parisc/unaligned: Rewrite inline assembly of emulate_ldh()
[linux-2.6-microblaze.git] / fs / coredump.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/slab.h>
3 #include <linux/file.h>
4 #include <linux/fdtable.h>
5 #include <linux/freezer.h>
6 #include <linux/mm.h>
7 #include <linux/stat.h>
8 #include <linux/fcntl.h>
9 #include <linux/swap.h>
10 #include <linux/ctype.h>
11 #include <linux/string.h>
12 #include <linux/init.h>
13 #include <linux/pagemap.h>
14 #include <linux/perf_event.h>
15 #include <linux/highmem.h>
16 #include <linux/spinlock.h>
17 #include <linux/key.h>
18 #include <linux/personality.h>
19 #include <linux/binfmts.h>
20 #include <linux/coredump.h>
21 #include <linux/sched/coredump.h>
22 #include <linux/sched/signal.h>
23 #include <linux/sched/task_stack.h>
24 #include <linux/utsname.h>
25 #include <linux/pid_namespace.h>
26 #include <linux/module.h>
27 #include <linux/namei.h>
28 #include <linux/mount.h>
29 #include <linux/security.h>
30 #include <linux/syscalls.h>
31 #include <linux/tsacct_kern.h>
32 #include <linux/cn_proc.h>
33 #include <linux/audit.h>
34 #include <linux/tracehook.h>
35 #include <linux/kmod.h>
36 #include <linux/fsnotify.h>
37 #include <linux/fs_struct.h>
38 #include <linux/pipe_fs_i.h>
39 #include <linux/oom.h>
40 #include <linux/compat.h>
41 #include <linux/fs.h>
42 #include <linux/path.h>
43 #include <linux/timekeeping.h>
44 #include <linux/sysctl.h>
45
46 #include <linux/uaccess.h>
47 #include <asm/mmu_context.h>
48 #include <asm/tlb.h>
49 #include <asm/exec.h>
50
51 #include <trace/events/task.h>
52 #include "internal.h"
53
54 #include <trace/events/sched.h>
55
56 static int core_uses_pid;
57 static unsigned int core_pipe_limit;
58 static char core_pattern[CORENAME_MAX_SIZE] = "core";
59 static int core_name_size = CORENAME_MAX_SIZE;
60
61 struct core_name {
62         char *corename;
63         int used, size;
64 };
65
66 static int expand_corename(struct core_name *cn, int size)
67 {
68         char *corename = krealloc(cn->corename, size, GFP_KERNEL);
69
70         if (!corename)
71                 return -ENOMEM;
72
73         if (size > core_name_size) /* racy but harmless */
74                 core_name_size = size;
75
76         cn->size = ksize(corename);
77         cn->corename = corename;
78         return 0;
79 }
80
81 static __printf(2, 0) int cn_vprintf(struct core_name *cn, const char *fmt,
82                                      va_list arg)
83 {
84         int free, need;
85         va_list arg_copy;
86
87 again:
88         free = cn->size - cn->used;
89
90         va_copy(arg_copy, arg);
91         need = vsnprintf(cn->corename + cn->used, free, fmt, arg_copy);
92         va_end(arg_copy);
93
94         if (need < free) {
95                 cn->used += need;
96                 return 0;
97         }
98
99         if (!expand_corename(cn, cn->size + need - free + 1))
100                 goto again;
101
102         return -ENOMEM;
103 }
104
105 static __printf(2, 3) int cn_printf(struct core_name *cn, const char *fmt, ...)
106 {
107         va_list arg;
108         int ret;
109
110         va_start(arg, fmt);
111         ret = cn_vprintf(cn, fmt, arg);
112         va_end(arg);
113
114         return ret;
115 }
116
117 static __printf(2, 3)
118 int cn_esc_printf(struct core_name *cn, const char *fmt, ...)
119 {
120         int cur = cn->used;
121         va_list arg;
122         int ret;
123
124         va_start(arg, fmt);
125         ret = cn_vprintf(cn, fmt, arg);
126         va_end(arg);
127
128         if (ret == 0) {
129                 /*
130                  * Ensure that this coredump name component can't cause the
131                  * resulting corefile path to consist of a ".." or ".".
132                  */
133                 if ((cn->used - cur == 1 && cn->corename[cur] == '.') ||
134                                 (cn->used - cur == 2 && cn->corename[cur] == '.'
135                                 && cn->corename[cur+1] == '.'))
136                         cn->corename[cur] = '!';
137
138                 /*
139                  * Empty names are fishy and could be used to create a "//" in a
140                  * corefile name, causing the coredump to happen one directory
141                  * level too high. Enforce that all components of the core
142                  * pattern are at least one character long.
