Merge tag 'rproc-v6.1' of git://git.kernel.org/pub/scm/linux/kernel/git/remoteproc...
[linux-2.6-microblaze.git] / fs / cifs / misc.c
1 // SPDX-License-Identifier: LGPL-2.1
2 /*
3  *
4  *   Copyright (C) International Business Machines  Corp., 2002,2008
5  *   Author(s): Steve French (sfrench@us.ibm.com)
6  *
7  */
8
9 #include <linux/slab.h>
10 #include <linux/ctype.h>
11 #include <linux/mempool.h>
12 #include <linux/vmalloc.h>
13 #include "cifspdu.h"
14 #include "cifsglob.h"
15 #include "cifsproto.h"
16 #include "cifs_debug.h"
17 #include "smberr.h"
18 #include "nterr.h"
19 #include "cifs_unicode.h"
20 #include "smb2pdu.h"
21 #include "cifsfs.h"
22 #ifdef CONFIG_CIFS_DFS_UPCALL
23 #include "dns_resolve.h"
24 #endif
25 #include "fs_context.h"
26 #include "cached_dir.h"
27
28 extern mempool_t *cifs_sm_req_poolp;
29 extern mempool_t *cifs_req_poolp;
30
31 /* The xid serves as a useful identifier for each incoming vfs request,
32    in a similar way to the mid which is useful to track each sent smb,
33    and CurrentXid can also provide a running counter (although it
34    will eventually wrap past zero) of the total vfs operations handled
35    since the cifs fs was mounted */
36
37 unsigned int
38 _get_xid(void)
39 {
40         unsigned int xid;
41
42         spin_lock(&GlobalMid_Lock);
43         GlobalTotalActiveXid++;
44
45         /* keep high water mark for number of simultaneous ops in filesystem */
46         if (GlobalTotalActiveXid > GlobalMaxActiveXid)
47                 GlobalMaxActiveXid = GlobalTotalActiveXid;
48         if (GlobalTotalActiveXid > 65000)
49                 cifs_dbg(FYI, "warning: more than 65000 requests active\n");
50         xid = GlobalCurrentXid++;
51         spin_unlock(&GlobalMid_Lock);
52         return xid;
53 }
54
55 void
56 _free_xid(unsigned int xid)
57 {
58         spin_lock(&GlobalMid_Lock);
59         /* if (GlobalTotalActiveXid == 0)
60                 BUG(); */
61         GlobalTotalActiveXid--;
62         spin_unlock(&GlobalMid_Lock);
63 }
64
65 struct cifs_ses *
66 sesInfoAlloc(void)
67 {
68         struct cifs_ses *ret_buf;
69
70         ret_buf = kzalloc(sizeof(struct cifs_ses), GFP_KERNEL);
71         if (ret_buf) {
72                 atomic_inc(&sesInfoAllocCount);
73                 spin_lock_init(&ret_buf->ses_lock);
74                 ret_buf->ses_status = SES_NEW;
75                 ++ret_buf->ses_count;
76                 INIT_LIST_HEAD(&ret_buf->smb_ses_list);
77                 INIT_LIST_HEAD(&ret_buf->tcon_list);
78                 mutex_init(&ret_buf->session_mutex);
79                 spin_lock_init(&ret_buf->iface_lock);
80                 INIT_LIST_HEAD(&ret_buf->iface_list);
81                 spin_lock_init(&ret_buf->chan_lock);
82         }
83         return ret_buf;
84 }
85
86 void
87 sesInfoFree(struct cifs_ses *buf_to_free)
88 {
89         struct cifs_server_iface *iface = NULL, *niface = NULL;
90
91         if (buf_to_free == NULL) {
92                 cifs_dbg(FYI, "Null buffer passed to sesInfoFree\n");
93                 return;
94         }
95
96         atomic_dec(&sesInfoAllocCount);
97         kfree(buf_to_free->serverOS);
98         kfree(buf_to_free->serverDomain);
99         kfree(buf_to_free->serverNOS);
100         kfree_sensitive(buf_to_free->password);
101         kfree(buf_to_free->user_name);
102         kfree(buf_to_free->domainName);
103         kfree_sensitive(buf_to_free->auth_key.response);
104         spin_lock(&buf_to_free->iface_lock);
105         list_for_each_entry_safe(iface, niface, &buf_to_free->iface_list,
106                                  iface_head)
107                 kref_put(&iface->refcount, release_iface);
108         spin_unlock(&buf_to_free->iface_lock);
109         kfree_sensitive(buf_to_free);
110 }
111
112 struct cifs_tcon *
113 tconInfoAlloc(void)
114 {
115         struct cifs_tcon *ret_buf;
116
117         ret_buf = kzalloc(sizeof(*ret_buf), GFP_KERNEL);
118         if (!ret_buf)
119                 return NULL;
120         ret_buf->cfid = init_cached_dir();
121         if (!ret_buf->cfid) {
122                 kfree(ret_buf);
123                 return NULL;
124         }
125
126         atomic_inc(&tconInfoAllocCount);
127         ret_buf->status = TID_NEW;
128         ++ret_buf->tc_count;
129         spin_lock_init(&ret_buf->tc_lock);
130         INIT_LIST_HEAD(&ret_buf->openFileList);
131         INIT_LIST_HEAD(&ret_buf->tcon_list);
132         spin_lock_init(&ret_buf->open_file_lock);
133         spin_lock_init(&ret_buf->stat_lock);
134         atomic_set(&ret_buf->num_local_opens, 0);
135         atomic_set(&ret_buf->num_remote_opens, 0);
136
137         return ret_buf;
138 }
139
140 void
141 tconInfoFree(struct cifs_tcon *tcon)
142 {
143         if (tcon == NULL) {
144                 cifs_dbg(FYI, "Null buffer passed to tconInfoFree\n");
145                 return;
146         }
147         free_cached_dir(tcon);
148         atomic_dec(&tconInfoAllocCount);
149         kfree(tcon->nativeFileSystem);
150         kfree_sensitive(tcon->password);
151         kfree(tcon);
152 }
153
154 struct smb_hdr *
155 cifs_buf_get(void)
156 {
157         struct smb_hdr *ret_buf = NULL;
158         /*
159          * SMB2 header is bigger than CIFS one - no problems to clean some
160          * more bytes for CIFS.
161          */
162         size_t buf_size = sizeof(struct smb2_hdr);
163
164         /*
165          * We could use negotiated size instead of max_msgsize -
166          * but it may be more efficient to always alloc same size
167          * albeit slightly larger than necessary and maxbuffersize
168          * defaults to this and can not be bigger.
