Linux 6.9-rc1
[linux-2.6-microblaze.git] / fs / buffer.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/buffer.c
4  *
5  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
6  */
7
8 /*
9  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10  *
11  * Removed a lot of unnecessary code and simplified things now that
12  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13  *
14  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
15  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
16  *
17  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18  *
19  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
20  */
21
22 #include <linux/kernel.h>
23 #include <linux/sched/signal.h>
24 #include <linux/syscalls.h>
25 #include <linux/fs.h>
26 #include <linux/iomap.h>
27 #include <linux/mm.h>
28 #include <linux/percpu.h>
29 #include <linux/slab.h>
30 #include <linux/capability.h>
31 #include <linux/blkdev.h>
32 #include <linux/file.h>
33 #include <linux/quotaops.h>
34 #include <linux/highmem.h>
35 #include <linux/export.h>
36 #include <linux/backing-dev.h>
37 #include <linux/writeback.h>
38 #include <linux/hash.h>
39 #include <linux/suspend.h>
40 #include <linux/buffer_head.h>
41 #include <linux/task_io_accounting_ops.h>
42 #include <linux/bio.h>
43 #include <linux/cpu.h>
44 #include <linux/bitops.h>
45 #include <linux/mpage.h>
46 #include <linux/bit_spinlock.h>
47 #include <linux/pagevec.h>
48 #include <linux/sched/mm.h>
49 #include <trace/events/block.h>
50 #include <linux/fscrypt.h>
51 #include <linux/fsverity.h>
52 #include <linux/sched/isolation.h>
53
54 #include "internal.h"
55
56 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
57 static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh,
58                           enum rw_hint hint, struct writeback_control *wbc);
59
60 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
61
62 inline void touch_buffer(struct buffer_head *bh)
63 {
64         trace_block_touch_buffer(bh);
65         folio_mark_accessed(bh->b_folio);
66 }
67 EXPORT_SYMBOL(touch_buffer);
68
69 void __lock_buffer(struct buffer_head *bh)
70 {
71         wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
72 }
73 EXPORT_SYMBOL(__lock_buffer);
74
75 void unlock_buffer(struct buffer_head *bh)
76 {
77         clear_bit_unlock(BH_Lock, &bh->b_state);
78         smp_mb__after_atomic();
79         wake_up_bit(&bh->b_state, BH_Lock);
80 }
81 EXPORT_SYMBOL(unlock_buffer);
82
83 /*
84  * Returns if the folio has dirty or writeback buffers. If all the buffers
85  * are unlocked and clean then the folio_test_dirty information is stale. If
86  * any of the buffers are locked, it is assumed they are locked for IO.
87  */
88 void buffer_check_dirty_writeback(struct folio *folio,
89                                      bool *dirty, bool *writeback)
90 {
91         struct buffer_head *head, *bh;
92         *dirty = false;
93         *writeback = false;
94
95         BUG_ON(!folio_test_locked(folio));
96
97         head = folio_buffers(folio);
98         if (!head)
99                 return;
100
101         if (folio_test_writeback(folio))
102                 *writeback = true;
103
104         bh = head;
105         do {
106                 if (buffer_locked(bh))
107                         *writeback = true;
108
109                 if (buffer_dirty(bh))
110                         *dirty = true;
111
112                 bh = bh->b_this_page;
113         } while (bh != head);
114 }
115
116 /*
117  * Block until a buffer comes unlocked.  This doesn't stop it
118  * from becoming locked again - you have to lock it yourself
119  * if you want to preserve its state.
120  */
121 void __wait_on_buffer(struct buffer_head * bh)
122 {
123         wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
124 }
125 EXPORT_SYMBOL(__wait_on_buffer);
126
127 static void buffer_io_error(struct buffer_head *bh, char *msg)
128 {
129         if (!test_bit(BH_Quiet, &bh->b_state))
130                 printk_ratelimited(KERN_ERR
131                         "Buffer I/O error on dev %pg, logical block %llu%s\n",
132                         bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
133 }
134
135 /*
136  * End-of-IO handler helper function which does not touch the bh after
137  * unlocking it.
138  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
139  * a race there is benign: unlock_buffer() only use the bh's address for
140  * hashing after unlocking the buffer, so it doesn't actually touch the bh
141  * itself.
142  */
143 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
144 {
145         if (uptodate) {
146                 set_buffer_uptodate(bh);
147         } else {
148                 /* This happens, due to failed read-ahead attempts. */
149                 clear_buffer_uptodate(bh);
150         }
151         unlock_buffer(bh);
152 }
153
154 /*
155  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
156  * unlock the buffer.
157  */
158 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
159 {
160         __end_buffer_read_notouch(bh, uptodate);
161         put_bh(bh);
162 }
163 EXPORT_SYMBOL(end_buffer_read_sync);
164
165 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
166 {
167         if (uptodate) {
168                 set_buffer_uptodate(bh);
169         } else {
170                 buffer_io_error(bh, ", lost sync page write");
171                 mark_buffer_write_io_error(bh);
172                 clear_buffer_uptodate(bh);
173         }
174         unlock_buffer(bh);
175         put_bh(bh);
176 }
177 EXPORT_SYMBOL(end_buffer_write_sync);
178
179 /*
180  * Various filesystems appear to want __find_get_block to be non-blocking.
181  * But it's the page lock which protects the buffers.  To get around this,
182  * we get exclusion from try_to_free_buffers with the blockdev mapping's
183  * i_private_lock.
184  *
185  * Hack idea: for the blockdev mapping, i_private_lock contention
186  * may be quite high.  This code could TryLock the page, and if that
187  * succeeds, there is no need to take i_private_lock.
188  */
189 static struct buffer_head *
190 __find_get_block_slow(struct block_device *bdev, sector_t block)
191 {
192         struct inode *bd_inode = bdev->bd_inode;
193         struct address_space *bd_mapping = bd_inode->i_mapping;
194         struct buffer_head *ret = NULL;
195         pgoff_t index;
196         struct buffer_head *bh;
197         struct buffer_head *head;
198         struct folio *folio;
199         int all_mapped = 1;
200         static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1);
201
202         index = ((loff_t)block << bd_inode->i_blkbits) / PAGE_SIZE;
203         folio = __filemap_get_folio(bd_mapping, index, FGP_ACCESSED, 0);
204         if (IS_ERR(folio))
205                 goto out;
206
207         spin_lock(&bd_mapping->i_private_lock);
208         head = folio_buffers(folio);
209         if (!head)
210                 goto out_unlock;
211         bh = head;
212         do {
213                 if (!buffer_mapped(bh))
214                         all_mapped = 0;
215                 else if (bh->b_blocknr == block) {
216                         ret = bh;
217                         get_bh(bh);
218                         goto out_unlock;
219                 }
220                 bh = bh->b_this_page;
221         } while (bh != head);
222
223         /* we might be here because some of the buffers on this page are
224          * not mapped.  This is due to various races between
225          * file io on the block device and getblk.  It gets dealt with
226          * elsewhere, don't buffer_error if we had some unmapped buffers
227          */
228         ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE);
229         if (all_mapped && __ratelimit(&last_warned)) {
230                 printk("__find_get_block_slow() failed. block=%llu, "
231                        "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
232                        "device %pg blocksize: %d\n",
233                        (unsigned long long)block,
234                        (unsigned long long)bh->b_blocknr,
235                        bh->b_state, bh->b_size, bdev,
236                        1 << bd_inode->i_blkbits);
237         }
238 out_unlock:
239         spin_unlock(&bd_mapping->i_private_lock);
240         folio_put(folio);
241 out:
242         return ret;
243 }
244
245 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
246 {
247         unsigned long flags;
248         struct buffer_head *first;
249         struct buffer_head *tmp;
250         struct folio *folio;
251         int folio_uptodate = 1;
252
253         BUG_ON(!buffer_async_read(bh));
254
255         folio = bh->b_folio;
256         if (uptodate) {
257                 set_buffer_uptodate(bh);
258         } else {
259                 clear_buffer_uptodate(bh);
260                 buffer_io_error(bh, ", async page read");
261                 folio_set_error(folio);
262         }
263
264         /*
265          * Be _very_ careful from here on. Bad things can happen if
266          * two buffer heads end IO at almost the same time and both
267          * decide that the page is now completely done.
268          */
269         first = folio_buffers(folio);
270         spin_lock_irqsave(&first->b_uptodate_lock, flags);
271         clear_buffer_async_read(bh);
272         unlock_buffer(bh);
273         tmp = bh;
274         do {
275                 if (!buffer_uptodate(tmp))
276                         folio_uptodate = 0;
277                 if (buffer_async_read(tmp)) {
278                         BUG_ON(!buffer_locked(tmp));
279                         goto still_busy;
280                 }
281                 tmp = tmp->b_this_page;
282         } while (tmp != bh);
283         spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
284
285         folio_end_read(folio, folio_uptodate);
286         return;
287
288 still_busy:
289         spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
290         return;
291 }
292
293 struct postprocess_bh_ctx {
294         struct work_struct work;
295         struct buffer_head *bh;
296 };
297
298 static void verify_bh(struct work_struct *work)
299 {
300         struct postprocess_bh_ctx *ctx =
301                 container_of(work, struct postprocess_bh_ctx, work);
302         struct buffer_head *bh = ctx->bh;
303         bool valid;
304
305         valid = fsverity_verify_blocks(bh->b_folio, bh->b_size, bh_offset(bh));
306         end_buffer_async_read(bh, valid);
307         kfree(ctx);
308 }
309
310 static bool need_fsverity(struct buffer_head *bh)
311 {
312         struct folio *folio = bh->b_folio;
313         struct inode *inode = folio->mapping->host;
314
315         return fsverity_active(inode) &&
316                 /* needed by ext4 */
317                 folio->index < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
318 }
319
320 static void decrypt_bh(struct work_struct *work)
321 {
322         struct postprocess_bh_ctx *ctx =
323                 container_of(work, struct postprocess_bh_ctx, work);
324         struct buffer_head *bh = ctx->bh;
325         int err;
326
327         err = fscrypt_decrypt_pagecache_blocks(bh->b_folio, bh->b_size,
328                                                bh_offset(bh));
329         if (err == 0 && need_fsverity(bh)) {
330                 /*
331                  * We use different work queues for decryption and for verity
332                  * because verity may require reading metadata pages that need
333                  * decryption, and we shouldn't recurse to the same workqueue.
334                  */
335                 INIT_WORK(&ctx->work, verify_bh);
336                 fsverity_enqueue_verify_work(&ctx->work);
337                 return;
338         }
339         end_buffer_async_read(bh, err == 0);
340         kfree(ctx);
341 }
342
343 /*
344  * I/O completion handler for block_read_full_folio() - pages
345  * which come unlocked at the end of I/O.
346  */
347 static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate)
348 {
349         struct inode *inode = bh->b_folio->mapping->host;
350         bool decrypt = fscrypt_inode_uses_fs_layer_crypto(inode);
351         bool verify = need_fsverity(bh);
352
353         /* Decrypt (with fscrypt) and/or verify (with fsverity) if needed. */
354         if (uptodate && (decrypt || verify)) {
355                 struct postprocess_bh_ctx *ctx =
356                         kmalloc(sizeof(*ctx), GFP_ATOMIC);
357
358                 if (ctx) {
359                         ctx->bh = bh;
360                         if (decrypt) {
361                                 INIT_WORK(&ctx->work, decrypt_bh);
362                                 fscrypt_enqueue_decrypt_work(&ctx->work);
363                         } else {
364                                 INIT_WORK(&ctx->work, verify_bh);
365                                 fsverity_enqueue_verify_work(&ctx->work);
366                         }
367                         return;
368                 }
369                 uptodate = 0;
370         }
371         end_buffer_async_read(bh, uptodate);
372 }
373
374 /*
375  * Completion handler for block_write_full_folio() - folios which are unlocked
376  * during I/O, and which have the writeback flag cleared upon I/O completion.
377  */
378 static void end_buffer_async_write(struct buffer_head *bh, int uptodate)
379 {
380         unsigned long flags;
381         struct buffer_head *first;
382         struct buffer_head *tmp;
383         struct folio *folio;
384
385         BUG_ON(!buffer_async_write(bh));
386
387         folio = bh->b_folio;
388         if (uptodate) {
389                 set_buffer_uptodate(bh);
390         } else {
391                 buffer_io_error(bh, ", lost async page write");
392                 mark_buffer_write_io_error(bh);
393                 clear_buffer_uptodate(bh);
394                 folio_set_error(folio);
395         }
396
397         first = folio_buffers(folio);
398         spin_lock_irqsave(&first->b_uptodate_lock, flags);
399
400         clear_buffer_async_write(bh);
401         unlock_buffer(bh);
402         tmp = bh->b_this_page;
403         while (tmp != bh) {
404                 if (buffer_async_write(tmp)) {
405                         BUG_ON(!buffer_locked(tmp));
406                         goto still_busy;
407                 }
408                 tmp = tmp->b_this_page;
409         }
410         spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
411         folio_end_writeback(folio);
412         return;
413
414 still_busy:
415         spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
416         return;
417 }
418
419 /*
420  * If a page's buffers are under async readin (end_buffer_async_read
421  * completion) then there is a possibility that another thread of
422  * control could lock one of the buffers after it has completed
423  * but while some of the other buffers have not completed.  This
424  * locked buffer would confuse end_buffer_async_read() into not unlocking
425  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
426  * that this buffer is not under async I/O.
