mm: vmstat: add cma statistics
[linux-2.6-microblaze.git] / fs / buffer.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/buffer.c
4  *
5  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
6  */
7
8 /*
9  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10  *
11  * Removed a lot of unnecessary code and simplified things now that
12  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13  *
14  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
15  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
16  *
17  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18  *
19  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
20  */
21
22 #include <linux/kernel.h>
23 #include <linux/sched/signal.h>
24 #include <linux/syscalls.h>
25 #include <linux/fs.h>
26 #include <linux/iomap.h>
27 #include <linux/mm.h>
28 #include <linux/percpu.h>
29 #include <linux/slab.h>
30 #include <linux/capability.h>
31 #include <linux/blkdev.h>
32 #include <linux/file.h>
33 #include <linux/quotaops.h>
34 #include <linux/highmem.h>
35 #include <linux/export.h>
36 #include <linux/backing-dev.h>
37 #include <linux/writeback.h>
38 #include <linux/hash.h>
39 #include <linux/suspend.h>
40 #include <linux/buffer_head.h>
41 #include <linux/task_io_accounting_ops.h>
42 #include <linux/bio.h>
43 #include <linux/cpu.h>
44 #include <linux/bitops.h>
45 #include <linux/mpage.h>
46 #include <linux/bit_spinlock.h>
47 #include <linux/pagevec.h>
48 #include <linux/sched/mm.h>
49 #include <trace/events/block.h>
50 #include <linux/fscrypt.h>
51
52 #include "internal.h"
53
54 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
55 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
56                          enum rw_hint hint, struct writeback_control *wbc);
57
58 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
59
60 inline void touch_buffer(struct buffer_head *bh)
61 {
62         trace_block_touch_buffer(bh);
63         mark_page_accessed(bh->b_page);
64 }
65 EXPORT_SYMBOL(touch_buffer);
66
67 void __lock_buffer(struct buffer_head *bh)
68 {
69         wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
70 }
71 EXPORT_SYMBOL(__lock_buffer);
72
73 void unlock_buffer(struct buffer_head *bh)
74 {
75         clear_bit_unlock(BH_Lock, &bh->b_state);
76         smp_mb__after_atomic();
77         wake_up_bit(&bh->b_state, BH_Lock);
78 }
79 EXPORT_SYMBOL(unlock_buffer);
80
81 /*
82  * Returns if the page has dirty or writeback buffers. If all the buffers
83  * are unlocked and clean then the PageDirty information is stale. If
84  * any of the pages are locked, it is assumed they are locked for IO.
85  */
86 void buffer_check_dirty_writeback(struct page *page,
87                                      bool *dirty, bool *writeback)
88 {
89         struct buffer_head *head, *bh;
90         *dirty = false;
91         *writeback = false;
92
93         BUG_ON(!PageLocked(page));
94
95         if (!page_has_buffers(page))
96                 return;
97
98         if (PageWriteback(page))
99                 *writeback = true;
100
101         head = page_buffers(page);
102         bh = head;
103         do {
104                 if (buffer_locked(bh))
105                         *writeback = true;
106
107                 if (buffer_dirty(bh))
108                         *dirty = true;
109
110                 bh = bh->b_this_page;
111         } while (bh != head);
112 }
113 EXPORT_SYMBOL(buffer_check_dirty_writeback);
114
115 /*
116  * Block until a buffer comes unlocked.  This doesn't stop it
117  * from becoming locked again - you have to lock it yourself
118  * if you want to preserve its state.
119  */
120 void __wait_on_buffer(struct buffer_head * bh)
121 {
122         wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
123 }
124 EXPORT_SYMBOL(__wait_on_buffer);
125
126 static void buffer_io_error(struct buffer_head *bh, char *msg)
127 {
128         if (!test_bit(BH_Quiet, &bh->b_state))
129                 printk_ratelimited(KERN_ERR
130                         "Buffer I/O error on dev %pg, logical block %llu%s\n",
131                         bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
132 }
133
134 /*
135  * End-of-IO handler helper function which does not touch the bh after
136  * unlocking it.
137  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
138  * a race there is benign: unlock_buffer() only use the bh's address for
139  * hashing after unlocking the buffer, so it doesn't actually touch the bh
140  * itself.
141  */
142 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
143 {
144         if (uptodate) {
145                 set_buffer_uptodate(bh);
146         } else {
147                 /* This happens, due to failed read-ahead attempts. */
148                 clear_buffer_uptodate(bh);
149         }
150         unlock_buffer(bh);
151 }
152
153 /*
154  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
155  * unlock the buffer. This is what ll_rw_block uses too.
156  */
157 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
158 {
159         __end_buffer_read_notouch(bh, uptodate);
160         put_bh(bh);
161 }
162 EXPORT_SYMBOL(end_buffer_read_sync);
163
164 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
165 {
166         if (uptodate) {
167                 set_buffer_uptodate(bh);
168         } else {
169                 buffer_io_error(bh, ", lost sync page write");
170                 mark_buffer_write_io_error(bh);
171                 clear_buffer_uptodate(bh);
172         }
173         unlock_buffer(bh);
174         put_bh(bh);
175 }
176 EXPORT_SYMBOL(end_buffer_write_sync);
177
178 /*
179  * Various filesystems appear to want __find_get_block to be non-blocking.
180  * But it's the page lock which protects the buffers.  To get around this,
181  * we get exclusion from try_to_free_buffers with the blockdev mapping's
182  * private_lock.
183  *
184  * Hack idea: for the blockdev mapping, private_lock contention
185  * may be quite high.  This code could TryLock the page, and if that
186  * succeeds, there is no need to take private_lock.
187  */
188 static struct buffer_head *
189 __find_get_block_slow(struct block_device *bdev, sector_t block)
190 {
191         struct inode *bd_inode = bdev->bd_inode;
192         struct address_space *bd_mapping = bd_inode->i_mapping;
193         struct buffer_head *ret = NULL;
194         pgoff_t index;
195         struct buffer_head *bh;
196         struct buffer_head *head;
197         struct page *page;
198         int all_mapped = 1;
199         static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1);
200
201         index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
202         page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
203         if (!page)
204                 goto out;
205
206         spin_lock(&bd_mapping->private_lock);
207         if (!page_has_buffers(page))
208                 goto out_unlock;
209         head = page_buffers(page);
210         bh = head;
211         do {
212                 if (!buffer_mapped(bh))
213                         all_mapped = 0;
214                 else if (bh->b_blocknr == block) {
215                         ret = bh;
216                         get_bh(bh);
217                         goto out_unlock;
218                 }
219                 bh = bh->b_this_page;
220         } while (bh != head);
221
222         /* we might be here because some of the buffers on this page are
223          * not mapped.  This is due to various races between
224          * file io on the block device and getblk.  It gets dealt with
225          * elsewhere, don't buffer_error if we had some unmapped buffers
226          */
227         ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE);
228         if (all_mapped && __ratelimit(&last_warned)) {
229                 printk("__find_get_block_slow() failed. block=%llu, "
230                        "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
231                        "device %pg blocksize: %d\n",
232                        (unsigned long long)block,
233                        (unsigned long long)bh->b_blocknr,
234                        bh->b_state, bh->b_size, bdev,
235                        1 << bd_inode->i_blkbits);
236         }
237 out_unlock:
238         spin_unlock(&bd_mapping->private_lock);
239         put_page(page);
240 out:
241         return ret;
242 }
243
244 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
245 {
246         unsigned long flags;
247         struct buffer_head *first;
248         struct buffer_head *tmp;
249         struct page *page;
250         int page_uptodate = 1;
251
252         BUG_ON(!buffer_async_read(bh));
253
254         page = bh->b_page;
255         if (uptodate) {
256                 set_buffer_uptodate(bh);
257         } else {
258                 clear_buffer_uptodate(bh);
259                 buffer_io_error(bh, ", async page read");
260                 SetPageError(page);
261         }
262
263         /*
264          * Be _very_ careful from here on. Bad things can happen if
265          * two buffer heads end IO at almost the same time and both
266          * decide that the page is now completely done.
267          */
268         first = page_buffers(page);
269         spin_lock_irqsave(&first->b_uptodate_lock, flags);
270         clear_buffer_async_read(bh);
271         unlock_buffer(bh);
272         tmp = bh;
273         do {
274                 if (!buffer_uptodate(tmp))
275                         page_uptodate = 0;
276                 if (buffer_async_read(tmp)) {
277                         BUG_ON(!buffer_locked(tmp));
278                         goto still_busy;
279                 }
280                 tmp = tmp->b_this_page;
281         } while (tmp != bh);
282         spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
283
284         /*
285          * If none of the buffers had errors and they are all
286          * uptodate then we can set the page uptodate.
287          */
288         if (page_uptodate && !PageError(page))
289                 SetPageUptodate(page);
290         unlock_page(page);
291         return;
292
293 still_busy:
294         spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
295         return;
296 }
297
298 struct decrypt_bh_ctx {
299         struct work_struct work;
300         struct buffer_head *bh;
301 };
302
303 static void decrypt_bh(struct work_struct *work)
304 {
305         struct decrypt_bh_ctx *ctx =
306                 container_of(work, struct decrypt_bh_ctx, work);
307         struct buffer_head *bh = ctx->bh;
308         int err;
309
310         err = fscrypt_decrypt_pagecache_blocks(bh->b_page, bh->b_size,
311                                                bh_offset(bh));
312         end_buffer_async_read(bh, err == 0);
313         kfree(ctx);
314 }
315
316 /*
317  * I/O completion handler for block_read_full_page() - pages
318  * which come unlocked at the end of I/O.
319  */
320 static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate)
321 {
322         /* Decrypt if needed */
323         if (uptodate &&
324             fscrypt_inode_uses_fs_layer_crypto(bh->b_page->mapping->host)) {
325                 struct decrypt_bh_ctx *ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
326
327                 if (ctx) {
328                         INIT_WORK(&ctx->work, decrypt_bh);
329                         ctx->bh = bh;
330                         fscrypt_enqueue_decrypt_work(&ctx->work);
331                         return;
332                 }
333                 uptodate = 0;
334         }
335         end_buffer_async_read(bh, uptodate);
336 }
337
338 /*
339  * Completion handler for block_write_full_page() - pages which are unlocked
340  * during I/O, and which have PageWriteback cleared upon I/O completion.
341  */
342 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
343 {
344         unsigned long flags;
345         struct buffer_head *first;
346         struct buffer_head *tmp;
347         struct page *page;
348
349         BUG_ON(!buffer_async_write(bh));
350
351         page = bh->b_page;
352         if (uptodate) {
353                 set_buffer_uptodate(bh);
354         } else {
355                 buffer_io_error(bh, ", lost async page write");
356                 mark_buffer_write_io_error(bh);
357                 clear_buffer_uptodate(bh);
358                 SetPageError(page);
359         }
360
361         first = page_buffers(page);
362         spin_lock_irqsave(&first->b_uptodate_lock, flags);
363
364         clear_buffer_async_write(bh);
365         unlock_buffer(bh);
366         tmp = bh->b_this_page;
367         while (tmp != bh) {
368                 if (buffer_async_write(tmp)) {
369                         BUG_ON(!buffer_locked(tmp));
370                         goto still_busy;
371                 }
372                 tmp = tmp->b_this_page;
373         }
374         spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
375         end_page_writeback(page);
376         return;
377
378 still_busy:
379         spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
380         return;
381 }
382 EXPORT_SYMBOL(end_buffer_async_write);
383
384 /*
385  * If a page's buffers are under async readin (end_buffer_async_read
386  * completion) then there is a possibility that another thread of
387  * control could lock one of the buffers after it has completed
388  * but while some of the other buffers have not completed.  This
389  * locked buffer would confuse end_buffer_async_read() into not unlocking
390  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
391  * that this buffer is not under async I/O.
392  *
393  * The page comes unlocked when it has no locked buffer_async buffers
394  * left.
395  *
396  * PageLocked prevents anyone starting new async I/O reads any of
397  * the buffers.
398  *
399  * PageWriteback is used to prevent simultaneous writeout of the same
400  * page.
401  *
402  * PageLocked prevents anyone from starting writeback of a page which is
403  * under read I/O (PageWriteback is only ever set against a locked page).
404  */
405 static void mark_buffer_async_read(struct buffer_head *bh)
406 {
407         bh->b_end_io = end_buffer_async_read_io;
408         set_buffer_async_read(bh);
409 }
410
411 static void mark_buffer_async_write_endio(struct buffer_head *bh,
412                                           bh_end_io_t *handler)
413 {
414         bh->b_end_io = handler;
415         set_buffer_async_write(bh);
416 }
417
418 void mark_buffer_async_write(struct buffer_head *bh)
419 {
420         mark_buffer_async_write_endio(bh, end_buffer_async_write);
421 }
422 EXPORT_SYMBOL(mark_buffer_async_write);
423
424
425 /*
426  * fs/buffer.c contains helper functions for buffer-backed address space's
427  * fsync functions.  A common requirement for buffer-based filesystems is
428  * that certain data from the backing blockdev needs to be written out for
429  * a successful fsync().  For example, ext2 indirect blocks need to be
430  * written back and waited upon before fsync() returns.
431  *
432  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
433  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
434  * management of a list of dependent buffers at ->i_mapping->private_list.
435  *
436  * Locking is a little subtle: try_to_free_buffers() will remove buffers
437  * from their controlling inode's queue when they are being freed.  But
438  * try_to_free_buffers() will be operating against the *blockdev* mapping
439  * at the time, not against the S_ISREG file which depends on those buffers.
440  * So the locking for private_list is via the private_lock in the address_space
441  * which backs the buffers.  Which is different from the address_space 
442  * against which the buffers are listed.  So for a particular address_space,
443  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
444  * mapping->private_list will always be protected by the backing blockdev's
445  * ->private_lock.
446  *
447  * Which introduces a requirement: all buffers on an address_space's
448  * ->private_list must be from the same address_space: the blockdev's.
449  *
450  * address_spaces which do not place buffers at ->private_list via these
451  * utility functions are free to use private_lock and private_list for
452  * whatever they want.  The only requirement is that list_empty(private_list)
453  * be true at clear_inode() time.
