Linux 6.9-rc1
[linux-2.6-microblaze.git] / fs / btrfs / zstd.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2016-present, Facebook, Inc.
4  * All rights reserved.
5  *
6  */
7
8 #include <linux/bio.h>
9 #include <linux/bitmap.h>
10 #include <linux/err.h>
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/mm.h>
14 #include <linux/sched/mm.h>
15 #include <linux/pagemap.h>
16 #include <linux/refcount.h>
17 #include <linux/sched.h>
18 #include <linux/slab.h>
19 #include <linux/zstd.h>
20 #include "misc.h"
21 #include "fs.h"
22 #include "compression.h"
23 #include "super.h"
24
25 #define ZSTD_BTRFS_MAX_WINDOWLOG 17
26 #define ZSTD_BTRFS_MAX_INPUT (1 << ZSTD_BTRFS_MAX_WINDOWLOG)
27 #define ZSTD_BTRFS_DEFAULT_LEVEL 3
28 #define ZSTD_BTRFS_MAX_LEVEL 15
29 /* 307s to avoid pathologically clashing with transaction commit */
30 #define ZSTD_BTRFS_RECLAIM_JIFFIES (307 * HZ)
31
32 static zstd_parameters zstd_get_btrfs_parameters(unsigned int level,
33                                                  size_t src_len)
34 {
35         zstd_parameters params = zstd_get_params(level, src_len);
36
37         if (params.cParams.windowLog > ZSTD_BTRFS_MAX_WINDOWLOG)
38                 params.cParams.windowLog = ZSTD_BTRFS_MAX_WINDOWLOG;
39         WARN_ON(src_len > ZSTD_BTRFS_MAX_INPUT);
40         return params;
41 }
42
43 struct workspace {
44         void *mem;
45         size_t size;
46         char *buf;
47         unsigned int level;
48         unsigned int req_level;
49         unsigned long last_used; /* jiffies */
50         struct list_head list;
51         struct list_head lru_list;
52         zstd_in_buffer in_buf;
53         zstd_out_buffer out_buf;
54 };
55
56 /*
57  * Zstd Workspace Management
58  *
59  * Zstd workspaces have different memory requirements depending on the level.
60  * The zstd workspaces are managed by having individual lists for each level
61  * and a global lru.  Forward progress is maintained by protecting a max level
62  * workspace.
63  *
64  * Getting a workspace is done by using the bitmap to identify the levels that
65  * have available workspaces and scans up.  This lets us recycle higher level
66  * workspaces because of the monotonic memory guarantee.  A workspace's
67  * last_used is only updated if it is being used by the corresponding memory
68  * level.  Putting a workspace involves adding it back to the appropriate places
69  * and adding it back to the lru if necessary.
70  *
71  * A timer is used to reclaim workspaces if they have not been used for
72  * ZSTD_BTRFS_RECLAIM_JIFFIES.  This helps keep only active workspaces around.
73  * The upper bound is provided by the workqueue limit which is 2 (percpu limit).
74  */
75
76 struct zstd_workspace_manager {
77         const struct btrfs_compress_op *ops;
78         spinlock_t lock;
79         struct list_head lru_list;
80         struct list_head idle_ws[ZSTD_BTRFS_MAX_LEVEL];
81         unsigned long active_map;
82         wait_queue_head_t wait;
83         struct timer_list timer;
84 };
85
86 static struct zstd_workspace_manager wsm;
87
88 static size_t zstd_ws_mem_sizes[ZSTD_BTRFS_MAX_LEVEL];
89
90 static inline struct workspace *list_to_workspace(struct list_head *list)
91 {
92         return container_of(list, struct workspace, list);
93 }
94
95 void zstd_free_workspace(struct list_head *ws);
96 struct list_head *zstd_alloc_workspace(unsigned int level);
97
98 /*
99  * Timer callback to free unused workspaces.
100  *
101  * @t: timer
102  *
103  * This scans the lru_list and attempts to reclaim any workspace that hasn't
104  * been used for ZSTD_BTRFS_RECLAIM_JIFFIES.
105  *
106  * The context is softirq and does not need the _bh locking primitives.