427  *
428  * The page comes unlocked when it has no locked buffer_async buffers
429  * left.
430  *
431  * PageLocked prevents anyone starting new async I/O reads any of
432  * the buffers.
433  *
434  * PageWriteback is used to prevent simultaneous writeout of the same
435  * page.
436  *
437  * PageLocked prevents anyone from starting writeback of a page which is
438  * under read I/O (PageWriteback is only ever set against a locked page).
439  */
440 static void mark_buffer_async_read(struct buffer_head *bh)
441 {
442         bh->b_end_io = end_buffer_async_read_io;
443         set_buffer_async_read(bh);
444 }
445
446 static void mark_buffer_async_write_endio(struct buffer_head *bh,
447                                           bh_end_io_t *handler)
448 {
449         bh->b_end_io = handler;
450         set_buffer_async_write(bh);
451 }
452
453 void mark_buffer_async_write(struct buffer_head *bh)
454 {
455         mark_buffer_async_write_endio(bh, end_buffer_async_write);
456 }
457 EXPORT_SYMBOL(mark_buffer_async_write);
458
459
460 /*
461  * fs/buffer.c contains helper functions for buffer-backed address space's
462  * fsync functions.  A common requirement for buffer-based filesystems is
463  * that certain data from the backing blockdev needs to be written out for
464  * a successful fsync().  For example, ext2 indirect blocks need to be
465  * written back and waited upon before fsync() returns.
466  *
467  * The functions mark_buffer_dirty_inode(), fsync_inode_buffers(),
468  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
469  * management of a list of dependent buffers at ->i_mapping->i_private_list.
470  *
471  * Locking is a little subtle: try_to_free_buffers() will remove buffers
472  * from their controlling inode's queue when they are being freed.  But
473  * try_to_free_buffers() will be operating against the *blockdev* mapping
474  * at the time, not against the S_ISREG file which depends on those buffers.
475  * So the locking for i_private_list is via the i_private_lock in the address_space
476  * which backs the buffers.  Which is different from the address_space 
477  * against which the buffers are listed.  So for a particular address_space,
478  * mapping->i_private_lock does *not* protect mapping->i_private_list!  In fact,
479  * mapping->i_private_list will always be protected by the backing blockdev's
480  * ->i_private_lock.
481  *
482  * Which introduces a requirement: all buffers on an address_space's
483  * ->i_private_list must be from the same address_space: the blockdev's.
484  *
485  * address_spaces which do not place buffers at ->i_private_list via these
486  * utility functions are free to use i_private_lock and i_private_list for
487  * whatever they want.  The only requirement is that list_empty(i_private_list)
488  * be true at clear_inode() time.
489  *
490  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
491  * filesystems should do that.  invalidate_inode_buffers() should just go
492  * BUG_ON(!list_empty).
493  *
494  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
495  * take an address_space, not an inode.  And it should be called
496  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
497  * queued up.
498  *
499  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
500  * list if it is already on a list.  Because if the buffer is on a list,
501  * it *must* already be on the right one.  If not, the filesystem is being
502  * silly.  This will save a ton of locking.  But first we have to ensure
503  * that buffers are taken *off* the old inode's list when they are freed
504  * (presumably in truncate).  That requires careful auditing of all
505  * filesystems (do it inside bforget()).  It could also be done by bringing
506  * b_inode back.
507  */
508
509 /*
510  * The buffer's backing address_space's i_private_lock must be held
511  */
512 static void __remove_assoc_queue(struct buffer_head *bh)
513 {
514         list_del_init(&bh->b_assoc_buffers);
515         WARN_ON(!bh->b_assoc_map);
516         bh->b_assoc_map = NULL;
517 }
518
519 int inode_has_buffers(struct inode *inode)
520 {
521         return !list_empty(&inode->i_data.i_private_list);
522 }
523
524 /*
525  * osync is designed to support O_SYNC io.  It waits synchronously for
526  * all already-submitted IO to complete, but does not queue any new
527  * writes to the disk.
528  *
529  * To do O_SYNC writes, just queue the buffer writes with write_dirty_buffer
530  * as you dirty the buffers, and then use osync_inode_buffers to wait for
531  * completion.  Any other dirty buffers which are not yet queued for
532  * write will not be flushed to disk by the osync.
533  */
534 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
535 {
536         struct buffer_head *bh;
537         struct list_head *p;
538         int err = 0;
539
540         spin_lock(lock);
541 repeat:
542         list_for_each_prev(p, list) {
543                 bh = BH_ENTRY(p);
544                 if (buffer_locked(bh)) {
545                         get_bh(bh);
546                         spin_unlock(lock);
547                         wait_on_buffer(bh);
548                         if (!buffer_uptodate(bh))
549                                 err = -EIO;
550                         brelse(bh);
551                         spin_lock(lock);
552                         goto repeat;
553                 }
554         }
555         spin_unlock(lock);
556         return err;
557 }
558
559 /**
560  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
561  * @mapping: the mapping which wants those buffers written
562  *
563  * Starts I/O against the buffers at mapping->i_private_list, and waits upon
564  * that I/O.
565  *
566  * Basically, this is a convenience function for fsync().
567  * @mapping is a file or directory which needs those buffers to be written for
568  * a successful fsync().
569  */
570 int sync_mapping_buffers(struct address_space *mapping)
571 {
572         struct address_space *buffer_mapping = mapping->i_private_data;
573
574         if (buffer_mapping == NULL || list_empty(&mapping->i_private_list))
575                 return 0;
576
577         return fsync_buffers_list(&buffer_mapping->i_private_lock,
578                                         &mapping->i_private_list);
579 }
580 EXPORT_SYMBOL(sync_mapping_buffers);
581
582 /**
583  * generic_buffers_fsync_noflush - generic buffer fsync implementation
584  * for simple filesystems with no inode lock
585  *
586  * @file:       file to synchronize
587  * @start:      start offset in bytes
588  * @end:        end offset in bytes (inclusive)
589  * @datasync:   only synchronize essential metadata if true
590  *
591  * This is a generic implementation of the fsync method for simple
592  * filesystems which track all non-inode metadata in the buffers list
593  * hanging off the address_space structure.
594  */
595 int generic_buffers_fsync_noflush(struct file *file, loff_t start, loff_t end,
596                                   bool datasync)
597 {
598         struct inode *inode = file->f_mapping->host;
599         int err;
600         int ret;
601
602         err = file_write_and_wait_range(file, start, end);
603         if (err)
604                 return err;
605
606         ret = sync_mapping_buffers(inode->i_mapping);
607         if (!(inode->i_state & I_DIRTY_ALL))
608                 goto out;
609         if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
610                 goto out;
611
612         err = sync_inode_metadata(inode, 1);
613         if (ret == 0)
614                 ret = err;
615
616 out:
617         /* check and advance again to catch errors after syncing out buffers */
618         err = file_check_and_advance_wb_err(file);
619         if (ret == 0)
620                 ret = err;
621         return ret;
622 }
623 EXPORT_SYMBOL(generic_buffers_fsync_noflush);
624
625 /**
626  * generic_buffers_fsync - generic buffer fsync implementation
627  * for simple filesystems with no inode lock
628  *
629  * @file:       file to synchronize
630  * @start:      start offset in bytes
631  * @end:        end offset in bytes (inclusive)
632  * @datasync:   only synchronize essential metadata if true
633  *
634  * This is a generic implementation of the fsync method for simple
635  * filesystems which track all non-inode metadata in the buffers list
636  * hanging off the address_space structure. This also makes sure that
637  * a device cache flush operation is called at the end.
638  */
639 int generic_buffers_fsync(struct file *file, loff_t start, loff_t end,
640                           bool datasync)
641 {
642         struct inode *inode = file->f_mapping->host;
643         int ret;
644
645         ret = generic_buffers_fsync_noflush(file, start, end, datasync);
646         if (!ret)
647                 ret = blkdev_issue_flush(inode->i_sb->s_bdev);
648         return ret;
649 }
650 EXPORT_SYMBOL(generic_buffers_fsync);
651
652 /*
653  * Called when we've recently written block `bblock', and it is known that
654  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
655  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
656  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
657  */
658 void write_boundary_block(struct block_device *bdev,
659                         sector_t bblock, unsigned blocksize)
660 {
661         struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
662         if (bh) {
663                 if (buffer_dirty(bh))
664                         write_dirty_buffer(bh, 0);
665                 put_bh(bh);
666         }
667 }
668
669 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
670 {
671         struct address_space *mapping = inode->i_mapping;
672         struct address_space *buffer_mapping = bh->b_folio->mapping;
673
674         mark_buffer_dirty(bh);
675         if (!mapping->i_private_data) {
676                 mapping->i_private_data = buffer_mapping;
677         } else {
678                 BUG_ON(mapping->i_private_data != buffer_mapping);
679         }
680         if (!bh->b_assoc_map) {
681                 spin_lock(&buffer_mapping->i_private_lock);
682                 list_move_tail(&bh->b_assoc_buffers,
683                                 &mapping->i_private_list);
684                 bh->b_assoc_map = mapping;
685                 spin_unlock(&buffer_mapping->i_private_lock);
686         }
687 }
688 EXPORT_SYMBOL(mark_buffer_dirty_inode);
689
690 /*
691  * Add a page to the dirty page list.
692  *
693  * It is a sad fact of life that this function is called from several places
694  * deeply under spinlocking.  It may not sleep.
695  *
696  * If the page has buffers, the uptodate buffers are set dirty, to preserve
697  * dirty-state coherency between the page and the buffers.  It the page does
698  * not have buffers then when they are later attached they will all be set
699  * dirty.
700  *
701  * The buffers are dirtied before the page is dirtied.  There's a small race
702  * window in which a writepage caller may see the page cleanness but not the
703  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
704  * before the buffers, a concurrent writepage caller could clear the page dirty
705  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
706  * page on the dirty page list.
707  *
708  * We use i_private_lock to lock against try_to_free_buffers while using the
709  * page's buffer list.  Also use this to protect against clean buffers being
710  * added to the page after it was set dirty.
711  *
712  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
713  * address_space though.
714  */
715 bool block_dirty_folio(struct address_space *mapping, struct folio *folio)
716 {
717         struct buffer_head *head;
718         bool newly_dirty;
719
720         spin_lock(&mapping->i_private_lock);
721         head = folio_buffers(folio);
722         if (head) {
723                 struct buffer_head *bh = head;
724
725                 do {
726                         set_buffer_dirty(bh);
727                         bh = bh->b_this_page;
728                 } while (bh != head);
729         }
730         /*
731          * Lock out page's memcg migration to keep PageDirty
732          * synchronized with per-memcg dirty page counters.
733          */
734         folio_memcg_lock(folio);
735         newly_dirty = !folio_test_set_dirty(folio);
736         spin_unlock(&mapping->i_private_lock);
737
738         if (newly_dirty)
739                 __folio_mark_dirty(folio, mapping, 1);
740
741         folio_memcg_unlock(folio);
742
743         if (newly_dirty)
744                 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
745
746         return newly_dirty;
747 }
748 EXPORT_SYMBOL(block_dirty_folio);
749
750 /*
751  * Write out and wait upon a list of buffers.
752  *
753  * We have conflicting pressures: we want to make sure that all
754  * initially dirty buffers get waited on, but that any subsequently
755  * dirtied buffers don't.  After all, we don't want fsync to last
756  * forever if somebody is actively writing to the file.
757  *
758  * Do this in two main stages: first we copy dirty buffers to a
759  * temporary inode list, queueing the writes as we go.  Then we clean
760  * up, waiting for those writes to complete.
761  * 
762  * During this second stage, any subsequent updates to the file may end
763  * up refiling the buffer on the original inode's dirty list again, so
764  * there is a chance we will end up with a buffer queued for write but
765  * not yet completed on that list.  So, as a final cleanup we go through
766  * the osync code to catch these locked, dirty buffers without requeuing
767  * any newly dirty buffers for write.
768  */
769 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
770 {
771         struct buffer_head *bh;
772         struct list_head tmp;
773         struct address_space *mapping;
774         int err = 0, err2;
775         struct blk_plug plug;
776
777         INIT_LIST_HEAD(&tmp);
778         blk_start_plug(&plug);
779
780         spin_lock(lock);
781         while (!list_empty(list)) {
782                 bh = BH_ENTRY(list->next);
783                 mapping = bh->b_assoc_map;
784                 __remove_assoc_queue(bh);
785                 /* Avoid race with mark_buffer_dirty_inode() which does
786                  * a lockless check and we rely on seeing the dirty bit */
787                 smp_mb();
788                 if (buffer_dirty(bh) || buffer_locked(bh)) {
789                         list_add(&bh->b_assoc_buffers, &tmp);
790                         bh->b_assoc_map = mapping;
791                         if (buffer_dirty(bh)) {
792                                 get_bh(bh);
793                                 spin_unlock(lock);
794                                 /*
795                                  * Ensure any pending I/O completes so that
796                                  * write_dirty_buffer() actually writes the
797                                  * current contents - it is a noop if I/O is
798                                  * still in flight on potentially older
799                                  * contents.
