Merge tag 'trace-v5.7' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux...
[linux-2.6-microblaze.git] / fs / buffer.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/buffer.c
4  *
5  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
6  */
7
8 /*
9  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10  *
11  * Removed a lot of unnecessary code and simplified things now that
12  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13  *
14  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
15  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
16  *
17  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18  *
19  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
20  */
21
22 #include <linux/kernel.h>
23 #include <linux/sched/signal.h>
24 #include <linux/syscalls.h>
25 #include <linux/fs.h>
26 #include <linux/iomap.h>
27 #include <linux/mm.h>
28 #include <linux/percpu.h>
29 #include <linux/slab.h>
30 #include <linux/capability.h>
31 #include <linux/blkdev.h>
32 #include <linux/file.h>
33 #include <linux/quotaops.h>
34 #include <linux/highmem.h>
35 #include <linux/export.h>
36 #include <linux/backing-dev.h>
37 #include <linux/writeback.h>
38 #include <linux/hash.h>
39 #include <linux/suspend.h>
40 #include <linux/buffer_head.h>
41 #include <linux/task_io_accounting_ops.h>
42 #include <linux/bio.h>
43 #include <linux/cpu.h>
44 #include <linux/bitops.h>
45 #include <linux/mpage.h>
46 #include <linux/bit_spinlock.h>
47 #include <linux/pagevec.h>
48 #include <linux/sched/mm.h>
49 #include <trace/events/block.h>
50 #include <linux/fscrypt.h>
51
52 #include "internal.h"
53
54 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
55 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
56                          enum rw_hint hint, struct writeback_control *wbc);
57
58 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
59
60 inline void touch_buffer(struct buffer_head *bh)
61 {
62         trace_block_touch_buffer(bh);
63         mark_page_accessed(bh->b_page);
64 }
65 EXPORT_SYMBOL(touch_buffer);
66
67 void __lock_buffer(struct buffer_head *bh)
68 {
69         wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
70 }
71 EXPORT_SYMBOL(__lock_buffer);
72
73 void unlock_buffer(struct buffer_head *bh)
74 {
75         clear_bit_unlock(BH_Lock, &bh->b_state);
76         smp_mb__after_atomic();
77         wake_up_bit(&bh->b_state, BH_Lock);
78 }
79 EXPORT_SYMBOL(unlock_buffer);
80
81 /*
82  * Returns if the page has dirty or writeback buffers. If all the buffers
83  * are unlocked and clean then the PageDirty information is stale. If
84  * any of the pages are locked, it is assumed they are locked for IO.
85  */
86 void buffer_check_dirty_writeback(struct page *page,
87                                      bool *dirty, bool *writeback)
88 {
89         struct buffer_head *head, *bh;
90         *dirty = false;
91         *writeback = false;
92
93         BUG_ON(!PageLocked(page));
94
95         if (!page_has_buffers(page))
96                 return;
97
98         if (PageWriteback(page))
99                 *writeback = true;
100
101         head = page_buffers(page);
102         bh = head;
103         do {
104                 if (buffer_locked(bh))
105                         *writeback = true;
106
107                 if (buffer_dirty(bh))
108                         *dirty = true;
109
110                 bh = bh->b_this_page;
111         } while (bh != head);
112 }
113 EXPORT_SYMBOL(buffer_check_dirty_writeback);
114
115 /*
116  * Block until a buffer comes unlocked.  This doesn't stop it
117  * from becoming locked again - you have to lock it yourself
118  * if you want to preserve its state.
119  */
120 void __wait_on_buffer(struct buffer_head * bh)
121 {
122         wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
123 }
124 EXPORT_SYMBOL(__wait_on_buffer);
125
126 static void
127 __clear_page_buffers(struct page *page)
128 {
129         ClearPagePrivate(page);
130         set_page_private(page, 0);
131         put_page(page);
132 }
133
134 static void buffer_io_error(struct buffer_head *bh, char *msg)
135 {
136         if (!test_bit(BH_Quiet, &bh->b_state))
137                 printk_ratelimited(KERN_ERR
138                         "Buffer I/O error on dev %pg, logical block %llu%s\n",
139                         bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
140 }
141
142 /*
143  * End-of-IO handler helper function which does not touch the bh after
144  * unlocking it.
145  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
146  * a race there is benign: unlock_buffer() only use the bh's address for
147  * hashing after unlocking the buffer, so it doesn't actually touch the bh
148  * itself.
149  */
150 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
151 {
152         if (uptodate) {
153                 set_buffer_uptodate(bh);
154         } else {
155                 /* This happens, due to failed read-ahead attempts. */
156                 clear_buffer_uptodate(bh);
157         }
158         unlock_buffer(bh);
159 }
160
161 /*
162  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
163  * unlock the buffer. This is what ll_rw_block uses too.
164  */
165 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
166 {
167         __end_buffer_read_notouch(bh, uptodate);
168         put_bh(bh);
169 }
170 EXPORT_SYMBOL(end_buffer_read_sync);
171
172 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
173 {
174         if (uptodate) {
175                 set_buffer_uptodate(bh);
176         } else {
177                 buffer_io_error(bh, ", lost sync page write");
178                 mark_buffer_write_io_error(bh);
179                 clear_buffer_uptodate(bh);
180         }
181         unlock_buffer(bh);
182         put_bh(bh);
183 }
184 EXPORT_SYMBOL(end_buffer_write_sync);
185
186 /*
187  * Various filesystems appear to want __find_get_block to be non-blocking.
188  * But it's the page lock which protects the buffers.  To get around this,
189  * we get exclusion from try_to_free_buffers with the blockdev mapping's
190  * private_lock.
191  *
192  * Hack idea: for the blockdev mapping, private_lock contention
193  * may be quite high.  This code could TryLock the page, and if that
194  * succeeds, there is no need to take private_lock.
195  */
196 static struct buffer_head *
197 __find_get_block_slow(struct block_device *bdev, sector_t block)
198 {
199         struct inode *bd_inode = bdev->bd_inode;
200         struct address_space *bd_mapping = bd_inode->i_mapping;
201         struct buffer_head *ret = NULL;
202         pgoff_t index;
203         struct buffer_head *bh;
204         struct buffer_head *head;
205         struct page *page;
206         int all_mapped = 1;
207         static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1);
208
209         index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
210         page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
211         if (!page)
212                 goto out;
213
214         spin_lock(&bd_mapping->private_lock);
215         if (!page_has_buffers(page))
216                 goto out_unlock;
217         head = page_buffers(page);
218         bh = head;
219         do {
220                 if (!buffer_mapped(bh))
221                         all_mapped = 0;
222                 else if (bh->b_blocknr == block) {
223                         ret = bh;
224                         get_bh(bh);
225                         goto out_unlock;
226                 }
227                 bh = bh->b_this_page;
228         } while (bh != head);
229
230         /* we might be here because some of the buffers on this page are
231          * not mapped.  This is due to various races between
232          * file io on the block device and getblk.  It gets dealt with
233          * elsewhere, don't buffer_error if we had some unmapped buffers
234          */
235         ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE);
236         if (all_mapped && __ratelimit(&last_warned)) {
237                 printk("__find_get_block_slow() failed. block=%llu, "
238                        "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
239                        "device %pg blocksize: %d\n",
240                        (unsigned long long)block,
241                        (unsigned long long)bh->b_blocknr,
242                        bh->b_state, bh->b_size, bdev,
243                        1 << bd_inode->i_blkbits);
244         }
245 out_unlock:
246         spin_unlock(&bd_mapping->private_lock);
247         put_page(page);
248 out:
249         return ret;
250 }
251
252 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
253 {
254         unsigned long flags;
255         struct buffer_head *first;
256         struct buffer_head *tmp;
257         struct page *page;
258         int page_uptodate = 1;
259
260         BUG_ON(!buffer_async_read(bh));
261
262         page = bh->b_page;
263         if (uptodate) {
264                 set_buffer_uptodate(bh);
265         } else {
266                 clear_buffer_uptodate(bh);
267                 buffer_io_error(bh, ", async page read");
268                 SetPageError(page);
269         }
270
271         /*
272          * Be _very_ careful from here on. Bad things can happen if
273          * two buffer heads end IO at almost the same time and both
274          * decide that the page is now completely done.
275          */
276         first = page_buffers(page);
277         spin_lock_irqsave(&first->b_uptodate_lock, flags);
278         clear_buffer_async_read(bh);
279         unlock_buffer(bh);
280         tmp = bh;
281         do {
282                 if (!buffer_uptodate(tmp))
283                         page_uptodate = 0;
284                 if (buffer_async_read(tmp)) {
285                         BUG_ON(!buffer_locked(tmp));
286                         goto still_busy;
287                 }
288                 tmp = tmp->b_this_page;
289         } while (tmp != bh);
290         spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
291
292         /*
293          * If none of the buffers had errors and they are all
294          * uptodate then we can set the page uptodate.
295          */
296         if (page_uptodate && !PageError(page))
297                 SetPageUptodate(page);
298         unlock_page(page);
299         return;
300
301 still_busy:
302         spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
303         return;
304 }
305
306 struct decrypt_bh_ctx {
307         struct work_struct work;
308         struct buffer_head *bh;
309 };
310
311 static void decrypt_bh(struct work_struct *work)
312 {
313         struct decrypt_bh_ctx *ctx =
314                 container_of(work, struct decrypt_bh_ctx, work);
315         struct buffer_head *bh = ctx->bh;
316         int err;
317
318         err = fscrypt_decrypt_pagecache_blocks(bh->b_page, bh->b_size,
319                                                bh_offset(bh));
320         end_buffer_async_read(bh, err == 0);
321         kfree(ctx);
322 }
323
324 /*
325  * I/O completion handler for block_read_full_page() - pages
326  * which come unlocked at the end of I/O.
327  */
328 static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate)
329 {
330         /* Decrypt if needed */
331         if (uptodate && IS_ENABLED(CONFIG_FS_ENCRYPTION) &&
332             IS_ENCRYPTED(bh->b_page->mapping->host) &&
333             S_ISREG(bh->b_page->mapping->host->i_mode)) {
334                 struct decrypt_bh_ctx *ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
335
336                 if (ctx) {
337                         INIT_WORK(&ctx->work, decrypt_bh);
338                         ctx->bh = bh;
339                         fscrypt_enqueue_decrypt_work(&ctx->work);
340                         return;
341                 }
342                 uptodate = 0;
343         }
344         end_buffer_async_read(bh, uptodate);
345 }
346
347 /*
348  * Completion handler for block_write_full_page() - pages which are unlocked
349  * during I/O, and which have PageWriteback cleared upon I/O completion.
350  */
351 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
352 {
353         unsigned long flags;
354         struct buffer_head *first;
355         struct buffer_head *tmp;
356         struct page *page;
357
358         BUG_ON(!buffer_async_write(bh));
359
360         page = bh->b_page;
361         if (uptodate) {
362                 set_buffer_uptodate(bh);
363         } else {
364                 buffer_io_error(bh, ", lost async page write");
365                 mark_buffer_write_io_error(bh);
366                 clear_buffer_uptodate(bh);
367                 SetPageError(page);
368         }
369
370         first = page_buffers(page);
371         spin_lock_irqsave(&first->b_uptodate_lock, flags);
372
373         clear_buffer_async_write(bh);
374         unlock_buffer(bh);
375         tmp = bh->b_this_page;
376         while (tmp != bh) {
377                 if (buffer_async_write(tmp)) {
378                         BUG_ON(!buffer_locked(tmp));
379                         goto still_busy;
380                 }
381                 tmp = tmp->b_this_page;
382         }
383         spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
384         end_page_writeback(page);
385         return;
386
387 still_busy:
388         spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
389         return;
390 }
391 EXPORT_SYMBOL(end_buffer_async_write);
392
393 /*
394  * If a page's buffers are under async readin (end_buffer_async_read
395  * completion) then there is a possibility that another thread of
396  * control could lock one of the buffers after it has completed
397  * but while some of the other buffers have not completed.  This
398  * locked buffer would confuse end_buffer_async_read() into not unlocking
399  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
400  * that this buffer is not under async I/O.
401  *
402  * The page comes unlocked when it has no locked buffer_async buffers
403  * left.
404  *
405  * PageLocked prevents anyone starting new async I/O reads any of
406  * the buffers.
407  *
408  * PageWriteback is used to prevent simultaneous writeout of the same
409  * page.
410  *
411  * PageLocked prevents anyone from starting writeback of a page which is
412  * under read I/O (PageWriteback is only ever set against a locked page).
413  */
414 static void mark_buffer_async_read(struct buffer_head *bh)
415 {
416         bh->b_end_io = end_buffer_async_read_io;
417         set_buffer_async_read(bh);
418 }
419
420 static void mark_buffer_async_write_endio(struct buffer_head *bh,
421                                           bh_end_io_t *handler)
422 {
423         bh->b_end_io = handler;
424         set_buffer_async_write(bh);
425 }
426
427 void mark_buffer_async_write(struct buffer_head *bh)
428 {
429         mark_buffer_async_write_endio(bh, end_buffer_async_write);
430 }
431 EXPORT_SYMBOL(mark_buffer_async_write);
432
433
434 /*
435  * fs/buffer.c contains helper functions for buffer-backed address space's
436  * fsync functions.  A common requirement for buffer-based filesystems is
437  * that certain data from the backing blockdev needs to be written out for
438  * a successful fsync().  For example, ext2 indirect blocks need to be
439  * written back and waited upon before fsync() returns.
440  *
441  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
442  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
443  * management of a list of dependent buffers at ->i_mapping->private_list.
444  *
445  * Locking is a little subtle: try_to_free_buffers() will remove buffers
446  * from their controlling inode's queue when they are being freed.  But
447  * try_to_free_buffers() will be operating against the *blockdev* mapping
448  * at the time, not against the S_ISREG file which depends on those buffers.
449  * So the locking for private_list is via the private_lock in the address_space
450  * which backs the buffers.  Which is different from the address_space 
451  * against which the buffers are listed.  So for a particular address_space,
452  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
453  * mapping->private_list will always be protected by the backing blockdev's
454  * ->private_lock.