143                  */
144                 if (cn->used == cur)
145                         ret = cn_printf(cn, "!");
146         }
147
148         for (; cur < cn->used; ++cur) {
149                 if (cn->corename[cur] == '/')
150                         cn->corename[cur] = '!';
151         }
152         return ret;
153 }
154
155 static int cn_print_exe_file(struct core_name *cn, bool name_only)
156 {
157         struct file *exe_file;
158         char *pathbuf, *path, *ptr;
159         int ret;
160
161         exe_file = get_mm_exe_file(current->mm);
162         if (!exe_file)
163                 return cn_esc_printf(cn, "%s (path unknown)", current->comm);
164
165         pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
166         if (!pathbuf) {
167                 ret = -ENOMEM;
168                 goto put_exe_file;
169         }
170
171         path = file_path(exe_file, pathbuf, PATH_MAX);
172         if (IS_ERR(path)) {
173                 ret = PTR_ERR(path);
174                 goto free_buf;
175         }
176
177         if (name_only) {
178                 ptr = strrchr(path, '/');
179                 if (ptr)
180                         path = ptr + 1;
181         }
182         ret = cn_esc_printf(cn, "%s", path);
183
184 free_buf:
185         kfree(pathbuf);
186 put_exe_file:
187         fput(exe_file);
188         return ret;
189 }
190
191 /* format_corename will inspect the pattern parameter, and output a
192  * name into corename, which must have space for at least
193  * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
194  */
195 static int format_corename(struct core_name *cn, struct coredump_params *cprm,
196                            size_t **argv, int *argc)
197 {
198         const struct cred *cred = current_cred();
199         const char *pat_ptr = core_pattern;
200         int ispipe = (*pat_ptr == '|');
201         bool was_space = false;
202         int pid_in_pattern = 0;
203         int err = 0;
204
205         cn->used = 0;
206         cn->corename = NULL;
207         if (expand_corename(cn, core_name_size))
208                 return -ENOMEM;
209         cn->corename[0] = '\0';
210
211         if (ispipe) {
212                 int argvs = sizeof(core_pattern) / 2;
213                 (*argv) = kmalloc_array(argvs, sizeof(**argv), GFP_KERNEL);
214                 if (!(*argv))
215                         return -ENOMEM;
216                 (*argv)[(*argc)++] = 0;
217                 ++pat_ptr;
218                 if (!(*pat_ptr))
219                         return -ENOMEM;
220         }
221
222         /* Repeat as long as we have more pattern to process and more output
223            space */
224         while (*pat_ptr) {
225                 /*
226                  * Split on spaces before doing template expansion so that
227                  * %e and %E don't get split if they have spaces in them
228                  */
229                 if (ispipe) {
230                         if (isspace(*pat_ptr)) {
231                                 if (cn->used != 0)
232                                         was_space = true;
233                                 pat_ptr++;
234                                 continue;
235                         } else if (was_space) {
236                                 was_space = false;
237                                 err = cn_printf(cn, "%c", '\0');
238                                 if (err)
239                                         return err;
240                                 (*argv)[(*argc)++] = cn->used;
241                         }
242                 }
243                 if (*pat_ptr != '%') {
244                         err = cn_printf(cn, "%c", *pat_ptr++);
245                 } else {
246                         switch (*++pat_ptr) {
247                         /* single % at the end, drop that */
248                         case 0:
249                                 goto out;
250                         /* Double percent, output one percent */
251                         case '%':
252                                 err = cn_printf(cn, "%c", '%');
253                                 break;
254                         /* pid */
255                         case 'p':
256                                 pid_in_pattern = 1;
257                                 err = cn_printf(cn, "%d",
258                                               task_tgid_vnr(current));
259                                 break;
260                         /* global pid */
261                         case 'P':
262                                 err = cn_printf(cn, "%d",
263                                               task_tgid_nr(current));
264                                 break;
265                         case 'i':
266                                 err = cn_printf(cn, "%d",
267                                               task_pid_vnr(current));
268                                 break;
269                         case 'I':
270                                 err = cn_printf(cn, "%d",
271                                               task_pid_nr(current));
272                                 break;
273                         /* uid */
274                         case 'u':
275                                 err = cn_printf(cn, "%u",
276                                                 from_kuid(&init_user_ns,
277                                                           cred->uid));
278                                 break;
279                         /* gid */
280                         case 'g':
281                                 err = cn_printf(cn, "%u",
282                                                 from_kgid(&init_user_ns,
283                                                           cred->gid));
284                                 break;
285                         case 'd':
286                                 err = cn_printf(cn, "%d",
287                                         __get_dumpable(cprm->mm_flags));
288                                 break;
289                         /* signal that caused the coredump */
290                         case 's':
291                                 err = cn_printf(cn, "%d",
292                                                 cprm->siginfo->si_signo);
293                                 break;