800                                  */
801                                 write_dirty_buffer(bh, REQ_SYNC);
802
803                                 /*
804                                  * Kick off IO for the previous mapping. Note
805                                  * that we will not run the very last mapping,
806                                  * wait_on_buffer() will do that for us
807                                  * through sync_buffer().
808                                  */
809                                 brelse(bh);
810                                 spin_lock(lock);
811                         }
812                 }
813         }
814
815         spin_unlock(lock);
816         blk_finish_plug(&plug);
817         spin_lock(lock);
818
819         while (!list_empty(&tmp)) {
820                 bh = BH_ENTRY(tmp.prev);
821                 get_bh(bh);
822                 mapping = bh->b_assoc_map;
823                 __remove_assoc_queue(bh);
824                 /* Avoid race with mark_buffer_dirty_inode() which does
825                  * a lockless check and we rely on seeing the dirty bit */
826                 smp_mb();
827                 if (buffer_dirty(bh)) {
828                         list_add(&bh->b_assoc_buffers,
829                                  &mapping->i_private_list);
830                         bh->b_assoc_map = mapping;
831                 }
832                 spin_unlock(lock);
833                 wait_on_buffer(bh);
834                 if (!buffer_uptodate(bh))
835                         err = -EIO;
836                 brelse(bh);
837                 spin_lock(lock);
838         }
839         
840         spin_unlock(lock);
841         err2 = osync_buffers_list(lock, list);
842         if (err)
843                 return err;
844         else
845                 return err2;
846 }
847
848 /*
849  * Invalidate any and all dirty buffers on a given inode.  We are
850  * probably unmounting the fs, but that doesn't mean we have already
851  * done a sync().  Just drop the buffers from the inode list.
852  *
853  * NOTE: we take the inode's blockdev's mapping's i_private_lock.  Which
854  * assumes that all the buffers are against the blockdev.  Not true
855  * for reiserfs.
856  */
857 void invalidate_inode_buffers(struct inode *inode)
858 {
859         if (inode_has_buffers(inode)) {
860                 struct address_space *mapping = &inode->i_data;
861                 struct list_head *list = &mapping->i_private_list;
862                 struct address_space *buffer_mapping = mapping->i_private_data;
863
864                 spin_lock(&buffer_mapping->i_private_lock);
865                 while (!list_empty(list))
866                         __remove_assoc_queue(BH_ENTRY(list->next));
867                 spin_unlock(&buffer_mapping->i_private_lock);
868         }
869 }
870 EXPORT_SYMBOL(invalidate_inode_buffers);
871
872 /*
873  * Remove any clean buffers from the inode's buffer list.  This is called
874  * when we're trying to free the inode itself.  Those buffers can pin it.
875  *
876  * Returns true if all buffers were removed.
877  */
878 int remove_inode_buffers(struct inode *inode)
879 {
880         int ret = 1;
881
882         if (inode_has_buffers(inode)) {
883                 struct address_space *mapping = &inode->i_data;
884                 struct list_head *list = &mapping->i_private_list;
885                 struct address_space *buffer_mapping = mapping->i_private_data;
886
887                 spin_lock(&buffer_mapping->i_private_lock);
888                 while (!list_empty(list)) {
889                         struct buffer_head *bh = BH_ENTRY(list->next);
890                         if (buffer_dirty(bh)) {
891                                 ret = 0;
892                                 break;
893                         }
894                         __remove_assoc_queue(bh);
895                 }
896                 spin_unlock(&buffer_mapping->i_private_lock);
897         }
898         return ret;
899 }
900
901 /*
902  * Create the appropriate buffers when given a folio for data area and
903  * the size of each buffer.. Use the bh->b_this_page linked list to
904  * follow the buffers created.  Return NULL if unable to create more
905  * buffers.
906  *
907  * The retry flag is used to differentiate async IO (paging, swapping)
908  * which may not fail from ordinary buffer allocations.
909  */
910 struct buffer_head *folio_alloc_buffers(struct folio *folio, unsigned long size,
911                                         gfp_t gfp)
912 {
913         struct buffer_head *bh, *head;
914         long offset;
915         struct mem_cgroup *memcg, *old_memcg;
916
917         /* The folio lock pins the memcg */
918         memcg = folio_memcg(folio);
919         old_memcg = set_active_memcg(memcg);
920
921         head = NULL;
922         offset = folio_size(folio);
923         while ((offset -= size) >= 0) {
924                 bh = alloc_buffer_head(gfp);
925                 if (!bh)
926                         goto no_grow;
927
928                 bh->b_this_page = head;
929                 bh->b_blocknr = -1;
930                 head = bh;
931
932                 bh->b_size = size;
933
934                 /* Link the buffer to its folio */
935                 folio_set_bh(bh, folio, offset);
936         }
937 out:
938         set_active_memcg(old_memcg);
939         return head;
940 /*
941  * In case anything failed, we just free everything we got.
942  */
943 no_grow:
944         if (head) {
945                 do {
946                         bh = head;
947                         head = head->b_this_page;
948                         free_buffer_head(bh);
949                 } while (head);
950         }
951
952         goto out;
953 }
954 EXPORT_SYMBOL_GPL(folio_alloc_buffers);
955
956 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
957                                        bool retry)
958 {
959         gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT;
960         if (retry)
961                 gfp |= __GFP_NOFAIL;
962
963         return folio_alloc_buffers(page_folio(page), size, gfp);
964 }
965 EXPORT_SYMBOL_GPL(alloc_page_buffers);
966
967 static inline void link_dev_buffers(struct folio *folio,
968                 struct buffer_head *head)
969 {
970         struct buffer_head *bh, *tail;
971
972         bh = head;
973         do {
974                 tail = bh;
975                 bh = bh->b_this_page;
976         } while (bh);
977         tail->b_this_page = head;
978         folio_attach_private(folio, head);
979 }
980
981 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
982 {
983         sector_t retval = ~((sector_t)0);
984         loff_t sz = bdev_nr_bytes(bdev);
985
986         if (sz) {
987                 unsigned int sizebits = blksize_bits(size);
988                 retval = (sz >> sizebits);
989         }
990         return retval;
991 }
992
993 /*
994  * Initialise the state of a blockdev folio's buffers.
995  */ 
996 static sector_t folio_init_buffers(struct folio *folio,
997                 struct block_device *bdev, unsigned size)
998 {
999         struct buffer_head *head = folio_buffers(folio);
1000         struct buffer_head *bh = head;
1001         bool uptodate = folio_test_uptodate(folio);
1002         sector_t block = div_u64(folio_pos(folio), size);
1003         sector_t end_block = blkdev_max_block(bdev, size);
1004
1005         do {
1006                 if (!buffer_mapped(bh)) {
1007                         bh->b_end_io = NULL;
1008                         bh->b_private = NULL;
1009                         bh->b_bdev = bdev;
1010                         bh->b_blocknr = block;
1011                         if (uptodate)
1012                                 set_buffer_uptodate(bh);
1013                         if (block < end_block)
1014                                 set_buffer_mapped(bh);
1015                 }
1016                 block++;
1017                 bh = bh->b_this_page;
1018         } while (bh != head);
1019
1020         /*
1021          * Caller needs to validate requested block against end of device.
1022          */
1023         return end_block;
1024 }
1025
1026 /*
1027  * Create the page-cache folio that contains the requested block.
1028  *
1029  * This is used purely for blockdev mappings.
1030  *
1031  * Returns false if we have a failure which cannot be cured by retrying
1032  * without sleeping.  Returns true if we succeeded, or the caller should retry.
1033  */
1034 static bool grow_dev_folio(struct block_device *bdev, sector_t block,
1035                 pgoff_t index, unsigned size, gfp_t gfp)
1036 {
1037         struct inode *inode = bdev->bd_inode;
1038         struct folio *folio;
1039         struct buffer_head *bh;
1040         sector_t end_block = 0;
1041
1042         folio = __filemap_get_folio(inode->i_mapping, index,
1043                         FGP_LOCK | FGP_ACCESSED | FGP_CREAT, gfp);
1044         if (IS_ERR(folio))
1045                 return false;
1046
1047         bh = folio_buffers(folio);
1048         if (bh) {
1049                 if (bh->b_size == size) {
1050                         end_block = folio_init_buffers(folio, bdev, size);
1051                         goto unlock;
1052                 }
1053
1054                 /*
1055                  * Retrying may succeed; for example the folio may finish
1056                  * writeback, or buffers may be cleaned.  This should not
1057                  * happen very often; maybe we have old buffers attached to
1058                  * this blockdev's page cache and we're trying to change
1059                  * the block size?
1060                  */
1061                 if (!try_to_free_buffers(folio)) {
1062                         end_block = ~0ULL;
1063                         goto unlock;
1064                 }
1065         }
1066
1067         bh = folio_alloc_buffers(folio, size, gfp | __GFP_ACCOUNT);
1068         if (!bh)
1069                 goto unlock;
1070
1071         /*
1072          * Link the folio to the buffers and initialise them.  Take the
1073          * lock to be atomic wrt __find_get_block(), which does not
1074          * run under the folio lock.
1075          */
1076         spin_lock(&inode->i_mapping->i_private_lock);
1077         link_dev_buffers(folio, bh);
1078         end_block = folio_init_buffers(folio, bdev, size);
1079         spin_unlock(&inode->i_mapping->i_private_lock);
1080 unlock:
1081         folio_unlock(folio);
1082         folio_put(folio);
1083         return block < end_block;
1084 }
1085
1086 /*
1087  * Create buffers for the specified block device block's folio.  If
1088  * that folio was dirty, the buffers are set dirty also.  Returns false
1089  * if we've hit a permanent error.
1090  */
1091 static bool grow_buffers(struct block_device *bdev, sector_t block,
1092                 unsigned size, gfp_t gfp)
1093 {
1094         loff_t pos;
1095
1096         /*
1097          * Check for a block which lies outside our maximum possible
1098          * pagecache index.
1099          */
1100         if (check_mul_overflow(block, (sector_t)size, &pos) || pos > MAX_LFS_FILESIZE) {
1101                 printk(KERN_ERR "%s: requested out-of-range block %llu for device %pg\n",
1102                         __func__, (unsigned long long)block,
1103                         bdev);
1104                 return false;
1105         }
1106
1107         /* Create a folio with the proper size buffers */
1108         return grow_dev_folio(bdev, block, pos / PAGE_SIZE, size, gfp);
1109 }
1110
1111 static struct buffer_head *
1112 __getblk_slow(struct block_device *bdev, sector_t block,
1113              unsigned size, gfp_t gfp)
1114 {
1115         /* Size must be multiple of hard sectorsize */
1116         if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1117                         (size < 512 || size > PAGE_SIZE))) {
1118                 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1119                                         size);
1120                 printk(KERN_ERR "logical block size: %d\n",
1121                                         bdev_logical_block_size(bdev));
1122
1123                 dump_stack();
1124                 return NULL;
1125         }
1126
1127         for (;;) {
1128                 struct buffer_head *bh;
1129
1130                 bh = __find_get_block(bdev, block, size);
1131                 if (bh)
1132                         return bh;
1133
1134                 if (!grow_buffers(bdev, block, size, gfp))
1135                         return NULL;
1136         }
1137 }
1138
1139 /*
1140  * The relationship between dirty buffers and dirty pages:
1141  *
1142  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1143  * the page is tagged dirty in the page cache.
1144  *
1145  * At all times, the dirtiness of the buffers represents the dirtiness of
1146  * subsections of the page.  If the page has buffers, the page dirty bit is
1147  * merely a hint about the true dirty state.
1148  *
1149  * When a page is set dirty in its entirety, all its buffers are marked dirty
1150  * (if the page has buffers).
1151  *
1152  * When a buffer is marked dirty, its page is dirtied, but the page's other
1153  * buffers are not.
1154  *
1155  * Also.  When blockdev buffers are explicitly read with bread(), they
1156  * individually become uptodate.  But their backing page remains not
1157  * uptodate - even if all of its buffers are uptodate.  A subsequent
1158  * block_read_full_folio() against that folio will discover all the uptodate
1159  * buffers, will set the folio uptodate and will perform no I/O.
1160  */
1161
1162 /**
1163  * mark_buffer_dirty - mark a buffer_head as needing writeout
1164  * @bh: the buffer_head to mark dirty
1165  *
1166  * mark_buffer_dirty() will set the dirty bit against the buffer, then set
1167  * its backing page dirty, then tag the page as dirty in the page cache
1168  * and then attach the address_space's inode to its superblock's dirty
1169  * inode list.
1170  *
1171  * mark_buffer_dirty() is atomic.  It takes bh->b_folio->mapping->i_private_lock,
1172  * i_pages lock and mapping->host->i_lock.
1173  */
1174 void mark_buffer_dirty(struct buffer_head *bh)
1175 {
1176         WARN_ON_ONCE(!buffer_uptodate(bh));
1177
1178         trace_block_dirty_buffer(bh);
1179
1180         /*
1181          * Very *carefully* optimize the it-is-already-dirty case.
1182          *
1183          * Don't let the final "is it dirty" escape to before we
1184          * perhaps modified the buffer.
