Merge branches 'acpi-pm', 'acpi-processor', 'acpi-ec' and 'acpi-video'
[linux-2.6-microblaze.git] / fs / cifs / smbdirect.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *   Copyright (C) 2017, Microsoft Corporation.
4  *
5  *   Author(s): Long Li <longli@microsoft.com>
6  */
7 #include <linux/module.h>
8 #include <linux/highmem.h>
9 #include "smbdirect.h"
10 #include "cifs_debug.h"
11 #include "cifsproto.h"
12 #include "smb2proto.h"
13
14 static struct smbd_response *get_empty_queue_buffer(
15                 struct smbd_connection *info);
16 static struct smbd_response *get_receive_buffer(
17                 struct smbd_connection *info);
18 static void put_receive_buffer(
19                 struct smbd_connection *info,
20                 struct smbd_response *response);
21 static int allocate_receive_buffers(struct smbd_connection *info, int num_buf);
22 static void destroy_receive_buffers(struct smbd_connection *info);
23
24 static void put_empty_packet(
25                 struct smbd_connection *info, struct smbd_response *response);
26 static void enqueue_reassembly(
27                 struct smbd_connection *info,
28                 struct smbd_response *response, int data_length);
29 static struct smbd_response *_get_first_reassembly(
30                 struct smbd_connection *info);
31
32 static int smbd_post_recv(
33                 struct smbd_connection *info,
34                 struct smbd_response *response);
35
36 static int smbd_post_send_empty(struct smbd_connection *info);
37 static int smbd_post_send_data(
38                 struct smbd_connection *info,
39                 struct kvec *iov, int n_vec, int remaining_data_length);
40 static int smbd_post_send_page(struct smbd_connection *info,
41                 struct page *page, unsigned long offset,
42                 size_t size, int remaining_data_length);
43
44 static void destroy_mr_list(struct smbd_connection *info);
45 static int allocate_mr_list(struct smbd_connection *info);
46
47 /* SMBD version number */
48 #define SMBD_V1 0x0100
49
50 /* Port numbers for SMBD transport */
51 #define SMB_PORT        445
52 #define SMBD_PORT       5445
53
54 /* Address lookup and resolve timeout in ms */
55 #define RDMA_RESOLVE_TIMEOUT    5000
56
57 /* SMBD negotiation timeout in seconds */
58 #define SMBD_NEGOTIATE_TIMEOUT  120
59
60 /* SMBD minimum receive size and fragmented sized defined in [MS-SMBD] */
61 #define SMBD_MIN_RECEIVE_SIZE           128
62 #define SMBD_MIN_FRAGMENTED_SIZE        131072
63
64 /*
65  * Default maximum number of RDMA read/write outstanding on this connection
66  * This value is possibly decreased during QP creation on hardware limit
67  */
68 #define SMBD_CM_RESPONDER_RESOURCES     32
69
70 /* Maximum number of retries on data transfer operations */
71 #define SMBD_CM_RETRY                   6
72 /* No need to retry on Receiver Not Ready since SMBD manages credits */
73 #define SMBD_CM_RNR_RETRY               0
74
75 /*
76  * User configurable initial values per SMBD transport connection
77  * as defined in [MS-SMBD] 3.1.1.1
78  * Those may change after a SMBD negotiation
79  */
80 /* The local peer's maximum number of credits to grant to the peer */
81 int smbd_receive_credit_max = 255;
82
83 /* The remote peer's credit request of local peer */
84 int smbd_send_credit_target = 255;
85
86 /* The maximum single message size can be sent to remote peer */
87 int smbd_max_send_size = 1364;
88
89 /*  The maximum fragmented upper-layer payload receive size supported */
90 int smbd_max_fragmented_recv_size = 1024 * 1024;
91
92 /*  The maximum single-message size which can be received */
93 int smbd_max_receive_size = 1364;
94
95 /* The timeout to initiate send of a keepalive message on idle */
96 int smbd_keep_alive_interval = 120;
97
98 /*
99  * User configurable initial values for RDMA transport
100  * The actual values used may be lower and are limited to hardware capabilities
101  */
102 /* Default maximum number of pages in a single RDMA write/read */
103 int smbd_max_frmr_depth = 2048;
104
105 /* If payload is less than this byte, use RDMA send/recv not read/write */
106 int rdma_readwrite_threshold = 4096;
107
108 /* Transport logging functions
109  * Logging are defined as classes. They can be OR'ed to define the actual
110  * logging level via module parameter smbd_logging_class
111  * e.g. cifs.smbd_logging_class=0xa0 will log all log_rdma_recv() and
112  * log_rdma_event()
113  */
114 #define LOG_OUTGOING                    0x1
115 #define LOG_INCOMING                    0x2
116 #define LOG_READ                        0x4
117 #define LOG_WRITE                       0x8
118 #define LOG_RDMA_SEND                   0x10
119 #define LOG_RDMA_RECV                   0x20
120 #define LOG_KEEP_ALIVE                  0x40
121 #define LOG_RDMA_EVENT                  0x80
122 #define LOG_RDMA_MR                     0x100
123 static unsigned int smbd_logging_class;
124 module_param(smbd_logging_class, uint, 0644);
125 MODULE_PARM_DESC(smbd_logging_class,
126         "Logging class for SMBD transport 0x0 to 0x100");
127
128 #define ERR             0x0
129 #define INFO            0x1
130 static unsigned int smbd_logging_level = ERR;
131 module_param(smbd_logging_level, uint, 0644);
132 MODULE_PARM_DESC(smbd_logging_level,
133         "Logging level for SMBD transport, 0 (default): error, 1: info");
134
135 #define log_rdma(level, class, fmt, args...)                            \
136 do {                                                                    \
137         if (level <= smbd_logging_level || class & smbd_logging_class)  \
138                 cifs_dbg(VFS, "%s:%d " fmt, __func__, __LINE__, ##args);\
139 } while (0)
140
141 #define log_outgoing(level, fmt, args...) \
142                 log_rdma(level, LOG_OUTGOING, fmt, ##args)
143 #define log_incoming(level, fmt, args...) \
144                 log_rdma(level, LOG_INCOMING, fmt, ##args)
145 #define log_read(level, fmt, args...)   log_rdma(level, LOG_READ, fmt, ##args)
146 #define log_write(level, fmt, args...)  log_rdma(level, LOG_WRITE, fmt, ##args)
147 #define log_rdma_send(level, fmt, args...) \
148                 log_rdma(level, LOG_RDMA_SEND, fmt, ##args)
149 #define log_rdma_recv(level, fmt, args...) \
150                 log_rdma(level, LOG_RDMA_RECV, fmt, ##args)
151 #define log_keep_alive(level, fmt, args...) \
152                 log_rdma(level, LOG_KEEP_ALIVE, fmt, ##args)
153 #define log_rdma_event(level, fmt, args...) \
154                 log_rdma(level, LOG_RDMA_EVENT, fmt, ##args)
155 #define log_rdma_mr(level, fmt, args...) \
156                 log_rdma(level, LOG_RDMA_MR, fmt, ##args)
157
158 static void smbd_disconnect_rdma_work(struct work_struct *work)
159 {
160         struct smbd_connection *info =
161                 container_of(work, struct smbd_connection, disconnect_work);
162
163         if (info->transport_status == SMBD_CONNECTED) {
164                 info->transport_status = SMBD_DISCONNECTING;
165                 rdma_disconnect(info->id);
166         }
167 }
168
169 static void smbd_disconnect_rdma_connection(struct smbd_connection *info)
170 {
171         queue_work(info->workqueue, &info->disconnect_work);
172 }
173
174 /* Upcall from RDMA CM */
175 static int smbd_conn_upcall(
176                 struct rdma_cm_id *id, struct rdma_cm_event *event)
177 {
178         struct smbd_connection *info = id->context;
179
180         log_rdma_event(INFO, "event=%d status=%d\n",
181                 event->event, event->status);
182
183         switch (event->event) {
184         case RDMA_CM_EVENT_ADDR_RESOLVED:
185         case RDMA_CM_EVENT_ROUTE_RESOLVED:
186                 info->ri_rc = 0;
187                 complete(&info->ri_done);
188                 break;
189
190         case RDMA_CM_EVENT_ADDR_ERROR:
191                 info->ri_rc = -EHOSTUNREACH;
192                 complete(&info->ri_done);
193                 break;
194
195         case RDMA_CM_EVENT_ROUTE_ERROR:
196                 info->ri_rc = -ENETUNREACH;
197                 complete(&info->ri_done);
198                 break;
199
200         case RDMA_CM_EVENT_ESTABLISHED:
201                 log_rdma_event(INFO, "connected event=%d\n", event->event);
202                 info->transport_status = SMBD_CONNECTED;
203                 wake_up_interruptible(&info->conn_wait);
204                 break;
205
206         case RDMA_CM_EVENT_CONNECT_ERROR:
207         case RDMA_CM_EVENT_UNREACHABLE:
208         case RDMA_CM_EVENT_REJECTED:
209                 log_rdma_event(INFO, "connecting failed event=%d\n", event->event);
210                 info->transport_status = SMBD_DISCONNECTED;
211                 wake_up_interruptible(&info->conn_wait);
212                 break;
213
214         case RDMA_CM_EVENT_DEVICE_REMOVAL:
215         case RDMA_CM_EVENT_DISCONNECTED:
216                 /* This happenes when we fail the negotiation */
217                 if (info->transport_status == SMBD_NEGOTIATE_FAILED) {
218                         info->transport_status = SMBD_DISCONNECTED;
219                         wake_up(&info->conn_wait);
220                         break;
221                 }
222
223                 info->transport_status = SMBD_DISCONNECTED;
224                 wake_up_interruptible(&info->disconn_wait);
225                 wake_up_interruptible(&info->wait_reassembly_queue);
226                 wake_up_interruptible_all(&info->wait_send_queue);
227                 break;
228
229         default:
230                 break;
231         }
232
233         return 0;
234 }
235
236 /* Upcall from RDMA QP */
237 static void
238 smbd_qp_async_error_upcall(struct ib_event *event, void *context)
239 {
240         struct smbd_connection *info = context;
241
242         log_rdma_event(ERR, "%s on device %s info %p\n",
243                 ib_event_msg(event->event), event->device->name, info);
244
245         switch (event->event) {
246         case IB_EVENT_CQ_ERR:
247         case IB_EVENT_QP_FATAL:
248                 smbd_disconnect_rdma_connection(info);
249                 break;
250
251         default:
252                 break;
253         }
254 }
255
256 static inline void *smbd_request_payload(struct smbd_request *request)
257 {
258         return (void *)request->packet;
259 }
260
261 static inline void *smbd_response_payload(struct smbd_response *response)
262 {
263         return (void *)response->packet;
264 }
265
266 /* Called when a RDMA send is done */
267 static void send_done(struct ib_cq *cq, struct ib_wc *wc)
268 {
269         int i;
270         struct smbd_request *request =
271                 container_of(wc->wr_cqe, struct smbd_request, cqe);
272
273         log_rdma_send(INFO, "smbd_request 0x%p completed wc->status=%d\n",
274                 request, wc->status);
275
276         if (wc->status != IB_WC_SUCCESS || wc->opcode != IB_WC_SEND) {
277                 log_rdma_send(ERR, "wc->status=%d wc->opcode=%d\n",
278                         wc->status, wc->opcode);
279                 smbd_disconnect_rdma_connection(request->info);
280         }
281
282         for (i = 0; i < request->num_sge; i++)
283                 ib_dma_unmap_single(request->info->id->device,
284                         request->sge[i].addr,
285                         request->sge[i].length,
286                         DMA_TO_DEVICE);
287
288         if (atomic_dec_and_test(&request->info->send_pending))
289                 wake_up(&request->info->wait_send_pending);
290
291         wake_up(&request->info->wait_post_send);
292
293         mempool_free(request, request->info->request_mempool);
294 }
295
296 static void dump_smbd_negotiate_resp(struct smbd_negotiate_resp *resp)
297 {
298         log_rdma_event(INFO, "resp message min_version %u max_version %u negotiated_version %u credits_requested %u credits_granted %u status %u max_readwrite_size %u preferred_send_size %u max_receive_size %u max_fragmented_size %u\n",
299                        resp->min_version, resp->max_version,
300                        resp->negotiated_version, resp->credits_requested,
301                        resp->credits_granted, resp->status,
302                        resp->max_readwrite_size, resp->preferred_send_size,
303                        resp->max_receive_size, resp->max_fragmented_size);
304 }
305
306 /*
307  * Process a negotiation response message, according to [MS-SMBD]3.1.5.7
308  * response, packet_length: the negotiation response message
309  * return value: true if negotiation is a success, false if failed
310  */
311 static bool process_negotiation_response(
312                 struct smbd_response *response, int packet_length)
313 {
314         struct smbd_connection *info = response->info;
315         struct smbd_negotiate_resp *packet = smbd_response_payload(response);
316
317         if (packet_length < sizeof(struct smbd_negotiate_resp)) {
318                 log_rdma_event(ERR,
319                         "error: packet_length=%d\n", packet_length);
320                 return false;
321         }
322
323         if (le16_to_cpu(packet->negotiated_version) != SMBD_V1) {
324                 log_rdma_event(ERR, "error: negotiated_version=%x\n",
325                         le16_to_cpu(packet->negotiated_version));
326                 return false;
327         }
328         info->protocol = le16_to_cpu(packet->negotiated_version);
329
330         if (packet->credits_requested == 0) {
331                 log_rdma_event(ERR, "error: credits_requested==0\n");
332                 return false;
333         }
334         info->receive_credit_target = le16_to_cpu(packet->credits_requested);
335
336         if (packet->credits_granted == 0) {
337                 log_rdma_event(ERR, "error: credits_granted==0\n");
338                 return false;
339         }
340         atomic_set(&info->send_credits, le16_to_cpu(packet->credits_granted));
341
342         atomic_set(&info->receive_credits, 0);
343
344         if (le32_to_cpu(packet->preferred_send_size) > info->max_receive_size) {
345                 log_rdma_event(ERR, "error: preferred_send_size=%d\n",
346                         le32_to_cpu(packet->preferred_send_size));
347                 return false;
348         }
349         info->max_receive_size = le32_to_cpu(packet->preferred_send_size);
350
351         if (le32_to_cpu(packet->max_receive_size) < SMBD_MIN_RECEIVE_SIZE) {
352                 log_rdma_event(ERR, "error: max_receive_size=%d\n",
353                         le32_to_cpu(packet->max_receive_size));
354                 return false;
355         }
356         info->max_send_size = min_t(int, info->max_send_size,
357                                         le32_to_cpu(packet->max_receive_size));
358
359         if (le32_to_cpu(packet->max_fragmented_size) <
360                         SMBD_MIN_FRAGMENTED_SIZE) {
361                 log_rdma_event(ERR, "error: max_fragmented_size=%d\n",
362                         le32_to_cpu(packet->max_fragmented_size));
363                 return false;
364         }
365         info->max_fragmented_send_size =
366                 le32_to_cpu(packet->max_fragmented_size);
367         info->rdma_readwrite_threshold =
368                 rdma_readwrite_threshold > info->max_fragmented_send_size ?