455  *
456  * Which introduces a requirement: all buffers on an address_space's
457  * ->private_list must be from the same address_space: the blockdev's.
458  *
459  * address_spaces which do not place buffers at ->private_list via these
460  * utility functions are free to use private_lock and private_list for
461  * whatever they want.  The only requirement is that list_empty(private_list)
462  * be true at clear_inode() time.
463  *
464  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
465  * filesystems should do that.  invalidate_inode_buffers() should just go
466  * BUG_ON(!list_empty).
467  *
468  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
469  * take an address_space, not an inode.  And it should be called
470  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
471  * queued up.
472  *
473  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
474  * list if it is already on a list.  Because if the buffer is on a list,
475  * it *must* already be on the right one.  If not, the filesystem is being
476  * silly.  This will save a ton of locking.  But first we have to ensure
477  * that buffers are taken *off* the old inode's list when they are freed
478  * (presumably in truncate).  That requires careful auditing of all
479  * filesystems (do it inside bforget()).  It could also be done by bringing
480  * b_inode back.
481  */
482
483 /*
484  * The buffer's backing address_space's private_lock must be held
485  */
486 static void __remove_assoc_queue(struct buffer_head *bh)
487 {
488         list_del_init(&bh->b_assoc_buffers);
489         WARN_ON(!bh->b_assoc_map);
490         bh->b_assoc_map = NULL;
491 }
492
493 int inode_has_buffers(struct inode *inode)
494 {
495         return !list_empty(&inode->i_data.private_list);
496 }
497
498 /*
499  * osync is designed to support O_SYNC io.  It waits synchronously for
500  * all already-submitted IO to complete, but does not queue any new
501  * writes to the disk.
502  *
503  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
504  * you dirty the buffers, and then use osync_inode_buffers to wait for
505  * completion.  Any other dirty buffers which are not yet queued for
506  * write will not be flushed to disk by the osync.
507  */
508 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
509 {
510         struct buffer_head *bh;
511         struct list_head *p;
512         int err = 0;
513
514         spin_lock(lock);
515 repeat:
516         list_for_each_prev(p, list) {
517                 bh = BH_ENTRY(p);
518                 if (buffer_locked(bh)) {
519                         get_bh(bh);
520                         spin_unlock(lock);
521                         wait_on_buffer(bh);
522                         if (!buffer_uptodate(bh))
523                                 err = -EIO;
524                         brelse(bh);
525                         spin_lock(lock);
526                         goto repeat;
527                 }
528         }
529         spin_unlock(lock);
530         return err;
531 }
532
533 void emergency_thaw_bdev(struct super_block *sb)
534 {
535         while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
536                 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
537 }
538
539 /**
540  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
541  * @mapping: the mapping which wants those buffers written
542  *
543  * Starts I/O against the buffers at mapping->private_list, and waits upon
544  * that I/O.
545  *
546  * Basically, this is a convenience function for fsync().
547  * @mapping is a file or directory which needs those buffers to be written for
548  * a successful fsync().
549  */
550 int sync_mapping_buffers(struct address_space *mapping)
551 {
552         struct address_space *buffer_mapping = mapping->private_data;
553
554         if (buffer_mapping == NULL || list_empty(&mapping->private_list))
555                 return 0;
556
557         return fsync_buffers_list(&buffer_mapping->private_lock,
558                                         &mapping->private_list);
559 }
560 EXPORT_SYMBOL(sync_mapping_buffers);
561
562 /*
563  * Called when we've recently written block `bblock', and it is known that
564  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
565  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
566  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
567  */
568 void write_boundary_block(struct block_device *bdev,
569                         sector_t bblock, unsigned blocksize)
570 {
571         struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
572         if (bh) {
573                 if (buffer_dirty(bh))
574                         ll_rw_block(REQ_OP_WRITE, 0, 1, &bh);
575                 put_bh(bh);
576         }
577 }
578
579 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
580 {
581         struct address_space *mapping = inode->i_mapping;
582         struct address_space *buffer_mapping = bh->b_page->mapping;
583
584         mark_buffer_dirty(bh);
585         if (!mapping->private_data) {
586                 mapping->private_data = buffer_mapping;
587         } else {
588                 BUG_ON(mapping->private_data != buffer_mapping);
589         }
590         if (!bh->b_assoc_map) {
591                 spin_lock(&buffer_mapping->private_lock);
592                 list_move_tail(&bh->b_assoc_buffers,
593                                 &mapping->private_list);
594                 bh->b_assoc_map = mapping;
595                 spin_unlock(&buffer_mapping->private_lock);
596         }
597 }
598 EXPORT_SYMBOL(mark_buffer_dirty_inode);
599
600 /*
601  * Mark the page dirty, and set it dirty in the page cache, and mark the inode
602  * dirty.
603  *
604  * If warn is true, then emit a warning if the page is not uptodate and has
605  * not been truncated.
606  *
607  * The caller must hold lock_page_memcg().
608  */
609 void __set_page_dirty(struct page *page, struct address_space *mapping,
610                              int warn)
611 {
612         unsigned long flags;
613
614         xa_lock_irqsave(&mapping->i_pages, flags);
615         if (page->mapping) {    /* Race with truncate? */
616                 WARN_ON_ONCE(warn && !PageUptodate(page));
617                 account_page_dirtied(page, mapping);
618                 __xa_set_mark(&mapping->i_pages, page_index(page),
619                                 PAGECACHE_TAG_DIRTY);
620         }
621         xa_unlock_irqrestore(&mapping->i_pages, flags);
622 }
623 EXPORT_SYMBOL_GPL(__set_page_dirty);
624
625 /*
626  * Add a page to the dirty page list.
627  *
628  * It is a sad fact of life that this function is called from several places
629  * deeply under spinlocking.  It may not sleep.
630  *
631  * If the page has buffers, the uptodate buffers are set dirty, to preserve
632  * dirty-state coherency between the page and the buffers.  It the page does
633  * not have buffers then when they are later attached they will all be set
634  * dirty.
635  *
636  * The buffers are dirtied before the page is dirtied.  There's a small race
637  * window in which a writepage caller may see the page cleanness but not the
638  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
639  * before the buffers, a concurrent writepage caller could clear the page dirty
640  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
641  * page on the dirty page list.
642  *
643  * We use private_lock to lock against try_to_free_buffers while using the
644  * page's buffer list.  Also use this to protect against clean buffers being
645  * added to the page after it was set dirty.
646  *
647  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
648  * address_space though.
649  */
650 int __set_page_dirty_buffers(struct page *page)
651 {
652         int newly_dirty;
653         struct address_space *mapping = page_mapping(page);
654
655         if (unlikely(!mapping))
656                 return !TestSetPageDirty(page);
657
658         spin_lock(&mapping->private_lock);
659         if (page_has_buffers(page)) {
660                 struct buffer_head *head = page_buffers(page);
661                 struct buffer_head *bh = head;
662
663                 do {
664                         set_buffer_dirty(bh);
665                         bh = bh->b_this_page;
666                 } while (bh != head);
667         }
668         /*
669          * Lock out page->mem_cgroup migration to keep PageDirty
670          * synchronized with per-memcg dirty page counters.
671          */
672         lock_page_memcg(page);
673         newly_dirty = !TestSetPageDirty(page);
674         spin_unlock(&mapping->private_lock);
675
676         if (newly_dirty)
677                 __set_page_dirty(page, mapping, 1);
678
679         unlock_page_memcg(page);
680
681         if (newly_dirty)
682                 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
683
684         return newly_dirty;
685 }
686 EXPORT_SYMBOL(__set_page_dirty_buffers);
687
688 /*
689  * Write out and wait upon a list of buffers.
690  *
691  * We have conflicting pressures: we want to make sure that all
692  * initially dirty buffers get waited on, but that any subsequently
693  * dirtied buffers don't.  After all, we don't want fsync to last
694  * forever if somebody is actively writing to the file.
695  *
696  * Do this in two main stages: first we copy dirty buffers to a
697  * temporary inode list, queueing the writes as we go.  Then we clean
698  * up, waiting for those writes to complete.
699  * 
700  * During this second stage, any subsequent updates to the file may end
701  * up refiling the buffer on the original inode's dirty list again, so
702  * there is a chance we will end up with a buffer queued for write but
703  * not yet completed on that list.  So, as a final cleanup we go through
704  * the osync code to catch these locked, dirty buffers without requeuing
705  * any newly dirty buffers for write.
706  */
707 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
708 {
709         struct buffer_head *bh;
710         struct list_head tmp;
711         struct address_space *mapping;
712         int err = 0, err2;
713         struct blk_plug plug;
714
715         INIT_LIST_HEAD(&tmp);
716         blk_start_plug(&plug);
717
718         spin_lock(lock);
719         while (!list_empty(list)) {
720                 bh = BH_ENTRY(list->next);
721                 mapping = bh->b_assoc_map;
722                 __remove_assoc_queue(bh);
723                 /* Avoid race with mark_buffer_dirty_inode() which does
724                  * a lockless check and we rely on seeing the dirty bit */
725                 smp_mb();
726                 if (buffer_dirty(bh) || buffer_locked(bh)) {
727                         list_add(&bh->b_assoc_buffers, &tmp);
728                         bh->b_assoc_map = mapping;
729                         if (buffer_dirty(bh)) {
730                                 get_bh(bh);
731                                 spin_unlock(lock);
732                                 /*
733                                  * Ensure any pending I/O completes so that
734                                  * write_dirty_buffer() actually writes the
735                                  * current contents - it is a noop if I/O is
736                                  * still in flight on potentially older
737                                  * contents.
738                                  */
739                                 write_dirty_buffer(bh, REQ_SYNC);
740
741                                 /*
742                                  * Kick off IO for the previous mapping. Note
743                                  * that we will not run the very last mapping,
744                                  * wait_on_buffer() will do that for us
745                                  * through sync_buffer().
746                                  */
747                                 brelse(bh);
748                                 spin_lock(lock);
749                         }
750                 }
751         }
752
753         spin_unlock(lock);
754         blk_finish_plug(&plug);
755         spin_lock(lock);
756
757         while (!list_empty(&tmp)) {
758                 bh = BH_ENTRY(tmp.prev);
759                 get_bh(bh);
760                 mapping = bh->b_assoc_map;
761                 __remove_assoc_queue(bh);
762                 /* Avoid race with mark_buffer_dirty_inode() which does
763                  * a lockless check and we rely on seeing the dirty bit */
764                 smp_mb();
765                 if (buffer_dirty(bh)) {
766                         list_add(&bh->b_assoc_buffers,
767                                  &mapping->private_list);
768                         bh->b_assoc_map = mapping;
769                 }
770                 spin_unlock(lock);
771                 wait_on_buffer(bh);
772                 if (!buffer_uptodate(bh))
773                         err = -EIO;
774                 brelse(bh);
775                 spin_lock(lock);
776         }
777         
778         spin_unlock(lock);
779         err2 = osync_buffers_list(lock, list);
780         if (err)
781                 return err;
782         else
783                 return err2;
784 }
785
786 /*
787  * Invalidate any and all dirty buffers on a given inode.  We are
788  * probably unmounting the fs, but that doesn't mean we have already
789  * done a sync().  Just drop the buffers from the inode list.
790  *
791  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
792  * assumes that all the buffers are against the blockdev.  Not true
793  * for reiserfs.
794  */
795 void invalidate_inode_buffers(struct inode *inode)
796 {
797         if (inode_has_buffers(inode)) {
798                 struct address_space *mapping = &inode->i_data;
799                 struct list_head *list = &mapping->private_list;
800                 struct address_space *buffer_mapping = mapping->private_data;
801
802                 spin_lock(&buffer_mapping->private_lock);
803                 while (!list_empty(list))
804                         __remove_assoc_queue(BH_ENTRY(list->next));
805                 spin_unlock(&buffer_mapping->private_lock);
806         }
807 }
808 EXPORT_SYMBOL(invalidate_inode_buffers);
809
810 /*
811  * Remove any clean buffers from the inode's buffer list.  This is called
812  * when we're trying to free the inode itself.  Those buffers can pin it.
813  *
814  * Returns true if all buffers were removed.
815  */
816 int remove_inode_buffers(struct inode *inode)
817 {
818         int ret = 1;
819
820         if (inode_has_buffers(inode)) {
821                 struct address_space *mapping = &inode->i_data;
822                 struct list_head *list = &mapping->private_list;
823                 struct address_space *buffer_mapping = mapping->private_data;
824
825                 spin_lock(&buffer_mapping->private_lock);
826                 while (!list_empty(list)) {
827                         struct buffer_head *bh = BH_ENTRY(list->next);
828                         if (buffer_dirty(bh)) {
829                                 ret = 0;
830                                 break;
831                         }
832                         __remove_assoc_queue(bh);
833                 }
834                 spin_unlock(&buffer_mapping->private_lock);
835         }
836         return ret;
837 }
838
839 /*
840  * Create the appropriate buffers when given a page for data area and
841  * the size of each buffer.. Use the bh->b_this_page linked list to
842  * follow the buffers created.  Return NULL if unable to create more
843  * buffers.
844  *
845  * The retry flag is used to differentiate async IO (paging, swapping)
846  * which may not fail from ordinary buffer allocations.
847  */
848 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
849                 bool retry)
850 {
851         struct buffer_head *bh, *head;
852         gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT;
853         long offset;
854         struct mem_cgroup *memcg;
855
856         if (retry)
857                 gfp |= __GFP_NOFAIL;
858
859         memcg = get_mem_cgroup_from_page(page);
860         memalloc_use_memcg(memcg);
861
862         head = NULL;
863         offset = PAGE_SIZE;
864         while ((offset -= size) >= 0) {
865                 bh = alloc_buffer_head(gfp);
866                 if (!bh)
867                         goto no_grow;
868
869                 bh->b_this_page = head;
870                 bh->b_blocknr = -1;
871                 head = bh;
872
873                 bh->b_size = size;
874
875                 /* Link the buffer to its page */
876                 set_bh_page(bh, page, offset);
877         }
878 out:
879         memalloc_unuse_memcg();
880         mem_cgroup_put(memcg);
881         return head;
882 /*
883  * In case anything failed, we just free everything we got.