454  *
455  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
456  * filesystems should do that.  invalidate_inode_buffers() should just go
457  * BUG_ON(!list_empty).
458  *
459  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
460  * take an address_space, not an inode.  And it should be called
461  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
462  * queued up.
463  *
464  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
465  * list if it is already on a list.  Because if the buffer is on a list,
466  * it *must* already be on the right one.  If not, the filesystem is being
467  * silly.  This will save a ton of locking.  But first we have to ensure
468  * that buffers are taken *off* the old inode's list when they are freed
469  * (presumably in truncate).  That requires careful auditing of all
470  * filesystems (do it inside bforget()).  It could also be done by bringing
471  * b_inode back.
472  */
473
474 /*
475  * The buffer's backing address_space's private_lock must be held
476  */
477 static void __remove_assoc_queue(struct buffer_head *bh)
478 {
479         list_del_init(&bh->b_assoc_buffers);
480         WARN_ON(!bh->b_assoc_map);
481         bh->b_assoc_map = NULL;
482 }
483
484 int inode_has_buffers(struct inode *inode)
485 {
486         return !list_empty(&inode->i_data.private_list);
487 }
488
489 /*
490  * osync is designed to support O_SYNC io.  It waits synchronously for
491  * all already-submitted IO to complete, but does not queue any new
492  * writes to the disk.
493  *
494  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
495  * you dirty the buffers, and then use osync_inode_buffers to wait for
496  * completion.  Any other dirty buffers which are not yet queued for
497  * write will not be flushed to disk by the osync.
498  */
499 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
500 {
501         struct buffer_head *bh;
502         struct list_head *p;
503         int err = 0;
504
505         spin_lock(lock);
506 repeat:
507         list_for_each_prev(p, list) {
508                 bh = BH_ENTRY(p);
509                 if (buffer_locked(bh)) {
510                         get_bh(bh);
511                         spin_unlock(lock);
512                         wait_on_buffer(bh);
513                         if (!buffer_uptodate(bh))
514                                 err = -EIO;
515                         brelse(bh);
516                         spin_lock(lock);
517                         goto repeat;
518                 }
519         }
520         spin_unlock(lock);
521         return err;
522 }
523
524 void emergency_thaw_bdev(struct super_block *sb)
525 {
526         while (sb->s_bdev && !thaw_bdev(sb->s_bdev))
527                 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
528 }
529
530 /**
531  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
532  * @mapping: the mapping which wants those buffers written
533  *
534  * Starts I/O against the buffers at mapping->private_list, and waits upon
535  * that I/O.
536  *
537  * Basically, this is a convenience function for fsync().
538  * @mapping is a file or directory which needs those buffers to be written for
539  * a successful fsync().
540  */
541 int sync_mapping_buffers(struct address_space *mapping)
542 {
543         struct address_space *buffer_mapping = mapping->private_data;
544
545         if (buffer_mapping == NULL || list_empty(&mapping->private_list))
546                 return 0;
547
548         return fsync_buffers_list(&buffer_mapping->private_lock,
549                                         &mapping->private_list);
550 }
551 EXPORT_SYMBOL(sync_mapping_buffers);
552
553 /*
554  * Called when we've recently written block `bblock', and it is known that
555  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
556  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
557  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
558  */
559 void write_boundary_block(struct block_device *bdev,
560                         sector_t bblock, unsigned blocksize)
561 {
562         struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
563         if (bh) {
564                 if (buffer_dirty(bh))
565                         ll_rw_block(REQ_OP_WRITE, 0, 1, &bh);
566                 put_bh(bh);
567         }
568 }
569
570 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
571 {
572         struct address_space *mapping = inode->i_mapping;
573         struct address_space *buffer_mapping = bh->b_page->mapping;
574
575         mark_buffer_dirty(bh);
576         if (!mapping->private_data) {
577                 mapping->private_data = buffer_mapping;
578         } else {
579                 BUG_ON(mapping->private_data != buffer_mapping);
580         }
581         if (!bh->b_assoc_map) {
582                 spin_lock(&buffer_mapping->private_lock);
583                 list_move_tail(&bh->b_assoc_buffers,
584                                 &mapping->private_list);
585                 bh->b_assoc_map = mapping;
586                 spin_unlock(&buffer_mapping->private_lock);
587         }
588 }
589 EXPORT_SYMBOL(mark_buffer_dirty_inode);
590
591 /*
592  * Mark the page dirty, and set it dirty in the page cache, and mark the inode
593  * dirty.
594  *
595  * If warn is true, then emit a warning if the page is not uptodate and has
596  * not been truncated.
597  *
598  * The caller must hold lock_page_memcg().
599  */
600 void __set_page_dirty(struct page *page, struct address_space *mapping,
601                              int warn)
602 {
603         unsigned long flags;
604
605         xa_lock_irqsave(&mapping->i_pages, flags);
606         if (page->mapping) {    /* Race with truncate? */
607                 WARN_ON_ONCE(warn && !PageUptodate(page));
608                 account_page_dirtied(page, mapping);
609                 __xa_set_mark(&mapping->i_pages, page_index(page),
610                                 PAGECACHE_TAG_DIRTY);
611         }
612         xa_unlock_irqrestore(&mapping->i_pages, flags);
613 }
614 EXPORT_SYMBOL_GPL(__set_page_dirty);
615
616 /*
617  * Add a page to the dirty page list.
618  *
619  * It is a sad fact of life that this function is called from several places
620  * deeply under spinlocking.  It may not sleep.
621  *
622  * If the page has buffers, the uptodate buffers are set dirty, to preserve
623  * dirty-state coherency between the page and the buffers.  It the page does
624  * not have buffers then when they are later attached they will all be set
625  * dirty.
626  *
627  * The buffers are dirtied before the page is dirtied.  There's a small race
628  * window in which a writepage caller may see the page cleanness but not the
629  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
630  * before the buffers, a concurrent writepage caller could clear the page dirty
631  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
632  * page on the dirty page list.
633  *
634  * We use private_lock to lock against try_to_free_buffers while using the
635  * page's buffer list.  Also use this to protect against clean buffers being
636  * added to the page after it was set dirty.
637  *
638  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
639  * address_space though.
640  */
641 int __set_page_dirty_buffers(struct page *page)
642 {
643         int newly_dirty;
644         struct address_space *mapping = page_mapping(page);
645
646         if (unlikely(!mapping))
647                 return !TestSetPageDirty(page);
648
649         spin_lock(&mapping->private_lock);
650         if (page_has_buffers(page)) {
651                 struct buffer_head *head = page_buffers(page);
652                 struct buffer_head *bh = head;
653
654                 do {
655                         set_buffer_dirty(bh);
656                         bh = bh->b_this_page;
657                 } while (bh != head);
658         }
659         /*
660          * Lock out page's memcg migration to keep PageDirty
661          * synchronized with per-memcg dirty page counters.
662          */
663         lock_page_memcg(page);
664         newly_dirty = !TestSetPageDirty(page);
665         spin_unlock(&mapping->private_lock);
666
667         if (newly_dirty)
668                 __set_page_dirty(page, mapping, 1);
669
670         unlock_page_memcg(page);
671
672         if (newly_dirty)
673                 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
674
675         return newly_dirty;
676 }
677 EXPORT_SYMBOL(__set_page_dirty_buffers);
678
679 /*
680  * Write out and wait upon a list of buffers.
681  *
682  * We have conflicting pressures: we want to make sure that all
683  * initially dirty buffers get waited on, but that any subsequently
684  * dirtied buffers don't.  After all, we don't want fsync to last
685  * forever if somebody is actively writing to the file.
686  *
687  * Do this in two main stages: first we copy dirty buffers to a
688  * temporary inode list, queueing the writes as we go.  Then we clean
689  * up, waiting for those writes to complete.
690  * 
691  * During this second stage, any subsequent updates to the file may end
692  * up refiling the buffer on the original inode's dirty list again, so
693  * there is a chance we will end up with a buffer queued for write but
694  * not yet completed on that list.  So, as a final cleanup we go through
695  * the osync code to catch these locked, dirty buffers without requeuing
696  * any newly dirty buffers for write.
697  */
698 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
699 {
700         struct buffer_head *bh;
701         struct list_head tmp;
702         struct address_space *mapping;
703         int err = 0, err2;
704         struct blk_plug plug;
705
706         INIT_LIST_HEAD(&tmp);
707         blk_start_plug(&plug);
708
709         spin_lock(lock);
710         while (!list_empty(list)) {
711                 bh = BH_ENTRY(list->next);
712                 mapping = bh->b_assoc_map;
713                 __remove_assoc_queue(bh);
714                 /* Avoid race with mark_buffer_dirty_inode() which does
715                  * a lockless check and we rely on seeing the dirty bit */
716                 smp_mb();
717                 if (buffer_dirty(bh) || buffer_locked(bh)) {
718                         list_add(&bh->b_assoc_buffers, &tmp);
719                         bh->b_assoc_map = mapping;
720                         if (buffer_dirty(bh)) {
721                                 get_bh(bh);
722                                 spin_unlock(lock);
723                                 /*
724                                  * Ensure any pending I/O completes so that
725                                  * write_dirty_buffer() actually writes the
726                                  * current contents - it is a noop if I/O is
727                                  * still in flight on potentially older
728                                  * contents.
729                                  */
730                                 write_dirty_buffer(bh, REQ_SYNC);
731
732                                 /*
733                                  * Kick off IO for the previous mapping. Note
734                                  * that we will not run the very last mapping,
735                                  * wait_on_buffer() will do that for us
736                                  * through sync_buffer().
737                                  */
738                                 brelse(bh);
739                                 spin_lock(lock);
740                         }
741                 }
742         }
743
744         spin_unlock(lock);
745         blk_finish_plug(&plug);
746         spin_lock(lock);
747
748         while (!list_empty(&tmp)) {
749                 bh = BH_ENTRY(tmp.prev);
750                 get_bh(bh);
751                 mapping = bh->b_assoc_map;
752                 __remove_assoc_queue(bh);
753                 /* Avoid race with mark_buffer_dirty_inode() which does
754                  * a lockless check and we rely on seeing the dirty bit */
755                 smp_mb();
756                 if (buffer_dirty(bh)) {
757                         list_add(&bh->b_assoc_buffers,
758                                  &mapping->private_list);
759                         bh->b_assoc_map = mapping;
760                 }
761                 spin_unlock(lock);
762                 wait_on_buffer(bh);
763                 if (!buffer_uptodate(bh))
764                         err = -EIO;
765                 brelse(bh);
766                 spin_lock(lock);
767         }
768         
769         spin_unlock(lock);
770         err2 = osync_buffers_list(lock, list);
771         if (err)
772                 return err;
773         else
774                 return err2;
775 }
776
777 /*
778  * Invalidate any and all dirty buffers on a given inode.  We are
779  * probably unmounting the fs, but that doesn't mean we have already
780  * done a sync().  Just drop the buffers from the inode list.
781  *
782  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
783  * assumes that all the buffers are against the blockdev.  Not true
784  * for reiserfs.
785  */
786 void invalidate_inode_buffers(struct inode *inode)
787 {
788         if (inode_has_buffers(inode)) {
789                 struct address_space *mapping = &inode->i_data;
790                 struct list_head *list = &mapping->private_list;
791                 struct address_space *buffer_mapping = mapping->private_data;
792
793                 spin_lock(&buffer_mapping->private_lock);
794                 while (!list_empty(list))
795                         __remove_assoc_queue(BH_ENTRY(list->next));
796                 spin_unlock(&buffer_mapping->private_lock);
797         }
798 }
799 EXPORT_SYMBOL(invalidate_inode_buffers);
800
801 /*
802  * Remove any clean buffers from the inode's buffer list.  This is called
803  * when we're trying to free the inode itself.  Those buffers can pin it.
804  *
805  * Returns true if all buffers were removed.
806  */
807 int remove_inode_buffers(struct inode *inode)
808 {
809         int ret = 1;
810
811         if (inode_has_buffers(inode)) {
812                 struct address_space *mapping = &inode->i_data;
813                 struct list_head *list = &mapping->private_list;
814                 struct address_space *buffer_mapping = mapping->private_data;
815
816                 spin_lock(&buffer_mapping->private_lock);
817                 while (!list_empty(list)) {
818                         struct buffer_head *bh = BH_ENTRY(list->next);
819                         if (buffer_dirty(bh)) {
820                                 ret = 0;
821                                 break;
822                         }
823                         __remove_assoc_queue(bh);
824                 }
825                 spin_unlock(&buffer_mapping->private_lock);
826         }
827         return ret;
828 }
829
830 /*
831  * Create the appropriate buffers when given a page for data area and
832  * the size of each buffer.. Use the bh->b_this_page linked list to
833  * follow the buffers created.  Return NULL if unable to create more
834  * buffers.
835  *
836  * The retry flag is used to differentiate async IO (paging, swapping)
837  * which may not fail from ordinary buffer allocations.
838  */
839 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
840                 bool retry)
841 {
842         struct buffer_head *bh, *head;
843         gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT;
844         long offset;
845         struct mem_cgroup *memcg, *old_memcg;
846
847         if (retry)
848                 gfp |= __GFP_NOFAIL;
849
850         /* The page lock pins the memcg */
851         memcg = page_memcg(page);
852         old_memcg = set_active_memcg(memcg);
853
854         head = NULL;
855         offset = PAGE_SIZE;
856         while ((offset -= size) >= 0) {
857                 bh = alloc_buffer_head(gfp);
858                 if (!bh)
859                         goto no_grow;
860
861                 bh->b_this_page = head;
862                 bh->b_blocknr = -1;
863                 head = bh;
864
865                 bh->b_size = size;
866
867                 /* Link the buffer to its page */
868                 set_bh_page(bh, page, offset);
869         }
870 out:
871         set_active_memcg(old_memcg);
872         return head;
873 /*
874  * In case anything failed, we just free everything we got.