1185          */
1186         if (buffer_dirty(bh)) {
1187                 smp_mb();
1188                 if (buffer_dirty(bh))
1189                         return;
1190         }
1191
1192         if (!test_set_buffer_dirty(bh)) {
1193                 struct folio *folio = bh->b_folio;
1194                 struct address_space *mapping = NULL;
1195
1196                 folio_memcg_lock(folio);
1197                 if (!folio_test_set_dirty(folio)) {
1198                         mapping = folio->mapping;
1199                         if (mapping)
1200                                 __folio_mark_dirty(folio, mapping, 0);
1201                 }
1202                 folio_memcg_unlock(folio);
1203                 if (mapping)
1204                         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1205         }
1206 }
1207 EXPORT_SYMBOL(mark_buffer_dirty);
1208
1209 void mark_buffer_write_io_error(struct buffer_head *bh)
1210 {
1211         set_buffer_write_io_error(bh);
1212         /* FIXME: do we need to set this in both places? */
1213         if (bh->b_folio && bh->b_folio->mapping)
1214                 mapping_set_error(bh->b_folio->mapping, -EIO);
1215         if (bh->b_assoc_map) {
1216                 mapping_set_error(bh->b_assoc_map, -EIO);
1217                 errseq_set(&bh->b_assoc_map->host->i_sb->s_wb_err, -EIO);
1218         }
1219 }
1220 EXPORT_SYMBOL(mark_buffer_write_io_error);
1221
1222 /*
1223  * Decrement a buffer_head's reference count.  If all buffers against a page
1224  * have zero reference count, are clean and unlocked, and if the page is clean
1225  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1226  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1227  * a page but it ends up not being freed, and buffers may later be reattached).
1228  */
1229 void __brelse(struct buffer_head * buf)
1230 {
1231         if (atomic_read(&buf->b_count)) {
1232                 put_bh(buf);
1233                 return;
1234         }
1235         WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1236 }
1237 EXPORT_SYMBOL(__brelse);
1238
1239 /*
1240  * bforget() is like brelse(), except it discards any
1241  * potentially dirty data.
1242  */
1243 void __bforget(struct buffer_head *bh)
1244 {
1245         clear_buffer_dirty(bh);
1246         if (bh->b_assoc_map) {
1247                 struct address_space *buffer_mapping = bh->b_folio->mapping;
1248
1249                 spin_lock(&buffer_mapping->i_private_lock);
1250                 list_del_init(&bh->b_assoc_buffers);
1251                 bh->b_assoc_map = NULL;
1252                 spin_unlock(&buffer_mapping->i_private_lock);
1253         }
1254         __brelse(bh);
1255 }
1256 EXPORT_SYMBOL(__bforget);
1257
1258 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1259 {
1260         lock_buffer(bh);
1261         if (buffer_uptodate(bh)) {
1262                 unlock_buffer(bh);
1263                 return bh;
1264         } else {
1265                 get_bh(bh);
1266                 bh->b_end_io = end_buffer_read_sync;
1267                 submit_bh(REQ_OP_READ, bh);
1268                 wait_on_buffer(bh);
1269                 if (buffer_uptodate(bh))
1270                         return bh;
1271         }
1272         brelse(bh);
1273         return NULL;
1274 }
1275
1276 /*
1277  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1278  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1279  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1280  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1281  * CPU's LRUs at the same time.
1282  *
1283  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1284  * sb_find_get_block().
1285  *
1286  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1287  * a local interrupt disable for that.
1288  */
1289
1290 #define BH_LRU_SIZE     16
1291
1292 struct bh_lru {
1293         struct buffer_head *bhs[BH_LRU_SIZE];
1294 };
1295
1296 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1297
1298 #ifdef CONFIG_SMP
1299 #define bh_lru_lock()   local_irq_disable()
1300 #define bh_lru_unlock() local_irq_enable()
1301 #else
1302 #define bh_lru_lock()   preempt_disable()
1303 #define bh_lru_unlock() preempt_enable()
1304 #endif
1305
1306 static inline void check_irqs_on(void)
1307 {
1308 #ifdef irqs_disabled
1309         BUG_ON(irqs_disabled());
1310 #endif
1311 }
1312
1313 /*
1314  * Install a buffer_head into this cpu's LRU.  If not already in the LRU, it is
1315  * inserted at the front, and the buffer_head at the back if any is evicted.
1316  * Or, if already in the LRU it is moved to the front.
1317  */
1318 static void bh_lru_install(struct buffer_head *bh)
1319 {
1320         struct buffer_head *evictee = bh;
1321         struct bh_lru *b;
1322         int i;
1323
1324         check_irqs_on();
1325         bh_lru_lock();
1326
1327         /*
1328          * the refcount of buffer_head in bh_lru prevents dropping the
1329          * attached page(i.e., try_to_free_buffers) so it could cause
1330          * failing page migration.
1331          * Skip putting upcoming bh into bh_lru until migration is done.
1332          */
1333         if (lru_cache_disabled() || cpu_is_isolated(smp_processor_id())) {
1334                 bh_lru_unlock();
1335                 return;
1336         }
1337
1338         b = this_cpu_ptr(&bh_lrus);
1339         for (i = 0; i < BH_LRU_SIZE; i++) {
1340                 swap(evictee, b->bhs[i]);
1341                 if (evictee == bh) {
1342                         bh_lru_unlock();
1343                         return;
1344                 }
1345         }
1346
1347         get_bh(bh);
1348         bh_lru_unlock();
1349         brelse(evictee);
1350 }
1351
1352 /*
1353  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1354  */
1355 static struct buffer_head *
1356 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1357 {
1358         struct buffer_head *ret = NULL;
1359         unsigned int i;
1360
1361         check_irqs_on();
1362         bh_lru_lock();
1363         if (cpu_is_isolated(smp_processor_id())) {
1364                 bh_lru_unlock();
1365                 return NULL;
1366         }
1367         for (i = 0; i < BH_LRU_SIZE; i++) {
1368                 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1369
1370                 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1371                     bh->b_size == size) {
1372                         if (i) {
1373                                 while (i) {
1374                                         __this_cpu_write(bh_lrus.bhs[i],
1375                                                 __this_cpu_read(bh_lrus.bhs[i - 1]));
1376                                         i--;
1377                                 }
1378                                 __this_cpu_write(bh_lrus.bhs[0], bh);
1379                         }
1380                         get_bh(bh);
1381                         ret = bh;
1382                         break;
1383                 }
1384         }
1385         bh_lru_unlock();
1386         return ret;
1387 }
1388
1389 /*
1390  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1391  * it in the LRU and mark it as accessed.  If it is not present then return
1392  * NULL
1393  */
1394 struct buffer_head *
1395 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1396 {
1397         struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1398
1399         if (bh == NULL) {
1400                 /* __find_get_block_slow will mark the page accessed */
1401                 bh = __find_get_block_slow(bdev, block);
1402                 if (bh)
1403                         bh_lru_install(bh);
1404         } else
1405                 touch_buffer(bh);
1406
1407         return bh;
1408 }
1409 EXPORT_SYMBOL(__find_get_block);
1410
1411 /**
1412  * bdev_getblk - Get a buffer_head in a block device's buffer cache.
1413  * @bdev: The block device.
1414  * @block: The block number.
1415  * @size: The size of buffer_heads for this @bdev.
1416  * @gfp: The memory allocation flags to use.
1417  *
1418  * Return: The buffer head, or NULL if memory could not be allocated.
1419  */
1420 struct buffer_head *bdev_getblk(struct block_device *bdev, sector_t block,
1421                 unsigned size, gfp_t gfp)
1422 {
1423         struct buffer_head *bh = __find_get_block(bdev, block, size);
1424
1425         might_alloc(gfp);
1426         if (bh)
1427                 return bh;
1428
1429         return __getblk_slow(bdev, block, size, gfp);
1430 }
1431 EXPORT_SYMBOL(bdev_getblk);
1432
1433 /*
1434  * Do async read-ahead on a buffer..
1435  */
1436 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1437 {
1438         struct buffer_head *bh = bdev_getblk(bdev, block, size,
1439                         GFP_NOWAIT | __GFP_MOVABLE);
1440
1441         if (likely(bh)) {
1442                 bh_readahead(bh, REQ_RAHEAD);
1443                 brelse(bh);
1444         }
1445 }
1446 EXPORT_SYMBOL(__breadahead);
1447
1448 /**
1449  *  __bread_gfp() - reads a specified block and returns the bh
1450  *  @bdev: the block_device to read from
1451  *  @block: number of block
1452  *  @size: size (in bytes) to read
1453  *  @gfp: page allocation flag
1454  *
1455  *  Reads a specified block, and returns buffer head that contains it.
1456  *  The page cache can be allocated from non-movable area
1457  *  not to prevent page migration if you set gfp to zero.
1458  *  It returns NULL if the block was unreadable.
1459  */
1460 struct buffer_head *
1461 __bread_gfp(struct block_device *bdev, sector_t block,
1462                    unsigned size, gfp_t gfp)
1463 {
1464         struct buffer_head *bh;
1465
1466         gfp |= mapping_gfp_constraint(bdev->bd_inode->i_mapping, ~__GFP_FS);
1467
1468         /*
1469          * Prefer looping in the allocator rather than here, at least that
1470          * code knows what it's doing.
1471          */
1472         gfp |= __GFP_NOFAIL;
1473
1474         bh = bdev_getblk(bdev, block, size, gfp);
1475
1476         if (likely(bh) && !buffer_uptodate(bh))
1477                 bh = __bread_slow(bh);
1478         return bh;
1479 }
1480 EXPORT_SYMBOL(__bread_gfp);
1481
1482 static void __invalidate_bh_lrus(struct bh_lru *b)
1483 {
1484         int i;
1485
1486         for (i = 0; i < BH_LRU_SIZE; i++) {
1487                 brelse(b->bhs[i]);
1488                 b->bhs[i] = NULL;
1489         }
1490 }
1491 /*
1492  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1493  * This doesn't race because it runs in each cpu either in irq
1494  * or with preempt disabled.
1495  */
1496 static void invalidate_bh_lru(void *arg)
1497 {
1498         struct bh_lru *b = &get_cpu_var(bh_lrus);
1499
1500         __invalidate_bh_lrus(b);
1501         put_cpu_var(bh_lrus);
1502 }
1503
1504 bool has_bh_in_lru(int cpu, void *dummy)
1505 {
1506         struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1507         int i;
1508         
1509         for (i = 0; i < BH_LRU_SIZE; i++) {
1510                 if (b->bhs[i])
1511                         return true;
1512         }
1513
1514         return false;
1515 }
1516
1517 void invalidate_bh_lrus(void)
1518 {
1519         on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1);
1520 }
1521 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1522
1523 /*
1524  * It's called from workqueue context so we need a bh_lru_lock to close
1525  * the race with preemption/irq.
1526  */
1527 void invalidate_bh_lrus_cpu(void)
1528 {
1529         struct bh_lru *b;
1530
1531         bh_lru_lock();
1532         b = this_cpu_ptr(&bh_lrus);
1533         __invalidate_bh_lrus(b);
1534         bh_lru_unlock();
1535 }
1536
1537 void folio_set_bh(struct buffer_head *bh, struct folio *folio,
1538                   unsigned long offset)
1539 {
1540         bh->b_folio = folio;
1541         BUG_ON(offset >= folio_size(folio));
1542         if (folio_test_highmem(folio))
1543                 /*
1544                  * This catches illegal uses and preserves the offset:
1545                  */
1546                 bh->b_data = (char *)(0 + offset);
1547         else
1548                 bh->b_data = folio_address(folio) + offset;
1549 }
1550 EXPORT_SYMBOL(folio_set_bh);
1551
1552 /*
1553  * Called when truncating a buffer on a page completely.
1554  */
1555
1556 /* Bits that are cleared during an invalidate */
1557 #define BUFFER_FLAGS_DISCARD \
1558         (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1559          1 << BH_Delay | 1 << BH_Unwritten)
1560
1561 static void discard_buffer(struct buffer_head * bh)
1562 {
1563         unsigned long b_state;
1564
1565         lock_buffer(bh);
1566         clear_buffer_dirty(bh);
1567         bh->b_bdev = NULL;
1568         b_state = READ_ONCE(bh->b_state);
1569         do {
1570         } while (!try_cmpxchg(&bh->b_state, &b_state,
1571                               b_state & ~BUFFER_FLAGS_DISCARD));
1572         unlock_buffer(bh);
1573 }
1574
1575 /**
1576  * block_invalidate_folio - Invalidate part or all of a buffer-backed folio.
1577  * @folio: The folio which is affected.
1578  * @offset: start of the range to invalidate
1579  * @length: length of the range to invalidate
1580  *
1581  * block_invalidate_folio() is called when all or part of the folio has been
1582  * invalidated by a truncate operation.
1583  *
1584  * block_invalidate_folio() does not have to release all buffers, but it must
1585  * ensure that no dirty buffer is left outside @offset and that no I/O
1586  * is underway against any of the blocks which are outside the truncation
1587  * point.  Because the caller is about to free (and possibly reuse) those
1588  * blocks on-disk.
1589  */
1590 void block_invalidate_folio(struct folio *folio, size_t offset, size_t length)
1591 {
1592         struct buffer_head *head, *bh, *next;
1593         size_t curr_off = 0;
1594         size_t stop = length + offset;
1595
1596         BUG_ON(!folio_test_locked(folio));
1597
1598         /*
1599          * Check for overflow
1600          */
1601         BUG_ON(stop > folio_size(folio) || stop < length);
1602
1603         head = folio_buffers(folio);
1604         if (!head)
1605                 return;
1606
1607         bh = head;
1608         do {
1609                 size_t next_off = curr_off + bh->b_size;
1610                 next = bh->b_this_page;
1611
1612                 /*
1613                  * Are we still fully in range ?