369                 info->max_fragmented_send_size :
370                 rdma_readwrite_threshold;
371
372
373         info->max_readwrite_size = min_t(u32,
374                         le32_to_cpu(packet->max_readwrite_size),
375                         info->max_frmr_depth * PAGE_SIZE);
376         info->max_frmr_depth = info->max_readwrite_size / PAGE_SIZE;
377
378         return true;
379 }
380
381 static void smbd_post_send_credits(struct work_struct *work)
382 {
383         int ret = 0;
384         int use_receive_queue = 1;
385         int rc;
386         struct smbd_response *response;
387         struct smbd_connection *info =
388                 container_of(work, struct smbd_connection,
389                         post_send_credits_work);
390
391         if (info->transport_status != SMBD_CONNECTED) {
392                 wake_up(&info->wait_receive_queues);
393                 return;
394         }
395
396         if (info->receive_credit_target >
397                 atomic_read(&info->receive_credits)) {
398                 while (true) {
399                         if (use_receive_queue)
400                                 response = get_receive_buffer(info);
401                         else
402                                 response = get_empty_queue_buffer(info);
403                         if (!response) {
404                                 /* now switch to emtpy packet queue */
405                                 if (use_receive_queue) {
406                                         use_receive_queue = 0;
407                                         continue;
408                                 } else
409                                         break;
410                         }
411
412                         response->type = SMBD_TRANSFER_DATA;
413                         response->first_segment = false;
414                         rc = smbd_post_recv(info, response);
415                         if (rc) {
416                                 log_rdma_recv(ERR,
417                                         "post_recv failed rc=%d\n", rc);
418                                 put_receive_buffer(info, response);
419                                 break;
420                         }
421
422                         ret++;
423                 }
424         }
425
426         spin_lock(&info->lock_new_credits_offered);
427         info->new_credits_offered += ret;
428         spin_unlock(&info->lock_new_credits_offered);
429
430         /* Promptly send an immediate packet as defined in [MS-SMBD] 3.1.1.1 */
431         info->send_immediate = true;
432         if (atomic_read(&info->receive_credits) <
433                 info->receive_credit_target - 1) {
434                 if (info->keep_alive_requested == KEEP_ALIVE_PENDING ||
435                     info->send_immediate) {
436                         log_keep_alive(INFO, "send an empty message\n");
437                         smbd_post_send_empty(info);
438                 }
439         }
440 }
441
442 /* Called from softirq, when recv is done */
443 static void recv_done(struct ib_cq *cq, struct ib_wc *wc)
444 {
445         struct smbd_data_transfer *data_transfer;
446         struct smbd_response *response =
447                 container_of(wc->wr_cqe, struct smbd_response, cqe);
448         struct smbd_connection *info = response->info;
449         int data_length = 0;
450
451         log_rdma_recv(INFO, "response=0x%p type=%d wc status=%d wc opcode %d byte_len=%d pkey_index=%u\n",
452                       response, response->type, wc->status, wc->opcode,
453                       wc->byte_len, wc->pkey_index);
454
455         if (wc->status != IB_WC_SUCCESS || wc->opcode != IB_WC_RECV) {
456                 log_rdma_recv(INFO, "wc->status=%d opcode=%d\n",
457                         wc->status, wc->opcode);
458                 smbd_disconnect_rdma_connection(info);
459                 goto error;
460         }
461
462         ib_dma_sync_single_for_cpu(
463                 wc->qp->device,
464                 response->sge.addr,
465                 response->sge.length,
466                 DMA_FROM_DEVICE);
467
468         switch (response->type) {
469         /* SMBD negotiation response */
470         case SMBD_NEGOTIATE_RESP:
471                 dump_smbd_negotiate_resp(smbd_response_payload(response));
472                 info->full_packet_received = true;
473                 info->negotiate_done =
474                         process_negotiation_response(response, wc->byte_len);
475                 complete(&info->negotiate_completion);
476                 break;
477
478         /* SMBD data transfer packet */
479         case SMBD_TRANSFER_DATA:
480                 data_transfer = smbd_response_payload(response);
481                 data_length = le32_to_cpu(data_transfer->data_length);
482
483                 /*
484                  * If this is a packet with data playload place the data in
485                  * reassembly queue and wake up the reading thread
486                  */
487                 if (data_length) {
488                         if (info->full_packet_received)
489                                 response->first_segment = true;
490
491                         if (le32_to_cpu(data_transfer->remaining_data_length))
492                                 info->full_packet_received = false;
493                         else
494                                 info->full_packet_received = true;
495
496                         enqueue_reassembly(
497                                 info,
498                                 response,
499                                 data_length);
500                 } else
501                         put_empty_packet(info, response);
502
503                 if (data_length)
504                         wake_up_interruptible(&info->wait_reassembly_queue);
505
506                 atomic_dec(&info->receive_credits);
507                 info->receive_credit_target =
508                         le16_to_cpu(data_transfer->credits_requested);
509                 if (le16_to_cpu(data_transfer->credits_granted)) {
510                         atomic_add(le16_to_cpu(data_transfer->credits_granted),
511                                 &info->send_credits);
512                         /*
513                          * We have new send credits granted from remote peer
514                          * If any sender is waiting for credits, unblock it
515                          */
516                         wake_up_interruptible(&info->wait_send_queue);
517                 }
518
519                 log_incoming(INFO, "data flags %d data_offset %d data_length %d remaining_data_length %d\n",
520                              le16_to_cpu(data_transfer->flags),
521                              le32_to_cpu(data_transfer->data_offset),
522                              le32_to_cpu(data_transfer->data_length),
523                              le32_to_cpu(data_transfer->remaining_data_length));
524
525                 /* Send a KEEP_ALIVE response right away if requested */
526                 info->keep_alive_requested = KEEP_ALIVE_NONE;
527                 if (le16_to_cpu(data_transfer->flags) &
528                                 SMB_DIRECT_RESPONSE_REQUESTED) {
529                         info->keep_alive_requested = KEEP_ALIVE_PENDING;
530                 }
531
532                 return;
533
534         default:
535                 log_rdma_recv(ERR,
536                         "unexpected response type=%d\n", response->type);
537         }
538
539 error:
540         put_receive_buffer(info, response);
541 }
542
543 static struct rdma_cm_id *smbd_create_id(
544                 struct smbd_connection *info,
545                 struct sockaddr *dstaddr, int port)
546 {
547         struct rdma_cm_id *id;
548         int rc;
549         __be16 *sport;
550
551         id = rdma_create_id(&init_net, smbd_conn_upcall, info,
552                 RDMA_PS_TCP, IB_QPT_RC);
553         if (IS_ERR(id)) {
554                 rc = PTR_ERR(id);
555                 log_rdma_event(ERR, "rdma_create_id() failed %i\n", rc);
556                 return id;
557         }
558
559         if (dstaddr->sa_family == AF_INET6)
560                 sport = &((struct sockaddr_in6 *)dstaddr)->sin6_port;
561         else
562                 sport = &((struct sockaddr_in *)dstaddr)->sin_port;
563
564         *sport = htons(port);
565
566         init_completion(&info->ri_done);
567         info->ri_rc = -ETIMEDOUT;
568
569         rc = rdma_resolve_addr(id, NULL, (struct sockaddr *)dstaddr,
570                 RDMA_RESOLVE_TIMEOUT);
571         if (rc) {
572                 log_rdma_event(ERR, "rdma_resolve_addr() failed %i\n", rc);
573                 goto out;
574         }
575         rc = wait_for_completion_interruptible_timeout(
576                 &info->ri_done, msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT));
577         /* e.g. if interrupted returns -ERESTARTSYS */
578         if (rc < 0) {
579                 log_rdma_event(ERR, "rdma_resolve_addr timeout rc: %i\n", rc);
580                 goto out;
581         }
582         rc = info->ri_rc;
583         if (rc) {
584                 log_rdma_event(ERR, "rdma_resolve_addr() completed %i\n", rc);
585                 goto out;
586         }
587
588         info->ri_rc = -ETIMEDOUT;
589         rc = rdma_resolve_route(id, RDMA_RESOLVE_TIMEOUT);
590         if (rc) {
591                 log_rdma_event(ERR, "rdma_resolve_route() failed %i\n", rc);
592                 goto out;
593         }
594         rc = wait_for_completion_interruptible_timeout(
595                 &info->ri_done, msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT));
596         /* e.g. if interrupted returns -ERESTARTSYS */
597         if (rc < 0)  {
598                 log_rdma_event(ERR, "rdma_resolve_addr timeout rc: %i\n", rc);
599                 goto out;
600         }
601         rc = info->ri_rc;
602         if (rc) {
603                 log_rdma_event(ERR, "rdma_resolve_route() completed %i\n", rc);
604                 goto out;
605         }
606
607         return id;
608
609 out:
610         rdma_destroy_id(id);
611         return ERR_PTR(rc);
612 }
613
614 /*
615  * Test if FRWR (Fast Registration Work Requests) is supported on the device
616  * This implementation requries FRWR on RDMA read/write
617  * return value: true if it is supported
618  */
619 static bool frwr_is_supported(struct ib_device_attr *attrs)
620 {
621         if (!(attrs->device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS))
622                 return false;
623         if (attrs->max_fast_reg_page_list_len == 0)
624                 return false;
625         return true;
626 }
627
628 static int smbd_ia_open(
629                 struct smbd_connection *info,
630                 struct sockaddr *dstaddr, int port)
631 {
632         int rc;
633
634         info->id = smbd_create_id(info, dstaddr, port);
635         if (IS_ERR(info->id)) {
636                 rc = PTR_ERR(info->id);
637                 goto out1;
638         }
639
640         if (!frwr_is_supported(&info->id->device->attrs)) {
641                 log_rdma_event(ERR, "Fast Registration Work Requests (FRWR) is not supported\n");
642                 log_rdma_event(ERR, "Device capability flags = %llx max_fast_reg_page_list_len = %u\n",
643                                info->id->device->attrs.device_cap_flags,
644                                info->id->device->attrs.max_fast_reg_page_list_len);
645                 rc = -EPROTONOSUPPORT;
646                 goto out2;
647         }
648         info->max_frmr_depth = min_t(int,
649                 smbd_max_frmr_depth,
650                 info->id->device->attrs.max_fast_reg_page_list_len);
651         info->mr_type = IB_MR_TYPE_MEM_REG;
652         if (info->id->device->attrs.kernel_cap_flags & IBK_SG_GAPS_REG)
653                 info->mr_type = IB_MR_TYPE_SG_GAPS;
654
655         info->pd = ib_alloc_pd(info->id->device, 0);
656         if (IS_ERR(info->pd)) {
657                 rc = PTR_ERR(info->pd);
658                 log_rdma_event(ERR, "ib_alloc_pd() returned %d\n", rc);
659                 goto out2;
660         }
661
662         return 0;
663
664 out2:
665         rdma_destroy_id(info->id);
666         info->id = NULL;
667
668 out1:
669         return rc;
670 }
671
672 /*
673  * Send a negotiation request message to the peer
674  * The negotiation procedure is in [MS-SMBD] 3.1.5.2 and 3.1.5.3
675  * After negotiation, the transport is connected and ready for
676  * carrying upper layer SMB payload
677  */
678 static int smbd_post_send_negotiate_req(struct smbd_connection *info)
679 {
680         struct ib_send_wr send_wr;
681         int rc = -ENOMEM;
682         struct smbd_request *request;
683         struct smbd_negotiate_req *packet;
684
685         request = mempool_alloc(info->request_mempool, GFP_KERNEL);
686         if (!request)
687                 return rc;
688
689         request->info = info;
690
691         packet = smbd_request_payload(request);
692         packet->min_version = cpu_to_le16(SMBD_V1);
693         packet->max_version = cpu_to_le16(SMBD_V1);
694         packet->reserved = 0;
695         packet->credits_requested = cpu_to_le16(info->send_credit_target);
696         packet->preferred_send_size = cpu_to_le32(info->max_send_size);
697         packet->max_receive_size = cpu_to_le32(info->max_receive_size);
698         packet->max_fragmented_size =
699                 cpu_to_le32(info->max_fragmented_recv_size);