107  */
108 static void zstd_reclaim_timer_fn(struct timer_list *timer)
109 {
110         unsigned long reclaim_threshold = jiffies - ZSTD_BTRFS_RECLAIM_JIFFIES;
111         struct list_head *pos, *next;
112
113         spin_lock(&wsm.lock);
114
115         if (list_empty(&wsm.lru_list)) {
116                 spin_unlock(&wsm.lock);
117                 return;
118         }
119
120         list_for_each_prev_safe(pos, next, &wsm.lru_list) {
121                 struct workspace *victim = container_of(pos, struct workspace,
122                                                         lru_list);
123                 unsigned int level;
124
125                 if (time_after(victim->last_used, reclaim_threshold))
126                         break;
127
128                 /* workspace is in use */
129                 if (victim->req_level)
130                         continue;
131
132                 level = victim->level;
133                 list_del(&victim->lru_list);
134                 list_del(&victim->list);
135                 zstd_free_workspace(&victim->list);
136
137                 if (list_empty(&wsm.idle_ws[level - 1]))
138                         clear_bit(level - 1, &wsm.active_map);
139
140         }
141
142         if (!list_empty(&wsm.lru_list))
143                 mod_timer(&wsm.timer, jiffies + ZSTD_BTRFS_RECLAIM_JIFFIES);
144
145         spin_unlock(&wsm.lock);
146 }
147
148 /*
149  * Calculate monotonic memory bounds.
150  *
151  * It is possible based on the level configurations that a higher level
152  * workspace uses less memory than a lower level workspace.  In order to reuse
153  * workspaces, this must be made a monotonic relationship.  This precomputes
154  * the required memory for each level and enforces the monotonicity between
155  * level and memory required.
156  */
157 static void zstd_calc_ws_mem_sizes(void)
158 {
159         size_t max_size = 0;
160         unsigned int level;
161
162         for (level = 1; level <= ZSTD_BTRFS_MAX_LEVEL; level++) {
163                 zstd_parameters params =
164                         zstd_get_btrfs_parameters(level, ZSTD_BTRFS_MAX_INPUT);
165                 size_t level_size =
166                         max_t(size_t,
167                               zstd_cstream_workspace_bound(&params.cParams),
168                               zstd_dstream_workspace_bound(ZSTD_BTRFS_MAX_INPUT));
169
170                 max_size = max_t(size_t, max_size, level_size);
171                 zstd_ws_mem_sizes[level - 1] = max_size;
172         }
173 }
174
175 void zstd_init_workspace_manager(void)
176 {
177         struct list_head *ws;
178         int i;
179
180         zstd_calc_ws_mem_sizes();
181
182         wsm.ops = &btrfs_zstd_compress;
183         spin_lock_init(&wsm.lock);
184         init_waitqueue_head(&wsm.wait);
185         timer_setup(&wsm.timer, zstd_reclaim_timer_fn, 0);
186
187         INIT_LIST_HEAD(&wsm.lru_list);
188         for (i = 0; i < ZSTD_BTRFS_MAX_LEVEL; i++)
189                 INIT_LIST_HEAD(&wsm.idle_ws[i]);
190
191         ws = zstd_alloc_workspace(ZSTD_BTRFS_MAX_LEVEL);
192         if (IS_ERR(ws)) {
193                 pr_warn(
194                 "BTRFS: cannot preallocate zstd compression workspace\n");
195         } else {
196                 set_bit(ZSTD_BTRFS_MAX_LEVEL - 1, &wsm.active_map);
197                 list_add(ws, &wsm.idle_ws[ZSTD_BTRFS_MAX_LEVEL - 1]);
198         }
199 }
200
201 void zstd_cleanup_workspace_manager(void)
202 {
203         struct workspace *workspace;
204         int i;
205
206         spin_lock_bh(&wsm.lock);
207         for (i = 0; i < ZSTD_BTRFS_MAX_LEVEL; i++) {
208                 while (!list_empty(&wsm.idle_ws[i])) {
209                         workspace = container_of(wsm.idle_ws[i].next,
210                                                  struct workspace, list);
211                         list_del(&workspace->list);
212                         list_del(&workspace->lru_list);
213                         zstd_free_workspace(&workspace->list);
214                 }
215         }
216         spin_unlock_bh(&wsm.lock);
217
218         del_timer_sync(&wsm.timer);
219 }
220
221 /*
222  * Find workspace for given level.