294                         /* UNIX time of coredump */
295                         case 't': {
296                                 time64_t time;
297
298                                 time = ktime_get_real_seconds();
299                                 err = cn_printf(cn, "%lld", time);
300                                 break;
301                         }
302                         /* hostname */
303                         case 'h':
304                                 down_read(&uts_sem);
305                                 err = cn_esc_printf(cn, "%s",
306                                               utsname()->nodename);
307                                 up_read(&uts_sem);
308                                 break;
309                         /* executable, could be changed by prctl PR_SET_NAME etc */
310                         case 'e':
311                                 err = cn_esc_printf(cn, "%s", current->comm);
312                                 break;
313                         /* file name of executable */
314                         case 'f':
315                                 err = cn_print_exe_file(cn, true);
316                                 break;
317                         case 'E':
318                                 err = cn_print_exe_file(cn, false);
319                                 break;
320                         /* core limit size */
321                         case 'c':
322                                 err = cn_printf(cn, "%lu",
323                                               rlimit(RLIMIT_CORE));
324                                 break;
325                         default:
326                                 break;
327                         }
328                         ++pat_ptr;
329                 }
330
331                 if (err)
332                         return err;
333         }
334
335 out:
336         /* Backward compatibility with core_uses_pid:
337          *
338          * If core_pattern does not include a %p (as is the default)
339          * and core_uses_pid is set, then .%pid will be appended to
340          * the filename. Do not do this for piped commands. */
341         if (!ispipe && !pid_in_pattern && core_uses_pid) {
342                 err = cn_printf(cn, ".%d", task_tgid_vnr(current));
343                 if (err)
344                         return err;
345         }
346         return ispipe;
347 }
348
349 static int zap_process(struct task_struct *start, int exit_code)
350 {
351         struct task_struct *t;
352         int nr = 0;
353
354         /* ignore all signals except SIGKILL, see prepare_signal() */
355         start->signal->flags = SIGNAL_GROUP_EXIT;
356         start->signal->group_exit_code = exit_code;
357         start->signal->group_stop_count = 0;
358
359         for_each_thread(start, t) {
360                 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
361                 if (t != current && !(t->flags & PF_POSTCOREDUMP)) {
362                         sigaddset(&t->pending.signal, SIGKILL);
363                         signal_wake_up(t, 1);
364                         nr++;
365                 }
366         }
367
368         return nr;
369 }
370
371 static int zap_threads(struct task_struct *tsk,
372                         struct core_state *core_state, int exit_code)
373 {
374         struct signal_struct *signal = tsk->signal;
375         int nr = -EAGAIN;
376
377         spin_lock_irq(&tsk->sighand->siglock);
378         if (!(signal->flags & SIGNAL_GROUP_EXIT) && !signal->group_exec_task) {
379                 signal->core_state = core_state;
380                 nr = zap_process(tsk, exit_code);
381                 clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
382                 tsk->flags |= PF_DUMPCORE;
383                 atomic_set(&core_state->nr_threads, nr);
384         }
385         spin_unlock_irq(&tsk->sighand->siglock);
386         return nr;
387 }
388
389 static int coredump_wait(int exit_code, struct core_state *core_state)
390 {
391         struct task_struct *tsk = current;
392         int core_waiters = -EBUSY;
393
394         init_completion(&core_state->startup);
395         core_state->dumper.task = tsk;
396         core_state->dumper.next = NULL;
397
398         core_waiters = zap_threads(tsk, core_state, exit_code);
399         if (core_waiters > 0) {
400                 struct core_thread *ptr;
401
402                 freezer_do_not_count();
403                 wait_for_completion(&core_state->startup);
404                 freezer_count();
405                 /*
406                  * Wait for all the threads to become inactive, so that
407                  * all the thread context (extended register state, like
408                  * fpu etc) gets copied to the memory.
409                  */
410                 ptr = core_state->dumper.next;
411                 while (ptr != NULL) {
412                         wait_task_inactive(ptr->task, 0);
413                         ptr = ptr->next;
414                 }
415         }
416
417         return core_waiters;
418 }
419
420 static void coredump_finish(bool core_dumped)
421 {
422         struct core_thread *curr, *next;
423         struct task_struct *task;
424
425         spin_lock_irq(&current->sighand->siglock);
426         if (core_dumped && !__fatal_signal_pending(current))
427                 current->signal->group_exit_code |= 0x80;
428         next = current->signal->core_state->dumper.next;
429         current->signal->core_state = NULL;
430         spin_unlock_irq(&current->sighand->siglock);
431
432         while ((curr = next) != NULL) {
433                 next = curr->next;
434                 task = curr->task;
435                 /*
436                  * see coredump_task_exit(), curr->task must not see
437                  * ->task == NULL before we read ->next.
438                  */
439                 smp_mb();
440                 curr->task = NULL;
441                 wake_up_process(task);
442         }
443 }
444
445 static bool dump_interrupted(void)
446 {
447         /*
448          * SIGKILL or freezing() interrupt the coredumping. Perhaps we
449          * can do try_to_freeze() and check __fatal_signal_pending(),
450          * but then we need to teach dump_write() to restart and clear
451          * TIF_SIGPENDING.