169          */
170         ret_buf = mempool_alloc(cifs_req_poolp, GFP_NOFS);
171
172         /* clear the first few header bytes */
173         /* for most paths, more is cleared in header_assemble */
174         memset(ret_buf, 0, buf_size + 3);
175         atomic_inc(&buf_alloc_count);
176 #ifdef CONFIG_CIFS_STATS2
177         atomic_inc(&total_buf_alloc_count);
178 #endif /* CONFIG_CIFS_STATS2 */
179
180         return ret_buf;
181 }
182
183 void
184 cifs_buf_release(void *buf_to_free)
185 {
186         if (buf_to_free == NULL) {
187                 /* cifs_dbg(FYI, "Null buffer passed to cifs_buf_release\n");*/
188                 return;
189         }
190         mempool_free(buf_to_free, cifs_req_poolp);
191
192         atomic_dec(&buf_alloc_count);
193         return;
194 }
195
196 struct smb_hdr *
197 cifs_small_buf_get(void)
198 {
199         struct smb_hdr *ret_buf = NULL;
200
201 /* We could use negotiated size instead of max_msgsize -
202    but it may be more efficient to always alloc same size
203    albeit slightly larger than necessary and maxbuffersize
204    defaults to this and can not be bigger */
205         ret_buf = mempool_alloc(cifs_sm_req_poolp, GFP_NOFS);
206         /* No need to clear memory here, cleared in header assemble */
207         /*      memset(ret_buf, 0, sizeof(struct smb_hdr) + 27);*/
208         atomic_inc(&small_buf_alloc_count);
209 #ifdef CONFIG_CIFS_STATS2
210         atomic_inc(&total_small_buf_alloc_count);
211 #endif /* CONFIG_CIFS_STATS2 */
212
213         return ret_buf;
214 }
215
216 void
217 cifs_small_buf_release(void *buf_to_free)
218 {
219
220         if (buf_to_free == NULL) {
221                 cifs_dbg(FYI, "Null buffer passed to cifs_small_buf_release\n");
222                 return;
223         }
224         mempool_free(buf_to_free, cifs_sm_req_poolp);
225
226         atomic_dec(&small_buf_alloc_count);
227         return;
228 }
229
230 void
231 free_rsp_buf(int resp_buftype, void *rsp)
232 {
233         if (resp_buftype == CIFS_SMALL_BUFFER)
234                 cifs_small_buf_release(rsp);
235         else if (resp_buftype == CIFS_LARGE_BUFFER)
236                 cifs_buf_release(rsp);
237 }
238
239 /* NB: MID can not be set if treeCon not passed in, in that
240    case it is responsbility of caller to set the mid */
241 void
242 header_assemble(struct smb_hdr *buffer, char smb_command /* command */ ,
243                 const struct cifs_tcon *treeCon, int word_count
244                 /* length of fixed section (word count) in two byte units  */)
245 {
246         char *temp = (char *) buffer;
247
248         memset(temp, 0, 256); /* bigger than MAX_CIFS_HDR_SIZE */
249
250         buffer->smb_buf_length = cpu_to_be32(
251             (2 * word_count) + sizeof(struct smb_hdr) -
252             4 /*  RFC 1001 length field does not count */  +
253             2 /* for bcc field itself */) ;
254
255         buffer->Protocol[0] = 0xFF;
256         buffer->Protocol[1] = 'S';
257         buffer->Protocol[2] = 'M';
258         buffer->Protocol[3] = 'B';
259         buffer->Command = smb_command;
260         buffer->Flags = 0x00;   /* case sensitive */
261         buffer->Flags2 = SMBFLG2_KNOWS_LONG_NAMES;
262         buffer->Pid = cpu_to_le16((__u16)current->tgid);
263         buffer->PidHigh = cpu_to_le16((__u16)(current->tgid >> 16));
264         if (treeCon) {
265                 buffer->Tid = treeCon->tid;
266                 if (treeCon->ses) {
267                         if (treeCon->ses->capabilities & CAP_UNICODE)
268                                 buffer->Flags2 |= SMBFLG2_UNICODE;
269                         if (treeCon->ses->capabilities & CAP_STATUS32)
270                                 buffer->Flags2 |= SMBFLG2_ERR_STATUS;
271
272                         /* Uid is not converted */
273                         buffer->Uid = treeCon->ses->Suid;
274                         if (treeCon->ses->server)
275                                 buffer->Mid = get_next_mid(treeCon->ses->server);
276                 }
277                 if (treeCon->Flags & SMB_SHARE_IS_IN_DFS)
278                         buffer->Flags2 |= SMBFLG2_DFS;
279                 if (treeCon->nocase)
280                         buffer->Flags  |= SMBFLG_CASELESS;
281                 if ((treeCon->ses) && (treeCon->ses->server))
282                         if (treeCon->ses->server->sign)
283                                 buffer->Flags2 |= SMBFLG2_SECURITY_SIGNATURE;
284         }
285
286 /*  endian conversion of flags is now done just before sending */
287         buffer->WordCount = (char) word_count;
288         return;
289 }
290
291 static int
292 check_smb_hdr(struct smb_hdr *smb)
293 {
294         /* does it have the right SMB "signature" ? */
295         if (*(__le32 *) smb->Protocol != cpu_to_le32(0x424d53ff)) {
296                 cifs_dbg(VFS, "Bad protocol string signature header 0x%x\n",
297                          *(unsigned int *)smb->Protocol);
298                 return 1;
299         }
300
301         /* if it's a response then accept */
302         if (smb->Flags & SMBFLG_RESPONSE)
303                 return 0;
304
305         /* only one valid case where server sends us request */
306         if (smb->Command == SMB_COM_LOCKING_ANDX)
307                 return 0;
308
309         cifs_dbg(VFS, "Server sent request, not response. mid=%u\n",
310                  get_mid(smb));
311         return 1;
312 }
313
314 int
315 checkSMB(char *buf, unsigned int total_read, struct TCP_Server_Info *server)
316 {
317         struct smb_hdr *smb = (struct smb_hdr *)buf;
318         __u32 rfclen = be32_to_cpu(smb->smb_buf_length);
319         __u32 clc_len;  /* calculated length */
320         cifs_dbg(FYI, "checkSMB Length: 0x%x, smb_buf_length: 0x%x\n",
321                  total_read, rfclen);
322
323         /* is this frame too small to even get to a BCC? */
324         if (total_read < 2 + sizeof(struct smb_hdr)) {
325                 if ((total_read >= sizeof(struct smb_hdr) - 1)
326                             && (smb->Status.CifsError != 0)) {
327                         /* it's an error return */
328                         smb->WordCount = 0;
329                         /* some error cases do not return wct and bcc */
330                         return 0;
331                 } else if ((total_read == sizeof(struct smb_hdr) + 1) &&
332                                 (smb->WordCount == 0)) {
333                         char *tmp = (char *)smb;
334                         /* Need to work around a bug in two servers here */
335                         /* First, check if the part of bcc they sent was zero */
336                         if (tmp[sizeof(struct smb_hdr)] == 0) {
337                                 /* some servers return only half of bcc
338                                  * on simple responses (wct, bcc both zero)
339                                  * in particular have seen this on
340                                  * ulogoffX and FindClose. This leaves
341                                  * one byte of bcc potentially unitialized
342                                  */