223  *
224  * @level: compression level
225  *
226  * This iterates over the set bits in the active_map beginning at the requested
227  * compression level.  This lets us utilize already allocated workspaces before
228  * allocating a new one.  If the workspace is of a larger size, it is used, but
229  * the place in the lru_list and last_used times are not updated.  This is to
230  * offer the opportunity to reclaim the workspace in favor of allocating an
231  * appropriately sized one in the future.
232  */
233 static struct list_head *zstd_find_workspace(unsigned int level)
234 {
235         struct list_head *ws;
236         struct workspace *workspace;
237         int i = level - 1;
238
239         spin_lock_bh(&wsm.lock);
240         for_each_set_bit_from(i, &wsm.active_map, ZSTD_BTRFS_MAX_LEVEL) {
241                 if (!list_empty(&wsm.idle_ws[i])) {
242                         ws = wsm.idle_ws[i].next;
243                         workspace = list_to_workspace(ws);
244                         list_del_init(ws);
245                         /* keep its place if it's a lower level using this */
246                         workspace->req_level = level;
247                         if (level == workspace->level)
248                                 list_del(&workspace->lru_list);
249                         if (list_empty(&wsm.idle_ws[i]))
250                                 clear_bit(i, &wsm.active_map);
251                         spin_unlock_bh(&wsm.lock);
252                         return ws;
253                 }
254         }
255         spin_unlock_bh(&wsm.lock);
256
257         return NULL;
258 }
259
260 /*
261  * Zstd get_workspace for level.
262  *
263  * @level: compression level
264  *
265  * If @level is 0, then any compression level can be used.  Therefore, we begin
266  * scanning from 1.  We first scan through possible workspaces and then after
267  * attempt to allocate a new workspace.  If we fail to allocate one due to
268  * memory pressure, go to sleep waiting for the max level workspace to free up.
269  */
270 struct list_head *zstd_get_workspace(unsigned int level)
271 {
272         struct list_head *ws;
273         unsigned int nofs_flag;
274
275         /* level == 0 means we can use any workspace */
276         if (!level)
277                 level = 1;
278
279 again:
280         ws = zstd_find_workspace(level);
281         if (ws)
282                 return ws;
283
284         nofs_flag = memalloc_nofs_save();
285         ws = zstd_alloc_workspace(level);
286         memalloc_nofs_restore(nofs_flag);
287
288         if (IS_ERR(ws)) {
289                 DEFINE_WAIT(wait);
290
291                 prepare_to_wait(&wsm.wait, &wait, TASK_UNINTERRUPTIBLE);
292                 schedule();
293                 finish_wait(&wsm.wait, &wait);
294
295                 goto again;
296         }
297
298         return ws;
299 }
300
301 /*
302  * Zstd put_workspace.
303  *
304  * @ws: list_head for the workspace
305  *
306  * When putting back a workspace, we only need to update the LRU if we are of
307  * the requested compression level.  Here is where we continue to protect the
308  * max level workspace or update last_used accordingly.  If the reclaim timer
309  * isn't set, it is also set here.  Only the max level workspace tries and wakes
310  * up waiting workspaces.