1614                  */
1615                 if (next_off > stop)
1616                         goto out;
1617
1618                 /*
1619                  * is this block fully invalidated?
1620                  */
1621                 if (offset <= curr_off)
1622                         discard_buffer(bh);
1623                 curr_off = next_off;
1624                 bh = next;
1625         } while (bh != head);
1626
1627         /*
1628          * We release buffers only if the entire folio is being invalidated.
1629          * The get_block cached value has been unconditionally invalidated,
1630          * so real IO is not possible anymore.
1631          */
1632         if (length == folio_size(folio))
1633                 filemap_release_folio(folio, 0);
1634 out:
1635         return;
1636 }
1637 EXPORT_SYMBOL(block_invalidate_folio);
1638
1639 /*
1640  * We attach and possibly dirty the buffers atomically wrt
1641  * block_dirty_folio() via i_private_lock.  try_to_free_buffers
1642  * is already excluded via the folio lock.
1643  */
1644 struct buffer_head *create_empty_buffers(struct folio *folio,
1645                 unsigned long blocksize, unsigned long b_state)
1646 {
1647         struct buffer_head *bh, *head, *tail;
1648         gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT | __GFP_NOFAIL;
1649
1650         head = folio_alloc_buffers(folio, blocksize, gfp);
1651         bh = head;
1652         do {
1653                 bh->b_state |= b_state;
1654                 tail = bh;
1655                 bh = bh->b_this_page;
1656         } while (bh);
1657         tail->b_this_page = head;
1658
1659         spin_lock(&folio->mapping->i_private_lock);
1660         if (folio_test_uptodate(folio) || folio_test_dirty(folio)) {
1661                 bh = head;
1662                 do {
1663                         if (folio_test_dirty(folio))
1664                                 set_buffer_dirty(bh);
1665                         if (folio_test_uptodate(folio))
1666                                 set_buffer_uptodate(bh);
1667                         bh = bh->b_this_page;
1668                 } while (bh != head);
1669         }
1670         folio_attach_private(folio, head);
1671         spin_unlock(&folio->mapping->i_private_lock);
1672
1673         return head;
1674 }
1675 EXPORT_SYMBOL(create_empty_buffers);
1676
1677 /**
1678  * clean_bdev_aliases: clean a range of buffers in block device
1679  * @bdev: Block device to clean buffers in
1680  * @block: Start of a range of blocks to clean
1681  * @len: Number of blocks to clean
1682  *
1683  * We are taking a range of blocks for data and we don't want writeback of any
1684  * buffer-cache aliases starting from return from this function and until the
1685  * moment when something will explicitly mark the buffer dirty (hopefully that
1686  * will not happen until we will free that block ;-) We don't even need to mark
1687  * it not-uptodate - nobody can expect anything from a newly allocated buffer
1688  * anyway. We used to use unmap_buffer() for such invalidation, but that was
1689  * wrong. We definitely don't want to mark the alias unmapped, for example - it
1690  * would confuse anyone who might pick it with bread() afterwards...
1691  *
1692  * Also..  Note that bforget() doesn't lock the buffer.  So there can be
1693  * writeout I/O going on against recently-freed buffers.  We don't wait on that
1694  * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1695  * need to.  That happens here.
1696  */
1697 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1698 {
1699         struct inode *bd_inode = bdev->bd_inode;
1700         struct address_space *bd_mapping = bd_inode->i_mapping;
1701         struct folio_batch fbatch;
1702         pgoff_t index = ((loff_t)block << bd_inode->i_blkbits) / PAGE_SIZE;
1703         pgoff_t end;
1704         int i, count;
1705         struct buffer_head *bh;
1706         struct buffer_head *head;
1707
1708         end = ((loff_t)(block + len - 1) << bd_inode->i_blkbits) / PAGE_SIZE;
1709         folio_batch_init(&fbatch);
1710         while (filemap_get_folios(bd_mapping, &index, end, &fbatch)) {
1711                 count = folio_batch_count(&fbatch);
1712                 for (i = 0; i < count; i++) {
1713                         struct folio *folio = fbatch.folios[i];
1714
1715                         if (!folio_buffers(folio))
1716                                 continue;
1717                         /*
1718                          * We use folio lock instead of bd_mapping->i_private_lock
1719                          * to pin buffers here since we can afford to sleep and
1720                          * it scales better than a global spinlock lock.
1721                          */
1722                         folio_lock(folio);
1723                         /* Recheck when the folio is locked which pins bhs */
1724                         head = folio_buffers(folio);
1725                         if (!head)
1726                                 goto unlock_page;
1727                         bh = head;
1728                         do {
1729                                 if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1730                                         goto next;
1731                                 if (bh->b_blocknr >= block + len)
1732                                         break;
1733                                 clear_buffer_dirty(bh);
1734                                 wait_on_buffer(bh);
1735                                 clear_buffer_req(bh);
1736 next:
1737                                 bh = bh->b_this_page;
1738                         } while (bh != head);
1739 unlock_page:
1740                         folio_unlock(folio);
1741                 }
1742                 folio_batch_release(&fbatch);
1743                 cond_resched();
1744                 /* End of range already reached? */
1745                 if (index > end || !index)
1746                         break;
1747         }
1748 }
1749 EXPORT_SYMBOL(clean_bdev_aliases);
1750
1751 static struct buffer_head *folio_create_buffers(struct folio *folio,
1752                                                 struct inode *inode,
1753                                                 unsigned int b_state)
1754 {
1755         struct buffer_head *bh;
1756
1757         BUG_ON(!folio_test_locked(folio));
1758
1759         bh = folio_buffers(folio);
1760         if (!bh)
1761                 bh = create_empty_buffers(folio,
1762                                 1 << READ_ONCE(inode->i_blkbits), b_state);
1763         return bh;
1764 }
1765
1766 /*
1767  * NOTE! All mapped/uptodate combinations are valid:
1768  *
1769  *      Mapped  Uptodate        Meaning
1770  *
1771  *      No      No              "unknown" - must do get_block()
1772  *      No      Yes             "hole" - zero-filled
1773  *      Yes     No              "allocated" - allocated on disk, not read in
1774  *      Yes     Yes             "valid" - allocated and up-to-date in memory.
1775  *
1776  * "Dirty" is valid only with the last case (mapped+uptodate).
1777  */
1778
1779 /*
1780  * While block_write_full_folio is writing back the dirty buffers under
1781  * the page lock, whoever dirtied the buffers may decide to clean them
1782  * again at any time.  We handle that by only looking at the buffer
1783  * state inside lock_buffer().
1784  *
1785  * If block_write_full_folio() is called for regular writeback
1786  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1787  * locked buffer.   This only can happen if someone has written the buffer
1788  * directly, with submit_bh().  At the address_space level PageWriteback
1789  * prevents this contention from occurring.
1790  *
1791  * If block_write_full_folio() is called with wbc->sync_mode ==
1792  * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1793  * causes the writes to be flagged as synchronous writes.
1794  */
1795 int __block_write_full_folio(struct inode *inode, struct folio *folio,
1796                         get_block_t *get_block, struct writeback_control *wbc)
1797 {
1798         int err;
1799         sector_t block;
1800         sector_t last_block;
1801         struct buffer_head *bh, *head;
1802         size_t blocksize;
1803         int nr_underway = 0;
1804         blk_opf_t write_flags = wbc_to_write_flags(wbc);
1805
1806         head = folio_create_buffers(folio, inode,
1807                                     (1 << BH_Dirty) | (1 << BH_Uptodate));
1808
1809         /*
1810          * Be very careful.  We have no exclusion from block_dirty_folio
1811          * here, and the (potentially unmapped) buffers may become dirty at
1812          * any time.  If a buffer becomes dirty here after we've inspected it
1813          * then we just miss that fact, and the folio stays dirty.
1814          *
1815          * Buffers outside i_size may be dirtied by block_dirty_folio;
1816          * handle that here by just cleaning them.
1817          */
1818
1819         bh = head;
1820         blocksize = bh->b_size;
1821
1822         block = div_u64(folio_pos(folio), blocksize);
1823         last_block = div_u64(i_size_read(inode) - 1, blocksize);
1824
1825         /*
1826          * Get all the dirty buffers mapped to disk addresses and
1827          * handle any aliases from the underlying blockdev's mapping.
1828          */
1829         do {
1830                 if (block > last_block) {
1831                         /*
1832                          * mapped buffers outside i_size will occur, because
1833                          * this folio can be outside i_size when there is a
1834                          * truncate in progress.
1835                          */
1836                         /*
1837                          * The buffer was zeroed by block_write_full_folio()
1838                          */
1839                         clear_buffer_dirty(bh);
1840                         set_buffer_uptodate(bh);
1841                 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1842                            buffer_dirty(bh)) {
1843                         WARN_ON(bh->b_size != blocksize);
1844                         err = get_block(inode, block, bh, 1);
1845                         if (err)
1846                                 goto recover;
1847                         clear_buffer_delay(bh);
1848                         if (buffer_new(bh)) {
1849                                 /* blockdev mappings never come here */
1850                                 clear_buffer_new(bh);
1851                                 clean_bdev_bh_alias(bh);
1852                         }
1853                 }
1854                 bh = bh->b_this_page;
1855                 block++;
1856         } while (bh != head);
1857
1858         do {
1859                 if (!buffer_mapped(bh))
1860                         continue;
1861                 /*
1862                  * If it's a fully non-blocking write attempt and we cannot
1863                  * lock the buffer then redirty the folio.  Note that this can
1864                  * potentially cause a busy-wait loop from writeback threads
1865                  * and kswapd activity, but those code paths have their own
1866                  * higher-level throttling.
1867                  */
1868                 if (wbc->sync_mode != WB_SYNC_NONE) {
1869                         lock_buffer(bh);
1870                 } else if (!trylock_buffer(bh)) {
1871                         folio_redirty_for_writepage(wbc, folio);
1872                         continue;
1873                 }
1874                 if (test_clear_buffer_dirty(bh)) {
1875                         mark_buffer_async_write_endio(bh,
1876                                 end_buffer_async_write);
1877                 } else {
1878                         unlock_buffer(bh);
1879                 }
1880         } while ((bh = bh->b_this_page) != head);
1881
1882         /*
1883          * The folio and its buffers are protected by the writeback flag,
1884          * so we can drop the bh refcounts early.
1885          */
1886         BUG_ON(folio_test_writeback(folio));
1887         folio_start_writeback(folio);
1888
1889         do {
1890                 struct buffer_head *next = bh->b_this_page;
1891                 if (buffer_async_write(bh)) {
1892                         submit_bh_wbc(REQ_OP_WRITE | write_flags, bh,
1893                                       inode->i_write_hint, wbc);
1894                         nr_underway++;
1895                 }
1896                 bh = next;
1897         } while (bh != head);
1898         folio_unlock(folio);
1899
1900         err = 0;
1901 done:
1902         if (nr_underway == 0) {
1903                 /*
1904                  * The folio was marked dirty, but the buffers were
1905                  * clean.  Someone wrote them back by hand with
1906                  * write_dirty_buffer/submit_bh.  A rare case.
1907                  */
1908                 folio_end_writeback(folio);
1909
1910                 /*
1911                  * The folio and buffer_heads can be released at any time from
1912                  * here on.
1913                  */
1914         }
1915         return err;
1916
1917 recover:
1918         /*
1919          * ENOSPC, or some other error.  We may already have added some
1920          * blocks to the file, so we need to write these out to avoid
1921          * exposing stale data.
1922          * The folio is currently locked and not marked for writeback
1923          */
1924         bh = head;
1925         /* Recovery: lock and submit the mapped buffers */
1926         do {
1927                 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1928                     !buffer_delay(bh)) {
1929                         lock_buffer(bh);
1930                         mark_buffer_async_write_endio(bh,
1931                                 end_buffer_async_write);
1932                 } else {
1933                         /*
1934                          * The buffer may have been set dirty during
1935                          * attachment to a dirty folio.
1936                          */
1937                         clear_buffer_dirty(bh);
1938                 }
1939         } while ((bh = bh->b_this_page) != head);
1940         folio_set_error(folio);
1941         BUG_ON(folio_test_writeback(folio));
1942         mapping_set_error(folio->mapping, err);
1943         folio_start_writeback(folio);
1944         do {
1945                 struct buffer_head *next = bh->b_this_page;
1946                 if (buffer_async_write(bh)) {
1947                         clear_buffer_dirty(bh);
1948                         submit_bh_wbc(REQ_OP_WRITE | write_flags, bh,
1949                                       inode->i_write_hint, wbc);
1950                         nr_underway++;
1951                 }
1952                 bh = next;
1953         } while (bh != head);
1954         folio_unlock(folio);
1955         goto done;
1956 }
1957 EXPORT_SYMBOL(__block_write_full_folio);
1958
1959 /*
1960  * If a folio has any new buffers, zero them out here, and mark them uptodate
1961  * and dirty so they'll be written out (in order to prevent uninitialised
1962  * block data from leaking). And clear the new bit.
