1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (c) 2016-present, Facebook, Inc.
9 #include <linux/bitmap.h>
10 #include <linux/err.h>
11 #include <linux/init.h>
12 #include <linux/kernel.h>
14 #include <linux/sched/mm.h>
15 #include <linux/pagemap.h>
16 #include <linux/refcount.h>
17 #include <linux/sched.h>
18 #include <linux/slab.h>
19 #include <linux/zstd.h>
20 #include "compression.h"
23 #define ZSTD_BTRFS_MAX_WINDOWLOG 17
24 #define ZSTD_BTRFS_MAX_INPUT (1 << ZSTD_BTRFS_MAX_WINDOWLOG)
25 #define ZSTD_BTRFS_DEFAULT_LEVEL 3
26 #define ZSTD_BTRFS_MAX_LEVEL 15
27 /* 307s to avoid pathologically clashing with transaction commit */
28 #define ZSTD_BTRFS_RECLAIM_JIFFIES (307 * HZ)
30 static ZSTD_parameters zstd_get_btrfs_parameters(unsigned int level,
33 ZSTD_parameters params = ZSTD_getParams(level, src_len, 0);
35 if (params.cParams.windowLog > ZSTD_BTRFS_MAX_WINDOWLOG)
36 params.cParams.windowLog = ZSTD_BTRFS_MAX_WINDOWLOG;
37 WARN_ON(src_len > ZSTD_BTRFS_MAX_INPUT);
46 unsigned int req_level;
47 unsigned long last_used; /* jiffies */
48 struct list_head list;
49 struct list_head lru_list;
51 ZSTD_outBuffer out_buf;
55 * Zstd Workspace Management
57 * Zstd workspaces have different memory requirements depending on the level.
58 * The zstd workspaces are managed by having individual lists for each level
59 * and a global lru. Forward progress is maintained by protecting a max level
62 * Getting a workspace is done by using the bitmap to identify the levels that
63 * have available workspaces and scans up. This lets us recycle higher level
64 * workspaces because of the monotonic memory guarantee. A workspace's
65 * last_used is only updated if it is being used by the corresponding memory
66 * level. Putting a workspace involves adding it back to the appropriate places
67 * and adding it back to the lru if necessary.
69 * A timer is used to reclaim workspaces if they have not been used for
70 * ZSTD_BTRFS_RECLAIM_JIFFIES. This helps keep only active workspaces around.
71 * The upper bound is provided by the workqueue limit which is 2 (percpu limit).
74 struct zstd_workspace_manager {
75 const struct btrfs_compress_op *ops;
77 struct list_head lru_list;
78 struct list_head idle_ws[ZSTD_BTRFS_MAX_LEVEL];
79 unsigned long active_map;
80 wait_queue_head_t wait;
81 struct timer_list timer;
84 static struct zstd_workspace_manager wsm;
86 static size_t zstd_ws_mem_sizes[ZSTD_BTRFS_MAX_LEVEL];
88 static inline struct workspace *list_to_workspace(struct list_head *list)
90 return container_of(list, struct workspace, list);
93 static void zstd_free_workspace(struct list_head *ws);
94 static struct list_head *zstd_alloc_workspace(unsigned int level);
97 * zstd_reclaim_timer_fn - reclaim timer
100 * This scans the lru_list and attempts to reclaim any workspace that hasn't
101 * been used for ZSTD_BTRFS_RECLAIM_JIFFIES.
103 static void zstd_reclaim_timer_fn(struct timer_list *timer)
105 unsigned long reclaim_threshold = jiffies - ZSTD_BTRFS_RECLAIM_JIFFIES;
106 struct list_head *pos, *next;
108 spin_lock_bh(&wsm.lock);
110 if (list_empty(&wsm.lru_list)) {
111 spin_unlock_bh(&wsm.lock);
115 list_for_each_prev_safe(pos, next, &wsm.lru_list) {
116 struct workspace *victim = container_of(pos, struct workspace,
120 if (time_after(victim->last_used, reclaim_threshold))
123 /* workspace is in use */
124 if (victim->req_level)
127 level = victim->level;
128 list_del(&victim->lru_list);
129 list_del(&victim->list);
130 zstd_free_workspace(&victim->list);
132 if (list_empty(&wsm.idle_ws[level - 1]))
133 clear_bit(level - 1, &wsm.active_map);
137 if (!list_empty(&wsm.lru_list))
138 mod_timer(&wsm.timer, jiffies + ZSTD_BTRFS_RECLAIM_JIFFIES);
140 spin_unlock_bh(&wsm.lock);
144 * zstd_calc_ws_mem_sizes - calculate monotonic memory bounds
146 * It is possible based on the level configurations that a higher level
147 * workspace uses less memory than a lower level workspace. In order to reuse
148 * workspaces, this must be made a monotonic relationship. This precomputes
149 * the required memory for each level and enforces the monotonicity between
150 * level and memory required.