343                                 /* zero rest of bcc */
344                                 tmp[sizeof(struct smb_hdr)+1] = 0;
345                                 return 0;
346                         }
347                         cifs_dbg(VFS, "rcvd invalid byte count (bcc)\n");
348                 } else {
349                         cifs_dbg(VFS, "Length less than smb header size\n");
350                 }
351                 return -EIO;
352         }
353
354         /* otherwise, there is enough to get to the BCC */
355         if (check_smb_hdr(smb))
356                 return -EIO;
357         clc_len = smbCalcSize(smb);
358
359         if (4 + rfclen != total_read) {
360                 cifs_dbg(VFS, "Length read does not match RFC1001 length %d\n",
361                          rfclen);
362                 return -EIO;
363         }
364
365         if (4 + rfclen != clc_len) {
366                 __u16 mid = get_mid(smb);
367                 /* check if bcc wrapped around for large read responses */
368                 if ((rfclen > 64 * 1024) && (rfclen > clc_len)) {
369                         /* check if lengths match mod 64K */
370                         if (((4 + rfclen) & 0xFFFF) == (clc_len & 0xFFFF))
371                                 return 0; /* bcc wrapped */
372                 }
373                 cifs_dbg(FYI, "Calculated size %u vs length %u mismatch for mid=%u\n",
374                          clc_len, 4 + rfclen, mid);
375
376                 if (4 + rfclen < clc_len) {
377                         cifs_dbg(VFS, "RFC1001 size %u smaller than SMB for mid=%u\n",
378                                  rfclen, mid);
379                         return -EIO;
380                 } else if (rfclen > clc_len + 512) {
381                         /*
382                          * Some servers (Windows XP in particular) send more
383                          * data than the lengths in the SMB packet would
384                          * indicate on certain calls (byte range locks and
385                          * trans2 find first calls in particular). While the
386                          * client can handle such a frame by ignoring the
387                          * trailing data, we choose limit the amount of extra
388                          * data to 512 bytes.
389                          */
390                         cifs_dbg(VFS, "RFC1001 size %u more than 512 bytes larger than SMB for mid=%u\n",
391                                  rfclen, mid);
392                         return -EIO;
393                 }
394         }
395         return 0;
396 }
397
398 bool
399 is_valid_oplock_break(char *buffer, struct TCP_Server_Info *srv)
400 {
401         struct smb_hdr *buf = (struct smb_hdr *)buffer;
402         struct smb_com_lock_req *pSMB = (struct smb_com_lock_req *)buf;
403         struct cifs_ses *ses;
404         struct cifs_tcon *tcon;
405         struct cifsInodeInfo *pCifsInode;
406         struct cifsFileInfo *netfile;
407
408         cifs_dbg(FYI, "Checking for oplock break or dnotify response\n");
409         if ((pSMB->hdr.Command == SMB_COM_NT_TRANSACT) &&
410            (pSMB->hdr.Flags & SMBFLG_RESPONSE)) {
411                 struct smb_com_transaction_change_notify_rsp *pSMBr =
412                         (struct smb_com_transaction_change_notify_rsp *)buf;
413                 struct file_notify_information *pnotify;
414                 __u32 data_offset = 0;
415                 size_t len = srv->total_read - sizeof(pSMBr->hdr.smb_buf_length);
416
417                 if (get_bcc(buf) > sizeof(struct file_notify_information)) {
418                         data_offset = le32_to_cpu(pSMBr->DataOffset);
419
420                         if (data_offset >
421                             len - sizeof(struct file_notify_information)) {
422                                 cifs_dbg(FYI, "Invalid data_offset %u\n",
423                                          data_offset);
424                                 return true;
425                         }
426                         pnotify = (struct file_notify_information *)
427                                 ((char *)&pSMBr->hdr.Protocol + data_offset);
428                         cifs_dbg(FYI, "dnotify on %s Action: 0x%x\n",
429                                  pnotify->FileName, pnotify->Action);
430                         /*   cifs_dump_mem("Rcvd notify Data: ",buf,
431                                 sizeof(struct smb_hdr)+60); */
432                         return true;
433                 }
434                 if (pSMBr->hdr.Status.CifsError) {
435                         cifs_dbg(FYI, "notify err 0x%x\n",
436                                  pSMBr->hdr.Status.CifsError);
437                         return true;
438                 }
439                 return false;
440         }
441         if (pSMB->hdr.Command != SMB_COM_LOCKING_ANDX)
442                 return false;
443         if (pSMB->hdr.Flags & SMBFLG_RESPONSE) {
444                 /* no sense logging error on invalid handle on oplock
445                    break - harmless race between close request and oplock
446                    break response is expected from time to time writing out
447                    large dirty files cached on the client */
448                 if ((NT_STATUS_INVALID_HANDLE) ==
449                    le32_to_cpu(pSMB->hdr.Status.CifsError)) {
450                         cifs_dbg(FYI, "Invalid handle on oplock break\n");
451                         return true;
452                 } else if (ERRbadfid ==
453                    le16_to_cpu(pSMB->hdr.Status.DosError.Error)) {
454                         return true;
455                 } else {
456                         return false; /* on valid oplock brk we get "request" */
457                 }
458         }
459         if (pSMB->hdr.WordCount != 8)
460                 return false;
461
462         cifs_dbg(FYI, "oplock type 0x%x level 0x%x\n",
463                  pSMB->LockType, pSMB->OplockLevel);
464         if (!(pSMB->LockType & LOCKING_ANDX_OPLOCK_RELEASE))
465                 return false;
466
467         /* look up tcon based on tid & uid */
468         spin_lock(&cifs_tcp_ses_lock);
469         list_for_each_entry(ses, &srv->smb_ses_list, smb_ses_list) {
470                 list_for_each_entry(tcon, &ses->tcon_list, tcon_list) {
471                         if (tcon->tid != buf->Tid)
472                                 continue;
473
474                         cifs_stats_inc(&tcon->stats.cifs_stats.num_oplock_brks);
475                         spin_lock(&tcon->open_file_lock);
476                         list_for_each_entry(netfile, &tcon->openFileList, tlist) {
477                                 if (pSMB->Fid != netfile->fid.netfid)
478                                         continue;
479
480                                 cifs_dbg(FYI, "file id match, oplock break\n");
481                                 pCifsInode = CIFS_I(d_inode(netfile->dentry));
482
483                                 set_bit(CIFS_INODE_PENDING_OPLOCK_BREAK,
484                                         &pCifsInode->flags);