884  */
885 no_grow:
886         if (head) {
887                 do {
888                         bh = head;
889                         head = head->b_this_page;
890                         free_buffer_head(bh);
891                 } while (head);
892         }
893
894         goto out;
895 }
896 EXPORT_SYMBOL_GPL(alloc_page_buffers);
897
898 static inline void
899 link_dev_buffers(struct page *page, struct buffer_head *head)
900 {
901         struct buffer_head *bh, *tail;
902
903         bh = head;
904         do {
905                 tail = bh;
906                 bh = bh->b_this_page;
907         } while (bh);
908         tail->b_this_page = head;
909         attach_page_buffers(page, head);
910 }
911
912 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
913 {
914         sector_t retval = ~((sector_t)0);
915         loff_t sz = i_size_read(bdev->bd_inode);
916
917         if (sz) {
918                 unsigned int sizebits = blksize_bits(size);
919                 retval = (sz >> sizebits);
920         }
921         return retval;
922 }
923
924 /*
925  * Initialise the state of a blockdev page's buffers.
926  */ 
927 static sector_t
928 init_page_buffers(struct page *page, struct block_device *bdev,
929                         sector_t block, int size)
930 {
931         struct buffer_head *head = page_buffers(page);
932         struct buffer_head *bh = head;
933         int uptodate = PageUptodate(page);
934         sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
935
936         do {
937                 if (!buffer_mapped(bh)) {
938                         bh->b_end_io = NULL;
939                         bh->b_private = NULL;
940                         bh->b_bdev = bdev;
941                         bh->b_blocknr = block;
942                         if (uptodate)
943                                 set_buffer_uptodate(bh);
944                         if (block < end_block)
945                                 set_buffer_mapped(bh);
946                 }
947                 block++;
948                 bh = bh->b_this_page;
949         } while (bh != head);
950
951         /*
952          * Caller needs to validate requested block against end of device.
953          */
954         return end_block;
955 }
956
957 /*
958  * Create the page-cache page that contains the requested block.
959  *
960  * This is used purely for blockdev mappings.
961  */
962 static int
963 grow_dev_page(struct block_device *bdev, sector_t block,
964               pgoff_t index, int size, int sizebits, gfp_t gfp)
965 {
966         struct inode *inode = bdev->bd_inode;
967         struct page *page;
968         struct buffer_head *bh;
969         sector_t end_block;
970         int ret = 0;            /* Will call free_more_memory() */
971         gfp_t gfp_mask;
972
973         gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
974
975         /*
976          * XXX: __getblk_slow() can not really deal with failure and
977          * will endlessly loop on improvised global reclaim.  Prefer
978          * looping in the allocator rather than here, at least that
979          * code knows what it's doing.
980          */
981         gfp_mask |= __GFP_NOFAIL;
982
983         page = find_or_create_page(inode->i_mapping, index, gfp_mask);
984
985         BUG_ON(!PageLocked(page));
986
987         if (page_has_buffers(page)) {
988                 bh = page_buffers(page);
989                 if (bh->b_size == size) {
990                         end_block = init_page_buffers(page, bdev,
991                                                 (sector_t)index << sizebits,
992                                                 size);
993                         goto done;
994                 }
995                 if (!try_to_free_buffers(page))
996                         goto failed;
997         }
998
999         /*
1000          * Allocate some buffers for this page
1001          */
1002         bh = alloc_page_buffers(page, size, true);
1003
1004         /*
1005          * Link the page to the buffers and initialise them.  Take the
1006          * lock to be atomic wrt __find_get_block(), which does not
1007          * run under the page lock.
1008          */
1009         spin_lock(&inode->i_mapping->private_lock);
1010         link_dev_buffers(page, bh);
1011         end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
1012                         size);
1013         spin_unlock(&inode->i_mapping->private_lock);
1014 done:
1015         ret = (block < end_block) ? 1 : -ENXIO;
1016 failed:
1017         unlock_page(page);
1018         put_page(page);
1019         return ret;
1020 }
1021
1022 /*
1023  * Create buffers for the specified block device block's page.  If
1024  * that page was dirty, the buffers are set dirty also.
1025  */
1026 static int
1027 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1028 {
1029         pgoff_t index;
1030         int sizebits;
1031
1032         sizebits = -1;
1033         do {
1034                 sizebits++;
1035         } while ((size << sizebits) < PAGE_SIZE);
1036
1037         index = block >> sizebits;
1038
1039         /*
1040          * Check for a block which wants to lie outside our maximum possible
1041          * pagecache index.  (this comparison is done using sector_t types).
1042          */
1043         if (unlikely(index != block >> sizebits)) {
1044                 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1045                         "device %pg\n",
1046                         __func__, (unsigned long long)block,
1047                         bdev);
1048                 return -EIO;
1049         }
1050
1051         /* Create a page with the proper size buffers.. */
1052         return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1053 }
1054
1055 static struct buffer_head *
1056 __getblk_slow(struct block_device *bdev, sector_t block,
1057              unsigned size, gfp_t gfp)
1058 {
1059         /* Size must be multiple of hard sectorsize */
1060         if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1061                         (size < 512 || size > PAGE_SIZE))) {
1062                 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1063                                         size);
1064                 printk(KERN_ERR "logical block size: %d\n",
1065                                         bdev_logical_block_size(bdev));
1066
1067                 dump_stack();
1068                 return NULL;
1069         }
1070
1071         for (;;) {
1072                 struct buffer_head *bh;
1073                 int ret;
1074
1075                 bh = __find_get_block(bdev, block, size);
1076                 if (bh)
1077                         return bh;
1078
1079                 ret = grow_buffers(bdev, block, size, gfp);
1080                 if (ret < 0)
1081                         return NULL;
1082         }
1083 }
1084
1085 /*
1086  * The relationship between dirty buffers and dirty pages:
1087  *
1088  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1089  * the page is tagged dirty in the page cache.
1090  *
1091  * At all times, the dirtiness of the buffers represents the dirtiness of
1092  * subsections of the page.  If the page has buffers, the page dirty bit is
1093  * merely a hint about the true dirty state.
1094  *
1095  * When a page is set dirty in its entirety, all its buffers are marked dirty
1096  * (if the page has buffers).
1097  *
1098  * When a buffer is marked dirty, its page is dirtied, but the page's other
1099  * buffers are not.
1100  *
1101  * Also.  When blockdev buffers are explicitly read with bread(), they
1102  * individually become uptodate.  But their backing page remains not
1103  * uptodate - even if all of its buffers are uptodate.  A subsequent
1104  * block_read_full_page() against that page will discover all the uptodate
1105  * buffers, will set the page uptodate and will perform no I/O.
1106  */
1107
1108 /**
1109  * mark_buffer_dirty - mark a buffer_head as needing writeout
1110  * @bh: the buffer_head to mark dirty
1111  *
1112  * mark_buffer_dirty() will set the dirty bit against the buffer, then set
1113  * its backing page dirty, then tag the page as dirty in the page cache
1114  * and then attach the address_space's inode to its superblock's dirty
1115  * inode list.
1116  *
1117  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1118  * i_pages lock and mapping->host->i_lock.
1119  */
1120 void mark_buffer_dirty(struct buffer_head *bh)
1121 {
1122         WARN_ON_ONCE(!buffer_uptodate(bh));
1123
1124         trace_block_dirty_buffer(bh);
1125
1126         /*
1127          * Very *carefully* optimize the it-is-already-dirty case.
1128          *
1129          * Don't let the final "is it dirty" escape to before we
1130          * perhaps modified the buffer.
1131          */
1132         if (buffer_dirty(bh)) {
1133                 smp_mb();
1134                 if (buffer_dirty(bh))
1135                         return;
1136         }
1137
1138         if (!test_set_buffer_dirty(bh)) {
1139                 struct page *page = bh->b_page;
1140                 struct address_space *mapping = NULL;
1141
1142                 lock_page_memcg(page);
1143                 if (!TestSetPageDirty(page)) {
1144                         mapping = page_mapping(page);
1145                         if (mapping)
1146                                 __set_page_dirty(page, mapping, 0);
1147                 }
1148                 unlock_page_memcg(page);
1149                 if (mapping)
1150                         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1151         }
1152 }
1153 EXPORT_SYMBOL(mark_buffer_dirty);
1154
1155 void mark_buffer_write_io_error(struct buffer_head *bh)
1156 {
1157         set_buffer_write_io_error(bh);
1158         /* FIXME: do we need to set this in both places? */
1159         if (bh->b_page && bh->b_page->mapping)
1160                 mapping_set_error(bh->b_page->mapping, -EIO);
1161         if (bh->b_assoc_map)
1162                 mapping_set_error(bh->b_assoc_map, -EIO);
1163 }
1164 EXPORT_SYMBOL(mark_buffer_write_io_error);
1165
1166 /*
1167  * Decrement a buffer_head's reference count.  If all buffers against a page
1168  * have zero reference count, are clean and unlocked, and if the page is clean
1169  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1170  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1171  * a page but it ends up not being freed, and buffers may later be reattached).
1172  */
1173 void __brelse(struct buffer_head * buf)
1174 {
1175         if (atomic_read(&buf->b_count)) {
1176                 put_bh(buf);
1177                 return;
1178         }
1179         WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1180 }
1181 EXPORT_SYMBOL(__brelse);
1182
1183 /*
1184  * bforget() is like brelse(), except it discards any
1185  * potentially dirty data.
1186  */
1187 void __bforget(struct buffer_head *bh)
1188 {
1189         clear_buffer_dirty(bh);
1190         if (bh->b_assoc_map) {
1191                 struct address_space *buffer_mapping = bh->b_page->mapping;
1192
1193                 spin_lock(&buffer_mapping->private_lock);
1194                 list_del_init(&bh->b_assoc_buffers);
1195                 bh->b_assoc_map = NULL;
1196                 spin_unlock(&buffer_mapping->private_lock);
1197         }
1198         __brelse(bh);
1199 }
1200 EXPORT_SYMBOL(__bforget);
1201
1202 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1203 {
1204         lock_buffer(bh);
1205         if (buffer_uptodate(bh)) {
1206                 unlock_buffer(bh);
1207                 return bh;
1208         } else {
1209                 get_bh(bh);
1210                 bh->b_end_io = end_buffer_read_sync;
1211                 submit_bh(REQ_OP_READ, 0, bh);
1212                 wait_on_buffer(bh);
1213                 if (buffer_uptodate(bh))
1214                         return bh;
1215         }
1216         brelse(bh);
1217         return NULL;
1218 }
1219
1220 /*
1221  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1222  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1223  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1224  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1225  * CPU's LRUs at the same time.
1226  *
1227  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1228  * sb_find_get_block().
1229  *
1230  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1231  * a local interrupt disable for that.
1232  */
1233
1234 #define BH_LRU_SIZE     16
1235
1236 struct bh_lru {
1237         struct buffer_head *bhs[BH_LRU_SIZE];
1238 };
1239
1240 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1241
1242 #ifdef CONFIG_SMP
1243 #define bh_lru_lock()   local_irq_disable()
1244 #define bh_lru_unlock() local_irq_enable()
1245 #else
1246 #define bh_lru_lock()   preempt_disable()
1247 #define bh_lru_unlock() preempt_enable()
1248 #endif
1249
1250 static inline void check_irqs_on(void)
1251 {
1252 #ifdef irqs_disabled
1253         BUG_ON(irqs_disabled());
1254 #endif
1255 }
1256
1257 /*
1258  * Install a buffer_head into this cpu's LRU.  If not already in the LRU, it is
1259  * inserted at the front, and the buffer_head at the back if any is evicted.
1260  * Or, if already in the LRU it is moved to the front.
1261  */
1262 static void bh_lru_install(struct buffer_head *bh)
1263 {
1264         struct buffer_head *evictee = bh;
1265         struct bh_lru *b;
1266         int i;
1267
1268         check_irqs_on();
1269         bh_lru_lock();
1270
1271         b = this_cpu_ptr(&bh_lrus);
1272         for (i = 0; i < BH_LRU_SIZE; i++) {
1273                 swap(evictee, b->bhs[i]);
1274                 if (evictee == bh) {
1275                         bh_lru_unlock();
1276                         return;
1277                 }
1278         }
1279
1280         get_bh(bh);
1281         bh_lru_unlock();
1282         brelse(evictee);
1283 }
1284
1285 /*
1286  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1287  */
1288 static struct buffer_head *
1289 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1290 {
1291         struct buffer_head *ret = NULL;
1292         unsigned int i;
1293
1294         check_irqs_on();
1295         bh_lru_lock();
1296         for (i = 0; i < BH_LRU_SIZE; i++) {
1297                 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1298
1299                 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1300                     bh->b_size == size) {
1301                         if (i) {
1302                                 while (i) {
1303                                         __this_cpu_write(bh_lrus.bhs[i],
1304                                                 __this_cpu_read(bh_lrus.bhs[i - 1]));
1305                                         i--;
1306                                 }
1307                                 __this_cpu_write(bh_lrus.bhs[0], bh);
1308                         }
1309                         get_bh(bh);
1310                         ret = bh;
1311                         break;
1312                 }
1313         }
1314         bh_lru_unlock();
1315         return ret;
1316 }
1317
1318 /*
1319  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1320  * it in the LRU and mark it as accessed.  If it is not present then return
1321  * NULL
1322  */
1323 struct buffer_head *
1324 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1325 {
1326         struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1327
1328         if (bh == NULL) {
1329                 /* __find_get_block_slow will mark the page accessed */
1330                 bh = __find_get_block_slow(bdev, block);
1331                 if (bh)
1332                         bh_lru_install(bh);
1333         } else
1334                 touch_buffer(bh);
1335
1336         return bh;
1337 }
1338 EXPORT_SYMBOL(__find_get_block);
1339
1340 /*
1341  * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1342  * which corresponds to the passed block_device, block and size. The
1343  * returned buffer has its reference count incremented.
1344  *
1345  * __getblk_gfp() will lock up the machine if grow_dev_page's
1346  * try_to_free_buffers() attempt is failing.  FIXME, perhaps?
