4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/export.h>
33 #include <linux/writeback.h>
34 #include <linux/hash.h>
35 #include <linux/suspend.h>
36 #include <linux/buffer_head.h>
37 #include <linux/task_io_accounting_ops.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
44 #include <trace/events/block.h>
46 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
48 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
50 void init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
52 bh->b_end_io = handler;
53 bh->b_private = private;
55 EXPORT_SYMBOL(init_buffer);
57 inline void touch_buffer(struct buffer_head *bh)
59 trace_block_touch_buffer(bh);
60 mark_page_accessed(bh->b_page);
62 EXPORT_SYMBOL(touch_buffer);
64 void __lock_buffer(struct buffer_head *bh)
66 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
68 EXPORT_SYMBOL(__lock_buffer);
70 void unlock_buffer(struct buffer_head *bh)
72 clear_bit_unlock(BH_Lock, &bh->b_state);
73 smp_mb__after_atomic();
74 wake_up_bit(&bh->b_state, BH_Lock);
76 EXPORT_SYMBOL(unlock_buffer);
79 * Returns if the page has dirty or writeback buffers. If all the buffers
80 * are unlocked and clean then the PageDirty information is stale. If
81 * any of the pages are locked, it is assumed they are locked for IO.
83 void buffer_check_dirty_writeback(struct page *page,
84 bool *dirty, bool *writeback)
86 struct buffer_head *head, *bh;
90 BUG_ON(!PageLocked(page));
92 if (!page_has_buffers(page))
95 if (PageWriteback(page))
98 head = page_buffers(page);
101 if (buffer_locked(bh))
104 if (buffer_dirty(bh))
107 bh = bh->b_this_page;
108 } while (bh != head);
110 EXPORT_SYMBOL(buffer_check_dirty_writeback);
113 * Block until a buffer comes unlocked. This doesn't stop it
114 * from becoming locked again - you have to lock it yourself
115 * if you want to preserve its state.
117 void __wait_on_buffer(struct buffer_head * bh)
119 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
121 EXPORT_SYMBOL(__wait_on_buffer);
124 __clear_page_buffers(struct page *page)
126 ClearPagePrivate(page);
127 set_page_private(page, 0);
128 page_cache_release(page);
132 static int quiet_error(struct buffer_head *bh)
134 if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit())
140 static void buffer_io_error(struct buffer_head *bh)
142 char b[BDEVNAME_SIZE];
143 printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
144 bdevname(bh->b_bdev, b),
145 (unsigned long long)bh->b_blocknr);
149 * End-of-IO handler helper function which does not touch the bh after
151 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
152 * a race there is benign: unlock_buffer() only use the bh's address for
153 * hashing after unlocking the buffer, so it doesn't actually touch the bh
156 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
159 set_buffer_uptodate(bh);
161 /* This happens, due to failed READA attempts. */
162 clear_buffer_uptodate(bh);
168 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
169 * unlock the buffer. This is what ll_rw_block uses too.
171 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
173 __end_buffer_read_notouch(bh, uptodate);
176 EXPORT_SYMBOL(end_buffer_read_sync);
178 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
180 char b[BDEVNAME_SIZE];
183 set_buffer_uptodate(bh);
185 if (!quiet_error(bh)) {
187 printk(KERN_WARNING "lost page write due to "
189 bdevname(bh->b_bdev, b));
191 set_buffer_write_io_error(bh);
192 clear_buffer_uptodate(bh);
197 EXPORT_SYMBOL(end_buffer_write_sync);
200 * Various filesystems appear to want __find_get_block to be non-blocking.
201 * But it's the page lock which protects the buffers. To get around this,
202 * we get exclusion from try_to_free_buffers with the blockdev mapping's
205 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
206 * may be quite high. This code could TryLock the page, and if that
207 * succeeds, there is no need to take private_lock. (But if
208 * private_lock is contended then so is mapping->tree_lock).
210 static struct buffer_head *
211 __find_get_block_slow(struct block_device *bdev, sector_t block)
213 struct inode *bd_inode = bdev->bd_inode;
214 struct address_space *bd_mapping = bd_inode->i_mapping;
215 struct buffer_head *ret = NULL;
217 struct buffer_head *bh;
218 struct buffer_head *head;
222 index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
223 page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
227 spin_lock(&bd_mapping->private_lock);
228 if (!page_has_buffers(page))
230 head = page_buffers(page);
233 if (!buffer_mapped(bh))
235 else if (bh->b_blocknr == block) {
240 bh = bh->b_this_page;
241 } while (bh != head);
243 /* we might be here because some of the buffers on this page are
244 * not mapped. This is due to various races between
245 * file io on the block device and getblk. It gets dealt with
246 * elsewhere, don't buffer_error if we had some unmapped buffers
249 char b[BDEVNAME_SIZE];
251 printk("__find_get_block_slow() failed. "
252 "block=%llu, b_blocknr=%llu\n",
253 (unsigned long long)block,
254 (unsigned long long)bh->b_blocknr);
255 printk("b_state=0x%08lx, b_size=%zu\n",
256 bh->b_state, bh->b_size);
257 printk("device %s blocksize: %d\n", bdevname(bdev, b),
258 1 << bd_inode->i_blkbits);
261 spin_unlock(&bd_mapping->private_lock);
262 page_cache_release(page);
268 * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
270 static void free_more_memory(void)
275 wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM);
278 for_each_online_node(nid) {
279 (void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
280 gfp_zone(GFP_NOFS), NULL,
283 try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
289 * I/O completion handler for block_read_full_page() - pages
290 * which come unlocked at the end of I/O.
292 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
295 struct buffer_head *first;
296 struct buffer_head *tmp;
298 int page_uptodate = 1;
300 BUG_ON(!buffer_async_read(bh));
304 set_buffer_uptodate(bh);
306 clear_buffer_uptodate(bh);
307 if (!quiet_error(bh))
313 * Be _very_ careful from here on. Bad things can happen if
314 * two buffer heads end IO at almost the same time and both
315 * decide that the page is now completely done.
317 first = page_buffers(page);
318 local_irq_save(flags);
319 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
320 clear_buffer_async_read(bh);
324 if (!buffer_uptodate(tmp))
326 if (buffer_async_read(tmp)) {
327 BUG_ON(!buffer_locked(tmp));
330 tmp = tmp->b_this_page;
332 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
333 local_irq_restore(flags);
336 * If none of the buffers had errors and they are all
337 * uptodate then we can set the page uptodate.
339 if (page_uptodate && !PageError(page))
340 SetPageUptodate(page);
345 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
346 local_irq_restore(flags);
351 * Completion handler for block_write_full_page() - pages which are unlocked
352 * during I/O, and which have PageWriteback cleared upon I/O completion.
354 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
356 char b[BDEVNAME_SIZE];
358 struct buffer_head *first;
359 struct buffer_head *tmp;
362 BUG_ON(!buffer_async_write(bh));
366 set_buffer_uptodate(bh);
368 if (!quiet_error(bh)) {
370 printk(KERN_WARNING "lost page write due to "
372 bdevname(bh->b_bdev, b));
374 set_bit(AS_EIO, &page->mapping->flags);
375 set_buffer_write_io_error(bh);
376 clear_buffer_uptodate(bh);
380 first = page_buffers(page);
381 local_irq_save(flags);
382 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
384 clear_buffer_async_write(bh);
386 tmp = bh->b_this_page;
388 if (buffer_async_write(tmp)) {
389 BUG_ON(!buffer_locked(tmp));
392 tmp = tmp->b_this_page;
394 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
395 local_irq_restore(flags);
396 end_page_writeback(page);
400 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
401 local_irq_restore(flags);
404 EXPORT_SYMBOL(end_buffer_async_write);
407 * If a page's buffers are under async readin (end_buffer_async_read
408 * completion) then there is a possibility that another thread of
409 * control could lock one of the buffers after it has completed
410 * but while some of the other buffers have not completed. This
411 * locked buffer would confuse end_buffer_async_read() into not unlocking
412 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
413 * that this buffer is not under async I/O.
415 * The page comes unlocked when it has no locked buffer_async buffers
418 * PageLocked prevents anyone starting new async I/O reads any of
421 * PageWriteback is used to prevent simultaneous writeout of the same
424 * PageLocked prevents anyone from starting writeback of a page which is
425 * under read I/O (PageWriteback is only ever set against a locked page).
427 static void mark_buffer_async_read(struct buffer_head *bh)
429 bh->b_end_io = end_buffer_async_read;
430 set_buffer_async_read(bh);
433 static void mark_buffer_async_write_endio(struct buffer_head *bh,
434 bh_end_io_t *handler)
436 bh->b_end_io = handler;
437 set_buffer_async_write(bh);
440 void mark_buffer_async_write(struct buffer_head *bh)
442 mark_buffer_async_write_endio(bh, end_buffer_async_write);
444 EXPORT_SYMBOL(mark_buffer_async_write);
448 * fs/buffer.c contains helper functions for buffer-backed address space's
449 * fsync functions. A common requirement for buffer-based filesystems is
450 * that certain data from the backing blockdev needs to be written out for
451 * a successful fsync(). For example, ext2 indirect blocks need to be
452 * written back and waited upon before fsync() returns.
454 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
455 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
456 * management of a list of dependent buffers at ->i_mapping->private_list.
458 * Locking is a little subtle: try_to_free_buffers() will remove buffers
459 * from their controlling inode's queue when they are being freed. But
460 * try_to_free_buffers() will be operating against the *blockdev* mapping
461 * at the time, not against the S_ISREG file which depends on those buffers.
462 * So the locking for private_list is via the private_lock in the address_space
463 * which backs the buffers. Which is different from the address_space
464 * against which the buffers are listed. So for a particular address_space,
465 * mapping->private_lock does *not* protect mapping->private_list! In fact,
466 * mapping->private_list will always be protected by the backing blockdev's
469 * Which introduces a requirement: all buffers on an address_space's
470 * ->private_list must be from the same address_space: the blockdev's.
472 * address_spaces which do not place buffers at ->private_list via these
473 * utility functions are free to use private_lock and private_list for
474 * whatever they want. The only requirement is that list_empty(private_list)
475 * be true at clear_inode() time.