875  */
876 no_grow:
877         if (head) {
878                 do {
879                         bh = head;
880                         head = head->b_this_page;
881                         free_buffer_head(bh);
882                 } while (head);
883         }
884
885         goto out;
886 }
887 EXPORT_SYMBOL_GPL(alloc_page_buffers);
888
889 static inline void
890 link_dev_buffers(struct page *page, struct buffer_head *head)
891 {
892         struct buffer_head *bh, *tail;
893
894         bh = head;
895         do {
896                 tail = bh;
897                 bh = bh->b_this_page;
898         } while (bh);
899         tail->b_this_page = head;
900         attach_page_private(page, head);
901 }
902
903 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
904 {
905         sector_t retval = ~((sector_t)0);
906         loff_t sz = i_size_read(bdev->bd_inode);
907
908         if (sz) {
909                 unsigned int sizebits = blksize_bits(size);
910                 retval = (sz >> sizebits);
911         }
912         return retval;
913 }
914
915 /*
916  * Initialise the state of a blockdev page's buffers.
917  */ 
918 static sector_t
919 init_page_buffers(struct page *page, struct block_device *bdev,
920                         sector_t block, int size)
921 {
922         struct buffer_head *head = page_buffers(page);
923         struct buffer_head *bh = head;
924         int uptodate = PageUptodate(page);
925         sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
926
927         do {
928                 if (!buffer_mapped(bh)) {
929                         bh->b_end_io = NULL;
930                         bh->b_private = NULL;
931                         bh->b_bdev = bdev;
932                         bh->b_blocknr = block;
933                         if (uptodate)
934                                 set_buffer_uptodate(bh);
935                         if (block < end_block)
936                                 set_buffer_mapped(bh);
937                 }
938                 block++;
939                 bh = bh->b_this_page;
940         } while (bh != head);
941
942         /*
943          * Caller needs to validate requested block against end of device.
944          */
945         return end_block;
946 }
947
948 /*
949  * Create the page-cache page that contains the requested block.
950  *
951  * This is used purely for blockdev mappings.
952  */
953 static int
954 grow_dev_page(struct block_device *bdev, sector_t block,
955               pgoff_t index, int size, int sizebits, gfp_t gfp)
956 {
957         struct inode *inode = bdev->bd_inode;
958         struct page *page;
959         struct buffer_head *bh;
960         sector_t end_block;
961         int ret = 0;
962         gfp_t gfp_mask;
963
964         gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
965
966         /*
967          * XXX: __getblk_slow() can not really deal with failure and
968          * will endlessly loop on improvised global reclaim.  Prefer
969          * looping in the allocator rather than here, at least that
970          * code knows what it's doing.
971          */
972         gfp_mask |= __GFP_NOFAIL;
973
974         page = find_or_create_page(inode->i_mapping, index, gfp_mask);
975
976         BUG_ON(!PageLocked(page));
977
978         if (page_has_buffers(page)) {
979                 bh = page_buffers(page);
980                 if (bh->b_size == size) {
981                         end_block = init_page_buffers(page, bdev,
982                                                 (sector_t)index << sizebits,
983                                                 size);
984                         goto done;
985                 }
986                 if (!try_to_free_buffers(page))
987                         goto failed;
988         }
989
990         /*
991          * Allocate some buffers for this page
992          */
993         bh = alloc_page_buffers(page, size, true);
994
995         /*
996          * Link the page to the buffers and initialise them.  Take the
997          * lock to be atomic wrt __find_get_block(), which does not
998          * run under the page lock.
999          */
1000         spin_lock(&inode->i_mapping->private_lock);
1001         link_dev_buffers(page, bh);
1002         end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
1003                         size);
1004         spin_unlock(&inode->i_mapping->private_lock);
1005 done:
1006         ret = (block < end_block) ? 1 : -ENXIO;
1007 failed:
1008         unlock_page(page);
1009         put_page(page);
1010         return ret;
1011 }
1012
1013 /*
1014  * Create buffers for the specified block device block's page.  If
1015  * that page was dirty, the buffers are set dirty also.
1016  */
1017 static int
1018 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1019 {
1020         pgoff_t index;
1021         int sizebits;
1022
1023         sizebits = -1;
1024         do {
1025                 sizebits++;
1026         } while ((size << sizebits) < PAGE_SIZE);
1027
1028         index = block >> sizebits;
1029
1030         /*
1031          * Check for a block which wants to lie outside our maximum possible
1032          * pagecache index.  (this comparison is done using sector_t types).
1033          */
1034         if (unlikely(index != block >> sizebits)) {
1035                 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1036                         "device %pg\n",
1037                         __func__, (unsigned long long)block,
1038                         bdev);
1039                 return -EIO;
1040         }
1041
1042         /* Create a page with the proper size buffers.. */
1043         return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1044 }
1045
1046 static struct buffer_head *
1047 __getblk_slow(struct block_device *bdev, sector_t block,
1048              unsigned size, gfp_t gfp)
1049 {
1050         /* Size must be multiple of hard sectorsize */
1051         if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1052                         (size < 512 || size > PAGE_SIZE))) {
1053                 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1054                                         size);
1055                 printk(KERN_ERR "logical block size: %d\n",
1056                                         bdev_logical_block_size(bdev));
1057
1058                 dump_stack();
1059                 return NULL;
1060         }
1061
1062         for (;;) {
1063                 struct buffer_head *bh;
1064                 int ret;
1065
1066                 bh = __find_get_block(bdev, block, size);
1067                 if (bh)
1068                         return bh;
1069
1070                 ret = grow_buffers(bdev, block, size, gfp);
1071                 if (ret < 0)
1072                         return NULL;
1073         }
1074 }
1075
1076 /*
1077  * The relationship between dirty buffers and dirty pages:
1078  *
1079  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1080  * the page is tagged dirty in the page cache.
1081  *
1082  * At all times, the dirtiness of the buffers represents the dirtiness of
1083  * subsections of the page.  If the page has buffers, the page dirty bit is
1084  * merely a hint about the true dirty state.
1085  *
1086  * When a page is set dirty in its entirety, all its buffers are marked dirty
1087  * (if the page has buffers).
1088  *
1089  * When a buffer is marked dirty, its page is dirtied, but the page's other
1090  * buffers are not.
1091  *
1092  * Also.  When blockdev buffers are explicitly read with bread(), they
1093  * individually become uptodate.  But their backing page remains not
1094  * uptodate - even if all of its buffers are uptodate.  A subsequent
1095  * block_read_full_page() against that page will discover all the uptodate
1096  * buffers, will set the page uptodate and will perform no I/O.
1097  */
1098
1099 /**
1100  * mark_buffer_dirty - mark a buffer_head as needing writeout
1101  * @bh: the buffer_head to mark dirty
1102  *
1103  * mark_buffer_dirty() will set the dirty bit against the buffer, then set
1104  * its backing page dirty, then tag the page as dirty in the page cache
1105  * and then attach the address_space's inode to its superblock's dirty
1106  * inode list.
1107  *
1108  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1109  * i_pages lock and mapping->host->i_lock.
1110  */
1111 void mark_buffer_dirty(struct buffer_head *bh)
1112 {
1113         WARN_ON_ONCE(!buffer_uptodate(bh));
1114
1115         trace_block_dirty_buffer(bh);
1116
1117         /*
1118          * Very *carefully* optimize the it-is-already-dirty case.
1119          *
1120          * Don't let the final "is it dirty" escape to before we
1121          * perhaps modified the buffer.
1122          */
1123         if (buffer_dirty(bh)) {
1124                 smp_mb();
1125                 if (buffer_dirty(bh))
1126                         return;
1127         }
1128
1129         if (!test_set_buffer_dirty(bh)) {
1130                 struct page *page = bh->b_page;
1131                 struct address_space *mapping = NULL;
1132
1133                 lock_page_memcg(page);
1134                 if (!TestSetPageDirty(page)) {
1135                         mapping = page_mapping(page);
1136                         if (mapping)
1137                                 __set_page_dirty(page, mapping, 0);
1138                 }
1139                 unlock_page_memcg(page);
1140                 if (mapping)
1141                         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1142         }
1143 }
1144 EXPORT_SYMBOL(mark_buffer_dirty);
1145
1146 void mark_buffer_write_io_error(struct buffer_head *bh)
1147 {
1148         struct super_block *sb;
1149
1150         set_buffer_write_io_error(bh);
1151         /* FIXME: do we need to set this in both places? */
1152         if (bh->b_page && bh->b_page->mapping)
1153                 mapping_set_error(bh->b_page->mapping, -EIO);
1154         if (bh->b_assoc_map)
1155                 mapping_set_error(bh->b_assoc_map, -EIO);
1156         rcu_read_lock();
1157         sb = READ_ONCE(bh->b_bdev->bd_super);
1158         if (sb)
1159                 errseq_set(&sb->s_wb_err, -EIO);
1160         rcu_read_unlock();
1161 }
1162 EXPORT_SYMBOL(mark_buffer_write_io_error);
1163
1164 /*
1165  * Decrement a buffer_head's reference count.  If all buffers against a page
1166  * have zero reference count, are clean and unlocked, and if the page is clean
1167  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1168  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1169  * a page but it ends up not being freed, and buffers may later be reattached).
1170  */
1171 void __brelse(struct buffer_head * buf)
1172 {
1173         if (atomic_read(&buf->b_count)) {
1174                 put_bh(buf);
1175                 return;
1176         }
1177         WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1178 }
1179 EXPORT_SYMBOL(__brelse);
1180
1181 /*
1182  * bforget() is like brelse(), except it discards any
1183  * potentially dirty data.
1184  */
1185 void __bforget(struct buffer_head *bh)
1186 {
1187         clear_buffer_dirty(bh);
1188         if (bh->b_assoc_map) {
1189                 struct address_space *buffer_mapping = bh->b_page->mapping;
1190
1191                 spin_lock(&buffer_mapping->private_lock);
1192                 list_del_init(&bh->b_assoc_buffers);
1193                 bh->b_assoc_map = NULL;
1194                 spin_unlock(&buffer_mapping->private_lock);
1195         }
1196         __brelse(bh);
1197 }
1198 EXPORT_SYMBOL(__bforget);
1199
1200 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1201 {
1202         lock_buffer(bh);
1203         if (buffer_uptodate(bh)) {
1204                 unlock_buffer(bh);
1205                 return bh;
1206         } else {
1207                 get_bh(bh);
1208                 bh->b_end_io = end_buffer_read_sync;
1209                 submit_bh(REQ_OP_READ, 0, bh);
1210                 wait_on_buffer(bh);
1211                 if (buffer_uptodate(bh))
1212                         return bh;
1213         }
1214         brelse(bh);
1215         return NULL;
1216 }
1217
1218 /*
1219  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1220  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1221  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1222  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1223  * CPU's LRUs at the same time.
1224  *
1225  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1226  * sb_find_get_block().
1227  *
1228  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1229  * a local interrupt disable for that.
1230  */
1231
1232 #define BH_LRU_SIZE     16
1233
1234 struct bh_lru {
1235         struct buffer_head *bhs[BH_LRU_SIZE];
1236 };
1237
1238 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1239
1240 #ifdef CONFIG_SMP
1241 #define bh_lru_lock()   local_irq_disable()
1242 #define bh_lru_unlock() local_irq_enable()
1243 #else
1244 #define bh_lru_lock()   preempt_disable()
1245 #define bh_lru_unlock() preempt_enable()
1246 #endif
1247
1248 static inline void check_irqs_on(void)
1249 {
1250 #ifdef irqs_disabled
1251         BUG_ON(irqs_disabled());
1252 #endif
1253 }
1254
1255 /*
1256  * Install a buffer_head into this cpu's LRU.  If not already in the LRU, it is
1257  * inserted at the front, and the buffer_head at the back if any is evicted.
1258  * Or, if already in the LRU it is moved to the front.
1259  */
1260 static void bh_lru_install(struct buffer_head *bh)
1261 {
1262         struct buffer_head *evictee = bh;
1263         struct bh_lru *b;
1264         int i;
1265
1266         check_irqs_on();
1267         /*
1268          * the refcount of buffer_head in bh_lru prevents dropping the
1269          * attached page(i.e., try_to_free_buffers) so it could cause
1270          * failing page migration.
1271          * Skip putting upcoming bh into bh_lru until migration is done.
1272          */
1273         if (lru_cache_disabled())
1274                 return;
1275
1276         bh_lru_lock();
1277
1278         b = this_cpu_ptr(&bh_lrus);
1279         for (i = 0; i < BH_LRU_SIZE; i++) {
1280                 swap(evictee, b->bhs[i]);
1281                 if (evictee == bh) {
1282                         bh_lru_unlock();
1283                         return;
1284                 }
1285         }
1286
1287         get_bh(bh);
1288         bh_lru_unlock();
1289         brelse(evictee);
1290 }
1291
1292 /*
1293  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1294  */
1295 static struct buffer_head *
1296 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1297 {
1298         struct buffer_head *ret = NULL;
1299         unsigned int i;
1300
1301         check_irqs_on();
1302         bh_lru_lock();
1303         for (i = 0; i < BH_LRU_SIZE; i++) {
1304                 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1305
1306                 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1307                     bh->b_size == size) {
1308                         if (i) {
1309                                 while (i) {
1310                                         __this_cpu_write(bh_lrus.bhs[i],
1311                                                 __this_cpu_read(bh_lrus.bhs[i - 1]));
1312                                         i--;
1313                                 }
1314                                 __this_cpu_write(bh_lrus.bhs[0], bh);
1315                         }
1316                         get_bh(bh);
1317                         ret = bh;
1318                         break;
1319                 }
1320         }
1321         bh_lru_unlock();
1322         return ret;
1323 }
1324
1325 /*
1326  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1327  * it in the LRU and mark it as accessed.  If it is not present then return
1328  * NULL
1329  */
1330 struct buffer_head *
1331 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1332 {
1333         struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1334
1335         if (bh == NULL) {
1336                 /* __find_get_block_slow will mark the page accessed */
1337                 bh = __find_get_block_slow(bdev, block);
1338                 if (bh)
1339                         bh_lru_install(bh);
1340         } else
1341                 touch_buffer(bh);
1342
1343         return bh;
1344 }
1345 EXPORT_SYMBOL(__find_get_block);
1346
1347 /*
1348  * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1349  * which corresponds to the passed block_device, block and size. The
1350  * returned buffer has its reference count incremented.
1351  *
1352  * __getblk_gfp() will lock up the machine if grow_dev_page's
1353  * try_to_free_buffers() attempt is failing.  FIXME, perhaps?