452          */
453         return fatal_signal_pending(current) || freezing(current);
454 }
455
456 static void wait_for_dump_helpers(struct file *file)
457 {
458         struct pipe_inode_info *pipe = file->private_data;
459
460         pipe_lock(pipe);
461         pipe->readers++;
462         pipe->writers--;
463         wake_up_interruptible_sync(&pipe->rd_wait);
464         kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
465         pipe_unlock(pipe);
466
467         /*
468          * We actually want wait_event_freezable() but then we need
469          * to clear TIF_SIGPENDING and improve dump_interrupted().
470          */
471         wait_event_interruptible(pipe->rd_wait, pipe->readers == 1);
472
473         pipe_lock(pipe);
474         pipe->readers--;
475         pipe->writers++;
476         pipe_unlock(pipe);
477 }
478
479 /*
480  * umh_pipe_setup
481  * helper function to customize the process used
482  * to collect the core in userspace.  Specifically
483  * it sets up a pipe and installs it as fd 0 (stdin)
484  * for the process.  Returns 0 on success, or
485  * PTR_ERR on failure.
486  * Note that it also sets the core limit to 1.  This
487  * is a special value that we use to trap recursive
488  * core dumps
489  */
490 static int umh_pipe_setup(struct subprocess_info *info, struct cred *new)
491 {
492         struct file *files[2];
493         struct coredump_params *cp = (struct coredump_params *)info->data;
494         int err = create_pipe_files(files, 0);
495         if (err)
496                 return err;
497
498         cp->file = files[1];
499
500         err = replace_fd(0, files[0], 0);
501         fput(files[0]);
502         /* and disallow core files too */
503         current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1};
504
505         return err;
506 }
507
508 void do_coredump(const kernel_siginfo_t *siginfo)
509 {
510         struct core_state core_state;
511         struct core_name cn;
512         struct mm_struct *mm = current->mm;
513         struct linux_binfmt * binfmt;
514         const struct cred *old_cred;
515         struct cred *cred;
516         int retval = 0;
517         int ispipe;
518         size_t *argv = NULL;
519         int argc = 0;
520         /* require nonrelative corefile path and be extra careful */
521         bool need_suid_safe = false;
522         bool core_dumped = false;
523         static atomic_t core_dump_count = ATOMIC_INIT(0);
524         struct coredump_params cprm = {
525                 .siginfo = siginfo,
526                 .regs = signal_pt_regs(),
527                 .limit = rlimit(RLIMIT_CORE),
528                 /*
529                  * We must use the same mm->flags while dumping core to avoid
530                  * inconsistency of bit flags, since this flag is not protected
531                  * by any locks.
532                  */
533                 .mm_flags = mm->flags,
534         };
535
536         audit_core_dumps(siginfo->si_signo);
537
538         binfmt = mm->binfmt;
539         if (!binfmt || !binfmt->core_dump)
540                 goto fail;
541         if (!__get_dumpable(cprm.mm_flags))
542                 goto fail;
543
544         cred = prepare_creds();
545         if (!cred)
546                 goto fail;
547         /*
548          * We cannot trust fsuid as being the "true" uid of the process
549          * nor do we know its entire history. We only know it was tainted
550          * so we dump it as root in mode 2, and only into a controlled
551          * environment (pipe handler or fully qualified path).
552          */
553         if (__get_dumpable(cprm.mm_flags) == SUID_DUMP_ROOT) {
554                 /* Setuid core dump mode */
555                 cred->fsuid = GLOBAL_ROOT_UID;  /* Dump root private */
556                 need_suid_safe = true;
557         }
558
559         retval = coredump_wait(siginfo->si_signo, &core_state);
560         if (retval < 0)
561                 goto fail_creds;
562
563         old_cred = override_creds(cred);
564
565         ispipe = format_corename(&cn, &cprm, &argv, &argc);
566
567         if (ispipe) {
568                 int argi;
569                 int dump_count;
570                 char **helper_argv;
571                 struct subprocess_info *sub_info;
572
573                 if (ispipe < 0) {
574                         printk(KERN_WARNING "format_corename failed\n");
575                         printk(KERN_WARNING "Aborting core\n");
576                         goto fail_unlock;
577                 }
578
579                 if (cprm.limit == 1) {
580                         /* See umh_pipe_setup() which sets RLIMIT_CORE = 1.
581                          *
582                          * Normally core limits are irrelevant to pipes, since
583                          * we're not writing to the file system, but we use
584                          * cprm.limit of 1 here as a special value, this is a
585                          * consistent way to catch recursive crashes.
586                          * We can still crash if the core_pattern binary sets
587                          * RLIM_CORE = !1, but it runs as root, and can do
588                          * lots of stupid things.