1347  */
1348 struct buffer_head *
1349 __getblk_gfp(struct block_device *bdev, sector_t block,
1350              unsigned size, gfp_t gfp)
1351 {
1352         struct buffer_head *bh = __find_get_block(bdev, block, size);
1353
1354         might_sleep();
1355         if (bh == NULL)
1356                 bh = __getblk_slow(bdev, block, size, gfp);
1357         return bh;
1358 }
1359 EXPORT_SYMBOL(__getblk_gfp);
1360
1361 /*
1362  * Do async read-ahead on a buffer..
1363  */
1364 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1365 {
1366         struct buffer_head *bh = __getblk(bdev, block, size);
1367         if (likely(bh)) {
1368                 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1369                 brelse(bh);
1370         }
1371 }
1372 EXPORT_SYMBOL(__breadahead);
1373
1374 /**
1375  *  __bread_gfp() - reads a specified block and returns the bh
1376  *  @bdev: the block_device to read from
1377  *  @block: number of block
1378  *  @size: size (in bytes) to read
1379  *  @gfp: page allocation flag
1380  *
1381  *  Reads a specified block, and returns buffer head that contains it.
1382  *  The page cache can be allocated from non-movable area
1383  *  not to prevent page migration if you set gfp to zero.
1384  *  It returns NULL if the block was unreadable.
1385  */
1386 struct buffer_head *
1387 __bread_gfp(struct block_device *bdev, sector_t block,
1388                    unsigned size, gfp_t gfp)
1389 {
1390         struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1391
1392         if (likely(bh) && !buffer_uptodate(bh))
1393                 bh = __bread_slow(bh);
1394         return bh;
1395 }
1396 EXPORT_SYMBOL(__bread_gfp);
1397
1398 /*
1399  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1400  * This doesn't race because it runs in each cpu either in irq
1401  * or with preempt disabled.
1402  */
1403 static void invalidate_bh_lru(void *arg)
1404 {
1405         struct bh_lru *b = &get_cpu_var(bh_lrus);
1406         int i;
1407
1408         for (i = 0; i < BH_LRU_SIZE; i++) {
1409                 brelse(b->bhs[i]);
1410                 b->bhs[i] = NULL;
1411         }
1412         put_cpu_var(bh_lrus);
1413 }
1414
1415 static bool has_bh_in_lru(int cpu, void *dummy)
1416 {
1417         struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1418         int i;
1419         
1420         for (i = 0; i < BH_LRU_SIZE; i++) {
1421                 if (b->bhs[i])
1422                         return true;
1423         }
1424
1425         return false;
1426 }
1427
1428 void invalidate_bh_lrus(void)
1429 {
1430         on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1);
1431 }
1432 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1433
1434 void set_bh_page(struct buffer_head *bh,
1435                 struct page *page, unsigned long offset)
1436 {
1437         bh->b_page = page;
1438         BUG_ON(offset >= PAGE_SIZE);
1439         if (PageHighMem(page))
1440                 /*
1441                  * This catches illegal uses and preserves the offset:
1442                  */
1443                 bh->b_data = (char *)(0 + offset);
1444         else
1445                 bh->b_data = page_address(page) + offset;
1446 }
1447 EXPORT_SYMBOL(set_bh_page);
1448
1449 /*
1450  * Called when truncating a buffer on a page completely.
1451  */
1452
1453 /* Bits that are cleared during an invalidate */
1454 #define BUFFER_FLAGS_DISCARD \
1455         (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1456          1 << BH_Delay | 1 << BH_Unwritten)
1457
1458 static void discard_buffer(struct buffer_head * bh)
1459 {
1460         unsigned long b_state, b_state_old;
1461
1462         lock_buffer(bh);
1463         clear_buffer_dirty(bh);
1464         bh->b_bdev = NULL;
1465         b_state = bh->b_state;
1466         for (;;) {
1467                 b_state_old = cmpxchg(&bh->b_state, b_state,
1468                                       (b_state & ~BUFFER_FLAGS_DISCARD));
1469                 if (b_state_old == b_state)
1470                         break;
1471                 b_state = b_state_old;
1472         }
1473         unlock_buffer(bh);
1474 }
1475
1476 /**
1477  * block_invalidatepage - invalidate part or all of a buffer-backed page
1478  *
1479  * @page: the page which is affected
1480  * @offset: start of the range to invalidate
1481  * @length: length of the range to invalidate
1482  *
1483  * block_invalidatepage() is called when all or part of the page has become
1484  * invalidated by a truncate operation.
1485  *
1486  * block_invalidatepage() does not have to release all buffers, but it must
1487  * ensure that no dirty buffer is left outside @offset and that no I/O
1488  * is underway against any of the blocks which are outside the truncation
1489  * point.  Because the caller is about to free (and possibly reuse) those
1490  * blocks on-disk.
1491  */
1492 void block_invalidatepage(struct page *page, unsigned int offset,
1493                           unsigned int length)
1494 {
1495         struct buffer_head *head, *bh, *next;
1496         unsigned int curr_off = 0;
1497         unsigned int stop = length + offset;
1498
1499         BUG_ON(!PageLocked(page));
1500         if (!page_has_buffers(page))
1501                 goto out;
1502
1503         /*
1504          * Check for overflow
1505          */
1506         BUG_ON(stop > PAGE_SIZE || stop < length);
1507
1508         head = page_buffers(page);
1509         bh = head;
1510         do {
1511                 unsigned int next_off = curr_off + bh->b_size;
1512                 next = bh->b_this_page;
1513
1514                 /*
1515                  * Are we still fully in range ?
1516                  */
1517                 if (next_off > stop)
1518                         goto out;
1519
1520                 /*
1521                  * is this block fully invalidated?
1522                  */
1523                 if (offset <= curr_off)
1524                         discard_buffer(bh);
1525                 curr_off = next_off;
1526                 bh = next;
1527         } while (bh != head);
1528
1529         /*
1530          * We release buffers only if the entire page is being invalidated.
1531          * The get_block cached value has been unconditionally invalidated,
1532          * so real IO is not possible anymore.
1533          */
1534         if (length == PAGE_SIZE)
1535                 try_to_release_page(page, 0);
1536 out:
1537         return;
1538 }
1539 EXPORT_SYMBOL(block_invalidatepage);
1540
1541
1542 /*
1543  * We attach and possibly dirty the buffers atomically wrt
1544  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1545  * is already excluded via the page lock.
1546  */
1547 void create_empty_buffers(struct page *page,
1548                         unsigned long blocksize, unsigned long b_state)
1549 {
1550         struct buffer_head *bh, *head, *tail;
1551
1552         head = alloc_page_buffers(page, blocksize, true);
1553         bh = head;
1554         do {
1555                 bh->b_state |= b_state;
1556                 tail = bh;
1557                 bh = bh->b_this_page;
1558         } while (bh);
1559         tail->b_this_page = head;
1560
1561         spin_lock(&page->mapping->private_lock);
1562         if (PageUptodate(page) || PageDirty(page)) {
1563                 bh = head;
1564                 do {
1565                         if (PageDirty(page))
1566                                 set_buffer_dirty(bh);
1567                         if (PageUptodate(page))
1568                                 set_buffer_uptodate(bh);
1569                         bh = bh->b_this_page;
1570                 } while (bh != head);
1571         }
1572         attach_page_buffers(page, head);
1573         spin_unlock(&page->mapping->private_lock);
1574 }
1575 EXPORT_SYMBOL(create_empty_buffers);
1576
1577 /**
1578  * clean_bdev_aliases: clean a range of buffers in block device
1579  * @bdev: Block device to clean buffers in
1580  * @block: Start of a range of blocks to clean
1581  * @len: Number of blocks to clean
1582  *
1583  * We are taking a range of blocks for data and we don't want writeback of any
1584  * buffer-cache aliases starting from return from this function and until the
1585  * moment when something will explicitly mark the buffer dirty (hopefully that
1586  * will not happen until we will free that block ;-) We don't even need to mark
1587  * it not-uptodate - nobody can expect anything from a newly allocated buffer
1588  * anyway. We used to use unmap_buffer() for such invalidation, but that was
1589  * wrong. We definitely don't want to mark the alias unmapped, for example - it
1590  * would confuse anyone who might pick it with bread() afterwards...
1591  *
1592  * Also..  Note that bforget() doesn't lock the buffer.  So there can be
1593  * writeout I/O going on against recently-freed buffers.  We don't wait on that
1594  * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1595  * need to.  That happens here.
1596  */
1597 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1598 {
1599         struct inode *bd_inode = bdev->bd_inode;
1600         struct address_space *bd_mapping = bd_inode->i_mapping;
1601         struct pagevec pvec;
1602         pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1603         pgoff_t end;
1604         int i, count;
1605         struct buffer_head *bh;
1606         struct buffer_head *head;
1607
1608         end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1609         pagevec_init(&pvec);
1610         while (pagevec_lookup_range(&pvec, bd_mapping, &index, end)) {
1611                 count = pagevec_count(&pvec);
1612                 for (i = 0; i < count; i++) {
1613                         struct page *page = pvec.pages[i];
1614
1615                         if (!page_has_buffers(page))
1616                                 continue;
1617                         /*
1618                          * We use page lock instead of bd_mapping->private_lock
1619                          * to pin buffers here since we can afford to sleep and
1620                          * it scales better than a global spinlock lock.
1621                          */
1622                         lock_page(page);
1623                         /* Recheck when the page is locked which pins bhs */
1624                         if (!page_has_buffers(page))
1625                                 goto unlock_page;
1626                         head = page_buffers(page);
1627                         bh = head;
1628                         do {
1629                                 if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1630                                         goto next;
1631                                 if (bh->b_blocknr >= block + len)
1632                                         break;
1633                                 clear_buffer_dirty(bh);
1634                                 wait_on_buffer(bh);
1635                                 clear_buffer_req(bh);
1636 next:
1637                                 bh = bh->b_this_page;
1638                         } while (bh != head);
1639 unlock_page:
1640                         unlock_page(page);
1641                 }
1642                 pagevec_release(&pvec);
1643                 cond_resched();
1644                 /* End of range already reached? */
1645                 if (index > end || !index)
1646                         break;
1647         }
1648 }
1649 EXPORT_SYMBOL(clean_bdev_aliases);
1650
1651 /*
1652  * Size is a power-of-two in the range 512..PAGE_SIZE,
1653  * and the case we care about most is PAGE_SIZE.
1654  *
1655  * So this *could* possibly be written with those
1656  * constraints in mind (relevant mostly if some
1657  * architecture has a slow bit-scan instruction)
1658  */
1659 static inline int block_size_bits(unsigned int blocksize)
1660 {
1661         return ilog2(blocksize);
1662 }
1663
1664 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1665 {
1666         BUG_ON(!PageLocked(page));
1667
1668         if (!page_has_buffers(page))
1669                 create_empty_buffers(page, 1 << READ_ONCE(inode->i_blkbits),
1670                                      b_state);
1671         return page_buffers(page);
1672 }
1673
1674 /*
1675  * NOTE! All mapped/uptodate combinations are valid:
1676  *
1677  *      Mapped  Uptodate        Meaning
1678  *
1679  *      No      No              "unknown" - must do get_block()
1680  *      No      Yes             "hole" - zero-filled
1681  *      Yes     No              "allocated" - allocated on disk, not read in
1682  *      Yes     Yes             "valid" - allocated and up-to-date in memory.
1683  *
1684  * "Dirty" is valid only with the last case (mapped+uptodate).
1685  */
1686
1687 /*
1688  * While block_write_full_page is writing back the dirty buffers under
1689  * the page lock, whoever dirtied the buffers may decide to clean them
1690  * again at any time.  We handle that by only looking at the buffer
1691  * state inside lock_buffer().
1692  *
1693  * If block_write_full_page() is called for regular writeback
1694  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1695  * locked buffer.   This only can happen if someone has written the buffer
1696  * directly, with submit_bh().  At the address_space level PageWriteback
1697  * prevents this contention from occurring.
1698  *
1699  * If block_write_full_page() is called with wbc->sync_mode ==
1700  * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1701  * causes the writes to be flagged as synchronous writes.
1702  */
1703 int __block_write_full_page(struct inode *inode, struct page *page,
1704                         get_block_t *get_block, struct writeback_control *wbc,
1705                         bh_end_io_t *handler)
1706 {
1707         int err;
1708         sector_t block;
1709         sector_t last_block;
1710         struct buffer_head *bh, *head;
1711         unsigned int blocksize, bbits;
1712         int nr_underway = 0;
1713         int write_flags = wbc_to_write_flags(wbc);
1714
1715         head = create_page_buffers(page, inode,
1716                                         (1 << BH_Dirty)|(1 << BH_Uptodate));
1717
1718         /*
1719          * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1720          * here, and the (potentially unmapped) buffers may become dirty at
1721          * any time.  If a buffer becomes dirty here after we've inspected it
1722          * then we just miss that fact, and the page stays dirty.
1723          *
1724          * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1725          * handle that here by just cleaning them.
1726          */
1727
1728         bh = head;
1729         blocksize = bh->b_size;
1730         bbits = block_size_bits(blocksize);
1731
1732         block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1733         last_block = (i_size_read(inode) - 1) >> bbits;
1734
1735         /*
1736          * Get all the dirty buffers mapped to disk addresses and
1737          * handle any aliases from the underlying blockdev's mapping.
1738          */
1739         do {
1740                 if (block > last_block) {
1741                         /*
1742                          * mapped buffers outside i_size will occur, because
1743                          * this page can be outside i_size when there is a
1744                          * truncate in progress.
1745                          */
1746                         /*
1747                          * The buffer was zeroed by block_write_full_page()
1748                          */
1749                         clear_buffer_dirty(bh);
1750                         set_buffer_uptodate(bh);
1751                 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1752                            buffer_dirty(bh)) {
1753                         WARN_ON(bh->b_size != blocksize);
1754                         err = get_block(inode, block, bh, 1);
1755                         if (err)
1756                                 goto recover;
1757                         clear_buffer_delay(bh);
1758                         if (buffer_new(bh)) {
1759                                 /* blockdev mappings never come here */
1760                                 clear_buffer_new(bh);
1761                                 clean_bdev_bh_alias(bh);
1762                         }
1763                 }
1764                 bh = bh->b_this_page;
1765                 block++;
1766         } while (bh != head);
1767
1768         do {
1769                 if (!buffer_mapped(bh))
1770                         continue;
1771                 /*
1772                  * If it's a fully non-blocking write attempt and we cannot
1773                  * lock the buffer then redirty the page.  Note that this can
1774                  * potentially cause a busy-wait loop from writeback threads
1775                  * and kswapd activity, but those code paths have their own
1776                  * higher-level throttling.