1963  */
1964 void folio_zero_new_buffers(struct folio *folio, size_t from, size_t to)
1965 {
1966         size_t block_start, block_end;
1967         struct buffer_head *head, *bh;
1968
1969         BUG_ON(!folio_test_locked(folio));
1970         head = folio_buffers(folio);
1971         if (!head)
1972                 return;
1973
1974         bh = head;
1975         block_start = 0;
1976         do {
1977                 block_end = block_start + bh->b_size;
1978
1979                 if (buffer_new(bh)) {
1980                         if (block_end > from && block_start < to) {
1981                                 if (!folio_test_uptodate(folio)) {
1982                                         size_t start, xend;
1983
1984                                         start = max(from, block_start);
1985                                         xend = min(to, block_end);
1986
1987                                         folio_zero_segment(folio, start, xend);
1988                                         set_buffer_uptodate(bh);
1989                                 }
1990
1991                                 clear_buffer_new(bh);
1992                                 mark_buffer_dirty(bh);
1993                         }
1994                 }
1995
1996                 block_start = block_end;
1997                 bh = bh->b_this_page;
1998         } while (bh != head);
1999 }
2000 EXPORT_SYMBOL(folio_zero_new_buffers);
2001
2002 static int
2003 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
2004                 const struct iomap *iomap)
2005 {
2006         loff_t offset = (loff_t)block << inode->i_blkbits;
2007
2008         bh->b_bdev = iomap->bdev;
2009
2010         /*
2011          * Block points to offset in file we need to map, iomap contains
2012          * the offset at which the map starts. If the map ends before the
2013          * current block, then do not map the buffer and let the caller
2014          * handle it.
2015          */
2016         if (offset >= iomap->offset + iomap->length)
2017                 return -EIO;
2018
2019         switch (iomap->type) {
2020         case IOMAP_HOLE:
2021                 /*
2022                  * If the buffer is not up to date or beyond the current EOF,
2023                  * we need to mark it as new to ensure sub-block zeroing is
2024                  * executed if necessary.
2025                  */
2026                 if (!buffer_uptodate(bh) ||
2027                     (offset >= i_size_read(inode)))
2028                         set_buffer_new(bh);
2029                 return 0;
2030         case IOMAP_DELALLOC:
2031                 if (!buffer_uptodate(bh) ||
2032                     (offset >= i_size_read(inode)))
2033                         set_buffer_new(bh);
2034                 set_buffer_uptodate(bh);
2035                 set_buffer_mapped(bh);
2036                 set_buffer_delay(bh);
2037                 return 0;
2038         case IOMAP_UNWRITTEN:
2039                 /*
2040                  * For unwritten regions, we always need to ensure that regions
2041                  * in the block we are not writing to are zeroed. Mark the
2042                  * buffer as new to ensure this.
2043                  */
2044                 set_buffer_new(bh);
2045                 set_buffer_unwritten(bh);
2046                 fallthrough;
2047         case IOMAP_MAPPED:
2048                 if ((iomap->flags & IOMAP_F_NEW) ||
2049                     offset >= i_size_read(inode)) {
2050                         /*
2051                          * This can happen if truncating the block device races
2052                          * with the check in the caller as i_size updates on
2053                          * block devices aren't synchronized by i_rwsem for
2054                          * block devices.
2055                          */
2056                         if (S_ISBLK(inode->i_mode))
2057                                 return -EIO;
2058                         set_buffer_new(bh);
2059                 }
2060                 bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
2061                                 inode->i_blkbits;
2062                 set_buffer_mapped(bh);
2063                 return 0;
2064         default:
2065                 WARN_ON_ONCE(1);
2066                 return -EIO;
2067         }
2068 }
2069
2070 int __block_write_begin_int(struct folio *folio, loff_t pos, unsigned len,
2071                 get_block_t *get_block, const struct iomap *iomap)
2072 {
2073         size_t from = offset_in_folio(folio, pos);
2074         size_t to = from + len;
2075         struct inode *inode = folio->mapping->host;
2076         size_t block_start, block_end;
2077         sector_t block;
2078         int err = 0;
2079         size_t blocksize;
2080         struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
2081
2082         BUG_ON(!folio_test_locked(folio));
2083         BUG_ON(to > folio_size(folio));
2084         BUG_ON(from > to);
2085
2086         head = folio_create_buffers(folio, inode, 0);
2087         blocksize = head->b_size;
2088         block = div_u64(folio_pos(folio), blocksize);
2089
2090         for (bh = head, block_start = 0; bh != head || !block_start;
2091             block++, block_start=block_end, bh = bh->b_this_page) {
2092                 block_end = block_start + blocksize;
2093                 if (block_end <= from || block_start >= to) {
2094                         if (folio_test_uptodate(folio)) {
2095                                 if (!buffer_uptodate(bh))
2096                                         set_buffer_uptodate(bh);
2097                         }
2098                         continue;
2099                 }
2100                 if (buffer_new(bh))
2101                         clear_buffer_new(bh);
2102                 if (!buffer_mapped(bh)) {
2103                         WARN_ON(bh->b_size != blocksize);
2104                         if (get_block)
2105                                 err = get_block(inode, block, bh, 1);
2106                         else
2107                                 err = iomap_to_bh(inode, block, bh, iomap);
2108                         if (err)
2109                                 break;
2110
2111                         if (buffer_new(bh)) {
2112                                 clean_bdev_bh_alias(bh);
2113                                 if (folio_test_uptodate(folio)) {
2114                                         clear_buffer_new(bh);
2115                                         set_buffer_uptodate(bh);
2116                                         mark_buffer_dirty(bh);
2117                                         continue;
2118                                 }
2119                                 if (block_end > to || block_start < from)
2120                                         folio_zero_segments(folio,
2121                                                 to, block_end,
2122                                                 block_start, from);
2123                                 continue;
2124                         }
2125                 }
2126                 if (folio_test_uptodate(folio)) {
2127                         if (!buffer_uptodate(bh))
2128                                 set_buffer_uptodate(bh);
2129                         continue; 
2130                 }
2131                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2132                     !buffer_unwritten(bh) &&
2133                      (block_start < from || block_end > to)) {
2134                         bh_read_nowait(bh, 0);
2135                         *wait_bh++=bh;
2136                 }
2137         }
2138         /*
2139          * If we issued read requests - let them complete.
2140          */
2141         while(wait_bh > wait) {
2142                 wait_on_buffer(*--wait_bh);
2143                 if (!buffer_uptodate(*wait_bh))
2144                         err = -EIO;
2145         }
2146         if (unlikely(err))
2147                 folio_zero_new_buffers(folio, from, to);
2148         return err;
2149 }
2150
2151 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2152                 get_block_t *get_block)
2153 {
2154         return __block_write_begin_int(page_folio(page), pos, len, get_block,
2155                                        NULL);
2156 }
2157 EXPORT_SYMBOL(__block_write_begin);
2158
2159 static void __block_commit_write(struct folio *folio, size_t from, size_t to)
2160 {
2161         size_t block_start, block_end;
2162         bool partial = false;
2163         unsigned blocksize;
2164         struct buffer_head *bh, *head;
2165
2166         bh = head = folio_buffers(folio);
2167         blocksize = bh->b_size;
2168
2169         block_start = 0;
2170         do {
2171                 block_end = block_start + blocksize;
2172                 if (block_end <= from || block_start >= to) {
2173                         if (!buffer_uptodate(bh))
2174                                 partial = true;
2175                 } else {
2176                         set_buffer_uptodate(bh);
2177                         mark_buffer_dirty(bh);
2178                 }
2179                 if (buffer_new(bh))
2180                         clear_buffer_new(bh);
2181
2182                 block_start = block_end;
2183                 bh = bh->b_this_page;
2184         } while (bh != head);
2185
2186         /*
2187          * If this is a partial write which happened to make all buffers
2188          * uptodate then we can optimize away a bogus read_folio() for
2189          * the next read(). Here we 'discover' whether the folio went
2190          * uptodate as a result of this (potentially partial) write.
2191          */
2192         if (!partial)
2193                 folio_mark_uptodate(folio);
2194 }
2195
2196 /*
2197  * block_write_begin takes care of the basic task of block allocation and
2198  * bringing partial write blocks uptodate first.
2199  *
2200  * The filesystem needs to handle block truncation upon failure.
2201  */
2202 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2203                 struct page **pagep, get_block_t *get_block)
2204 {
2205         pgoff_t index = pos >> PAGE_SHIFT;
2206         struct page *page;
2207         int status;
2208
2209         page = grab_cache_page_write_begin(mapping, index);
2210         if (!page)
2211                 return -ENOMEM;
2212
2213         status = __block_write_begin(page, pos, len, get_block);
2214         if (unlikely(status)) {
2215                 unlock_page(page);
2216                 put_page(page);
2217                 page = NULL;
2218         }
2219
2220         *pagep = page;
2221         return status;
2222 }
2223 EXPORT_SYMBOL(block_write_begin);
2224
2225 int block_write_end(struct file *file, struct address_space *mapping,
2226                         loff_t pos, unsigned len, unsigned copied,
2227                         struct page *page, void *fsdata)
2228 {
2229         struct folio *folio = page_folio(page);
2230         size_t start = pos - folio_pos(folio);
2231
2232         if (unlikely(copied < len)) {
2233                 /*
2234                  * The buffers that were written will now be uptodate, so
2235                  * we don't have to worry about a read_folio reading them
2236                  * and overwriting a partial write. However if we have
2237                  * encountered a short write and only partially written
2238                  * into a buffer, it will not be marked uptodate, so a
2239                  * read_folio might come in and destroy our partial write.
2240                  *
2241                  * Do the simplest thing, and just treat any short write to a
2242                  * non uptodate folio as a zero-length write, and force the
2243                  * caller to redo the whole thing.
2244                  */
2245                 if (!folio_test_uptodate(folio))
2246                         copied = 0;
2247
2248                 folio_zero_new_buffers(folio, start+copied, start+len);
2249         }
2250         flush_dcache_folio(folio);
2251
2252         /* This could be a short (even 0-length) commit */
2253         __block_commit_write(folio, start, start + copied);
2254
2255         return copied;
2256 }
2257 EXPORT_SYMBOL(block_write_end);
2258
2259 int generic_write_end(struct file *file, struct address_space *mapping,
2260                         loff_t pos, unsigned len, unsigned copied,
2261                         struct page *page, void *fsdata)
2262 {
2263         struct inode *inode = mapping->host;
2264         loff_t old_size = inode->i_size;
2265         bool i_size_changed = false;
2266
2267         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2268
2269         /*
2270          * No need to use i_size_read() here, the i_size cannot change under us
2271          * because we hold i_rwsem.
2272          *
2273          * But it's important to update i_size while still holding page lock:
2274          * page writeout could otherwise come in and zero beyond i_size.
2275          */
2276         if (pos + copied > inode->i_size) {
2277                 i_size_write(inode, pos + copied);
2278                 i_size_changed = true;
2279         }
2280
2281         unlock_page(page);
2282         put_page(page);
2283
2284         if (old_size < pos)
2285                 pagecache_isize_extended(inode, old_size, pos);
2286         /*
2287          * Don't mark the inode dirty under page lock. First, it unnecessarily
2288          * makes the holding time of page lock longer. Second, it forces lock
2289          * ordering of page lock and transaction start for journaling
2290          * filesystems.
2291          */
2292         if (i_size_changed)
2293                 mark_inode_dirty(inode);
2294         return copied;
2295 }
2296 EXPORT_SYMBOL(generic_write_end);
2297
2298 /*
2299  * block_is_partially_uptodate checks whether buffers within a folio are
2300  * uptodate or not.
2301  *
2302  * Returns true if all buffers which correspond to the specified part
2303  * of the folio are uptodate.
2304  */
2305 bool block_is_partially_uptodate(struct folio *folio, size_t from, size_t count)
2306 {
2307         unsigned block_start, block_end, blocksize;
2308         unsigned to;
2309         struct buffer_head *bh, *head;
2310         bool ret = true;
2311
2312         head = folio_buffers(folio);
2313         if (!head)
2314                 return false;
2315         blocksize = head->b_size;
2316         to = min_t(unsigned, folio_size(folio) - from, count);
2317         to = from + to;
2318         if (from < blocksize && to > folio_size(folio) - blocksize)
2319                 return false;
2320
2321         bh = head;
2322         block_start = 0;
2323         do {
2324                 block_end = block_start + blocksize;
2325                 if (block_end > from && block_start < to) {
2326                         if (!buffer_uptodate(bh)) {
2327                                 ret = false;
2328                                 break;
2329                         }
2330                         if (block_end >= to)
2331                                 break;
2332                 }
2333                 block_start = block_end;
2334                 bh = bh->b_this_page;
2335         } while (bh != head);
2336
2337         return ret;
2338 }
2339 EXPORT_SYMBOL(block_is_partially_uptodate);
2340
2341 /*
2342  * Generic "read_folio" function for block devices that have the normal
2343  * get_block functionality. This is most of the block device filesystems.
2344  * Reads the folio asynchronously --- the unlock_buffer() and
2345  * set/clear_buffer_uptodate() functions propagate buffer state into the
2346  * folio once IO has completed.