589                          *
590                          * Note that we use task_tgid_vnr here to grab the pid
591                          * of the process group leader.  That way we get the
592                          * right pid if a thread in a multi-threaded
593                          * core_pattern process dies.
594                          */
595                         printk(KERN_WARNING
596                                 "Process %d(%s) has RLIMIT_CORE set to 1\n",
597                                 task_tgid_vnr(current), current->comm);
598                         printk(KERN_WARNING "Aborting core\n");
599                         goto fail_unlock;
600                 }
601                 cprm.limit = RLIM_INFINITY;
602
603                 dump_count = atomic_inc_return(&core_dump_count);
604                 if (core_pipe_limit && (core_pipe_limit < dump_count)) {
605                         printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
606                                task_tgid_vnr(current), current->comm);
607                         printk(KERN_WARNING "Skipping core dump\n");
608                         goto fail_dropcount;
609                 }
610
611                 helper_argv = kmalloc_array(argc + 1, sizeof(*helper_argv),
612                                             GFP_KERNEL);
613                 if (!helper_argv) {
614                         printk(KERN_WARNING "%s failed to allocate memory\n",
615                                __func__);
616                         goto fail_dropcount;
617                 }
618                 for (argi = 0; argi < argc; argi++)
619                         helper_argv[argi] = cn.corename + argv[argi];
620                 helper_argv[argi] = NULL;
621
622                 retval = -ENOMEM;
623                 sub_info = call_usermodehelper_setup(helper_argv[0],
624                                                 helper_argv, NULL, GFP_KERNEL,
625                                                 umh_pipe_setup, NULL, &cprm);
626                 if (sub_info)
627                         retval = call_usermodehelper_exec(sub_info,
628                                                           UMH_WAIT_EXEC);
629
630                 kfree(helper_argv);
631                 if (retval) {
632                         printk(KERN_INFO "Core dump to |%s pipe failed\n",
633                                cn.corename);
634                         goto close_fail;
635                 }
636         } else {
637                 struct user_namespace *mnt_userns;
638                 struct inode *inode;
639                 int open_flags = O_CREAT | O_RDWR | O_NOFOLLOW |
640                                  O_LARGEFILE | O_EXCL;
641
642                 if (cprm.limit < binfmt->min_coredump)
643                         goto fail_unlock;
644
645                 if (need_suid_safe && cn.corename[0] != '/') {
646                         printk(KERN_WARNING "Pid %d(%s) can only dump core "\
647                                 "to fully qualified path!\n",
648                                 task_tgid_vnr(current), current->comm);
649                         printk(KERN_WARNING "Skipping core dump\n");
650                         goto fail_unlock;
651                 }
652
653                 /*
654                  * Unlink the file if it exists unless this is a SUID
655                  * binary - in that case, we're running around with root
656                  * privs and don't want to unlink another user's coredump.
657                  */
658                 if (!need_suid_safe) {
659                         /*
660                          * If it doesn't exist, that's fine. If there's some
661                          * other problem, we'll catch it at the filp_open().
662                          */
663                         do_unlinkat(AT_FDCWD, getname_kernel(cn.corename));
664                 }
665
666                 /*
667                  * There is a race between unlinking and creating the
668                  * file, but if that causes an EEXIST here, that's
669                  * fine - another process raced with us while creating
670                  * the corefile, and the other process won. To userspace,
671                  * what matters is that at least one of the two processes
672                  * writes its coredump successfully, not which one.
673                  */
674                 if (need_suid_safe) {
675                         /*
676                          * Using user namespaces, normal user tasks can change
677                          * their current->fs->root to point to arbitrary
678                          * directories. Since the intention of the "only dump
679                          * with a fully qualified path" rule is to control where
680                          * coredumps may be placed using root privileges,
681                          * current->fs->root must not be used. Instead, use the
682                          * root directory of init_task.
683                          */
684                         struct path root;
685
686                         task_lock(&init_task);
687                         get_fs_root(init_task.fs, &root);
688                         task_unlock(&init_task);
689                         cprm.file = file_open_root(&root, cn.corename,
690                                                    open_flags, 0600);
691                         path_put(&root);
692                 } else {
693                         cprm.file = filp_open(cn.corename, open_flags, 0600);
694                 }
695                 if (IS_ERR(cprm.file))
696                         goto fail_unlock;
697
698                 inode = file_inode(cprm.file);
699                 if (inode->i_nlink > 1)
700                         goto close_fail;
701                 if (d_unhashed(cprm.file->f_path.dentry))
702                         goto close_fail;
703                 /*
704                  * AK: actually i see no reason to not allow this for named
705                  * pipes etc, but keep the previous behaviour for now.
706                  */
707                 if (!S_ISREG(inode->i_mode))
708                         goto close_fail;
709                 /*
710                  * Don't dump core if the filesystem changed owner or mode
711                  * of the file during file creation. This is an issue when
712                  * a process dumps core while its cwd is e.g. on a vfat
713                  * filesystem.