1777                  */
1778                 if (wbc->sync_mode != WB_SYNC_NONE) {
1779                         lock_buffer(bh);
1780                 } else if (!trylock_buffer(bh)) {
1781                         redirty_page_for_writepage(wbc, page);
1782                         continue;
1783                 }
1784                 if (test_clear_buffer_dirty(bh)) {
1785                         mark_buffer_async_write_endio(bh, handler);
1786                 } else {
1787                         unlock_buffer(bh);
1788                 }
1789         } while ((bh = bh->b_this_page) != head);
1790
1791         /*
1792          * The page and its buffers are protected by PageWriteback(), so we can
1793          * drop the bh refcounts early.
1794          */
1795         BUG_ON(PageWriteback(page));
1796         set_page_writeback(page);
1797
1798         do {
1799                 struct buffer_head *next = bh->b_this_page;
1800                 if (buffer_async_write(bh)) {
1801                         submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1802                                         inode->i_write_hint, wbc);
1803                         nr_underway++;
1804                 }
1805                 bh = next;
1806         } while (bh != head);
1807         unlock_page(page);
1808
1809         err = 0;
1810 done:
1811         if (nr_underway == 0) {
1812                 /*
1813                  * The page was marked dirty, but the buffers were
1814                  * clean.  Someone wrote them back by hand with
1815                  * ll_rw_block/submit_bh.  A rare case.
1816                  */
1817                 end_page_writeback(page);
1818
1819                 /*
1820                  * The page and buffer_heads can be released at any time from
1821                  * here on.
1822                  */
1823         }
1824         return err;
1825
1826 recover:
1827         /*
1828          * ENOSPC, or some other error.  We may already have added some
1829          * blocks to the file, so we need to write these out to avoid
1830          * exposing stale data.
1831          * The page is currently locked and not marked for writeback
1832          */
1833         bh = head;
1834         /* Recovery: lock and submit the mapped buffers */
1835         do {
1836                 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1837                     !buffer_delay(bh)) {
1838                         lock_buffer(bh);
1839                         mark_buffer_async_write_endio(bh, handler);
1840                 } else {
1841                         /*
1842                          * The buffer may have been set dirty during
1843                          * attachment to a dirty page.
1844                          */
1845                         clear_buffer_dirty(bh);
1846                 }
1847         } while ((bh = bh->b_this_page) != head);
1848         SetPageError(page);
1849         BUG_ON(PageWriteback(page));
1850         mapping_set_error(page->mapping, err);
1851         set_page_writeback(page);
1852         do {
1853                 struct buffer_head *next = bh->b_this_page;
1854                 if (buffer_async_write(bh)) {
1855                         clear_buffer_dirty(bh);
1856                         submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1857                                         inode->i_write_hint, wbc);
1858                         nr_underway++;
1859                 }
1860                 bh = next;
1861         } while (bh != head);
1862         unlock_page(page);
1863         goto done;
1864 }
1865 EXPORT_SYMBOL(__block_write_full_page);
1866
1867 /*
1868  * If a page has any new buffers, zero them out here, and mark them uptodate
1869  * and dirty so they'll be written out (in order to prevent uninitialised
1870  * block data from leaking). And clear the new bit.
1871  */
1872 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1873 {
1874         unsigned int block_start, block_end;
1875         struct buffer_head *head, *bh;
1876
1877         BUG_ON(!PageLocked(page));
1878         if (!page_has_buffers(page))
1879                 return;
1880
1881         bh = head = page_buffers(page);
1882         block_start = 0;
1883         do {
1884                 block_end = block_start + bh->b_size;
1885
1886                 if (buffer_new(bh)) {
1887                         if (block_end > from && block_start < to) {
1888                                 if (!PageUptodate(page)) {
1889                                         unsigned start, size;
1890
1891                                         start = max(from, block_start);
1892                                         size = min(to, block_end) - start;
1893
1894                                         zero_user(page, start, size);
1895                                         set_buffer_uptodate(bh);
1896                                 }
1897
1898                                 clear_buffer_new(bh);
1899                                 mark_buffer_dirty(bh);
1900                         }
1901                 }
1902
1903                 block_start = block_end;
1904                 bh = bh->b_this_page;
1905         } while (bh != head);
1906 }
1907 EXPORT_SYMBOL(page_zero_new_buffers);
1908
1909 static void
1910 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1911                 struct iomap *iomap)
1912 {
1913         loff_t offset = block << inode->i_blkbits;
1914
1915         bh->b_bdev = iomap->bdev;
1916
1917         /*
1918          * Block points to offset in file we need to map, iomap contains
1919          * the offset at which the map starts. If the map ends before the
1920          * current block, then do not map the buffer and let the caller
1921          * handle it.
1922          */
1923         BUG_ON(offset >= iomap->offset + iomap->length);
1924
1925         switch (iomap->type) {
1926         case IOMAP_HOLE:
1927                 /*
1928                  * If the buffer is not up to date or beyond the current EOF,
1929                  * we need to mark it as new to ensure sub-block zeroing is
1930                  * executed if necessary.
1931                  */
1932                 if (!buffer_uptodate(bh) ||
1933                     (offset >= i_size_read(inode)))
1934                         set_buffer_new(bh);
1935                 break;
1936         case IOMAP_DELALLOC:
1937                 if (!buffer_uptodate(bh) ||
1938                     (offset >= i_size_read(inode)))
1939                         set_buffer_new(bh);
1940                 set_buffer_uptodate(bh);
1941                 set_buffer_mapped(bh);
1942                 set_buffer_delay(bh);
1943                 break;
1944         case IOMAP_UNWRITTEN:
1945                 /*
1946                  * For unwritten regions, we always need to ensure that regions
1947                  * in the block we are not writing to are zeroed. Mark the
1948                  * buffer as new to ensure this.
1949                  */
1950                 set_buffer_new(bh);
1951                 set_buffer_unwritten(bh);
1952                 /* FALLTHRU */
1953         case IOMAP_MAPPED:
1954                 if ((iomap->flags & IOMAP_F_NEW) ||
1955                     offset >= i_size_read(inode))
1956                         set_buffer_new(bh);
1957                 bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
1958                                 inode->i_blkbits;
1959                 set_buffer_mapped(bh);
1960                 break;
1961         }
1962 }
1963
1964 int __block_write_begin_int(struct page *page, loff_t pos, unsigned len,
1965                 get_block_t *get_block, struct iomap *iomap)
1966 {
1967         unsigned from = pos & (PAGE_SIZE - 1);
1968         unsigned to = from + len;
1969         struct inode *inode = page->mapping->host;
1970         unsigned block_start, block_end;
1971         sector_t block;
1972         int err = 0;
1973         unsigned blocksize, bbits;
1974         struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1975
1976         BUG_ON(!PageLocked(page));
1977         BUG_ON(from > PAGE_SIZE);
1978         BUG_ON(to > PAGE_SIZE);
1979         BUG_ON(from > to);
1980
1981         head = create_page_buffers(page, inode, 0);
1982         blocksize = head->b_size;
1983         bbits = block_size_bits(blocksize);
1984
1985         block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1986
1987         for(bh = head, block_start = 0; bh != head || !block_start;
1988             block++, block_start=block_end, bh = bh->b_this_page) {
1989                 block_end = block_start + blocksize;
1990                 if (block_end <= from || block_start >= to) {
1991                         if (PageUptodate(page)) {
1992                                 if (!buffer_uptodate(bh))
1993                                         set_buffer_uptodate(bh);
1994                         }
1995                         continue;
1996                 }
1997                 if (buffer_new(bh))
1998                         clear_buffer_new(bh);
1999                 if (!buffer_mapped(bh)) {
2000                         WARN_ON(bh->b_size != blocksize);
2001                         if (get_block) {
2002                                 err = get_block(inode, block, bh, 1);
2003                                 if (err)
2004                                         break;
2005                         } else {
2006                                 iomap_to_bh(inode, block, bh, iomap);
2007                         }
2008
2009                         if (buffer_new(bh)) {
2010                                 clean_bdev_bh_alias(bh);
2011                                 if (PageUptodate(page)) {
2012                                         clear_buffer_new(bh);
2013                                         set_buffer_uptodate(bh);
2014                                         mark_buffer_dirty(bh);
2015                                         continue;
2016                                 }
2017                                 if (block_end > to || block_start < from)
2018                                         zero_user_segments(page,
2019                                                 to, block_end,
2020                                                 block_start, from);
2021                                 continue;
2022                         }
2023                 }
2024                 if (PageUptodate(page)) {
2025                         if (!buffer_uptodate(bh))
2026                                 set_buffer_uptodate(bh);
2027                         continue; 
2028                 }
2029                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2030                     !buffer_unwritten(bh) &&
2031                      (block_start < from || block_end > to)) {
2032                         ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2033                         *wait_bh++=bh;
2034                 }
2035         }
2036         /*
2037          * If we issued read requests - let them complete.
2038          */
2039         while(wait_bh > wait) {
2040                 wait_on_buffer(*--wait_bh);
2041                 if (!buffer_uptodate(*wait_bh))
2042                         err = -EIO;
2043         }
2044         if (unlikely(err))
2045                 page_zero_new_buffers(page, from, to);
2046         return err;
2047 }
2048
2049 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2050                 get_block_t *get_block)
2051 {
2052         return __block_write_begin_int(page, pos, len, get_block, NULL);
2053 }
2054 EXPORT_SYMBOL(__block_write_begin);
2055
2056 static int __block_commit_write(struct inode *inode, struct page *page,
2057                 unsigned from, unsigned to)
2058 {
2059         unsigned block_start, block_end;
2060         int partial = 0;
2061         unsigned blocksize;
2062         struct buffer_head *bh, *head;
2063
2064         bh = head = page_buffers(page);
2065         blocksize = bh->b_size;
2066
2067         block_start = 0;
2068         do {
2069                 block_end = block_start + blocksize;
2070                 if (block_end <= from || block_start >= to) {
2071                         if (!buffer_uptodate(bh))
2072                                 partial = 1;
2073                 } else {
2074                         set_buffer_uptodate(bh);
2075                         mark_buffer_dirty(bh);
2076                 }
2077                 clear_buffer_new(bh);
2078
2079                 block_start = block_end;
2080                 bh = bh->b_this_page;
2081         } while (bh != head);
2082
2083         /*
2084          * If this is a partial write which happened to make all buffers
2085          * uptodate then we can optimize away a bogus readpage() for
2086          * the next read(). Here we 'discover' whether the page went
2087          * uptodate as a result of this (potentially partial) write.
2088          */
2089         if (!partial)
2090                 SetPageUptodate(page);
2091         return 0;
2092 }
2093
2094 /*
2095  * block_write_begin takes care of the basic task of block allocation and
2096  * bringing partial write blocks uptodate first.
2097  *
2098  * The filesystem needs to handle block truncation upon failure.
2099  */
2100 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2101                 unsigned flags, struct page **pagep, get_block_t *get_block)
2102 {
2103         pgoff_t index = pos >> PAGE_SHIFT;
2104         struct page *page;
2105         int status;
2106
2107         page = grab_cache_page_write_begin(mapping, index, flags);
2108         if (!page)
2109                 return -ENOMEM;
2110
2111         status = __block_write_begin(page, pos, len, get_block);
2112         if (unlikely(status)) {
2113                 unlock_page(page);
2114                 put_page(page);
2115                 page = NULL;
2116         }
2117
2118         *pagep = page;
2119         return status;
2120 }
2121 EXPORT_SYMBOL(block_write_begin);
2122
2123 int block_write_end(struct file *file, struct address_space *mapping,
2124                         loff_t pos, unsigned len, unsigned copied,
2125                         struct page *page, void *fsdata)
2126 {
2127         struct inode *inode = mapping->host;
2128         unsigned start;
2129
2130         start = pos & (PAGE_SIZE - 1);
2131
2132         if (unlikely(copied < len)) {
2133                 /*
2134                  * The buffers that were written will now be uptodate, so we
2135                  * don't have to worry about a readpage reading them and
2136                  * overwriting a partial write. However if we have encountered
2137                  * a short write and only partially written into a buffer, it
2138                  * will not be marked uptodate, so a readpage might come in and
2139                  * destroy our partial write.
2140                  *
2141                  * Do the simplest thing, and just treat any short write to a
2142                  * non uptodate page as a zero-length write, and force the
2143                  * caller to redo the whole thing.
2144                  */
2145                 if (!PageUptodate(page))
2146                         copied = 0;
2147
2148                 page_zero_new_buffers(page, start+copied, start+len);
2149         }
2150         flush_dcache_page(page);
2151
2152         /* This could be a short (even 0-length) commit */
2153         __block_commit_write(inode, page, start, start+copied);
2154
2155         return copied;
2156 }
2157 EXPORT_SYMBOL(block_write_end);
2158
2159 int generic_write_end(struct file *file, struct address_space *mapping,
2160                         loff_t pos, unsigned len, unsigned copied,
2161                         struct page *page, void *fsdata)
2162 {
2163         struct inode *inode = mapping->host;
2164         loff_t old_size = inode->i_size;
2165         bool i_size_changed = false;
2166
2167         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2168
2169         /*
2170          * No need to use i_size_read() here, the i_size cannot change under us
2171          * because we hold i_rwsem.
2172          *
2173          * But it's important to update i_size while still holding page lock:
2174          * page writeout could otherwise come in and zero beyond i_size.