311  */
312 void zstd_put_workspace(struct list_head *ws)
313 {
314         struct workspace *workspace = list_to_workspace(ws);
315
316         spin_lock_bh(&wsm.lock);
317
318         /* A node is only taken off the lru if we are the corresponding level */
319         if (workspace->req_level == workspace->level) {
320                 /* Hide a max level workspace from reclaim */
321                 if (list_empty(&wsm.idle_ws[ZSTD_BTRFS_MAX_LEVEL - 1])) {
322                         INIT_LIST_HEAD(&workspace->lru_list);
323                 } else {
324                         workspace->last_used = jiffies;
325                         list_add(&workspace->lru_list, &wsm.lru_list);
326                         if (!timer_pending(&wsm.timer))
327                                 mod_timer(&wsm.timer,
328                                           jiffies + ZSTD_BTRFS_RECLAIM_JIFFIES);
329                 }
330         }
331
332         set_bit(workspace->level - 1, &wsm.active_map);
333         list_add(&workspace->list, &wsm.idle_ws[workspace->level - 1]);
334         workspace->req_level = 0;
335
336         spin_unlock_bh(&wsm.lock);
337
338         if (workspace->level == ZSTD_BTRFS_MAX_LEVEL)
339                 cond_wake_up(&wsm.wait);
340 }
341
342 void zstd_free_workspace(struct list_head *ws)
343 {
344         struct workspace *workspace = list_entry(ws, struct workspace, list);
345
346         kvfree(workspace->mem);
347         kfree(workspace->buf);
348         kfree(workspace);
349 }
350
351 struct list_head *zstd_alloc_workspace(unsigned int level)
352 {
353         struct workspace *workspace;
354
355         workspace = kzalloc(sizeof(*workspace), GFP_KERNEL);
356         if (!workspace)
357                 return ERR_PTR(-ENOMEM);
358
359         workspace->size = zstd_ws_mem_sizes[level - 1];
360         workspace->level = level;
361         workspace->req_level = level;
362         workspace->last_used = jiffies;
363         workspace->mem = kvmalloc(workspace->size, GFP_KERNEL | __GFP_NOWARN);
364         workspace->buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
365         if (!workspace->mem || !workspace->buf)
366                 goto fail;
367
368         INIT_LIST_HEAD(&workspace->list);
369         INIT_LIST_HEAD(&workspace->lru_list);
370
371         return &workspace->list;
372 fail:
373         zstd_free_workspace(&workspace->list);
374         return ERR_PTR(-ENOMEM);
375 }
376
377 int zstd_compress_pages(struct list_head *ws, struct address_space *mapping,
378                 u64 start, struct page **pages, unsigned long *out_pages,
379                 unsigned long *total_in, unsigned long *total_out)
380 {
381         struct workspace *workspace = list_entry(ws, struct workspace, list);
382         zstd_cstream *stream;
383         int ret = 0;
384         int nr_pages = 0;
385         struct page *in_page = NULL;  /* The current page to read */
386         struct page *out_page = NULL; /* The current page to write to */
387         unsigned long tot_in = 0;
388         unsigned long tot_out = 0;
389         unsigned long len = *total_out;
390         const unsigned long nr_dest_pages = *out_pages;
391         unsigned long max_out = nr_dest_pages * PAGE_SIZE;
392         zstd_parameters params = zstd_get_btrfs_parameters(workspace->req_level,
393                                                            len);
394
395         *out_pages = 0;
396         *total_out = 0;
397         *total_in = 0;
398
399         /* Initialize the stream */
400         stream = zstd_init_cstream(&params, len, workspace->mem,
401                         workspace->size);
402         if (!stream) {
403                 pr_warn("BTRFS: zstd_init_cstream failed\n");
404                 ret = -EIO;
405                 goto out;
406         }
407
408         /* map in the first page of input data */
409         in_page = find_get_page(mapping, start >> PAGE_SHIFT);
410         workspace->in_buf.src = kmap_local_page(in_page);
411         workspace->in_buf.pos = 0;
412         workspace->in_buf.size = min_t(size_t, len, PAGE_SIZE);
413
414         /* Allocate and map in the output buffer */
415         out_page = btrfs_alloc_compr_page();
416         if (out_page == NULL) {
417                 ret = -ENOMEM;
418                 goto out;
419         }
420         pages[nr_pages++] = out_page;
421         workspace->out_buf.dst = page_address(out_page);
422         workspace->out_buf.pos = 0;
423         workspace->out_buf.size = min_t(size_t, max_out, PAGE_SIZE);
424
425         while (1) {
426                 size_t ret2;
427
428                 ret2 = zstd_compress_stream(stream, &workspace->out_buf,
429                                 &workspace->in_buf);
430                 if (zstd_is_error(ret2)) {
431                         pr_debug("BTRFS: zstd_compress_stream returned %d\n",
432                                         zstd_get_error_code(ret2));
433                         ret = -EIO;
434                         goto out;