477 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
478 * filesystems should do that. invalidate_inode_buffers() should just go
479 * BUG_ON(!list_empty).
481 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
482 * take an address_space, not an inode. And it should be called
483 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
486 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
487 * list if it is already on a list. Because if the buffer is on a list,
488 * it *must* already be on the right one. If not, the filesystem is being
489 * silly. This will save a ton of locking. But first we have to ensure
490 * that buffers are taken *off* the old inode's list when they are freed
491 * (presumably in truncate). That requires careful auditing of all
492 * filesystems (do it inside bforget()). It could also be done by bringing
497 * The buffer's backing address_space's private_lock must be held
499 static void __remove_assoc_queue(struct buffer_head *bh)
501 list_del_init(&bh->b_assoc_buffers);
502 WARN_ON(!bh->b_assoc_map);
503 if (buffer_write_io_error(bh))
504 set_bit(AS_EIO, &bh->b_assoc_map->flags);
505 bh->b_assoc_map = NULL;
508 int inode_has_buffers(struct inode *inode)
510 return !list_empty(&inode->i_data.private_list);
514 * osync is designed to support O_SYNC io. It waits synchronously for
515 * all already-submitted IO to complete, but does not queue any new
516 * writes to the disk.
518 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
519 * you dirty the buffers, and then use osync_inode_buffers to wait for
520 * completion. Any other dirty buffers which are not yet queued for
521 * write will not be flushed to disk by the osync.
523 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
525 struct buffer_head *bh;
531 list_for_each_prev(p, list) {
533 if (buffer_locked(bh)) {
537 if (!buffer_uptodate(bh))
548 static void do_thaw_one(struct super_block *sb, void *unused)
550 char b[BDEVNAME_SIZE];
551 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
552 printk(KERN_WARNING "Emergency Thaw on %s\n",
553 bdevname(sb->s_bdev, b));
556 static void do_thaw_all(struct work_struct *work)
558 iterate_supers(do_thaw_one, NULL);
560 printk(KERN_WARNING "Emergency Thaw complete\n");
564 * emergency_thaw_all -- forcibly thaw every frozen filesystem
566 * Used for emergency unfreeze of all filesystems via SysRq
568 void emergency_thaw_all(void)
570 struct work_struct *work;
572 work = kmalloc(sizeof(*work), GFP_ATOMIC);
574 INIT_WORK(work, do_thaw_all);
580 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
581 * @mapping: the mapping which wants those buffers written
583 * Starts I/O against the buffers at mapping->private_list, and waits upon
586 * Basically, this is a convenience function for fsync().
587 * @mapping is a file or directory which needs those buffers to be written for
588 * a successful fsync().
590 int sync_mapping_buffers(struct address_space *mapping)
592 struct address_space *buffer_mapping = mapping->private_data;
594 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
597 return fsync_buffers_list(&buffer_mapping->private_lock,
598 &mapping->private_list);
600 EXPORT_SYMBOL(sync_mapping_buffers);
603 * Called when we've recently written block `bblock', and it is known that
604 * `bblock' was for a buffer_boundary() buffer. This means that the block at
605 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
606 * dirty, schedule it for IO. So that indirects merge nicely with their data.
608 void write_boundary_block(struct block_device *bdev,
609 sector_t bblock, unsigned blocksize)
611 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
613 if (buffer_dirty(bh))
614 ll_rw_block(WRITE, 1, &bh);
619 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
621 struct address_space *mapping = inode->i_mapping;
622 struct address_space *buffer_mapping = bh->b_page->mapping;
624 mark_buffer_dirty(bh);
625 if (!mapping->private_data) {
626 mapping->private_data = buffer_mapping;
628 BUG_ON(mapping->private_data != buffer_mapping);
630 if (!bh->b_assoc_map) {
631 spin_lock(&buffer_mapping->private_lock);
632 list_move_tail(&bh->b_assoc_buffers,
633 &mapping->private_list);
634 bh->b_assoc_map = mapping;
635 spin_unlock(&buffer_mapping->private_lock);
638 EXPORT_SYMBOL(mark_buffer_dirty_inode);
641 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
644 * If warn is true, then emit a warning if the page is not uptodate and has
645 * not been truncated.
647 static void __set_page_dirty(struct page *page,
648 struct address_space *mapping, int warn)
652 spin_lock_irqsave(&mapping->tree_lock, flags);
653 if (page->mapping) { /* Race with truncate? */
654 WARN_ON_ONCE(warn && !PageUptodate(page));
655 account_page_dirtied(page, mapping);
656 radix_tree_tag_set(&mapping->page_tree,
657 page_index(page), PAGECACHE_TAG_DIRTY);
659 spin_unlock_irqrestore(&mapping->tree_lock, flags);
660 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
664 * Add a page to the dirty page list.
666 * It is a sad fact of life that this function is called from several places
667 * deeply under spinlocking. It may not sleep.
669 * If the page has buffers, the uptodate buffers are set dirty, to preserve
670 * dirty-state coherency between the page and the buffers. It the page does
671 * not have buffers then when they are later attached they will all be set
674 * The buffers are dirtied before the page is dirtied. There's a small race
675 * window in which a writepage caller may see the page cleanness but not the
676 * buffer dirtiness. That's fine. If this code were to set the page dirty
677 * before the buffers, a concurrent writepage caller could clear the page dirty
678 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
679 * page on the dirty page list.
681 * We use private_lock to lock against try_to_free_buffers while using the
682 * page's buffer list. Also use this to protect against clean buffers being
683 * added to the page after it was set dirty.
685 * FIXME: may need to call ->reservepage here as well. That's rather up to the
686 * address_space though.
688 int __set_page_dirty_buffers(struct page *page)
691 struct address_space *mapping = page_mapping(page);
693 if (unlikely(!mapping))
694 return !TestSetPageDirty(page);
696 spin_lock(&mapping->private_lock);
697 if (page_has_buffers(page)) {
698 struct buffer_head *head = page_buffers(page);
699 struct buffer_head *bh = head;
702 set_buffer_dirty(bh);
703 bh = bh->b_this_page;
704 } while (bh != head);
706 newly_dirty = !TestSetPageDirty(page);
707 spin_unlock(&mapping->private_lock);
710 __set_page_dirty(page, mapping, 1);
713 EXPORT_SYMBOL(__set_page_dirty_buffers);
716 * Write out and wait upon a list of buffers.
718 * We have conflicting pressures: we want to make sure that all
719 * initially dirty buffers get waited on, but that any subsequently
720 * dirtied buffers don't. After all, we don't want fsync to last
721 * forever if somebody is actively writing to the file.
723 * Do this in two main stages: first we copy dirty buffers to a
724 * temporary inode list, queueing the writes as we go. Then we clean
725 * up, waiting for those writes to complete.
727 * During this second stage, any subsequent updates to the file may end
728 * up refiling the buffer on the original inode's dirty list again, so
729 * there is a chance we will end up with a buffer queued for write but
730 * not yet completed on that list. So, as a final cleanup we go through
731 * the osync code to catch these locked, dirty buffers without requeuing
732 * any newly dirty buffers for write.
734 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
736 struct buffer_head *bh;
737 struct list_head tmp;
738 struct address_space *mapping;
740 struct blk_plug plug;
742 INIT_LIST_HEAD(&tmp);
743 blk_start_plug(&plug);
746 while (!list_empty(list)) {
747 bh = BH_ENTRY(list->next);
748 mapping = bh->b_assoc_map;
749 __remove_assoc_queue(bh);
750 /* Avoid race with mark_buffer_dirty_inode() which does
751 * a lockless check and we rely on seeing the dirty bit */
753 if (buffer_dirty(bh) || buffer_locked(bh)) {
754 list_add(&bh->b_assoc_buffers, &tmp);
755 bh->b_assoc_map = mapping;
756 if (buffer_dirty(bh)) {
760 * Ensure any pending I/O completes so that
761 * write_dirty_buffer() actually writes the
762 * current contents - it is a noop if I/O is
763 * still in flight on potentially older
766 write_dirty_buffer(bh, WRITE_SYNC);
769 * Kick off IO for the previous mapping. Note
770 * that we will not run the very last mapping,
771 * wait_on_buffer() will do that for us
772 * through sync_buffer().
781 blk_finish_plug(&plug);
784 while (!list_empty(&tmp)) {
785 bh = BH_ENTRY(tmp.prev);
787 mapping = bh->b_assoc_map;
788 __remove_assoc_queue(bh);
789 /* Avoid race with mark_buffer_dirty_inode() which does
790 * a lockless check and we rely on seeing the dirty bit */
792 if (buffer_dirty(bh)) {
793 list_add(&bh->b_assoc_buffers,
794 &mapping->private_list);
795 bh->b_assoc_map = mapping;
799 if (!buffer_uptodate(bh))
806 err2 = osync_buffers_list(lock, list);
814 * Invalidate any and all dirty buffers on a given inode. We are
815 * probably unmounting the fs, but that doesn't mean we have already
816 * done a sync(). Just drop the buffers from the inode list.
818 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
819 * assumes that all the buffers are against the blockdev. Not true
822 void invalidate_inode_buffers(struct inode *inode)
824 if (inode_has_buffers(inode)) {
825 struct address_space *mapping = &inode->i_data;
826 struct list_head *list = &mapping->private_list;
827 struct address_space *buffer_mapping = mapping->private_data;
829 spin_lock(&buffer_mapping->private_lock);
830 while (!list_empty(list))
831 __remove_assoc_queue(BH_ENTRY(list->next));
832 spin_unlock(&buffer_mapping->private_lock);
835 EXPORT_SYMBOL(invalidate_inode_buffers);
838 * Remove any clean buffers from the inode's buffer list. This is called
839 * when we're trying to free the inode itself. Those buffers can pin it.
841 * Returns true if all buffers were removed.