2175          */
2176         if (pos + copied > inode->i_size) {
2177                 i_size_write(inode, pos + copied);
2178                 i_size_changed = true;
2179         }
2180
2181         unlock_page(page);
2182         put_page(page);
2183
2184         if (old_size < pos)
2185                 pagecache_isize_extended(inode, old_size, pos);
2186         /*
2187          * Don't mark the inode dirty under page lock. First, it unnecessarily
2188          * makes the holding time of page lock longer. Second, it forces lock
2189          * ordering of page lock and transaction start for journaling
2190          * filesystems.
2191          */
2192         if (i_size_changed)
2193                 mark_inode_dirty(inode);
2194         return copied;
2195 }
2196 EXPORT_SYMBOL(generic_write_end);
2197
2198 /*
2199  * block_is_partially_uptodate checks whether buffers within a page are
2200  * uptodate or not.
2201  *
2202  * Returns true if all buffers which correspond to a file portion
2203  * we want to read are uptodate.
2204  */
2205 int block_is_partially_uptodate(struct page *page, unsigned long from,
2206                                         unsigned long count)
2207 {
2208         unsigned block_start, block_end, blocksize;
2209         unsigned to;
2210         struct buffer_head *bh, *head;
2211         int ret = 1;
2212
2213         if (!page_has_buffers(page))
2214                 return 0;
2215
2216         head = page_buffers(page);
2217         blocksize = head->b_size;
2218         to = min_t(unsigned, PAGE_SIZE - from, count);
2219         to = from + to;
2220         if (from < blocksize && to > PAGE_SIZE - blocksize)
2221                 return 0;
2222
2223         bh = head;
2224         block_start = 0;
2225         do {
2226                 block_end = block_start + blocksize;
2227                 if (block_end > from && block_start < to) {
2228                         if (!buffer_uptodate(bh)) {
2229                                 ret = 0;
2230                                 break;
2231                         }
2232                         if (block_end >= to)
2233                                 break;
2234                 }
2235                 block_start = block_end;
2236                 bh = bh->b_this_page;
2237         } while (bh != head);
2238
2239         return ret;
2240 }
2241 EXPORT_SYMBOL(block_is_partially_uptodate);
2242
2243 /*
2244  * Generic "read page" function for block devices that have the normal
2245  * get_block functionality. This is most of the block device filesystems.
2246  * Reads the page asynchronously --- the unlock_buffer() and
2247  * set/clear_buffer_uptodate() functions propagate buffer state into the
2248  * page struct once IO has completed.
2249  */
2250 int block_read_full_page(struct page *page, get_block_t *get_block)
2251 {
2252         struct inode *inode = page->mapping->host;
2253         sector_t iblock, lblock;
2254         struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2255         unsigned int blocksize, bbits;
2256         int nr, i;
2257         int fully_mapped = 1;
2258
2259         head = create_page_buffers(page, inode, 0);
2260         blocksize = head->b_size;
2261         bbits = block_size_bits(blocksize);
2262
2263         iblock = (sector_t)page->index << (PAGE_SHIFT - bbits);
2264         lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2265         bh = head;
2266         nr = 0;
2267         i = 0;
2268
2269         do {
2270                 if (buffer_uptodate(bh))
2271                         continue;
2272
2273                 if (!buffer_mapped(bh)) {
2274                         int err = 0;
2275
2276                         fully_mapped = 0;
2277                         if (iblock < lblock) {
2278                                 WARN_ON(bh->b_size != blocksize);
2279                                 err = get_block(inode, iblock, bh, 0);
2280                                 if (err)
2281                                         SetPageError(page);
2282                         }
2283                         if (!buffer_mapped(bh)) {
2284                                 zero_user(page, i * blocksize, blocksize);
2285                                 if (!err)
2286                                         set_buffer_uptodate(bh);
2287                                 continue;
2288                         }
2289                         /*
2290                          * get_block() might have updated the buffer
2291                          * synchronously
2292                          */
2293                         if (buffer_uptodate(bh))
2294                                 continue;
2295                 }
2296                 arr[nr++] = bh;
2297         } while (i++, iblock++, (bh = bh->b_this_page) != head);
2298
2299         if (fully_mapped)
2300                 SetPageMappedToDisk(page);
2301
2302         if (!nr) {
2303                 /*
2304                  * All buffers are uptodate - we can set the page uptodate
2305                  * as well. But not if get_block() returned an error.
2306                  */
2307                 if (!PageError(page))
2308                         SetPageUptodate(page);
2309                 unlock_page(page);
2310                 return 0;
2311         }
2312
2313         /* Stage two: lock the buffers */
2314         for (i = 0; i < nr; i++) {
2315                 bh = arr[i];
2316                 lock_buffer(bh);
2317                 mark_buffer_async_read(bh);
2318         }
2319
2320         /*
2321          * Stage 3: start the IO.  Check for uptodateness
2322          * inside the buffer lock in case another process reading
2323          * the underlying blockdev brought it uptodate (the sct fix).
2324          */
2325         for (i = 0; i < nr; i++) {
2326                 bh = arr[i];
2327                 if (buffer_uptodate(bh))
2328                         end_buffer_async_read(bh, 1);
2329                 else
2330                         submit_bh(REQ_OP_READ, 0, bh);
2331         }
2332         return 0;
2333 }
2334 EXPORT_SYMBOL(block_read_full_page);
2335
2336 /* utility function for filesystems that need to do work on expanding
2337  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2338  * deal with the hole.  
2339  */
2340 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2341 {
2342         struct address_space *mapping = inode->i_mapping;
2343         struct page *page;
2344         void *fsdata;
2345         int err;
2346
2347         err = inode_newsize_ok(inode, size);
2348         if (err)
2349                 goto out;
2350
2351         err = pagecache_write_begin(NULL, mapping, size, 0,
2352                                     AOP_FLAG_CONT_EXPAND, &page, &fsdata);
2353         if (err)
2354                 goto out;
2355
2356         err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2357         BUG_ON(err > 0);
2358
2359 out:
2360         return err;
2361 }
2362 EXPORT_SYMBOL(generic_cont_expand_simple);
2363
2364 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2365                             loff_t pos, loff_t *bytes)
2366 {
2367         struct inode *inode = mapping->host;
2368         unsigned int blocksize = i_blocksize(inode);
2369         struct page *page;
2370         void *fsdata;
2371         pgoff_t index, curidx;
2372         loff_t curpos;
2373         unsigned zerofrom, offset, len;
2374         int err = 0;
2375
2376         index = pos >> PAGE_SHIFT;
2377         offset = pos & ~PAGE_MASK;
2378
2379         while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2380                 zerofrom = curpos & ~PAGE_MASK;
2381                 if (zerofrom & (blocksize-1)) {
2382                         *bytes |= (blocksize-1);
2383                         (*bytes)++;
2384                 }
2385                 len = PAGE_SIZE - zerofrom;
2386
2387                 err = pagecache_write_begin(file, mapping, curpos, len, 0,
2388                                             &page, &fsdata);
2389                 if (err)
2390                         goto out;
2391                 zero_user(page, zerofrom, len);
2392                 err = pagecache_write_end(file, mapping, curpos, len, len,
2393                                                 page, fsdata);
2394                 if (err < 0)
2395                         goto out;
2396                 BUG_ON(err != len);
2397                 err = 0;
2398
2399                 balance_dirty_pages_ratelimited(mapping);
2400
2401                 if (fatal_signal_pending(current)) {
2402                         err = -EINTR;
2403                         goto out;
2404                 }
2405         }
2406
2407         /* page covers the boundary, find the boundary offset */
2408         if (index == curidx) {
2409                 zerofrom = curpos & ~PAGE_MASK;
2410                 /* if we will expand the thing last block will be filled */
2411                 if (offset <= zerofrom) {
2412                         goto out;
2413                 }
2414                 if (zerofrom & (blocksize-1)) {
2415                         *bytes |= (blocksize-1);
2416                         (*bytes)++;
2417                 }
2418                 len = offset - zerofrom;
2419
2420                 err = pagecache_write_begin(file, mapping, curpos, len, 0,
2421                                             &page, &fsdata);
2422                 if (err)
2423                         goto out;
2424                 zero_user(page, zerofrom, len);
2425                 err = pagecache_write_end(file, mapping, curpos, len, len,
2426                                                 page, fsdata);
2427                 if (err < 0)
2428                         goto out;
2429                 BUG_ON(err != len);
2430                 err = 0;
2431         }
2432 out:
2433         return err;
2434 }
2435
2436 /*
2437  * For moronic filesystems that do not allow holes in file.
2438  * We may have to extend the file.
2439  */
2440 int cont_write_begin(struct file *file, struct address_space *mapping,
2441                         loff_t pos, unsigned len, unsigned flags,
2442                         struct page **pagep, void **fsdata,
2443                         get_block_t *get_block, loff_t *bytes)
2444 {
2445         struct inode *inode = mapping->host;
2446         unsigned int blocksize = i_blocksize(inode);
2447         unsigned int zerofrom;
2448         int err;
2449
2450         err = cont_expand_zero(file, mapping, pos, bytes);
2451         if (err)
2452                 return err;
2453
2454         zerofrom = *bytes & ~PAGE_MASK;
2455         if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2456                 *bytes |= (blocksize-1);
2457                 (*bytes)++;
2458         }
2459
2460         return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2461 }
2462 EXPORT_SYMBOL(cont_write_begin);
2463
2464 int block_commit_write(struct page *page, unsigned from, unsigned to)
2465 {
2466         struct inode *inode = page->mapping->host;
2467         __block_commit_write(inode,page,from,to);
2468         return 0;
2469 }
2470 EXPORT_SYMBOL(block_commit_write);
2471
2472 /*
2473  * block_page_mkwrite() is not allowed to change the file size as it gets
2474  * called from a page fault handler when a page is first dirtied. Hence we must
2475  * be careful to check for EOF conditions here. We set the page up correctly
2476  * for a written page which means we get ENOSPC checking when writing into
2477  * holes and correct delalloc and unwritten extent mapping on filesystems that
2478  * support these features.
2479  *
2480  * We are not allowed to take the i_mutex here so we have to play games to
2481  * protect against truncate races as the page could now be beyond EOF.  Because
2482  * truncate writes the inode size before removing pages, once we have the
2483  * page lock we can determine safely if the page is beyond EOF. If it is not
2484  * beyond EOF, then the page is guaranteed safe against truncation until we
2485  * unlock the page.
2486  *
2487  * Direct callers of this function should protect against filesystem freezing
2488  * using sb_start_pagefault() - sb_end_pagefault() functions.
2489  */
2490 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2491                          get_block_t get_block)
2492 {
2493         struct page *page = vmf->page;
2494         struct inode *inode = file_inode(vma->vm_file);
2495         unsigned long end;
2496         loff_t size;
2497         int ret;
2498
2499         lock_page(page);
2500         size = i_size_read(inode);
2501         if ((page->mapping != inode->i_mapping) ||
2502             (page_offset(page) > size)) {
2503                 /* We overload EFAULT to mean page got truncated */
2504                 ret = -EFAULT;
2505                 goto out_unlock;
2506         }
2507
2508         /* page is wholly or partially inside EOF */
2509         if (((page->index + 1) << PAGE_SHIFT) > size)
2510                 end = size & ~PAGE_MASK;
2511         else
2512                 end = PAGE_SIZE;
2513
2514         ret = __block_write_begin(page, 0, end, get_block);
2515         if (!ret)
2516                 ret = block_commit_write(page, 0, end);
2517
2518         if (unlikely(ret < 0))
2519                 goto out_unlock;
2520         set_page_dirty(page);
2521         wait_for_stable_page(page);
2522         return 0;
2523 out_unlock:
2524         unlock_page(page);
2525         return ret;
2526 }
2527 EXPORT_SYMBOL(block_page_mkwrite);
2528
2529 /*
2530  * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2531  * immediately, while under the page lock.  So it needs a special end_io
2532  * handler which does not touch the bh after unlocking it.
2533  */
2534 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2535 {
2536         __end_buffer_read_notouch(bh, uptodate);
2537 }
2538
2539 /*
2540  * Attach the singly-linked list of buffers created by nobh_write_begin, to
2541  * the page (converting it to circular linked list and taking care of page
2542  * dirty races).
2543  */
2544 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2545 {
2546         struct buffer_head *bh;
2547
2548         BUG_ON(!PageLocked(page));
2549
2550         spin_lock(&page->mapping->private_lock);
2551         bh = head;
2552         do {
2553                 if (PageDirty(page))
2554                         set_buffer_dirty(bh);
2555                 if (!bh->b_this_page)
2556                         bh->b_this_page = head;
2557                 bh = bh->b_this_page;
2558         } while (bh != head);
2559         attach_page_buffers(page, head);
2560         spin_unlock(&page->mapping->private_lock);
2561 }
2562
2563 /*
2564  * On entry, the page is fully not uptodate.
2565  * On exit the page is fully uptodate in the areas outside (from,to)
2566  * The filesystem needs to handle block truncation upon failure.
2567  */
2568 int nobh_write_begin(struct address_space *mapping,
2569                         loff_t pos, unsigned len, unsigned flags,
2570                         struct page **pagep, void **fsdata,
2571                         get_block_t *get_block)
2572 {
2573         struct inode *inode = mapping->host;
2574         const unsigned blkbits = inode->i_blkbits;
2575         const unsigned blocksize = 1 << blkbits;
2576         struct buffer_head *head, *bh;
2577         struct page *page;
2578         pgoff_t index;
2579         unsigned from, to;
2580         unsigned block_in_page;
2581         unsigned block_start, block_end;
2582         sector_t block_in_file;
2583         int nr_reads = 0;
2584         int ret = 0;
2585         int is_mapped_to_disk = 1;
2586
2587         index = pos >> PAGE_SHIFT;
2588         from = pos & (PAGE_SIZE - 1);
2589         to = from + len;
2590
2591         page = grab_cache_page_write_begin(mapping, index, flags);
2592         if (!page)
2593                 return -ENOMEM;
2594         *pagep = page;
2595         *fsdata = NULL;
2596
2597         if (page_has_buffers(page)) {
2598                 ret = __block_write_begin(page, pos, len, get_block);
2599                 if (unlikely(ret))
2600                         goto out_release;
2601                 return ret;
2602         }
2603
2604         if (PageMappedToDisk(page))
2605                 return 0;
2606
2607         /*
2608          * Allocate buffers so that we can keep track of state, and potentially
2609          * attach them to the page if an error occurs. In the common case of
2610          * no error, they will just be freed again without ever being attached
2611          * to the page (which is all OK, because we're under the page lock).