435                 }
436
437                 /* Check to see if we are making it bigger */
438                 if (tot_in + workspace->in_buf.pos > 8192 &&
439                                 tot_in + workspace->in_buf.pos <
440                                 tot_out + workspace->out_buf.pos) {
441                         ret = -E2BIG;
442                         goto out;
443                 }
444
445                 /* We've reached the end of our output range */
446                 if (workspace->out_buf.pos >= max_out) {
447                         tot_out += workspace->out_buf.pos;
448                         ret = -E2BIG;
449                         goto out;
450                 }
451
452                 /* Check if we need more output space */
453                 if (workspace->out_buf.pos == workspace->out_buf.size) {
454                         tot_out += PAGE_SIZE;
455                         max_out -= PAGE_SIZE;
456                         if (nr_pages == nr_dest_pages) {
457                                 ret = -E2BIG;
458                                 goto out;
459                         }
460                         out_page = btrfs_alloc_compr_page();
461                         if (out_page == NULL) {
462                                 ret = -ENOMEM;
463                                 goto out;
464                         }
465                         pages[nr_pages++] = out_page;
466                         workspace->out_buf.dst = page_address(out_page);
467                         workspace->out_buf.pos = 0;
468                         workspace->out_buf.size = min_t(size_t, max_out,
469                                                         PAGE_SIZE);
470                 }
471
472                 /* We've reached the end of the input */
473                 if (workspace->in_buf.pos >= len) {
474                         tot_in += workspace->in_buf.pos;
475                         break;
476                 }
477
478                 /* Check if we need more input */
479                 if (workspace->in_buf.pos == workspace->in_buf.size) {
480                         tot_in += PAGE_SIZE;
481                         kunmap_local(workspace->in_buf.src);
482                         put_page(in_page);
483                         start += PAGE_SIZE;
484                         len -= PAGE_SIZE;
485                         in_page = find_get_page(mapping, start >> PAGE_SHIFT);
486                         workspace->in_buf.src = kmap_local_page(in_page);
487                         workspace->in_buf.pos = 0;
488                         workspace->in_buf.size = min_t(size_t, len, PAGE_SIZE);
489                 }
490         }
491         while (1) {
492                 size_t ret2;
493
494                 ret2 = zstd_end_stream(stream, &workspace->out_buf);
495                 if (zstd_is_error(ret2)) {
496                         pr_debug("BTRFS: zstd_end_stream returned %d\n",
497                                         zstd_get_error_code(ret2));
498                         ret = -EIO;
499                         goto out;
500                 }
501                 if (ret2 == 0) {
502                         tot_out += workspace->out_buf.pos;
503                         break;
504                 }
505                 if (workspace->out_buf.pos >= max_out) {
506                         tot_out += workspace->out_buf.pos;
507                         ret = -E2BIG;
508                         goto out;
509                 }
510
511                 tot_out += PAGE_SIZE;
512                 max_out -= PAGE_SIZE;
513                 if (nr_pages == nr_dest_pages) {
514                         ret = -E2BIG;
515                         goto out;
516                 }
517                 out_page = btrfs_alloc_compr_page();
518                 if (out_page == NULL) {
519                         ret = -ENOMEM;
520                         goto out;
521                 }
522                 pages[nr_pages++] = out_page;
523                 workspace->out_buf.dst = page_address(out_page);
524                 workspace->out_buf.pos = 0;
525                 workspace->out_buf.size = min_t(size_t, max_out, PAGE_SIZE);
526         }
527
528         if (tot_out >= tot_in) {
529                 ret = -E2BIG;
530                 goto out;
531         }
532
533         ret = 0;
534         *total_in = tot_in;
535         *total_out = tot_out;
536 out:
537         *out_pages = nr_pages;
538         if (workspace->in_buf.src) {
539                 kunmap_local(workspace->in_buf.src);
540                 put_page(in_page);
541         }
542         return ret;
543 }
544
545 int zstd_decompress_bio(struct list_head *ws, struct compressed_bio *cb)
546 {
547         struct workspace *workspace = list_entry(ws, struct workspace, list);
548         struct page **pages_in = cb->compressed_pages;
549         size_t srclen = cb->compressed_len;
550         zstd_dstream *stream;
551         int ret = 0;
552         unsigned long page_in_index = 0;