843 int remove_inode_buffers(struct inode *inode)
847 if (inode_has_buffers(inode)) {
848 struct address_space *mapping = &inode->i_data;
849 struct list_head *list = &mapping->private_list;
850 struct address_space *buffer_mapping = mapping->private_data;
852 spin_lock(&buffer_mapping->private_lock);
853 while (!list_empty(list)) {
854 struct buffer_head *bh = BH_ENTRY(list->next);
855 if (buffer_dirty(bh)) {
859 __remove_assoc_queue(bh);
861 spin_unlock(&buffer_mapping->private_lock);
867 * Create the appropriate buffers when given a page for data area and
868 * the size of each buffer.. Use the bh->b_this_page linked list to
869 * follow the buffers created. Return NULL if unable to create more
872 * The retry flag is used to differentiate async IO (paging, swapping)
873 * which may not fail from ordinary buffer allocations.
875 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
878 struct buffer_head *bh, *head;
884 while ((offset -= size) >= 0) {
885 bh = alloc_buffer_head(GFP_NOFS);
889 bh->b_this_page = head;
895 /* Link the buffer to its page */
896 set_bh_page(bh, page, offset);
900 * In case anything failed, we just free everything we got.
906 head = head->b_this_page;
907 free_buffer_head(bh);
912 * Return failure for non-async IO requests. Async IO requests
913 * are not allowed to fail, so we have to wait until buffer heads
914 * become available. But we don't want tasks sleeping with
915 * partially complete buffers, so all were released above.
920 /* We're _really_ low on memory. Now we just
921 * wait for old buffer heads to become free due to
922 * finishing IO. Since this is an async request and
923 * the reserve list is empty, we're sure there are
924 * async buffer heads in use.
929 EXPORT_SYMBOL_GPL(alloc_page_buffers);
932 link_dev_buffers(struct page *page, struct buffer_head *head)
934 struct buffer_head *bh, *tail;
939 bh = bh->b_this_page;
941 tail->b_this_page = head;
942 attach_page_buffers(page, head);
945 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
947 sector_t retval = ~((sector_t)0);
948 loff_t sz = i_size_read(bdev->bd_inode);
951 unsigned int sizebits = blksize_bits(size);
952 retval = (sz >> sizebits);
958 * Initialise the state of a blockdev page's buffers.
961 init_page_buffers(struct page *page, struct block_device *bdev,
962 sector_t block, int size)
964 struct buffer_head *head = page_buffers(page);
965 struct buffer_head *bh = head;
966 int uptodate = PageUptodate(page);
967 sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
970 if (!buffer_mapped(bh)) {
971 init_buffer(bh, NULL, NULL);
973 bh->b_blocknr = block;
975 set_buffer_uptodate(bh);
976 if (block < end_block)
977 set_buffer_mapped(bh);
980 bh = bh->b_this_page;
981 } while (bh != head);
984 * Caller needs to validate requested block against end of device.
990 * Create the page-cache page that contains the requested block.
992 * This is used purely for blockdev mappings.
995 grow_dev_page(struct block_device *bdev, sector_t block,
996 pgoff_t index, int size, int sizebits)
998 struct inode *inode = bdev->bd_inode;
1000 struct buffer_head *bh;
1002 int ret = 0; /* Will call free_more_memory() */
1005 gfp_mask = mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS;
1006 gfp_mask |= __GFP_MOVABLE;
1008 * XXX: __getblk_slow() can not really deal with failure and
1009 * will endlessly loop on improvised global reclaim. Prefer
1010 * looping in the allocator rather than here, at least that
1011 * code knows what it's doing.
1013 gfp_mask |= __GFP_NOFAIL;
1015 page = find_or_create_page(inode->i_mapping, index, gfp_mask);
1019 BUG_ON(!PageLocked(page));
1021 if (page_has_buffers(page)) {
1022 bh = page_buffers(page);
1023 if (bh->b_size == size) {
1024 end_block = init_page_buffers(page, bdev,
1025 (sector_t)index << sizebits,
1029 if (!try_to_free_buffers(page))
1034 * Allocate some buffers for this page
1036 bh = alloc_page_buffers(page, size, 0);
1041 * Link the page to the buffers and initialise them. Take the
1042 * lock to be atomic wrt __find_get_block(), which does not
1043 * run under the page lock.
1045 spin_lock(&inode->i_mapping->private_lock);
1046 link_dev_buffers(page, bh);
1047 end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
1049 spin_unlock(&inode->i_mapping->private_lock);
1051 ret = (block < end_block) ? 1 : -ENXIO;
1054 page_cache_release(page);
1059 * Create buffers for the specified block device block's page. If
1060 * that page was dirty, the buffers are set dirty also.
1063 grow_buffers(struct block_device *bdev, sector_t block, int size)
1071 } while ((size << sizebits) < PAGE_SIZE);
1073 index = block >> sizebits;
1076 * Check for a block which wants to lie outside our maximum possible
1077 * pagecache index. (this comparison is done using sector_t types).
1079 if (unlikely(index != block >> sizebits)) {
1080 char b[BDEVNAME_SIZE];
1082 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1084 __func__, (unsigned long long)block,
1089 /* Create a page with the proper size buffers.. */
1090 return grow_dev_page(bdev, block, index, size, sizebits);
1093 static struct buffer_head *
1094 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1096 /* Size must be multiple of hard sectorsize */
1097 if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1098 (size < 512 || size > PAGE_SIZE))) {
1099 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1101 printk(KERN_ERR "logical block size: %d\n",
1102 bdev_logical_block_size(bdev));
1109 struct buffer_head *bh;
1112 bh = __find_get_block(bdev, block, size);
1116 ret = grow_buffers(bdev, block, size);
1125 * The relationship between dirty buffers and dirty pages:
1127 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1128 * the page is tagged dirty in its radix tree.
1130 * At all times, the dirtiness of the buffers represents the dirtiness of
1131 * subsections of the page. If the page has buffers, the page dirty bit is
1132 * merely a hint about the true dirty state.
1134 * When a page is set dirty in its entirety, all its buffers are marked dirty
1135 * (if the page has buffers).
1137 * When a buffer is marked dirty, its page is dirtied, but the page's other
1140 * Also. When blockdev buffers are explicitly read with bread(), they
1141 * individually become uptodate. But their backing page remains not
1142 * uptodate - even if all of its buffers are uptodate. A subsequent
1143 * block_read_full_page() against that page will discover all the uptodate
1144 * buffers, will set the page uptodate and will perform no I/O.
1148 * mark_buffer_dirty - mark a buffer_head as needing writeout
1149 * @bh: the buffer_head to mark dirty
1151 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1152 * backing page dirty, then tag the page as dirty in its address_space's radix
1153 * tree and then attach the address_space's inode to its superblock's dirty
1156 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1157 * mapping->tree_lock and mapping->host->i_lock.
1159 void mark_buffer_dirty(struct buffer_head *bh)
1161 WARN_ON_ONCE(!buffer_uptodate(bh));
1163 trace_block_dirty_buffer(bh);
1166 * Very *carefully* optimize the it-is-already-dirty case.
1168 * Don't let the final "is it dirty" escape to before we
1169 * perhaps modified the buffer.
1171 if (buffer_dirty(bh)) {
1173 if (buffer_dirty(bh))
1177 if (!test_set_buffer_dirty(bh)) {
1178 struct page *page = bh->b_page;
1179 if (!TestSetPageDirty(page)) {
1180 struct address_space *mapping = page_mapping(page);
1182 __set_page_dirty(page, mapping, 0);
1186 EXPORT_SYMBOL(mark_buffer_dirty);
1189 * Decrement a buffer_head's reference count. If all buffers against a page
1190 * have zero reference count, are clean and unlocked, and if the page is clean
1191 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1192 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1193 * a page but it ends up not being freed, and buffers may later be reattached).
1195 void __brelse(struct buffer_head * buf)
1197 if (atomic_read(&buf->b_count)) {
1201 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1203 EXPORT_SYMBOL(__brelse);
1206 * bforget() is like brelse(), except it discards any
1207 * potentially dirty data.
1209 void __bforget(struct buffer_head *bh)
1211 clear_buffer_dirty(bh);
1212 if (bh->b_assoc_map) {
1213 struct address_space *buffer_mapping = bh->b_page->mapping;
1215 spin_lock(&buffer_mapping->private_lock);
1216 list_del_init(&bh->b_assoc_buffers);
1217 bh->b_assoc_map = NULL;
1218 spin_unlock(&buffer_mapping->private_lock);
1222 EXPORT_SYMBOL(__bforget);
1224 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1227 if (buffer_uptodate(bh)) {
1232 bh->b_end_io = end_buffer_read_sync;
1233 submit_bh(READ, bh);
1235 if (buffer_uptodate(bh))
1243 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1244 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1245 * refcount elevated by one when they're in an LRU. A buffer can only appear
1246 * once in a particular CPU's LRU. A single buffer can be present in multiple
1247 * CPU's LRUs at the same time.
1249 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1250 * sb_find_get_block().
1252 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1253 * a local interrupt disable for that.
1256 #define BH_LRU_SIZE 8
1259 struct buffer_head *bhs[BH_LRU_SIZE];
1262 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1265 #define bh_lru_lock() local_irq_disable()
1266 #define bh_lru_unlock() local_irq_enable()
1268 #define bh_lru_lock() preempt_disable()
1269 #define bh_lru_unlock() preempt_enable()
1272 static inline void check_irqs_on(void)
1274 #ifdef irqs_disabled
1275 BUG_ON(irqs_disabled());
1280 * The LRU management algorithm is dopey-but-simple. Sorry.
1282 static void bh_lru_install(struct buffer_head *bh)
1284 struct buffer_head *evictee = NULL;
1288 if (__this_cpu_read(bh_lrus.bhs[0]) != bh) {
1289 struct buffer_head *bhs[BH_LRU_SIZE];
1295 for (in = 0; in < BH_LRU_SIZE; in++) {
1296 struct buffer_head *bh2 =
1297 __this_cpu_read(bh_lrus.bhs[in]);
1302 if (out >= BH_LRU_SIZE) {
1303 BUG_ON(evictee != NULL);
1310 while (out < BH_LRU_SIZE)
1312 memcpy(this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs));
1321 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1323 static struct buffer_head *
1324 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1326 struct buffer_head *ret = NULL;
1331 for (i = 0; i < BH_LRU_SIZE; i++) {
1332 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1334 if (bh && bh->b_bdev == bdev &&
1335 bh->b_blocknr == block && bh->b_size == size) {
1338 __this_cpu_write(bh_lrus.bhs[i],
1339 __this_cpu_read(bh_lrus.bhs[i - 1]));
1342 __this_cpu_write(bh_lrus.bhs[0], bh);
1354 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1355 * it in the LRU and mark it as accessed. If it is not present then return
1358 struct buffer_head *
1359 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1361 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1364 /* __find_get_block_slow will mark the page accessed */
1365 bh = __find_get_block_slow(bdev, block);
1373 EXPORT_SYMBOL(__find_get_block);
1376 * __getblk will locate (and, if necessary, create) the buffer_head
1377 * which corresponds to the passed block_device, block and size. The
1378 * returned buffer has its reference count incremented.