2612          *
2613          * Be careful: the buffer linked list is a NULL terminated one, rather
2614          * than the circular one we're used to.
2615          */
2616         head = alloc_page_buffers(page, blocksize, false);
2617         if (!head) {
2618                 ret = -ENOMEM;
2619                 goto out_release;
2620         }
2621
2622         block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
2623
2624         /*
2625          * We loop across all blocks in the page, whether or not they are
2626          * part of the affected region.  This is so we can discover if the
2627          * page is fully mapped-to-disk.
2628          */
2629         for (block_start = 0, block_in_page = 0, bh = head;
2630                   block_start < PAGE_SIZE;
2631                   block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2632                 int create;
2633
2634                 block_end = block_start + blocksize;
2635                 bh->b_state = 0;
2636                 create = 1;
2637                 if (block_start >= to)
2638                         create = 0;
2639                 ret = get_block(inode, block_in_file + block_in_page,
2640                                         bh, create);
2641                 if (ret)
2642                         goto failed;
2643                 if (!buffer_mapped(bh))
2644                         is_mapped_to_disk = 0;
2645                 if (buffer_new(bh))
2646                         clean_bdev_bh_alias(bh);
2647                 if (PageUptodate(page)) {
2648                         set_buffer_uptodate(bh);
2649                         continue;
2650                 }
2651                 if (buffer_new(bh) || !buffer_mapped(bh)) {
2652                         zero_user_segments(page, block_start, from,
2653                                                         to, block_end);
2654                         continue;
2655                 }
2656                 if (buffer_uptodate(bh))
2657                         continue;       /* reiserfs does this */
2658                 if (block_start < from || block_end > to) {
2659                         lock_buffer(bh);
2660                         bh->b_end_io = end_buffer_read_nobh;
2661                         submit_bh(REQ_OP_READ, 0, bh);
2662                         nr_reads++;
2663                 }
2664         }
2665
2666         if (nr_reads) {
2667                 /*
2668                  * The page is locked, so these buffers are protected from
2669                  * any VM or truncate activity.  Hence we don't need to care
2670                  * for the buffer_head refcounts.
2671                  */
2672                 for (bh = head; bh; bh = bh->b_this_page) {
2673                         wait_on_buffer(bh);
2674                         if (!buffer_uptodate(bh))
2675                                 ret = -EIO;
2676                 }
2677                 if (ret)
2678                         goto failed;
2679         }
2680
2681         if (is_mapped_to_disk)
2682                 SetPageMappedToDisk(page);
2683
2684         *fsdata = head; /* to be released by nobh_write_end */
2685
2686         return 0;
2687
2688 failed:
2689         BUG_ON(!ret);
2690         /*
2691          * Error recovery is a bit difficult. We need to zero out blocks that
2692          * were newly allocated, and dirty them to ensure they get written out.
2693          * Buffers need to be attached to the page at this point, otherwise
2694          * the handling of potential IO errors during writeout would be hard
2695          * (could try doing synchronous writeout, but what if that fails too?)
2696          */
2697         attach_nobh_buffers(page, head);
2698         page_zero_new_buffers(page, from, to);
2699
2700 out_release:
2701         unlock_page(page);
2702         put_page(page);
2703         *pagep = NULL;
2704
2705         return ret;
2706 }
2707 EXPORT_SYMBOL(nobh_write_begin);
2708
2709 int nobh_write_end(struct file *file, struct address_space *mapping,
2710                         loff_t pos, unsigned len, unsigned copied,
2711                         struct page *page, void *fsdata)
2712 {
2713         struct inode *inode = page->mapping->host;
2714         struct buffer_head *head = fsdata;
2715         struct buffer_head *bh;
2716         BUG_ON(fsdata != NULL && page_has_buffers(page));
2717
2718         if (unlikely(copied < len) && head)
2719                 attach_nobh_buffers(page, head);
2720         if (page_has_buffers(page))
2721                 return generic_write_end(file, mapping, pos, len,
2722                                         copied, page, fsdata);
2723
2724         SetPageUptodate(page);
2725         set_page_dirty(page);
2726         if (pos+copied > inode->i_size) {
2727                 i_size_write(inode, pos+copied);
2728                 mark_inode_dirty(inode);
2729         }
2730
2731         unlock_page(page);
2732         put_page(page);
2733
2734         while (head) {
2735                 bh = head;
2736                 head = head->b_this_page;
2737                 free_buffer_head(bh);
2738         }
2739
2740         return copied;
2741 }
2742 EXPORT_SYMBOL(nobh_write_end);
2743
2744 /*
2745  * nobh_writepage() - based on block_full_write_page() except
2746  * that it tries to operate without attaching bufferheads to
2747  * the page.
2748  */
2749 int nobh_writepage(struct page *page, get_block_t *get_block,
2750                         struct writeback_control *wbc)
2751 {
2752         struct inode * const inode = page->mapping->host;
2753         loff_t i_size = i_size_read(inode);
2754         const pgoff_t end_index = i_size >> PAGE_SHIFT;
2755         unsigned offset;
2756         int ret;
2757
2758         /* Is the page fully inside i_size? */
2759         if (page->index < end_index)
2760                 goto out;
2761
2762         /* Is the page fully outside i_size? (truncate in progress) */
2763         offset = i_size & (PAGE_SIZE-1);
2764         if (page->index >= end_index+1 || !offset) {
2765                 /*
2766                  * The page may have dirty, unmapped buffers.  For example,
2767                  * they may have been added in ext3_writepage().  Make them
2768                  * freeable here, so the page does not leak.
2769                  */
2770 #if 0
2771                 /* Not really sure about this  - do we need this ? */
2772                 if (page->mapping->a_ops->invalidatepage)
2773                         page->mapping->a_ops->invalidatepage(page, offset);
2774 #endif
2775                 unlock_page(page);
2776                 return 0; /* don't care */
2777         }
2778
2779         /*
2780          * The page straddles i_size.  It must be zeroed out on each and every
2781          * writepage invocation because it may be mmapped.  "A file is mapped
2782          * in multiples of the page size.  For a file that is not a multiple of
2783          * the  page size, the remaining memory is zeroed when mapped, and
2784          * writes to that region are not written out to the file."
2785          */
2786         zero_user_segment(page, offset, PAGE_SIZE);
2787 out:
2788         ret = mpage_writepage(page, get_block, wbc);
2789         if (ret == -EAGAIN)
2790                 ret = __block_write_full_page(inode, page, get_block, wbc,
2791                                               end_buffer_async_write);
2792         return ret;
2793 }
2794 EXPORT_SYMBOL(nobh_writepage);
2795
2796 int nobh_truncate_page(struct address_space *mapping,
2797                         loff_t from, get_block_t *get_block)
2798 {
2799         pgoff_t index = from >> PAGE_SHIFT;
2800         unsigned offset = from & (PAGE_SIZE-1);
2801         unsigned blocksize;
2802         sector_t iblock;
2803         unsigned length, pos;
2804         struct inode *inode = mapping->host;
2805         struct page *page;
2806         struct buffer_head map_bh;
2807         int err;
2808
2809         blocksize = i_blocksize(inode);
2810         length = offset & (blocksize - 1);
2811
2812         /* Block boundary? Nothing to do */
2813         if (!length)
2814                 return 0;
2815
2816         length = blocksize - length;
2817         iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2818
2819         page = grab_cache_page(mapping, index);
2820         err = -ENOMEM;
2821         if (!page)
2822                 goto out;
2823
2824         if (page_has_buffers(page)) {
2825 has_buffers:
2826                 unlock_page(page);
2827                 put_page(page);
2828                 return block_truncate_page(mapping, from, get_block);
2829         }
2830
2831         /* Find the buffer that contains "offset" */
2832         pos = blocksize;
2833         while (offset >= pos) {
2834                 iblock++;
2835                 pos += blocksize;
2836         }
2837
2838         map_bh.b_size = blocksize;
2839         map_bh.b_state = 0;
2840         err = get_block(inode, iblock, &map_bh, 0);
2841         if (err)
2842                 goto unlock;
2843         /* unmapped? It's a hole - nothing to do */
2844         if (!buffer_mapped(&map_bh))
2845                 goto unlock;
2846
2847         /* Ok, it's mapped. Make sure it's up-to-date */
2848         if (!PageUptodate(page)) {
2849                 err = mapping->a_ops->readpage(NULL, page);
2850                 if (err) {
2851                         put_page(page);
2852                         goto out;
2853                 }
2854                 lock_page(page);
2855                 if (!PageUptodate(page)) {
2856                         err = -EIO;
2857                         goto unlock;
2858                 }
2859                 if (page_has_buffers(page))
2860                         goto has_buffers;
2861         }
2862         zero_user(page, offset, length);
2863         set_page_dirty(page);
2864         err = 0;
2865
2866 unlock:
2867         unlock_page(page);
2868         put_page(page);
2869 out:
2870         return err;
2871 }
2872 EXPORT_SYMBOL(nobh_truncate_page);
2873
2874 int block_truncate_page(struct address_space *mapping,
2875                         loff_t from, get_block_t *get_block)
2876 {
2877         pgoff_t index = from >> PAGE_SHIFT;
2878         unsigned offset = from & (PAGE_SIZE-1);
2879         unsigned blocksize;
2880         sector_t iblock;
2881         unsigned length, pos;
2882         struct inode *inode = mapping->host;
2883         struct page *page;
2884         struct buffer_head *bh;
2885         int err;
2886
2887         blocksize = i_blocksize(inode);
2888         length = offset & (blocksize - 1);
2889
2890         /* Block boundary? Nothing to do */
2891         if (!length)
2892                 return 0;
2893
2894         length = blocksize - length;
2895         iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2896         
2897         page = grab_cache_page(mapping, index);
2898         err = -ENOMEM;
2899         if (!page)
2900                 goto out;
2901
2902         if (!page_has_buffers(page))
2903                 create_empty_buffers(page, blocksize, 0);
2904
2905         /* Find the buffer that contains "offset" */
2906         bh = page_buffers(page);
2907         pos = blocksize;
2908         while (offset >= pos) {
2909                 bh = bh->b_this_page;
2910                 iblock++;
2911                 pos += blocksize;
2912         }
2913
2914         err = 0;
2915         if (!buffer_mapped(bh)) {
2916                 WARN_ON(bh->b_size != blocksize);
2917                 err = get_block(inode, iblock, bh, 0);
2918                 if (err)
2919                         goto unlock;
2920                 /* unmapped? It's a hole - nothing to do */
2921                 if (!buffer_mapped(bh))
2922                         goto unlock;
2923         }
2924
2925         /* Ok, it's mapped. Make sure it's up-to-date */
2926         if (PageUptodate(page))
2927                 set_buffer_uptodate(bh);
2928
2929         if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2930                 err = -EIO;
2931                 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2932                 wait_on_buffer(bh);
2933                 /* Uhhuh. Read error. Complain and punt. */
2934                 if (!buffer_uptodate(bh))
2935                         goto unlock;
2936         }
2937
2938         zero_user(page, offset, length);
2939         mark_buffer_dirty(bh);
2940         err = 0;
2941
2942 unlock:
2943         unlock_page(page);
2944         put_page(page);
2945 out:
2946         return err;
2947 }
2948 EXPORT_SYMBOL(block_truncate_page);
2949
2950 /*
2951  * The generic ->writepage function for buffer-backed address_spaces
2952  */
2953 int block_write_full_page(struct page *page, get_block_t *get_block,
2954                         struct writeback_control *wbc)
2955 {
2956         struct inode * const inode = page->mapping->host;
2957         loff_t i_size = i_size_read(inode);
2958         const pgoff_t end_index = i_size >> PAGE_SHIFT;
2959         unsigned offset;
2960
2961         /* Is the page fully inside i_size? */
2962         if (page->index < end_index)
2963                 return __block_write_full_page(inode, page, get_block, wbc,
2964                                                end_buffer_async_write);
2965
2966         /* Is the page fully outside i_size? (truncate in progress) */
2967         offset = i_size & (PAGE_SIZE-1);
2968         if (page->index >= end_index+1 || !offset) {
2969                 /*
2970                  * The page may have dirty, unmapped buffers.  For example,
2971                  * they may have been added in ext3_writepage().  Make them
2972                  * freeable here, so the page does not leak.
2973                  */
2974                 do_invalidatepage(page, 0, PAGE_SIZE);
2975                 unlock_page(page);
2976                 return 0; /* don't care */
2977         }
2978
2979         /*
2980          * The page straddles i_size.  It must be zeroed out on each and every
2981          * writepage invocation because it may be mmapped.  "A file is mapped
2982          * in multiples of the page size.  For a file that is not a multiple of
2983          * the  page size, the remaining memory is zeroed when mapped, and
2984          * writes to that region are not written out to the file."