700
701         request->num_sge = 1;
702         request->sge[0].addr = ib_dma_map_single(
703                                 info->id->device, (void *)packet,
704                                 sizeof(*packet), DMA_TO_DEVICE);
705         if (ib_dma_mapping_error(info->id->device, request->sge[0].addr)) {
706                 rc = -EIO;
707                 goto dma_mapping_failed;
708         }
709
710         request->sge[0].length = sizeof(*packet);
711         request->sge[0].lkey = info->pd->local_dma_lkey;
712
713         ib_dma_sync_single_for_device(
714                 info->id->device, request->sge[0].addr,
715                 request->sge[0].length, DMA_TO_DEVICE);
716
717         request->cqe.done = send_done;
718
719         send_wr.next = NULL;
720         send_wr.wr_cqe = &request->cqe;
721         send_wr.sg_list = request->sge;
722         send_wr.num_sge = request->num_sge;
723         send_wr.opcode = IB_WR_SEND;
724         send_wr.send_flags = IB_SEND_SIGNALED;
725
726         log_rdma_send(INFO, "sge addr=0x%llx length=%u lkey=0x%x\n",
727                 request->sge[0].addr,
728                 request->sge[0].length, request->sge[0].lkey);
729
730         atomic_inc(&info->send_pending);
731         rc = ib_post_send(info->id->qp, &send_wr, NULL);
732         if (!rc)
733                 return 0;
734
735         /* if we reach here, post send failed */
736         log_rdma_send(ERR, "ib_post_send failed rc=%d\n", rc);
737         atomic_dec(&info->send_pending);
738         ib_dma_unmap_single(info->id->device, request->sge[0].addr,
739                 request->sge[0].length, DMA_TO_DEVICE);
740
741         smbd_disconnect_rdma_connection(info);
742
743 dma_mapping_failed:
744         mempool_free(request, info->request_mempool);
745         return rc;
746 }
747
748 /*
749  * Extend the credits to remote peer
750  * This implements [MS-SMBD] 3.1.5.9
751  * The idea is that we should extend credits to remote peer as quickly as
752  * it's allowed, to maintain data flow. We allocate as much receive
753  * buffer as possible, and extend the receive credits to remote peer
754  * return value: the new credtis being granted.
755  */
756 static int manage_credits_prior_sending(struct smbd_connection *info)
757 {
758         int new_credits;
759
760         spin_lock(&info->lock_new_credits_offered);
761         new_credits = info->new_credits_offered;
762         info->new_credits_offered = 0;
763         spin_unlock(&info->lock_new_credits_offered);
764
765         return new_credits;
766 }
767
768 /*
769  * Check if we need to send a KEEP_ALIVE message
770  * The idle connection timer triggers a KEEP_ALIVE message when expires
771  * SMB_DIRECT_RESPONSE_REQUESTED is set in the message flag to have peer send
772  * back a response.
773  * return value:
774  * 1 if SMB_DIRECT_RESPONSE_REQUESTED needs to be set
775  * 0: otherwise
776  */
777 static int manage_keep_alive_before_sending(struct smbd_connection *info)
778 {
779         if (info->keep_alive_requested == KEEP_ALIVE_PENDING) {
780                 info->keep_alive_requested = KEEP_ALIVE_SENT;
781                 return 1;
782         }
783         return 0;
784 }
785
786 /* Post the send request */
787 static int smbd_post_send(struct smbd_connection *info,
788                 struct smbd_request *request)
789 {
790         struct ib_send_wr send_wr;
791         int rc, i;
792
793         for (i = 0; i < request->num_sge; i++) {
794                 log_rdma_send(INFO,
795                         "rdma_request sge[%d] addr=0x%llx length=%u\n",
796                         i, request->sge[i].addr, request->sge[i].length);
797                 ib_dma_sync_single_for_device(
798                         info->id->device,
799                         request->sge[i].addr,
800                         request->sge[i].length,
801                         DMA_TO_DEVICE);
802         }
803
804         request->cqe.done = send_done;
805
806         send_wr.next = NULL;
807         send_wr.wr_cqe = &request->cqe;
808         send_wr.sg_list = request->sge;
809         send_wr.num_sge = request->num_sge;
810         send_wr.opcode = IB_WR_SEND;
811         send_wr.send_flags = IB_SEND_SIGNALED;
812
813         rc = ib_post_send(info->id->qp, &send_wr, NULL);
814         if (rc) {
815                 log_rdma_send(ERR, "ib_post_send failed rc=%d\n", rc);
816                 smbd_disconnect_rdma_connection(info);
817                 rc = -EAGAIN;
818         } else
819                 /* Reset timer for idle connection after packet is sent */
820                 mod_delayed_work(info->workqueue, &info->idle_timer_work,
821                         info->keep_alive_interval*HZ);
822
823         return rc;
824 }
825
826 static int smbd_post_send_sgl(struct smbd_connection *info,
827         struct scatterlist *sgl, int data_length, int remaining_data_length)
828 {
829         int num_sgs;
830         int i, rc;
831         int header_length;
832         struct smbd_request *request;
833         struct smbd_data_transfer *packet;
834         int new_credits;
835         struct scatterlist *sg;
836
837 wait_credit:
838         /* Wait for send credits. A SMBD packet needs one credit */
839         rc = wait_event_interruptible(info->wait_send_queue,
840                 atomic_read(&info->send_credits) > 0 ||
841                 info->transport_status != SMBD_CONNECTED);
842         if (rc)
843                 goto err_wait_credit;
844
845         if (info->transport_status != SMBD_CONNECTED) {
846                 log_outgoing(ERR, "disconnected not sending on wait_credit\n");
847                 rc = -EAGAIN;
848                 goto err_wait_credit;
849         }
850         if (unlikely(atomic_dec_return(&info->send_credits) < 0)) {
851                 atomic_inc(&info->send_credits);
852                 goto wait_credit;
853         }
854
855 wait_send_queue:
856         wait_event(info->wait_post_send,
857                 atomic_read(&info->send_pending) < info->send_credit_target ||
858                 info->transport_status != SMBD_CONNECTED);
859
860         if (info->transport_status != SMBD_CONNECTED) {
861                 log_outgoing(ERR, "disconnected not sending on wait_send_queue\n");
862                 rc = -EAGAIN;
863                 goto err_wait_send_queue;
864         }
865
866         if (unlikely(atomic_inc_return(&info->send_pending) >
867                                 info->send_credit_target)) {
868                 atomic_dec(&info->send_pending);
869                 goto wait_send_queue;
870         }
871
872         request = mempool_alloc(info->request_mempool, GFP_KERNEL);
873         if (!request) {
874                 rc = -ENOMEM;
875                 goto err_alloc;
876         }
877
878         request->info = info;
879
880         /* Fill in the packet header */
881         packet = smbd_request_payload(request);
882         packet->credits_requested = cpu_to_le16(info->send_credit_target);
883
884         new_credits = manage_credits_prior_sending(info);
885         atomic_add(new_credits, &info->receive_credits);
886         packet->credits_granted = cpu_to_le16(new_credits);
887
888         info->send_immediate = false;
889
890         packet->flags = 0;
891         if (manage_keep_alive_before_sending(info))
892                 packet->flags |= cpu_to_le16(SMB_DIRECT_RESPONSE_REQUESTED);
893
894         packet->reserved = 0;
895         if (!data_length)
896                 packet->data_offset = 0;
897         else
898                 packet->data_offset = cpu_to_le32(24);
899         packet->data_length = cpu_to_le32(data_length);
900         packet->remaining_data_length = cpu_to_le32(remaining_data_length);
901         packet->padding = 0;
902
903         log_outgoing(INFO, "credits_requested=%d credits_granted=%d data_offset=%d data_length=%d remaining_data_length=%d\n",
904                      le16_to_cpu(packet->credits_requested),
905                      le16_to_cpu(packet->credits_granted),
906                      le32_to_cpu(packet->data_offset),
907                      le32_to_cpu(packet->data_length),
908                      le32_to_cpu(packet->remaining_data_length));
909
910         /* Map the packet to DMA */
911         header_length = sizeof(struct smbd_data_transfer);
912         /* If this is a packet without payload, don't send padding */
913         if (!data_length)
914                 header_length = offsetof(struct smbd_data_transfer, padding);
915
916         request->num_sge = 1;
917         request->sge[0].addr = ib_dma_map_single(info->id->device,
918                                                  (void *)packet,
919                                                  header_length,
920                                                  DMA_TO_DEVICE);
921         if (ib_dma_mapping_error(info->id->device, request->sge[0].addr)) {
922                 rc = -EIO;
923                 request->sge[0].addr = 0;
924                 goto err_dma;
925         }
926
927         request->sge[0].length = header_length;
928         request->sge[0].lkey = info->pd->local_dma_lkey;
929
930         /* Fill in the packet data payload */
931         num_sgs = sgl ? sg_nents(sgl) : 0;
932         for_each_sg(sgl, sg, num_sgs, i) {
933                 request->sge[i+1].addr =
934                         ib_dma_map_page(info->id->device, sg_page(sg),
935                                sg->offset, sg->length, DMA_TO_DEVICE);
936                 if (ib_dma_mapping_error(
937                                 info->id->device, request->sge[i+1].addr)) {
938                         rc = -EIO;
939                         request->sge[i+1].addr = 0;
940                         goto err_dma;
941                 }
942                 request->sge[i+1].length = sg->length;
943                 request->sge[i+1].lkey = info->pd->local_dma_lkey;
944                 request->num_sge++;
945         }
946
947         rc = smbd_post_send(info, request);
948         if (!rc)
949                 return 0;
950
951 err_dma:
952         for (i = 0; i < request->num_sge; i++)
953                 if (request->sge[i].addr)
954                         ib_dma_unmap_single(info->id->device,
955                                             request->sge[i].addr,
956                                             request->sge[i].length,
957                                             DMA_TO_DEVICE);
958         mempool_free(request, info->request_mempool);
959
960         /* roll back receive credits and credits to be offered */
961         spin_lock(&info->lock_new_credits_offered);
962         info->new_credits_offered += new_credits;
963         spin_unlock(&info->lock_new_credits_offered);
964         atomic_sub(new_credits, &info->receive_credits);
965
966 err_alloc:
967         if (atomic_dec_and_test(&info->send_pending))
968                 wake_up(&info->wait_send_pending);
969
970 err_wait_send_queue:
971         /* roll back send credits and pending */
972         atomic_inc(&info->send_credits);
973
974 err_wait_credit:
975         return rc;
976 }
977
978 /*
979  * Send a page
980  * page: the page to send
981  * offset: offset in the page to send
982  * size: length in the page to send
983  * remaining_data_length: remaining data to send in this payload
984  */
985 static int smbd_post_send_page(struct smbd_connection *info, struct page *page,
986                 unsigned long offset, size_t size, int remaining_data_length)
987 {
988         struct scatterlist sgl;
989
990         sg_init_table(&sgl, 1);
991         sg_set_page(&sgl, page, size, offset);
992
993         return smbd_post_send_sgl(info, &sgl, size, remaining_data_length);
994 }
995
996 /*
997  * Send an empty message
998  * Empty message is used to extend credits to peer to for keep live
999  * while there is no upper layer payload to send at the time
1000  */
1001 static int smbd_post_send_empty(struct smbd_connection *info)
1002 {
1003         info->count_send_empty++;
1004         return smbd_post_send_sgl(info, NULL, 0, 0);
1005 }
1006
1007 /*
1008  * Send a data buffer
1009  * iov: the iov array describing the data buffers
1010  * n_vec: number of iov array
1011  * remaining_data_length: remaining data to send following this packet
1012  * in segmented SMBD packet
1013  */
1014 static int smbd_post_send_data(
1015         struct smbd_connection *info, struct kvec *iov, int n_vec,
1016         int remaining_data_length)
1017 {
1018         int i;
1019         u32 data_length = 0;
1020         struct scatterlist sgl[SMBDIRECT_MAX_SEND_SGE - 1];
1021
1022         if (n_vec > SMBDIRECT_MAX_SEND_SGE - 1) {
1023                 cifs_dbg(VFS, "Can't fit data to SGL, n_vec=%d\n", n_vec);
1024                 return -EINVAL;
1025         }
1026
1027         sg_init_table(sgl, n_vec);
1028         for (i = 0; i < n_vec; i++) {
1029                 data_length += iov[i].iov_len;
1030                 sg_set_buf(&sgl[i], iov[i].iov_base, iov[i].iov_len);
1031         }
1032
1033         return smbd_post_send_sgl(info, sgl, data_length, remaining_data_length);
1034 }
1035
1036 /*
1037  * Post a receive request to the transport
1038  * The remote peer can only send data when a receive request is posted
1039  * The interaction is controlled by send/receive credit system
1040  */
1041 static int smbd_post_recv(
1042                 struct smbd_connection *info, struct smbd_response *response)
1043 {
1044         struct ib_recv_wr recv_wr;
1045         int rc = -EIO;
1046