1380 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1381 * attempt is failing. FIXME, perhaps?
1383 struct buffer_head *
1384 __getblk(struct block_device *bdev, sector_t block, unsigned size)
1386 struct buffer_head *bh = __find_get_block(bdev, block, size);
1390 bh = __getblk_slow(bdev, block, size);
1393 EXPORT_SYMBOL(__getblk);
1396 * Do async read-ahead on a buffer..
1398 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1400 struct buffer_head *bh = __getblk(bdev, block, size);
1402 ll_rw_block(READA, 1, &bh);
1406 EXPORT_SYMBOL(__breadahead);
1409 * __bread() - reads a specified block and returns the bh
1410 * @bdev: the block_device to read from
1411 * @block: number of block
1412 * @size: size (in bytes) to read
1414 * Reads a specified block, and returns buffer head that contains it.
1415 * It returns NULL if the block was unreadable.
1417 struct buffer_head *
1418 __bread(struct block_device *bdev, sector_t block, unsigned size)
1420 struct buffer_head *bh = __getblk(bdev, block, size);
1422 if (likely(bh) && !buffer_uptodate(bh))
1423 bh = __bread_slow(bh);
1426 EXPORT_SYMBOL(__bread);
1429 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1430 * This doesn't race because it runs in each cpu either in irq
1431 * or with preempt disabled.
1433 static void invalidate_bh_lru(void *arg)
1435 struct bh_lru *b = &get_cpu_var(bh_lrus);
1438 for (i = 0; i < BH_LRU_SIZE; i++) {
1442 put_cpu_var(bh_lrus);
1445 static bool has_bh_in_lru(int cpu, void *dummy)
1447 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1450 for (i = 0; i < BH_LRU_SIZE; i++) {
1458 void invalidate_bh_lrus(void)
1460 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1462 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1464 void set_bh_page(struct buffer_head *bh,
1465 struct page *page, unsigned long offset)
1468 BUG_ON(offset >= PAGE_SIZE);
1469 if (PageHighMem(page))
1471 * This catches illegal uses and preserves the offset:
1473 bh->b_data = (char *)(0 + offset);
1475 bh->b_data = page_address(page) + offset;
1477 EXPORT_SYMBOL(set_bh_page);
1480 * Called when truncating a buffer on a page completely.
1483 /* Bits that are cleared during an invalidate */
1484 #define BUFFER_FLAGS_DISCARD \
1485 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1486 1 << BH_Delay | 1 << BH_Unwritten)
1488 static void discard_buffer(struct buffer_head * bh)
1490 unsigned long b_state, b_state_old;
1493 clear_buffer_dirty(bh);
1495 b_state = bh->b_state;
1497 b_state_old = cmpxchg(&bh->b_state, b_state,
1498 (b_state & ~BUFFER_FLAGS_DISCARD));
1499 if (b_state_old == b_state)
1501 b_state = b_state_old;
1507 * block_invalidatepage - invalidate part or all of a buffer-backed page
1509 * @page: the page which is affected
1510 * @offset: start of the range to invalidate
1511 * @length: length of the range to invalidate
1513 * block_invalidatepage() is called when all or part of the page has become
1514 * invalidated by a truncate operation.
1516 * block_invalidatepage() does not have to release all buffers, but it must
1517 * ensure that no dirty buffer is left outside @offset and that no I/O
1518 * is underway against any of the blocks which are outside the truncation
1519 * point. Because the caller is about to free (and possibly reuse) those
1522 void block_invalidatepage(struct page *page, unsigned int offset,
1523 unsigned int length)
1525 struct buffer_head *head, *bh, *next;
1526 unsigned int curr_off = 0;
1527 unsigned int stop = length + offset;
1529 BUG_ON(!PageLocked(page));
1530 if (!page_has_buffers(page))
1534 * Check for overflow
1536 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1538 head = page_buffers(page);
1541 unsigned int next_off = curr_off + bh->b_size;
1542 next = bh->b_this_page;
1545 * Are we still fully in range ?
1547 if (next_off > stop)
1551 * is this block fully invalidated?
1553 if (offset <= curr_off)
1555 curr_off = next_off;
1557 } while (bh != head);
1560 * We release buffers only if the entire page is being invalidated.
1561 * The get_block cached value has been unconditionally invalidated,
1562 * so real IO is not possible anymore.
1565 try_to_release_page(page, 0);
1569 EXPORT_SYMBOL(block_invalidatepage);
1573 * We attach and possibly dirty the buffers atomically wrt
1574 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1575 * is already excluded via the page lock.
1577 void create_empty_buffers(struct page *page,
1578 unsigned long blocksize, unsigned long b_state)
1580 struct buffer_head *bh, *head, *tail;
1582 head = alloc_page_buffers(page, blocksize, 1);
1585 bh->b_state |= b_state;
1587 bh = bh->b_this_page;
1589 tail->b_this_page = head;
1591 spin_lock(&page->mapping->private_lock);
1592 if (PageUptodate(page) || PageDirty(page)) {
1595 if (PageDirty(page))
1596 set_buffer_dirty(bh);
1597 if (PageUptodate(page))
1598 set_buffer_uptodate(bh);
1599 bh = bh->b_this_page;
1600 } while (bh != head);
1602 attach_page_buffers(page, head);
1603 spin_unlock(&page->mapping->private_lock);
1605 EXPORT_SYMBOL(create_empty_buffers);
1608 * We are taking a block for data and we don't want any output from any
1609 * buffer-cache aliases starting from return from that function and
1610 * until the moment when something will explicitly mark the buffer
1611 * dirty (hopefully that will not happen until we will free that block ;-)
1612 * We don't even need to mark it not-uptodate - nobody can expect
1613 * anything from a newly allocated buffer anyway. We used to used
1614 * unmap_buffer() for such invalidation, but that was wrong. We definitely
1615 * don't want to mark the alias unmapped, for example - it would confuse
1616 * anyone who might pick it with bread() afterwards...
1618 * Also.. Note that bforget() doesn't lock the buffer. So there can
1619 * be writeout I/O going on against recently-freed buffers. We don't
1620 * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1621 * only if we really need to. That happens here.
1623 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1625 struct buffer_head *old_bh;
1629 old_bh = __find_get_block_slow(bdev, block);
1631 clear_buffer_dirty(old_bh);
1632 wait_on_buffer(old_bh);
1633 clear_buffer_req(old_bh);
1637 EXPORT_SYMBOL(unmap_underlying_metadata);
1640 * Size is a power-of-two in the range 512..PAGE_SIZE,
1641 * and the case we care about most is PAGE_SIZE.
1643 * So this *could* possibly be written with those
1644 * constraints in mind (relevant mostly if some
1645 * architecture has a slow bit-scan instruction)
1647 static inline int block_size_bits(unsigned int blocksize)
1649 return ilog2(blocksize);
1652 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1654 BUG_ON(!PageLocked(page));
1656 if (!page_has_buffers(page))
1657 create_empty_buffers(page, 1 << ACCESS_ONCE(inode->i_blkbits), b_state);
1658 return page_buffers(page);
1662 * NOTE! All mapped/uptodate combinations are valid:
1664 * Mapped Uptodate Meaning
1666 * No No "unknown" - must do get_block()
1667 * No Yes "hole" - zero-filled
1668 * Yes No "allocated" - allocated on disk, not read in
1669 * Yes Yes "valid" - allocated and up-to-date in memory.
1671 * "Dirty" is valid only with the last case (mapped+uptodate).
1675 * While block_write_full_page is writing back the dirty buffers under
1676 * the page lock, whoever dirtied the buffers may decide to clean them
1677 * again at any time. We handle that by only looking at the buffer
1678 * state inside lock_buffer().
1680 * If block_write_full_page() is called for regular writeback
1681 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1682 * locked buffer. This only can happen if someone has written the buffer
1683 * directly, with submit_bh(). At the address_space level PageWriteback
1684 * prevents this contention from occurring.
1686 * If block_write_full_page() is called with wbc->sync_mode ==
1687 * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this
1688 * causes the writes to be flagged as synchronous writes.
1690 static int __block_write_full_page(struct inode *inode, struct page *page,
1691 get_block_t *get_block, struct writeback_control *wbc,
1692 bh_end_io_t *handler)
1696 sector_t last_block;
1697 struct buffer_head *bh, *head;
1698 unsigned int blocksize, bbits;
1699 int nr_underway = 0;
1700 int write_op = (wbc->sync_mode == WB_SYNC_ALL ?
1701 WRITE_SYNC : WRITE);
1703 head = create_page_buffers(page, inode,
1704 (1 << BH_Dirty)|(1 << BH_Uptodate));
1707 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1708 * here, and the (potentially unmapped) buffers may become dirty at
1709 * any time. If a buffer becomes dirty here after we've inspected it
1710 * then we just miss that fact, and the page stays dirty.
1712 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1713 * handle that here by just cleaning them.
1717 blocksize = bh->b_size;
1718 bbits = block_size_bits(blocksize);
1720 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1721 last_block = (i_size_read(inode) - 1) >> bbits;
1724 * Get all the dirty buffers mapped to disk addresses and
1725 * handle any aliases from the underlying blockdev's mapping.
1728 if (block > last_block) {
1730 * mapped buffers outside i_size will occur, because
1731 * this page can be outside i_size when there is a
1732 * truncate in progress.