152 static void zstd_calc_ws_mem_sizes(void)
157 for (level = 1; level <= ZSTD_BTRFS_MAX_LEVEL; level++) {
158 ZSTD_parameters params =
159 zstd_get_btrfs_parameters(level, ZSTD_BTRFS_MAX_INPUT);
162 ZSTD_CStreamWorkspaceBound(params.cParams),
163 ZSTD_DStreamWorkspaceBound(ZSTD_BTRFS_MAX_INPUT));
165 max_size = max_t(size_t, max_size, level_size);
166 zstd_ws_mem_sizes[level - 1] = max_size;
170 static void zstd_init_workspace_manager(void)
172 struct list_head *ws;
175 zstd_calc_ws_mem_sizes();
177 wsm.ops = &btrfs_zstd_compress;
178 spin_lock_init(&wsm.lock);
179 init_waitqueue_head(&wsm.wait);
180 timer_setup(&wsm.timer, zstd_reclaim_timer_fn, 0);
182 INIT_LIST_HEAD(&wsm.lru_list);
183 for (i = 0; i < ZSTD_BTRFS_MAX_LEVEL; i++)
184 INIT_LIST_HEAD(&wsm.idle_ws[i]);
186 ws = zstd_alloc_workspace(ZSTD_BTRFS_MAX_LEVEL);
189 "BTRFS: cannot preallocate zstd compression workspace\n");
191 set_bit(ZSTD_BTRFS_MAX_LEVEL - 1, &wsm.active_map);
192 list_add(ws, &wsm.idle_ws[ZSTD_BTRFS_MAX_LEVEL - 1]);
196 static void zstd_cleanup_workspace_manager(void)
198 struct workspace *workspace;
201 spin_lock_bh(&wsm.lock);
202 for (i = 0; i < ZSTD_BTRFS_MAX_LEVEL; i++) {
203 while (!list_empty(&wsm.idle_ws[i])) {
204 workspace = container_of(wsm.idle_ws[i].next,
205 struct workspace, list);
206 list_del(&workspace->list);
207 list_del(&workspace->lru_list);
208 zstd_free_workspace(&workspace->list);
211 spin_unlock_bh(&wsm.lock);
213 del_timer_sync(&wsm.timer);
217 * zstd_find_workspace - find workspace
218 * @level: compression level
220 * This iterates over the set bits in the active_map beginning at the requested
221 * compression level. This lets us utilize already allocated workspaces before
222 * allocating a new one. If the workspace is of a larger size, it is used, but
223 * the place in the lru_list and last_used times are not updated. This is to
224 * offer the opportunity to reclaim the workspace in favor of allocating an
225 * appropriately sized one in the future.
227 static struct list_head *zstd_find_workspace(unsigned int level)
229 struct list_head *ws;
230 struct workspace *workspace;
233 spin_lock_bh(&wsm.lock);
234 for_each_set_bit_from(i, &wsm.active_map, ZSTD_BTRFS_MAX_LEVEL) {
235 if (!list_empty(&wsm.idle_ws[i])) {
236 ws = wsm.idle_ws[i].next;
237 workspace = list_to_workspace(ws);
239 /* keep its place if it's a lower level using this */
240 workspace->req_level = level;
241 if (level == workspace->level)
242 list_del(&workspace->lru_list);
243 if (list_empty(&wsm.idle_ws[i]))
244 clear_bit(i, &wsm.active_map);
245 spin_unlock_bh(&wsm.lock);
249 spin_unlock_bh(&wsm.lock);
255 * zstd_get_workspace - zstd's get_workspace
256 * @level: compression level
258 * If @level is 0, then any compression level can be used. Therefore, we begin
259 * scanning from 1. We first scan through possible workspaces and then after
260 * attempt to allocate a new workspace. If we fail to allocate one due to
261 * memory pressure, go to sleep waiting for the max level workspace to free up.