1354  */
1355 struct buffer_head *
1356 __getblk_gfp(struct block_device *bdev, sector_t block,
1357              unsigned size, gfp_t gfp)
1358 {
1359         struct buffer_head *bh = __find_get_block(bdev, block, size);
1360
1361         might_sleep();
1362         if (bh == NULL)
1363                 bh = __getblk_slow(bdev, block, size, gfp);
1364         return bh;
1365 }
1366 EXPORT_SYMBOL(__getblk_gfp);
1367
1368 /*
1369  * Do async read-ahead on a buffer..
1370  */
1371 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1372 {
1373         struct buffer_head *bh = __getblk(bdev, block, size);
1374         if (likely(bh)) {
1375                 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1376                 brelse(bh);
1377         }
1378 }
1379 EXPORT_SYMBOL(__breadahead);
1380
1381 void __breadahead_gfp(struct block_device *bdev, sector_t block, unsigned size,
1382                       gfp_t gfp)
1383 {
1384         struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1385         if (likely(bh)) {
1386                 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1387                 brelse(bh);
1388         }
1389 }
1390 EXPORT_SYMBOL(__breadahead_gfp);
1391
1392 /**
1393  *  __bread_gfp() - reads a specified block and returns the bh
1394  *  @bdev: the block_device to read from
1395  *  @block: number of block
1396  *  @size: size (in bytes) to read
1397  *  @gfp: page allocation flag
1398  *
1399  *  Reads a specified block, and returns buffer head that contains it.
1400  *  The page cache can be allocated from non-movable area
1401  *  not to prevent page migration if you set gfp to zero.
1402  *  It returns NULL if the block was unreadable.
1403  */
1404 struct buffer_head *
1405 __bread_gfp(struct block_device *bdev, sector_t block,
1406                    unsigned size, gfp_t gfp)
1407 {
1408         struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1409
1410         if (likely(bh) && !buffer_uptodate(bh))
1411                 bh = __bread_slow(bh);
1412         return bh;
1413 }
1414 EXPORT_SYMBOL(__bread_gfp);
1415
1416 static void __invalidate_bh_lrus(struct bh_lru *b)
1417 {
1418         int i;
1419
1420         for (i = 0; i < BH_LRU_SIZE; i++) {
1421                 brelse(b->bhs[i]);
1422                 b->bhs[i] = NULL;
1423         }
1424 }
1425 /*
1426  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1427  * This doesn't race because it runs in each cpu either in irq
1428  * or with preempt disabled.
1429  */
1430 static void invalidate_bh_lru(void *arg)
1431 {
1432         struct bh_lru *b = &get_cpu_var(bh_lrus);
1433
1434         __invalidate_bh_lrus(b);
1435         put_cpu_var(bh_lrus);
1436 }
1437
1438 bool has_bh_in_lru(int cpu, void *dummy)
1439 {
1440         struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1441         int i;
1442         
1443         for (i = 0; i < BH_LRU_SIZE; i++) {
1444                 if (b->bhs[i])
1445                         return true;
1446         }
1447
1448         return false;
1449 }
1450
1451 void invalidate_bh_lrus(void)
1452 {
1453         on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1);
1454 }
1455 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1456
1457 void invalidate_bh_lrus_cpu(int cpu)
1458 {
1459         struct bh_lru *b;
1460
1461         bh_lru_lock();
1462         b = per_cpu_ptr(&bh_lrus, cpu);
1463         __invalidate_bh_lrus(b);
1464         bh_lru_unlock();
1465 }
1466
1467 void set_bh_page(struct buffer_head *bh,
1468                 struct page *page, unsigned long offset)
1469 {
1470         bh->b_page = page;
1471         BUG_ON(offset >= PAGE_SIZE);
1472         if (PageHighMem(page))
1473                 /*
1474                  * This catches illegal uses and preserves the offset:
1475                  */
1476                 bh->b_data = (char *)(0 + offset);
1477         else
1478                 bh->b_data = page_address(page) + offset;
1479 }
1480 EXPORT_SYMBOL(set_bh_page);
1481
1482 /*
1483  * Called when truncating a buffer on a page completely.
1484  */
1485
1486 /* Bits that are cleared during an invalidate */
1487 #define BUFFER_FLAGS_DISCARD \
1488         (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1489          1 << BH_Delay | 1 << BH_Unwritten)
1490
1491 static void discard_buffer(struct buffer_head * bh)
1492 {
1493         unsigned long b_state, b_state_old;
1494
1495         lock_buffer(bh);
1496         clear_buffer_dirty(bh);
1497         bh->b_bdev = NULL;
1498         b_state = bh->b_state;
1499         for (;;) {
1500                 b_state_old = cmpxchg(&bh->b_state, b_state,
1501                                       (b_state & ~BUFFER_FLAGS_DISCARD));
1502                 if (b_state_old == b_state)
1503                         break;
1504                 b_state = b_state_old;
1505         }
1506         unlock_buffer(bh);
1507 }
1508
1509 /**
1510  * block_invalidatepage - invalidate part or all of a buffer-backed page
1511  *
1512  * @page: the page which is affected
1513  * @offset: start of the range to invalidate
1514  * @length: length of the range to invalidate
1515  *
1516  * block_invalidatepage() is called when all or part of the page has become
1517  * invalidated by a truncate operation.
1518  *
1519  * block_invalidatepage() does not have to release all buffers, but it must
1520  * ensure that no dirty buffer is left outside @offset and that no I/O
1521  * is underway against any of the blocks which are outside the truncation
1522  * point.  Because the caller is about to free (and possibly reuse) those
1523  * blocks on-disk.
1524  */
1525 void block_invalidatepage(struct page *page, unsigned int offset,
1526                           unsigned int length)
1527 {
1528         struct buffer_head *head, *bh, *next;
1529         unsigned int curr_off = 0;
1530         unsigned int stop = length + offset;
1531
1532         BUG_ON(!PageLocked(page));
1533         if (!page_has_buffers(page))
1534                 goto out;
1535
1536         /*
1537          * Check for overflow
1538          */
1539         BUG_ON(stop > PAGE_SIZE || stop < length);
1540
1541         head = page_buffers(page);
1542         bh = head;
1543         do {
1544                 unsigned int next_off = curr_off + bh->b_size;
1545                 next = bh->b_this_page;
1546
1547                 /*
1548                  * Are we still fully in range ?
1549                  */
1550                 if (next_off > stop)
1551                         goto out;
1552
1553                 /*
1554                  * is this block fully invalidated?
1555                  */
1556                 if (offset <= curr_off)
1557                         discard_buffer(bh);
1558                 curr_off = next_off;
1559                 bh = next;
1560         } while (bh != head);
1561
1562         /*
1563          * We release buffers only if the entire page is being invalidated.
1564          * The get_block cached value has been unconditionally invalidated,
1565          * so real IO is not possible anymore.
1566          */
1567         if (length == PAGE_SIZE)
1568                 try_to_release_page(page, 0);
1569 out:
1570         return;
1571 }
1572 EXPORT_SYMBOL(block_invalidatepage);
1573
1574
1575 /*
1576  * We attach and possibly dirty the buffers atomically wrt
1577  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1578  * is already excluded via the page lock.
1579  */
1580 void create_empty_buffers(struct page *page,
1581                         unsigned long blocksize, unsigned long b_state)
1582 {
1583         struct buffer_head *bh, *head, *tail;
1584
1585         head = alloc_page_buffers(page, blocksize, true);
1586         bh = head;
1587         do {
1588                 bh->b_state |= b_state;
1589                 tail = bh;
1590                 bh = bh->b_this_page;
1591         } while (bh);
1592         tail->b_this_page = head;
1593
1594         spin_lock(&page->mapping->private_lock);
1595         if (PageUptodate(page) || PageDirty(page)) {
1596                 bh = head;
1597                 do {
1598                         if (PageDirty(page))
1599                                 set_buffer_dirty(bh);
1600                         if (PageUptodate(page))
1601                                 set_buffer_uptodate(bh);
1602                         bh = bh->b_this_page;
1603                 } while (bh != head);
1604         }
1605         attach_page_private(page, head);
1606         spin_unlock(&page->mapping->private_lock);
1607 }
1608 EXPORT_SYMBOL(create_empty_buffers);
1609
1610 /**
1611  * clean_bdev_aliases: clean a range of buffers in block device
1612  * @bdev: Block device to clean buffers in
1613  * @block: Start of a range of blocks to clean
1614  * @len: Number of blocks to clean
1615  *
1616  * We are taking a range of blocks for data and we don't want writeback of any
1617  * buffer-cache aliases starting from return from this function and until the
1618  * moment when something will explicitly mark the buffer dirty (hopefully that
1619  * will not happen until we will free that block ;-) We don't even need to mark
1620  * it not-uptodate - nobody can expect anything from a newly allocated buffer
1621  * anyway. We used to use unmap_buffer() for such invalidation, but that was
1622  * wrong. We definitely don't want to mark the alias unmapped, for example - it
1623  * would confuse anyone who might pick it with bread() afterwards...
1624  *
1625  * Also..  Note that bforget() doesn't lock the buffer.  So there can be
1626  * writeout I/O going on against recently-freed buffers.  We don't wait on that
1627  * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1628  * need to.  That happens here.
1629  */
1630 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1631 {
1632         struct inode *bd_inode = bdev->bd_inode;
1633         struct address_space *bd_mapping = bd_inode->i_mapping;
1634         struct pagevec pvec;
1635         pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1636         pgoff_t end;
1637         int i, count;
1638         struct buffer_head *bh;
1639         struct buffer_head *head;
1640
1641         end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1642         pagevec_init(&pvec);
1643         while (pagevec_lookup_range(&pvec, bd_mapping, &index, end)) {
1644                 count = pagevec_count(&pvec);
1645                 for (i = 0; i < count; i++) {
1646                         struct page *page = pvec.pages[i];
1647
1648                         if (!page_has_buffers(page))
1649                                 continue;
1650                         /*
1651                          * We use page lock instead of bd_mapping->private_lock
1652                          * to pin buffers here since we can afford to sleep and
1653                          * it scales better than a global spinlock lock.
1654                          */
1655                         lock_page(page);
1656                         /* Recheck when the page is locked which pins bhs */
1657                         if (!page_has_buffers(page))
1658                                 goto unlock_page;
1659                         head = page_buffers(page);
1660                         bh = head;
1661                         do {
1662                                 if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1663                                         goto next;
1664                                 if (bh->b_blocknr >= block + len)
1665                                         break;
1666                                 clear_buffer_dirty(bh);
1667                                 wait_on_buffer(bh);
1668                                 clear_buffer_req(bh);
1669 next:
1670                                 bh = bh->b_this_page;
1671                         } while (bh != head);
1672 unlock_page:
1673                         unlock_page(page);
1674                 }
1675                 pagevec_release(&pvec);
1676                 cond_resched();
1677                 /* End of range already reached? */
1678                 if (index > end || !index)
1679                         break;
1680         }
1681 }
1682 EXPORT_SYMBOL(clean_bdev_aliases);
1683
1684 /*
1685  * Size is a power-of-two in the range 512..PAGE_SIZE,
1686  * and the case we care about most is PAGE_SIZE.
1687  *
1688  * So this *could* possibly be written with those
1689  * constraints in mind (relevant mostly if some
1690  * architecture has a slow bit-scan instruction)
1691  */
1692 static inline int block_size_bits(unsigned int blocksize)
1693 {
1694         return ilog2(blocksize);
1695 }
1696
1697 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1698 {
1699         BUG_ON(!PageLocked(page));
1700
1701         if (!page_has_buffers(page))
1702                 create_empty_buffers(page, 1 << READ_ONCE(inode->i_blkbits),
1703                                      b_state);
1704         return page_buffers(page);
1705 }
1706
1707 /*
1708  * NOTE! All mapped/uptodate combinations are valid:
1709  *
1710  *      Mapped  Uptodate        Meaning
1711  *
1712  *      No      No              "unknown" - must do get_block()
1713  *      No      Yes             "hole" - zero-filled
1714  *      Yes     No              "allocated" - allocated on disk, not read in
1715  *      Yes     Yes             "valid" - allocated and up-to-date in memory.
1716  *
1717  * "Dirty" is valid only with the last case (mapped+uptodate).
1718  */
1719
1720 /*
1721  * While block_write_full_page is writing back the dirty buffers under
1722  * the page lock, whoever dirtied the buffers may decide to clean them
1723  * again at any time.  We handle that by only looking at the buffer
1724  * state inside lock_buffer().
1725  *
1726  * If block_write_full_page() is called for regular writeback
1727  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1728  * locked buffer.   This only can happen if someone has written the buffer
1729  * directly, with submit_bh().  At the address_space level PageWriteback
1730  * prevents this contention from occurring.
1731  *
1732  * If block_write_full_page() is called with wbc->sync_mode ==
1733  * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1734  * causes the writes to be flagged as synchronous writes.
1735  */
1736 int __block_write_full_page(struct inode *inode, struct page *page,
1737                         get_block_t *get_block, struct writeback_control *wbc,
1738                         bh_end_io_t *handler)
1739 {
1740         int err;
1741         sector_t block;
1742         sector_t last_block;
1743         struct buffer_head *bh, *head;
1744         unsigned int blocksize, bbits;
1745         int nr_underway = 0;
1746         int write_flags = wbc_to_write_flags(wbc);
1747
1748         head = create_page_buffers(page, inode,
1749                                         (1 << BH_Dirty)|(1 << BH_Uptodate));
1750
1751         /*
1752          * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1753          * here, and the (potentially unmapped) buffers may become dirty at
1754          * any time.  If a buffer becomes dirty here after we've inspected it
1755          * then we just miss that fact, and the page stays dirty.
1756          *
1757          * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1758          * handle that here by just cleaning them.
1759          */
1760
1761         bh = head;
1762         blocksize = bh->b_size;
1763         bbits = block_size_bits(blocksize);
1764
1765         block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1766         last_block = (i_size_read(inode) - 1) >> bbits;
1767
1768         /*
1769          * Get all the dirty buffers mapped to disk addresses and
1770          * handle any aliases from the underlying blockdev's mapping.