1735 * The buffer was zeroed by block_write_full_page()
1737 clear_buffer_dirty(bh);
1738 set_buffer_uptodate(bh);
1739 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1741 WARN_ON(bh->b_size != blocksize);
1742 err = get_block(inode, block, bh, 1);
1745 clear_buffer_delay(bh);
1746 if (buffer_new(bh)) {
1747 /* blockdev mappings never come here */
1748 clear_buffer_new(bh);
1749 unmap_underlying_metadata(bh->b_bdev,
1753 bh = bh->b_this_page;
1755 } while (bh != head);
1758 if (!buffer_mapped(bh))
1761 * If it's a fully non-blocking write attempt and we cannot
1762 * lock the buffer then redirty the page. Note that this can
1763 * potentially cause a busy-wait loop from writeback threads
1764 * and kswapd activity, but those code paths have their own
1765 * higher-level throttling.
1767 if (wbc->sync_mode != WB_SYNC_NONE) {
1769 } else if (!trylock_buffer(bh)) {
1770 redirty_page_for_writepage(wbc, page);
1773 if (test_clear_buffer_dirty(bh)) {
1774 mark_buffer_async_write_endio(bh, handler);
1778 } while ((bh = bh->b_this_page) != head);
1781 * The page and its buffers are protected by PageWriteback(), so we can
1782 * drop the bh refcounts early.
1784 BUG_ON(PageWriteback(page));
1785 set_page_writeback(page);
1788 struct buffer_head *next = bh->b_this_page;
1789 if (buffer_async_write(bh)) {
1790 submit_bh(write_op, bh);
1794 } while (bh != head);
1799 if (nr_underway == 0) {
1801 * The page was marked dirty, but the buffers were
1802 * clean. Someone wrote them back by hand with
1803 * ll_rw_block/submit_bh. A rare case.
1805 end_page_writeback(page);
1808 * The page and buffer_heads can be released at any time from
1816 * ENOSPC, or some other error. We may already have added some
1817 * blocks to the file, so we need to write these out to avoid
1818 * exposing stale data.
1819 * The page is currently locked and not marked for writeback
1822 /* Recovery: lock and submit the mapped buffers */
1824 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1825 !buffer_delay(bh)) {
1827 mark_buffer_async_write_endio(bh, handler);
1830 * The buffer may have been set dirty during
1831 * attachment to a dirty page.
1833 clear_buffer_dirty(bh);
1835 } while ((bh = bh->b_this_page) != head);
1837 BUG_ON(PageWriteback(page));
1838 mapping_set_error(page->mapping, err);
1839 set_page_writeback(page);
1841 struct buffer_head *next = bh->b_this_page;
1842 if (buffer_async_write(bh)) {
1843 clear_buffer_dirty(bh);
1844 submit_bh(write_op, bh);
1848 } while (bh != head);
1854 * If a page has any new buffers, zero them out here, and mark them uptodate
1855 * and dirty so they'll be written out (in order to prevent uninitialised
1856 * block data from leaking). And clear the new bit.
1858 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1860 unsigned int block_start, block_end;
1861 struct buffer_head *head, *bh;
1863 BUG_ON(!PageLocked(page));
1864 if (!page_has_buffers(page))
1867 bh = head = page_buffers(page);
1870 block_end = block_start + bh->b_size;
1872 if (buffer_new(bh)) {
1873 if (block_end > from && block_start < to) {
1874 if (!PageUptodate(page)) {
1875 unsigned start, size;
1877 start = max(from, block_start);
1878 size = min(to, block_end) - start;
1880 zero_user(page, start, size);
1881 set_buffer_uptodate(bh);
1884 clear_buffer_new(bh);
1885 mark_buffer_dirty(bh);
1889 block_start = block_end;
1890 bh = bh->b_this_page;
1891 } while (bh != head);
1893 EXPORT_SYMBOL(page_zero_new_buffers);
1895 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
1896 get_block_t *get_block)
1898 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1899 unsigned to = from + len;
1900 struct inode *inode = page->mapping->host;
1901 unsigned block_start, block_end;
1904 unsigned blocksize, bbits;
1905 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1907 BUG_ON(!PageLocked(page));
1908 BUG_ON(from > PAGE_CACHE_SIZE);
1909 BUG_ON(to > PAGE_CACHE_SIZE);
1912 head = create_page_buffers(page, inode, 0);
1913 blocksize = head->b_size;
1914 bbits = block_size_bits(blocksize);
1916 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1918 for(bh = head, block_start = 0; bh != head || !block_start;
1919 block++, block_start=block_end, bh = bh->b_this_page) {
1920 block_end = block_start + blocksize;
1921 if (block_end <= from || block_start >= to) {
1922 if (PageUptodate(page)) {
1923 if (!buffer_uptodate(bh))
1924 set_buffer_uptodate(bh);
1929 clear_buffer_new(bh);
1930 if (!buffer_mapped(bh)) {
1931 WARN_ON(bh->b_size != blocksize);
1932 err = get_block(inode, block, bh, 1);
1935 if (buffer_new(bh)) {
1936 unmap_underlying_metadata(bh->b_bdev,
1938 if (PageUptodate(page)) {
1939 clear_buffer_new(bh);
1940 set_buffer_uptodate(bh);
1941 mark_buffer_dirty(bh);
1944 if (block_end > to || block_start < from)
1945 zero_user_segments(page,
1951 if (PageUptodate(page)) {
1952 if (!buffer_uptodate(bh))
1953 set_buffer_uptodate(bh);
1956 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1957 !buffer_unwritten(bh) &&
1958 (block_start < from || block_end > to)) {
1959 ll_rw_block(READ, 1, &bh);
1964 * If we issued read requests - let them complete.
1966 while(wait_bh > wait) {
1967 wait_on_buffer(*--wait_bh);
1968 if (!buffer_uptodate(*wait_bh))
1972 page_zero_new_buffers(page, from, to);
1975 EXPORT_SYMBOL(__block_write_begin);
1977 static int __block_commit_write(struct inode *inode, struct page *page,
1978 unsigned from, unsigned to)
1980 unsigned block_start, block_end;
1983 struct buffer_head *bh, *head;
1985 bh = head = page_buffers(page);
1986 blocksize = bh->b_size;
1990 block_end = block_start + blocksize;
1991 if (block_end <= from || block_start >= to) {
1992 if (!buffer_uptodate(bh))
1995 set_buffer_uptodate(bh);
1996 mark_buffer_dirty(bh);
1998 clear_buffer_new(bh);
2000 block_start = block_end;
2001 bh = bh->b_this_page;
2002 } while (bh != head);
2005 * If this is a partial write which happened to make all buffers
2006 * uptodate then we can optimize away a bogus readpage() for
2007 * the next read(). Here we 'discover' whether the page went
2008 * uptodate as a result of this (potentially partial) write.
2011 SetPageUptodate(page);
2016 * block_write_begin takes care of the basic task of block allocation and
2017 * bringing partial write blocks uptodate first.
2019 * The filesystem needs to handle block truncation upon failure.
2021 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2022 unsigned flags, struct page **pagep, get_block_t *get_block)
2024 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
2028 page = grab_cache_page_write_begin(mapping, index, flags);
2032 status = __block_write_begin(page, pos, len, get_block);
2033 if (unlikely(status)) {
2035 page_cache_release(page);
2042 EXPORT_SYMBOL(block_write_begin);
2044 int block_write_end(struct file *file, struct address_space *mapping,
2045 loff_t pos, unsigned len, unsigned copied,
2046 struct page *page, void *fsdata)
2048 struct inode *inode = mapping->host;
2051 start = pos & (PAGE_CACHE_SIZE - 1);
2053 if (unlikely(copied < len)) {
2055 * The buffers that were written will now be uptodate, so we
2056 * don't have to worry about a readpage reading them and
2057 * overwriting a partial write. However if we have encountered
2058 * a short write and only partially written into a buffer, it
2059 * will not be marked uptodate, so a readpage might come in and
2060 * destroy our partial write.
2062 * Do the simplest thing, and just treat any short write to a
2063 * non uptodate page as a zero-length write, and force the
2064 * caller to redo the whole thing.
2066 if (!PageUptodate(page))
2069 page_zero_new_buffers(page, start+copied, start+len);
2071 flush_dcache_page(page);
2073 /* This could be a short (even 0-length) commit */
2074 __block_commit_write(inode, page, start, start+copied);
2078 EXPORT_SYMBOL(block_write_end);
2080 int generic_write_end(struct file *file, struct address_space *mapping,
2081 loff_t pos, unsigned len, unsigned copied,
2082 struct page *page, void *fsdata)
2084 struct inode *inode = mapping->host;
2085 int i_size_changed = 0;
2087 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2090 * No need to use i_size_read() here, the i_size
2091 * cannot change under us because we hold i_mutex.
2093 * But it's important to update i_size while still holding page lock:
2094 * page writeout could otherwise come in and zero beyond i_size.
2096 if (pos+copied > inode->i_size) {
2097 i_size_write(inode, pos+copied);
2102 page_cache_release(page);
2105 * Don't mark the inode dirty under page lock. First, it unnecessarily
2106 * makes the holding time of page lock longer. Second, it forces lock
2107 * ordering of page lock and transaction start for journaling
2111 mark_inode_dirty(inode);
2115 EXPORT_SYMBOL(generic_write_end);
2118 * block_is_partially_uptodate checks whether buffers within a page are
2121 * Returns true if all buffers which correspond to a file portion
2122 * we want to read are uptodate.
2124 int block_is_partially_uptodate(struct page *page, unsigned long from,
2125 unsigned long count)
2127 unsigned block_start, block_end, blocksize;
2129 struct buffer_head *bh, *head;
2132 if (!page_has_buffers(page))
2135 head = page_buffers(page);
2136 blocksize = head->b_size;
2137 to = min_t(unsigned, PAGE_CACHE_SIZE - from, count);
2139 if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize)
2145 block_end = block_start + blocksize;
2146 if (block_end > from && block_start < to) {
2147 if (!buffer_uptodate(bh)) {
2151 if (block_end >= to)
2154 block_start = block_end;
2155 bh = bh->b_this_page;
2156 } while (bh != head);
2160 EXPORT_SYMBOL(block_is_partially_uptodate);
2163 * Generic "read page" function for block devices that have the normal
2164 * get_block functionality. This is most of the block device filesystems.