263 static struct list_head *zstd_get_workspace(unsigned int level)
265 struct list_head *ws;
266 unsigned int nofs_flag;
268 /* level == 0 means we can use any workspace */
273 ws = zstd_find_workspace(level);
277 nofs_flag = memalloc_nofs_save();
278 ws = zstd_alloc_workspace(level);
279 memalloc_nofs_restore(nofs_flag);
284 prepare_to_wait(&wsm.wait, &wait, TASK_UNINTERRUPTIBLE);
286 finish_wait(&wsm.wait, &wait);
295 * zstd_put_workspace - zstd put_workspace
296 * @ws: list_head for the workspace
298 * When putting back a workspace, we only need to update the LRU if we are of
299 * the requested compression level. Here is where we continue to protect the
300 * max level workspace or update last_used accordingly. If the reclaim timer
301 * isn't set, it is also set here. Only the max level workspace tries and wakes
302 * up waiting workspaces.
304 static void zstd_put_workspace(struct list_head *ws)
306 struct workspace *workspace = list_to_workspace(ws);
308 spin_lock_bh(&wsm.lock);
310 /* A node is only taken off the lru if we are the corresponding level */
311 if (workspace->req_level == workspace->level) {
312 /* Hide a max level workspace from reclaim */
313 if (list_empty(&wsm.idle_ws[ZSTD_BTRFS_MAX_LEVEL - 1])) {
314 INIT_LIST_HEAD(&workspace->lru_list);
316 workspace->last_used = jiffies;
317 list_add(&workspace->lru_list, &wsm.lru_list);
318 if (!timer_pending(&wsm.timer))
319 mod_timer(&wsm.timer,
320 jiffies + ZSTD_BTRFS_RECLAIM_JIFFIES);
324 set_bit(workspace->level - 1, &wsm.active_map);
325 list_add(&workspace->list, &wsm.idle_ws[workspace->level - 1]);
326 workspace->req_level = 0;
328 spin_unlock_bh(&wsm.lock);
330 if (workspace->level == ZSTD_BTRFS_MAX_LEVEL)
331 cond_wake_up(&wsm.wait);
334 static void zstd_free_workspace(struct list_head *ws)
336 struct workspace *workspace = list_entry(ws, struct workspace, list);
338 kvfree(workspace->mem);
339 kfree(workspace->buf);
343 static struct list_head *zstd_alloc_workspace(unsigned int level)
345 struct workspace *workspace;
347 workspace = kzalloc(sizeof(*workspace), GFP_KERNEL);
349 return ERR_PTR(-ENOMEM);
351 workspace->size = zstd_ws_mem_sizes[level - 1];
352 workspace->level = level;
353 workspace->req_level = level;
354 workspace->last_used = jiffies;
355 workspace->mem = kvmalloc(workspace->size, GFP_KERNEL);
356 workspace->buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
357 if (!workspace->mem || !workspace->buf)
360 INIT_LIST_HEAD(&workspace->list);
361 INIT_LIST_HEAD(&workspace->lru_list);
363 return &workspace->list;
365 zstd_free_workspace(&workspace->list);
366 return ERR_PTR(-ENOMEM);
369 static int zstd_compress_pages(struct list_head *ws,
370 struct address_space *mapping,
373 unsigned long *out_pages,
374 unsigned long *total_in,
375 unsigned long *total_out)
377 struct workspace *workspace = list_entry(ws, struct workspace, list);
378 ZSTD_CStream *stream;
381 struct page *in_page = NULL; /* The current page to read */
382 struct page *out_page = NULL; /* The current page to write to */
383 unsigned long tot_in = 0;
384 unsigned long tot_out = 0;
385 unsigned long len = *total_out;
386 const unsigned long nr_dest_pages = *out_pages;
387 unsigned long max_out = nr_dest_pages * PAGE_SIZE;
388 ZSTD_parameters params = zstd_get_btrfs_parameters(workspace->req_level,
395 /* Initialize the stream */
396 stream = ZSTD_initCStream(params, len, workspace->mem,
399 pr_warn("BTRFS: ZSTD_initCStream failed\n");