485
486                                 netfile->oplock_epoch = 0;
487                                 netfile->oplock_level = pSMB->OplockLevel;
488                                 netfile->oplock_break_cancelled = false;
489                                 cifs_queue_oplock_break(netfile);
490
491                                 spin_unlock(&tcon->open_file_lock);
492                                 spin_unlock(&cifs_tcp_ses_lock);
493                                 return true;
494                         }
495                         spin_unlock(&tcon->open_file_lock);
496                         spin_unlock(&cifs_tcp_ses_lock);
497                         cifs_dbg(FYI, "No matching file for oplock break\n");
498                         return true;
499                 }
500         }
501         spin_unlock(&cifs_tcp_ses_lock);
502         cifs_dbg(FYI, "Can not process oplock break for non-existent connection\n");
503         return true;
504 }
505
506 void
507 dump_smb(void *buf, int smb_buf_length)
508 {
509         if (traceSMB == 0)
510                 return;
511
512         print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_NONE, 8, 2, buf,
513                        smb_buf_length, true);
514 }
515
516 void
517 cifs_autodisable_serverino(struct cifs_sb_info *cifs_sb)
518 {
519         if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_SERVER_INUM) {
520                 struct cifs_tcon *tcon = NULL;
521
522                 if (cifs_sb->master_tlink)
523                         tcon = cifs_sb_master_tcon(cifs_sb);
524
525                 cifs_sb->mnt_cifs_flags &= ~CIFS_MOUNT_SERVER_INUM;
526                 cifs_sb->mnt_cifs_serverino_autodisabled = true;
527                 cifs_dbg(VFS, "Autodisabling the use of server inode numbers on %s\n",
528                          tcon ? tcon->treeName : "new server");
529                 cifs_dbg(VFS, "The server doesn't seem to support them properly or the files might be on different servers (DFS)\n");
530                 cifs_dbg(VFS, "Hardlinks will not be recognized on this mount. Consider mounting with the \"noserverino\" option to silence this message.\n");
531
532         }
533 }
534
535 void cifs_set_oplock_level(struct cifsInodeInfo *cinode, __u32 oplock)
536 {
537         oplock &= 0xF;
538
539         if (oplock == OPLOCK_EXCLUSIVE) {
540                 cinode->oplock = CIFS_CACHE_WRITE_FLG | CIFS_CACHE_READ_FLG;
541                 cifs_dbg(FYI, "Exclusive Oplock granted on inode %p\n",
542                          &cinode->netfs.inode);
543         } else if (oplock == OPLOCK_READ) {
544                 cinode->oplock = CIFS_CACHE_READ_FLG;
545                 cifs_dbg(FYI, "Level II Oplock granted on inode %p\n",
546                          &cinode->netfs.inode);
547         } else
548                 cinode->oplock = 0;
549 }
550
551 /*
552  * We wait for oplock breaks to be processed before we attempt to perform
553  * writes.
554  */
555 int cifs_get_writer(struct cifsInodeInfo *cinode)
556 {
557         int rc;
558
559 start:
560         rc = wait_on_bit(&cinode->flags, CIFS_INODE_PENDING_OPLOCK_BREAK,
561                          TASK_KILLABLE);
562         if (rc)
563                 return rc;
564
565         spin_lock(&cinode->writers_lock);
566         if (!cinode->writers)
567                 set_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
568         cinode->writers++;
569         /* Check to see if we have started servicing an oplock break */
570         if (test_bit(CIFS_INODE_PENDING_OPLOCK_BREAK, &cinode->flags)) {
571                 cinode->writers--;
572                 if (cinode->writers == 0) {
573                         clear_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
574                         wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_WRITERS);
575                 }
576                 spin_unlock(&cinode->writers_lock);
577                 goto start;
578         }
579         spin_unlock(&cinode->writers_lock);
580         return 0;
581 }
582
583 void cifs_put_writer(struct cifsInodeInfo *cinode)
584 {
585         spin_lock(&cinode->writers_lock);
586         cinode->writers--;
587         if (cinode->writers == 0) {
588                 clear_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
589                 wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_WRITERS);
590         }
591         spin_unlock(&cinode->writers_lock);
592 }
593
594 /**
595  * cifs_queue_oplock_break - queue the oplock break handler for cfile
596  * @cfile: The file to break the oplock on
597  *
598  * This function is called from the demultiplex thread when it
599  * receives an oplock break for @cfile.
600  *
601  * Assumes the tcon->open_file_lock is held.
602  * Assumes cfile->file_info_lock is NOT held.
603  */
604 void cifs_queue_oplock_break(struct cifsFileInfo *cfile)
605 {
606         /*
607          * Bump the handle refcount now while we hold the
608          * open_file_lock to enforce the validity of it for the oplock
609          * break handler. The matching put is done at the end of the
610          * handler.
611          */
612         cifsFileInfo_get(cfile);
613
614         queue_work(cifsoplockd_wq, &cfile->oplock_break);
615 }
616
617 void cifs_done_oplock_break(struct cifsInodeInfo *cinode)
618 {
619         clear_bit(CIFS_INODE_PENDING_OPLOCK_BREAK, &cinode->flags);
620         wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_OPLOCK_BREAK);
621 }
622
623 bool
624 backup_cred(struct cifs_sb_info *cifs_sb)
625 {
626         if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_CIFS_BACKUPUID) {
627                 if (uid_eq(cifs_sb->ctx->backupuid, current_fsuid()))
628                         return true;
629         }
630         if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_CIFS_BACKUPGID) {
631                 if (in_group_p(cifs_sb->ctx->backupgid))
632                         return true;
633         }
634
635         return false;
636 }
637
638 void
639 cifs_del_pending_open(struct cifs_pending_open *open)
640 {
641         spin_lock(&tlink_tcon(open->tlink)->open_file_lock);
642         list_del(&open->olist);
643         spin_unlock(&tlink_tcon(open->tlink)->open_file_lock);
644 }
645
646 void
647 cifs_add_pending_open_locked(struct cifs_fid *fid, struct tcon_link *tlink,
648                              struct cifs_pending_open *open)
649 {
650         memcpy(open->lease_key, fid->lease_key, SMB2_LEASE_KEY_SIZE);
651         open->oplock = CIFS_OPLOCK_NO_CHANGE;
652         open->tlink = tlink;
653         fid->pending_open = open;
654         list_add_tail(&open->olist, &tlink_tcon(tlink)->pending_opens);
655 }
656
657 void
658 cifs_add_pending_open(struct cifs_fid *fid, struct tcon_link *tlink,
659                       struct cifs_pending_open *open)
660 {
661         spin_lock(&tlink_tcon(tlink)->open_file_lock);
662         cifs_add_pending_open_locked(fid, tlink, open);
663         spin_unlock(&tlink_tcon(open->tlink)->open_file_lock);
664 }
665
666 /*
667  * Critical section which runs after acquiring deferred_lock.