1047         response->sge.addr = ib_dma_map_single(
1048                                 info->id->device, response->packet,
1049                                 info->max_receive_size, DMA_FROM_DEVICE);
1050         if (ib_dma_mapping_error(info->id->device, response->sge.addr))
1051                 return rc;
1052
1053         response->sge.length = info->max_receive_size;
1054         response->sge.lkey = info->pd->local_dma_lkey;
1055
1056         response->cqe.done = recv_done;
1057
1058         recv_wr.wr_cqe = &response->cqe;
1059         recv_wr.next = NULL;
1060         recv_wr.sg_list = &response->sge;
1061         recv_wr.num_sge = 1;
1062
1063         rc = ib_post_recv(info->id->qp, &recv_wr, NULL);
1064         if (rc) {
1065                 ib_dma_unmap_single(info->id->device, response->sge.addr,
1066                                     response->sge.length, DMA_FROM_DEVICE);
1067                 smbd_disconnect_rdma_connection(info);
1068                 log_rdma_recv(ERR, "ib_post_recv failed rc=%d\n", rc);
1069         }
1070
1071         return rc;
1072 }
1073
1074 /* Perform SMBD negotiate according to [MS-SMBD] 3.1.5.2 */
1075 static int smbd_negotiate(struct smbd_connection *info)
1076 {
1077         int rc;
1078         struct smbd_response *response = get_receive_buffer(info);
1079
1080         response->type = SMBD_NEGOTIATE_RESP;
1081         rc = smbd_post_recv(info, response);
1082         log_rdma_event(INFO, "smbd_post_recv rc=%d iov.addr=0x%llx iov.length=%u iov.lkey=0x%x\n",
1083                        rc, response->sge.addr,
1084                        response->sge.length, response->sge.lkey);
1085         if (rc)
1086                 return rc;
1087
1088         init_completion(&info->negotiate_completion);
1089         info->negotiate_done = false;
1090         rc = smbd_post_send_negotiate_req(info);
1091         if (rc)
1092                 return rc;
1093
1094         rc = wait_for_completion_interruptible_timeout(
1095                 &info->negotiate_completion, SMBD_NEGOTIATE_TIMEOUT * HZ);
1096         log_rdma_event(INFO, "wait_for_completion_timeout rc=%d\n", rc);
1097
1098         if (info->negotiate_done)
1099                 return 0;
1100
1101         if (rc == 0)
1102                 rc = -ETIMEDOUT;
1103         else if (rc == -ERESTARTSYS)
1104                 rc = -EINTR;
1105         else
1106                 rc = -ENOTCONN;
1107
1108         return rc;
1109 }
1110
1111 static void put_empty_packet(
1112                 struct smbd_connection *info, struct smbd_response *response)
1113 {
1114         spin_lock(&info->empty_packet_queue_lock);
1115         list_add_tail(&response->list, &info->empty_packet_queue);
1116         info->count_empty_packet_queue++;
1117         spin_unlock(&info->empty_packet_queue_lock);
1118
1119         queue_work(info->workqueue, &info->post_send_credits_work);
1120 }
1121
1122 /*
1123  * Implement Connection.FragmentReassemblyBuffer defined in [MS-SMBD] 3.1.1.1
1124  * This is a queue for reassembling upper layer payload and present to upper
1125  * layer. All the inncoming payload go to the reassembly queue, regardless of
1126  * if reassembly is required. The uuper layer code reads from the queue for all
1127  * incoming payloads.
1128  * Put a received packet to the reassembly queue
1129  * response: the packet received
1130  * data_length: the size of payload in this packet
1131  */
1132 static void enqueue_reassembly(
1133         struct smbd_connection *info,
1134         struct smbd_response *response,
1135         int data_length)
1136 {
1137         spin_lock(&info->reassembly_queue_lock);
1138         list_add_tail(&response->list, &info->reassembly_queue);
1139         info->reassembly_queue_length++;
1140         /*
1141          * Make sure reassembly_data_length is updated after list and
1142          * reassembly_queue_length are updated. On the dequeue side
1143          * reassembly_data_length is checked without a lock to determine
1144          * if reassembly_queue_length and list is up to date
1145          */
1146         virt_wmb();
1147         info->reassembly_data_length += data_length;
1148         spin_unlock(&info->reassembly_queue_lock);
1149         info->count_reassembly_queue++;
1150         info->count_enqueue_reassembly_queue++;
1151 }
1152
1153 /*
1154  * Get the first entry at the front of reassembly queue
1155  * Caller is responsible for locking
1156  * return value: the first entry if any, NULL if queue is empty
1157  */
1158 static struct smbd_response *_get_first_reassembly(struct smbd_connection *info)
1159 {
1160         struct smbd_response *ret = NULL;
1161
1162         if (!list_empty(&info->reassembly_queue)) {
1163                 ret = list_first_entry(
1164                         &info->reassembly_queue,
1165                         struct smbd_response, list);
1166         }
1167         return ret;
1168 }
1169
1170 static struct smbd_response *get_empty_queue_buffer(
1171                 struct smbd_connection *info)
1172 {
1173         struct smbd_response *ret = NULL;
1174         unsigned long flags;
1175
1176         spin_lock_irqsave(&info->empty_packet_queue_lock, flags);
1177         if (!list_empty(&info->empty_packet_queue)) {
1178                 ret = list_first_entry(
1179                         &info->empty_packet_queue,
1180                         struct smbd_response, list);
1181                 list_del(&ret->list);
1182                 info->count_empty_packet_queue--;
1183         }
1184         spin_unlock_irqrestore(&info->empty_packet_queue_lock, flags);
1185
1186         return ret;
1187 }
1188
1189 /*
1190  * Get a receive buffer
1191  * For each remote send, we need to post a receive. The receive buffers are
1192  * pre-allocated in advance.
1193  * return value: the receive buffer, NULL if none is available
1194  */
1195 static struct smbd_response *get_receive_buffer(struct smbd_connection *info)
1196 {
1197         struct smbd_response *ret = NULL;
1198         unsigned long flags;
1199
1200         spin_lock_irqsave(&info->receive_queue_lock, flags);
1201         if (!list_empty(&info->receive_queue)) {
1202                 ret = list_first_entry(
1203                         &info->receive_queue,
1204                         struct smbd_response, list);
1205                 list_del(&ret->list);
1206                 info->count_receive_queue--;
1207                 info->count_get_receive_buffer++;
1208         }
1209         spin_unlock_irqrestore(&info->receive_queue_lock, flags);
1210
1211         return ret;
1212 }
1213
1214 /*
1215  * Return a receive buffer
1216  * Upon returning of a receive buffer, we can post new receive and extend
1217  * more receive credits to remote peer. This is done immediately after a
1218  * receive buffer is returned.
1219  */
1220 static void put_receive_buffer(
1221         struct smbd_connection *info, struct smbd_response *response)
1222 {
1223         unsigned long flags;
1224
1225         ib_dma_unmap_single(info->id->device, response->sge.addr,
1226                 response->sge.length, DMA_FROM_DEVICE);
1227
1228         spin_lock_irqsave(&info->receive_queue_lock, flags);
1229         list_add_tail(&response->list, &info->receive_queue);
1230         info->count_receive_queue++;
1231         info->count_put_receive_buffer++;
1232         spin_unlock_irqrestore(&info->receive_queue_lock, flags);
1233
1234         queue_work(info->workqueue, &info->post_send_credits_work);
1235 }
1236
1237 /* Preallocate all receive buffer on transport establishment */
1238 static int allocate_receive_buffers(struct smbd_connection *info, int num_buf)
1239 {
1240         int i;
1241         struct smbd_response *response;
1242
1243         INIT_LIST_HEAD(&info->reassembly_queue);
1244         spin_lock_init(&info->reassembly_queue_lock);
1245         info->reassembly_data_length = 0;
1246         info->reassembly_queue_length = 0;
1247
1248         INIT_LIST_HEAD(&info->receive_queue);
1249         spin_lock_init(&info->receive_queue_lock);
1250         info->count_receive_queue = 0;
1251
1252         INIT_LIST_HEAD(&info->empty_packet_queue);
1253         spin_lock_init(&info->empty_packet_queue_lock);
1254         info->count_empty_packet_queue = 0;
1255
1256         init_waitqueue_head(&info->wait_receive_queues);
1257
1258         for (i = 0; i < num_buf; i++) {
1259                 response = mempool_alloc(info->response_mempool, GFP_KERNEL);
1260                 if (!response)
1261                         goto allocate_failed;
1262
1263                 response->info = info;
1264                 list_add_tail(&response->list, &info->receive_queue);
1265                 info->count_receive_queue++;
1266         }
1267
1268         return 0;
1269
1270 allocate_failed:
1271         while (!list_empty(&info->receive_queue)) {
1272                 response = list_first_entry(
1273                                 &info->receive_queue,
1274                                 struct smbd_response, list);
1275                 list_del(&response->list);
1276                 info->count_receive_queue--;
1277
1278                 mempool_free(response, info->response_mempool);
1279         }
1280         return -ENOMEM;
1281 }
1282
1283 static void destroy_receive_buffers(struct smbd_connection *info)
1284 {
1285         struct smbd_response *response;
1286
1287         while ((response = get_receive_buffer(info)))
1288                 mempool_free(response, info->response_mempool);
1289
1290         while ((response = get_empty_queue_buffer(info)))
1291                 mempool_free(response, info->response_mempool);
1292 }
1293
1294 /* Implement idle connection timer [MS-SMBD] 3.1.6.2 */
1295 static void idle_connection_timer(struct work_struct *work)
1296 {
1297         struct smbd_connection *info = container_of(
1298                                         work, struct smbd_connection,
1299                                         idle_timer_work.work);
1300
1301         if (info->keep_alive_requested != KEEP_ALIVE_NONE) {
1302                 log_keep_alive(ERR,
1303                         "error status info->keep_alive_requested=%d\n",
1304                         info->keep_alive_requested);
1305                 smbd_disconnect_rdma_connection(info);
1306                 return;
1307         }
1308
1309         log_keep_alive(INFO, "about to send an empty idle message\n");
1310         smbd_post_send_empty(info);
1311
1312         /* Setup the next idle timeout work */
1313         queue_delayed_work(info->workqueue, &info->idle_timer_work,
1314                         info->keep_alive_interval*HZ);
1315 }
1316
1317 /*
1318  * Destroy the transport and related RDMA and memory resources
1319  * Need to go through all the pending counters and make sure on one is using
1320  * the transport while it is destroyed
1321  */
1322 void smbd_destroy(struct TCP_Server_Info *server)
1323 {
1324         struct smbd_connection *info = server->smbd_conn;
1325         struct smbd_response *response;
1326         unsigned long flags;
1327
1328         if (!info) {
1329                 log_rdma_event(INFO, "rdma session already destroyed\n");
1330                 return;
1331         }
1332
1333         log_rdma_event(INFO, "destroying rdma session\n");
1334         if (info->transport_status != SMBD_DISCONNECTED) {
1335                 rdma_disconnect(server->smbd_conn->id);
1336                 log_rdma_event(INFO, "wait for transport being disconnected\n");
1337                 wait_event_interruptible(
1338                         info->disconn_wait,
1339                         info->transport_status == SMBD_DISCONNECTED);
1340         }
1341
1342         log_rdma_event(INFO, "destroying qp\n");
1343         ib_drain_qp(info->id->qp);
1344         rdma_destroy_qp(info->id);
1345
1346         log_rdma_event(INFO, "cancelling idle timer\n");
1347         cancel_delayed_work_sync(&info->idle_timer_work);
1348
1349         log_rdma_event(INFO, "wait for all send posted to IB to finish\n");
1350         wait_event(info->wait_send_pending,
1351                 atomic_read(&info->send_pending) == 0);
1352
1353         /* It's not possible for upper layer to get to reassembly */
1354         log_rdma_event(INFO, "drain the reassembly queue\n");
1355         do {
1356                 spin_lock_irqsave(&info->reassembly_queue_lock, flags);
1357                 response = _get_first_reassembly(info);
1358                 if (response) {
1359                         list_del(&response->list);
1360                         spin_unlock_irqrestore(
1361                                 &info->reassembly_queue_lock, flags);
1362                         put_receive_buffer(info, response);
1363                 } else
1364                         spin_unlock_irqrestore(
1365                                 &info->reassembly_queue_lock, flags);
1366         } while (response);
1367         info->reassembly_data_length = 0;
1368
1369         log_rdma_event(INFO, "free receive buffers\n");
1370         wait_event(info->wait_receive_queues,
1371                 info->count_receive_queue + info->count_empty_packet_queue
1372                         == info->receive_credit_max);
1373         destroy_receive_buffers(info);
1374
1375         /*
1376          * For performance reasons, memory registration and deregistration
1377          * are not locked by srv_mutex. It is possible some processes are
1378          * blocked on transport srv_mutex while holding memory registration.