714                  */
715                 mnt_userns = file_mnt_user_ns(cprm.file);
716                 if (!uid_eq(i_uid_into_mnt(mnt_userns, inode),
717                             current_fsuid())) {
718                         pr_info_ratelimited("Core dump to %s aborted: cannot preserve file owner\n",
719                                             cn.corename);
720                         goto close_fail;
721                 }
722                 if ((inode->i_mode & 0677) != 0600) {
723                         pr_info_ratelimited("Core dump to %s aborted: cannot preserve file permissions\n",
724                                             cn.corename);
725                         goto close_fail;
726                 }
727                 if (!(cprm.file->f_mode & FMODE_CAN_WRITE))
728                         goto close_fail;
729                 if (do_truncate(mnt_userns, cprm.file->f_path.dentry,
730                                 0, 0, cprm.file))
731                         goto close_fail;
732         }
733
734         /* get us an unshared descriptor table; almost always a no-op */
735         /* The cell spufs coredump code reads the file descriptor tables */
736         retval = unshare_files();
737         if (retval)
738                 goto close_fail;
739         if (!dump_interrupted()) {
740                 /*
741                  * umh disabled with CONFIG_STATIC_USERMODEHELPER_PATH="" would
742                  * have this set to NULL.
743                  */
744                 if (!cprm.file) {
745                         pr_info("Core dump to |%s disabled\n", cn.corename);
746                         goto close_fail;
747                 }
748                 file_start_write(cprm.file);
749                 core_dumped = binfmt->core_dump(&cprm);
750                 /*
751                  * Ensures that file size is big enough to contain the current
752                  * file postion. This prevents gdb from complaining about
753                  * a truncated file if the last "write" to the file was
754                  * dump_skip.
755                  */
756                 if (cprm.to_skip) {
757                         cprm.to_skip--;
758                         dump_emit(&cprm, "", 1);
759                 }
760                 file_end_write(cprm.file);
761         }
762         if (ispipe && core_pipe_limit)
763                 wait_for_dump_helpers(cprm.file);
764 close_fail:
765         if (cprm.file)
766                 filp_close(cprm.file, NULL);
767 fail_dropcount:
768         if (ispipe)
769                 atomic_dec(&core_dump_count);
770 fail_unlock:
771         kfree(argv);
772         kfree(cn.corename);
773         coredump_finish(core_dumped);
774         revert_creds(old_cred);
775 fail_creds:
776         put_cred(cred);
777 fail:
778         return;
779 }
780
781 /*
782  * Core dumping helper functions.  These are the only things you should
783  * do on a core-file: use only these functions to write out all the
784  * necessary info.
785  */
786 static int __dump_emit(struct coredump_params *cprm, const void *addr, int nr)
787 {
788         struct file *file = cprm->file;
789         loff_t pos = file->f_pos;
790         ssize_t n;
791         if (cprm->written + nr > cprm->limit)
792                 return 0;
793
794
795         if (dump_interrupted())
796                 return 0;
797         n = __kernel_write(file, addr, nr, &pos);
798         if (n != nr)
799                 return 0;
800         file->f_pos = pos;
801         cprm->written += n;
802         cprm->pos += n;
803
804         return 1;
805 }
806
807 static int __dump_skip(struct coredump_params *cprm, size_t nr)
808 {
809         static char zeroes[PAGE_SIZE];
810         struct file *file = cprm->file;
811         if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
812                 if (dump_interrupted() ||
813                     file->f_op->llseek(file, nr, SEEK_CUR) < 0)
814                         return 0;
815                 cprm->pos += nr;
816                 return 1;
817         } else {
818                 while (nr > PAGE_SIZE) {
819                         if (!__dump_emit(cprm, zeroes, PAGE_SIZE))
820                                 return 0;
821                         nr -= PAGE_SIZE;
822                 }
823                 return __dump_emit(cprm, zeroes, nr);
824         }
825 }
826
827 int dump_emit(struct coredump_params *cprm, const void *addr, int nr)
828 {
829         if (cprm->to_skip) {
830                 if (!__dump_skip(cprm, cprm->to_skip))
831                         return 0;
832                 cprm->to_skip = 0;
833         }
834         return __dump_emit(cprm, addr, nr);
835 }
836 EXPORT_SYMBOL(dump_emit);
837
838 void dump_skip_to(struct coredump_params *cprm, unsigned long pos)
839 {
840         cprm->to_skip = pos - cprm->pos;
841 }
842 EXPORT_SYMBOL(dump_skip_to);
843
844 void dump_skip(struct coredump_params *cprm, size_t nr)
845 {
846         cprm->to_skip += nr;
847 }
848 EXPORT_SYMBOL(dump_skip);
849
850 #ifdef CONFIG_ELF_CORE
851 int dump_user_range(struct coredump_params *cprm, unsigned long start,
852                     unsigned long len)
853 {
854         unsigned long addr;
855
856         for (addr = start; addr < start + len; addr += PAGE_SIZE) {
857                 struct page *page;
858                 int stop;
859
860                 /*
861                  * To avoid having to allocate page tables for virtual address
862                  * ranges that have never been used yet, and also to make it
863                  * easy to generate sparse core files, use a helper that returns
864                  * NULL when encountering an empty page table entry that would
865                  * otherwise have been filled with the zero page.