668  * As there is no reference count on cifs_deferred_close, pdclose
669  * should not be used outside deferred_lock.
670  */
671 bool
672 cifs_is_deferred_close(struct cifsFileInfo *cfile, struct cifs_deferred_close **pdclose)
673 {
674         struct cifs_deferred_close *dclose;
675
676         list_for_each_entry(dclose, &CIFS_I(d_inode(cfile->dentry))->deferred_closes, dlist) {
677                 if ((dclose->netfid == cfile->fid.netfid) &&
678                         (dclose->persistent_fid == cfile->fid.persistent_fid) &&
679                         (dclose->volatile_fid == cfile->fid.volatile_fid)) {
680                         *pdclose = dclose;
681                         return true;
682                 }
683         }
684         return false;
685 }
686
687 /*
688  * Critical section which runs after acquiring deferred_lock.
689  */
690 void
691 cifs_add_deferred_close(struct cifsFileInfo *cfile, struct cifs_deferred_close *dclose)
692 {
693         bool is_deferred = false;
694         struct cifs_deferred_close *pdclose;
695
696         is_deferred = cifs_is_deferred_close(cfile, &pdclose);
697         if (is_deferred) {
698                 kfree(dclose);
699                 return;
700         }
701
702         dclose->tlink = cfile->tlink;
703         dclose->netfid = cfile->fid.netfid;
704         dclose->persistent_fid = cfile->fid.persistent_fid;
705         dclose->volatile_fid = cfile->fid.volatile_fid;
706         list_add_tail(&dclose->dlist, &CIFS_I(d_inode(cfile->dentry))->deferred_closes);
707 }
708
709 /*
710  * Critical section which runs after acquiring deferred_lock.
711  */
712 void
713 cifs_del_deferred_close(struct cifsFileInfo *cfile)
714 {
715         bool is_deferred = false;
716         struct cifs_deferred_close *dclose;
717
718         is_deferred = cifs_is_deferred_close(cfile, &dclose);
719         if (!is_deferred)
720                 return;
721         list_del(&dclose->dlist);
722         kfree(dclose);
723 }
724
725 void
726 cifs_close_deferred_file(struct cifsInodeInfo *cifs_inode)
727 {
728         struct cifsFileInfo *cfile = NULL;
729         struct file_list *tmp_list, *tmp_next_list;
730         struct list_head file_head;
731
732         if (cifs_inode == NULL)
733                 return;
734
735         INIT_LIST_HEAD(&file_head);
736         spin_lock(&cifs_inode->open_file_lock);
737         list_for_each_entry(cfile, &cifs_inode->openFileList, flist) {
738                 if (delayed_work_pending(&cfile->deferred)) {
739                         if (cancel_delayed_work(&cfile->deferred)) {
740                                 cifs_del_deferred_close(cfile);
741
742                                 tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC);
743                                 if (tmp_list == NULL)
744                                         break;
745                                 tmp_list->cfile = cfile;
746                                 list_add_tail(&tmp_list->list, &file_head);
747                         }
748                 }
749         }
750         spin_unlock(&cifs_inode->open_file_lock);
751
752         list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) {
753                 _cifsFileInfo_put(tmp_list->cfile, true, false);
754                 list_del(&tmp_list->list);
755                 kfree(tmp_list);
756         }
757 }
758
759 void
760 cifs_close_all_deferred_files(struct cifs_tcon *tcon)
761 {
762         struct cifsFileInfo *cfile;
763         struct file_list *tmp_list, *tmp_next_list;
764         struct list_head file_head;
765
766         INIT_LIST_HEAD(&file_head);
767         spin_lock(&tcon->open_file_lock);
768         list_for_each_entry(cfile, &tcon->openFileList, tlist) {
769                 if (delayed_work_pending(&cfile->deferred)) {
770                         if (cancel_delayed_work(&cfile->deferred)) {
771                                 cifs_del_deferred_close(cfile);
772
773                                 tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC);
774                                 if (tmp_list == NULL)
775                                         break;
776                                 tmp_list->cfile = cfile;
777                                 list_add_tail(&tmp_list->list, &file_head);
778                         }
779                 }
780         }
781         spin_unlock(&tcon->open_file_lock);
782
783         list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) {
784                 _cifsFileInfo_put(tmp_list->cfile, true, false);
785                 list_del(&tmp_list->list);
786                 kfree(tmp_list);
787         }
788 }
789 void
790 cifs_close_deferred_file_under_dentry(struct cifs_tcon *tcon, const char *path)
791 {
792         struct cifsFileInfo *cfile;
793         struct file_list *tmp_list, *tmp_next_list;
794         struct list_head file_head;
795         void *page;
796         const char *full_path;
797
798         INIT_LIST_HEAD(&file_head);
799         page = alloc_dentry_path();
800         spin_lock(&tcon->open_file_lock);
801         list_for_each_entry(cfile, &tcon->openFileList, tlist) {
802                 full_path = build_path_from_dentry(cfile->dentry, page);
803                 if (strstr(full_path, path)) {
804                         if (delayed_work_pending(&cfile->deferred)) {
805                                 if (cancel_delayed_work(&cfile->deferred)) {
806                                         cifs_del_deferred_close(cfile);
807
808                                         tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC);
809                                         if (tmp_list == NULL)
810                                                 break;
811                                         tmp_list->cfile = cfile;
812                                         list_add_tail(&tmp_list->list, &file_head);
813                                 }
814                         }
815                 }
816         }