2165 * Reads the page asynchronously --- the unlock_buffer() and
2166 * set/clear_buffer_uptodate() functions propagate buffer state into the
2167 * page struct once IO has completed.
2169 int block_read_full_page(struct page *page, get_block_t *get_block)
2171 struct inode *inode = page->mapping->host;
2172 sector_t iblock, lblock;
2173 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2174 unsigned int blocksize, bbits;
2176 int fully_mapped = 1;
2178 head = create_page_buffers(page, inode, 0);
2179 blocksize = head->b_size;
2180 bbits = block_size_bits(blocksize);
2182 iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
2183 lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2189 if (buffer_uptodate(bh))
2192 if (!buffer_mapped(bh)) {
2196 if (iblock < lblock) {
2197 WARN_ON(bh->b_size != blocksize);
2198 err = get_block(inode, iblock, bh, 0);
2202 if (!buffer_mapped(bh)) {
2203 zero_user(page, i * blocksize, blocksize);
2205 set_buffer_uptodate(bh);
2209 * get_block() might have updated the buffer
2212 if (buffer_uptodate(bh))
2216 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2219 SetPageMappedToDisk(page);
2223 * All buffers are uptodate - we can set the page uptodate
2224 * as well. But not if get_block() returned an error.
2226 if (!PageError(page))
2227 SetPageUptodate(page);
2232 /* Stage two: lock the buffers */
2233 for (i = 0; i < nr; i++) {
2236 mark_buffer_async_read(bh);
2240 * Stage 3: start the IO. Check for uptodateness
2241 * inside the buffer lock in case another process reading
2242 * the underlying blockdev brought it uptodate (the sct fix).
2244 for (i = 0; i < nr; i++) {
2246 if (buffer_uptodate(bh))
2247 end_buffer_async_read(bh, 1);
2249 submit_bh(READ, bh);
2253 EXPORT_SYMBOL(block_read_full_page);
2255 /* utility function for filesystems that need to do work on expanding
2256 * truncates. Uses filesystem pagecache writes to allow the filesystem to
2257 * deal with the hole.
2259 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2261 struct address_space *mapping = inode->i_mapping;
2266 err = inode_newsize_ok(inode, size);
2270 err = pagecache_write_begin(NULL, mapping, size, 0,
2271 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2276 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2282 EXPORT_SYMBOL(generic_cont_expand_simple);
2284 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2285 loff_t pos, loff_t *bytes)
2287 struct inode *inode = mapping->host;
2288 unsigned blocksize = 1 << inode->i_blkbits;
2291 pgoff_t index, curidx;
2293 unsigned zerofrom, offset, len;
2296 index = pos >> PAGE_CACHE_SHIFT;
2297 offset = pos & ~PAGE_CACHE_MASK;
2299 while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2300 zerofrom = curpos & ~PAGE_CACHE_MASK;
2301 if (zerofrom & (blocksize-1)) {
2302 *bytes |= (blocksize-1);
2305 len = PAGE_CACHE_SIZE - zerofrom;
2307 err = pagecache_write_begin(file, mapping, curpos, len,
2308 AOP_FLAG_UNINTERRUPTIBLE,
2312 zero_user(page, zerofrom, len);
2313 err = pagecache_write_end(file, mapping, curpos, len, len,
2320 balance_dirty_pages_ratelimited(mapping);
2323 /* page covers the boundary, find the boundary offset */
2324 if (index == curidx) {
2325 zerofrom = curpos & ~PAGE_CACHE_MASK;
2326 /* if we will expand the thing last block will be filled */
2327 if (offset <= zerofrom) {
2330 if (zerofrom & (blocksize-1)) {
2331 *bytes |= (blocksize-1);
2334 len = offset - zerofrom;
2336 err = pagecache_write_begin(file, mapping, curpos, len,
2337 AOP_FLAG_UNINTERRUPTIBLE,
2341 zero_user(page, zerofrom, len);
2342 err = pagecache_write_end(file, mapping, curpos, len, len,
2354 * For moronic filesystems that do not allow holes in file.
2355 * We may have to extend the file.
2357 int cont_write_begin(struct file *file, struct address_space *mapping,
2358 loff_t pos, unsigned len, unsigned flags,
2359 struct page **pagep, void **fsdata,
2360 get_block_t *get_block, loff_t *bytes)
2362 struct inode *inode = mapping->host;
2363 unsigned blocksize = 1 << inode->i_blkbits;
2367 err = cont_expand_zero(file, mapping, pos, bytes);
2371 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2372 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2373 *bytes |= (blocksize-1);
2377 return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2379 EXPORT_SYMBOL(cont_write_begin);
2381 int block_commit_write(struct page *page, unsigned from, unsigned to)
2383 struct inode *inode = page->mapping->host;
2384 __block_commit_write(inode,page,from,to);
2387 EXPORT_SYMBOL(block_commit_write);
2390 * block_page_mkwrite() is not allowed to change the file size as it gets
2391 * called from a page fault handler when a page is first dirtied. Hence we must
2392 * be careful to check for EOF conditions here. We set the page up correctly
2393 * for a written page which means we get ENOSPC checking when writing into
2394 * holes and correct delalloc and unwritten extent mapping on filesystems that
2395 * support these features.
2397 * We are not allowed to take the i_mutex here so we have to play games to
2398 * protect against truncate races as the page could now be beyond EOF. Because
2399 * truncate writes the inode size before removing pages, once we have the
2400 * page lock we can determine safely if the page is beyond EOF. If it is not
2401 * beyond EOF, then the page is guaranteed safe against truncation until we
2404 * Direct callers of this function should protect against filesystem freezing
2405 * using sb_start_write() - sb_end_write() functions.
2407 int __block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2408 get_block_t get_block)
2410 struct page *page = vmf->page;
2411 struct inode *inode = file_inode(vma->vm_file);
2417 size = i_size_read(inode);
2418 if ((page->mapping != inode->i_mapping) ||
2419 (page_offset(page) > size)) {
2420 /* We overload EFAULT to mean page got truncated */
2425 /* page is wholly or partially inside EOF */
2426 if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2427 end = size & ~PAGE_CACHE_MASK;
2429 end = PAGE_CACHE_SIZE;
2431 ret = __block_write_begin(page, 0, end, get_block);
2433 ret = block_commit_write(page, 0, end);
2435 if (unlikely(ret < 0))
2437 set_page_dirty(page);
2438 wait_for_stable_page(page);
2444 EXPORT_SYMBOL(__block_page_mkwrite);
2446 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2447 get_block_t get_block)
2450 struct super_block *sb = file_inode(vma->vm_file)->i_sb;
2452 sb_start_pagefault(sb);
2455 * Update file times before taking page lock. We may end up failing the
2456 * fault so this update may be superfluous but who really cares...
2458 file_update_time(vma->vm_file);
2460 ret = __block_page_mkwrite(vma, vmf, get_block);
2461 sb_end_pagefault(sb);
2462 return block_page_mkwrite_return(ret);
2464 EXPORT_SYMBOL(block_page_mkwrite);
2467 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2468 * immediately, while under the page lock. So it needs a special end_io
2469 * handler which does not touch the bh after unlocking it.
2471 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2473 __end_buffer_read_notouch(bh, uptodate);
2477 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2478 * the page (converting it to circular linked list and taking care of page
2481 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2483 struct buffer_head *bh;
2485 BUG_ON(!PageLocked(page));
2487 spin_lock(&page->mapping->private_lock);
2490 if (PageDirty(page))
2491 set_buffer_dirty(bh);
2492 if (!bh->b_this_page)
2493 bh->b_this_page = head;
2494 bh = bh->b_this_page;
2495 } while (bh != head);
2496 attach_page_buffers(page, head);
2497 spin_unlock(&page->mapping->private_lock);
2501 * On entry, the page is fully not uptodate.
2502 * On exit the page is fully uptodate in the areas outside (from,to)
2503 * The filesystem needs to handle block truncation upon failure.
2505 int nobh_write_begin(struct address_space *mapping,
2506 loff_t pos, unsigned len, unsigned flags,
2507 struct page **pagep, void **fsdata,
2508 get_block_t *get_block)
2510 struct inode *inode = mapping->host;
2511 const unsigned blkbits = inode->i_blkbits;
2512 const unsigned blocksize = 1 << blkbits;
2513 struct buffer_head *head, *bh;
2517 unsigned block_in_page;
2518 unsigned block_start, block_end;
2519 sector_t block_in_file;
2522 int is_mapped_to_disk = 1;
2524 index = pos >> PAGE_CACHE_SHIFT;
2525 from = pos & (PAGE_CACHE_SIZE - 1);
2528 page = grab_cache_page_write_begin(mapping, index, flags);
2534 if (page_has_buffers(page)) {
2535 ret = __block_write_begin(page, pos, len, get_block);
2541 if (PageMappedToDisk(page))
2545 * Allocate buffers so that we can keep track of state, and potentially
2546 * attach them to the page if an error occurs. In the common case of
2547 * no error, they will just be freed again without ever being attached
2548 * to the page (which is all OK, because we're under the page lock).
2550 * Be careful: the buffer linked list is a NULL terminated one, rather
2551 * than the circular one we're used to.
2553 head = alloc_page_buffers(page, blocksize, 0);
2559 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2562 * We loop across all blocks in the page, whether or not they are
2563 * part of the affected region. This is so we can discover if the
2564 * page is fully mapped-to-disk.
2566 for (block_start = 0, block_in_page = 0, bh = head;
2567 block_start < PAGE_CACHE_SIZE;
2568 block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2571 block_end = block_start + blocksize;
2574 if (block_start >= to)
2576 ret = get_block(inode, block_in_file + block_in_page,
2580 if (!buffer_mapped(bh))
2581 is_mapped_to_disk = 0;
2583 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2584 if (PageUptodate(page)) {
2585 set_buffer_uptodate(bh);
2588 if (buffer_new(bh) || !buffer_mapped(bh)) {
2589 zero_user_segments(page, block_start, from,
2593 if (buffer_uptodate(bh))
2594 continue; /* reiserfs does this */
2595 if (block_start < from || block_end > to) {
2597 bh->b_end_io = end_buffer_read_nobh;
2598 submit_bh(READ, bh);
2605 * The page is locked, so these buffers are protected from
2606 * any VM or truncate activity. Hence we don't need to care
2607 * for the buffer_head refcounts.