2347  */
2348 int block_read_full_folio(struct folio *folio, get_block_t *get_block)
2349 {
2350         struct inode *inode = folio->mapping->host;
2351         sector_t iblock, lblock;
2352         struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2353         size_t blocksize;
2354         int nr, i;
2355         int fully_mapped = 1;
2356         bool page_error = false;
2357         loff_t limit = i_size_read(inode);
2358
2359         /* This is needed for ext4. */
2360         if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode))
2361                 limit = inode->i_sb->s_maxbytes;
2362
2363         VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
2364
2365         head = folio_create_buffers(folio, inode, 0);
2366         blocksize = head->b_size;
2367
2368         iblock = div_u64(folio_pos(folio), blocksize);
2369         lblock = div_u64(limit + blocksize - 1, blocksize);
2370         bh = head;
2371         nr = 0;
2372         i = 0;
2373
2374         do {
2375                 if (buffer_uptodate(bh))
2376                         continue;
2377
2378                 if (!buffer_mapped(bh)) {
2379                         int err = 0;
2380
2381                         fully_mapped = 0;
2382                         if (iblock < lblock) {
2383                                 WARN_ON(bh->b_size != blocksize);
2384                                 err = get_block(inode, iblock, bh, 0);
2385                                 if (err) {
2386                                         folio_set_error(folio);
2387                                         page_error = true;
2388                                 }
2389                         }
2390                         if (!buffer_mapped(bh)) {
2391                                 folio_zero_range(folio, i * blocksize,
2392                                                 blocksize);
2393                                 if (!err)
2394                                         set_buffer_uptodate(bh);
2395                                 continue;
2396                         }
2397                         /*
2398                          * get_block() might have updated the buffer
2399                          * synchronously
2400                          */
2401                         if (buffer_uptodate(bh))
2402                                 continue;
2403                 }
2404                 arr[nr++] = bh;
2405         } while (i++, iblock++, (bh = bh->b_this_page) != head);
2406
2407         if (fully_mapped)
2408                 folio_set_mappedtodisk(folio);
2409
2410         if (!nr) {
2411                 /*
2412                  * All buffers are uptodate or get_block() returned an
2413                  * error when trying to map them - we can finish the read.
2414                  */
2415                 folio_end_read(folio, !page_error);
2416                 return 0;
2417         }
2418
2419         /* Stage two: lock the buffers */
2420         for (i = 0; i < nr; i++) {
2421                 bh = arr[i];
2422                 lock_buffer(bh);
2423                 mark_buffer_async_read(bh);
2424         }
2425
2426         /*
2427          * Stage 3: start the IO.  Check for uptodateness
2428          * inside the buffer lock in case another process reading
2429          * the underlying blockdev brought it uptodate (the sct fix).
2430          */
2431         for (i = 0; i < nr; i++) {
2432                 bh = arr[i];
2433                 if (buffer_uptodate(bh))
2434                         end_buffer_async_read(bh, 1);
2435                 else
2436                         submit_bh(REQ_OP_READ, bh);
2437         }
2438         return 0;
2439 }
2440 EXPORT_SYMBOL(block_read_full_folio);
2441
2442 /* utility function for filesystems that need to do work on expanding
2443  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2444  * deal with the hole.  
2445  */
2446 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2447 {
2448         struct address_space *mapping = inode->i_mapping;
2449         const struct address_space_operations *aops = mapping->a_ops;
2450         struct page *page;
2451         void *fsdata = NULL;
2452         int err;
2453
2454         err = inode_newsize_ok(inode, size);
2455         if (err)
2456                 goto out;
2457
2458         err = aops->write_begin(NULL, mapping, size, 0, &page, &fsdata);
2459         if (err)
2460                 goto out;
2461
2462         err = aops->write_end(NULL, mapping, size, 0, 0, page, fsdata);
2463         BUG_ON(err > 0);
2464
2465 out:
2466         return err;
2467 }
2468 EXPORT_SYMBOL(generic_cont_expand_simple);
2469
2470 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2471                             loff_t pos, loff_t *bytes)
2472 {
2473         struct inode *inode = mapping->host;
2474         const struct address_space_operations *aops = mapping->a_ops;
2475         unsigned int blocksize = i_blocksize(inode);
2476         struct page *page;
2477         void *fsdata = NULL;
2478         pgoff_t index, curidx;
2479         loff_t curpos;
2480         unsigned zerofrom, offset, len;
2481         int err = 0;
2482
2483         index = pos >> PAGE_SHIFT;
2484         offset = pos & ~PAGE_MASK;
2485
2486         while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2487                 zerofrom = curpos & ~PAGE_MASK;
2488                 if (zerofrom & (blocksize-1)) {
2489                         *bytes |= (blocksize-1);
2490                         (*bytes)++;
2491                 }
2492                 len = PAGE_SIZE - zerofrom;
2493
2494                 err = aops->write_begin(file, mapping, curpos, len,
2495                                             &page, &fsdata);
2496                 if (err)
2497                         goto out;
2498                 zero_user(page, zerofrom, len);
2499                 err = aops->write_end(file, mapping, curpos, len, len,
2500                                                 page, fsdata);
2501                 if (err < 0)
2502                         goto out;
2503                 BUG_ON(err != len);
2504                 err = 0;
2505
2506                 balance_dirty_pages_ratelimited(mapping);
2507
2508                 if (fatal_signal_pending(current)) {
2509                         err = -EINTR;
2510                         goto out;
2511                 }
2512         }
2513
2514         /* page covers the boundary, find the boundary offset */
2515         if (index == curidx) {
2516                 zerofrom = curpos & ~PAGE_MASK;
2517                 /* if we will expand the thing last block will be filled */
2518                 if (offset <= zerofrom) {
2519                         goto out;
2520                 }
2521                 if (zerofrom & (blocksize-1)) {
2522                         *bytes |= (blocksize-1);
2523                         (*bytes)++;
2524                 }
2525                 len = offset - zerofrom;
2526
2527                 err = aops->write_begin(file, mapping, curpos, len,
2528                                             &page, &fsdata);
2529                 if (err)
2530                         goto out;
2531                 zero_user(page, zerofrom, len);
2532                 err = aops->write_end(file, mapping, curpos, len, len,
2533                                                 page, fsdata);
2534                 if (err < 0)
2535                         goto out;
2536                 BUG_ON(err != len);
2537                 err = 0;
2538         }
2539 out:
2540         return err;
2541 }
2542
2543 /*
2544  * For moronic filesystems that do not allow holes in file.
2545  * We may have to extend the file.
2546  */
2547 int cont_write_begin(struct file *file, struct address_space *mapping,
2548                         loff_t pos, unsigned len,
2549                         struct page **pagep, void **fsdata,
2550                         get_block_t *get_block, loff_t *bytes)
2551 {
2552         struct inode *inode = mapping->host;
2553         unsigned int blocksize = i_blocksize(inode);
2554         unsigned int zerofrom;
2555         int err;
2556
2557         err = cont_expand_zero(file, mapping, pos, bytes);
2558         if (err)
2559                 return err;
2560
2561         zerofrom = *bytes & ~PAGE_MASK;
2562         if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2563                 *bytes |= (blocksize-1);
2564                 (*bytes)++;
2565         }
2566
2567         return block_write_begin(mapping, pos, len, pagep, get_block);
2568 }
2569 EXPORT_SYMBOL(cont_write_begin);
2570
2571 void block_commit_write(struct page *page, unsigned from, unsigned to)
2572 {
2573         struct folio *folio = page_folio(page);
2574         __block_commit_write(folio, from, to);
2575 }
2576 EXPORT_SYMBOL(block_commit_write);
2577
2578 /*
2579  * block_page_mkwrite() is not allowed to change the file size as it gets
2580  * called from a page fault handler when a page is first dirtied. Hence we must
2581  * be careful to check for EOF conditions here. We set the page up correctly
2582  * for a written page which means we get ENOSPC checking when writing into
2583  * holes and correct delalloc and unwritten extent mapping on filesystems that
2584  * support these features.
2585  *
2586  * We are not allowed to take the i_mutex here so we have to play games to
2587  * protect against truncate races as the page could now be beyond EOF.  Because
2588  * truncate writes the inode size before removing pages, once we have the
2589  * page lock we can determine safely if the page is beyond EOF. If it is not
2590  * beyond EOF, then the page is guaranteed safe against truncation until we
2591  * unlock the page.
2592  *
2593  * Direct callers of this function should protect against filesystem freezing
2594  * using sb_start_pagefault() - sb_end_pagefault() functions.
2595  */
2596 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2597                          get_block_t get_block)
2598 {
2599         struct folio *folio = page_folio(vmf->page);
2600         struct inode *inode = file_inode(vma->vm_file);
2601         unsigned long end;
2602         loff_t size;
2603         int ret;
2604
2605         folio_lock(folio);
2606         size = i_size_read(inode);
2607         if ((folio->mapping != inode->i_mapping) ||
2608             (folio_pos(folio) >= size)) {
2609                 /* We overload EFAULT to mean page got truncated */
2610                 ret = -EFAULT;
2611                 goto out_unlock;
2612         }
2613
2614         end = folio_size(folio);
2615         /* folio is wholly or partially inside EOF */
2616         if (folio_pos(folio) + end > size)
2617                 end = size - folio_pos(folio);
2618
2619         ret = __block_write_begin_int(folio, 0, end, get_block, NULL);
2620         if (unlikely(ret))
2621                 goto out_unlock;
2622
2623         __block_commit_write(folio, 0, end);
2624
2625         folio_mark_dirty(folio);
2626         folio_wait_stable(folio);
2627         return 0;
2628 out_unlock:
2629         folio_unlock(folio);
2630         return ret;
2631 }
2632 EXPORT_SYMBOL(block_page_mkwrite);
2633
2634 int block_truncate_page(struct address_space *mapping,
2635                         loff_t from, get_block_t *get_block)
2636 {
2637         pgoff_t index = from >> PAGE_SHIFT;
2638         unsigned blocksize;
2639         sector_t iblock;
2640         size_t offset, length, pos;
2641         struct inode *inode = mapping->host;
2642         struct folio *folio;
2643         struct buffer_head *bh;
2644         int err = 0;
2645
2646         blocksize = i_blocksize(inode);
2647         length = from & (blocksize - 1);
2648
2649         /* Block boundary? Nothing to do */
2650         if (!length)
2651                 return 0;
2652
2653         length = blocksize - length;
2654         iblock = ((loff_t)index * PAGE_SIZE) >> inode->i_blkbits;
2655
2656         folio = filemap_grab_folio(mapping, index);
2657         if (IS_ERR(folio))
2658                 return PTR_ERR(folio);
2659
2660         bh = folio_buffers(folio);
2661         if (!bh)
2662                 bh = create_empty_buffers(folio, blocksize, 0);
2663
2664         /* Find the buffer that contains "offset" */
2665         offset = offset_in_folio(folio, from);
2666         pos = blocksize;
2667         while (offset >= pos) {
2668                 bh = bh->b_this_page;
2669                 iblock++;
2670                 pos += blocksize;
2671         }
2672
2673         if (!buffer_mapped(bh)) {
2674                 WARN_ON(bh->b_size != blocksize);
2675                 err = get_block(inode, iblock, bh, 0);
2676                 if (err)
2677                         goto unlock;
2678                 /* unmapped? It's a hole - nothing to do */
2679                 if (!buffer_mapped(bh))
2680                         goto unlock;
2681         }
2682
2683         /* Ok, it's mapped. Make sure it's up-to-date */
2684         if (folio_test_uptodate(folio))
2685                 set_buffer_uptodate(bh);
2686
2687         if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2688                 err = bh_read(bh, 0);
2689                 /* Uhhuh. Read error. Complain and punt. */
2690                 if (err < 0)
2691                         goto unlock;
2692         }
2693
2694         folio_zero_range(folio, offset, length);
2695         mark_buffer_dirty(bh);
2696
2697 unlock:
2698         folio_unlock(folio);
2699         folio_put(folio);
2700
2701         return err;
2702 }
2703 EXPORT_SYMBOL(block_truncate_page);
2704
2705 /*
2706  * The generic ->writepage function for buffer-backed address_spaces
2707  */
2708 int block_write_full_folio(struct folio *folio, struct writeback_control *wbc,
2709                 void *get_block)
2710 {
2711         struct inode * const inode = folio->mapping->host;
2712         loff_t i_size = i_size_read(inode);
2713
2714         /* Is the folio fully inside i_size? */
2715         if (folio_pos(folio) + folio_size(folio) <= i_size)
2716                 return __block_write_full_folio(inode, folio, get_block, wbc);
2717
2718         /* Is the folio fully outside i_size? (truncate in progress) */
2719         if (folio_pos(folio) >= i_size) {
2720                 folio_unlock(folio);
2721                 return 0; /* don't care */
2722         }
2723
2724         /*
2725          * The folio straddles i_size.  It must be zeroed out on each and every
2726          * writepage invocation because it may be mmapped.  "A file is mapped
2727          * in multiples of the page size.  For a file that is not a multiple of
2728          * the page size, the remaining memory is zeroed when mapped, and
2729          * writes to that region are not written out to the file."