2985          */
2986         zero_user_segment(page, offset, PAGE_SIZE);
2987         return __block_write_full_page(inode, page, get_block, wbc,
2988                                                         end_buffer_async_write);
2989 }
2990 EXPORT_SYMBOL(block_write_full_page);
2991
2992 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2993                             get_block_t *get_block)
2994 {
2995         struct inode *inode = mapping->host;
2996         struct buffer_head tmp = {
2997                 .b_size = i_blocksize(inode),
2998         };
2999
3000         get_block(inode, block, &tmp, 0);
3001         return tmp.b_blocknr;
3002 }
3003 EXPORT_SYMBOL(generic_block_bmap);
3004
3005 static void end_bio_bh_io_sync(struct bio *bio)
3006 {
3007         struct buffer_head *bh = bio->bi_private;
3008
3009         if (unlikely(bio_flagged(bio, BIO_QUIET)))
3010                 set_bit(BH_Quiet, &bh->b_state);
3011
3012         bh->b_end_io(bh, !bio->bi_status);
3013         bio_put(bio);
3014 }
3015
3016 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
3017                          enum rw_hint write_hint, struct writeback_control *wbc)
3018 {
3019         struct bio *bio;
3020
3021         BUG_ON(!buffer_locked(bh));
3022         BUG_ON(!buffer_mapped(bh));
3023         BUG_ON(!bh->b_end_io);
3024         BUG_ON(buffer_delay(bh));
3025         BUG_ON(buffer_unwritten(bh));
3026
3027         /*
3028          * Only clear out a write error when rewriting
3029          */
3030         if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
3031                 clear_buffer_write_io_error(bh);
3032
3033         /*
3034          * from here on down, it's all bio -- do the initial mapping,
3035          * submit_bio -> generic_make_request may further map this bio around
3036          */
3037         bio = bio_alloc(GFP_NOIO, 1);
3038
3039         bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3040         bio_set_dev(bio, bh->b_bdev);
3041         bio->bi_write_hint = write_hint;
3042
3043         bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
3044         BUG_ON(bio->bi_iter.bi_size != bh->b_size);
3045
3046         bio->bi_end_io = end_bio_bh_io_sync;
3047         bio->bi_private = bh;
3048
3049         if (buffer_meta(bh))
3050                 op_flags |= REQ_META;
3051         if (buffer_prio(bh))
3052                 op_flags |= REQ_PRIO;
3053         bio_set_op_attrs(bio, op, op_flags);
3054
3055         /* Take care of bh's that straddle the end of the device */
3056         guard_bio_eod(bio);
3057
3058         if (wbc) {
3059                 wbc_init_bio(wbc, bio);
3060                 wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size);
3061         }
3062
3063         submit_bio(bio);
3064         return 0;
3065 }
3066
3067 int submit_bh(int op, int op_flags, struct buffer_head *bh)
3068 {
3069         return submit_bh_wbc(op, op_flags, bh, 0, NULL);
3070 }
3071 EXPORT_SYMBOL(submit_bh);
3072
3073 /**
3074  * ll_rw_block: low-level access to block devices (DEPRECATED)
3075  * @op: whether to %READ or %WRITE
3076  * @op_flags: req_flag_bits
3077  * @nr: number of &struct buffer_heads in the array
3078  * @bhs: array of pointers to &struct buffer_head
3079  *
3080  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3081  * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
3082  * @op_flags contains flags modifying the detailed I/O behavior, most notably
3083  * %REQ_RAHEAD.
3084  *
3085  * This function drops any buffer that it cannot get a lock on (with the
3086  * BH_Lock state bit), any buffer that appears to be clean when doing a write
3087  * request, and any buffer that appears to be up-to-date when doing read
3088  * request.  Further it marks as clean buffers that are processed for
3089  * writing (the buffer cache won't assume that they are actually clean
3090  * until the buffer gets unlocked).
3091  *
3092  * ll_rw_block sets b_end_io to simple completion handler that marks
3093  * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3094  * any waiters. 
3095  *
3096  * All of the buffers must be for the same device, and must also be a
3097  * multiple of the current approved size for the device.
3098  */
3099 void ll_rw_block(int op, int op_flags,  int nr, struct buffer_head *bhs[])
3100 {
3101         int i;
3102
3103         for (i = 0; i < nr; i++) {
3104                 struct buffer_head *bh = bhs[i];
3105
3106                 if (!trylock_buffer(bh))
3107                         continue;
3108                 if (op == WRITE) {
3109                         if (test_clear_buffer_dirty(bh)) {
3110                                 bh->b_end_io = end_buffer_write_sync;
3111                                 get_bh(bh);
3112                                 submit_bh(op, op_flags, bh);
3113                                 continue;
3114                         }
3115                 } else {
3116                         if (!buffer_uptodate(bh)) {
3117                                 bh->b_end_io = end_buffer_read_sync;
3118                                 get_bh(bh);
3119                                 submit_bh(op, op_flags, bh);
3120                                 continue;
3121                         }
3122                 }
3123                 unlock_buffer(bh);
3124         }
3125 }
3126 EXPORT_SYMBOL(ll_rw_block);
3127
3128 void write_dirty_buffer(struct buffer_head *bh, int op_flags)
3129 {
3130         lock_buffer(bh);
3131         if (!test_clear_buffer_dirty(bh)) {
3132                 unlock_buffer(bh);
3133                 return;
3134         }
3135         bh->b_end_io = end_buffer_write_sync;
3136         get_bh(bh);
3137         submit_bh(REQ_OP_WRITE, op_flags, bh);
3138 }
3139 EXPORT_SYMBOL(write_dirty_buffer);
3140
3141 /*
3142  * For a data-integrity writeout, we need to wait upon any in-progress I/O
3143  * and then start new I/O and then wait upon it.  The caller must have a ref on
3144  * the buffer_head.
3145  */
3146 int __sync_dirty_buffer(struct buffer_head *bh, int op_flags)
3147 {
3148         int ret = 0;
3149
3150         WARN_ON(atomic_read(&bh->b_count) < 1);
3151         lock_buffer(bh);
3152         if (test_clear_buffer_dirty(bh)) {
3153                 get_bh(bh);
3154                 bh->b_end_io = end_buffer_write_sync;
3155                 ret = submit_bh(REQ_OP_WRITE, op_flags, bh);
3156                 wait_on_buffer(bh);
3157                 if (!ret && !buffer_uptodate(bh))
3158                         ret = -EIO;
3159         } else {
3160                 unlock_buffer(bh);
3161         }
3162         return ret;
3163 }
3164 EXPORT_SYMBOL(__sync_dirty_buffer);
3165
3166 int sync_dirty_buffer(struct buffer_head *bh)
3167 {
3168         return __sync_dirty_buffer(bh, REQ_SYNC);
3169 }
3170 EXPORT_SYMBOL(sync_dirty_buffer);
3171
3172 /*
3173  * try_to_free_buffers() checks if all the buffers on this particular page
3174  * are unused, and releases them if so.
3175  *
3176  * Exclusion against try_to_free_buffers may be obtained by either
3177  * locking the page or by holding its mapping's private_lock.
3178  *
3179  * If the page is dirty but all the buffers are clean then we need to
3180  * be sure to mark the page clean as well.  This is because the page
3181  * may be against a block device, and a later reattachment of buffers
3182  * to a dirty page will set *all* buffers dirty.  Which would corrupt
3183  * filesystem data on the same device.
3184  *
3185  * The same applies to regular filesystem pages: if all the buffers are
3186  * clean then we set the page clean and proceed.  To do that, we require
3187  * total exclusion from __set_page_dirty_buffers().  That is obtained with
3188  * private_lock.
3189  *
3190  * try_to_free_buffers() is non-blocking.
3191  */
3192 static inline int buffer_busy(struct buffer_head *bh)
3193 {
3194         return atomic_read(&bh->b_count) |
3195                 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3196 }
3197
3198 static int
3199 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3200 {
3201         struct buffer_head *head = page_buffers(page);
3202         struct buffer_head *bh;
3203
3204         bh = head;
3205         do {
3206                 if (buffer_busy(bh))
3207                         goto failed;
3208                 bh = bh->b_this_page;
3209         } while (bh != head);
3210
3211         do {
3212                 struct buffer_head *next = bh->b_this_page;
3213
3214                 if (bh->b_assoc_map)
3215                         __remove_assoc_queue(bh);
3216                 bh = next;
3217         } while (bh != head);
3218         *buffers_to_free = head;
3219         __clear_page_buffers(page);
3220         return 1;
3221 failed:
3222         return 0;
3223 }
3224
3225 int try_to_free_buffers(struct page *page)
3226 {
3227         struct address_space * const mapping = page->mapping;
3228         struct buffer_head *buffers_to_free = NULL;
3229         int ret = 0;
3230
3231         BUG_ON(!PageLocked(page));
3232         if (PageWriteback(page))
3233                 return 0;
3234
3235         if (mapping == NULL) {          /* can this still happen? */
3236                 ret = drop_buffers(page, &buffers_to_free);
3237                 goto out;
3238         }
3239
3240         spin_lock(&mapping->private_lock);
3241         ret = drop_buffers(page, &buffers_to_free);
3242
3243         /*
3244          * If the filesystem writes its buffers by hand (eg ext3)
3245          * then we can have clean buffers against a dirty page.  We
3246          * clean the page here; otherwise the VM will never notice
3247          * that the filesystem did any IO at all.
3248          *
3249          * Also, during truncate, discard_buffer will have marked all
3250          * the page's buffers clean.  We discover that here and clean
3251          * the page also.
3252          *
3253          * private_lock must be held over this entire operation in order
3254          * to synchronise against __set_page_dirty_buffers and prevent the
3255          * dirty bit from being lost.
3256          */
3257         if (ret)
3258                 cancel_dirty_page(page);
3259         spin_unlock(&mapping->private_lock);
3260 out:
3261         if (buffers_to_free) {
3262                 struct buffer_head *bh = buffers_to_free;
3263
3264                 do {
3265                         struct buffer_head *next = bh->b_this_page;
3266                         free_buffer_head(bh);
3267                         bh = next;
3268                 } while (bh != buffers_to_free);
3269         }
3270         return ret;
3271 }
3272 EXPORT_SYMBOL(try_to_free_buffers);
3273
3274 /*
3275  * There are no bdflush tunables left.  But distributions are
3276  * still running obsolete flush daemons, so we terminate them here.
3277  *
3278  * Use of bdflush() is deprecated and will be removed in a future kernel.
3279  * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3280  */
3281 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3282 {
3283         static int msg_count;
3284
3285         if (!capable(CAP_SYS_ADMIN))
3286                 return -EPERM;
3287
3288         if (msg_count < 5) {
3289                 msg_count++;
3290                 printk(KERN_INFO
3291                         "warning: process `%s' used the obsolete bdflush"
3292                         " system call\n", current->comm);
3293                 printk(KERN_INFO "Fix your initscripts?\n");
3294         }
3295
3296         if (func == 1)
3297                 do_exit(0);
3298         return 0;
3299 }
3300
3301 /*
3302  * Buffer-head allocation
3303  */
3304 static struct kmem_cache *bh_cachep __read_mostly;
3305
3306 /*
3307  * Once the number of bh's in the machine exceeds this level, we start
3308  * stripping them in writeback.
3309  */
3310 static unsigned long max_buffer_heads;
3311
3312 int buffer_heads_over_limit;
3313
3314 struct bh_accounting {
3315         int nr;                 /* Number of live bh's */
3316         int ratelimit;          /* Limit cacheline bouncing */
3317 };
3318
3319 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3320
3321 static void recalc_bh_state(void)
3322 {
3323         int i;
3324         int tot = 0;
3325
3326         if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3327                 return;
3328         __this_cpu_write(bh_accounting.ratelimit, 0);
3329         for_each_online_cpu(i)
3330                 tot += per_cpu(bh_accounting, i).nr;
3331         buffer_heads_over_limit = (tot > max_buffer_heads);
3332 }
3333
3334 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3335 {
3336         struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3337         if (ret) {
3338                 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3339                 spin_lock_init(&ret->b_uptodate_lock);
3340                 preempt_disable();
3341                 __this_cpu_inc(bh_accounting.nr);
3342                 recalc_bh_state();
3343                 preempt_enable();
3344         }
3345         return ret;
3346 }
3347 EXPORT_SYMBOL(alloc_buffer_head);
3348
3349 void free_buffer_head(struct buffer_head *bh)
3350 {
3351         BUG_ON(!list_empty(&bh->b_assoc_buffers));
3352         kmem_cache_free(bh_cachep, bh);
3353         preempt_disable();
3354         __this_cpu_dec(bh_accounting.nr);
3355         recalc_bh_state();
3356         preempt_enable();
3357 }
3358 EXPORT_SYMBOL(free_buffer_head);
3359
3360 static int buffer_exit_cpu_dead(unsigned int cpu)
3361 {
3362         int i;
3363         struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3364
3365         for (i = 0; i < BH_LRU_SIZE; i++) {
3366                 brelse(b->bhs[i]);
3367                 b->bhs[i] = NULL;
3368         }
3369         this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3370         per_cpu(bh_accounting, cpu).nr = 0;
3371         return 0;
3372 }
3373
3374 /**
3375  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3376  * @bh: struct buffer_head
3377  *
3378  * Return true if the buffer is up-to-date and false,
3379  * with the buffer locked, if not.
3380  */
3381 int bh_uptodate_or_lock(struct buffer_head *bh)
3382 {
3383         if (!buffer_uptodate(bh)) {
3384                 lock_buffer(bh);
3385                 if (!buffer_uptodate(bh))
3386                         return 0;
3387                 unlock_buffer(bh);
3388         }
3389         return 1;
3390 }
3391 EXPORT_SYMBOL(bh_uptodate_or_lock);
3392
3393 /**
3394  * bh_submit_read - Submit a locked buffer for reading
3395  * @bh: struct buffer_head
3396  *
3397  * Returns zero on success and -EIO on error.
3398  */
3399 int bh_submit_read(struct buffer_head *bh)
3400 {
3401         BUG_ON(!buffer_locked(bh));
3402
3403         if (buffer_uptodate(bh)) {
3404                 unlock_buffer(bh);
3405                 return 0;
3406         }
3407
3408         get_bh(bh);
3409         bh->b_end_io = end_buffer_read_sync;
3410         submit_bh(REQ_OP_READ, 0, bh);
3411         wait_on_buffer(bh);
3412         if (buffer_uptodate(bh))
3413                 return 0;
3414         return -EIO;
3415 }
3416 EXPORT_SYMBOL(bh_submit_read);
3417
3418 void __init buffer_init(void)
3419 {
3420         unsigned long nrpages;
3421         int ret;
3422
3423         bh_cachep = kmem_cache_create("buffer_head",
3424                         sizeof(struct buffer_head), 0,
3425                                 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3426                                 SLAB_MEM_SPREAD),
3427                                 NULL);
3428
3429         /*
3430          * Limit the bh occupancy to 10% of ZONE_NORMAL
3431          */
3432         nrpages = (nr_free_buffer_pages() * 10) / 100;
3433         max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3434         ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3435                                         NULL, buffer_exit_cpu_dead);
3436         WARN_ON(ret < 0);
3437 }