817         spin_unlock(&tcon->open_file_lock);
818
819         list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) {
820                 _cifsFileInfo_put(tmp_list->cfile, true, false);
821                 list_del(&tmp_list->list);
822                 kfree(tmp_list);
823         }
824         free_dentry_path(page);
825 }
826
827 /* parses DFS refferal V3 structure
828  * caller is responsible for freeing target_nodes
829  * returns:
830  * - on success - 0
831  * - on failure - errno
832  */
833 int
834 parse_dfs_referrals(struct get_dfs_referral_rsp *rsp, u32 rsp_size,
835                     unsigned int *num_of_nodes,
836                     struct dfs_info3_param **target_nodes,
837                     const struct nls_table *nls_codepage, int remap,
838                     const char *searchName, bool is_unicode)
839 {
840         int i, rc = 0;
841         char *data_end;
842         struct dfs_referral_level_3 *ref;
843
844         *num_of_nodes = le16_to_cpu(rsp->NumberOfReferrals);
845
846         if (*num_of_nodes < 1) {
847                 cifs_dbg(VFS, "num_referrals: must be at least > 0, but we get num_referrals = %d\n",
848                          *num_of_nodes);
849                 rc = -EINVAL;
850                 goto parse_DFS_referrals_exit;
851         }
852
853         ref = (struct dfs_referral_level_3 *) &(rsp->referrals);
854         if (ref->VersionNumber != cpu_to_le16(3)) {
855                 cifs_dbg(VFS, "Referrals of V%d version are not supported, should be V3\n",
856                          le16_to_cpu(ref->VersionNumber));
857                 rc = -EINVAL;
858                 goto parse_DFS_referrals_exit;
859         }
860
861         /* get the upper boundary of the resp buffer */
862         data_end = (char *)rsp + rsp_size;
863
864         cifs_dbg(FYI, "num_referrals: %d dfs flags: 0x%x ...\n",
865                  *num_of_nodes, le32_to_cpu(rsp->DFSFlags));
866
867         *target_nodes = kcalloc(*num_of_nodes, sizeof(struct dfs_info3_param),
868                                 GFP_KERNEL);
869         if (*target_nodes == NULL) {
870                 rc = -ENOMEM;
871                 goto parse_DFS_referrals_exit;
872         }
873
874         /* collect necessary data from referrals */
875         for (i = 0; i < *num_of_nodes; i++) {
876                 char *temp;
877                 int max_len;
878                 struct dfs_info3_param *node = (*target_nodes)+i;
879
880                 node->flags = le32_to_cpu(rsp->DFSFlags);
881                 if (is_unicode) {
882                         __le16 *tmp = kmalloc(strlen(searchName)*2 + 2,
883                                                 GFP_KERNEL);
884                         if (tmp == NULL) {
885                                 rc = -ENOMEM;
886                                 goto parse_DFS_referrals_exit;
887                         }
888                         cifsConvertToUTF16((__le16 *) tmp, searchName,
889                                            PATH_MAX, nls_codepage, remap);
890                         node->path_consumed = cifs_utf16_bytes(tmp,
891                                         le16_to_cpu(rsp->PathConsumed),
892                                         nls_codepage);
893                         kfree(tmp);
894                 } else
895                         node->path_consumed = le16_to_cpu(rsp->PathConsumed);
896
897                 node->server_type = le16_to_cpu(ref->ServerType);
898                 node->ref_flag = le16_to_cpu(ref->ReferralEntryFlags);
899
900                 /* copy DfsPath */
901                 temp = (char *)ref + le16_to_cpu(ref->DfsPathOffset);
902                 max_len = data_end - temp;
903                 node->path_name = cifs_strndup_from_utf16(temp, max_len,
904                                                 is_unicode, nls_codepage);
905                 if (!node->path_name) {
906                         rc = -ENOMEM;
907                         goto parse_DFS_referrals_exit;
908                 }
909
910                 /* copy link target UNC */
911                 temp = (char *)ref + le16_to_cpu(ref->NetworkAddressOffset);
912                 max_len = data_end - temp;
913                 node->node_name = cifs_strndup_from_utf16(temp, max_len,
914                                                 is_unicode, nls_codepage);
915                 if (!node->node_name) {
916                         rc = -ENOMEM;
917                         goto parse_DFS_referrals_exit;
918                 }
919
920                 node->ttl = le32_to_cpu(ref->TimeToLive);
921
922                 ref++;
923         }
924
925 parse_DFS_referrals_exit:
926         if (rc) {
927                 free_dfs_info_array(*target_nodes, *num_of_nodes);
928                 *target_nodes = NULL;
929                 *num_of_nodes = 0;
930         }
931         return rc;
932 }
933
934 struct cifs_aio_ctx *
935 cifs_aio_ctx_alloc(void)
936 {
937         struct cifs_aio_ctx *ctx;
938
939         /*
940          * Must use kzalloc to initialize ctx->bv to NULL and ctx->direct_io
941          * to false so that we know when we have to unreference pages within
942          * cifs_aio_ctx_release()
943          */
944         ctx = kzalloc(sizeof(struct cifs_aio_ctx), GFP_KERNEL);
945         if (!ctx)
946                 return NULL;
947
948         INIT_LIST_HEAD(&ctx->list);
949         mutex_init(&ctx->aio_mutex);
950         init_completion(&ctx->done);
951         kref_init(&ctx->refcount);
952         return ctx;
953 }
954
955 void
956 cifs_aio_ctx_release(struct kref *refcount)
957 {
958         struct cifs_aio_ctx *ctx = container_of(refcount,
959                                         struct cifs_aio_ctx, refcount);
960
961         cifsFileInfo_put(ctx->cfile);
962
963         /*
964          * ctx->bv is only set if setup_aio_ctx_iter() was call successfuly
965          * which means that iov_iter_get_pages() was a success and thus that
966          * we have taken reference on pages.