866                  */
867                 page = get_dump_page(addr);
868                 if (page) {
869                         void *kaddr = kmap_local_page(page);
870
871                         stop = !dump_emit(cprm, kaddr, PAGE_SIZE);
872                         kunmap_local(kaddr);
873                         put_page(page);
874                         if (stop)
875                                 return 0;
876                 } else {
877                         dump_skip(cprm, PAGE_SIZE);
878                 }
879         }
880         return 1;
881 }
882 #endif
883
884 int dump_align(struct coredump_params *cprm, int align)
885 {
886         unsigned mod = (cprm->pos + cprm->to_skip) & (align - 1);
887         if (align & (align - 1))
888                 return 0;
889         if (mod)
890                 cprm->to_skip += align - mod;
891         return 1;
892 }
893 EXPORT_SYMBOL(dump_align);
894
895 #ifdef CONFIG_SYSCTL
896
897 void validate_coredump_safety(void)
898 {
899         if (suid_dumpable == SUID_DUMP_ROOT &&
900             core_pattern[0] != '/' && core_pattern[0] != '|') {
901                 pr_warn(
902 "Unsafe core_pattern used with fs.suid_dumpable=2.\n"
903 "Pipe handler or fully qualified core dump path required.\n"
904 "Set kernel.core_pattern before fs.suid_dumpable.\n"
905                 );
906         }
907 }
908
909 static int proc_dostring_coredump(struct ctl_table *table, int write,
910                   void *buffer, size_t *lenp, loff_t *ppos)
911 {
912         int error = proc_dostring(table, write, buffer, lenp, ppos);
913
914         if (!error)
915                 validate_coredump_safety();
916         return error;
917 }
918
919 static struct ctl_table coredump_sysctls[] = {
920         {
921                 .procname       = "core_uses_pid",
922                 .data           = &core_uses_pid,
923                 .maxlen         = sizeof(int),
924                 .mode           = 0644,
925                 .proc_handler   = proc_dointvec,
926         },
927         {
928                 .procname       = "core_pattern",
929                 .data           = core_pattern,
930                 .maxlen         = CORENAME_MAX_SIZE,
931                 .mode           = 0644,
932                 .proc_handler   = proc_dostring_coredump,
933         },
934         {
935                 .procname       = "core_pipe_limit",
936                 .data           = &core_pipe_limit,
937                 .maxlen         = sizeof(unsigned int),
938                 .mode           = 0644,
939                 .proc_handler   = proc_dointvec,
940         },
941         { }
942 };
943
944 static int __init init_fs_coredump_sysctls(void)
945 {
946         register_sysctl_init("kernel", coredump_sysctls);
947         return 0;
948 }
949 fs_initcall(init_fs_coredump_sysctls);
950 #endif /* CONFIG_SYSCTL */
951
952 /*
953  * The purpose of always_dump_vma() is to make sure that special kernel mappings
954  * that are useful for post-mortem analysis are included in every core dump.
955  * In that way we ensure that the core dump is fully interpretable later
956  * without matching up the same kernel and hardware config to see what PC values
957  * meant. These special mappings include - vDSO, vsyscall, and other
958  * architecture specific mappings
959  */
960 static bool always_dump_vma(struct vm_area_struct *vma)
961 {
962         /* Any vsyscall mappings? */
963         if (vma == get_gate_vma(vma->vm_mm))
964                 return true;
965
966         /*
967          * Assume that all vmas with a .name op should always be dumped.
968          * If this changes, a new vm_ops field can easily be added.
969          */
970         if (vma->vm_ops && vma->vm_ops->name && vma->vm_ops->name(vma))
971                 return true;
972
973         /*
974          * arch_vma_name() returns non-NULL for special architecture mappings,
975          * such as vDSO sections.
976          */
977         if (arch_vma_name(vma))
978                 return true;
979
980         return false;
981 }
982
983 /*
984  * Decide how much of @vma's contents should be included in a core dump.