1771          */
1772         do {
1773                 if (block > last_block) {
1774                         /*
1775                          * mapped buffers outside i_size will occur, because
1776                          * this page can be outside i_size when there is a
1777                          * truncate in progress.
1778                          */
1779                         /*
1780                          * The buffer was zeroed by block_write_full_page()
1781                          */
1782                         clear_buffer_dirty(bh);
1783                         set_buffer_uptodate(bh);
1784                 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1785                            buffer_dirty(bh)) {
1786                         WARN_ON(bh->b_size != blocksize);
1787                         err = get_block(inode, block, bh, 1);
1788                         if (err)
1789                                 goto recover;
1790                         clear_buffer_delay(bh);
1791                         if (buffer_new(bh)) {
1792                                 /* blockdev mappings never come here */
1793                                 clear_buffer_new(bh);
1794                                 clean_bdev_bh_alias(bh);
1795                         }
1796                 }
1797                 bh = bh->b_this_page;
1798                 block++;
1799         } while (bh != head);
1800
1801         do {
1802                 if (!buffer_mapped(bh))
1803                         continue;
1804                 /*
1805                  * If it's a fully non-blocking write attempt and we cannot
1806                  * lock the buffer then redirty the page.  Note that this can
1807                  * potentially cause a busy-wait loop from writeback threads
1808                  * and kswapd activity, but those code paths have their own
1809                  * higher-level throttling.
1810                  */
1811                 if (wbc->sync_mode != WB_SYNC_NONE) {
1812                         lock_buffer(bh);
1813                 } else if (!trylock_buffer(bh)) {
1814                         redirty_page_for_writepage(wbc, page);
1815                         continue;
1816                 }
1817                 if (test_clear_buffer_dirty(bh)) {
1818                         mark_buffer_async_write_endio(bh, handler);
1819                 } else {
1820                         unlock_buffer(bh);
1821                 }
1822         } while ((bh = bh->b_this_page) != head);
1823
1824         /*
1825          * The page and its buffers are protected by PageWriteback(), so we can
1826          * drop the bh refcounts early.
1827          */
1828         BUG_ON(PageWriteback(page));
1829         set_page_writeback(page);
1830
1831         do {
1832                 struct buffer_head *next = bh->b_this_page;
1833                 if (buffer_async_write(bh)) {
1834                         submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1835                                         inode->i_write_hint, wbc);
1836                         nr_underway++;
1837                 }
1838                 bh = next;
1839         } while (bh != head);
1840         unlock_page(page);
1841
1842         err = 0;
1843 done:
1844         if (nr_underway == 0) {
1845                 /*
1846                  * The page was marked dirty, but the buffers were
1847                  * clean.  Someone wrote them back by hand with
1848                  * ll_rw_block/submit_bh.  A rare case.
1849                  */
1850                 end_page_writeback(page);
1851
1852                 /*
1853                  * The page and buffer_heads can be released at any time from
1854                  * here on.
1855                  */
1856         }
1857         return err;
1858
1859 recover:
1860         /*
1861          * ENOSPC, or some other error.  We may already have added some
1862          * blocks to the file, so we need to write these out to avoid
1863          * exposing stale data.
1864          * The page is currently locked and not marked for writeback
1865          */
1866         bh = head;
1867         /* Recovery: lock and submit the mapped buffers */
1868         do {
1869                 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1870                     !buffer_delay(bh)) {
1871                         lock_buffer(bh);
1872                         mark_buffer_async_write_endio(bh, handler);
1873                 } else {
1874                         /*
1875                          * The buffer may have been set dirty during
1876                          * attachment to a dirty page.
1877                          */
1878                         clear_buffer_dirty(bh);
1879                 }
1880         } while ((bh = bh->b_this_page) != head);
1881         SetPageError(page);
1882         BUG_ON(PageWriteback(page));
1883         mapping_set_error(page->mapping, err);
1884         set_page_writeback(page);
1885         do {
1886                 struct buffer_head *next = bh->b_this_page;
1887                 if (buffer_async_write(bh)) {
1888                         clear_buffer_dirty(bh);
1889                         submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1890                                         inode->i_write_hint, wbc);
1891                         nr_underway++;
1892                 }
1893                 bh = next;
1894         } while (bh != head);
1895         unlock_page(page);
1896         goto done;
1897 }
1898 EXPORT_SYMBOL(__block_write_full_page);
1899
1900 /*
1901  * If a page has any new buffers, zero them out here, and mark them uptodate
1902  * and dirty so they'll be written out (in order to prevent uninitialised
1903  * block data from leaking). And clear the new bit.
1904  */
1905 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1906 {
1907         unsigned int block_start, block_end;
1908         struct buffer_head *head, *bh;
1909
1910         BUG_ON(!PageLocked(page));
1911         if (!page_has_buffers(page))
1912                 return;
1913
1914         bh = head = page_buffers(page);
1915         block_start = 0;
1916         do {
1917                 block_end = block_start + bh->b_size;
1918
1919                 if (buffer_new(bh)) {
1920                         if (block_end > from && block_start < to) {
1921                                 if (!PageUptodate(page)) {
1922                                         unsigned start, size;
1923
1924                                         start = max(from, block_start);
1925                                         size = min(to, block_end) - start;
1926
1927                                         zero_user(page, start, size);
1928                                         set_buffer_uptodate(bh);
1929                                 }
1930
1931                                 clear_buffer_new(bh);
1932                                 mark_buffer_dirty(bh);
1933                         }
1934                 }
1935
1936                 block_start = block_end;
1937                 bh = bh->b_this_page;
1938         } while (bh != head);
1939 }
1940 EXPORT_SYMBOL(page_zero_new_buffers);
1941
1942 static void
1943 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1944                 struct iomap *iomap)
1945 {
1946         loff_t offset = block << inode->i_blkbits;
1947
1948         bh->b_bdev = iomap->bdev;
1949
1950         /*
1951          * Block points to offset in file we need to map, iomap contains
1952          * the offset at which the map starts. If the map ends before the
1953          * current block, then do not map the buffer and let the caller
1954          * handle it.
1955          */
1956         BUG_ON(offset >= iomap->offset + iomap->length);
1957
1958         switch (iomap->type) {
1959         case IOMAP_HOLE:
1960                 /*
1961                  * If the buffer is not up to date or beyond the current EOF,
1962                  * we need to mark it as new to ensure sub-block zeroing is
1963                  * executed if necessary.
1964                  */
1965                 if (!buffer_uptodate(bh) ||
1966                     (offset >= i_size_read(inode)))
1967                         set_buffer_new(bh);
1968                 break;
1969         case IOMAP_DELALLOC:
1970                 if (!buffer_uptodate(bh) ||
1971                     (offset >= i_size_read(inode)))
1972                         set_buffer_new(bh);
1973                 set_buffer_uptodate(bh);
1974                 set_buffer_mapped(bh);
1975                 set_buffer_delay(bh);
1976                 break;
1977         case IOMAP_UNWRITTEN:
1978                 /*
1979                  * For unwritten regions, we always need to ensure that regions
1980                  * in the block we are not writing to are zeroed. Mark the
1981                  * buffer as new to ensure this.
1982                  */
1983                 set_buffer_new(bh);
1984                 set_buffer_unwritten(bh);
1985                 fallthrough;
1986         case IOMAP_MAPPED:
1987                 if ((iomap->flags & IOMAP_F_NEW) ||
1988                     offset >= i_size_read(inode))
1989                         set_buffer_new(bh);
1990                 bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
1991                                 inode->i_blkbits;
1992                 set_buffer_mapped(bh);
1993                 break;
1994         }
1995 }
1996
1997 int __block_write_begin_int(struct page *page, loff_t pos, unsigned len,
1998                 get_block_t *get_block, struct iomap *iomap)
1999 {
2000         unsigned from = pos & (PAGE_SIZE - 1);
2001         unsigned to = from + len;
2002         struct inode *inode = page->mapping->host;
2003         unsigned block_start, block_end;
2004         sector_t block;
2005         int err = 0;
2006         unsigned blocksize, bbits;
2007         struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
2008
2009         BUG_ON(!PageLocked(page));
2010         BUG_ON(from > PAGE_SIZE);
2011         BUG_ON(to > PAGE_SIZE);
2012         BUG_ON(from > to);
2013
2014         head = create_page_buffers(page, inode, 0);
2015         blocksize = head->b_size;
2016         bbits = block_size_bits(blocksize);
2017
2018         block = (sector_t)page->index << (PAGE_SHIFT - bbits);
2019
2020         for(bh = head, block_start = 0; bh != head || !block_start;
2021             block++, block_start=block_end, bh = bh->b_this_page) {
2022                 block_end = block_start + blocksize;
2023                 if (block_end <= from || block_start >= to) {
2024                         if (PageUptodate(page)) {
2025                                 if (!buffer_uptodate(bh))
2026                                         set_buffer_uptodate(bh);
2027                         }
2028                         continue;
2029                 }
2030                 if (buffer_new(bh))
2031                         clear_buffer_new(bh);
2032                 if (!buffer_mapped(bh)) {
2033                         WARN_ON(bh->b_size != blocksize);
2034                         if (get_block) {
2035                                 err = get_block(inode, block, bh, 1);
2036                                 if (err)
2037                                         break;
2038                         } else {
2039                                 iomap_to_bh(inode, block, bh, iomap);
2040                         }
2041
2042                         if (buffer_new(bh)) {
2043                                 clean_bdev_bh_alias(bh);
2044                                 if (PageUptodate(page)) {
2045                                         clear_buffer_new(bh);
2046                                         set_buffer_uptodate(bh);
2047                                         mark_buffer_dirty(bh);
2048                                         continue;
2049                                 }
2050                                 if (block_end > to || block_start < from)
2051                                         zero_user_segments(page,
2052                                                 to, block_end,
2053                                                 block_start, from);
2054                                 continue;
2055                         }
2056                 }
2057                 if (PageUptodate(page)) {
2058                         if (!buffer_uptodate(bh))
2059                                 set_buffer_uptodate(bh);
2060                         continue; 
2061                 }
2062                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2063                     !buffer_unwritten(bh) &&
2064                      (block_start < from || block_end > to)) {
2065                         ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2066                         *wait_bh++=bh;
2067                 }
2068         }
2069         /*
2070          * If we issued read requests - let them complete.
2071          */
2072         while(wait_bh > wait) {
2073                 wait_on_buffer(*--wait_bh);
2074                 if (!buffer_uptodate(*wait_bh))
2075                         err = -EIO;
2076         }
2077         if (unlikely(err))
2078                 page_zero_new_buffers(page, from, to);
2079         return err;
2080 }
2081
2082 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2083                 get_block_t *get_block)
2084 {
2085         return __block_write_begin_int(page, pos, len, get_block, NULL);
2086 }
2087 EXPORT_SYMBOL(__block_write_begin);
2088
2089 static int __block_commit_write(struct inode *inode, struct page *page,
2090                 unsigned from, unsigned to)
2091 {
2092         unsigned block_start, block_end;
2093         int partial = 0;
2094         unsigned blocksize;
2095         struct buffer_head *bh, *head;
2096
2097         bh = head = page_buffers(page);
2098         blocksize = bh->b_size;
2099
2100         block_start = 0;
2101         do {
2102                 block_end = block_start + blocksize;
2103                 if (block_end <= from || block_start >= to) {
2104                         if (!buffer_uptodate(bh))
2105                                 partial = 1;
2106                 } else {
2107                         set_buffer_uptodate(bh);
2108                         mark_buffer_dirty(bh);
2109                 }
2110                 if (buffer_new(bh))
2111                         clear_buffer_new(bh);
2112
2113                 block_start = block_end;
2114                 bh = bh->b_this_page;
2115         } while (bh != head);
2116
2117         /*
2118          * If this is a partial write which happened to make all buffers
2119          * uptodate then we can optimize away a bogus readpage() for
2120          * the next read(). Here we 'discover' whether the page went
2121          * uptodate as a result of this (potentially partial) write.
2122          */
2123         if (!partial)
2124                 SetPageUptodate(page);
2125         return 0;
2126 }
2127
2128 /*
2129  * block_write_begin takes care of the basic task of block allocation and
2130  * bringing partial write blocks uptodate first.
2131  *
2132  * The filesystem needs to handle block truncation upon failure.
2133  */
2134 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2135                 unsigned flags, struct page **pagep, get_block_t *get_block)
2136 {
2137         pgoff_t index = pos >> PAGE_SHIFT;
2138         struct page *page;
2139         int status;
2140
2141         page = grab_cache_page_write_begin(mapping, index, flags);
2142         if (!page)
2143                 return -ENOMEM;
2144
2145         status = __block_write_begin(page, pos, len, get_block);
2146         if (unlikely(status)) {
2147                 unlock_page(page);
2148                 put_page(page);
2149                 page = NULL;
2150         }
2151
2152         *pagep = page;
2153         return status;
2154 }
2155 EXPORT_SYMBOL(block_write_begin);
2156
2157 int block_write_end(struct file *file, struct address_space *mapping,
2158                         loff_t pos, unsigned len, unsigned copied,
2159                         struct page *page, void *fsdata)
2160 {
2161         struct inode *inode = mapping->host;
2162         unsigned start;
2163
2164         start = pos & (PAGE_SIZE - 1);
2165
2166         if (unlikely(copied < len)) {
2167                 /*
2168                  * The buffers that were written will now be uptodate, so we
2169                  * don't have to worry about a readpage reading them and
2170                  * overwriting a partial write. However if we have encountered
2171                  * a short write and only partially written into a buffer, it
2172                  * will not be marked uptodate, so a readpage might come in and
2173                  * destroy our partial write.
2174                  *
2175                  * Do the simplest thing, and just treat any short write to a
2176                  * non uptodate page as a zero-length write, and force the
2177                  * caller to redo the whole thing.
2178                  */
2179                 if (!PageUptodate(page))
2180                         copied = 0;
2181
2182                 page_zero_new_buffers(page, start+copied, start+len);
2183         }
2184         flush_dcache_page(page);
2185
2186         /* This could be a short (even 0-length) commit */
2187         __block_commit_write(inode, page, start, start+copied);
2188
2189         return copied;
2190 }
2191 EXPORT_SYMBOL(block_write_end);
2192
2193 int generic_write_end(struct file *file, struct address_space *mapping,
2194                         loff_t pos, unsigned len, unsigned copied,
2195                         struct page *page, void *fsdata)
2196 {
2197         struct inode *inode = mapping->host;
2198         loff_t old_size = inode->i_size;
2199         bool i_size_changed = false;
2200
2201         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2202
2203         /*
2204          * No need to use i_size_read() here, the i_size cannot change under us
2205          * because we hold i_rwsem.