2730          */
2731         folio_zero_segment(folio, offset_in_folio(folio, i_size),
2732                         folio_size(folio));
2733         return __block_write_full_folio(inode, folio, get_block, wbc);
2734 }
2735
2736 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2737                             get_block_t *get_block)
2738 {
2739         struct inode *inode = mapping->host;
2740         struct buffer_head tmp = {
2741                 .b_size = i_blocksize(inode),
2742         };
2743
2744         get_block(inode, block, &tmp, 0);
2745         return tmp.b_blocknr;
2746 }
2747 EXPORT_SYMBOL(generic_block_bmap);
2748
2749 static void end_bio_bh_io_sync(struct bio *bio)
2750 {
2751         struct buffer_head *bh = bio->bi_private;
2752
2753         if (unlikely(bio_flagged(bio, BIO_QUIET)))
2754                 set_bit(BH_Quiet, &bh->b_state);
2755
2756         bh->b_end_io(bh, !bio->bi_status);
2757         bio_put(bio);
2758 }
2759
2760 static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh,
2761                           enum rw_hint write_hint,
2762                           struct writeback_control *wbc)
2763 {
2764         const enum req_op op = opf & REQ_OP_MASK;
2765         struct bio *bio;
2766
2767         BUG_ON(!buffer_locked(bh));
2768         BUG_ON(!buffer_mapped(bh));
2769         BUG_ON(!bh->b_end_io);
2770         BUG_ON(buffer_delay(bh));
2771         BUG_ON(buffer_unwritten(bh));
2772
2773         /*
2774          * Only clear out a write error when rewriting
2775          */
2776         if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
2777                 clear_buffer_write_io_error(bh);
2778
2779         if (buffer_meta(bh))
2780                 opf |= REQ_META;
2781         if (buffer_prio(bh))
2782                 opf |= REQ_PRIO;
2783
2784         bio = bio_alloc(bh->b_bdev, 1, opf, GFP_NOIO);
2785
2786         fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO);
2787
2788         bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2789         bio->bi_write_hint = write_hint;
2790
2791         __bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
2792
2793         bio->bi_end_io = end_bio_bh_io_sync;
2794         bio->bi_private = bh;
2795
2796         /* Take care of bh's that straddle the end of the device */
2797         guard_bio_eod(bio);
2798
2799         if (wbc) {
2800                 wbc_init_bio(wbc, bio);
2801                 wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size);
2802         }
2803
2804         submit_bio(bio);
2805 }
2806
2807 void submit_bh(blk_opf_t opf, struct buffer_head *bh)
2808 {
2809         submit_bh_wbc(opf, bh, WRITE_LIFE_NOT_SET, NULL);
2810 }
2811 EXPORT_SYMBOL(submit_bh);
2812
2813 void write_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags)
2814 {
2815         lock_buffer(bh);
2816         if (!test_clear_buffer_dirty(bh)) {
2817                 unlock_buffer(bh);
2818                 return;
2819         }
2820         bh->b_end_io = end_buffer_write_sync;
2821         get_bh(bh);
2822         submit_bh(REQ_OP_WRITE | op_flags, bh);
2823 }
2824 EXPORT_SYMBOL(write_dirty_buffer);
2825
2826 /*
2827  * For a data-integrity writeout, we need to wait upon any in-progress I/O
2828  * and then start new I/O and then wait upon it.  The caller must have a ref on
2829  * the buffer_head.
2830  */
2831 int __sync_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags)
2832 {
2833         WARN_ON(atomic_read(&bh->b_count) < 1);
2834         lock_buffer(bh);
2835         if (test_clear_buffer_dirty(bh)) {
2836                 /*
2837                  * The bh should be mapped, but it might not be if the
2838                  * device was hot-removed. Not much we can do but fail the I/O.
2839                  */
2840                 if (!buffer_mapped(bh)) {
2841                         unlock_buffer(bh);
2842                         return -EIO;
2843                 }
2844
2845                 get_bh(bh);
2846                 bh->b_end_io = end_buffer_write_sync;
2847                 submit_bh(REQ_OP_WRITE | op_flags, bh);
2848                 wait_on_buffer(bh);
2849                 if (!buffer_uptodate(bh))
2850                         return -EIO;
2851         } else {
2852                 unlock_buffer(bh);
2853         }
2854         return 0;
2855 }
2856 EXPORT_SYMBOL(__sync_dirty_buffer);
2857
2858 int sync_dirty_buffer(struct buffer_head *bh)
2859 {
2860         return __sync_dirty_buffer(bh, REQ_SYNC);
2861 }
2862 EXPORT_SYMBOL(sync_dirty_buffer);
2863
2864 /*
2865  * try_to_free_buffers() checks if all the buffers on this particular folio
2866  * are unused, and releases them if so.
2867  *
2868  * Exclusion against try_to_free_buffers may be obtained by either
2869  * locking the folio or by holding its mapping's i_private_lock.
2870  *
2871  * If the folio is dirty but all the buffers are clean then we need to
2872  * be sure to mark the folio clean as well.  This is because the folio
2873  * may be against a block device, and a later reattachment of buffers
2874  * to a dirty folio will set *all* buffers dirty.  Which would corrupt
2875  * filesystem data on the same device.
2876  *
2877  * The same applies to regular filesystem folios: if all the buffers are
2878  * clean then we set the folio clean and proceed.  To do that, we require
2879  * total exclusion from block_dirty_folio().  That is obtained with
2880  * i_private_lock.
2881  *
2882  * try_to_free_buffers() is non-blocking.
2883  */
2884 static inline int buffer_busy(struct buffer_head *bh)
2885 {
2886         return atomic_read(&bh->b_count) |
2887                 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
2888 }
2889
2890 static bool
2891 drop_buffers(struct folio *folio, struct buffer_head **buffers_to_free)
2892 {
2893         struct buffer_head *head = folio_buffers(folio);
2894         struct buffer_head *bh;
2895
2896         bh = head;
2897         do {
2898                 if (buffer_busy(bh))
2899                         goto failed;
2900                 bh = bh->b_this_page;
2901         } while (bh != head);
2902
2903         do {
2904                 struct buffer_head *next = bh->b_this_page;
2905
2906                 if (bh->b_assoc_map)
2907                         __remove_assoc_queue(bh);
2908                 bh = next;
2909         } while (bh != head);
2910         *buffers_to_free = head;
2911         folio_detach_private(folio);
2912         return true;
2913 failed:
2914         return false;
2915 }
2916
2917 bool try_to_free_buffers(struct folio *folio)
2918 {
2919         struct address_space * const mapping = folio->mapping;
2920         struct buffer_head *buffers_to_free = NULL;
2921         bool ret = 0;
2922
2923         BUG_ON(!folio_test_locked(folio));
2924         if (folio_test_writeback(folio))
2925                 return false;
2926
2927         if (mapping == NULL) {          /* can this still happen? */
2928                 ret = drop_buffers(folio, &buffers_to_free);
2929                 goto out;
2930         }
2931
2932         spin_lock(&mapping->i_private_lock);
2933         ret = drop_buffers(folio, &buffers_to_free);
2934
2935         /*
2936          * If the filesystem writes its buffers by hand (eg ext3)
2937          * then we can have clean buffers against a dirty folio.  We
2938          * clean the folio here; otherwise the VM will never notice
2939          * that the filesystem did any IO at all.
2940          *
2941          * Also, during truncate, discard_buffer will have marked all
2942          * the folio's buffers clean.  We discover that here and clean
2943          * the folio also.
2944          *
2945          * i_private_lock must be held over this entire operation in order
2946          * to synchronise against block_dirty_folio and prevent the
2947          * dirty bit from being lost.
2948          */
2949         if (ret)
2950                 folio_cancel_dirty(folio);
2951         spin_unlock(&mapping->i_private_lock);
2952 out:
2953         if (buffers_to_free) {
2954                 struct buffer_head *bh = buffers_to_free;
2955
2956                 do {
2957                         struct buffer_head *next = bh->b_this_page;
2958                         free_buffer_head(bh);
2959                         bh = next;
2960                 } while (bh != buffers_to_free);
2961         }
2962         return ret;
2963 }
2964 EXPORT_SYMBOL(try_to_free_buffers);
2965
2966 /*
2967  * Buffer-head allocation
2968  */
2969 static struct kmem_cache *bh_cachep __ro_after_init;
2970
2971 /*
2972  * Once the number of bh's in the machine exceeds this level, we start
2973  * stripping them in writeback.
2974  */
2975 static unsigned long max_buffer_heads __ro_after_init;
2976
2977 int buffer_heads_over_limit;
2978
2979 struct bh_accounting {
2980         int nr;                 /* Number of live bh's */
2981         int ratelimit;          /* Limit cacheline bouncing */
2982 };
2983
2984 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
2985
2986 static void recalc_bh_state(void)
2987 {
2988         int i;
2989         int tot = 0;
2990
2991         if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
2992                 return;
2993         __this_cpu_write(bh_accounting.ratelimit, 0);
2994         for_each_online_cpu(i)
2995                 tot += per_cpu(bh_accounting, i).nr;
2996         buffer_heads_over_limit = (tot > max_buffer_heads);
2997 }
2998
2999 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3000 {
3001         struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3002         if (ret) {
3003                 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3004                 spin_lock_init(&ret->b_uptodate_lock);
3005                 preempt_disable();
3006                 __this_cpu_inc(bh_accounting.nr);
3007                 recalc_bh_state();
3008                 preempt_enable();
3009         }
3010         return ret;
3011 }
3012 EXPORT_SYMBOL(alloc_buffer_head);
3013
3014 void free_buffer_head(struct buffer_head *bh)
3015 {
3016         BUG_ON(!list_empty(&bh->b_assoc_buffers));
3017         kmem_cache_free(bh_cachep, bh);
3018         preempt_disable();
3019         __this_cpu_dec(bh_accounting.nr);
3020         recalc_bh_state();
3021         preempt_enable();
3022 }
3023 EXPORT_SYMBOL(free_buffer_head);
3024
3025 static int buffer_exit_cpu_dead(unsigned int cpu)
3026 {
3027         int i;
3028         struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3029
3030         for (i = 0; i < BH_LRU_SIZE; i++) {
3031                 brelse(b->bhs[i]);
3032                 b->bhs[i] = NULL;
3033         }
3034         this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3035         per_cpu(bh_accounting, cpu).nr = 0;
3036         return 0;
3037 }
3038
3039 /**
3040  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3041  * @bh: struct buffer_head
3042  *
3043  * Return true if the buffer is up-to-date and false,
3044  * with the buffer locked, if not.
3045  */
3046 int bh_uptodate_or_lock(struct buffer_head *bh)
3047 {
3048         if (!buffer_uptodate(bh)) {
3049                 lock_buffer(bh);
3050                 if (!buffer_uptodate(bh))
3051                         return 0;
3052                 unlock_buffer(bh);
3053         }
3054         return 1;
3055 }
3056 EXPORT_SYMBOL(bh_uptodate_or_lock);
3057
3058 /**
3059  * __bh_read - Submit read for a locked buffer
3060  * @bh: struct buffer_head
3061  * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ
3062  * @wait: wait until reading finish
3063  *
3064  * Returns zero on success or don't wait, and -EIO on error.
3065  */
3066 int __bh_read(struct buffer_head *bh, blk_opf_t op_flags, bool wait)
3067 {
3068         int ret = 0;
3069
3070         BUG_ON(!buffer_locked(bh));
3071
3072         get_bh(bh);
3073         bh->b_end_io = end_buffer_read_sync;
3074         submit_bh(REQ_OP_READ | op_flags, bh);
3075         if (wait) {
3076                 wait_on_buffer(bh);
3077                 if (!buffer_uptodate(bh))
3078                         ret = -EIO;
3079         }
3080         return ret;
3081 }
3082 EXPORT_SYMBOL(__bh_read);
3083
3084 /**
3085  * __bh_read_batch - Submit read for a batch of unlocked buffers
3086  * @nr: entry number of the buffer batch
3087  * @bhs: a batch of struct buffer_head
3088  * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ
3089  * @force_lock: force to get a lock on the buffer if set, otherwise drops any
3090  *              buffer that cannot lock.
3091  *
3092  * Returns zero on success or don't wait, and -EIO on error.
3093  */
3094 void __bh_read_batch(int nr, struct buffer_head *bhs[],
3095                      blk_opf_t op_flags, bool force_lock)
3096 {
3097         int i;
3098
3099         for (i = 0; i < nr; i++) {
3100                 struct buffer_head *bh = bhs[i];
3101
3102                 if (buffer_uptodate(bh))
3103                         continue;
3104
3105                 if (force_lock)
3106                         lock_buffer(bh);
3107                 else
3108                         if (!trylock_buffer(bh))
3109                                 continue;
3110
3111                 if (buffer_uptodate(bh)) {
3112                         unlock_buffer(bh);
3113                         continue;
3114                 }
3115
3116                 bh->b_end_io = end_buffer_read_sync;
3117                 get_bh(bh);
3118                 submit_bh(REQ_OP_READ | op_flags, bh);
3119         }
3120 }
3121 EXPORT_SYMBOL(__bh_read_batch);
3122
3123 void __init buffer_init(void)
3124 {
3125         unsigned long nrpages;
3126         int ret;
3127
3128         bh_cachep = KMEM_CACHE(buffer_head,
3129                                 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC);
3130         /*
3131          * Limit the bh occupancy to 10% of ZONE_NORMAL
3132          */
3133         nrpages = (nr_free_buffer_pages() * 10) / 100;
3134         max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3135         ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3136                                         NULL, buffer_exit_cpu_dead);
3137         WARN_ON(ret < 0);
3138 }