985  */
986 static unsigned long vma_dump_size(struct vm_area_struct *vma,
987                                    unsigned long mm_flags)
988 {
989 #define FILTER(type)    (mm_flags & (1UL << MMF_DUMP_##type))
990
991         /* always dump the vdso and vsyscall sections */
992         if (always_dump_vma(vma))
993                 goto whole;
994
995         if (vma->vm_flags & VM_DONTDUMP)
996                 return 0;
997
998         /* support for DAX */
999         if (vma_is_dax(vma)) {
1000                 if ((vma->vm_flags & VM_SHARED) && FILTER(DAX_SHARED))
1001                         goto whole;
1002                 if (!(vma->vm_flags & VM_SHARED) && FILTER(DAX_PRIVATE))
1003                         goto whole;
1004                 return 0;
1005         }
1006
1007         /* Hugetlb memory check */
1008         if (is_vm_hugetlb_page(vma)) {
1009                 if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED))
1010                         goto whole;
1011                 if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE))
1012                         goto whole;
1013                 return 0;
1014         }
1015
1016         /* Do not dump I/O mapped devices or special mappings */
1017         if (vma->vm_flags & VM_IO)
1018                 return 0;
1019
1020         /* By default, dump shared memory if mapped from an anonymous file. */
1021         if (vma->vm_flags & VM_SHARED) {
1022                 if (file_inode(vma->vm_file)->i_nlink == 0 ?
1023                     FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED))
1024                         goto whole;
1025                 return 0;
1026         }
1027
1028         /* Dump segments that have been written to.  */
1029         if ((!IS_ENABLED(CONFIG_MMU) || vma->anon_vma) && FILTER(ANON_PRIVATE))
1030                 goto whole;
1031         if (vma->vm_file == NULL)
1032                 return 0;
1033
1034         if (FILTER(MAPPED_PRIVATE))
1035                 goto whole;
1036
1037         /*
1038          * If this is the beginning of an executable file mapping,
1039          * dump the first page to aid in determining what was mapped here.
1040          */
1041         if (FILTER(ELF_HEADERS) &&
1042             vma->vm_pgoff == 0 && (vma->vm_flags & VM_READ) &&
1043             (READ_ONCE(file_inode(vma->vm_file)->i_mode) & 0111) != 0)
1044                 return PAGE_SIZE;
1045
1046 #undef  FILTER
1047
1048         return 0;
1049
1050 whole:
1051         return vma->vm_end - vma->vm_start;
1052 }
1053
1054 static struct vm_area_struct *first_vma(struct task_struct *tsk,
1055                                         struct vm_area_struct *gate_vma)
1056 {
1057         struct vm_area_struct *ret = tsk->mm->mmap;
1058
1059         if (ret)
1060                 return ret;
1061         return gate_vma;
1062 }
1063
1064 /*
1065  * Helper function for iterating across a vma list.  It ensures that the caller
1066  * will visit `gate_vma' prior to terminating the search.
1067  */
1068 static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma,
1069                                        struct vm_area_struct *gate_vma)
1070 {
1071         struct vm_area_struct *ret;
1072
1073         ret = this_vma->vm_next;
1074         if (ret)
1075                 return ret;
1076         if (this_vma == gate_vma)
1077                 return NULL;
1078         return gate_vma;
1079 }
1080
1081 /*
1082  * Under the mmap_lock, take a snapshot of relevant information about the task's
1083  * VMAs.
1084  */
1085 int dump_vma_snapshot(struct coredump_params *cprm, int *vma_count,
1086                       struct core_vma_metadata **vma_meta,
1087                       size_t *vma_data_size_ptr)
1088 {
1089         struct vm_area_struct *vma, *gate_vma;
1090         struct mm_struct *mm = current->mm;
1091         int i;
1092         size_t vma_data_size = 0;
1093
1094         /*
1095          * Once the stack expansion code is fixed to not change VMA bounds
1096          * under mmap_lock in read mode, this can be changed to take the
1097          * mmap_lock in read mode.
1098          */
1099         if (mmap_write_lock_killable(mm))
1100                 return -EINTR;
1101
1102         gate_vma = get_gate_vma(mm);
1103         *vma_count = mm->map_count + (gate_vma ? 1 : 0);
1104
1105         *vma_meta = kvmalloc_array(*vma_count, sizeof(**vma_meta), GFP_KERNEL);
1106         if (!*vma_meta) {
1107                 mmap_write_unlock(mm);
1108                 return -ENOMEM;
1109         }
1110
1111         for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
1112                         vma = next_vma(vma, gate_vma), i++) {
1113                 struct core_vma_metadata *m = (*vma_meta) + i;
1114
1115                 m->start = vma->vm_start;
1116                 m->end = vma->vm_end;
1117                 m->flags = vma->vm_flags;
1118                 m->dump_size = vma_dump_size(vma, cprm->mm_flags);
1119
1120                 vma_data_size += m->dump_size;
1121         }
1122
1123         mmap_write_unlock(mm);
1124
1125         if (WARN_ON(i != *vma_count)) {
1126                 kvfree(*vma_meta);
1127                 return -EFAULT;
1128         }
1129
1130         *vma_data_size_ptr = vma_data_size;
1131         return 0;
1132 }