2206          *
2207          * But it's important to update i_size while still holding page lock:
2208          * page writeout could otherwise come in and zero beyond i_size.
2209          */
2210         if (pos + copied > inode->i_size) {
2211                 i_size_write(inode, pos + copied);
2212                 i_size_changed = true;
2213         }
2214
2215         unlock_page(page);
2216         put_page(page);
2217
2218         if (old_size < pos)
2219                 pagecache_isize_extended(inode, old_size, pos);
2220         /*
2221          * Don't mark the inode dirty under page lock. First, it unnecessarily
2222          * makes the holding time of page lock longer. Second, it forces lock
2223          * ordering of page lock and transaction start for journaling
2224          * filesystems.
2225          */
2226         if (i_size_changed)
2227                 mark_inode_dirty(inode);
2228         return copied;
2229 }
2230 EXPORT_SYMBOL(generic_write_end);
2231
2232 /*
2233  * block_is_partially_uptodate checks whether buffers within a page are
2234  * uptodate or not.
2235  *
2236  * Returns true if all buffers which correspond to a file portion
2237  * we want to read are uptodate.
2238  */
2239 int block_is_partially_uptodate(struct page *page, unsigned long from,
2240                                         unsigned long count)
2241 {
2242         unsigned block_start, block_end, blocksize;
2243         unsigned to;
2244         struct buffer_head *bh, *head;
2245         int ret = 1;
2246
2247         if (!page_has_buffers(page))
2248                 return 0;
2249
2250         head = page_buffers(page);
2251         blocksize = head->b_size;
2252         to = min_t(unsigned, PAGE_SIZE - from, count);
2253         to = from + to;
2254         if (from < blocksize && to > PAGE_SIZE - blocksize)
2255                 return 0;
2256
2257         bh = head;
2258         block_start = 0;
2259         do {
2260                 block_end = block_start + blocksize;
2261                 if (block_end > from && block_start < to) {
2262                         if (!buffer_uptodate(bh)) {
2263                                 ret = 0;
2264                                 break;
2265                         }
2266                         if (block_end >= to)
2267                                 break;
2268                 }
2269                 block_start = block_end;
2270                 bh = bh->b_this_page;
2271         } while (bh != head);
2272
2273         return ret;
2274 }
2275 EXPORT_SYMBOL(block_is_partially_uptodate);
2276
2277 /*
2278  * Generic "read page" function for block devices that have the normal
2279  * get_block functionality. This is most of the block device filesystems.
2280  * Reads the page asynchronously --- the unlock_buffer() and
2281  * set/clear_buffer_uptodate() functions propagate buffer state into the
2282  * page struct once IO has completed.
2283  */
2284 int block_read_full_page(struct page *page, get_block_t *get_block)
2285 {
2286         struct inode *inode = page->mapping->host;
2287         sector_t iblock, lblock;
2288         struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2289         unsigned int blocksize, bbits;
2290         int nr, i;
2291         int fully_mapped = 1;
2292
2293         head = create_page_buffers(page, inode, 0);
2294         blocksize = head->b_size;
2295         bbits = block_size_bits(blocksize);
2296
2297         iblock = (sector_t)page->index << (PAGE_SHIFT - bbits);
2298         lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2299         bh = head;
2300         nr = 0;
2301         i = 0;
2302
2303         do {
2304                 if (buffer_uptodate(bh))
2305                         continue;
2306
2307                 if (!buffer_mapped(bh)) {
2308                         int err = 0;
2309
2310                         fully_mapped = 0;
2311                         if (iblock < lblock) {
2312                                 WARN_ON(bh->b_size != blocksize);
2313                                 err = get_block(inode, iblock, bh, 0);
2314                                 if (err)
2315                                         SetPageError(page);
2316                         }
2317                         if (!buffer_mapped(bh)) {
2318                                 zero_user(page, i * blocksize, blocksize);
2319                                 if (!err)
2320                                         set_buffer_uptodate(bh);
2321                                 continue;
2322                         }
2323                         /*
2324                          * get_block() might have updated the buffer
2325                          * synchronously
2326                          */
2327                         if (buffer_uptodate(bh))
2328                                 continue;
2329                 }
2330                 arr[nr++] = bh;
2331         } while (i++, iblock++, (bh = bh->b_this_page) != head);
2332
2333         if (fully_mapped)
2334                 SetPageMappedToDisk(page);
2335
2336         if (!nr) {
2337                 /*
2338                  * All buffers are uptodate - we can set the page uptodate
2339                  * as well. But not if get_block() returned an error.
2340                  */
2341                 if (!PageError(page))
2342                         SetPageUptodate(page);
2343                 unlock_page(page);
2344                 return 0;
2345         }
2346
2347         /* Stage two: lock the buffers */
2348         for (i = 0; i < nr; i++) {
2349                 bh = arr[i];
2350                 lock_buffer(bh);
2351                 mark_buffer_async_read(bh);
2352         }
2353
2354         /*
2355          * Stage 3: start the IO.  Check for uptodateness
2356          * inside the buffer lock in case another process reading
2357          * the underlying blockdev brought it uptodate (the sct fix).
2358          */
2359         for (i = 0; i < nr; i++) {
2360                 bh = arr[i];
2361                 if (buffer_uptodate(bh))
2362                         end_buffer_async_read(bh, 1);
2363                 else
2364                         submit_bh(REQ_OP_READ, 0, bh);
2365         }
2366         return 0;
2367 }
2368 EXPORT_SYMBOL(block_read_full_page);
2369
2370 /* utility function for filesystems that need to do work on expanding
2371  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2372  * deal with the hole.  
2373  */
2374 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2375 {
2376         struct address_space *mapping = inode->i_mapping;
2377         struct page *page;
2378         void *fsdata;
2379         int err;
2380
2381         err = inode_newsize_ok(inode, size);
2382         if (err)
2383                 goto out;
2384
2385         err = pagecache_write_begin(NULL, mapping, size, 0,
2386                                     AOP_FLAG_CONT_EXPAND, &page, &fsdata);
2387         if (err)
2388                 goto out;
2389
2390         err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2391         BUG_ON(err > 0);
2392
2393 out:
2394         return err;
2395 }
2396 EXPORT_SYMBOL(generic_cont_expand_simple);
2397
2398 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2399                             loff_t pos, loff_t *bytes)
2400 {
2401         struct inode *inode = mapping->host;
2402         unsigned int blocksize = i_blocksize(inode);
2403         struct page *page;
2404         void *fsdata;
2405         pgoff_t index, curidx;
2406         loff_t curpos;
2407         unsigned zerofrom, offset, len;
2408         int err = 0;
2409
2410         index = pos >> PAGE_SHIFT;
2411         offset = pos & ~PAGE_MASK;
2412
2413         while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2414                 zerofrom = curpos & ~PAGE_MASK;
2415                 if (zerofrom & (blocksize-1)) {
2416                         *bytes |= (blocksize-1);
2417                         (*bytes)++;
2418                 }
2419                 len = PAGE_SIZE - zerofrom;
2420
2421                 err = pagecache_write_begin(file, mapping, curpos, len, 0,
2422                                             &page, &fsdata);
2423                 if (err)
2424                         goto out;
2425                 zero_user(page, zerofrom, len);
2426                 err = pagecache_write_end(file, mapping, curpos, len, len,
2427                                                 page, fsdata);
2428                 if (err < 0)
2429                         goto out;
2430                 BUG_ON(err != len);
2431                 err = 0;
2432
2433                 balance_dirty_pages_ratelimited(mapping);
2434
2435                 if (fatal_signal_pending(current)) {
2436                         err = -EINTR;
2437                         goto out;
2438                 }
2439         }
2440
2441         /* page covers the boundary, find the boundary offset */
2442         if (index == curidx) {
2443                 zerofrom = curpos & ~PAGE_MASK;
2444                 /* if we will expand the thing last block will be filled */
2445                 if (offset <= zerofrom) {
2446                         goto out;
2447                 }
2448                 if (zerofrom & (blocksize-1)) {
2449                         *bytes |= (blocksize-1);
2450                         (*bytes)++;
2451                 }
2452                 len = offset - zerofrom;
2453
2454                 err = pagecache_write_begin(file, mapping, curpos, len, 0,
2455                                             &page, &fsdata);
2456                 if (err)
2457                         goto out;
2458                 zero_user(page, zerofrom, len);
2459                 err = pagecache_write_end(file, mapping, curpos, len, len,
2460                                                 page, fsdata);
2461                 if (err < 0)
2462                         goto out;
2463                 BUG_ON(err != len);
2464                 err = 0;
2465         }
2466 out:
2467         return err;
2468 }
2469
2470 /*
2471  * For moronic filesystems that do not allow holes in file.
2472  * We may have to extend the file.
2473  */
2474 int cont_write_begin(struct file *file, struct address_space *mapping,
2475                         loff_t pos, unsigned len, unsigned flags,
2476                         struct page **pagep, void **fsdata,
2477                         get_block_t *get_block, loff_t *bytes)
2478 {
2479         struct inode *inode = mapping->host;
2480         unsigned int blocksize = i_blocksize(inode);
2481         unsigned int zerofrom;
2482         int err;
2483
2484         err = cont_expand_zero(file, mapping, pos, bytes);
2485         if (err)
2486                 return err;
2487
2488         zerofrom = *bytes & ~PAGE_MASK;
2489         if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2490                 *bytes |= (blocksize-1);
2491                 (*bytes)++;
2492         }
2493
2494         return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2495 }
2496 EXPORT_SYMBOL(cont_write_begin);
2497
2498 int block_commit_write(struct page *page, unsigned from, unsigned to)
2499 {
2500         struct inode *inode = page->mapping->host;
2501         __block_commit_write(inode,page,from,to);
2502         return 0;
2503 }
2504 EXPORT_SYMBOL(block_commit_write);
2505
2506 /*
2507  * block_page_mkwrite() is not allowed to change the file size as it gets
2508  * called from a page fault handler when a page is first dirtied. Hence we must
2509  * be careful to check for EOF conditions here. We set the page up correctly
2510  * for a written page which means we get ENOSPC checking when writing into
2511  * holes and correct delalloc and unwritten extent mapping on filesystems that
2512  * support these features.
2513  *
2514  * We are not allowed to take the i_mutex here so we have to play games to
2515  * protect against truncate races as the page could now be beyond EOF.  Because
2516  * truncate writes the inode size before removing pages, once we have the
2517  * page lock we can determine safely if the page is beyond EOF. If it is not
2518  * beyond EOF, then the page is guaranteed safe against truncation until we
2519  * unlock the page.
2520  *
2521  * Direct callers of this function should protect against filesystem freezing
2522  * using sb_start_pagefault() - sb_end_pagefault() functions.
2523  */
2524 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2525                          get_block_t get_block)
2526 {
2527         struct page *page = vmf->page;
2528         struct inode *inode = file_inode(vma->vm_file);
2529         unsigned long end;
2530         loff_t size;
2531         int ret;
2532
2533         lock_page(page);
2534         size = i_size_read(inode);
2535         if ((page->mapping != inode->i_mapping) ||
2536             (page_offset(page) > size)) {
2537                 /* We overload EFAULT to mean page got truncated */
2538                 ret = -EFAULT;
2539                 goto out_unlock;
2540         }
2541
2542         /* page is wholly or partially inside EOF */
2543         if (((page->index + 1) << PAGE_SHIFT) > size)
2544                 end = size & ~PAGE_MASK;
2545         else
2546                 end = PAGE_SIZE;
2547
2548         ret = __block_write_begin(page, 0, end, get_block);
2549         if (!ret)
2550                 ret = block_commit_write(page, 0, end);
2551
2552         if (unlikely(ret < 0))
2553                 goto out_unlock;
2554         set_page_dirty(page);
2555         wait_for_stable_page(page);
2556         return 0;
2557 out_unlock:
2558         unlock_page(page);
2559         return ret;
2560 }
2561 EXPORT_SYMBOL(block_page_mkwrite);
2562
2563 /*
2564  * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2565  * immediately, while under the page lock.  So it needs a special end_io
2566  * handler which does not touch the bh after unlocking it.
2567  */
2568 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2569 {
2570         __end_buffer_read_notouch(bh, uptodate);
2571 }
2572
2573 /*
2574  * Attach the singly-linked list of buffers created by nobh_write_begin, to
2575  * the page (converting it to circular linked list and taking care of page
2576  * dirty races).
2577  */
2578 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2579 {
2580         struct buffer_head *bh;
2581
2582         BUG_ON(!PageLocked(page));
2583
2584         spin_lock(&page->mapping->private_lock);
2585         bh = head;
2586         do {
2587                 if (PageDirty(page))
2588                         set_buffer_dirty(bh);
2589                 if (!bh->b_this_page)
2590                         bh->b_this_page = head;
2591                 bh = bh->b_this_page;
2592         } while (bh != head);
2593         attach_page_private(page, head);
2594         spin_unlock(&page->mapping->private_lock);
2595 }
2596
2597 /*
2598  * On entry, the page is fully not uptodate.
2599  * On exit the page is fully uptodate in the areas outside (from,to)
2600  * The filesystem needs to handle block truncation upon failure.