2609 for (bh = head; bh; bh = bh->b_this_page) {
2611 if (!buffer_uptodate(bh))
2618 if (is_mapped_to_disk)
2619 SetPageMappedToDisk(page);
2621 *fsdata = head; /* to be released by nobh_write_end */
2628 * Error recovery is a bit difficult. We need to zero out blocks that
2629 * were newly allocated, and dirty them to ensure they get written out.
2630 * Buffers need to be attached to the page at this point, otherwise
2631 * the handling of potential IO errors during writeout would be hard
2632 * (could try doing synchronous writeout, but what if that fails too?)
2634 attach_nobh_buffers(page, head);
2635 page_zero_new_buffers(page, from, to);
2639 page_cache_release(page);
2644 EXPORT_SYMBOL(nobh_write_begin);
2646 int nobh_write_end(struct file *file, struct address_space *mapping,
2647 loff_t pos, unsigned len, unsigned copied,
2648 struct page *page, void *fsdata)
2650 struct inode *inode = page->mapping->host;
2651 struct buffer_head *head = fsdata;
2652 struct buffer_head *bh;
2653 BUG_ON(fsdata != NULL && page_has_buffers(page));
2655 if (unlikely(copied < len) && head)
2656 attach_nobh_buffers(page, head);
2657 if (page_has_buffers(page))
2658 return generic_write_end(file, mapping, pos, len,
2659 copied, page, fsdata);
2661 SetPageUptodate(page);
2662 set_page_dirty(page);
2663 if (pos+copied > inode->i_size) {
2664 i_size_write(inode, pos+copied);
2665 mark_inode_dirty(inode);
2669 page_cache_release(page);
2673 head = head->b_this_page;
2674 free_buffer_head(bh);
2679 EXPORT_SYMBOL(nobh_write_end);
2682 * nobh_writepage() - based on block_full_write_page() except
2683 * that it tries to operate without attaching bufferheads to
2686 int nobh_writepage(struct page *page, get_block_t *get_block,
2687 struct writeback_control *wbc)
2689 struct inode * const inode = page->mapping->host;
2690 loff_t i_size = i_size_read(inode);
2691 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2695 /* Is the page fully inside i_size? */
2696 if (page->index < end_index)
2699 /* Is the page fully outside i_size? (truncate in progress) */
2700 offset = i_size & (PAGE_CACHE_SIZE-1);
2701 if (page->index >= end_index+1 || !offset) {
2703 * The page may have dirty, unmapped buffers. For example,
2704 * they may have been added in ext3_writepage(). Make them
2705 * freeable here, so the page does not leak.
2708 /* Not really sure about this - do we need this ? */
2709 if (page->mapping->a_ops->invalidatepage)
2710 page->mapping->a_ops->invalidatepage(page, offset);
2713 return 0; /* don't care */
2717 * The page straddles i_size. It must be zeroed out on each and every
2718 * writepage invocation because it may be mmapped. "A file is mapped
2719 * in multiples of the page size. For a file that is not a multiple of
2720 * the page size, the remaining memory is zeroed when mapped, and
2721 * writes to that region are not written out to the file."
2723 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2725 ret = mpage_writepage(page, get_block, wbc);
2727 ret = __block_write_full_page(inode, page, get_block, wbc,
2728 end_buffer_async_write);
2731 EXPORT_SYMBOL(nobh_writepage);
2733 int nobh_truncate_page(struct address_space *mapping,
2734 loff_t from, get_block_t *get_block)
2736 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2737 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2740 unsigned length, pos;
2741 struct inode *inode = mapping->host;
2743 struct buffer_head map_bh;
2746 blocksize = 1 << inode->i_blkbits;
2747 length = offset & (blocksize - 1);
2749 /* Block boundary? Nothing to do */
2753 length = blocksize - length;
2754 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2756 page = grab_cache_page(mapping, index);
2761 if (page_has_buffers(page)) {
2764 page_cache_release(page);
2765 return block_truncate_page(mapping, from, get_block);
2768 /* Find the buffer that contains "offset" */
2770 while (offset >= pos) {
2775 map_bh.b_size = blocksize;
2777 err = get_block(inode, iblock, &map_bh, 0);
2780 /* unmapped? It's a hole - nothing to do */
2781 if (!buffer_mapped(&map_bh))
2784 /* Ok, it's mapped. Make sure it's up-to-date */
2785 if (!PageUptodate(page)) {
2786 err = mapping->a_ops->readpage(NULL, page);
2788 page_cache_release(page);
2792 if (!PageUptodate(page)) {
2796 if (page_has_buffers(page))
2799 zero_user(page, offset, length);
2800 set_page_dirty(page);
2805 page_cache_release(page);
2809 EXPORT_SYMBOL(nobh_truncate_page);
2811 int block_truncate_page(struct address_space *mapping,
2812 loff_t from, get_block_t *get_block)
2814 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2815 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2818 unsigned length, pos;
2819 struct inode *inode = mapping->host;
2821 struct buffer_head *bh;
2824 blocksize = 1 << inode->i_blkbits;
2825 length = offset & (blocksize - 1);
2827 /* Block boundary? Nothing to do */
2831 length = blocksize - length;
2832 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2834 page = grab_cache_page(mapping, index);
2839 if (!page_has_buffers(page))
2840 create_empty_buffers(page, blocksize, 0);
2842 /* Find the buffer that contains "offset" */
2843 bh = page_buffers(page);
2845 while (offset >= pos) {
2846 bh = bh->b_this_page;
2852 if (!buffer_mapped(bh)) {
2853 WARN_ON(bh->b_size != blocksize);
2854 err = get_block(inode, iblock, bh, 0);
2857 /* unmapped? It's a hole - nothing to do */
2858 if (!buffer_mapped(bh))
2862 /* Ok, it's mapped. Make sure it's up-to-date */
2863 if (PageUptodate(page))
2864 set_buffer_uptodate(bh);
2866 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2868 ll_rw_block(READ, 1, &bh);
2870 /* Uhhuh. Read error. Complain and punt. */
2871 if (!buffer_uptodate(bh))
2875 zero_user(page, offset, length);
2876 mark_buffer_dirty(bh);
2881 page_cache_release(page);
2885 EXPORT_SYMBOL(block_truncate_page);
2888 * The generic ->writepage function for buffer-backed address_spaces
2890 int block_write_full_page(struct page *page, get_block_t *get_block,
2891 struct writeback_control *wbc)
2893 struct inode * const inode = page->mapping->host;
2894 loff_t i_size = i_size_read(inode);
2895 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2898 /* Is the page fully inside i_size? */
2899 if (page->index < end_index)
2900 return __block_write_full_page(inode, page, get_block, wbc,
2901 end_buffer_async_write);
2903 /* Is the page fully outside i_size? (truncate in progress) */
2904 offset = i_size & (PAGE_CACHE_SIZE-1);
2905 if (page->index >= end_index+1 || !offset) {
2907 * The page may have dirty, unmapped buffers. For example,
2908 * they may have been added in ext3_writepage(). Make them
2909 * freeable here, so the page does not leak.
2911 do_invalidatepage(page, 0, PAGE_CACHE_SIZE);
2913 return 0; /* don't care */
2917 * The page straddles i_size. It must be zeroed out on each and every
2918 * writepage invocation because it may be mmapped. "A file is mapped
2919 * in multiples of the page size. For a file that is not a multiple of
2920 * the page size, the remaining memory is zeroed when mapped, and
2921 * writes to that region are not written out to the file."
2923 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2924 return __block_write_full_page(inode, page, get_block, wbc,
2925 end_buffer_async_write);
2927 EXPORT_SYMBOL(block_write_full_page);
2929 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2930 get_block_t *get_block)
2932 struct buffer_head tmp;
2933 struct inode *inode = mapping->host;
2936 tmp.b_size = 1 << inode->i_blkbits;
2937 get_block(inode, block, &tmp, 0);
2938 return tmp.b_blocknr;
2940 EXPORT_SYMBOL(generic_block_bmap);
2942 static void end_bio_bh_io_sync(struct bio *bio, int err)
2944 struct buffer_head *bh = bio->bi_private;
2946 if (err == -EOPNOTSUPP) {
2947 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2950 if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags)))
2951 set_bit(BH_Quiet, &bh->b_state);
2953 bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2958 * This allows us to do IO even on the odd last sectors
2959 * of a device, even if the bh block size is some multiple
2960 * of the physical sector size.
2962 * We'll just truncate the bio to the size of the device,
2963 * and clear the end of the buffer head manually.
2965 * Truly out-of-range accesses will turn into actual IO
2966 * errors, this only handles the "we need to be able to
2967 * do IO at the final sector" case.
