nr, &pos);
799         if (n != nr)
800                 return 0;
801         file->f_pos = pos;
802         cprm->written += n;
803         cprm->pos += n;
804
805         return 1;
806 }
807
808 static int __dump_skip(struct coredump_params *cprm, size_t nr)
809 {
810         static char zeroes[PAGE_SIZE];
811         struct file *file = cprm->file;
812         if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
813                 if (dump_interrupted() ||
814                     file->f_op->llseek(file, nr, SEEK_CUR) < 0)
815                         return 0;
816                 cprm->pos += nr;
817                 return 1;
818         } else {
819                 while (nr > PAGE_SIZE) {
820                         if (!__dump_emit(cprm, zeroes, PAGE_SIZE))
821                                 return 0;
822                         nr -= PAGE_SIZE;
823                 }
824                 return __dump_emit(cprm, zeroes, nr);
825         }
826 }
827
828 int dump_emit(struct coredump_params *cprm, const void *addr, int nr)
829 {
830         if (cprm->to_skip) {
831                 if (!__dump_skip(cprm, cprm->to_skip))
832                         return 0;
833                 cprm->to_skip = 0;
834         }
835         return __dump_emit(cprm, addr, nr);
836 }
837 EXPORT_SYMBOL(dump_emit);
838
839 void dump_skip_to(struct coredump_params *cprm, unsigned long pos)
840 {
841         cprm->to_skip = pos - cprm->pos;
842 }
843 EXPORT_SYMBOL(dump_skip_to);
844
845 void dump_skip(struct coredump_params *cprm, size_t nr)
846 {
847         cprm->to_skip += nr;
848 }
849 EXPORT_SYMBOL(dump_skip);
850
851 #ifdef CONFIG_ELF_CORE
852 int dump_user_range(struct coredump_params *cprm, unsigned long start,
853                     unsigned long len)
854 {
855         unsigned long addr;
856
857         for (addr = start; addr < start + len; addr += PAGE_SIZE) {
858                 struct page *page;
859                 int stop;
860
861                 /*
862                  * To avoid having to allocate page tables for virtual address
863                  * ranges that have never been used yet, and also to make it
864                  * easy to generate sparse core files, use a helper that returns
865                  * NULL when encountering an empty page table entry that would
866                  * otherwise have been filled with the zero page.
867                  */
868                 page = get_dump_page(addr);
869                 if (page) {
870                         void *kaddr = kmap_local_page(page);
871
872                         stop = !dump_emit(cprm, kaddr, PAGE_SIZE);
873                         kunmap_local(kaddr);
874                         put_page(page);
875                         if (stop)
876                                 return 0;
877                 } else {
878                         dump_skip(cprm, PAGE_SIZE);
879                 }
880         }
881         return 1;
882 }
883 #endif
884
885 int dump_align(struct coredump_params *cprm, int align)
886 {
887         unsigned mod = (cprm->pos + cprm->to_skip) & (align - 1);
888         if (align & (align - 1))
889                 return 0;
890         if (mod)
891                 cprm->to_skip += align - mod;
892         return 1;
893 }
894 EXPORT_SYMBOL(dump_align);
895
896 /*
897  * The purpose of always_dump_vma() is to make sure that special kernel mappings
898  * that are useful for post-mortem analysis are included in every core dump.
899  * In that way we ensure that the core dump is fully interpretable later
900  * without matching up the same kernel and hardware config to see what PC values
901  * meant. These special mappings include - vDSO, vsyscall, and other
902  * architecture specific mappings
903  */
904 static bool always_dump_vma(struct vm_area_struct *vma)
905 {
906         /* Any vsyscall mappings? */
907         if (vma == get_gate_vma(vma->vm_mm))
908                 return true;
909
910         /*
911          * Assume that all vmas with a .name op should always be dumped.
912          * If this changes, a new vm_ops field can easily be added.
913          */
914         if (vma->vm_ops && vma->vm_ops->name && vma->vm_ops->name(vma))
915                 return true;
916
917         /*
918          * arch_vma_name() returns non-NULL for special architecture mappings,
919          * such as vDSO sections.
920          */
921         if (arch_vma_name(vma))
922                 return true;
923
924         return false;
925 }
926
927 /*
928  * Decide how much of @vma's contents should be included in a core dump.