2601  */
2602 int nobh_write_begin(struct address_space *mapping,
2603                         loff_t pos, unsigned len, unsigned flags,
2604                         struct page **pagep, void **fsdata,
2605                         get_block_t *get_block)
2606 {
2607         struct inode *inode = mapping->host;
2608         const unsigned blkbits = inode->i_blkbits;
2609         const unsigned blocksize = 1 << blkbits;
2610         struct buffer_head *head, *bh;
2611         struct page *page;
2612         pgoff_t index;
2613         unsigned from, to;
2614         unsigned block_in_page;
2615         unsigned block_start, block_end;
2616         sector_t block_in_file;
2617         int nr_reads = 0;
2618         int ret = 0;
2619         int is_mapped_to_disk = 1;
2620
2621         index = pos >> PAGE_SHIFT;
2622         from = pos & (PAGE_SIZE - 1);
2623         to = from + len;
2624
2625         page = grab_cache_page_write_begin(mapping, index, flags);
2626         if (!page)
2627                 return -ENOMEM;
2628         *pagep = page;
2629         *fsdata = NULL;
2630
2631         if (page_has_buffers(page)) {
2632                 ret = __block_write_begin(page, pos, len, get_block);
2633                 if (unlikely(ret))
2634                         goto out_release;
2635                 return ret;
2636         }
2637
2638         if (PageMappedToDisk(page))
2639                 return 0;
2640
2641         /*
2642          * Allocate buffers so that we can keep track of state, and potentially
2643          * attach them to the page if an error occurs. In the common case of
2644          * no error, they will just be freed again without ever being attached
2645          * to the page (which is all OK, because we're under the page lock).
2646          *
2647          * Be careful: the buffer linked list is a NULL terminated one, rather
2648          * than the circular one we're used to.
2649          */
2650         head = alloc_page_buffers(page, blocksize, false);
2651         if (!head) {
2652                 ret = -ENOMEM;
2653                 goto out_release;
2654         }
2655
2656         block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
2657
2658         /*
2659          * We loop across all blocks in the page, whether or not they are
2660          * part of the affected region.  This is so we can discover if the
2661          * page is fully mapped-to-disk.
2662          */
2663         for (block_start = 0, block_in_page = 0, bh = head;
2664                   block_start < PAGE_SIZE;
2665                   block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2666                 int create;
2667
2668                 block_end = block_start + blocksize;
2669                 bh->b_state = 0;
2670                 create = 1;
2671                 if (block_start >= to)
2672                         create = 0;
2673                 ret = get_block(inode, block_in_file + block_in_page,
2674                                         bh, create);
2675                 if (ret)
2676                         goto failed;
2677                 if (!buffer_mapped(bh))
2678                         is_mapped_to_disk = 0;
2679                 if (buffer_new(bh))
2680                         clean_bdev_bh_alias(bh);
2681                 if (PageUptodate(page)) {
2682                         set_buffer_uptodate(bh);
2683                         continue;
2684                 }
2685                 if (buffer_new(bh) || !buffer_mapped(bh)) {
2686                         zero_user_segments(page, block_start, from,
2687                                                         to, block_end);
2688                         continue;
2689                 }
2690                 if (buffer_uptodate(bh))
2691                         continue;       /* reiserfs does this */
2692                 if (block_start < from || block_end > to) {
2693                         lock_buffer(bh);
2694                         bh->b_end_io = end_buffer_read_nobh;
2695                         submit_bh(REQ_OP_READ, 0, bh);
2696                         nr_reads++;
2697                 }
2698         }
2699
2700         if (nr_reads) {
2701                 /*
2702                  * The page is locked, so these buffers are protected from
2703                  * any VM or truncate activity.  Hence we don't need to care
2704                  * for the buffer_head refcounts.
2705                  */
2706                 for (bh = head; bh; bh = bh->b_this_page) {
2707                         wait_on_buffer(bh);
2708                         if (!buffer_uptodate(bh))
2709                                 ret = -EIO;
2710                 }
2711                 if (ret)
2712                         goto failed;
2713         }
2714
2715         if (is_mapped_to_disk)
2716                 SetPageMappedToDisk(page);
2717
2718         *fsdata = head; /* to be released by nobh_write_end */
2719
2720         return 0;
2721
2722 failed:
2723         BUG_ON(!ret);
2724         /*
2725          * Error recovery is a bit difficult. We need to zero out blocks that
2726          * were newly allocated, and dirty them to ensure they get written out.
2727          * Buffers need to be attached to the page at this point, otherwise
2728          * the handling of potential IO errors during writeout would be hard
2729          * (could try doing synchronous writeout, but what if that fails too?)
2730          */
2731         attach_nobh_buffers(page, head);
2732         page_zero_new_buffers(page, from, to);
2733
2734 out_release:
2735         unlock_page(page);
2736         put_page(page);
2737         *pagep = NULL;
2738
2739         return ret;
2740 }
2741 EXPORT_SYMBOL(nobh_write_begin);
2742
2743 int nobh_write_end(struct file *file, struct address_space *mapping,
2744                         loff_t pos, unsigned len, unsigned copied,
2745                         struct page *page, void *fsdata)
2746 {
2747         struct inode *inode = page->mapping->host;
2748         struct buffer_head *head = fsdata;
2749         struct buffer_head *bh;
2750         BUG_ON(fsdata != NULL && page_has_buffers(page));
2751
2752         if (unlikely(copied < len) && head)
2753                 attach_nobh_buffers(page, head);
2754         if (page_has_buffers(page))
2755                 return generic_write_end(file, mapping, pos, len,
2756                                         copied, page, fsdata);
2757
2758         SetPageUptodate(page);
2759         set_page_dirty(page);
2760         if (pos+copied > inode->i_size) {
2761                 i_size_write(inode, pos+copied);
2762                 mark_inode_dirty(inode);
2763         }
2764
2765         unlock_page(page);
2766         put_page(page);
2767
2768         while (head) {
2769                 bh = head;
2770                 head = head->b_this_page;
2771                 free_buffer_head(bh);
2772         }
2773
2774         return copied;
2775 }
2776 EXPORT_SYMBOL(nobh_write_end);
2777
2778 /*
2779  * nobh_writepage() - based on block_full_write_page() except
2780  * that it tries to operate without attaching bufferheads to
2781  * the page.
2782  */
2783 int nobh_writepage(struct page *page, get_block_t *get_block,
2784                         struct writeback_control *wbc)
2785 {
2786         struct inode * const inode = page->mapping->host;
2787         loff_t i_size = i_size_read(inode);
2788         const pgoff_t end_index = i_size >> PAGE_SHIFT;
2789         unsigned offset;
2790         int ret;
2791
2792         /* Is the page fully inside i_size? */
2793         if (page->index < end_index)
2794                 goto out;
2795
2796         /* Is the page fully outside i_size? (truncate in progress) */
2797         offset = i_size & (PAGE_SIZE-1);
2798         if (page->index >= end_index+1 || !offset) {
2799                 unlock_page(page);
2800                 return 0; /* don't care */
2801         }
2802
2803         /*
2804          * The page straddles i_size.  It must be zeroed out on each and every
2805          * writepage invocation because it may be mmapped.  "A file is mapped
2806          * in multiples of the page size.  For a file that is not a multiple of
2807          * the  page size, the remaining memory is zeroed when mapped, and
2808          * writes to that region are not written out to the file."
2809          */
2810         zero_user_segment(page, offset, PAGE_SIZE);
2811 out:
2812         ret = mpage_writepage(page, get_block, wbc);
2813         if (ret == -EAGAIN)
2814                 ret = __block_write_full_page(inode, page, get_block, wbc,
2815                                               end_buffer_async_write);
2816         return ret;
2817 }
2818 EXPORT_SYMBOL(nobh_writepage);
2819
2820 int nobh_truncate_page(struct address_space *mapping,
2821                         loff_t from, get_block_t *get_block)
2822 {
2823         pgoff_t index = from >> PAGE_SHIFT;
2824         unsigned offset = from & (PAGE_SIZE-1);
2825         unsigned blocksize;
2826         sector_t iblock;
2827         unsigned length, pos;
2828         struct inode *inode = mapping->host;
2829         struct page *page;
2830         struct buffer_head map_bh;
2831         int err;
2832
2833         blocksize = i_blocksize(inode);
2834         length = offset & (blocksize - 1);
2835
2836         /* Block boundary? Nothing to do */
2837         if (!length)
2838                 return 0;
2839
2840         length = blocksize - length;
2841         iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2842
2843         page = grab_cache_page(mapping, index);
2844         err = -ENOMEM;
2845         if (!page)
2846                 goto out;
2847
2848         if (page_has_buffers(page)) {
2849 has_buffers:
2850                 unlock_page(page);
2851                 put_page(page);
2852                 return block_truncate_page(mapping, from, get_block);
2853         }
2854
2855         /* Find the buffer that contains "offset" */
2856         pos = blocksize;
2857         while (offset >= pos) {
2858                 iblock++;
2859                 pos += blocksize;
2860         }
2861
2862         map_bh.b_size = blocksize;
2863         map_bh.b_state = 0;
2864         err = get_block(inode, iblock, &map_bh, 0);
2865         if (err)
2866                 goto unlock;
2867         /* unmapped? It's a hole - nothing to do */
2868         if (!buffer_mapped(&map_bh))
2869                 goto unlock;
2870
2871         /* Ok, it's mapped. Make sure it's up-to-date */
2872         if (!PageUptodate(page)) {
2873                 err = mapping->a_ops->readpage(NULL, page);
2874                 if (err) {
2875                         put_page(page);
2876                         goto out;
2877                 }
2878                 lock_page(page);
2879                 if (!PageUptodate(page)) {
2880                         err = -EIO;
2881                         goto unlock;
2882                 }
2883                 if (page_has_buffers(page))
2884                         goto has_buffers;
2885         }
2886         zero_user(page, offset, length);
2887         set_page_dirty(page);
2888         err = 0;
2889
2890 unlock:
2891         unlock_page(page);
2892         put_page(page);
2893 out:
2894         return err;
2895 }
2896 EXPORT_SYMBOL(nobh_truncate_page);
2897
2898 int block_truncate_page(struct address_space *mapping,
2899                         loff_t from, get_block_t *get_block)
2900 {
2901         pgoff_t index = from >> PAGE_SHIFT;
2902         unsigned offset = from & (PAGE_SIZE-1);
2903         unsigned blocksize;
2904         sector_t iblock;
2905         unsigned length, pos;
2906         struct inode *inode = mapping->host;
2907         struct page *page;
2908         struct buffer_head *bh;
2909         int err;
2910
2911         blocksize = i_blocksize(inode);
2912         length = offset & (blocksize - 1);
2913
2914         /* Block boundary? Nothing to do */
2915         if (!length)
2916                 return 0;
2917
2918         length = blocksize - length;
2919         iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2920         
2921         page = grab_cache_page(mapping, index);
2922         err = -ENOMEM;
2923         if (!page)
2924                 goto out;
2925
2926         if (!page_has_buffers(page))
2927                 create_empty_buffers(page, blocksize, 0);
2928
2929         /* Find the buffer that contains "offset" */
2930         bh = page_buffers(page);
2931         pos = blocksize;
2932         while (offset >= pos) {
2933                 bh = bh->b_this_page;
2934                 iblock++;
2935                 pos += blocksize;
2936         }
2937
2938         err = 0;
2939         if (!buffer_mapped(bh)) {
2940                 WARN_ON(bh->b_size != blocksize);
2941                 err = get_block(inode, iblock, bh, 0);
2942                 if (err)
2943                         goto unlock;
2944                 /* unmapped? It's a hole - nothing to do */
2945                 if (!buffer_mapped(bh))
2946                         goto unlock;
2947         }
2948
2949         /* Ok, it's mapped. Make sure it's up-to-date */
2950         if (PageUptodate(page))
2951                 set_buffer_uptodate(bh);
2952
2953         if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2954                 err = -EIO;
2955                 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2956                 wait_on_buffer(bh);
2957                 /* Uhhuh. Read error. Complain and punt. */
2958                 if (!buffer_uptodate(bh))
2959                         goto unlock;
2960         }
2961
2962         zero_user(page, offset, length);
2963         mark_buffer_dirty(bh);
2964         err = 0;
2965
2966 unlock:
2967         unlock_page(page);
2968         put_page(page);
2969 out:
2970         return err;
2971 }
2972 EXPORT_SYMBOL(block_truncate_page);
2973
2974 /*
2975  * The generic ->writepage function for buffer-backed address_spaces
2976  */
2977 int block_write_full_page(struct page *page, get_block_t *get_block,
2978                         struct writeback_control *wbc)
2979 {
2980         struct inode * const inode = page->mapping->host;
2981         loff_t i_size = i_size_read(inode);
2982         const pgoff_t end_index = i_size >> PAGE_SHIFT;
2983         unsigned offset;
2984
2985         /* Is the page fully inside i_size? */
2986         if (page->index < end_index)
2987                 return __block_write_full_page(inode, page, get_block, wbc,
2988                                                end_buffer_async_write);
2989
2990         /* Is the page fully outside i_size? (truncate in progress) */
2991         offset = i_size & (PAGE_SIZE-1);
2992         if (page->index >= end_index+1 || !offset) {
2993                 unlock_page(page);
2994                 return 0; /* don't care */
2995         }
2996
2997         /*
2998          * The page straddles i_size.  It must be zeroed out on each and every
2999          * writepage invocation because it may be mmapped.  "A file is mapped
3000          * in multiples of the page size.  For a file that is not a multiple of
3001          * the  page size, the remaining memory is zeroed when mapped, and
3002          * writes to that region are not written out to the file."