2969 static void guard_bh_eod(int rw, struct bio *bio, struct buffer_head *bh)
2974 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
2979 * If the *whole* IO is past the end of the device,
2980 * let it through, and the IO layer will turn it into
2983 if (unlikely(bio->bi_iter.bi_sector >= maxsector))
2986 maxsector -= bio->bi_iter.bi_sector;
2987 bytes = bio->bi_iter.bi_size;
2988 if (likely((bytes >> 9) <= maxsector))
2991 /* Uhhuh. We've got a bh that straddles the device size! */
2992 bytes = maxsector << 9;
2994 /* Truncate the bio.. */
2995 bio->bi_iter.bi_size = bytes;
2996 bio->bi_io_vec[0].bv_len = bytes;
2998 /* ..and clear the end of the buffer for reads */
2999 if ((rw & RW_MASK) == READ) {
3000 void *kaddr = kmap_atomic(bh->b_page);
3001 memset(kaddr + bh_offset(bh) + bytes, 0, bh->b_size - bytes);
3002 kunmap_atomic(kaddr);
3003 flush_dcache_page(bh->b_page);
3007 int _submit_bh(int rw, struct buffer_head *bh, unsigned long bio_flags)
3012 BUG_ON(!buffer_locked(bh));
3013 BUG_ON(!buffer_mapped(bh));
3014 BUG_ON(!bh->b_end_io);
3015 BUG_ON(buffer_delay(bh));
3016 BUG_ON(buffer_unwritten(bh));
3019 * Only clear out a write error when rewriting
3021 if (test_set_buffer_req(bh) && (rw & WRITE))
3022 clear_buffer_write_io_error(bh);
3025 * from here on down, it's all bio -- do the initial mapping,
3026 * submit_bio -> generic_make_request may further map this bio around
3028 bio = bio_alloc(GFP_NOIO, 1);
3030 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3031 bio->bi_bdev = bh->b_bdev;
3032 bio->bi_io_vec[0].bv_page = bh->b_page;
3033 bio->bi_io_vec[0].bv_len = bh->b_size;
3034 bio->bi_io_vec[0].bv_offset = bh_offset(bh);
3037 bio->bi_iter.bi_size = bh->b_size;
3039 bio->bi_end_io = end_bio_bh_io_sync;
3040 bio->bi_private = bh;
3041 bio->bi_flags |= bio_flags;
3043 /* Take care of bh's that straddle the end of the device */
3044 guard_bh_eod(rw, bio, bh);
3046 if (buffer_meta(bh))
3048 if (buffer_prio(bh))
3052 submit_bio(rw, bio);
3054 if (bio_flagged(bio, BIO_EOPNOTSUPP))
3060 EXPORT_SYMBOL_GPL(_submit_bh);
3062 int submit_bh(int rw, struct buffer_head *bh)
3064 return _submit_bh(rw, bh, 0);
3066 EXPORT_SYMBOL(submit_bh);
3069 * ll_rw_block: low-level access to block devices (DEPRECATED)
3070 * @rw: whether to %READ or %WRITE or maybe %READA (readahead)
3071 * @nr: number of &struct buffer_heads in the array
3072 * @bhs: array of pointers to &struct buffer_head
3074 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3075 * requests an I/O operation on them, either a %READ or a %WRITE. The third
3076 * %READA option is described in the documentation for generic_make_request()
3077 * which ll_rw_block() calls.
3079 * This function drops any buffer that it cannot get a lock on (with the
3080 * BH_Lock state bit), any buffer that appears to be clean when doing a write
3081 * request, and any buffer that appears to be up-to-date when doing read
3082 * request. Further it marks as clean buffers that are processed for
3083 * writing (the buffer cache won't assume that they are actually clean
3084 * until the buffer gets unlocked).
3086 * ll_rw_block sets b_end_io to simple completion handler that marks
3087 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3090 * All of the buffers must be for the same device, and must also be a
3091 * multiple of the current approved size for the device.
3093 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
3097 for (i = 0; i < nr; i++) {
3098 struct buffer_head *bh = bhs[i];
3100 if (!trylock_buffer(bh))
3103 if (test_clear_buffer_dirty(bh)) {
3104 bh->b_end_io = end_buffer_write_sync;
3106 submit_bh(WRITE, bh);
3110 if (!buffer_uptodate(bh)) {
3111 bh->b_end_io = end_buffer_read_sync;
3120 EXPORT_SYMBOL(ll_rw_block);
3122 void write_dirty_buffer(struct buffer_head *bh, int rw)
3125 if (!test_clear_buffer_dirty(bh)) {
3129 bh->b_end_io = end_buffer_write_sync;
3133 EXPORT_SYMBOL(write_dirty_buffer);
3136 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3137 * and then start new I/O and then wait upon it. The caller must have a ref on
3140 int __sync_dirty_buffer(struct buffer_head *bh, int rw)
3144 WARN_ON(atomic_read(&bh->b_count) < 1);
3146 if (test_clear_buffer_dirty(bh)) {
3148 bh->b_end_io = end_buffer_write_sync;
3149 ret = submit_bh(rw, bh);
3151 if (!ret && !buffer_uptodate(bh))
3158 EXPORT_SYMBOL(__sync_dirty_buffer);
3160 int sync_dirty_buffer(struct buffer_head *bh)
3162 return __sync_dirty_buffer(bh, WRITE_SYNC);
3164 EXPORT_SYMBOL(sync_dirty_buffer);
3167 * try_to_free_buffers() checks if all the buffers on this particular page
3168 * are unused, and releases them if so.
3170 * Exclusion against try_to_free_buffers may be obtained by either
3171 * locking the page or by holding its mapping's private_lock.
3173 * If the page is dirty but all the buffers are clean then we need to
3174 * be sure to mark the page clean as well. This is because the page
3175 * may be against a block device, and a later reattachment of buffers
3176 * to a dirty page will set *all* buffers dirty. Which would corrupt
3177 * filesystem data on the same device.
3179 * The same applies to regular filesystem pages: if all the buffers are
3180 * clean then we set the page clean and proceed. To do that, we require
3181 * total exclusion from __set_page_dirty_buffers(). That is obtained with
3184 * try_to_free_buffers() is non-blocking.
3186 static inline int buffer_busy(struct buffer_head *bh)
3188 return atomic_read(&bh->b_count) |
3189 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3193 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3195 struct buffer_head *head = page_buffers(page);
3196 struct buffer_head *bh;
3200 if (buffer_write_io_error(bh) && page->mapping)
3201 set_bit(AS_EIO, &page->mapping->flags);
3202 if (buffer_busy(bh))
3204 bh = bh->b_this_page;
3205 } while (bh != head);
3208 struct buffer_head *next = bh->b_this_page;
3210 if (bh->b_assoc_map)
3211 __remove_assoc_queue(bh);
3213 } while (bh != head);
3214 *buffers_to_free = head;
3215 __clear_page_buffers(page);
3221 int try_to_free_buffers(struct page *page)
3223 struct address_space * const mapping = page->mapping;
3224 struct buffer_head *buffers_to_free = NULL;
3227 BUG_ON(!PageLocked(page));
3228 if (PageWriteback(page))
3231 if (mapping == NULL) { /* can this still happen? */
3232 ret = drop_buffers(page, &buffers_to_free);
3236 spin_lock(&mapping->private_lock);
3237 ret = drop_buffers(page, &buffers_to_free);
3240 * If the filesystem writes its buffers by hand (eg ext3)
3241 * then we can have clean buffers against a dirty page. We
3242 * clean the page here; otherwise the VM will never notice
3243 * that the filesystem did any IO at all.
3245 * Also, during truncate, discard_buffer will have marked all
3246 * the page's buffers clean. We discover that here and clean
3249 * private_lock must be held over this entire operation in order
3250 * to synchronise against __set_page_dirty_buffers and prevent the
3251 * dirty bit from being lost.
3254 cancel_dirty_page(page, PAGE_CACHE_SIZE);
3255 spin_unlock(&mapping->private_lock);
3257 if (buffers_to_free) {
3258 struct buffer_head *bh = buffers_to_free;
3261 struct buffer_head *next = bh->b_this_page;
3262 free_buffer_head(bh);
3264 } while (bh != buffers_to_free);
3268 EXPORT_SYMBOL(try_to_free_buffers);
3271 * There are no bdflush tunables left. But distributions are
3272 * still running obsolete flush daemons, so we terminate them here.
3274 * Use of bdflush() is deprecated and will be removed in a future kernel.
3275 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3277 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3279 static int msg_count;
3281 if (!capable(CAP_SYS_ADMIN))
3284 if (msg_count < 5) {
3287 "warning: process `%s' used the obsolete bdflush"
3288 " system call\n", current->comm);
3289 printk(KERN_INFO "Fix your initscripts?\n");
3298 * Buffer-head allocation
3300 static struct kmem_cache *bh_cachep __read_mostly;
3303 * Once the number of bh's in the machine exceeds this level, we start
3304 * stripping them in writeback.
3306 static unsigned long max_buffer_heads;
3308 int buffer_heads_over_limit;
3310 struct bh_accounting {
3311 int nr; /* Number of live bh's */
3312 int ratelimit; /* Limit cacheline bouncing */
3315 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3317 static void recalc_bh_state(void)
3322 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3324 __this_cpu_write(bh_accounting.ratelimit, 0);
3325 for_each_online_cpu(i)
3326 tot += per_cpu(bh_accounting, i).nr;
3327 buffer_heads_over_limit = (tot > max_buffer_heads);
3330 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3332 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3334 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3336 __this_cpu_inc(bh_accounting.nr);
3342 EXPORT_SYMBOL(alloc_buffer_head);
3344 void free_buffer_head(struct buffer_head *bh)
3346 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3347 kmem_cache_free(bh_cachep, bh);
3349 __this_cpu_dec(bh_accounting.nr);
3353 EXPORT_SYMBOL(free_buffer_head);
3355 static void buffer_exit_cpu(int cpu)
3358 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3360 for (i = 0; i < BH_LRU_SIZE; i++) {
3364 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3365 per_cpu(bh_accounting, cpu).nr = 0;
3368 static int buffer_cpu_notify(struct notifier_block *self,
3369 unsigned long action, void *hcpu)
3371 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3372 buffer_exit_cpu((unsigned long)hcpu);
3377 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3378 * @bh: struct buffer_head
3380 * Return true if the buffer is up-to-date and false,
3381 * with the buffer locked, if not.
3383 int bh_uptodate_or_lock(struct buffer_head *bh)
3385 if (!buffer_uptodate(bh)) {
3387 if (!buffer_uptodate(bh))
3393 EXPORT_SYMBOL(bh_uptodate_or_lock);
3396 * bh_submit_read - Submit a locked buffer for reading
3397 * @bh: struct buffer_head
3399 * Returns zero on success and -EIO on error.
3401 int bh_submit_read(struct buffer_head *bh)
3403 BUG_ON(!buffer_locked(bh));
3405 if (buffer_uptodate(bh)) {
3411 bh->b_end_io = end_buffer_read_sync;
3412 submit_bh(READ, bh);
3414 if (buffer_uptodate(bh))
3418 EXPORT_SYMBOL(bh_submit_read);
3420 void __init buffer_init(void)
3422 unsigned long nrpages;
3424 bh_cachep = kmem_cache_create("buffer_head",
3425 sizeof(struct buffer_head), 0,
3426 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3431 * Limit the bh occupancy to 10% of ZONE_NORMAL
3433 nrpages = (nr_free_buffer_pages() * 10) / 100;
3434 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3435 hotcpu_notifier(buffer_cpu_notify, 0);