404 /* map in the first page of input data */
405 in_page = find_get_page(mapping, start >> PAGE_SHIFT);
406 workspace->in_buf.src = kmap(in_page);
407 workspace->in_buf.pos = 0;
408 workspace->in_buf.size = min_t(size_t, len, PAGE_SIZE);
411 /* Allocate and map in the output buffer */
412 out_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
413 if (out_page == NULL) {
417 pages[nr_pages++] = out_page;
418 workspace->out_buf.dst = kmap(out_page);
419 workspace->out_buf.pos = 0;
420 workspace->out_buf.size = min_t(size_t, max_out, PAGE_SIZE);
425 ret2 = ZSTD_compressStream(stream, &workspace->out_buf,
427 if (ZSTD_isError(ret2)) {
428 pr_debug("BTRFS: ZSTD_compressStream returned %d\n",
429 ZSTD_getErrorCode(ret2));
434 /* Check to see if we are making it bigger */
435 if (tot_in + workspace->in_buf.pos > 8192 &&
436 tot_in + workspace->in_buf.pos <
437 tot_out + workspace->out_buf.pos) {
442 /* We've reached the end of our output range */
443 if (workspace->out_buf.pos >= max_out) {
444 tot_out += workspace->out_buf.pos;
449 /* Check if we need more output space */
450 if (workspace->out_buf.pos == workspace->out_buf.size) {
451 tot_out += PAGE_SIZE;
452 max_out -= PAGE_SIZE;
454 if (nr_pages == nr_dest_pages) {
459 out_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
460 if (out_page == NULL) {
464 pages[nr_pages++] = out_page;
465 workspace->out_buf.dst = kmap(out_page);
466 workspace->out_buf.pos = 0;
467 workspace->out_buf.size = min_t(size_t, max_out,
471 /* We've reached the end of the input */
472 if (workspace->in_buf.pos >= len) {
473 tot_in += workspace->in_buf.pos;
477 /* Check if we need more input */
478 if (workspace->in_buf.pos == workspace->in_buf.size) {
485 in_page = find_get_page(mapping, start >> PAGE_SHIFT);
486 workspace->in_buf.src = kmap(in_page);
487 workspace->in_buf.pos = 0;
488 workspace->in_buf.size = min_t(size_t, len, PAGE_SIZE);
494 ret2 = ZSTD_endStream(stream, &workspace->out_buf);
495 if (ZSTD_isError(ret2)) {
496 pr_debug("BTRFS: ZSTD_endStream returned %d\n",
497 ZSTD_getErrorCode(ret2));
502 tot_out += workspace->out_buf.pos;
505 if (workspace->out_buf.pos >= max_out) {
506 tot_out += workspace->out_buf.pos;
511 tot_out += PAGE_SIZE;
512 max_out -= PAGE_SIZE;
514 if (nr_pages == nr_dest_pages) {
519 out_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
520 if (out_page == NULL) {
524 pages[nr_pages++] = out_page;
525 workspace->out_buf.dst = kmap(out_page);
526 workspace->out_buf.pos = 0;
527 workspace->out_buf.size = min_t(size_t, max_out, PAGE_SIZE);
530 if (tot_out >= tot_in) {
537 *total_out = tot_out;
539 *out_pages = nr_pages;
550 static int zstd_decompress_bio(struct list_head *ws, struct compressed_bio *cb)
552 struct workspace *workspace = list_entry(ws, struct workspace, list);
553 struct page **pages_in = cb->compressed_pages;
554 u64 disk_start = cb->start;
555 struct bio *orig_bio = cb->orig_bio;
556 size_t srclen = cb->compressed_len;
557 ZSTD_DStream *stream;
559 unsigned long page_in_index = 0;
560 unsigned long total_pages_in = DIV_ROUND_UP(srclen, PAGE_SIZE);
561 unsigned long buf_start;
562 unsigned long total_out = 0;
564 stream = ZSTD_initDStream(
565 ZSTD_BTRFS_MAX_INPUT, workspace->mem, workspace->size);
567 pr_debug("BTRFS: ZSTD_initDStream failed\n");
572 workspace->in_buf.src = kmap(pages_in[page_in_index]);
573 workspace->in_buf.pos = 0;
574 workspace->in_buf.size = min_t(size_t, srclen, PAGE_SIZE);
576 workspace->out_buf.dst = workspace->buf;