1379          * Release the transport srv_mutex to allow them to hit the failure
1380          * path when sending data, and then release memory registartions.
1381          */
1382         log_rdma_event(INFO, "freeing mr list\n");
1383         wake_up_interruptible_all(&info->wait_mr);
1384         while (atomic_read(&info->mr_used_count)) {
1385                 cifs_server_unlock(server);
1386                 msleep(1000);
1387                 cifs_server_lock(server);
1388         }
1389         destroy_mr_list(info);
1390
1391         ib_free_cq(info->send_cq);
1392         ib_free_cq(info->recv_cq);
1393         ib_dealloc_pd(info->pd);
1394         rdma_destroy_id(info->id);
1395
1396         /* free mempools */
1397         mempool_destroy(info->request_mempool);
1398         kmem_cache_destroy(info->request_cache);
1399
1400         mempool_destroy(info->response_mempool);
1401         kmem_cache_destroy(info->response_cache);
1402
1403         info->transport_status = SMBD_DESTROYED;
1404
1405         destroy_workqueue(info->workqueue);
1406         log_rdma_event(INFO,  "rdma session destroyed\n");
1407         kfree(info);
1408 }
1409
1410 /*
1411  * Reconnect this SMBD connection, called from upper layer
1412  * return value: 0 on success, or actual error code
1413  */
1414 int smbd_reconnect(struct TCP_Server_Info *server)
1415 {
1416         log_rdma_event(INFO, "reconnecting rdma session\n");
1417
1418         if (!server->smbd_conn) {
1419                 log_rdma_event(INFO, "rdma session already destroyed\n");
1420                 goto create_conn;
1421         }
1422
1423         /*
1424          * This is possible if transport is disconnected and we haven't received
1425          * notification from RDMA, but upper layer has detected timeout
1426          */
1427         if (server->smbd_conn->transport_status == SMBD_CONNECTED) {
1428                 log_rdma_event(INFO, "disconnecting transport\n");
1429                 smbd_destroy(server);
1430         }
1431
1432 create_conn:
1433         log_rdma_event(INFO, "creating rdma session\n");
1434         server->smbd_conn = smbd_get_connection(
1435                 server, (struct sockaddr *) &server->dstaddr);
1436
1437         if (server->smbd_conn)
1438                 cifs_dbg(VFS, "RDMA transport re-established\n");
1439
1440         return server->smbd_conn ? 0 : -ENOENT;
1441 }
1442
1443 static void destroy_caches_and_workqueue(struct smbd_connection *info)
1444 {
1445         destroy_receive_buffers(info);
1446         destroy_workqueue(info->workqueue);
1447         mempool_destroy(info->response_mempool);
1448         kmem_cache_destroy(info->response_cache);
1449         mempool_destroy(info->request_mempool);
1450         kmem_cache_destroy(info->request_cache);
1451 }
1452
1453 #define MAX_NAME_LEN    80
1454 static int allocate_caches_and_workqueue(struct smbd_connection *info)
1455 {
1456         char name[MAX_NAME_LEN];
1457         int rc;
1458
1459         scnprintf(name, MAX_NAME_LEN, "smbd_request_%p", info);
1460         info->request_cache =
1461                 kmem_cache_create(
1462                         name,
1463                         sizeof(struct smbd_request) +
1464                                 sizeof(struct smbd_data_transfer),
1465                         0, SLAB_HWCACHE_ALIGN, NULL);
1466         if (!info->request_cache)
1467                 return -ENOMEM;
1468
1469         info->request_mempool =
1470                 mempool_create(info->send_credit_target, mempool_alloc_slab,
1471                         mempool_free_slab, info->request_cache);
1472         if (!info->request_mempool)
1473                 goto out1;
1474
1475         scnprintf(name, MAX_NAME_LEN, "smbd_response_%p", info);
1476         info->response_cache =
1477                 kmem_cache_create(
1478                         name,
1479                         sizeof(struct smbd_response) +
1480                                 info->max_receive_size,
1481                         0, SLAB_HWCACHE_ALIGN, NULL);
1482         if (!info->response_cache)
1483                 goto out2;
1484
1485         info->response_mempool =
1486                 mempool_create(info->receive_credit_max, mempool_alloc_slab,
1487                        mempool_free_slab, info->response_cache);
1488         if (!info->response_mempool)
1489                 goto out3;
1490
1491         scnprintf(name, MAX_NAME_LEN, "smbd_%p", info);
1492         info->workqueue = create_workqueue(name);
1493         if (!info->workqueue)
1494                 goto out4;
1495
1496         rc = allocate_receive_buffers(info, info->receive_credit_max);
1497         if (rc) {
1498                 log_rdma_event(ERR, "failed to allocate receive buffers\n");
1499                 goto out5;
1500         }
1501
1502         return 0;
1503
1504 out5:
1505         destroy_workqueue(info->workqueue);
1506 out4:
1507         mempool_destroy(info->response_mempool);
1508 out3:
1509         kmem_cache_destroy(info->response_cache);
1510 out2:
1511         mempool_destroy(info->request_mempool);
1512 out1:
1513         kmem_cache_destroy(info->request_cache);
1514         return -ENOMEM;
1515 }
1516
1517 /* Create a SMBD connection, called by upper layer */
1518 static struct smbd_connection *_smbd_get_connection(
1519         struct TCP_Server_Info *server, struct sockaddr *dstaddr, int port)
1520 {
1521         int rc;
1522         struct smbd_connection *info;
1523         struct rdma_conn_param conn_param;
1524         struct ib_qp_init_attr qp_attr;
1525         struct sockaddr_in *addr_in = (struct sockaddr_in *) dstaddr;
1526         struct ib_port_immutable port_immutable;
1527         u32 ird_ord_hdr[2];
1528
1529         info = kzalloc(sizeof(struct smbd_connection), GFP_KERNEL);
1530         if (!info)
1531                 return NULL;
1532
1533         info->transport_status = SMBD_CONNECTING;
1534         rc = smbd_ia_open(info, dstaddr, port);
1535         if (rc) {
1536                 log_rdma_event(INFO, "smbd_ia_open rc=%d\n", rc);
1537                 goto create_id_failed;
1538         }
1539
1540         if (smbd_send_credit_target > info->id->device->attrs.max_cqe ||
1541             smbd_send_credit_target > info->id->device->attrs.max_qp_wr) {
1542                 log_rdma_event(ERR, "consider lowering send_credit_target = %d. Possible CQE overrun, device reporting max_cqe %d max_qp_wr %d\n",
1543                                smbd_send_credit_target,
1544                                info->id->device->attrs.max_cqe,
1545                                info->id->device->attrs.max_qp_wr);
1546                 goto config_failed;
1547         }
1548
1549         if (smbd_receive_credit_max > info->id->device->attrs.max_cqe ||
1550             smbd_receive_credit_max > info->id->device->attrs.max_qp_wr) {
1551                 log_rdma_event(ERR, "consider lowering receive_credit_max = %d. Possible CQE overrun, device reporting max_cqe %d max_qp_wr %d\n",
1552                                smbd_receive_credit_max,
1553                                info->id->device->attrs.max_cqe,
1554                                info->id->device->attrs.max_qp_wr);
1555                 goto config_failed;
1556         }
1557
1558         info->receive_credit_max = smbd_receive_credit_max;
1559         info->send_credit_target = smbd_send_credit_target;
1560         info->max_send_size = smbd_max_send_size;
1561         info->max_fragmented_recv_size = smbd_max_fragmented_recv_size;
1562         info->max_receive_size = smbd_max_receive_size;
1563         info->keep_alive_interval = smbd_keep_alive_interval;
1564
1565         if (info->id->device->attrs.max_send_sge < SMBDIRECT_MAX_SEND_SGE ||
1566             info->id->device->attrs.max_recv_sge < SMBDIRECT_MAX_RECV_SGE) {
1567                 log_rdma_event(ERR,
1568                         "device %.*s max_send_sge/max_recv_sge = %d/%d too small\n",
1569                         IB_DEVICE_NAME_MAX,
1570                         info->id->device->name,
1571                         info->id->device->attrs.max_send_sge,
1572                         info->id->device->attrs.max_recv_sge);
1573                 goto config_failed;
1574         }
1575
1576         info->send_cq = NULL;
1577         info->recv_cq = NULL;
1578         info->send_cq =
1579                 ib_alloc_cq_any(info->id->device, info,
1580                                 info->send_credit_target, IB_POLL_SOFTIRQ);
1581         if (IS_ERR(info->send_cq)) {
1582                 info->send_cq = NULL;
1583                 goto alloc_cq_failed;
1584         }
1585
1586         info->recv_cq =
1587                 ib_alloc_cq_any(info->id->device, info,
1588                                 info->receive_credit_max, IB_POLL_SOFTIRQ);
1589         if (IS_ERR(info->recv_cq)) {
1590                 info->recv_cq = NULL;
1591                 goto alloc_cq_failed;
1592         }
1593
1594         memset(&qp_attr, 0, sizeof(qp_attr));
1595         qp_attr.event_handler = smbd_qp_async_error_upcall;
1596         qp_attr.qp_context = info;
1597         qp_attr.cap.max_send_wr = info->send_credit_target;
1598         qp_attr.cap.max_recv_wr = info->receive_credit_max;
1599         qp_attr.cap.max_send_sge = SMBDIRECT_MAX_SEND_SGE;
1600         qp_attr.cap.max_recv_sge = SMBDIRECT_MAX_RECV_SGE;
1601         qp_attr.cap.max_inline_data = 0;
1602         qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
1603         qp_attr.qp_type = IB_QPT_RC;
1604         qp_attr.send_cq = info->send_cq;
1605         qp_attr.recv_cq = info->recv_cq;
1606         qp_attr.port_num = ~0;
1607
1608         rc = rdma_create_qp(info->id, info->pd, &qp_attr);
1609         if (rc) {
1610                 log_rdma_event(ERR, "rdma_create_qp failed %i\n", rc);
1611                 goto create_qp_failed;
1612         }
1613
1614         memset(&conn_param, 0, sizeof(conn_param));
1615         conn_param.initiator_depth = 0;
1616
1617         conn_param.responder_resources =
1618                 info->id->device->attrs.max_qp_rd_atom
1619                         < SMBD_CM_RESPONDER_RESOURCES ?