967          */
968         if (ctx->bv) {
969                 unsigned i;
970
971                 for (i = 0; i < ctx->npages; i++) {
972                         if (ctx->should_dirty)
973                                 set_page_dirty(ctx->bv[i].bv_page);
974                         put_page(ctx->bv[i].bv_page);
975                 }
976                 kvfree(ctx->bv);
977         }
978
979         kfree(ctx);
980 }
981
982 #define CIFS_AIO_KMALLOC_LIMIT (1024 * 1024)
983
984 int
985 setup_aio_ctx_iter(struct cifs_aio_ctx *ctx, struct iov_iter *iter, int rw)
986 {
987         ssize_t rc;
988         unsigned int cur_npages;
989         unsigned int npages = 0;
990         unsigned int i;
991         size_t len;
992         size_t count = iov_iter_count(iter);
993         unsigned int saved_len;
994         size_t start;
995         unsigned int max_pages = iov_iter_npages(iter, INT_MAX);
996         struct page **pages = NULL;
997         struct bio_vec *bv = NULL;
998
999         if (iov_iter_is_kvec(iter)) {
1000                 memcpy(&ctx->iter, iter, sizeof(*iter));
1001                 ctx->len = count;
1002                 iov_iter_advance(iter, count);
1003                 return 0;
1004         }
1005
1006         if (array_size(max_pages, sizeof(*bv)) <= CIFS_AIO_KMALLOC_LIMIT)
1007                 bv = kmalloc_array(max_pages, sizeof(*bv), GFP_KERNEL);
1008
1009         if (!bv) {
1010                 bv = vmalloc(array_size(max_pages, sizeof(*bv)));
1011                 if (!bv)
1012                         return -ENOMEM;
1013         }
1014
1015         if (array_size(max_pages, sizeof(*pages)) <= CIFS_AIO_KMALLOC_LIMIT)
1016                 pages = kmalloc_array(max_pages, sizeof(*pages), GFP_KERNEL);
1017
1018         if (!pages) {
1019                 pages = vmalloc(array_size(max_pages, sizeof(*pages)));
1020                 if (!pages) {
1021                         kvfree(bv);
1022                         return -ENOMEM;
1023                 }
1024         }
1025
1026         saved_len = count;
1027
1028         while (count && npages < max_pages) {
1029                 rc = iov_iter_get_pages2(iter, pages, count, max_pages, &start);
1030                 if (rc < 0) {
1031                         cifs_dbg(VFS, "Couldn't get user pages (rc=%zd)\n", rc);
1032                         break;
1033                 }
1034
1035                 if (rc > count) {
1036                         cifs_dbg(VFS, "get pages rc=%zd more than %zu\n", rc,
1037                                  count);
1038                         break;
1039                 }
1040
1041                 count -= rc;
1042                 rc += start;
1043                 cur_npages = DIV_ROUND_UP(rc, PAGE_SIZE);
1044
1045                 if (npages + cur_npages > max_pages) {
1046                         cifs_dbg(VFS, "out of vec array capacity (%u vs %u)\n",
1047                                  npages + cur_npages, max_pages);
1048                         break;
1049                 }
1050
1051                 for (i = 0; i < cur_npages; i++) {
1052                         len = rc > PAGE_SIZE ? PAGE_SIZE : rc;
1053                         bv[npages + i].bv_page = pages[i];
1054                         bv[npages + i].bv_offset = start;
1055                         bv[npages + i].bv_len = len - start;
1056                         rc -= len;
1057                         start = 0;
1058                 }
1059
1060                 npages += cur_npages;
1061         }
1062
1063         kvfree(pages);
1064         ctx->bv = bv;
1065         ctx->len = saved_len - count;
1066         ctx->npages = npages;
1067         iov_iter_bvec(&ctx->iter, rw, ctx->bv, npages, ctx->len);
1068         return 0;
1069 }
1070
1071 /**
1072  * cifs_alloc_hash - allocate hash and hash context together
1073  * @name: The name of the crypto hash algo
1074  * @shash: Where to put the pointer to the hash algo
1075  * @sdesc: Where to put the pointer to the hash descriptor
1076  *
1077  * The caller has to make sure @sdesc is initialized to either NULL or
1078  * a valid context. Both can be freed via cifs_free_hash().
1079  */
1080 int
1081 cifs_alloc_hash(const char *name,
1082                 struct crypto_shash **shash, struct sdesc **sdesc)
1083 {
1084         int rc = 0;
1085         size_t size;
1086
1087         if (*sdesc != NULL)
1088                 return 0;
1089
1090         *shash = crypto_alloc_shash(name, 0, 0);
1091         if (IS_ERR(*shash)) {
1092                 cifs_dbg(VFS, "Could not allocate crypto %s\n", name);
1093                 rc = PTR_ERR(*shash);
1094                 *shash = NULL;
1095                 *sdesc = NULL;
1096                 return rc;
1097         }
1098
1099         size = sizeof(struct shash_desc) + crypto_shash_descsize(*shash);
1100         *sdesc = kmalloc(size, GFP_KERNEL);
1101         if (*sdesc == NULL) {
1102                 cifs_dbg(VFS, "no memory left to allocate crypto %s\n", name);
1103                 crypto_free_shash(*shash);
1104                 *shash = NULL;
1105                 return -ENOMEM;
1106         }
1107
1108         (*sdesc)->shash.tfm = *shash;
1109         return 0;
1110 }
1111
1112 /**
1113  * cifs_free_hash - free hash and hash context together
1114  * @shash: Where to find the pointer to the hash algo
1115  * @sdesc: Where to find the pointer to the hash descriptor
1116  *
1117  * Freeing a NULL hash or context is safe.
1118  */
1119 void
1120 cifs_free_hash(struct crypto_shash **shash, struct sdesc **sdesc)
1121 {
1122         kfree(*sdesc);
1123         *sdesc = NULL;
1124         if (*shash)
1125                 crypto_free_shash(*shash);
1126         *shash = NULL;
1127 }
1128
1129 /**
1130  * rqst_page_get_length - obtain the length and offset for a page in smb_rqst
1131  * @rqst: The request descriptor
1132  * @page: The index of the page to query
1133  * @len: Where to store the length for this page:
1134  * @offset: Where to store the offset for this page
1135  */
1136 void rqst_page_get_length(struct smb_rqst *rqst, unsigned int page,
1137                                 unsigned int *len, unsigned int *offset)
1138 {
1139         *len = rqst->rq_pagesz;
1140         *offset = (page == 0) ? rqst->rq_offset : 0;
1141
1142         if (rqst->rq_npages == 1 || page == rqst->rq_npages-1)
1143                 *len = rqst->rq_tailsz;
1144         else if (page == 0)
1145                 *len = rqst->rq_pagesz - rqst->rq_offset;
1146 }
1147
1148 void extract_unc_hostname(const char *unc, const char **h, size_t *len)
1149 {
1150         const char *end;
1151
1152         /* skip initial slashes */
1153         while (*unc && (*unc == '\\' || *unc == '/'))
1154                 unc++;
1155
1156         end = unc;
1157
1158         while (*end && !(*end == '\\' || *end == '/'))
1159                 end++;
1160
1161         *h = unc;
1162         *len = end - unc;
1163 }
1164
1165 /**
1166  * copy_path_name - copy src path to dst, possibly truncating
1167  * @dst: The destination buffer
1168  * @src: The source name
1169  *
1170  * returns number of bytes written (including trailing nul)
1171  */
1172 int copy_path_name(char *dst, const char *src)
1173 {
1174         int name_len;
1175
1176         /*
1177          * PATH_MAX includes nul, so if strlen(src) >= PATH_MAX it
1178          * will truncate and strlen(dst) will be PATH_MAX-1
1179          */
1180         name_len = strscpy(dst, src, PATH_MAX);
1181         if (WARN_ON_ONCE(name_len < 0))
1182                 name_len = PATH_MAX-1;
1183
1184         /* we count the trailing nul */
1185         name_len++;
1186         return name_len;
1187 }
1188
1189 struct super_cb_data {
1190         void *data;
1191         struct super_block *sb;
1192 };
1193
1194 static void tcp_super_cb(struct super_block *sb, void *arg)
1195 {
1196         struct super_cb_data *sd = arg;
1197         struct TCP_Server_Info *server = sd->data;
1198         struct cifs_sb_info *cifs_sb;
1199         struct cifs_tcon *tcon;
1200
1201         if (sd->sb)
1202                 return;
1203
1204         cifs_sb = CIFS_SB(sb);
1205         tcon = cifs_sb_master_tcon(cifs_sb);
1206         if (tcon->ses->server == server)
1207                 sd->sb = sb;
1208 }
1209
1210 static struct super_block *__cifs_get_super(void (*f)(struct super_block *, void *),
1211                                             void *data)
1212 {
1213         struct super_cb_data sd = {
1214                 .data = data,
1215                 .sb = NULL,
1216         };
1217         struct file_system_type **fs_type = (struct file_system_type *[]) {
1218                 &cifs_fs_type, &smb3_fs_type, NULL,
1219         };
1220
1221         for (; *fs_type; fs_type++) {
1222                 iterate_supers_type(*fs_type, f, &sd);
1223                 if (sd.sb) {
1224                         /*
1225                          * Grab an active reference in order to prevent automounts (DFS links)
1226                          * of expiring and then freeing up our cifs superblock pointer while
1227                          * we're doing failover.