929  */
930 static unsigned long vma_dump_size(struct vm_area_struct *vma,
931                                    unsigned long mm_flags)
932 {
933 #define FILTER(type)    (mm_flags & (1UL << MMF_DUMP_##type))
934
935         /* always dump the vdso and vsyscall sections */
936         if (always_dump_vma(vma))
937                 goto whole;
938
939         if (vma->vm_flags & VM_DONTDUMP)
940                 return 0;
941
942         /* support for DAX */
943         if (vma_is_dax(vma)) {
944                 if ((vma->vm_flags & VM_SHARED) && FILTER(DAX_SHARED))
945                         goto whole;
946                 if (!(vma->vm_flags & VM_SHARED) && FILTER(DAX_PRIVATE))
947                         goto whole;
948                 return 0;
949         }
950
951         /* Hugetlb memory check */
952         if (is_vm_hugetlb_page(vma)) {
953                 if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED))
954                         goto whole;
955                 if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE))
956                         goto whole;
957                 return 0;
958         }
959
960         /* Do not dump I/O mapped devices or special mappings */
961         if (vma->vm_flags & VM_IO)
962                 return 0;
963
964         /* By default, dump shared memory if mapped from an anonymous file. */
965         if (vma->vm_flags & VM_SHARED) {
966                 if (file_inode(vma->vm_file)->i_nlink == 0 ?
967                     FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED))
968                         goto whole;
969                 return 0;
970         }
971
972         /* Dump segments that have been written to.  */
973         if ((!IS_ENABLED(CONFIG_MMU) || vma->anon_vma) && FILTER(ANON_PRIVATE))
974                 goto whole;
975         if (vma->vm_file == NULL)
976                 return 0;
977
978         if (FILTER(MAPPED_PRIVATE))
979                 goto whole;
980
981         /*
982          * If this is the beginning of an executable file mapping,
983          * dump the first page to aid in determining what was mapped here.
984          */
985         if (FILTER(ELF_HEADERS) &&
986             vma->vm_pgoff == 0 && (vma->vm_flags & VM_READ) &&
987             (READ_ONCE(file_inode(vma->vm_file)->i_mode) & 0111) != 0)
988                 return PAGE_SIZE;
989
990 #undef  FILTER
991
992         return 0;
993
994 whole:
995         return vma->vm_end - vma->vm_start;
996 }
997
998 static struct vm_area_struct *first_vma(struct task_struct *tsk,
999                                         struct vm_area_struct *gate_vma)
1000 {
1001         struct vm_area_struct *ret = tsk->mm->mmap;
1002
1003         if (ret)
1004                 return ret;
1005         return gate_vma;
1006 }
1007
1008 /*
1009  * Helper function for iterating across a vma list.  It ensures that the caller
1010  * will visit `gate_vma' prior to terminating the search.
1011  */
1012 static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma,
1013                                        struct vm_area_struct *gate_vma)
1014 {
1015         struct vm_area_struct *ret;
1016
1017         ret = this_vma->vm_next;
1018         if (ret)
1019                 return ret;
1020         if (this_vma == gate_vma)
1021                 return NULL;
1022         return gate_vma;
1023 }
1024
1025 /*
1026  * Under the mmap_lock, take a snapshot of relevant information about the task's
1027  * VMAs.
1028  */
1029 int dump_vma_snapshot(struct coredump_params *cprm, int *vma_count,
1030                       struct core_vma_metadata **vma_meta,
1031                       size_t *vma_data_size_ptr)
1032 {
1033         struct vm_area_struct *vma, *gate_vma;
1034         struct mm_struct *mm = current->mm;
1035         int i;
1036         size_t vma_data_size = 0;
1037
1038         /*
1039          * Once the stack expansion code is fixed to not change VMA bounds
1040          * under mmap_lock in read mode, this can be changed to take the
1041          * mmap_lock in read mode.
1042          */
1043         if (mmap_write_lock_killable(mm))
1044                 return -EINTR;
1045
1046         gate_vma = get_gate_vma(mm);
1047         *vma_count = mm->map_count + (gate_vma ? 1 : 0);
1048
1049         *vma_meta = kvmalloc_array(*vma_count, sizeof(**vma_meta), GFP_KERNEL);
1050         if (!*vma_meta) {
1051                 mmap_write_unlock(mm);
1052                 return -ENOMEM;
1053         }
1054
1055         for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
1056                         vma = next_vma(vma, gate_vma), i++) {
1057                 struct core_vma_metadata *m = (*vma_meta) + i;
1058
1059                 m->start = vma->vm_start;
1060                 m->end = vma->vm_end;
1061                 m->flags = vma->vm_flags;
1062                 m->dump_size = vma_dump_size(vma, cprm->mm_flags);
1063
1064                 vma_data_size += m->dump_size;
1065         }
1066
1067         mmap_write_unlock(mm);
1068
1069         if (WARN_ON(i != *vma_count)) {
1070                 kvfree(*vma_meta);
1071                 return -EFAULT;
1072         }
1073
1074         *vma_data_size_ptr = vma_data_size;
1075         return 0;
1076 }