1620                 info->id->device->attrs.max_qp_rd_atom :
1621                 SMBD_CM_RESPONDER_RESOURCES;
1622         info->responder_resources = conn_param.responder_resources;
1623         log_rdma_mr(INFO, "responder_resources=%d\n",
1624                 info->responder_resources);
1625
1626         /* Need to send IRD/ORD in private data for iWARP */
1627         info->id->device->ops.get_port_immutable(
1628                 info->id->device, info->id->port_num, &port_immutable);
1629         if (port_immutable.core_cap_flags & RDMA_CORE_PORT_IWARP) {
1630                 ird_ord_hdr[0] = info->responder_resources;
1631                 ird_ord_hdr[1] = 1;
1632                 conn_param.private_data = ird_ord_hdr;
1633                 conn_param.private_data_len = sizeof(ird_ord_hdr);
1634         } else {
1635                 conn_param.private_data = NULL;
1636                 conn_param.private_data_len = 0;
1637         }
1638
1639         conn_param.retry_count = SMBD_CM_RETRY;
1640         conn_param.rnr_retry_count = SMBD_CM_RNR_RETRY;
1641         conn_param.flow_control = 0;
1642
1643         log_rdma_event(INFO, "connecting to IP %pI4 port %d\n",
1644                 &addr_in->sin_addr, port);
1645
1646         init_waitqueue_head(&info->conn_wait);
1647         init_waitqueue_head(&info->disconn_wait);
1648         init_waitqueue_head(&info->wait_reassembly_queue);
1649         rc = rdma_connect(info->id, &conn_param);
1650         if (rc) {
1651                 log_rdma_event(ERR, "rdma_connect() failed with %i\n", rc);
1652                 goto rdma_connect_failed;
1653         }
1654
1655         wait_event_interruptible(
1656                 info->conn_wait, info->transport_status != SMBD_CONNECTING);
1657
1658         if (info->transport_status != SMBD_CONNECTED) {
1659                 log_rdma_event(ERR, "rdma_connect failed port=%d\n", port);
1660                 goto rdma_connect_failed;
1661         }
1662
1663         log_rdma_event(INFO, "rdma_connect connected\n");
1664
1665         rc = allocate_caches_and_workqueue(info);
1666         if (rc) {
1667                 log_rdma_event(ERR, "cache allocation failed\n");
1668                 goto allocate_cache_failed;
1669         }
1670
1671         init_waitqueue_head(&info->wait_send_queue);
1672         INIT_DELAYED_WORK(&info->idle_timer_work, idle_connection_timer);
1673         queue_delayed_work(info->workqueue, &info->idle_timer_work,
1674                 info->keep_alive_interval*HZ);
1675
1676         init_waitqueue_head(&info->wait_send_pending);
1677         atomic_set(&info->send_pending, 0);
1678
1679         init_waitqueue_head(&info->wait_post_send);
1680
1681         INIT_WORK(&info->disconnect_work, smbd_disconnect_rdma_work);
1682         INIT_WORK(&info->post_send_credits_work, smbd_post_send_credits);
1683         info->new_credits_offered = 0;
1684         spin_lock_init(&info->lock_new_credits_offered);
1685
1686         rc = smbd_negotiate(info);
1687         if (rc) {
1688                 log_rdma_event(ERR, "smbd_negotiate rc=%d\n", rc);
1689                 goto negotiation_failed;
1690         }
1691
1692         rc = allocate_mr_list(info);
1693         if (rc) {
1694                 log_rdma_mr(ERR, "memory registration allocation failed\n");
1695                 goto allocate_mr_failed;
1696         }
1697
1698         return info;
1699
1700 allocate_mr_failed:
1701         /* At this point, need to a full transport shutdown */
1702         smbd_destroy(server);
1703         return NULL;
1704
1705 negotiation_failed:
1706         cancel_delayed_work_sync(&info->idle_timer_work);
1707         destroy_caches_and_workqueue(info);
1708         info->transport_status = SMBD_NEGOTIATE_FAILED;
1709         init_waitqueue_head(&info->conn_wait);
1710         rdma_disconnect(info->id);
1711         wait_event(info->conn_wait,
1712                 info->transport_status == SMBD_DISCONNECTED);
1713
1714 allocate_cache_failed:
1715 rdma_connect_failed:
1716         rdma_destroy_qp(info->id);
1717
1718 create_qp_failed:
1719 alloc_cq_failed:
1720         if (info->send_cq)
1721                 ib_free_cq(info->send_cq);
1722         if (info->recv_cq)
1723                 ib_free_cq(info->recv_cq);
1724
1725 config_failed:
1726         ib_dealloc_pd(info->pd);
1727         rdma_destroy_id(info->id);
1728
1729 create_id_failed:
1730         kfree(info);
1731         return NULL;
1732 }
1733
1734 struct smbd_connection *smbd_get_connection(
1735         struct TCP_Server_Info *server, struct sockaddr *dstaddr)
1736 {
1737         struct smbd_connection *ret;
1738         int port = SMBD_PORT;
1739
1740 try_again:
1741         ret = _smbd_get_connection(server, dstaddr, port);
1742
1743         /* Try SMB_PORT if SMBD_PORT doesn't work */
1744         if (!ret && port == SMBD_PORT) {
1745                 port = SMB_PORT;
1746                 goto try_again;
1747         }
1748         return ret;
1749 }
1750
1751 /*
1752  * Receive data from receive reassembly queue
1753  * All the incoming data packets are placed in reassembly queue
1754  * buf: the buffer to read data into
1755  * size: the length of data to read
1756  * return value: actual data read
1757  * Note: this implementation copies the data from reassebmly queue to receive
1758  * buffers used by upper layer. This is not the optimal code path. A better way
1759  * to do it is to not have upper layer allocate its receive buffers but rather
1760  * borrow the buffer from reassembly queue, and return it after data is
1761  * consumed. But this will require more changes to upper layer code, and also
1762  * need to consider packet boundaries while they still being reassembled.
1763  */
1764 static int smbd_recv_buf(struct smbd_connection *info, char *buf,
1765                 unsigned int size)
1766 {
1767         struct smbd_response *response;
1768         struct smbd_data_transfer *data_transfer;
1769         int to_copy, to_read, data_read, offset;
1770         u32 data_length, remaining_data_length, data_offset;
1771         int rc;
1772
1773 again:
1774         /*
1775          * No need to hold the reassembly queue lock all the time as we are
1776          * the only one reading from the front of the queue. The transport
1777          * may add more entries to the back of the queue at the same time
1778          */
1779         log_read(INFO, "size=%d info->reassembly_data_length=%d\n", size,
1780                 info->reassembly_data_length);
1781         if (info->reassembly_data_length >= size) {
1782                 int queue_length;
1783                 int queue_removed = 0;
1784
1785                 /*
1786                  * Need to make sure reassembly_data_length is read before
1787                  * reading reassembly_queue_length and calling
1788                  * _get_first_reassembly. This call is lock free
1789                  * as we never read at the end of the queue which are being
1790                  * updated in SOFTIRQ as more data is received
1791                  */
1792                 virt_rmb();
1793                 queue_length = info->reassembly_queue_length;
1794                 data_read = 0;
1795                 to_read = size;
1796                 offset = info->first_entry_offset;
1797                 while (data_read < size) {
1798                         response = _get_first_reassembly(info);
1799                         data_transfer = smbd_response_payload(response);
1800                         data_length = le32_to_cpu(data_transfer->data_length);
1801                         remaining_data_length =
1802                                 le32_to_cpu(
1803                                         data_transfer->remaining_data_length);
1804                         data_offset = le32_to_cpu(data_transfer->data_offset);
1805
1806                         /*
1807                          * The upper layer expects RFC1002 length at the
1808                          * beginning of the payload. Return it to indicate
1809                          * the total length of the packet. This minimize the
1810                          * change to upper layer packet processing logic. This
1811                          * will be eventually remove when an intermediate
1812                          * transport layer is added
1813                          */
1814                         if (response->first_segment && size == 4) {
1815                                 unsigned int rfc1002_len =
1816                                         data_length + remaining_data_length;
1817                                 *((__be32 *)buf) = cpu_to_be32(rfc1002_len);
1818                                 data_read = 4;
1819                                 response->first_segment = false;
1820                                 log_read(INFO, "returning rfc1002 length %d\n",
1821                                         rfc1002_len);
1822                                 goto read_rfc1002_done;
1823                         }
1824
1825                         to_copy = min_t(int, data_length - offset, to_read);
1826                         memcpy(
1827                                 buf + data_read,
1828                                 (char *)data_transfer + data_offset + offset,
1829                                 to_copy);
1830
1831                         /* move on to the next buffer? */
1832                         if (to_copy == data_length - offset) {
1833                                 queue_length--;
1834                                 /*
1835                                  * No need to lock if we are not at the
1836                                  * end of the queue
1837                                  */
1838                                 if (queue_length)
1839                                         list_del(&response->list);
1840                                 else {
1841                                         spin_lock_irq(
1842                                                 &info->reassembly_queue_lock);
1843                                         list_del(&response->list);
1844                                         spin_unlock_irq(
1845                                                 &info->reassembly_queue_lock);
1846                                 }
1847                                 queue_removed++;
1848                                 info->count_reassembly_queue--;
1849                                 info->count_dequeue_reassembly_queue++;
1850                                 put_receive_buffer(info, response);
1851                                 offset = 0;
1852                                 log_read(INFO, "put_receive_buffer offset=0\n");
1853                         } else
1854                                 offset += to_copy;
1855
1856                         to_read -= to_copy;
1857                         data_read += to_copy;
1858
1859                         log_read(INFO, "_get_first_reassembly memcpy %d bytes data_transfer_length-offset=%d after that to_read=%d data_read=%d offset=%d\n",
1860                                  to_copy, data_length - offset,
1861                                  to_read, data_read, offset);
1862                 }
1863
1864                 spin_lock_irq(&info->reassembly_queue_lock);
1865                 info->reassembly_data_length -= data_read;
1866                 info->reassembly_queue_length -= queue_removed;
1867                 spin_unlock_irq(&info->reassembly_queue_lock);
1868
1869                 info->first_entry_offset = offset;
1870                 log_read(INFO, "returning to thread data_read=%d reassembly_data_length=%d first_entry_offset=%d\n",
1871                          data_read, info->reassembly_data_length,
1872                          info->first_entry_offset);
1873 read_rfc1002_done:
1874                 return data_read;
1875         }
1876
1877         log_read(INFO, "wait_event on more data\n");
1878         rc = wait_event_interruptible(
1879                 info->wait_reassembly_queue,
1880                 info->reassembly_data_length >= size ||
1881                         info->transport_status != SMBD_CONNECTED);
1882         /* Don't return any data if interrupted */
1883         if (rc)
1884                 return rc;
1885
1886         if (info->transport_status != SMBD_CONNECTED) {
1887                 log_read(ERR, "disconnected\n");
1888                 return -ECONNABORTED;
1889         }
1890
1891         goto again;
1892 }
1893
1894 /*
1895  * Receive a page from receive reassembly queue
1896  * page: the page to read data into
1897  * to_read: the length of data to read
1898  * return value: actual data read
1899  */
1900 static int smbd_recv_page(struct smbd_connection *info,
1901                 struct page *page, unsigned int page_offset,
1902                 unsigned int to_read)
1903 {
1904         int ret;
1905         char *to_address;
1906         void *page_address;
1907
1908         /* make sure we have the page ready for read */
1909         ret = wait_event_interruptible(
1910                 info->wait_reassembly_queue,
1911                 info->reassembly_data_length >= to_read ||
1912                         info->transport_status != SMBD_CONNECTED);
1913         if (ret)
1914                 return ret;
1915
1916         /* now we can read from reassembly queue and not sleep */
1917         page_address = kmap_atomic(page);
1918         to_address = (char *) page_address + page_offset;
1919
1920         log_read(INFO, "reading from page=%p address=%p to_read=%d\n",
1921                 page, to_address, to_read);
1922
1923         ret = smbd_recv_buf(info, to_address, to_read);
1924         kunmap_atomic(page_address);
1925
1926         return ret;
1927 }
1928
1929 /*
1930  * Receive data from transport
1931  * msg: a msghdr point to the buffer, can be ITER_KVEC or ITER_BVEC
1932  * return: total bytes read, or 0. SMB Direct will not do partial read.