553         unsigned long total_pages_in = DIV_ROUND_UP(srclen, PAGE_SIZE);
554         unsigned long buf_start;
555         unsigned long total_out = 0;
556
557         stream = zstd_init_dstream(
558                         ZSTD_BTRFS_MAX_INPUT, workspace->mem, workspace->size);
559         if (!stream) {
560                 pr_debug("BTRFS: zstd_init_dstream failed\n");
561                 ret = -EIO;
562                 goto done;
563         }
564
565         workspace->in_buf.src = kmap_local_page(pages_in[page_in_index]);
566         workspace->in_buf.pos = 0;
567         workspace->in_buf.size = min_t(size_t, srclen, PAGE_SIZE);
568
569         workspace->out_buf.dst = workspace->buf;
570         workspace->out_buf.pos = 0;
571         workspace->out_buf.size = PAGE_SIZE;
572
573         while (1) {
574                 size_t ret2;
575
576                 ret2 = zstd_decompress_stream(stream, &workspace->out_buf,
577                                 &workspace->in_buf);
578                 if (zstd_is_error(ret2)) {
579                         pr_debug("BTRFS: zstd_decompress_stream returned %d\n",
580                                         zstd_get_error_code(ret2));
581                         ret = -EIO;
582                         goto done;
583                 }
584                 buf_start = total_out;
585                 total_out += workspace->out_buf.pos;
586                 workspace->out_buf.pos = 0;
587
588                 ret = btrfs_decompress_buf2page(workspace->out_buf.dst,
589                                 total_out - buf_start, cb, buf_start);
590                 if (ret == 0)
591                         break;
592
593                 if (workspace->in_buf.pos >= srclen)
594                         break;
595
596                 /* Check if we've hit the end of a frame */
597                 if (ret2 == 0)
598                         break;
599
600                 if (workspace->in_buf.pos == workspace->in_buf.size) {
601                         kunmap_local(workspace->in_buf.src);
602                         page_in_index++;
603                         if (page_in_index >= total_pages_in) {
604                                 workspace->in_buf.src = NULL;
605                                 ret = -EIO;
606                                 goto done;
607                         }
608                         srclen -= PAGE_SIZE;
609                         workspace->in_buf.src = kmap_local_page(pages_in[page_in_index]);
610                         workspace->in_buf.pos = 0;
611                         workspace->in_buf.size = min_t(size_t, srclen, PAGE_SIZE);
612                 }
613         }
614         ret = 0;
615 done:
616         if (workspace->in_buf.src)
617                 kunmap_local(workspace->in_buf.src);
618         return ret;
619 }
620
621 int zstd_decompress(struct list_head *ws, const u8 *data_in,
622                 struct page *dest_page, unsigned long dest_pgoff, size_t srclen,
623                 size_t destlen)
624 {
625         struct workspace *workspace = list_entry(ws, struct workspace, list);
626         struct btrfs_fs_info *fs_info = btrfs_sb(dest_page->mapping->host->i_sb);
627         const u32 sectorsize = fs_info->sectorsize;
628         zstd_dstream *stream;
629         int ret = 0;
630         unsigned long to_copy = 0;
631
632         stream = zstd_init_dstream(
633                         ZSTD_BTRFS_MAX_INPUT, workspace->mem, workspace->size);
634         if (!stream) {
635                 pr_warn("BTRFS: zstd_init_dstream failed\n");
636                 goto finish;
637         }
638
639         workspace->in_buf.src = data_in;
640         workspace->in_buf.pos = 0;
641         workspace->in_buf.size = srclen;
642
643         workspace->out_buf.dst = workspace->buf;
644         workspace->out_buf.pos = 0;
645         workspace->out_buf.size = sectorsize;
646
647         /*
648          * Since both input and output buffers should not exceed one sector,
649          * one call should end the decompression.
650          */
651         ret = zstd_decompress_stream(stream, &workspace->out_buf, &workspace->in_buf);
652         if (zstd_is_error(ret)) {
653                 pr_warn_ratelimited("BTRFS: zstd_decompress_stream return %d\n",
654                                     zstd_get_error_code(ret));
655                 goto finish;
656         }
657         to_copy = workspace->out_buf.pos;
658         memcpy_to_page(dest_page, dest_pgoff, workspace->out_buf.dst, to_copy);
659 finish:
660         /* Error or early end. */
661         if (unlikely(to_copy < destlen)) {
662                 ret = -EIO;
663                 memzero_page(dest_page, dest_pgoff + to_copy, destlen - to_copy);
664         }
665         return ret;
666 }
667
668 const struct btrfs_compress_op btrfs_zstd_compress = {
669         /* ZSTD uses own workspace manager */
670         .workspace_manager = NULL,
671         .max_level      = ZSTD_BTRFS_MAX_LEVEL,
672         .default_level  = ZSTD_BTRFS_DEFAULT_LEVEL,
673 };