3003          */
3004         zero_user_segment(page, offset, PAGE_SIZE);
3005         return __block_write_full_page(inode, page, get_block, wbc,
3006                                                         end_buffer_async_write);
3007 }
3008 EXPORT_SYMBOL(block_write_full_page);
3009
3010 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
3011                             get_block_t *get_block)
3012 {
3013         struct inode *inode = mapping->host;
3014         struct buffer_head tmp = {
3015                 .b_size = i_blocksize(inode),
3016         };
3017
3018         get_block(inode, block, &tmp, 0);
3019         return tmp.b_blocknr;
3020 }
3021 EXPORT_SYMBOL(generic_block_bmap);
3022
3023 static void end_bio_bh_io_sync(struct bio *bio)
3024 {
3025         struct buffer_head *bh = bio->bi_private;
3026
3027         if (unlikely(bio_flagged(bio, BIO_QUIET)))
3028                 set_bit(BH_Quiet, &bh->b_state);
3029
3030         bh->b_end_io(bh, !bio->bi_status);
3031         bio_put(bio);
3032 }
3033
3034 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
3035                          enum rw_hint write_hint, struct writeback_control *wbc)
3036 {
3037         struct bio *bio;
3038
3039         BUG_ON(!buffer_locked(bh));
3040         BUG_ON(!buffer_mapped(bh));
3041         BUG_ON(!bh->b_end_io);
3042         BUG_ON(buffer_delay(bh));
3043         BUG_ON(buffer_unwritten(bh));
3044
3045         /*
3046          * Only clear out a write error when rewriting
3047          */
3048         if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
3049                 clear_buffer_write_io_error(bh);
3050
3051         bio = bio_alloc(GFP_NOIO, 1);
3052
3053         fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO);
3054
3055         bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3056         bio_set_dev(bio, bh->b_bdev);
3057         bio->bi_write_hint = write_hint;
3058
3059         bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
3060         BUG_ON(bio->bi_iter.bi_size != bh->b_size);
3061
3062         bio->bi_end_io = end_bio_bh_io_sync;
3063         bio->bi_private = bh;
3064
3065         if (buffer_meta(bh))
3066                 op_flags |= REQ_META;
3067         if (buffer_prio(bh))
3068                 op_flags |= REQ_PRIO;
3069         bio_set_op_attrs(bio, op, op_flags);
3070
3071         /* Take care of bh's that straddle the end of the device */
3072         guard_bio_eod(bio);
3073
3074         if (wbc) {
3075                 wbc_init_bio(wbc, bio);
3076                 wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size);
3077         }
3078
3079         submit_bio(bio);
3080         return 0;
3081 }
3082
3083 int submit_bh(int op, int op_flags, struct buffer_head *bh)
3084 {
3085         return submit_bh_wbc(op, op_flags, bh, 0, NULL);
3086 }
3087 EXPORT_SYMBOL(submit_bh);
3088
3089 /**
3090  * ll_rw_block: low-level access to block devices (DEPRECATED)
3091  * @op: whether to %READ or %WRITE
3092  * @op_flags: req_flag_bits
3093  * @nr: number of &struct buffer_heads in the array
3094  * @bhs: array of pointers to &struct buffer_head
3095  *
3096  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3097  * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
3098  * @op_flags contains flags modifying the detailed I/O behavior, most notably
3099  * %REQ_RAHEAD.
3100  *
3101  * This function drops any buffer that it cannot get a lock on (with the
3102  * BH_Lock state bit), any buffer that appears to be clean when doing a write
3103  * request, and any buffer that appears to be up-to-date when doing read
3104  * request.  Further it marks as clean buffers that are processed for
3105  * writing (the buffer cache won't assume that they are actually clean
3106  * until the buffer gets unlocked).
3107  *
3108  * ll_rw_block sets b_end_io to simple completion handler that marks
3109  * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3110  * any waiters. 
3111  *
3112  * All of the buffers must be for the same device, and must also be a
3113  * multiple of the current approved size for the device.
3114  */
3115 void ll_rw_block(int op, int op_flags,  int nr, struct buffer_head *bhs[])
3116 {
3117         int i;
3118
3119         for (i = 0; i < nr; i++) {
3120                 struct buffer_head *bh = bhs[i];
3121
3122                 if (!trylock_buffer(bh))
3123                         continue;
3124                 if (op == WRITE) {
3125                         if (test_clear_buffer_dirty(bh)) {
3126                                 bh->b_end_io = end_buffer_write_sync;
3127                                 get_bh(bh);
3128                                 submit_bh(op, op_flags, bh);
3129                                 continue;
3130                         }
3131                 } else {
3132                         if (!buffer_uptodate(bh)) {
3133                                 bh->b_end_io = end_buffer_read_sync;
3134                                 get_bh(bh);
3135                                 submit_bh(op, op_flags, bh);
3136                                 continue;
3137                         }
3138                 }
3139                 unlock_buffer(bh);
3140         }
3141 }
3142 EXPORT_SYMBOL(ll_rw_block);
3143
3144 void write_dirty_buffer(struct buffer_head *bh, int op_flags)
3145 {
3146         lock_buffer(bh);
3147         if (!test_clear_buffer_dirty(bh)) {
3148                 unlock_buffer(bh);
3149                 return;
3150         }
3151         bh->b_end_io = end_buffer_write_sync;
3152         get_bh(bh);
3153         submit_bh(REQ_OP_WRITE, op_flags, bh);
3154 }
3155 EXPORT_SYMBOL(write_dirty_buffer);
3156
3157 /*
3158  * For a data-integrity writeout, we need to wait upon any in-progress I/O
3159  * and then start new I/O and then wait upon it.  The caller must have a ref on
3160  * the buffer_head.
3161  */
3162 int __sync_dirty_buffer(struct buffer_head *bh, int op_flags)
3163 {
3164         int ret = 0;
3165
3166         WARN_ON(atomic_read(&bh->b_count) < 1);
3167         lock_buffer(bh);
3168         if (test_clear_buffer_dirty(bh)) {
3169                 /*
3170                  * The bh should be mapped, but it might not be if the
3171                  * device was hot-removed. Not much we can do but fail the I/O.
3172                  */
3173                 if (!buffer_mapped(bh)) {
3174                         unlock_buffer(bh);
3175                         return -EIO;
3176                 }
3177
3178                 get_bh(bh);
3179                 bh->b_end_io = end_buffer_write_sync;
3180                 ret = submit_bh(REQ_OP_WRITE, op_flags, bh);
3181                 wait_on_buffer(bh);
3182                 if (!ret && !buffer_uptodate(bh))
3183                         ret = -EIO;
3184         } else {
3185                 unlock_buffer(bh);
3186         }
3187         return ret;
3188 }
3189 EXPORT_SYMBOL(__sync_dirty_buffer);
3190
3191 int sync_dirty_buffer(struct buffer_head *bh)
3192 {
3193         return __sync_dirty_buffer(bh, REQ_SYNC);
3194 }
3195 EXPORT_SYMBOL(sync_dirty_buffer);
3196
3197 /*
3198  * try_to_free_buffers() checks if all the buffers on this particular page
3199  * are unused, and releases them if so.
3200  *
3201  * Exclusion against try_to_free_buffers may be obtained by either
3202  * locking the page or by holding its mapping's private_lock.
3203  *
3204  * If the page is dirty but all the buffers are clean then we need to
3205  * be sure to mark the page clean as well.  This is because the page
3206  * may be against a block device, and a later reattachment of buffers
3207  * to a dirty page will set *all* buffers dirty.  Which would corrupt
3208  * filesystem data on the same device.
3209  *
3210  * The same applies to regular filesystem pages: if all the buffers are
3211  * clean then we set the page clean and proceed.  To do that, we require
3212  * total exclusion from __set_page_dirty_buffers().  That is obtained with
3213  * private_lock.
3214  *
3215  * try_to_free_buffers() is non-blocking.
3216  */
3217 static inline int buffer_busy(struct buffer_head *bh)
3218 {
3219         return atomic_read(&bh->b_count) |
3220                 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3221 }
3222
3223 static int
3224 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3225 {
3226         struct buffer_head *head = page_buffers(page);
3227         struct buffer_head *bh;
3228
3229         bh = head;
3230         do {
3231                 if (buffer_busy(bh))
3232                         goto failed;
3233                 bh = bh->b_this_page;
3234         } while (bh != head);
3235
3236         do {
3237                 struct buffer_head *next = bh->b_this_page;
3238
3239                 if (bh->b_assoc_map)
3240                         __remove_assoc_queue(bh);
3241                 bh = next;
3242         } while (bh != head);
3243         *buffers_to_free = head;
3244         detach_page_private(page);
3245         return 1;
3246 failed:
3247         return 0;
3248 }
3249
3250 int try_to_free_buffers(struct page *page)
3251 {
3252         struct address_space * const mapping = page->mapping;
3253         struct buffer_head *buffers_to_free = NULL;
3254         int ret = 0;
3255
3256         BUG_ON(!PageLocked(page));
3257         if (PageWriteback(page))
3258                 return 0;
3259
3260         if (mapping == NULL) {          /* can this still happen? */
3261                 ret = drop_buffers(page, &buffers_to_free);
3262                 goto out;
3263         }
3264
3265         spin_lock(&mapping->private_lock);
3266         ret = drop_buffers(page, &buffers_to_free);
3267
3268         /*
3269          * If the filesystem writes its buffers by hand (eg ext3)
3270          * then we can have clean buffers against a dirty page.  We
3271          * clean the page here; otherwise the VM will never notice
3272          * that the filesystem did any IO at all.
3273          *
3274          * Also, during truncate, discard_buffer will have marked all
3275          * the page's buffers clean.  We discover that here and clean
3276          * the page also.
3277          *
3278          * private_lock must be held over this entire operation in order
3279          * to synchronise against __set_page_dirty_buffers and prevent the
3280          * dirty bit from being lost.
3281          */
3282         if (ret)
3283                 cancel_dirty_page(page);
3284         spin_unlock(&mapping->private_lock);
3285 out:
3286         if (buffers_to_free) {
3287                 struct buffer_head *bh = buffers_to_free;
3288
3289                 do {
3290                         struct buffer_head *next = bh->b_this_page;
3291                         free_buffer_head(bh);
3292                         bh = next;
3293                 } while (bh != buffers_to_free);
3294         }
3295         return ret;
3296 }
3297 EXPORT_SYMBOL(try_to_free_buffers);
3298
3299 /*
3300  * There are no bdflush tunables left.  But distributions are
3301  * still running obsolete flush daemons, so we terminate them here.
3302  *
3303  * Use of bdflush() is deprecated and will be removed in a future kernel.
3304  * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3305  */
3306 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3307 {
3308         static int msg_count;
3309
3310         if (!capable(CAP_SYS_ADMIN))
3311                 return -EPERM;
3312
3313         if (msg_count < 5) {
3314                 msg_count++;
3315                 printk(KERN_INFO
3316                         "warning: process `%s' used the obsolete bdflush"
3317                         " system call\n", current->comm);
3318                 printk(KERN_INFO "Fix your initscripts?\n");
3319         }
3320
3321         if (func == 1)
3322                 do_exit(0);
3323         return 0;
3324 }
3325
3326 /*
3327  * Buffer-head allocation
3328  */
3329 static struct kmem_cache *bh_cachep __read_mostly;
3330
3331 /*
3332  * Once the number of bh's in the machine exceeds this level, we start
3333  * stripping them in writeback.
3334  */
3335 static unsigned long max_buffer_heads;
3336
3337 int buffer_heads_over_limit;
3338
3339 struct bh_accounting {
3340         int nr;                 /* Number of live bh's */
3341         int ratelimit;          /* Limit cacheline bouncing */
3342 };
3343
3344 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3345
3346 static void recalc_bh_state(void)
3347 {
3348         int i;
3349         int tot = 0;
3350
3351         if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3352                 return;
3353         __this_cpu_write(bh_accounting.ratelimit, 0);
3354         for_each_online_cpu(i)
3355                 tot += per_cpu(bh_accounting, i).nr;
3356         buffer_heads_over_limit = (tot > max_buffer_heads);
3357 }
3358
3359 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3360 {
3361         struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3362         if (ret) {
3363                 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3364                 spin_lock_init(&ret->b_uptodate_lock);
3365                 preempt_disable();
3366                 __this_cpu_inc(bh_accounting.nr);
3367                 recalc_bh_state();
3368                 preempt_enable();
3369         }
3370         return ret;
3371 }
3372 EXPORT_SYMBOL(alloc_buffer_head);
3373
3374 void free_buffer_head(struct buffer_head *bh)
3375 {
3376         BUG_ON(!list_empty(&bh->b_assoc_buffers));
3377         kmem_cache_free(bh_cachep, bh);
3378         preempt_disable();
3379         __this_cpu_dec(bh_accounting.nr);
3380         recalc_bh_state();
3381         preempt_enable();
3382 }
3383 EXPORT_SYMBOL(free_buffer_head);
3384
3385 static int buffer_exit_cpu_dead(unsigned int cpu)
3386 {
3387         int i;
3388         struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3389
3390         for (i = 0; i < BH_LRU_SIZE; i++) {
3391                 brelse(b->bhs[i]);
3392                 b->bhs[i] = NULL;
3393         }
3394         this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3395         per_cpu(bh_accounting, cpu).nr = 0;
3396         return 0;
3397 }
3398
3399 /**
3400  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3401  * @bh: struct buffer_head
3402  *
3403  * Return true if the buffer is up-to-date and false,
3404  * with the buffer locked, if not.
3405  */
3406 int bh_uptodate_or_lock(struct buffer_head *bh)
3407 {
3408         if (!buffer_uptodate(bh)) {
3409                 lock_buffer(bh);
3410                 if (!buffer_uptodate(bh))
3411                         return 0;
3412                 unlock_buffer(bh);
3413         }
3414         return 1;
3415 }
3416 EXPORT_SYMBOL(bh_uptodate_or_lock);
3417
3418 /**
3419  * bh_submit_read - Submit a locked buffer for reading
3420  * @bh: struct buffer_head
3421  *
3422  * Returns zero on success and -EIO on error.
3423  */
3424 int bh_submit_read(struct buffer_head *bh)
3425 {
3426         BUG_ON(!buffer_locked(bh));
3427
3428         if (buffer_uptodate(bh)) {
3429                 unlock_buffer(bh);
3430                 return 0;
3431         }
3432
3433         get_bh(bh);
3434         bh->b_end_io = end_buffer_read_sync;
3435         submit_bh(REQ_OP_READ, 0, bh);
3436         wait_on_buffer(bh);
3437         if (buffer_uptodate(bh))
3438                 return 0;
3439         return -EIO;
3440 }
3441 EXPORT_SYMBOL(bh_submit_read);
3442
3443 void __init buffer_init(void)
3444 {
3445         unsigned long nrpages;
3446         int ret;
3447
3448         bh_cachep = kmem_cache_create("buffer_head",
3449                         sizeof(struct buffer_head), 0,
3450                                 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3451                                 SLAB_MEM_SPREAD),
3452                                 NULL);
3453
3454         /*
3455          * Limit the bh occupancy to 10% of ZONE_NORMAL
3456          */
3457         nrpages = (nr_free_buffer_pages() * 10) / 100;
3458         max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3459         ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3460                                         NULL, buffer_exit_cpu_dead);
3461         WARN_ON(ret < 0);
3462 }