1933  */
1934 int smbd_recv(struct smbd_connection *info, struct msghdr *msg)
1935 {
1936         char *buf;
1937         struct page *page;
1938         unsigned int to_read, page_offset;
1939         int rc;
1940
1941         if (iov_iter_rw(&msg->msg_iter) == WRITE) {
1942                 /* It's a bug in upper layer to get there */
1943                 cifs_dbg(VFS, "Invalid msg iter dir %u\n",
1944                          iov_iter_rw(&msg->msg_iter));
1945                 rc = -EINVAL;
1946                 goto out;
1947         }
1948
1949         switch (iov_iter_type(&msg->msg_iter)) {
1950         case ITER_KVEC:
1951                 buf = msg->msg_iter.kvec->iov_base;
1952                 to_read = msg->msg_iter.kvec->iov_len;
1953                 rc = smbd_recv_buf(info, buf, to_read);
1954                 break;
1955
1956         case ITER_BVEC:
1957                 page = msg->msg_iter.bvec->bv_page;
1958                 page_offset = msg->msg_iter.bvec->bv_offset;
1959                 to_read = msg->msg_iter.bvec->bv_len;
1960                 rc = smbd_recv_page(info, page, page_offset, to_read);
1961                 break;
1962
1963         default:
1964                 /* It's a bug in upper layer to get there */
1965                 cifs_dbg(VFS, "Invalid msg type %d\n",
1966                          iov_iter_type(&msg->msg_iter));
1967                 rc = -EINVAL;
1968         }
1969
1970 out:
1971         /* SMBDirect will read it all or nothing */
1972         if (rc > 0)
1973                 msg->msg_iter.count = 0;
1974         return rc;
1975 }
1976
1977 /*
1978  * Send data to transport
1979  * Each rqst is transported as a SMBDirect payload
1980  * rqst: the data to write
1981  * return value: 0 if successfully write, otherwise error code
1982  */
1983 int smbd_send(struct TCP_Server_Info *server,
1984         int num_rqst, struct smb_rqst *rqst_array)
1985 {
1986         struct smbd_connection *info = server->smbd_conn;
1987         struct kvec vecs[SMBDIRECT_MAX_SEND_SGE - 1];
1988         int nvecs;
1989         int size;
1990         unsigned int buflen, remaining_data_length;
1991         unsigned int offset, remaining_vec_data_length;
1992         int start, i, j;
1993         int max_iov_size =
1994                 info->max_send_size - sizeof(struct smbd_data_transfer);
1995         struct kvec *iov;
1996         int rc;
1997         struct smb_rqst *rqst;
1998         int rqst_idx;
1999
2000         if (info->transport_status != SMBD_CONNECTED)
2001                 return -EAGAIN;
2002
2003         /*
2004          * Add in the page array if there is one. The caller needs to set
2005          * rq_tailsz to PAGE_SIZE when the buffer has multiple pages and
2006          * ends at page boundary
2007          */
2008         remaining_data_length = 0;
2009         for (i = 0; i < num_rqst; i++)
2010                 remaining_data_length += smb_rqst_len(server, &rqst_array[i]);
2011
2012         if (unlikely(remaining_data_length > info->max_fragmented_send_size)) {
2013                 /* assertion: payload never exceeds negotiated maximum */
2014                 log_write(ERR, "payload size %d > max size %d\n",
2015                         remaining_data_length, info->max_fragmented_send_size);
2016                 return -EINVAL;
2017         }
2018
2019         log_write(INFO, "num_rqst=%d total length=%u\n",
2020                         num_rqst, remaining_data_length);
2021
2022         rqst_idx = 0;
2023         do {
2024                 rqst = &rqst_array[rqst_idx];
2025                 iov = rqst->rq_iov;
2026
2027                 cifs_dbg(FYI, "Sending smb (RDMA): idx=%d smb_len=%lu\n",
2028                         rqst_idx, smb_rqst_len(server, rqst));
2029                 remaining_vec_data_length = 0;
2030                 for (i = 0; i < rqst->rq_nvec; i++) {
2031                         remaining_vec_data_length += iov[i].iov_len;
2032                         dump_smb(iov[i].iov_base, iov[i].iov_len);
2033                 }
2034
2035                 log_write(INFO, "rqst_idx=%d nvec=%d rqst->rq_npages=%d rq_pagesz=%d rq_tailsz=%d buflen=%lu\n",
2036                           rqst_idx, rqst->rq_nvec,
2037                           rqst->rq_npages, rqst->rq_pagesz,
2038                           rqst->rq_tailsz, smb_rqst_len(server, rqst));
2039
2040                 start = 0;
2041                 offset = 0;
2042                 do {
2043                         buflen = 0;
2044                         i = start;
2045                         j = 0;
2046                         while (i < rqst->rq_nvec &&
2047                                 j < SMBDIRECT_MAX_SEND_SGE - 1 &&
2048                                 buflen < max_iov_size) {
2049
2050                                 vecs[j].iov_base = iov[i].iov_base + offset;
2051                                 if (buflen + iov[i].iov_len > max_iov_size) {
2052                                         vecs[j].iov_len =
2053                                                 max_iov_size - iov[i].iov_len;
2054                                         buflen = max_iov_size;
2055                                         offset = vecs[j].iov_len;
2056                                 } else {
2057                                         vecs[j].iov_len =
2058                                                 iov[i].iov_len - offset;
2059                                         buflen += vecs[j].iov_len;
2060                                         offset = 0;
2061                                         ++i;
2062                                 }
2063                                 ++j;
2064                         }
2065
2066                         remaining_vec_data_length -= buflen;
2067                         remaining_data_length -= buflen;
2068                         log_write(INFO, "sending %s iov[%d] from start=%d nvecs=%d remaining_data_length=%d\n",
2069                                         remaining_vec_data_length > 0 ?
2070                                                 "partial" : "complete",
2071                                         rqst->rq_nvec, start, j,
2072                                         remaining_data_length);
2073
2074                         start = i;
2075                         rc = smbd_post_send_data(info, vecs, j, remaining_data_length);
2076                         if (rc)
2077                                 goto done;
2078                 } while (remaining_vec_data_length > 0);
2079
2080                 /* now sending pages if there are any */
2081                 for (i = 0; i < rqst->rq_npages; i++) {
2082                         rqst_page_get_length(rqst, i, &buflen, &offset);
2083                         nvecs = (buflen + max_iov_size - 1) / max_iov_size;
2084                         log_write(INFO, "sending pages buflen=%d nvecs=%d\n",
2085                                 buflen, nvecs);
2086                         for (j = 0; j < nvecs; j++) {
2087                                 size = min_t(unsigned int, max_iov_size, remaining_data_length);
2088                                 remaining_data_length -= size;
2089                                 log_write(INFO, "sending pages i=%d offset=%d size=%d remaining_data_length=%d\n",
2090                                           i, j * max_iov_size + offset, size,
2091                                           remaining_data_length);
2092                                 rc = smbd_post_send_page(
2093                                         info, rqst->rq_pages[i],
2094                                         j*max_iov_size + offset,
2095                                         size, remaining_data_length);
2096                                 if (rc)
2097                                         goto done;
2098                         }
2099                 }
2100         } while (++rqst_idx < num_rqst);
2101
2102 done:
2103         /*
2104          * As an optimization, we don't wait for individual I/O to finish
2105          * before sending the next one.
2106          * Send them all and wait for pending send count to get to 0
2107          * that means all the I/Os have been out and we are good to return
2108          */
2109
2110         wait_event(info->wait_send_pending,
2111                 atomic_read(&info->send_pending) == 0);
2112
2113         return rc;
2114 }
2115
2116 static void register_mr_done(struct ib_cq *cq, struct ib_wc *wc)
2117 {
2118         struct smbd_mr *mr;
2119         struct ib_cqe *cqe;
2120
2121         if (wc->status) {
2122                 log_rdma_mr(ERR, "status=%d\n", wc->status);
2123                 cqe = wc->wr_cqe;
2124                 mr = container_of(cqe, struct smbd_mr, cqe);
2125                 smbd_disconnect_rdma_connection(mr->conn);
2126         }
2127 }
2128
2129 /*
2130  * The work queue function that recovers MRs
2131  * We need to call ib_dereg_mr() and ib_alloc_mr() before this MR can be used
2132  * again. Both calls are slow, so finish them in a workqueue. This will not
2133  * block I/O path.
2134  * There is one workqueue that recovers MRs, there is no need to lock as the
2135  * I/O requests calling smbd_register_mr will never update the links in the
2136  * mr_list.
2137  */
2138 static void smbd_mr_recovery_work(struct work_struct *work)
2139 {
2140         struct smbd_connection *info =
2141                 container_of(work, struct smbd_connection, mr_recovery_work);
2142         struct smbd_mr *smbdirect_mr;
2143         int rc;
2144
2145         list_for_each_entry(smbdirect_mr, &info->mr_list, list) {
2146                 if (smbdirect_mr->state == MR_ERROR) {
2147
2148                         /* recover this MR entry */
2149                         rc = ib_dereg_mr(smbdirect_mr->mr);
2150                         if (rc) {
2151                                 log_rdma_mr(ERR,
2152                                         "ib_dereg_mr failed rc=%x\n",
2153                                         rc);
2154                                 smbd_disconnect_rdma_connection(info);
2155                                 continue;
2156                         }
2157
2158                         smbdirect_mr->mr = ib_alloc_mr(
2159                                 info->pd, info->mr_type,
2160                                 info->max_frmr_depth);
2161                         if (IS_ERR(smbdirect_mr->mr)) {
2162                                 log_rdma_mr(ERR, "ib_alloc_mr failed mr_type=%x max_frmr_depth=%x\n",
2163                                             info->mr_type,
2164                                             info->max_frmr_depth);
2165                                 smbd_disconnect_rdma_connection(info);
2166                                 continue;
2167                         }
2168                 } else
2169                         /* This MR is being used, don't recover it */
2170                         continue;
2171
2172                 smbdirect_mr->state = MR_READY;
2173
2174                 /* smbdirect_mr->state is updated by this function
2175                  * and is read and updated by I/O issuing CPUs trying
2176                  * to get a MR, the call to atomic_inc_return
2177                  * implicates a memory barrier and guarantees this
2178                  * value is updated before waking up any calls to
2179                  * get_mr() from the I/O issuing CPUs
2180                  */
2181                 if (atomic_inc_return(&info->mr_ready_count) == 1)
2182                         wake_up_interruptible(&info->wait_mr);
2183         }
2184 }
2185
2186 static void destroy_mr_list(struct smbd_connection *info)
2187 {
2188         struct smbd_mr *mr, *tmp;
2189
2190         cancel_work_sync(&info->mr_recovery_work);
2191         list_for_each_entry_safe(mr, tmp, &info->mr_list, list) {
2192                 if (mr->state == MR_INVALIDATED)
2193                         ib_dma_unmap_sg(info->id->device, mr->sgl,
2194                                 mr->sgl_count, mr->dir);
2195                 ib_dereg_mr(mr->mr);
2196                 kfree(mr->sgl);
2197                 kfree(mr);
2198         }
2199 }
2200
2201 /*
2202  * Allocate MRs used for RDMA read/write
2203  * The number of MRs will not exceed hardware capability in responder_resources
2204  * All MRs are kept in mr_list. The MR can be recovered after it's used
2205  * Recovery is done in smbd_mr_recovery_work. The content of list entry changes
2206  * as MRs are used and recovered for I/O, but the list links will not change
2207  */
2208 static int allocate_mr_list(struct smbd_connection *info)
2209 {
2210         int i;
2211         struct smbd_mr *smbdirect_mr, *tmp;
2212
2213         INIT_LIST_HEAD(&info->mr_list);
2214         init_waitqueue_head(&info->wait_mr);
2215         spin_lock_init(&info->mr_list_lock);
2216         atomic_set(&info->mr_ready_count, 0);
2217         atomic_set(&info->mr_used_count, 0);
2218         init_waitqueue_head(&info->wait_for_mr_cleanup);
2219         /* Allocate more MRs (2x) than hardware responder_resources */
2220         for (i = 0; i < info->responder_resources * 2; i++) {
2221                 smbdirect_mr = kzalloc(sizeof(*smbdirect_mr), GFP_KERNEL);
2222                 if (!smbdirect_mr)
2223                         goto out;
2224                 smbdirect_mr->mr = ib_alloc_mr(info->pd, info->mr_type,
2225                                         info->max_frmr_depth);
2226                 if (IS_ERR(smbdirect_mr->mr)) {
2227                         log_rdma_mr(ERR, "ib_alloc_mr failed mr_type=%x max_frmr_depth=%x\n",
2228                                     info->mr_type, info->max_frmr_depth);
2229                         goto out;
2230                 }
2231                 smbdirect_mr->sgl = kcalloc(
2232                                         info->max_frmr_depth,
2233                                         sizeof(struct scatterlist),
2234                                         GFP_KERNEL);
2235                 if (!smbdirect_mr->sgl) {
2236                         log_rdma_mr(ERR, "failed to allocate sgl\n");
2237                         ib_dereg_mr(smbdirect_mr->mr);
2238                         goto out;
2239                 }
2240                 smbdirect_mr->state = MR_READY;
2241                 smbdirect_mr->conn = info;
2242
2243                 list_add_tail(&smbdirect_mr->list, &info->mr_list);
2244                 atomic_inc(&info->mr_ready_count);
2245         }
2246         INIT_WORK(&info->mr_recovery_work, smbd_mr_recovery_work);
2247         return 0;
2248
2249 out:
2250         kfree(smbdirect_mr);
2251
2252         list_for_each_entry_safe(smbdirect_mr, tmp, &info->mr_list, list) {
2253                 ib_dereg_mr(smbdirect_mr->mr);
2254                 kfree(smbdirect_mr->sgl);
2255                 kfree(smbdirect_mr);
2256         }
2257         return -ENOMEM;
2258 }
2259
2260 /*
2261  * Get a MR from mr_list. This function waits until there is at least one
2262  * MR available in the list. It may access the list while the
2263  * smbd_mr_recovery_work is recovering the MR list. This doesn't need a lock
2264  * as they never modify the same places. However, there may be several CPUs
2265  * issueing I/O trying to get MR at the same time, mr_list_lock is used to
2266  * protect this situation.