577 workspace->out_buf.pos = 0;
578 workspace->out_buf.size = PAGE_SIZE;
583 ret2 = ZSTD_decompressStream(stream, &workspace->out_buf,
585 if (ZSTD_isError(ret2)) {
586 pr_debug("BTRFS: ZSTD_decompressStream returned %d\n",
587 ZSTD_getErrorCode(ret2));
591 buf_start = total_out;
592 total_out += workspace->out_buf.pos;
593 workspace->out_buf.pos = 0;
595 ret = btrfs_decompress_buf2page(workspace->out_buf.dst,
596 buf_start, total_out, disk_start, orig_bio);
600 if (workspace->in_buf.pos >= srclen)
603 /* Check if we've hit the end of a frame */
607 if (workspace->in_buf.pos == workspace->in_buf.size) {
608 kunmap(pages_in[page_in_index++]);
609 if (page_in_index >= total_pages_in) {
610 workspace->in_buf.src = NULL;
615 workspace->in_buf.src = kmap(pages_in[page_in_index]);
616 workspace->in_buf.pos = 0;
617 workspace->in_buf.size = min_t(size_t, srclen, PAGE_SIZE);
621 zero_fill_bio(orig_bio);
623 if (workspace->in_buf.src)
624 kunmap(pages_in[page_in_index]);
628 static int zstd_decompress(struct list_head *ws, unsigned char *data_in,
629 struct page *dest_page,
630 unsigned long start_byte,
631 size_t srclen, size_t destlen)
633 struct workspace *workspace = list_entry(ws, struct workspace, list);
634 ZSTD_DStream *stream;
637 unsigned long total_out = 0;
638 unsigned long pg_offset = 0;
641 stream = ZSTD_initDStream(
642 ZSTD_BTRFS_MAX_INPUT, workspace->mem, workspace->size);
644 pr_warn("BTRFS: ZSTD_initDStream failed\n");
649 destlen = min_t(size_t, destlen, PAGE_SIZE);
651 workspace->in_buf.src = data_in;
652 workspace->in_buf.pos = 0;
653 workspace->in_buf.size = srclen;
655 workspace->out_buf.dst = workspace->buf;
656 workspace->out_buf.pos = 0;
657 workspace->out_buf.size = PAGE_SIZE;
660 while (pg_offset < destlen
661 && workspace->in_buf.pos < workspace->in_buf.size) {
662 unsigned long buf_start;
663 unsigned long buf_offset;
666 /* Check if the frame is over and we still need more input */
668 pr_debug("BTRFS: ZSTD_decompressStream ended early\n");
672 ret2 = ZSTD_decompressStream(stream, &workspace->out_buf,
674 if (ZSTD_isError(ret2)) {
675 pr_debug("BTRFS: ZSTD_decompressStream returned %d\n",
676 ZSTD_getErrorCode(ret2));
681 buf_start = total_out;
682 total_out += workspace->out_buf.pos;
683 workspace->out_buf.pos = 0;
685 if (total_out <= start_byte)
688 if (total_out > start_byte && buf_start < start_byte)
689 buf_offset = start_byte - buf_start;
693 bytes = min_t(unsigned long, destlen - pg_offset,
694 workspace->out_buf.size - buf_offset);
696 kaddr = kmap_atomic(dest_page);
697 memcpy(kaddr + pg_offset, workspace->out_buf.dst + buf_offset,
699 kunmap_atomic(kaddr);
705 if (pg_offset < destlen) {
706 kaddr = kmap_atomic(dest_page);
707 memset(kaddr + pg_offset, 0, destlen - pg_offset);
708 kunmap_atomic(kaddr);
713 static unsigned int zstd_set_level(unsigned int level)
716 return ZSTD_BTRFS_DEFAULT_LEVEL;
718 return min_t(unsigned int, level, ZSTD_BTRFS_MAX_LEVEL);
721 const struct btrfs_compress_op btrfs_zstd_compress = {
722 .init_workspace_manager = zstd_init_workspace_manager,
723 .cleanup_workspace_manager = zstd_cleanup_workspace_manager,
724 .get_workspace = zstd_get_workspace,
725 .put_workspace = zstd_put_workspace,
726 .alloc_workspace = zstd_alloc_workspace,
727 .free_workspace = zstd_free_workspace,
728 .compress_pages = zstd_compress_pages,
729 .decompress_bio = zstd_decompress_bio,
730 .decompress = zstd_decompress,
731 .set_level = zstd_set_level,