1228                          */
1229                         cifs_sb_active(sd.sb);
1230                         return sd.sb;
1231                 }
1232         }
1233         return ERR_PTR(-EINVAL);
1234 }
1235
1236 static void __cifs_put_super(struct super_block *sb)
1237 {
1238         if (!IS_ERR_OR_NULL(sb))
1239                 cifs_sb_deactive(sb);
1240 }
1241
1242 struct super_block *cifs_get_tcp_super(struct TCP_Server_Info *server)
1243 {
1244         return __cifs_get_super(tcp_super_cb, server);
1245 }
1246
1247 void cifs_put_tcp_super(struct super_block *sb)
1248 {
1249         __cifs_put_super(sb);
1250 }
1251
1252 #ifdef CONFIG_CIFS_DFS_UPCALL
1253 int match_target_ip(struct TCP_Server_Info *server,
1254                     const char *share, size_t share_len,
1255                     bool *result)
1256 {
1257         int rc;
1258         char *target, *tip = NULL;
1259         struct sockaddr tipaddr;
1260
1261         *result = false;
1262
1263         target = kzalloc(share_len + 3, GFP_KERNEL);
1264         if (!target) {
1265                 rc = -ENOMEM;
1266                 goto out;
1267         }
1268
1269         scnprintf(target, share_len + 3, "\\\\%.*s", (int)share_len, share);
1270
1271         cifs_dbg(FYI, "%s: target name: %s\n", __func__, target + 2);
1272
1273         rc = dns_resolve_server_name_to_ip(target, &tip, NULL);
1274         if (rc < 0)
1275                 goto out;
1276
1277         cifs_dbg(FYI, "%s: target ip: %s\n", __func__, tip);
1278
1279         if (!cifs_convert_address(&tipaddr, tip, strlen(tip))) {
1280                 cifs_dbg(VFS, "%s: failed to convert target ip address\n",
1281                          __func__);
1282                 rc = -EINVAL;
1283                 goto out;
1284         }
1285
1286         *result = cifs_match_ipaddr((struct sockaddr *)&server->dstaddr,
1287                                     &tipaddr);
1288         cifs_dbg(FYI, "%s: ip addresses match: %u\n", __func__, *result);
1289         rc = 0;
1290
1291 out:
1292         kfree(target);
1293         kfree(tip);
1294
1295         return rc;
1296 }
1297
1298 int cifs_update_super_prepath(struct cifs_sb_info *cifs_sb, char *prefix)
1299 {
1300         kfree(cifs_sb->prepath);
1301
1302         if (prefix && *prefix) {
1303                 cifs_sb->prepath = kstrdup(prefix, GFP_ATOMIC);
1304                 if (!cifs_sb->prepath)
1305                         return -ENOMEM;
1306
1307                 convert_delimiter(cifs_sb->prepath, CIFS_DIR_SEP(cifs_sb));
1308         } else
1309                 cifs_sb->prepath = NULL;
1310
1311         cifs_sb->mnt_cifs_flags |= CIFS_MOUNT_USE_PREFIX_PATH;
1312         return 0;
1313 }
1314
1315 /** cifs_dfs_query_info_nonascii_quirk
1316  * Handle weird Windows SMB server behaviour. It responds with
1317  * STATUS_OBJECT_NAME_INVALID code to SMB2 QUERY_INFO request
1318  * for "\<server>\<dfsname>\<linkpath>" DFS reference,
1319  * where <dfsname> contains non-ASCII unicode symbols.
1320  *
1321  * Check such DFS reference.
1322  */
1323 int cifs_dfs_query_info_nonascii_quirk(const unsigned int xid,
1324                                        struct cifs_tcon *tcon,
1325                                        struct cifs_sb_info *cifs_sb,
1326                                        const char *linkpath)
1327 {
1328         char *treename, *dfspath, sep;
1329         int treenamelen, linkpathlen, rc;
1330
1331         treename = tcon->treeName;
1332         /* MS-DFSC: All paths in REQ_GET_DFS_REFERRAL and RESP_GET_DFS_REFERRAL
1333          * messages MUST be encoded with exactly one leading backslash, not two
1334          * leading backslashes.
1335          */
1336         sep = CIFS_DIR_SEP(cifs_sb);
1337         if (treename[0] == sep && treename[1] == sep)
1338                 treename++;
1339         linkpathlen = strlen(linkpath);
1340         treenamelen = strnlen(treename, MAX_TREE_SIZE + 1);
1341         dfspath = kzalloc(treenamelen + linkpathlen + 1, GFP_KERNEL);
1342         if (!dfspath)
1343                 return -ENOMEM;
1344         if (treenamelen)
1345                 memcpy(dfspath, treename, treenamelen);
1346         memcpy(dfspath + treenamelen, linkpath, linkpathlen);
1347         rc = dfs_cache_find(xid, tcon->ses, cifs_sb->local_nls,
1348                             cifs_remap(cifs_sb), dfspath, NULL, NULL);
1349         if (rc == 0) {
1350                 cifs_dbg(FYI, "DFS ref '%s' is found, emulate -EREMOTE\n",
1351                          dfspath);
1352                 rc = -EREMOTE;
1353         } else {
1354                 cifs_dbg(FYI, "%s: dfs_cache_find returned %d\n", __func__, rc);
1355         }
1356         kfree(dfspath);
1357         return rc;
1358 }
1359 #endif