2267  */
2268 static struct smbd_mr *get_mr(struct smbd_connection *info)
2269 {
2270         struct smbd_mr *ret;
2271         int rc;
2272 again:
2273         rc = wait_event_interruptible(info->wait_mr,
2274                 atomic_read(&info->mr_ready_count) ||
2275                 info->transport_status != SMBD_CONNECTED);
2276         if (rc) {
2277                 log_rdma_mr(ERR, "wait_event_interruptible rc=%x\n", rc);
2278                 return NULL;
2279         }
2280
2281         if (info->transport_status != SMBD_CONNECTED) {
2282                 log_rdma_mr(ERR, "info->transport_status=%x\n",
2283                         info->transport_status);
2284                 return NULL;
2285         }
2286
2287         spin_lock(&info->mr_list_lock);
2288         list_for_each_entry(ret, &info->mr_list, list) {
2289                 if (ret->state == MR_READY) {
2290                         ret->state = MR_REGISTERED;
2291                         spin_unlock(&info->mr_list_lock);
2292                         atomic_dec(&info->mr_ready_count);
2293                         atomic_inc(&info->mr_used_count);
2294                         return ret;
2295                 }
2296         }
2297
2298         spin_unlock(&info->mr_list_lock);
2299         /*
2300          * It is possible that we could fail to get MR because other processes may
2301          * try to acquire a MR at the same time. If this is the case, retry it.
2302          */
2303         goto again;
2304 }
2305
2306 /*
2307  * Register memory for RDMA read/write
2308  * pages[]: the list of pages to register memory with
2309  * num_pages: the number of pages to register
2310  * tailsz: if non-zero, the bytes to register in the last page
2311  * writing: true if this is a RDMA write (SMB read), false for RDMA read
2312  * need_invalidate: true if this MR needs to be locally invalidated after I/O
2313  * return value: the MR registered, NULL if failed.
2314  */
2315 struct smbd_mr *smbd_register_mr(
2316         struct smbd_connection *info, struct page *pages[], int num_pages,
2317         int offset, int tailsz, bool writing, bool need_invalidate)
2318 {
2319         struct smbd_mr *smbdirect_mr;
2320         int rc, i;
2321         enum dma_data_direction dir;
2322         struct ib_reg_wr *reg_wr;
2323
2324         if (num_pages > info->max_frmr_depth) {
2325                 log_rdma_mr(ERR, "num_pages=%d max_frmr_depth=%d\n",
2326                         num_pages, info->max_frmr_depth);
2327                 return NULL;
2328         }
2329
2330         smbdirect_mr = get_mr(info);
2331         if (!smbdirect_mr) {
2332                 log_rdma_mr(ERR, "get_mr returning NULL\n");
2333                 return NULL;
2334         }
2335         smbdirect_mr->need_invalidate = need_invalidate;
2336         smbdirect_mr->sgl_count = num_pages;
2337         sg_init_table(smbdirect_mr->sgl, num_pages);
2338
2339         log_rdma_mr(INFO, "num_pages=0x%x offset=0x%x tailsz=0x%x\n",
2340                         num_pages, offset, tailsz);
2341
2342         if (num_pages == 1) {
2343                 sg_set_page(&smbdirect_mr->sgl[0], pages[0], tailsz, offset);
2344                 goto skip_multiple_pages;
2345         }
2346
2347         /* We have at least two pages to register */
2348         sg_set_page(
2349                 &smbdirect_mr->sgl[0], pages[0], PAGE_SIZE - offset, offset);
2350         i = 1;
2351         while (i < num_pages - 1) {
2352                 sg_set_page(&smbdirect_mr->sgl[i], pages[i], PAGE_SIZE, 0);
2353                 i++;
2354         }
2355         sg_set_page(&smbdirect_mr->sgl[i], pages[i],
2356                 tailsz ? tailsz : PAGE_SIZE, 0);
2357
2358 skip_multiple_pages:
2359         dir = writing ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
2360         smbdirect_mr->dir = dir;
2361         rc = ib_dma_map_sg(info->id->device, smbdirect_mr->sgl, num_pages, dir);
2362         if (!rc) {
2363                 log_rdma_mr(ERR, "ib_dma_map_sg num_pages=%x dir=%x rc=%x\n",
2364                         num_pages, dir, rc);
2365                 goto dma_map_error;
2366         }
2367
2368         rc = ib_map_mr_sg(smbdirect_mr->mr, smbdirect_mr->sgl, num_pages,
2369                 NULL, PAGE_SIZE);
2370         if (rc != num_pages) {
2371                 log_rdma_mr(ERR,
2372                         "ib_map_mr_sg failed rc = %d num_pages = %x\n",
2373                         rc, num_pages);
2374                 goto map_mr_error;
2375         }
2376
2377         ib_update_fast_reg_key(smbdirect_mr->mr,
2378                 ib_inc_rkey(smbdirect_mr->mr->rkey));
2379         reg_wr = &smbdirect_mr->wr;
2380         reg_wr->wr.opcode = IB_WR_REG_MR;
2381         smbdirect_mr->cqe.done = register_mr_done;
2382         reg_wr->wr.wr_cqe = &smbdirect_mr->cqe;
2383         reg_wr->wr.num_sge = 0;
2384         reg_wr->wr.send_flags = IB_SEND_SIGNALED;
2385         reg_wr->mr = smbdirect_mr->mr;
2386         reg_wr->key = smbdirect_mr->mr->rkey;
2387         reg_wr->access = writing ?
2388                         IB_ACCESS_REMOTE_WRITE | IB_ACCESS_LOCAL_WRITE :
2389                         IB_ACCESS_REMOTE_READ;
2390
2391         /*
2392          * There is no need for waiting for complemtion on ib_post_send
2393          * on IB_WR_REG_MR. Hardware enforces a barrier and order of execution
2394          * on the next ib_post_send when we actaully send I/O to remote peer
2395          */
2396         rc = ib_post_send(info->id->qp, &reg_wr->wr, NULL);
2397         if (!rc)
2398                 return smbdirect_mr;
2399
2400         log_rdma_mr(ERR, "ib_post_send failed rc=%x reg_wr->key=%x\n",
2401                 rc, reg_wr->key);
2402
2403         /* If all failed, attempt to recover this MR by setting it MR_ERROR*/
2404 map_mr_error:
2405         ib_dma_unmap_sg(info->id->device, smbdirect_mr->sgl,
2406                 smbdirect_mr->sgl_count, smbdirect_mr->dir);
2407
2408 dma_map_error:
2409         smbdirect_mr->state = MR_ERROR;
2410         if (atomic_dec_and_test(&info->mr_used_count))
2411                 wake_up(&info->wait_for_mr_cleanup);
2412
2413         smbd_disconnect_rdma_connection(info);
2414
2415         return NULL;
2416 }
2417
2418 static void local_inv_done(struct ib_cq *cq, struct ib_wc *wc)
2419 {
2420         struct smbd_mr *smbdirect_mr;
2421         struct ib_cqe *cqe;
2422
2423         cqe = wc->wr_cqe;
2424         smbdirect_mr = container_of(cqe, struct smbd_mr, cqe);
2425         smbdirect_mr->state = MR_INVALIDATED;
2426         if (wc->status != IB_WC_SUCCESS) {
2427                 log_rdma_mr(ERR, "invalidate failed status=%x\n", wc->status);
2428                 smbdirect_mr->state = MR_ERROR;
2429         }
2430         complete(&smbdirect_mr->invalidate_done);
2431 }
2432
2433 /*
2434  * Deregister a MR after I/O is done
2435  * This function may wait if remote invalidation is not used
2436  * and we have to locally invalidate the buffer to prevent data is being
2437  * modified by remote peer after upper layer consumes it
2438  */
2439 int smbd_deregister_mr(struct smbd_mr *smbdirect_mr)
2440 {
2441         struct ib_send_wr *wr;
2442         struct smbd_connection *info = smbdirect_mr->conn;
2443         int rc = 0;
2444
2445         if (smbdirect_mr->need_invalidate) {
2446                 /* Need to finish local invalidation before returning */
2447                 wr = &smbdirect_mr->inv_wr;
2448                 wr->opcode = IB_WR_LOCAL_INV;
2449                 smbdirect_mr->cqe.done = local_inv_done;
2450                 wr->wr_cqe = &smbdirect_mr->cqe;
2451                 wr->num_sge = 0;
2452                 wr->ex.invalidate_rkey = smbdirect_mr->mr->rkey;
2453                 wr->send_flags = IB_SEND_SIGNALED;
2454
2455                 init_completion(&smbdirect_mr->invalidate_done);
2456                 rc = ib_post_send(info->id->qp, wr, NULL);
2457                 if (rc) {
2458                         log_rdma_mr(ERR, "ib_post_send failed rc=%x\n", rc);
2459                         smbd_disconnect_rdma_connection(info);
2460                         goto done;
2461                 }
2462                 wait_for_completion(&smbdirect_mr->invalidate_done);
2463                 smbdirect_mr->need_invalidate = false;
2464         } else
2465                 /*
2466                  * For remote invalidation, just set it to MR_INVALIDATED
2467                  * and defer to mr_recovery_work to recover the MR for next use
2468                  */
2469                 smbdirect_mr->state = MR_INVALIDATED;
2470
2471         if (smbdirect_mr->state == MR_INVALIDATED) {
2472                 ib_dma_unmap_sg(
2473                         info->id->device, smbdirect_mr->sgl,
2474                         smbdirect_mr->sgl_count,
2475                         smbdirect_mr->dir);
2476                 smbdirect_mr->state = MR_READY;
2477                 if (atomic_inc_return(&info->mr_ready_count) == 1)
2478                         wake_up_interruptible(&info->wait_mr);
2479         } else
2480                 /*
2481                  * Schedule the work to do MR recovery for future I/Os MR
2482                  * recovery is slow and don't want it to block current I/O
2483                  */
2484                 queue_work(info->workqueue, &info->mr_recovery_work);
2485
2486 done:
2487         if (atomic_dec_and_test(&info->mr_used_count))
2488                 wake_up(&info->wait_for_mr_cleanup);
2489
2490         return rc;
2491 }